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Abstract

Efficient probabilistic pricing algorithms for multiple exercise options

Nicolas Essis-Breton, Ph.D.

Concordia University, 2020

This thesis presents efficient probabilistic algorithms for the pricing of multiple exercise options.

The algorithms handle the large class of of constrained multiple exercise American options. Two

algorithms are presented. Single Pass Lookahead Search provides a lower estimate of an option price,

while Nearest-Neighbor Martingale provides an upper estimate. The convergence of the algorithms

is proved through a Vapnik-Chernovenkis dimension analysis. Their efficiency is illustrated on

several examples, including a swing option with four constraints, and a passport option with 16

constraints. The algorithms are also applied to the pricing of equity-linked product offering a

reinvestment option.
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Chapter 1

Introduction

The fundamental object of study of this thesis is stochastic control. Stochastic control is a sub-field

of control theory where one tries to influence the evolution of a system driven by random noise.

Influencing the system is done through a control variable for which one can choose the value at

any time. A famous modern example of such stochastic control is the placement of ads by Google

and Facebook. In this particular example, the problem is to decide which ad should be presented

to a customer so that the customer clicks on the ad. The random noise comes from the customer

response to the presented ads. Other modern examples of stochastic control are self-driving car and

chatbots. More classical examples are board games such as chess or Go. As these examples suggest,

stochastic control is an ubiquitous topic studied in many fields, and a rich literature is available on

the topic. In the field of finance, stochastic control is studied in many sub-field such as optimal

asset allocation and option pricing.

For stochastic control in finance, the random noise comes mainly from the price of an asset, for

example a stock price, and the control variable is the quantity of asset purchased. The randomness

of asset prices comes from market participants whose willingness to buy an asset at a certain price

can only be observed through actual transactions. The goal of the controller is usually to maximize

a payoff that is contingent on an asset price. For example, for an American call, the payoff is the

difference between the stock price and a reference price called the strike. The controller can only

claim once this difference. The stochastic control problem is then to choose the best time to claim
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the difference.

While stochastic control is an ubiquitous topic, research on computer solution of such problems

concentrate on dynamic programming. A recent example is the breakthrough of Google DeepMind

which found a dynamic programming algorithm for the game of Go. The game of Go has long been

taught as untractable for computers because among other reasons, the search space size in the game

is larger than the number of atoms in the universe. This breakthrough resides in combining machine

learning methods with classical dynamic programming methods. This example demonstrates a trend

in the literature on stochastic control where most algorithmic solution are refinement of classical

dynamic programming algorithm. In the financial literature, this trend is also present. In particular,

in the literature on multiple exercise options, most algorithms are based on dynamic programming.

While dynamic programming solutions to control problems are prevalent, this solution approach

comes with many well-known challenges. One such well-known challenge is the curse of dimen-

sionality, where enormous computing power is necessary to solve apparently simple problems. For

example, for the game of go, the computing power used by Google DeepMind is equivalent to 10,000

years of computing on a personal laptop. Finance is renowned for the fast pace at which transactions

take place, and requiring such an amount of computing for every control decision on a transaction

is unpractical. This situation points to a lack of research on the passage from a stochastic control

problem to its algorithmic solution. We call this passage the algorithmic translation problem, and

the goal of this thesis is to propose a new solution to this problem.

The innovation of the thesis is to approach the algorithmic translation problem in the same way that

predictive algorithm are designed in machine learning. This standpoint starts with the recognition

that any convergence guarantee on the obtention of a predictor is limited to a particular choice

of predictor family. Within this predictor family, the convergence guarantees are universal to any

distribution of the data. By considering first the predictor family, rather than the algorithmic

solution itself, machine learning focuses on building a large bestiary of predictor family. This

approach has many advantages, one of them is that each predictor family can directly be mapped

to an algorithmic solution, so that having a large choice of predictor families implies that a large

choice of algorithmic solutions is available.
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In finance, and in particular in option pricing, the machine learning approach to the algorithmic

translation problem demands to identify families of control that possess both good convergence

guarantees and tractable algorithmic solution. Such good families are exhibited in the thesis and

their tractability is demonstrated on several examples. While the results of the thesis focus on

option pricing, the results may be applied to the solution of stochastic control problem in other

fields.

This thesis is formed by two articles. The first article presents efficient probabilistic algorithms

for the pricing of multiple exercise options. The second article applies these algorithms to the

reinvestment option found in equity-linked annuity.

A fully general pricing algorithm for multiple exercise options is a long standing challenge in deriva-

tive pricing. Since the pioneering work of Black and Scholes (1973) and Merton (1973), many

pricing algorithms have appeared for single exercise options, and many of these algorithms have

been extended to multiple exercise options. However, conforming to their single exercise origins, all

these extensions are rooted in dynamic programming techniques, whether they are finite difference

based or simulation based. Further, these extensions were not designed to provide a fully general

pricing algorithm, and their applications are often tedious. For example, none of these extensions

provide a method to enumerate the constraints state, a fundamental requirement to any dynamic

programming based algorithm.

This work presents two algorithms, Single Pass Lookahead Search and Nearest-Neighbor Martingale,

that were designed with this pricing challenge in mind. The algorithms combine methods from

artificial intelligence, option pricing theory, and numerical optimization. In particular, convergence

guarantees for the algorithms are provided through a Vapnik-Chernovenkis analysis. Further, the

algorithms work on a mathematical programming formulation of an option pricing problem: an

intuitive formulation that is easy to obtain for any option. The efficiency of the algorithms is

demonstrated on options that are beyond the capabilities of existing pricing algorithms. A swing

option with four constraints, and a passport option with 16 constraints.

The presented algorithms are fast, accurate and versatile. Single Pass Lookahead Search provides a
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lower estimate of the option price through the lookahead search technique of artificial intelligence,

while Nearest-Neighbor Martingale solves the dual pricing problem with a nearest-neighbor basis

and a Frank-Wolfe iteration. To further illustrate the versatility of the algorithms, the algorithms

are applied to the pricing of equity-linked product offering a reinvestment option.

From an option pricing standpoint, the algorithms are presented in the context of a complete

market, where market participants are rationals and options prices are established by no-arbitrage

under the given risk-neutral measure. This context provides a basis for extension to other contexts.

For example, in an incomplete market context, an option price is determined by considering both

the optimal exercise strategy and the cost of a self-financing hedging strategy. Indeed, market

incompleteness may create a disparity between the option payoffs and how replicable these payoffs

are, so that both the option holder and the option issuer perspectives need to be considered. In

such a context, the presented algorithms can be applied twice, once for the holder perspective, and

a second time for the issuer perspective. An other example is the context of model calibration. In

this context, market prices are given and one tries to recover the underlying risk measure. In such

a context, the algorithms can be used to test if a given measure gives back the observed market

price. Depending on the family of tested measure, a grid search or a bisection combined with the

algorithms can pinpoint the exact measure that gives the market prices.
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Fast Lower and Upper Estimates for the Price of

Constrained Multiple Exercise American Options by Single

Pass Lookahead Search and Nearest-Neighbor Martingale

Nicolas Essis-Breton∗and Patrice Gaillardetz

Concordia University

March 2020

Abstract

This article presents fast lower and upper estimates for a large class of options: the class of

constrained multiple exercise American options. Typical options in this class are swing options

with volume and timing constraints, and passport options with multiple lookback rights. Such

options are widely traded on energy and financial markets, despite the fact that there is

currently no method to price them. These options are intractable for exact pricing algorithms,

and there is no approximate pricing algorithm that can incorporate all the complex features

offered in these options. The main contribution of this article is to propose two algorithms

that fill this gap. The first algorithm uses the artificial intelligence method of lookahead

search with three novelties: 1) we use the lookahead search in a direct scheme, rather than in

an iterative scheme: neither a value function, nor a policy function are learned; 2) we exhibit

an approximation of the lookahead search problem in term of a conditional nearest-neighbor

basis for the stock path, with convergence guarantees provided through a Vapnik-Chernovenkis

∗Address of correspondence to Nicolas Essis-Breton, Department of Mathematics and Statistics at Concordia
University, Montreal, Quebec H3G 1M8, Canada, or e-mail: nicolasessisbreton@gmail.com.
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dimension analysis and a convergence test based on an energy distance for the filtration. 3) we

solve the lookahead search problem by mixed-integer programming rather than by Q-learning.

We found that these three novelties are keys for fast lower estimate of the considered option

class. We call the resulting algorithm Single Pass Lookahead Search. The second algorithm

uses the dual approach to option pricing with three novelties: 1) we exhibit a martingale basis

formed by a nearest-neighbor basis for the stock path, for which enforcing the martingality

condition is practical, and with a convergence test provided by an energy distance for the

filtration; 2) through a Vapnik-Chernovenkis dimension analysis, we show that obtaining a

solution of the dual problem is much easier than obtaining a dual martingale that generalizes

to any out-of-sample test; 3) we solve the resulting continuous non-linear dual problem with a

Frank-Wolfe method. We found that these three novelties are key for fast upper estimate of the

considered option class. We call the resulting algorithm Nearest-Neighbor Martingale. Several

numerical examples illustrate the approaches including a swing option with four constraints,

and a passport option with 16 constraints. The examples show that the proposed approaches

are versatile, fast, and require no adjustment when applied to different options. The algorithms

can thus simplify the risk management of financial derivatives when multiple pricing methods

are used, or enable it when no other pricing method is applicable.

Much progress toward general option pricing method was made by extending dynamic programming

algorithm initially designed for single exercise option. An early example of such extension is the

forest of tree method (Thompson 1995). In this method, each tree represents the asset state under

a particular constraint state. A change in the asset state induces a move in the asset tree, while

a change in the constraint state induces a jump from one tree to another. The method was later

improved by several authors (Lari-Lavassani, Simchi, and Ware 2001, Jaillet, Ronn, and Tompaidis

2004, Marshall and Reesor 2011, Bardou, Bouthemy, and Pages 2009, Wilhelm and Winter 2008,

Dahlgren and Korn 2005, Dahlgren 2005, Carmona and Touzi 2008, Carmona and Dayanik 2008,

Jain and Oosterlee 2012). Another important extension of single exercise pricing method is the

extension of the least-square Monte Carlo approach (Longstaff and Schwartz 2001) to multiple ex-

ercise option (Meinshausen and Hambly 2004). The extension consists in superposing several sets

7



of sample paths, each sample path set corresponding to a particular state of the constraints. In

essence, this approach could be named forest of path. The approach also provides an upper bound

on the option price by martingale duality (Rogers 2002, Haugh and Kogan 2004): the optimal

martingale is defined from the optimal exercise strategy found for the lower bound. The approach

was later improved by several authors (Barrera-Esteve et al. 2006, Bender and Schoenmakers 2006,

Aleksandrov and Hambly 2010, Bender 2011a, Bender 2011b, Schoenmakers 2012, Nadarajah, Mar-

got, and Secomandi 2013, and Bender, Schoenmakers, and Zhang 2015). However, the runtime of

dynamic programming based algorithm degrades quickly with the option complexity, in particular

the constraint complexity. For example, the two previous families of approaches demand one tree

(or one set of paths) for each possible constraint state. Further, enumerating the constraint state is

often tedious, and these approaches do not address this difficulty. A fast fully general option pricing

method that requires no adjustment from one option to another has not yet appeared in the option

pricing literature.

Our algorithms, Single Pass Lookahead Search (SPLS) and Nearest-Neighbor Martingale (NNM),

differ from the previous approaches in several aspects. First and foremost, they do not use dynamic

programming. SPLS uses lookahead searches (Silver et al. 2017, Browne et al. 2012) in a direct

scheme where no value function and no policy function are learned; NNM solves the dual martingale

problem directly without reusing any information from the lower estimate. Second, they are fast

and embarrassingly parallel algorithms. SPLS finds an optimal exercise strategy along a sample

path with a single pass of lookahead search, independently of any other sample path. NNM finds

an optimal martingale with a fast converging Frank-Wolfe scheme (Frank and Wolfe 1956), and

each iteration of the scheme can be speed-up with a parallel computation of the dual option value.

Third, they are fully general and applicable with no adjustments to a large class of options. Both

SPLS and NNM work on a mathematical programming formulation of an option pricing problem.

Such a formulation is intuitive and easy to obtain. To achieve these results, SPLS constructs the

decision as step-functions on a nearest-neighbor basis for the stock path. This basis dispenses of

building a search tree and makes the lookahead search solvable by mixed-integer programming.

NNM constructs the optimal martingale as a conditional nearest-neighbor basis for the stock path.
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This basis allows the martingality condition to be directly enforced in the Frank-Wolfe scheme

and turns each iteration of the scheme into the solution of a continuous linear program. A condi-

tional nearest-neighbor basis is a nearest-neighbor basis with two levels, one level for the filtration

information, and one level for the decision given the filtration information.

In the literature on single exercise American option, some recent articles use the deep learning

approach to dynamic programming (Becker, Cheridito, and Jentzen 2019), and solve the dual prob-

lem directly with a Wiener expansion basis (Lelong 2016). In contradistinction to these articles,

we use simpler tools to provide fast estimates for the harder problem of constrained multiple ex-

ercise American options: SPLS uses only lookahead search, and NNM uses only a Frank-Wolfe

scheme. Further, our algorithms have greater practical implications. They are fully general and we

demonstrate their effectiveness on examples of unmatched complexity in the literature on multiple

exercise options. First, a swing option with two multiple exercise American rights, a local and a

global volume constraint, an exercise limit constraint, and a refraction constraint. Then, a passport

option on three assets with constrained trading rights, several multiple exercise rights to waive the

trading constraints, the right to choose between a call payoff or a put payoff, a barrier value that

cancel the option, a multiple exercise reset right, and an American lookback right. All these features

can be formulated in a mathematical program for our algorithms with five stopping times and 16

constraints.

1 Constrained Multiple Exercise American Options

A constrained multiple exercise American option is a stochastic control problem of the form

max
X, Y

E

[ T∑

t=0

e−rtft(Y0:t, S0:t)Xt

]
(1.1)

s.t. g(X, Y, S) = 0 (1.1.1)
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where X is a multiple exercise stopping time adapted to the filtration generated by the stock S,

Y is an adapted control process, ft is the option payoff at time t, g is a vector constraint that holds

almost-surely, the expectation is taken under the risk-neutral measure (Black and Scholes 1973,

Merton 1973, Harrison and Kreps 1979), r is the risk-free rate, and T the maturity. The notation

X0:t = (X0, X1, . . . , Xt) denotes the path of a process up to time t, the option payoff ft is in R,

the stock St ∈ R
d is multi-dimensional, Ft is the filtration generated by the stock at time t, the

multiple stopping time Xt : Ft → {0, 1} is a sequence of 0-1 stopping decisions, and the control

process Yt : Ft → R
a is a sequence of vector-valued decisions. We refer to the stopping time and

the control as the decisions or the exercise strategy.

A typical option in this class is a vanilla swing option that allows a maximum of 10 swings X, each

swing ordering a quantity Y of the underlying S up to a global ordering limit of 100. This option

can be formulated with the following stochastic control problem

max
X, Y

E

[ T∑

t=0

e−rtYtStXt

]
(1.2)

s.t.
T∑

t=0

Xt ≤ 10 (1.2.1)

T∑

t=0

Yt ∈ [−100, 100] (1.2.2)

Xt ∈ {0, 1} t = 0, 1, . . . , T (1.2.3)

Yt ∈ [−1, 1] t = 0, 1, . . . , T (1.2.4)

In Methods, we show that the dual problem for this class of options can be formulated with

min
M

E

[
max

x,y,g(x,y,S)=0

T∑

t=0

e−rtft(y0:t, S0:t)xt −Mtxt

]
(1.3)

where M is an adapted martingale, x is a non-adapted multiple stopping time, and y is a non-

adapted control. The proof is similar to the dual derivation in Rogers (2002). The key ingredient
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of our dual formulation is that the option payoff ft is multiplied by a stopping time, so that the

stopping time can be used as a weight for a penalizing martingale. This in turn motivates our choice

of primal form (1.1).

For the previous swing option, the dual is given by

min
M

E

[
max
x,y

T∑

t=0

e−rtytStxt −Mtxt

]
(1.4)

where the maximum is taken over the non-adapted decisions satisfying the constraints in (1.2).

Since the stopping time in our option class is arbitrary, the following primal forms belong to the

class

T∑

t=0

ft(Y0:t, S0:t)
∏

i

X i
t ,

T∑

t=0

ht(X0:t, Y0:t, S0:t),

where Xt = (X1
t , X

2
t , . . .) is a vector-valued multiple stopping time, and ht is a payoff that depends

on both the stopping time and the control. Indeed, for the first form take the weighting stopping

as
∏

i X
i
t . For the second form, redefine the control as the pair Ỹ = (X, Y ), redefine the payoff as

h̃t = ht/
∨

i X
i
t and take the weighting stopping time as the logical OR

∨
i X

i
t . The dual forms can

then be written with

T∑

t=0

ft(Y0:t, S0:t)
∏

i

X i
t −

∏

i

X i
tMt, (1.5)

T∑

t=0

ht(X0:t, Y0:t, S0:t)−
∨

i

X i
tMt. (1.6)

The last dual form is particularly useful for option where a weighting stopping time cannot easily

be factored from the payoff. The last dual form also shows that our option class is fully general.
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2 Single Pass Lookahead Search

2.1 Algorithm

To present SPLS, we simplify the notation and write the residual payoff of a particular exercise

strategy at time t with

J(t,Xt:T , St:T ) =
T∑

s=t

e−rsfs(X0:s, S0:s) (2.1)

s.t. g(Xt:T , S) = 0

where the exercise strategy Xt:T is a vector of stopping times and control processes, and both the

payoff and the constraint are conditional on the filtration Ft. In the payoff ft and the constraint

g, the past decisions X0:t−1 and the past stock path S0:t are given by the filtration Ft, the future

decision Xt:T is the proposed exercise strategy, and the future stock path St:T is the sample path

given as argument. We simply write J(Xt:T , St:T ) when no confusion is possible on the anchoring

time t. The key construction of SPLS is the lookahead operator L(Xt:T , Ft) that finds the optimal

strategy X∗

t:T and returns the decision X∗

t at the anchoring time. This operator can be written with

L(Xt:T , Ft) =

(
argmax

Xt:T

E[J(Xt:T , St:T |Ft]

)

t

(2.2)

where (X)t = Xt is the selection operator for time t. Given a sample path S, SPLS extracts an

optimal exercise strategy for the sample path by repetitive application of the lookahead operator.

A first decision X∗

0 is extracted, then a second decision X∗

1 is extracted conditional on the previous
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decision X∗

0 and the observed path S0:1, and so on. This repetitive scheme can be written with

X∗

0 = L(X0:T , σ(S0)), (2.3)

X∗

1 = L(X1:T , σ(X
∗

0 , S0:1)), (2.4)

X∗

2 = L(X2:T , σ(X
∗

0:1, S0:2)), (2.5)

. . . ,

X∗

T = L(XT , σ(X
∗

0:T−1, S0:T )), (2.6)

where σ(A) is the σ-algebra generated byA. If we denote by Lt the t-th application L(Xt:T , σ(X
∗

0:t−1, S0:t)),

the option value V can be written with

V = E

[
J(L0:T , S0:T )

]
. (2.7)

To estimate V , we use several Monte Carlo projections. To present these projections, consider

the lookahead operator L(Xt:T , Ft) at time t, and let s be anytime between t and T . First, we

project the decision Xs onto the space of step-function of the stock path S0:s. The step-function

is constructed with a nearest-neighbor basis for the stock path, where the centroids are sampled

randomly. This step-function can be written with

X̄s(S0:s) =

ms−t∑

i=0

xs,i
q
St:s ∼ S̄s,i

t:s

y
, (2.8)

where S̄s,i is a sample path used for the basis at time s, ms−t is the number of sample path used

at time s, J·K is the indicator function, a ∼ b is the event that a belongs to the Voronoi cell of b,

and xs,i ∈ R are the basis weights. We write simply X̄s when no confusion is possible. Second, we

project the lookahead operator with a Monte Carlo average of N sample. This projected operator

can be written with

L̄(X̄t:T , Ft) =

(
argmax

xs,i

1

N

N∑

n=0

J(X̄t:T , S
n
t:T )

)

t

(2.9)
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where Sn is a sample path, X̄0:t−1 and Si
0:t comes from the filtration Ft, and the maximum runs

over the basis weights xs,i for time s = t, t + 1, . . . , T and i = 1, 2, . . . ,ms−t. Note that the

projected operator is a deterministic program over the nearest-neighbor basis weight xs,i. This

deterministic program can be solved by any optimization methods, and in particular by mixed-

integer programming. The projected optimal exercise strategy can be extracted with

X̄∗

0 = L̄(X̄0:T , σ(S
n
0 )), (2.10)

X̄∗

1 = L̄(X̄1:T , σ(X̄
∗

0 , S
n
0:1)), (2.11)

X̄∗

2 = L̄(X̄2:T , σ(X̄
∗

0:1, S
n
0:2)), (2.12)

. . . ,

X̄∗

T = L̄(X̄T , σ(X̄
∗

0:T−1, S
n
0:T )). (2.13)

Third, we project the option value with a Monte Carlo average of Ñ sample. This projected option

value can be written with

V̄ =
1

Ñ

Ñ∑

ñ=1

J(L̄0:T , S
ñ
0:T ). (2.14)

2.2 Convergence

The number of sample Ñ in the option value, the number of sample N in the lookahead operator,

and the nearest-neighbor basis size m = (mt)
T
t=0 are hyperparameters that need to be tuned so as

to maximize the projected option value V̄ . To understand the result of such tuning, we analyze the

convergence of the projection scheme. First, we complete a uniform convergence analysis with the

Vapnik-Chernovenkis dimension as main tool (Vapnik and Chervonenkis 1971). Then, we complete

an energy distance analysis (Székely, Rizzo, et al. 2004, Baringhaus and Franz 2004, Ramdas,

Trillos, and Cuturi 2017) The uniform convergence analysis helps to understand the interaction

between the hyperparameters, while the energy convergence analysis provides a practical score for

any choice of hyperparameters. As the score demands little computational effort, hyperparameters

tuning can be done quickly by finding the hyperparameters with the best score.
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The uniform convergence of the scheme can be studied from two angles. A first angle look at

convergence of the measure implied by the scheme, while a second angle look at convergence of the

scheme to the Bayes-value. Convergence to the Bayes-value refers to the convergence to the best

possible option value accessible by the strategy class used in the scheme. Convergence in measure

provides many insights for parameters tuning, but does not quantify the rate of convergence to the

option value. The benefits and drawbacks of the other mode of convergence are reversed. The first

mode of convergences shows that SPLS is a consistent estimator for the option value, in that the

scheme converges in probability to the option value. The second mode of convergence shows that

SPLS is universally Bayes-value consistent, in that, for any stochastic dynamic of the underlying,

any payoffs, and any constraints, there exists a value of the hyperparameters that approximate

arbitrarily well the best possible option value accessible by the projected strategy class. If we

assume that the optimal exercise strategy can be approximated arbitrarily well by a projected

strategy, this last result implies that SPLS converges uniformly to the option value.

Completing an energy distance analysis has its roots in the stability theory of stochastic optimal

control. Within this theory, a projection scheme is judged good if the scheme preserves the op-

timum of the control problem. Such a stability property can be guaranteed when the projected

stochastic space is close to the true stochastic space in some variant of the Wasserstein distance

(Heitsch, Römisch, and Strugarek 2006, Pflug and Pichler 2012). Such a convergence certificate

has two important advantages. First, when tuning hyperparameters, the option price should be

computed only for hyperparameters that can be certified. Second, such a certificate allows to use

low dimensional projection while maintaining accuracy. When the certificate is fast to compute,

these advantages accelerate both hyperparameters tuning and the projection scheme computation.

Unfortunately, Wasserstein-based distances are not fast to compute, especially in high dimension

(Ramdas, Trillos, and Cuturi, 2017). To correct this shortcoming, we use the energy distance in-

stead. We show that SPLS converges in measure when the energy distance is small, and we propose

a practical hyperparameters tuning algorithm based on the energy distance.
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2.2.1 Uniform Convergence in Measure

Convergence in measure can be decomposed into three key drivers. First, the projected strategy

space needs to be dense in the space of strategy. This driver is related to the nearest-neighbor basis

size m and the unknown size α of the smallest nearest-neighbor basis needed to replicate accurately

the optimal strategy X∗. Second, once a dense projected strategy space is found, the projected

lookahead operator needs to be accurate. This driver is related to the interaction between the

number of sample in the lookahead operator N , and the nearest-neighbor basis size m. Third, once

an accurate projected lookahead operator is found, the projected option value needs to be accurate.

This driver is related to the number of sample Ñ in the option value V̄ . With these three drivers,

we can show that the projected option value V̄ is a consistent estimator for the option value V .

Projected Strategy

Consider the lookahead operator L(Xt:T , Ft) at time t, and let s be anytime between t and T . For the

projected strategy convergence, let αs−t be the smallest number of Voronoi cell needed to tesselate

perfectly the set {(S0:s, X
∗

s )}. For example, for a vanilla American option let Bi be any Voronoi cell

of a perfect tesselation, then X∗

s (Bi) ∈ {{0}, {1}}, and X∗

s (Bi) ∈ {{0, 1}} is not possible. In other

words, a perfect tesselation separates the optimal decision into cell with unambiguous decision.

Cells with unambiguous decision are crucial for the projected strategy space to contain the optimal

strategy. To quantify this crucial requirement, we look at how big the nearest-neighbor basis size

ms−t needs to be in order to approximate uniformly well any tesselation of size αs−t.

To write our convergence rate, let (B̄i)
ms−t

i=1 be the tesselation generated by the nearest-neighbor

basis at time s. Also, for a given tesselation of size αs−t, let

A ∈ 2
∏αs−t

i=1 Bi \ {{B1}, {B2}, . . . , {Bαs−t
}, {∪αs−t

i=1 Bi}},

be the power set of all permutation of the cells in the tesselation, excluding the permutation that

contains a single cell of the tesselation, and excluding the union of the cells. In Methods, we show
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that the uniform convergence rate of the projected strategy can then be written with

P

(
sup
A

1

ms−t

ms−t∑

i=1

q
B̄i ∈ A

y
> ǫ

)
≤ 2ms−t

3d(s−t)α2
s−te−2ǫ2ms−t , (2.15)

where ǫ > 0. This convergence rate says that the empirical probability that a projected Voronoi cell

B̄i overlaps several cells of any tesselation of size αs−t decreases exponentially fast with ms−t. The

key ingredients for the proof are the shatter coefficient of the family of set A (Vapnik and Chervo-

nenkis 1971), and Hoeffending inequality. In regards to hyperparameters tuning, this convergence

rate says that the projected strategy space is dense as soon as ms−t is higher than 3d(s− t)α2
s−t. In

particular, a good projected strategy space is accessible well before ms−t is taken as infinity.

Projected Lookahead Operator

Assuming that the projected strategy space is dense, the projected lookahead operator will be close

to the true lookahead opertor if the distribution of the projected residual payoff J(X̄t:T , S
n) is

uniformly accurate. This distribution is defined by the joint distribution of the projected strategy

and the projected stock path. Since the projected strategy is a function of several nearest-neighbor

basis, and since the stock path takes value in a real plane, this joint distribution is characterized

by set of the form A ∈
(∏T

s=t{B̄s,i}ms−t

i=1 , A′

)
where B̄s,i is the Voronoi cell generated at time s

by the centroid S̄s,i
t:s , and A′ is an interval in R

d(T−t). To write the convergence rate, let ν(A) =

P (St:T ∈ A) be the probability that a sample path St:T is in both components of A, and let

νN(A) = 1
N

∑N
n=1 JSn

t:T ∈ AK be the empirical probability. A direct application of the Vapnik-

Chernovenkis inequality (Vapnik and Chervonenkis 1971, Devroye, Györfi, and Lugosi 1996) gives

the following rate of convergence

P

(
sup
A

|νN(A)− ν(A)| > ǫ

)
≤ 8N3d2(T−t)2

∑T
s=t m

2
s−te−ǫ2N/32, (2.16)

with ǫ > 0. See Methods for more details. This rate of convergence says that the square of the

nearest-neighbor basis size affects the residual payoff distribution. For hyperparameters tuning, this

implies that the basis sizes should be chosen as small as possible, so that an accurate distribution is
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accessible with a moderate number of sample N . Indeed, recall that to compute the projected option

value several samples of J(L̄0:T , S0:T ) are needed: the larger N , the heavier the computation of each

projected lookahead operator L̄t. A good way to satisfy this requirement, is to use a monotonically

increasing basis size, for example m = (1, α1, α2, . . . , αT ), rather than a constant basis size such as

m = (1, αT , αT , . . . , αT ). Of course, since the optimal nearest-neighbor basis size α is not known,

hyperparameters tuning should be performed by enforcing a monotone constraint on the basis size.

Projected Option Value

Since the projected option value is simply a Monte Carlo expectation, the uniform convergence of

the projected option value is given by the uniform law of large numbers of Vapnik and Chervonenkis

(1982). Since the goal of this section is to understand the hyperparameters impact, we make the

simplifying assumption that the projected lookahead operator is a uniform Lipschitz function of the

filtration. This assumption will be removed in the next section. Assume further that the residual

payoff J(X,S) is a Lipschitz function of the decision X. The convergence rate can then be written

with

P

(
sup
L̄

|V̄ − E
(
J(L̄, S)

)
| > ǫ

)
≤ 8

(
CK

ǫ

)(a+d)T 2

e−ǫ2Ñ/(128B2), (2.17)

where C is the Lipschitz constant of the projected lookahead operator, B is an upper bound on

the residual payoff, K is the Lipschitz constant of the residual payoff, and a is the dimension

of a decision, so that X ∈ R
a(T+1). See Methods for more details. For a particular option and a

particular stochastic dynamic of the stock, we can assume that the Lipschitz constant C is universal.

The rate of convergence is then uniform with respect to the projected lookahead operator L̄, and

the hyperparameter Ñ is independent, in term of convergence impact, of the number of sample in

the lookahead operator N and the nearest-neighbor basis size m. For hyperparameters tuning, this

implies that once a value of Ñ is found such that the projected option value converges, the same

value of Ñ can be used to tune the two other hyperparameters N and m.

With the three previous convergence rates, we can prove that the projected option value V̄ converges

in probability to the option value V when the hyperparameters are taken as very large. This result
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can be written with

limP (|V̄ − V | > ǫ) = 0, (2.18)

where the limit is taken with Ñ , N and m going to infinity, with m2
max < N , and mmax = ‖m‖∞ the

largest nearest-neighbor size. See Methods for more details. In the proof, we make the assumptions

that the convergence rates (2.15) and (2.16) control the denseness of the projected strategy space

and the accuracy of the projected lookahead operator. The next section presents a stronger result

that implies consistency without these assumptions.

2.2.2 Uniform Convergence in Bayes-Value

Convergence in Bayes-value is obtained by assuming that the residual payoff is Lipschitz in the

strategy. The first step towards this result is to obtain the rate of convergence of the average

residual payoff to the expected residual payoff. This rate of convergence can be written with

P (sup
L̄

| 1
Ñ

Ñ∑

ñ=1

J(L̄0:T , S
ñ)− E

(
J(L̄0:T , S)

)
| > ǫ)

≤ 8 exp

(
T (cdTm3

max)
T

(
KXmaxSmax

ǫ

)c(a+d)T 2m3
max

e−ǫ2N/(512B2K2) − ǫ2Ñ/(128B2)

)
, (2.19)

where the supremum is taken over the class of strategy implied by the projected lookahead operator,

B is an upper bound for the residual payoff, K is the Lipschitz constant of the residual payoff, c

is a universal constant, Xmax is an upper bound for the decision, and Smax is an upper bound for

the stock. The key ingredients of the proof are the uniform law of large numbers, and a careful

estimates of the covering number for the residual payoff. The Lipschitz assumption allows to

express this covering number in terms of a covering number for the projected lookahead operator.

The resulting covering number can then be estimated with another application of the uniform law

of large numbers. Further, this rate of convergence can be used to prove consistency of SPLS. See

Methods for more details.

With the previous rates of convergence, we can show the universal convergence of the projected
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option value to the Bayes-value. This result can be written with

lim V̄ = V, (2.20)

where the lookahead operator in the option value V is restricted to the class of strategy implied

by the projected lookahead operator, the limit is taken with Ñ , N and m going to infinity, and

m3
max < o(N). By assuming that the class of projected strategy is dense in the space of strategy,

this result implies that SPLS converges uniformly to the option value.

2.2.3 Energy Convergence

We start by reviewing the definition of energy distance and by applying this distance to a Voronoi

tesselation. Then, we present an energy-based hyperparameters tuning algorithm for SPLS.

Let X and Y be two random variables. The energy distance ED(X, Y ) between X and Y is defined

as

ED(X, Y ) = 2E (‖X − Y ‖)− E (‖X −X ′‖)− E (‖Y − Y ′‖) ,

where X ′ and Y ′ have the same distribution than X and Y , all variables are independent, and the

norm can be defined freely. We use the ℓ1-norm. Given a sample (Xi)
n
i=1 and (Yj)

m
j=1, the energy

distance can be estimated with

ÊD({Xi}, {Yi}) =
2

nm

n∑

i=1

m∑

j=1

‖Xi − Yj‖ −
1

n2

n∑

i=1

n∑

j=1

‖Xi −Xj‖ −
1

m2

m∑

i=1

m∑

j=1

‖Yi − Yj‖.

The energy distance has the property that X and Y have the same distribution if and only if

ED(X, Y ) = 0.

For the projected lookahead operator, the convergence rate (2.16) shows that the distribution that is

crucial to guarantee the accuracy of the projected lookahead operator is the joint distribution of the

strategy and the stock path. Since this joint distribution is the distribution of a stochastic process,
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the distribution can be characterized by its conditional distribution. As the projected lookahead

operator is a Monte Carlo average on the stock path, any discrepancy in the conditional distribution

originates from the projected strategy. In particular, if the number of sample path N used in the

projected lookahead operator is not adequate with respect to to the nearest-neighbor basis size m,

the conditional distribution will concentrate in the wrong cell of the Voronoi tesselation induced by

the projected strategy. One way to measure the accuracy of the projected lookahead operator is

hence to verify that the conditional distribution concentrates in the appropriate Voronoi cells.

To measure the accuracy of the conditional distribution concentration, consider the projected looka-

head operator Lt at time t, a sample path S, and any time s between time t and T − 1. Denote

the conditional cell by πSs = (is, is+1). The conditional cell is the index of the Voronoi cell at time

s and s + 1 for the stock path S. The index is denotes one of the Voronoi cell {B̄s,i}ms−t

i=1 , and

similarly for is+1. For an entire sample S
(N)
t:T = (Sn

t:T )
N
n=1, denote by πS

(N)
t:T , the resulting sample of

conditional cells.

For a fix nearest-neighbor size m, a large sample N ′ of conditional cells can be considered as the

reference conditional distribution. The adequacy of the number of sample paths N in the projected

lookahead operator can then be measured by the energy distance between the reference sample and

the conditional cells sample induced by the projected lookahead operator. This energy distance can

be written with

ÊD(L̄t) = ÊD(πS ′

t:T
(N ′)

, πS
(N)
t:T ).

By extension, the total energy of the projected lookahead operator L̄ can be defined as the expected

average energy. This total energy can be written with

ÊD(L̄) =
1

ÑT

Ñ∑

n=1

T∑

t=0

ÊD(L̄t). (2.21)

For process with independent and identically distributed increments, the total energy can be esti-
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mated with the energy of the lookahead at time zero, giving

ÊD(L̄) =
1

Ñ

Ñ∑

n=1

ÊD(L̄0).

Whenever applicable, the second form for the total energy is preferable as this form is faster to

compute.

By construction, a total energy of zero is a certificate that the projected lookahead operator is

accurate. A total energy of zero is hence an equivalent condition to the convergence rate (2.16) and

can be used as a substitute to prove the consistency of SPLS (2.18).

Using the total energy, hyperparameters tuning can be done as follows. First, fix a sample size Ñ

and an energy threshold δ. The sample size Ñ can be small as the energy certificate guarantees the

convergence. The energy threshold δ is the maximum total energy that we are willing to tolerate in

order to consider the projected lookahead operator accurate. In numerical experiments, we found

that there is a clear shift in the total energy once the lookahead is no more accurate, and it is

not necessary to develop a formal hypothesis test to define this threshold. Such a threshold can

be found by computing the projected option value (2.14) on a small set of hyperparameters. The

threshold is then given by the hyperparameters with the maximum projected option value. Second,

the projected option value is computed conditionally on the energy threshold on a grid of the form

(N = 1, 2, . . . , Nmax)× (m = 1, 2, . . . ,mmax),

The notation m = x means that the nearest-neighbor size is increasing with m0 = 1 and mT = x.

At each grid point, the total energy (2.21) is computed and the projected option value is computed

only if the total energy is below the threshold δ. Third, the maximum projected option value found

through the grid search is taken as a lower estimate for the option price.
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3 Nearest Neighbor Martingale

3.1 Algorithm

To present NNM, assume that any martingale is defined as a random walk with increments that

are conditionally zero-mean. Such a martingale M can be written with

M0 = 0,

Mt = Mt−1 + It, t = 1, 2, . . . , T,

E (It|Ft−1) = 0, t = 1, 2, . . . , T,

where It is the random walk increment at time t. The martingality condition E (Mt|Ft−1) = Mt−1

is enforced by the increment being conditionally zero-mean. Denote by D(M,S) the dual payoff for

a particular martingale M and a sample path S. This dual payoff can be written with

D(M,S) = max
x,y,g(x,y,S)=0

T∑

t=0

e−rtft(y0:t, S0:t)xt −Mtxt.

Given the probability measure P of the sample path, the Rogers operator gives the martingale that

minimizes the expectation of the dual payoff. This operator can be written with

R(P ) = argmin
M

E

[
D(M,S)

]
.

The option value is then given by the expectation of the dual payoff with the martingale given by

the Rogers operator

V = E

[
D(R(P ), S)

]
.

See Methods for the equivalence of the dual and primal problem.

To estimate V , we use several Monte Carlo projections and a relaxation of the Rogers operator.

First, we project the martingale increment It onto the space of conditional nearest-neighbor basis
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for the stock paths. The centroid for such a basis is a pair (S̄t,i
0:t−1, S̄

t,i,j
t ) where the path S̄t,i

0:t−1 is

sampled randomly, and the next stock price S̄t,i,j
t is sampled conditional on the path S̄t,i

0:t−1. The

resulting step-function can be written with

Īt(S0:t) =

pt∑

i=1

qt∑

j=1

xt,i,j
q
S0:t−1 ∼ S̄t,i

0:t−1, St ∼ S̄t,i,j
t

y
,

where pt is the number of stock path used, qt is the number of conditional stock price used, and

xt,i,j ∈ R are the basis weights. We write simply Īt when no confusion is possible. Second, we relax

the Rogers operator to a Frank-Wolfe iteration. To describe the iteration, let Z̄ be any projected

martingale. The relaxed Rogers operator produces an improved projected martingale M̄ by solving

the following linear program

R̄(Z̄) = argmin
xt,i,j

1

N

N∑

n=1

D(M̄, Sn) (3.1)

s.t.
N∑

n=1

qt∑

j=1

xt,i,j
q
Sn
0:t−1 ∼ S̄t,i

0:t−1, S
n
t ∼ S̄t,i,j

t

y
= 0 t = 1, 2, . . . , T, i = 1, 2, . . . , pt (3.2)

M̄0 = 0 (3.3)

xt,i,j − zt,i,j ∈ [−η, η] t = 1, 2, . . . , T, i = 1, 2, . . . , pt, j = 1, 2, . . . , qt (3.4)

where η > 0 is the learning rate, xt,i,j are the basis weights for the increment of the martingale M̄ ,

and zt,i,j are the basis weights for the increment of the martingale Z̄. The constraints (3.2) and

(3.3) ensure that the improved martingale satisfies the martingality condition, while the constraint

(3.4) ensures that the improved martingale is a small change to the given martingale. The relaxed

operator is iterated m times to obtain the projected optimal martingale R̄m(Z̄). Third, we project

the dual option value with another sample {S̃ñ}Ñn=1. This projected dual value can be written with

V̄ =
1

Ñ

Ñ∑

ñ=1

D(R̄m(Z̄), S̃ñ). (3.5)

As the next section will show, the computational effort required in the relaxed Rogers operator to

obtain a good projected dual value is often prohibitive. For this reason, the projected dual value
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is further relaxed by using the same sample {Sn}Nn=1 that is used for the relaxed operator. This

relaxed dual value can be written with

¯̄V =
1

N

N∑

n=1

D(R̄m(Z̄), Sn). (3.6)

As the next section will show, estimating the dual option value with the relaxed dual value is not an

heuristic. The relaxed dual value converges faster to the dual option value then the projected dual

value. However, the optimal martingale associated to the relaxed dual value does not generalize

well to out-of-sample test. In other words, the relaxed dual value approximates the distribution of

the sample path well enough to obtain a good point estimate, but not well enough to obtain a good

estimate of a stochastic process.

3.2 Convergence

For hyperparameters tuning insights, we first look at the uniform convergence in measure of NNM,

which shows that the relaxed dual value is a consistent estimator of the dual value. Second,

we look at the uniform convergence in Bayes-value, which shows that NNM is universally Bayes-

value consistent. Third, we complete an energy convergence analysis and provide an energy-based

algorithm for hyperparameters tuning.

3.2.1 Uniform Convergence in Measure

The convergence in measure of NNM is driven by three major factors. First, the projected martingale

space needs to dense, second, the relaxed Rogers operator needs to be accurate, and third, the

projected dual value needs to be accurate. The relaxed operator accuracy depends on whether the

operator is used for the projected dual value (a stochastic process estimate) or the relaxed dual

value (a point estimate).

Projected Martingale

Denote by (p, q) = ((pt, qt), t = 1, 2, . . . , T ) the nearest-neighbor basis size. Without loss of
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generality, we can assume that the optimal martingale is a nearest-neighbor martingale of size

(α, β). For example, for a vanilla American put in a binomial world (Cox, Ross, and Rubinstein

1979) (α, β) = ((2t−1, 2), t = 1, 2, . . . , T ), and a good projected martingale can be obtained with

(p, q) = ((O(t), 2), t = 1, 2, . . . , T ), see Methods for more details. The projected martingale space

can be considered dense in the space of martingale as soon as the projected space approximates

uniformly well any martingale of size (α, β).

We consider separately the convergence of the conditioning part and the current part of the nearest-

neighbor basis. For the conditioning part, let (B̄i)
pt
i=1 be the tesselation generated by the conditioning

part of the nearest-neighbor basis at time t. For any conditioning tesselation of size αt let

A ∈ 2
∏αt

i=1 Bi \ {{B1}, {B2}, . . . , {Bαt
}, {∪αt

i=1Bi}},

be the power set of all permutation of the cell Bi in the tesselation, excluding the permutation that

contains a single cell of the tesselation, and excluding the union of the cells. In Methods, we show

that the uniform convergence rate of the conditioning part can be written with

P

(
sup
A

1

pt

pt∑

i=1

q
B̄i ∈ A

y
> ǫ

)
≤ 2p

3dtα2
t

t e−2ǫ2pt , (3.7)

where ǫ > 0.

For the current part, let (B̄i)
qt
i=1 be the tesselation generated by the current part of the nearest-

neighbor basis at time t. For any current part tesselation of size βt let

A ∈ 2
∏βt

i=1 Bi \ {{B1}, {B2}, . . . , {Bβt
}, {∪βt

i=1Bi}},

be the power set of all permutation of the cell Bi in the tesselation, excluding the permutation that

contains a single cell of the tesselation, and excluding the union of the cells. In Methods, we show

that the uniform convergence rate of the current part can be written with

P

(
sup
A

1

qt

qt∑

i=1

q
B̄i ∈ A

y
> ǫ

)
≤ 2q

3dβ2
t

t e−2ǫ2qt , (3.8)
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where ǫ > 0.

These convergence rates say that the empirical probability that a conditional Voronoi cell B̄i overlaps

several cells of any conditional tesselation of size (αt, βt) decreases exponentially fast with pt and

qt. In regard to hyperparameters tuning, this convergence rate says that the projected martingale

space is dense as soon as pt is higher than 3dtα2
t , and as soon as βt is higher than 3dβ2

t .

Relaxed Rogers Operator

Assuming that the projected martingale space is dense, the convergence of NNM lies in the accuracy

of the relaxed Rogers operator. When the relaxed Rogers operator is used to estimate the projected

dual value, the goal is to find a projected martingale that generalizes well to any out-of-sample

computation of the dual value. Within a probabilistic setting, this goal is equivalent to estimate

accurately the distribution of pair of the form (M̄,M), where M̄ is a projected martingale, and M

is the optimal martingale. When the relaxed Rogers operator is used to estimate the relaxed dual

value, the goal is to estimate the dual option value, and this goal is equivalent of estimating the

distribution of pair of the form (M̄,D) where M̄ is a projected martingale, and D is the dual payoff

value. The first usage is a stochastic process estimate, while the second usage is a point estimate.

To write the convergence rates, let B =
∏T

t=0{B̄t
i}ptqti=0 be the tesselation generated by the projected

martingale. The optimal martingale M is a vector in R
T , and the dual payoff D is a real scalar.

When the relaxed Rogers operator is used for a stochastic process estimate, denote by A set of

the form B × [a, b], with [a, b] an interval in R
T , and let ν be the probability that a sample stock

path and the optimal martingale are in A, ν(A) = P ((S,M) ∈ A). The corresponding empirical

probability can be written with νN(A) =
1
N

∑N
i=1 JS ∈ B,M ∈ [a, b]K. A direct application of the

Vapnik-Chernovenkis inequality (Vapnik and Chervonenkis 1971, Devroye, Györfi, and Lugosi 1996)

gives the following rate of convergence

P

(
sup
A

|νN(A)− ν(A)| > ǫ

)
≤ 8N3dT

∑T
t=1 tp

2
t q

2
t e−ǫ2N/32, (3.9)

with ǫ > 0. See Methods for more details.
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When the relaxed Rogers operator is used for a point estimate, denote by A set of the form B×[a, b],

with [a, b] an interval in R, and let ν be the probability that a sample stock path and the dual payoff

are in A, ν(A) = P ((S,D) ∈ A). The corresponding empirical probability can be written with

νn(A) = 1
N

∑N
i=1 JS ∈ B,D ∈ [a, b]K. A direct application of the Vapnik-Chernovenkis inequality

(Vapnik and Chervonenkis 1971, Devroye, Györfi, and Lugosi 1996) gives the following rate of

convergence

P

(
sup
A

|νn(A)− ν(A)| > ǫ

)
≤ 8N3d

∑T
t=1 tp

2
t q

2
t e−ǫ2N/32, (3.10)

with ǫ > 0. See Methods for more details.

The first observation that comes from these convergence rates is that to guarantee the accuracy

of a stochastic process estimate the sample size N needs to be T times bigger than for a point

estimate. As each iteration of the relaxed Rogers operator demands to compute the dual payoff

for each sample stock path, and demands to solve a large linear program, this factor often makes

a point estimate much faster to obtain. Second, these convergence rates show that the product of

the nearest-neighbor basis size slowdown the convergence of the relaxed operator. The basis size

should hence be chosen as small as possible. In particular, the conditioning size pt and the current

size qt can be taken as monotonically increasing.

Projected Dual Value

Once the relaxed Rogers operator is accurate, NNM accuracy lies in an accurate estimation of the

projected dual value. Since the goal of this section is to understand the hyperparameters impact,

we use a probabilistic perspective where the relaxed Rogers operator is viewed as a martingale,

and we look at how well the dual value associated to any martingale can be estimated. With this

assumption, analyzing the convergence of the projected dual value (3.5) or the relaxed dual value

(3.6) is equivalent. We use the notation of the projected dual value.

Let M̄ be a projected martingale, the convergence rate of the projected dual value to the dual value

follows by assuming that the dual payoff is a Lipschitz function of the martingale, and by using the
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uniform law of large numbers. This rate can be written with

P (sup
M̄

| 1
Ñ

Ñ∑

ñ=1

D(M̄, Sñ)− E
(
D(M̄, S)

)
| > ǫ)

≤ 8(cdTp3maxq
3
max)

T

(
UK

ǫ

)cdT 2p3maxq
3
max

e−ǫÑ/(128B2), (3.11)

where (pmax, qmax) = (‖p‖∞, ‖q‖∞) is the largest nearest-neighbor size, U is an upper bound on

the projected martingale, K is the Lipschitz constant of the dual payoff, B is an upper bound on

the dual payoff, and c is a universal constant. See Methods for more details. For hyperparameters

tuning, this convergence rate says that the nearest-neighbor basis size (p, q) has a direct impact on

the convergence of the projected dual value. An appropriate sample size Ñ should hence be chosen

by considering the biggest nearest-neighbor basis that will be used in hyperparameters tuning. Once

such a sample size Ñ is found, the projected dual value will be accurate for all the nearest-neighbor

basis size considered.

With the previous convergence rates, we can prove that the projected dual value V̄ and the relaxed

dual value ¯̄V converge in probability to the option value V when the hyperparameters are taken as

very large. These results can be written with

limP (|V̄ − V | > ǫ) = 0, (3.12)

limP (| ¯̄V − V | > ǫ) = 0, (3.13)

where the limit is taken with Ñ , N and (p, q) going to infinity. The increasing rate for the nearest-

neighbor basis size is p3maxq
3
max < o(N) for the projected dual value, and p2maxq

2
max < o(N) for the

relaxed dual value. This difference in increasing rate further shows that the computational effort

behind the projected dual value and the relaxed dual value are substantially different. See Methods

for more details.
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3.2.2 Uniform Convergence in Bayes-Value

For the projected dual value, convergence in Bayes-value is obtained by assuming that the dual

payoff is Lipschitz in the martingale, and by considering a more general relaxed Rogers operator.

To define this operator, denote by S(N) = (Sn)Nn=1 a random sample of size N of the stock path.

The general relaxed Rogers operator R̄(S(N)) makes no assumption on the optimization method

used and can be written with

R̄(S(N)) = argmin
M̄

1

N

N∑

n=1

D(M̄, Sn),

where the minimization is subject to the same constraint than in (3.1). The rate of convergence to

the Bayes-value can then be written with

P ( sup
R̄(S(N))

| 1
Ñ

Ñ∑

n=1

D(R̄(S(N)), Sn)− E
(
D(R̄(S(N)), S)

)
| > ǫ)

≤ 8(cdTp3maxq
3
maxN

3)T
(
UK

ǫ

)cdT 2p3maxq
3
maxN

3

e−ǫ2Ñ/(128B2), (3.14)

where the supremum is taken over the class of martingale implied by the general relaxed Rogers

operator, U is an upper bound on the projected martingale, K is the Lipschitz constant of the dual

payoff, B is an upper bound on the dual payoff, and c is a universal constant.

For the relaxed dual value, there is no out-of-sample test and the convergence in Bayes-value can

be analyzed directly with a probabilistic view of the relaxed Rogers operator. The convergence rate

(3.11) can hence be taken as the Bayes-value rate of the relaxed dual value.

With the previous rates of convergence, we can show the universal convergence of the projected

dual value and the relaxed dual value to the Bayes-value. These results can be written with

lim V̄ = V, (3.15)

lim ¯̄V = V, (3.16)
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with the Rogers operator restricted to the class of martingale implied by the relaxed Rogers operator.

For the projected dual value V̄ , the limit is taken with Ñ , N , and (p, q) going to infinity, with an

increasing rate of p3maxq
3
maxN

3 < o(Ñ). For the relaxed dual value ¯̄V , the limit is taken with N and

(p, q) going to infinity, with an increasing rate of p3maxq
3
max < o(N). The difference in increasing rate

between the projected dual value and the relaxed dual value supports the difference in computational

effort between the two methods. By assuming that the class of projected martingale is dense in the

space of strategy, these Bayes-value consistency results imply that NNM converges uniformly to the

dual option value.

3.2.3 Energy Convergence

As the projected dual value needs a stochastic process estimate, an energy score for this method is

difficult to design. Indeed, the measure that needs to be estimated is given in (3.9) and is for set

of the form (M̄,M), where M̄ is a projected martingale, and M is the optimal martingale. The

projected martingale is a step-function on a nearest-neighbor basis of the stock, and the quality of its

distribution can be measured by looking at the energy of the tesselation. For the optimal martingale

however there is no simple basis of comparison. Especially so, that the optimal martingale is

unknown. This shortcoming does not apply to the relaxed dual value as from (3.10) the distribution

that needs to be estimated is for set of the form (M̄).

To define an energy score for the relaxed dual value, we adapt the energy score of SPLS (Section

2.2.3). To this end, fix a time t, and consider the conditional tesselation ∪pt
i=1 ∪qt

j=1 Bi,j induced by

the projected martingale. A Voronoi cell in this tesselation is of the form Bi,j = Ui ×Wj where Ui

is the conditioning part, and Wj is the current part. As the tesselation already has a conditional

nature, the conditional cell at time t for a stock path S that falls in the cell Bi,j can be defined with

π(S0:t−1, St) = (i, j), where i is the index of the conditioning part cell, and j is the index of the

current part cell. For a sample of stock paths S(N) = (Sn)Nn=1, denote by πS(N) the corresponding

sample of conditional cells. The energy of the relaxed dual value can then be written with

ÊD(R̄(Z̄)) = ÊD(πS(N), πS ′(N
′)
),
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where S ′(N
′) is another independent sample with N ′ much bigger then N . As the energy distance

detects any discrepancy in distribution, an energy of zero is an equivalent condition to (3.10) and

can be used as substitute to prove the consistency of the relaxed dual value (3.13).

In numerical experiments, we found that when the nearest-neighbor size (p, q) is too high compared

to the sample size N , the relaxed dual value does not converge. The Frank-Wolfe iteration in the

relaxed Rogers operator is able to continually decrease the relaxed dual value. In contrast, when

the nearest-neighbor size is appropriate for the sample size, the Frank-Wolfe iteration converges.

Defining an appropriate energy threshold can hence be done by detecting where the Frank-Wolfe

iteration diverges. A simple way to detect this divergence is to compare the Frank-Wolfe iteration to

the lower bound found by SPLS. Alternatively, instead of defining an energy threshold, the SPLS

lower bound can be used to define a barrier past which the Frank-Wolfe iteration is considered

divergent. For example, with an SPLS value of v, the Frank-Wolfe iteration is considered divergent

whenever the relaxed dual value falls below v. As SPLS is a lower estimate of the option price, the

lower bound barrier may be setted slight higher then the actual SPLS value. For example, the lower

bound barrier can be setted to αv, with α > 1. We call the factor α the lower bound repulsion

factor.

Using the filtration energy, hyperparameters tuning can be done as follows. First, fix a sample size

N and an energy threshold δ. The sample size N can be small as the energy certificate guarantees

the convergence. The energy threshold δ is the maximum energy that we are willing to tolerate to

consider the relaxed dual value accurate. This threshold can be selected by detecting where the

relaxed dual value (3.6) diverges. Second, the filtration energy is computed on a grid of the form

(p = 1, 2, . . . , pmax)× (q = 1, 2, . . . , qmax),

The notation p = x means that the conditioning size is increasing with p0 = 1 and pT = x, and

similarly for the notation q = x. Third, the minimum relaxed dual value found through the grid

search is taken as an upper estimate for the option price.
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4 An American Option

This section and the following applies SPLS and NNM to options of increasing complexity. For

each option, we present the price of the option under different pricing parameters. The first two

examples can be valued by exact pricing algorithm, and we compare our algorithms to option prices

that are available in the literature. See Methods for a description of our implementation of SPLS

and NNM.

Consider a single exercise American put option on a stock S with a strike price of K. The option

can be exercised 50 times per year, up to the maturity T . The stochastic program for this option

can be written with

max
X

E

[ T∑

t=0

e−rt (K − St)+ Xt

]
(4.1)

s.t.
T∑

t=0

Xt ≤ 1 (4.1.1)

where X is the exercise decision, and r is the risk-free rate. The risk-neutral dynamic for the stock

price S is a geometric Brownian motion and can be described by the following stochastic differential

equation

dS = rSdt+ σSdW, (4.2)

where σ is the stock volatility, and W is a standard Brownian motion. Our benchmark for this

example are the finite difference prices computed in Longstaff and Schwartz (2001). These prices

are computed by an implicit finite difference scheme, with 40,000 time steps per year and 1,000

steps for the stock price.

Table 4.1 presents the option price under different pricing parameters. Both SPLS and NNM uses

a 1, 000 simulations. A first observation from this table is that the price estimates are in average

within 5% of the option price. This range of precision is adequate for an estimation algorithm,

especially if this precision is maintained with much more complex options. A second observation
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from this table is that there is some volatility in the estimates, and that there is no simple rule on the

pricing parameters that allow to predict this volatility. This situation is made on purpose. Table 4.1

uses a very coarse hyperparameters grid, and uses a low number of simulation to keep the estimates

fast. The table hence shows the performance that comes out-of-box with the algorithms. Later, we

will see that with a finer hyperparameters tuning and more computing time, the volatility in the

estimates disappears. A third observation from this table is that the energy level of the estimates

is low. This low energy level indicates that the projection scheme behind the algorithms agrees in

distribution with the distribution of the pricing problem. Even if a low number of simulations was

used, this agreement in distribution gives confidence that the estimates are the best possible within

the chosen projected space dimension.

S0 σ T Finite Difference SPLS NNM

36 0.20 1 4.478 4.251 [0.08] (-0.05) 4.337 [0.07] (-0.03)
2 4.840 4.591 [0.00] (-0.05) 4.877 [0.05] (0.01)

0.40 1 7.101 6.901 [0.00] (-0.03) 7.090 [0.11] (-0.00)
2 8.508 8.462 [0.00] (-0.01) 8.814 [0.06] (0.04)

38 0.20 1 3.250 3.232 [0.00] (-0.01) 3.329 [0.05] (0.02)
2 3.745 3.608 [0.00] (-0.04) 3.861 [0.05] (0.03)

0.40 1 6.148 5.989 [0.09] (-0.03) 6.164 [0.15] (0.00)
2 7.670 7.573 [0.00] (-0.01) 7.729 [0.05] (0.01)

40 0.20 1 2.314 2.325 [0.00] (0.00) 2.393 [0.06] (0.03)
2 2.885 2.753 [0.00] (-0.05) 3.085 [0.05] (0.07)

0.40 1 5.312 5.308 [0.09] (-0.00) 5.419 [0.13] (0.02)
2 6.920 6.946 [0.00] (0.00) 7.392 [0.05] (0.07)

42 0.20 1 1.617 1.655 [0.08] (0.02) 1.705 [0.07] (0.05)
2 2.212 2.055 [0.00] (-0.07) 2.131 [0.05] (-0.04)

0.40 1 4.582 4.493 [0.08] (-0.02) 4.633 [0.07] (0.01)
2 6.248 5.943 [0.00] (-0.05) 6.066 [0.08] (-0.03)

44 0.20 1 1.110 1.058 [0.09] (-0.05) 1.113 [0.07] (0.00)
2 1.690 1.612 [0.00] (-0.05) 1.919 [0.05] (0.14)

0.40 1 3.948 3.894 [0.08] (-0.01) 4.016 [0.08] (0.02)
2 5.647 5.422 [0.00] (-0.04) 5.606 [0.07] (-0.01)

Table 4.1: Comparison of SPLS and NNM with a finite difference method for a single exercise American put option.
The option can be exercised 50 times per year, the strike price is 40, and the risk-free rate is 0.06. The initial stock
price S0, the volatility σ, and the maturity T are as indicated. The finite difference numbers are from Longstaff
and Schwartz (2001). The filtration energy is reported in bracket, and the relative difference to the finite difference

price in parenthesis. SPLS uses Ñ = 1, 000 simulations, an energy tolerance of 0.1, an energy validation sample of
size N ′ = 1, 000, and an hyperparameters grid size of 25 with (Nmax,mmax) = (200, 200). NNM uses N = 1, 000
simulations, an energy tolerance of 0.4, an energy validation sample of size N ′ = 10, 000, a lower bound barrier of
1.02, and an hyperparameters grid size of 30 with (pmax, qmax) = (10, 500).
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4.1 SPLS Analysis

For an American put, an exercise strategy is optimal if the strategy captures the exercise boundary.

Indeed, the optimal exercise strategy depends only on which side of the exercise boundary the last

observed value of the stock fall (Carr, Jarrow, and Myneni 1992). See Figure 4.1 for an example

of exercise boundary under different volatility. Looking at how SPLS approximates the exercise

boundary should hence provide many insights on the algorithm, and will be the starting point of

our analysis. Then, we look at the convergence of SPLS with respect to the projected strategy

quality and the filtration energy. Finally, we look at the volatility of the SPLS estimates.

4.1.1 Exercise Boundary

Consider the projected lookahead operator at time t (2.9). This operator L̄(X̄t:T , Ft) is a function of

the strategy class and the filtration, and is hence a random variable. For this example, the operator

is a random variable in {0, 1}. One way to understand the operator is to look at the distribution

of the operator and to contrast this distribution with the exercise boundary. Indeed, even if the

operator uses the filtration, the operator will be accurate only if it maps accurately the filtration

Ft to the last observed stock value St, so that the distribution of the operator captures the exercise

boundary.

Figure 4.2 shows the distribution of the projected lookahead operator at different time period. A

first observation from this figure is that when the filtration energy is low, the projected operator

accuracy increases, and the option is exercised with high probability when the stock crosses the

exercise boundary. A second observation is that for some hyperparameters, the projected operator

sometimes exercises the option before the stock crosses the exercise boundary. While with some

others hyperparameters, such a too early exercise is not observed, but many exercise opportuni-

ties are missed. These distributions are two extremes, and the convergence theory of the previous

section guarantees the existence of intermediate distributions. A third observation is that hyper-

parameters with similar filtration energy may perform differently. This is because the filtration

energy certifies that the projected operator distribution has converged, but certifies nothing for the
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projected strategy convergence. This situation is related to the difference in convergence impact

between the projected operator convergence (2.16) and the projected strategy convergence (2.15).

The next section analyses more the difference between these two convergence factors.
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4.1.2 Projected Strategy

The quality of a projected strategy depends on the granularity of the underlying nearest-neighbor

basis. The basis should be fine enough to differentiate on which side of the exercise boundary the

last observed stock price falls. As SPLS enforces the exercises constraints almost surely, we need

in fact a stronger granularity: the basis should be fine enough to differentiate on which side of the

exercise boundary every previous stock prices fall. Indeed, for a lookahead at time t = 0.1, consider

three projected decisions (X̄2
0.25, X̄

1
0.5, X̄

3
0.75), where X̄

1
0.25 means that the Voronoi cell underlying the

decision is the cell generated by the first centroid S̄0.25,1
0.1:0.25, see (2.8) for the notation. Consider also

two sample paths (S∗

0.25, S0.5, S0.75) and (S ′

0.25, S
′

0.5, S
′∗

0.75), where S∗

0.5 means that the sample path

hits the exercise boundary at time t = 0.5. Now, note that if the two sample paths fall in the same

Voronoi cell, the following two constraints cannot be enforced if the projected decisions are optimal

X̄2
0.25(S

∗

0.25) + X̄1
0.5(S0.5) + X̄3

0.75(S0.75) ≤ 1,

X̄2
0.25(S

′

0.25) + X̄1
0.5(S

′

0.5) + X̄3
0.75(S

′∗

0.75) ≤ 1.

By construction, the decisions X̄1
0.25 and X̄1

0.75 must be the same for every path that fall in the

underlying Voronoi cell, and the two constraints will be of the form (2 ≤ 1), if the projected

decisions are optimal. Figure 4.3 illustrates this situation.

The projected strategy convergence rate (2.15) guarantees that the previous ambiguous situation

is rare in probability when the nearest-neighbor basis size m is large. Two questions then arise:

how big a basis is needed to avoid ambiguity? and how much ambiguity can be tolerated in the

projected lookahead operator? These questions are answered by the Bayes-value convergence rate

(2.19). Here, we provide a different insight on these questions, by defining an ambiguity metric

specific to single exercise American option.

For the option of this example, a specific measure of ambiguity is the number of ambiguous con-

straints. For a projected lookahead at time t, and a nearest-neighbor basis size m, this measure can
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be written with

ÂM t =
1

Na
2

Na∑

i=1

Na∑

j=1

q
c(X̄, Si) and c(X̄, Sj) are infeasible if X̄ is optimal

y
,

where c(X̄, Si) is the exercise constraint X̄0(S
i) + X̄1(S

i) + . . . + X̄T (S
i) ≤ 1, and Si is a path in

a sample of size Na. The event in the metric can be checked by taking every projected decision

as optimal. For example, the decision X̄1(S
i) is taken as exercising the option only if the sample

path Si hits the exercise boundary at time 1. Intuitively, the ambiguity metric will be low if the

nearest-neighbor basis as many Voronoi cells around the exercise boundary, so that the decision

X̄t can differentiate between a sample path for which the option has already been exercised, and

a sample path for which the option is exercisable for the first time at time t. A total ambiguity

metric can be defined as the average ambiguity

ÂM =
1

T

T∑

t=0

ÂM t.

The total ambiguity is a proxy score for the convergence of the projected strategy. This score can

be used as a substitute to the projected strategy convergence rate (2.15) to prove the convergence

in probability of SPLS (2.18).

Figure 4.4 shows the exercise distribution and the ambiguity metric for different hyperparameters.

For a projected lookahead at time t, the exercise distribution is an histogram of the empirical

conditional probability P (L̄(X̄t, Ft)|St), see Figure 4.1.1 for reference. For Figure 4.4, the histogram

probabilities are represented with the point size: point with larger size have a higher conditional

probability of exercise. This convention can be written with

point size at time t ∝ P (L̄t(X̄t, Ft) = 1|St),

where the conditional exercise probability is estimated with a sample of projected lookahead oper-

ator.

A first observation from Figure 4.4 is that when the stock is closed to be in-the-money, the projected
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operator may exercises too early. However, the conditional exercise probability of a too early

exercise is small, and the probability that the stock is close to be in-the-money without crossing the

exercise boundary is also small. This two factors allows the SPLS prices in Table 4.1 to be good

estimates of the option value. A second observation is that the ambiguity metric depends on the

sample size N ′ used to compute the metric. For the sample size used in the projected lookahead

operator, which is of the order of 100, the ambiguity metric of order 1, 000 suggests that very

few sample paths lead to ambiguous constraints. A third observation is that the ambiguity metric

differentiates hyperparameters quality. This can be seen by the hyperparameter (N,m) = (100, 100)

always exercising when the option is in-the-money, while the hyperparameter (1, 1) exercises less.

When two hyperparameters have a low ambiguity metric such as (100, 100) and (50, 200), the best

hyperparameter have a lower filtration energy. These observations can be summarized as follows.

The nearest-neighbor size m defines a discretization of the strategy space, while the sample size N

defines a distribution on this discretization. A finer discretization is better only if the distribution

quality is maintained with a higher sample size.
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4.1.3 Estimates Volatility

With the projected lookahead operator being a random variable, SPLS uses a random strategy to

approximate the optimal strategy: at each time period, the exercise decision is drawn at random

from a certain probability distribution. As no value function and no policy function are learned in

the course of sampling, the sampling distribution is fixed and should converge quickly to an estimate

of the option value. Figure 4.5 confirms this intuition. When started from any random seed, any

given set of hyperparameters converges quickly to the same value. This observation is supported

by the projected option value convergence rate (2.17) and the Bayes-value convergence rate (2.19).

By using a random strategy that converges quickly, one approach in using SPLS is to use several

small samples, instead of a single large sample. This a bootstrap procedure: use a small sample

size Ñ = 1, 000, instead of a large sample size Ñ = 10, 000, and estimate the price with the highest

estimate obtained. Figure 4.5 and Table 4.1 show that this approach works, especially if different

hyperparameters are used in each small sample. This approach is massively parallel and can provide

fast and accurate estimates.

The convergence theory of the previous section guarantees that there exists hyperparameters for

SPLS that can approximate the price of any option to any degree of accuracy. Such hyperparameters

can be found with a fine grained hyperparameters tuning. For instance, Table 4.1 could be obtained

with a higher precision. To show that this is possible, Figure 4.6 shows the convergence of a high

accuracy hyperparameter set for one of the prices in Table 4.1 for which the estimation error was

5%. The distribution of the projected lookahead operator is also displayed.

44







4.2 NNM Analysis

For any option, a dual martingale is optimal if the martingale is close to the martingale part of

the value function (Rogers 2007, Rogers 2002, Haugh and Kogan 2004, Andersen and Broadie

2004). They are many senses in which two stochastic processes can be close. For an American put,

we can look at the behavior of a dual martingale across the exercise boundary by quantizing the

martingale. In such a perspective, two martingales are close if the distribution of their behavior

across the exercise boundary is similar. This sense of closeness provides many insights on NNM and

will be the starting point of our analysis. Then, we look at the volatility of the NNM estimates.

4.2.1 NNM Martingale

An NNM martingale is the martingale produced by the projected Rogers operator for some choice

of hyperparameters. We will compare the behavior of several NNM martingales to the optimal

martingale across the exercise boundary. For an American put, the optimal martingale can be

obtained as follows. With an implicit finite difference method, obtain the value function. Then,

obtain the martingale part of the value function by nested simulation along a sample stock path.

The resulting martingale is optimal. See Methods for more details. Figure 4.7 shows an example of

sample stock path, the corresponding value function path, and the corresponding martingale part

path.

To study the distribution of a martingale across the exercise boundary, we quantize a sample of

martingale path with a small number of centroids. As each martingale path is generated by a stock

path, the martingale centroids define an implicit tesselation on the sample stock path. This implicit

tesselation can be used to map any martingale metric to the regions of the exercise boundary. We

call such a mapped martingale metric a dual metric. See Methods for more details. Figure 4.8 shows

the distribution of three dual metrics: the typical stock trajectory, the dual exercise decision and

the ℓ1-average of the optimal martingale. The typical stock trajectory within a cell of the implicit

tesselation, is the average of the stock path that falls within the cell. In the top figure, the linewidth

gradient is the distribution of the dual exercise over time. To define the dual exercise, recall that
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to each stock path is associated the dual payoff

max
x

T∑

t=0

e−rt
(
K − Si

t

)
+
xt − xtM

i
t , (4.3)

where Si is a sample path, and M i is the corresponding martingale path. Let ti be the optimal

exercise time in (4.3), and let Si
ti be the stock price at the dual exercise time ti. The distribution

of the dual exercise time is an histogram of a sample {(Si
ti , t

i)} of such dual exercise. The figure

presents this distribution along the Voronoi cell. In the bottom figure, the linewidth gradient is the

ℓ1-average value of the optimal martingale over time. To define this ℓ1-average, consider a particular

Voronoi cell, and let {M i} be the set of martingale path that falls within the cell. The ℓ1-average

at time t can be written with

1

n

n∑

i=1

∣∣M i
t

∣∣ , (4.4)

where n is the number of martingale sample path that falls within the cell.

Figure 4.8 shows that the optimal martingale forces the dual exercise to be in the out-of-the-money

region. To achieve this, the martingale takes large positive value in the in-the-money region, and

small negative value in the out-of-money region. The graph shows only the average absolute value

of the optimal martingale, but the martingale value sign can be inferred by whether the stock path

centroid is in-the-money or out-of-the-money.

To measure how close a candidate martingale is to the optimal martingale we can look at the

dual metrics. For the comparison to be meaningful, the reference Voronoi tesselation should be

fixed. We use the optimal martingale tesselation as the reference tesselation. See Methods for more

details. Figure 4.9 shows the dual metrics for the NNM martingale with nearest-neighbor basis

size (p, q) = (1, 1). By comparing the dual exercise distribution in Figure 4.9 and Figure 4.8, we

see that the (1, 1)-martingale does not prevent dual exercise in the in-the-money region. The dual

exercise distribution for the martingale is uniform over the timeline. This difference in dual exercise

distribution is explained by the ℓ1-average of the (1, 1)-martingale: the martingale is zero on every

stock centroid. Dual exercise is hence possible everywhere. Note that Figure 4.9 shows that the
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option is dually exercised when the stock path centroids is out-of-the-money. This is because the

Voronoi cell is an aggregation of several stock paths and many stock path in the cell can be in-the-

money. In fact, for the (1, 1)-martingale, every martingale path is identically zero, so that all stock

paths fall in the same Voronoi cell.

Figure 4.10 shows the dual metric for a high precision NNM martingale. A first observation from

this figure is that both the dual exercise time and the ℓ1-average metrics of the martingale are very

close to the optimal martingale. They are some small difference as to where the NNM pushes the

dual exercise time, and in the ℓ1-magnitude of the martingale, but the relaxed dual value accuracy

is preserved. This is expected from the convergence theory of the previous section. NNM is an al-

gorithm with probabilistic guarantees, and such guarantees tolerate small difference in distribution.

Comparing the ℓ1-average of an NNM martingale to the optimal martingale gives an idea of the

NNM projected martingale quality. Indeed, if the two ℓ1-averages are close, we can infer that the

nearest-neighbor basis of the projected martingale is sufficiently fine for the projected martingale to

match in average the optimal martingale. This proxy for the projected martingale quality allows to

draw some conclusions on the relation between the filtration energy and the projected martingale

quality. To draw these conclusions, Figure 4.11 shows the dual metrics for a low precision NNM

martingale. By comparing this figure to Figure 4.10, we see that the projected martingale quality is

more important then the filtration energy for the relaxed dual value accuracy. Indeed, the filtration

energy is a metric for the accuracy of the projected Rogers operator, and the operator can only be as

much accurate as the projected martingale. In particular, the (10, 100)-martingale nearest-neighbor

basis does not capture one of the optimal martingale centroid, and the dual exercise time for the

stock path in this centroid is uncontrolled. This can be seen by the distribution of the dual exercise

time being uniform on the middle stock centroid.
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4.2.2 Estimates Volatility

Figure 4.12 shows the convergence of NNM for various random seeds and for various hyperparam-

eters. A first observation from this figure is that when the filtration energy is too low, the relaxed

dual value is far above the dual value. From the previous section, we can infer that this is due to

the projected martingale quality that is not sufficient to capture the optimal martingale behavior.

A second observation is that when the nearest-neighbor size is large such as (p, q) = (10, 5000), an

equally large sample size N is needed for the convergence of the relaxed dual value. This observation

can be contrasted with the observation that a good accuracy can be obtained with a small sample

size N = 1, 000 when the filtration energy is adequate.

Figure 4.12 is informative for hyperparameters tuning, but the figure misses the key convergence

behavior of NNM. Indeed, the figure approaches NNM as a probabilistic algorithm and the figure

may give the impression that NNM does not converge with the sample size N . However, unlike

SPLS, NNM is not a probabilistic algorithm, even if the convergence proof of NNM rests on proba-

bilistic arguments. The Rogers operator is deterministic and the adequate perspective to study the

convergence of NNM is by fixing the sample size N . From this perspective, the correct plane to

analyse the convergence of NNM is not the sample size and dual value plane (N, V ). Instead, fix

the sample size N and look at the nearest-neighbor size, energy and dual plane ((p, q), ÊD, V ). A

pattern then emerges and shows that the convergence of NNM rests mainly on the filtration energy.

Figure 4.13 displays such a plane.

55







5 A Swing Option

This section applies SPLS and NNM to a simple multiple exercise American option. The option

is an American call on the price of electricity, with a constraint on the total number of exercises.

This example is taken from Meinshausen and Hambly (2004).

Consider a multiple exercise American call option on the electricity price S with a strike price of

zero. The option can be exercised at most on n days till the maturity of 50 days. With X the

exercise decision, the stochastic program for the option can be written with

max
X

E

[ 50∑

t=0

StXt

]
(5.1)

s.t.
50∑

t=0

Xt ≤ n (5.1.1)

Assume further that the risk-neutral dynamics of the electricity price is given by the following

AR(1) model

log St = 0.1 logSt−1 +
1

2
Wt, (5.2)

with S0 = 1 and W a standard Brownian process.

In Meinshausen and Hambly (2004), the lower bound is obtained with the least-square Monte

Carlo method of Longstaff and Schwartz (2001), and the upper bound is obtained by specializing

the dual approach of Rogers (2002) and Haugh and Kogan (2004) to the option. The approach of

Meinshausen and Hambly (2004) enables the pricing of this example through a theoretical extension

of single exercise methods to the multiple exercise case. In contrast, SPLS and NNM are fully

general algorithms and can be applied as is to this example. To further show the versatility of our

algorithms, we will use a different hyperparameters tuning method than previously presented.

For SPLS, we tune the hyperparameters as follows. Fix a sample size N for the lookahead operator.

Then, increase the nearest-neighbor size m until the projected dual value doesn’t increase. This

tuning approach aims at finding a better lower bound by increasing solely the projected strategy
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quality. For NNM, we proceed as follows. Fix a conditioning nearest-neighbor size p, and increase

the next nearest-neighbor size q until the first drop in relaxed dual value is recorded. When this

drop is recorded, if the relaxed dual value is lower then the SPLS lower estimate, increase the

sample size N , and repeat the procedure. This approach aims at finding the typing point in the

accuracy of NMM, as suggested by Figure 4.13. We run this tuning procedure once, for the case

when only a single exercise is allowed. Then, we keep the same hyperparameters for cases with

multiple exercises. Table 5 shows the results of this approach.

n Least-Square Monte
Carlo

SPLS NNM

1 2.750 2.748 (-0.00) 2.818 (0.02)
2 5.156 5.157 (0.00) 5.176 (0.00)
3 7.306 7.305 (-0.00) 7.301 (-0.00)
4 9.336 9.348 (0.00) 9.277 (-0.01)
5 11.230 11.255 (0.00) 11.121 (-0.01)
10 19.556 19.704 (0.01) 19.183 (-0.02)
15 26.488 26.860 (0.01) 25.892 (-0.02)
20 32.326 33.044 (0.02) 31.763 (-0.02)
25 37.697 38.458 (0.02) 37.007 (-0.02)
30 42.420 43.289 (0.02) 41.829 (-0.01)
35 46.337 47.627 (0.03) 46.118 (-0.00)
40 50.299 51.435 (0.02) 50.051 (-0.00)
45 53.335 54.755 (0.03) 53.439 (0.00)
50 56.765 57.439 (0.01) 55.898 (-0.02)

Table 5.1: Comparison of SPLS and NNM with a least-square Monte Carlo method for a swing option with a
constraint on the total number of exercises. The option is a zero-strike American call on the electricity price that
can be exercised at most n times till the maturity of 50 days. The least-square Monte Carlo price is obtained with
the method of Meinshausen and Hambly (2004) and 1, 000 simulations. The relative difference to the least-square

Monte Carlo price is reported in parenthesis. SPLS uses Ñ = 1, 000 simulations, a sample size of N = 100, a nearest-
neighbor size of m = 250, and an energy validation sample of size N ′ = 1, 000. NNM uses N = 5, 000 simulations,
a nearest-neighbor size of (p, q) = (5, 60), and an energy validation sample of size N ′ = 10, 000. The energy for all
SPLS estimates is on average 0.666, and the energy for all NNM estimates is on average 0.007

Table 5 shows that the SPLS and NNM estimates are very accurate, despite the simple hyperpa-

rameters tuning procedure used. This shows that adapting SPLS and NNM to a particular option

rests solely on finding appropriate hyperparameters. Further, hyperparameters tuning can be done

in many ways allowing to meet any computational, accuracy or speed constraints.
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6 An Asian Option

This section applies SPLS and NNM to a multiple exercise constrained window Asian option driven

by a Levy diffusion. The multiple exercise right is subject to a local limit, a global limit, and a

refraction period. An option of this complexity has never been priced in the literature.

Consider a multiple exercise Asian call option on the energy price S with a strike price of K. The

option can be exercised T times per year, up to the maturity of one year. The average of the stock

price is calculated over the last five periods. The option can be exercised at most n times, and

between each exercise a minimum waiting time of R period is required. At each exercise, the option

delivers at most q of the payoff, and the total amount delivered cannot exceed Q. With X the

exercise decision, and Y the ordered quantity of energy, the stochastic program for the option can

be written with

max
X, Y

E

[ T∑

t=4

e−rt (At −K)+ YtXt

]
(6.1)

s.t. Yt ∈ [0, q] t = 0, 1, . . . , 50 (6.1.1)

T∑

t=0

Yt < [0, Q] (6.1.2)

R∑

s=0

Xt+s ≤ 1 t = 0, 1, . . . , 50 (6.1.3)

T∑

t=0

Xt ≤ n (6.1.4)

X ∈ {0, 1} (6.1.5)

where At =
1
5

∑t
s=t−4 Ss, and r is the interest rate. The stochastic dynamic for the energy price

follows the diffusion equation

dS = θ(µ− S)dt+ σdW + dJ, (6.2)

where θ is the reversion speed, µ the long-term mean, σ the price volatility, W is a standard
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Brownian motion, and J is an independent Poisson process with exponential jump. The Lévy

measure of the compound Poisson process is ν(dj) = λαe−αj.

The stochastic program of this option is non-linear as the objective contains a product of decision

variables. However, the program can be linearized by defining a third decision variable, and adding

constraints to force the third variable to be equal to the product of the variables. The procedure is

as follows. Substitute every occurrence of the product yx by the variable z, and add the following

three constraints

z ≤ y,

z ≤ ax,

z ≥ y + ax− a,

where a is an upper bound on y, x is binary and y is nonnegative. This and other integer program-

ming tricks can be found in Bisschop (2016). Such tricks allow SPLS and NNM to handle complex

option with a linear solver.

Table 6.1 displays the SPLS and NMM estimates for various pricing parameters. The estimates

are obtained with a bootstrap procedure only: the hyperparameters of the algorithms are fixed,

only multiple random starts are used, and no grid search is made. If the option price is taken as

the midpoint between SPLS and NNM, the table shows that the estimates narrow the option price

within 5% in average. As we used a simple hyperparameters tuning method, some of the estimates

are less precise. The convergence theory of the algorithms and the previous examples guarantee

that any less precise estimate can be made sharper with more computational effort.
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λ = 0 λ = 0.1
n R σ SPLS NNM SPLS NNM

1 0 5 1.09 (0.11) 1.21 1.14 (0.30) 1.47
10 2.20 (0.21) 2.66 2.25 (0.24) 2.78

2 5 1.10 (0.62) 1.78 1.13 (0.04) 1.17
10 2.22 (0.18) 2.62 2.22 (0.55) 3.43

5 0 5 9.74 (0.06) 10.30 10.11 (0.11) 11.27
10 19.48 (0.09) 21.17 19.72 (0.07) 21.07

2 5 9.13 (0.14) 10.40 9.43 (0.03) 9.68
10 18.21 (0.09) 19.85 18.59 (0.08) 20.14

10 0 5 19.60 (0.10) 21.65 20.39 (0.09) 22.19
10 39.29 (0.06) 41.77 40.03 (0.02) 41.01

2 5 16.67 (0.02) 17.04 17.24 (0.07) 18.48
10 33.38 (0.04) 34.66 33.85 (0.03) 35.00

20 0 5 36.51 (0.05) 38.18 37.80 (0.28) 48.48
10 72.99 (0.05) 76.89 74.23 (0.06) 78.49

2 5 21.95 (0.07) 23.51 22.73 (0.11) 25.16
10 43.89 (0.04) 45.64 44.54 (0.12) 50.01

25 0 5 43.63 (0.08) 47.00 45.23 (0.03) 46.41
10 87.28 (0.10) 95.78 88.54 (0.03) 91.64

2 5 21.95 (0.13) 24.90 22.73 (0.11) 25.13
10 43.90 (0.05) 46.05 44.54 (0.10) 48.80

Table 6.1: SPLS and NNM estimates for a multiple exercise constrained window Asian option driven by a Levy
diffusion. The option can be exercised 50 times per year, with a maturity of one year. The maximum number of
exercise n, the refraction period R, the volatility σ, and the jump intensity λ is as indicated. The risk-free rate
is 0.06, the reversion speed θ is 0.02, and the jump severity is exponentially distributed with rate α = 0.5, The
strike price K, the initial stock price S0, and the long-term mean µ have the same value of 36. The global volume
limit is Q = n − 0.5. The relative difference between the NNM and SPLS estimates is in parenthesis. SPLS uses
Ñ = 1, 000 simulations, a sample size in the projected lookhead operator of N = 100, a nearest-neighbor size of
m = 50, and an energy validation sample of size N ′ = 1, 000. NNM uses N = 1, 500 simulations, a nearest-neighbor
size of (p, q) = (10, 60), an energy validation sample of size N ′ = 10, 000, and a lower bound barrier of 1.02. The
SPLS estimate is the best estimate from 10 different random seeds, while the NNM estimate is the best estimate
from 30 different random seeds. The filtration energy is 0 for SPLS, and 0.02 for NNM.
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7 A Passport Option

This section applies SPLS and NNM to a passport option on three assets. The passport option is

stylized so that it includes all the exotic rights presented in Penaud, Wilmott, and Ahn (1999), for

a total of 8 rights. In Penaud, Wilmott, and Ahn (1999), these features were priced one at a time.

The complexity of this example is beyond the available algorithm in the literature.

Consider a passport option on three stocks Si, i = 1, 2, 3. The option can be exercised 12 times per

year, up to the maturity of one year. At each time t, the investor can trade an amount Y i
t ∈ [−Q,Q]

in only one of the stock i. The number of switch from a position in one stock to a position in another

stock is limited to n. The investor is allowed once to change the position limit to 2Q for a duration

of L periods. The change in position value is limited to |Y i
t − Y i

t+1| < q, so that change in position

are smooth. The investor is allowed 3 exceptions to this smooth change constraint. Denote the

trading account value by At. After 6 months, the investor needs to choose between a payoff at

maturity of max(AT , 0) or max(−AT , 0). If the trading account ever reaches the barrier value of

B, the investor receives B at maturity and the option expires. The investor is allowed to reset the

account value to zero 3 times. Finally, the investor is allowed once to mark the account value, and

then to restore the account to the marked value at a later time.

To write the stochastic program for the option, let X be the exercise decision, Y the position

amount, PL the position limit extension right, SL the smooth limit extension right, Plong the long

or short decision, R the reset right, MP the magic potion mark right, and MPX the magic potion

restore right. Also, for a binary decision Z, let Z = 1 − Z be the complement. The stochastic

program for the option can then be written with
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max
X, Y, PL, SL, Plong

E

[
e−rT

(
PBPlong max(AT , 0) + PB Plong max(−AT , 0) + PBB

)]
(7.1)

s.t. Trading volume I

Y i
t ∈ [−Q−QUt, Q+QUt] i = 1, 2, 3 t = 0, 1, . . . , T − 1

Ut =
t∑

s=t−L

PLs t = 0, 1, . . . , T − 1

T−1∑

t=0

PLt ≤ 1

Trading volume II∣∣Y i
t − Y i

t−1

∣∣ ≤ q + 4QSLt i = 1, 2, 3 t = 1, 2, . . . , T − 1

T−1∑

t=1

SLt ≤ 3

Trading timing
∑

i=1,2,3

X i
t ≤ 1 t = 0, 1, . . . , T − 1

T−1∑

t=1

∑

i=1,2,3

∣∣X i
t −X i

t−1

∣∣ ≤ n

Barrier

PB =
T∨

t=1

J|At| ≥ BK

Trading account

At = Rt MPXt A
a
t +Rt MPXt A

b
t t = 1, 2, . . . , T

Aa
t = At−1 +

∑

i=1,2,3

(
Si
t − Si

t−1

)
Y i
t−1X

i
t−1 t = 1, 2, . . . , T

Ab
t =

t−1∑

s=0

MPsAs t = 1, 2, . . . , T

A0 = 0

T−1∑

t=0

Rt ≤ 3 ;
T−1∑

t=0

MPt ≤ 1 ;
T∑

t=1

MPXt ≤ 1

Binary Decisions

X i
t ∈ {0, 1} i = 1, 2, 3 t = 0, 1, . . . , T − 1

PLt, SLt,MPt,MPXt ∈ {0, 1} t = 0, 1, . . . , T − 1

Plong ∈ {0, 1} t = T/2
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The risk-neutral dynamic for the stock price follows the stochastic differential equation

dSi = rSidt+ σiS
idW i, (7.2)

where r is the risk-free-rate, σi is the volatility, and W i is an independent standard Brownian

motion.

Table 7.1 displays the SPLS and NMM estimates for various pricing parameters. The weighting

stopping time used is the logical OR of every binary decision (1.6). This weighting stopping time

at time t can be written with

(
3∨

i=1

X i
t

)∨
PLt

∨
SLt

∨
MPt

∨
MPXt

∨
JPlong, t = T/2K .

The runtime of one SPLS estimate with a single processor is 10 hours, we use 100 processors to

bring the runtime down to 5 minutes. For NNM, the runtime of one estimate with a single processor

is 5 hours, we use 100 processors to bring the runtime down to 3 minutes. With 100 processors,

the runtime of the entire table is 20 hours. To maintain the total runtime small, we opt for coarse

estimates of the option price. The previous sections guarantee that with a greater computational

effort very precise estimates of the option price can be obtained. For example, with 1, 000 processors,

the runtime of the entire table would be 2 hours, and fine-grain estimates can be obtained.
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B = ∞ B = 20
n Q q L = 0 L = 2 L = 0 L = 2

1 1 1 4.05 (0.04) 4.21 4.70 (0.37) 6.44 3.44 (0.12) 3.85 3.23 (0.45) 4.70
2 5.28 (0.21) 6.37 5.68 (0.86) 10.56 3.90 (0.08) 4.21 4.15 (0.07) 4.46

10 1 41.60 (0.03) 42.94 44.48 (0.06) 47.34 11.46 (0.22) 13.93 12.15 (0.56) 19.01
2 44.60 (0.08) 48.34 44.76 (0.06) 47.63 11.70 (0.61) 18.84 10.97 (0.08) 11.89

5 1 1 4.46 (0.06) 4.72 4.11 (0.35) 5.56 3.78 (1.97) 11.22 3.77 (1.89) 10.88
2 5.35 (0.78) 9.50 5.68 (0.02) 5.80 4.30 (0.25) 5.36 4.28 (0.42) 6.07

10 1 31.59 (0.43) 45.06 32.62 (0.61) 52.67 17.03 (1.34) 39.89 18.09 (0.53) 27.72
2 36.55 (0.24) 45.27 36.56 (0.39) 50.91 16.51 (0.33) 21.88 17.67 (0.03) 18.19

Table 7.1: SPLS and NNM estimates for an exotic passport option. The option can be exercised 12 times per year,
up to the maturity of one year. The number of switches from a position in one stock to a position in another stock
is limited to n. The position limit is Q, and the maximal change in position is q. The position limit can be changed
once to 2Q for a duration of L periods. If the option reaches the barrier value of B, the investor receives B and
the option expires. The SPLS estimate is on the left of the parenthesis, the NNM estimate is on the right of the
parenthesis, and the relative difference between the NNM and SPLS estimates is in parenthesis. The volatility is
(σ1, σ2, σ3) = (0.05, 0.25, 0.5), the initial stock price is S1

0
= S2

0
= S3

0
= 36, and the risk-free-rate is 0.06. SPLS uses

Ñ = 1, 000 simulations, a sample size in the projected lookhead operator of N = 1, a nearest-neighbor size of m = 1,
and an energy validation sample of size N ′ = 1, 000. NNM uses N = 1, 000 simulations, a nearest-neighbor size of
(p, q) = (5, 10), an energy validation sample of size N ′ = 10, 000, and a lower bound barrier of 1.02. Both the SPLS
and NNM estimates are the best estimates from 5 different random seeds. The filtration energy is 0 for both SPLS
and NNM.
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8 Conclusion

This article presents an alternative to dynamic programming for the pricing of multiple exercise

American option with constrained rights. The algorithms provide lower and upper estimates of

the option price with convergence guarantees provided through a Vapnik-Chernovenkis dimension

analysis. The algorithms are fast, fully general, and applicable with no adjustment to a large class

of options. We illustrate the algorithm with two realistic examples including a swing option with

four constraints, and a passport option with 16 constraints.

The ability to value constrained multiple exercise American derivatives has many important advan-

tages. In particular, the exercise constraints are at the heart of the negotiations of such derivative

contract. A general valuation approach greatly facilitates those negotiations. Further, such a val-

uation approach simplifies risk management and can broaden the hedging instruments offering for

those derivatives. The presented algorithms provide such a general valuation approach.

9 Methods

This section collects the technical details behind the various results presented. The name of each

subsection contains in parenthesis the equation number being proved. The last subsection details

our implementation of SPLS and NNM. In this section, the Vapnik-Chernovenkis dimension is

denoted by VC-dimension, and the shattering coefficient of a class A with a sample of size n is

denoted by s(A, n). The ℓ1-covering N (ǫ, A) of a set A is the cardinality of the smallest ǫ-net

necessary to cover the set with the norm being the ℓ1-norm divided by the dimension of the element

in the set. In covering number estimates, we use a universal constant c to collect every constants,

so that cx is equivalent to the big-O notation O(x).
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9.1 Dual Problem Derivation (1.3)

Define the value function

Vt = max
Xt,Yt

e−rtft(Y0:t, S0:t)Xt + E (Vt+1|Ft) ,

where the maximum is taken over the admissible decisions Xt and Yt, and VT+1 is assumed to be

zero. Since the decision Xt is in {0, 1}, the value function is a supermartingale and admits the

following Doob decomposition

Vt = V0 +Mt − At,

where Mt is a martingale vanishing at time zero, and At is a previsible increasing process vanishing

at time zero. Now, we have

V0 = max
X,Y

E

[ T∑

t=0

e−rtft(Y0:t, S0:t)Xt

]

= max
X,Y

E

[ T∑

t=0

e−rtftXt −MtXt

]
(9.1)

≤ E

[
max
x,y

T∑

t=0

e−rtftxt −Mtxt

]
(9.2)

≤ E

[
max
x,y

T∑

t=0

Vtxt −Mtxt

]
(9.3)

= E

[
max
x,y

T∑

t=0

(Vt −Mt)xt

]
(9.4)

= E

[
max
x,y

T∑

t=0

(V0 − At)xt

]
(9.5)

= V0 (9.6)

(9.1) holds by the optional sampling theorem. (9.2) inserts the maximum into the expectation.

(9.3) holds by definition of the value function and by noting that a < b implies ay < by, whenever

y is in {0, 1}. (9.4) is a simple rewrite. (9.5) uses the Doob decomposition of the value function.
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(9.6) holds by monotonicity of the compensator A, and assumes that the decision x0 at time zero

is always admissible.

The dual formulation (1.3) follows by using (9.2) and observing that

V0 ≤ min
M

E

[
max
x,y

T∑

t=0

e−rtftxt −Mtxt

]
≤ E

[
max
x,y

T∑

t=0

e−rtftxt −Mtxt

]
= V0,

where the last equality holds when M is taken as the martingale part of the value function.

9.2 SPLS Projected Strategy Convergence (2.15)

We have

P

(
sup
A

1

ms−t

ms−t∑

i=1

q
B̄i ∈ A

y
> ǫ

)

= E

[
P

(
sup
A

1

ms−t

ms−t∑

i=1

q
B̄i ∈ A

y
> ǫ

∣∣∣∣∣ {B̄i}ms−t

i=1

)]
(9.7)

≤ s(A,ms−t)E

[
sup
A

P

(
1

ms−t

ms−t∑

i=1

q
B̄i ∈ A

y
> ǫ

∣∣∣∣∣ {B̄i}ms−t

i=1

)]
(9.8)

≤ 2s(A,ms−t)e
−2ǫ2ms−t . (9.9)

(9.7) is a simple conditioning on the Voronoi cell {B̄i}ms−t

i=1 , (9.8) holds by definition of the shattering

coefficient s(A,ms−t), and (9.9) holds by Hoeffding’s inequality. To obtain the shatter coefficient,

note that

s(A,ms−t) ≤
αs−t∏

i=1

s(2Bi ,ms−t)

≤
αs−t∏

i=1

ms−t
(d(s−t)+1)(αs−t−1)

≤ ms−t
3d(s−t)α2

s−t
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as each set 2Bi is the intersection of at most αs−t − 1 hyperplanes, and the VC-dimension of each

hyperplane is d(s− t) + 1. The factor of 3 is used to bound the VC-dimension of each hyperplane

so that the bound is greater than 2. See Theorem 13.5, 13.9, 13.8 and 13.3 in Devroye, Györfi, and

Lugosi (1996). The result follows.

9.3 SPLS Projected Lookahead Operator Convergence (2.16)

The shatter coefficient of the first component in A can be bounded with

s(
T∏

s=t

{B̄s,i}ms−t

i=1 , n) ≤
T∏

s=t

ms−t∏

i=1

s(B̄s,i, n)

≤
T∏

s=t

ms−t∏

i=1

n(d(s−t)+1)(ms−t−1)

≤ nd(T−t)
∑T

s=t m
2
s−t

as each set B̄s,i is the intersection of at most ms−t − 1 hyperplanes, and the VC-dimension of each

hyperplane is d(s− t) + 1. See Theorem 13.5, 13.9 and 13.8 in Devroye, Györfi, and Lugosi (1996).

By Theorem 13.8 in Devroye, Györfi, and Lugosi (1996), the shatter coefficient for the second

component in A is N2d(T−t), which we bound by N3d(T−t) to make the VC-dimension greater then

2. The result then follows by Theorem 13.5, 13.3 and 12.5 in Devroye, Györfi, and Lugosi (1996).

9.4 SPLS Projected Option Value (2.17)

In this proof, the projected lookahead operator L̄(X̄t:T , Ft) at time t is assumed to be a uniform

Lipschitz function of the filtration, so that there exists a constant C for which the operator is

Lipschitz in the filtration for any strategy X̄t:T . This assumption implies that the operator can be

viewed as strategy, with the internal structure of the operator abstracted. The proof hence proceed

by considering the covering number induced by any strategy that is a Lipschitz function of the

filtration.

Denote by J(X,S(Ñ)) the vector (J(X,Sñ), ñ = 1, 2, . . . , Ñ), we bound the ℓ1-coveringN (ǫ, J(X,S(Ñ)))
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with an ℓ1-covering of the strategy N (ǫ,X). Let X and Y be two strategies, by the Lipschitz as-

sumption,

‖J(X,S(Ñ))− J(Y, S(Ñ))‖ =
1

Ñ

Ñ∑

ñ=1

‖J(X,Sñ)− J(Y, Sñ)‖

≤ 1

Ñ

Ñ∑

ñ=1

K‖X − Y ‖

= K‖X − Y ‖.

Proving that N (ǫ, J(X,S(Ñ))) ≤ N ( ǫ
K
, X).

With Ft and F ′

t two different filtrations, by the Lipschitz assumption,

‖X(F )−X(F ′)‖ =
1

T

T∑

t=0

‖Xt(Ft)−Xt(F
′

t )‖

≤ C

T

T∑

t=0

‖Ft − F ′

t‖,

This proves that

N (
ǫ

K
,X) ≤

T∏

t=0

N (
ǫ

CK
, Ft),

The minimum information necessary in the filtration are the past decision X0:t−1 and the stock path

history S0:t. As each decision is a vector in R
a, and each stock is a vector in R

d, the filtration is at

most a vector in R
(a+d)t, giving that

N (
ǫ

K
,X) ≤

T∏

t=0

(
CK

ǫ

)(a+d)t

≤
(
CK

ǫ

)(a+d)T 2

.

The result then follows by Theorem 29.1 in Devroye, Györfi, and Lugosi (1996).
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9.5 SPLS Consistency (2.18)

Consider the lookahead operator L(Xt:T , Ft) at time t, and define the estimation error for a projected

strategy with

Zt =

∣∣∣∣∣
1

N

N∑

n=1

J(L̄(X̄t:T , S
n)− E [J(L(Xt:T , Ft)]

∣∣∣∣∣ ,

where X̄ is the projection of X. Denote by X ∼ X̄, the event that the projected strategy has

unambiguous cells. By using (2.15), this event can be written with

(
X ∼ X̄

)
=

(
sup
A

1

ms−t

ms−t∑

i=1

q
B̄i ∈ A

y
< ǫ, t = 0, 1, . . . , T

)
.

By conditioning, the probability of error becomes

P (Zt > ǫ) = P
(
Zt > ǫ|X ∼ X̄

)
P (X ∼ X̄) + P

(
Zt > ǫ|X 6∼ X̄

)
P (X 6∼ X̄).

By (2.15), the second term tends to zero when m is large. For the first term, the conditioning

event is assumed to imply that any strategy X can be accurately projected to a strategy X̄. The

magnitude of the estimation error Zt is then due solely to a discrepancy in distribution. By using

(2.16), this discrepancy can be controlled with the expected estimation error

E [Zt] ≤ BE

[
sup
A

|νN(A)− ν(A)|
]
,

so that the estimation error Zt converges in mean to zero. Markov inequality then implies that the

first term tends to zero with N and with m2
max < o(N).

To complete the proof, let Z < ǫ be the event that all the estimation error Zt are less than ǫ. The

probability of an error in option value can then be written with

P (|V̄ − V | > ǫ) = P
(
|V̄ − V | > ǫ

∣∣Z < ǫ
)
P (Z < ǫ) + P

(
|V̄ − V | > ǫ

∣∣Z > ǫ
)
P (Z > ǫ).
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By the previous, the second term tends to zero. For the first term, the conditioning event is assumed

to imply that the lookahead operator L(Xt:T , Ft) can be approximated arbitrarily well by a projected

lookahead operator L̄(X̄t:T , Ft). When this is the case, the option value V can be approximated

arbitrarily well by the expected projected residual payoff E
[
J(L̄, S)

]
, so that V = E

[
J(L̄, S)

]
in

probability, for some projected lookahead operator L̄. By (2.17), the first term then tends to zero

with Ñ .

9.6 SPLS Convergence in Bayes-Value (2.19)

Denote by J(L̄0:T , S
(Ñ)) the vector (J(L̄0:T , S

ñ), ñ = 1, 2, . . . , Ñ). The following four steps provide

an estimate for the expected covering number E
(
N (ǫ, J(L̄0:T , S

(Ñ)))
)
. The estimate is crude and

can be used to bound E
(
N ( ǫ

8
, J(L̄0:T , S

(Ñ)))
)
. Using this estimate, the result follows by Theorem

29.1 in Devroye, Györfi, and Lugosi (1996).

Step 1. We bound the covering number of the residual payoff N (ǫ, J(L̄0:T , S
(Ñ))) with the covering

number of the projected lookahead process N (ǫ, L̄0:T ). Let L̄ and L̄′ be two projected lookahead

processes, by the Lipschitz assumption,

‖J(L̄0:T , S
(Ñ))− J(L̄′

0:T , S
(Ñ))‖ =

1

Ñ

Ñ∑

ñ=1

‖J(L̄0:T , S
ñ)− J(L̄′

0:T , S
ñ)‖

≤ 1

Ñ

Ñ∑

ñ=1

K‖L̄0:T − L̄′

0:T‖

= K‖L̄0:T − L̄′

0:T‖.

Proving that

N (ǫ, J(X,S(Ñ))) ≤ N (
ǫ

K
, L̄0:T ).

Step 2. We bound the covering number of the projected lookahead process with the covering

number of the projected lookahead operator. With L̄ and L̄′ two projected lookahead processes, we
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have

‖L̄0:t − L̄′

0:t‖ ≤
T∑

t=0

‖L̄t − L̄′

t‖.

Proving that

N (ǫ, L̄0:T ) ≤
T∏

t=0

N (ǫ, L̄t).

Step 3. From (2.9), the projected lookahead operator L̄t can be written with

L̄(X̄t:T , Ft) =

(
argmax

X̄t:T

1

N

N∑

n=0

J(X̄t:T , S
n
t:T )

)

t

.

The minimum information necessary in the filtration are the past decision X0:t−1 and the stock path

history S0:t. The projected lookahead operator is hence a function of the form

(X̄t:T , X0:t−1, S0:t) →
(
argmax

X̄t:T

1

N

N∑

n=0

J(X̄t:T , S
n
t:T )

)

t

.

By viewing a function as a subset of the product of the function domain and codomain, we have

N (ǫ, L̄t) ≤ N (
ǫ

2
, X̄t:T )N (

ǫ

2
, X0:t−1)N (

ǫ

2
, S0:t)N (

ǫ

2
, Zt),

where Zt is the codomain of the projected lookahead operator. The next three sub-steps derive the

covering numbers for each element in the right-hand side above.

Step 3.a, X̄t:T . The covering number for a decision Xs in Xt:T is the covering number for a step-

function constructed with a nearest-neighbor basis for the stock path (2.8). Such a function is of

the form ∪ms−t

i=1 Bi × xi, where Bi is a Voronoi cell in R
d(s−t), and xi is in R

a. The covering number

of the decision can hence be bounded by the product of the covering numbers, giving

N (ǫ,Xs) ≤
(
Xmax

ǫ

)a

N (
ǫ

2
,∪ms−t

i=1 Bi),
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where Xmax is an upper bound on a decision.

We bound the covering number of the Voronoi tesselation ∪ms−t

i=1 Bi in term of its VC-dimension. Each

cell Bi in the tesselation is the intersection of at most ms−t− 1 hyperplanes, and the VC-dimension

of each hyperplane is d(s − t) + 1. Using Theorem 1.1 in Van Der Vaart and Wellner (2009), the

VC-dimension of a cell is bounded by 3d(s− t)ms−t log(4ms−t). Another application of this theorem

gives that the VC-dimension of the tesselation is bounded by 9d(s− t)m2
s−t log(4ms−t) log(4ms−t),

or simply cd(s − t)m3
s−t. Using Theorem 2.6.4 in Van Der Vaart and Wellner (1996), the covering

number for the Voronoi tesselation is then given by

N (ǫ,∪ms−t

i=1 Bi) ≤ cd(s− t)m3
s−t

(
4e

ǫ

)2cd(s−t)m3
s−t

≤ cdTm3
s−t

(c
ǫ

)cdTm3
s−t

. (9.10)

We then have

N (ǫ, X̄t:T ) ≤
T∏

s=t

N (ǫ,Xs)

≤
T∏

s=t

(
Xmax

ǫ

)a

N (
ǫ

2
,∪ms−t

i=1 Bi)

≤
(
Xmax

ǫ

)aT T∏

s=t

cdTm3
s−t

(c
ǫ

)cdTm3
s−t

≤ (cdTm3
max)

T

(
Xmax

ǫ

)c(a+d)T 2m3
max

,

where mmax = ‖m‖∞ is the largest nearest-neighbor size.

Step 3.b, X0:t−1 and S0:t. The covering number for the past decision X0:t−1 is the covering number

for a vector in R
a(t−1) and can be written with

N (ǫ,X0:t−1) =

(
Xmax

ǫ

)a(t−1)

≤
(
Xmax

ǫ

)aT

.
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Similarly, the observed stock path S0:t. is a vector in R
dt with covering number

N (ǫ, S0:t) =

(
Smax

ǫ

)at

≤
(
Smax

ǫ

)aT

,

where Smax is an upper bound on the stock price.

Step 3.c, Zt. Since the selection operator (·)t is an injection, and argmax is an injection with

an appropriate tie-breaking rule, we can bound the covering number of the codomain Zt with a

covering number for the best empirical average residual payoff. This best empirical average can be

written with

A∗

N = max
X̄t:T

1

N

N∑

n=0

J(X̄t:T , S
n
t:T ).

Denote by AN,t the empirical average

AN,t =
N∑

n=0

J(X̄t:T , S
n
t:T ),

and denote by At the expected average

At = E
[
J(X̄t:T , S

n
t:T )
∣∣Ft

]
.

We bound the covering number of the best empirical average with a uniform deviation from the

expected average (Devroye, Györfi, and Lugosi 1996, Lemmma 8.2). Let AN,t and A′∗

N,t be two best

averages computed from different samples, then

|A∗

N,t − A′∗

N,t| = |max
X̄t:T

1

N

N∑

n=0

J(X̄t:T , S
n
t:T )−max

X̄t:T

1

N

N∑

n=0

J(X̄t:T , S
′n
t:T )|

= |A∗

N,t − A∗

t + A∗

t − A′∗

N,t|

≤ 2 max
X̄t:T ,X0:t−1

|AN,t − At|.

Using the uniform law of large numbers (Devroye, Györfi, and Lugosi 1996, Theorem 29.1), we can

76



now estimate the probability that two best averages are closed by ǫ

P (|A∗

N,t − A′∗

N,t| ≤ ǫ) ≤ P ( max
X̄t:T ,X0:t−1

|AN,t − At| ≤
ǫ

2
)

= 1− P ( max
X̄t:T ,X0:t−1

|AN,t − At| >
ǫ

2
)

≥ 1− 8E
(
N (

ǫ

16
, (X̄t:T , X0:t−1))

)
e−ǫ2N/(512B2),

where B is an upper bound on the residual payoff. By viewing the expected covering number of

the best empirical average as a geometric distribution, we have

E
(
N (ǫ, A∗

N,t)
)
=
(
P (|A∗

N,t − A′∗

N,t| ≤ ǫ)
)
−1

≤
(
1− 8E

(
N (

ǫ

16
, (X̄t:T , X0:t−1))

)
e−ǫ2N/(512B2)

)
−1

= exp
(
cE
(
N (

ǫ

16
, (X̄t:T , X0:t−1))

)
e−ǫ2N/(512B2)

)
,

where the identity 1− x ≥ e−cx was used.

By using Step 3.a and 3.b, the product bound gives

N (
ǫ

16
, (X̄t:T , X0:t−1)) ≤ N (

ǫ

16
, X̄t:T )N (

ǫ

16
, X0:t−1))

≤
(
16Xmax

ǫ

)aT

(cdTm3
max)

T

(
Xmax

ǫ

)c(a+d)T 2m3
max

≤ (cdTm3
max)

T

(
Xmax

ǫ

)c(a+d)T 2m3
max

proving that

E
(
N (ǫ, A∗

N,t)
)
≤ exp

(
(cdTm3

max)
T

(
Xmax

ǫ

)c(a+d)T 2m3
max

e−ǫ2N/(512B2)

)
.
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Step 4. By combining all the previous results, we have

E
(
N (ǫ, J(X,S(Ñ)))

)

≤ E
(
N (

ǫ

K
, L̄0:T )

)

≤ E
( T∏

t=0

N (
ǫ

K
, L̄t)

)

≤ E
( T∏

t=0

N (
ǫ

2K
, X̄t:T )N (

ǫ

2K
,X0:t−1)N (

ǫ

2K
,S0:t)N (

ǫ

2K
,Zt)

)

≤ (cdTm3
max)

T 2

(
KXmax

ǫ

)c(a+d)T 3m3
max
(
KXmax

ǫ

)aT 2

(
KSmax

ǫ

)aT 2

exp

(
T (cdTm3

max)
T

(
KXmax

ǫ

)c(a+d)T 2m3
max

e−ǫ2N/(512B2K2)

)

≤ exp

(
T (cdTm3

max)
T

(
KXmaxSmax

ǫ

)c(a+d)T 2m3
max

e−ǫ2N/(512B2K2)

)
.

9.7 SPLS Universal Bayes-Value Consistency and Consistency (2.20)

To prove the universal Bayes-value efficiency, assume that the lookahead operator is restricted to

the class of strategy implied by the projected lookahead operator. When this is the case, we can

write

V = sup
L̄

E
(
J(L̄0:T , S)

)
.

Use Lemma 8.2 in Devroye, Györfi, and Lugosi (1996) to write

V̄ − V =


sup

L̄

1

Ñ

Ñ∑

ñ=1

J(L̄0:T , S
ñ)


−

(
sup
L̄

E
(
J(L̄0:T , S)

))

≤ 2 sup
L̄

| 1
Ñ

Ñ∑

ñ=1

J(L̄0:T , S
ñ)− E

(
J(L̄0:T , S)

)
|.
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By using (2.19), and Problem 12.1 in Devroye, Györfi, and Lugosi (1996), the expectation of the

above right-hand side is bounded by

√√√√T (cdTm3
max)

T
(
KXmaxSmax

ǫ

)c(a+d)T 2m3
max e−ǫ2N/(512B2K2)

Ñ/(128B2)
.

This bound implies that E
(
|V̄ − V |

)
converges to zero with Ñ , N and m going to infinity, and

m3
max < o(N), so that the projected option value converges in mean to the option value. As

convergence in mean implies convergence in ℓ1-norm, the universal consistency result (2.20) follows.

To prove consistency of SPLS, note that convergence in mean implies convergence in probability,

and the consistency result follows.

9.8 NNM Projected Martingale in a Binomial World (Section 3.2.1)

For a vanilla American put in a binomial world, the optimal martingale has size (α, β) = ((2t−1, 2), t =

1, 2, . . . , T ), and a good projected martingale can be obtained with (p, q) = ((O(t), 2), t = 1, 2, . . . , T ).

The stated size for the optimal martingale is by construction of the binomial world. At time t, the

maximum number of different stock paths leading to time t is 2t−1, and, given the path history up

to time t − 1, the maximum number of different stock prices at time t is 2. The claimed size for

the conditioning part of a good projected martingale can be verified numerically. To do so quantize

with Lloyd’s method all the 2t−1 path leading to time t. Repeat this quantization over time, and

note that a quantization with a small mean square error is obtained when the number of centroids

grow linearly over time.
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9.9 NNM Projected Martingale Convergence (3.7, 3.8)

For the conditioning part,

P

(
sup
A

1

pt

pt∑

i=1

q
B̄i ∈ A

y
> ǫ

)

= E

[
P

(
sup
A

1

pt

pt∑

i=1

q
B̄i ∈ A

y
> ǫ

∣∣∣∣∣ {B̄i}pti=1

)]
(9.11)

≤ s(A, pt)E

[
sup
A

P

(
1

pt

pt∑

i=1

q
B̄i ∈ A

y
> ǫ

∣∣∣∣∣ {B̄i}pti=1

)]
(9.12)

≤ 2s(A, pt)e
−2ǫ2pt (9.13)

(9.11) is a simple conditioning on the Voronoi cell {B̄i}pti=1, (9.12) holds by definition of the shattering

coefficient s(A, pt), and (9.13) holds by Hoeffding’s inequality. To obtain the shatter coefficient,

note that

s(A, pt) ≤
αt∏

i=1

s(2Bi , pt)

≤
αt∏

i=1

pt
(dt+1)(αt−1)

≤ pt
3dtα2

t

as each set Bi is the intersection of at most αt − 1 hyperplanes, and the VC-dimension of each

hyperplane is dt+1. The factor of 3 is used to bound the VC-dimension of each hyperplane so that

the bound is greater than 2. See Theorem 13.5, 13.9, 13.8 and 13.3 in Devroye, Györfi, and Lugosi

(1996).
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Similarly, for the current part,

P

(
sup
A

1

qt

qt∑

i=1

q
B̄i ∈ A

y
> ǫ

)

= E

[
P

(
sup
A

1

qt

qt∑

i=1

q
B̄i ∈ A

y
> ǫ

∣∣∣∣∣ {B̄i}qti=1

)]
(9.14)

≤ s(A, qt)E

[
sup
A

P

(
1

qt

qt∑

i=1

q
B̄i ∈ A

y
> ǫ

∣∣∣∣∣ {B̄i}qti=1

)]
(9.15)

≤ 2s(A, qt)e
−2ǫ2qt . (9.16)

To obtain the shatter coefficient, note that

s(A, qt) ≤
βt∏

i=1

s(2Bi , qt)

≤
βt∏

i=1

qt
(d+1)(βt−1)

≤ qt
3dβ2

t

as each set Bi is the intersection of at most βt − 1 hyperplanes, and the VC-dimension of each

hyperplane is d+ 1. The factor of 3 is used to bound the VC-dimension of each hyperplane so that

the bound is greater than 2. See Theorem 13.5, 13.9, 13.8 and 13.3 in Devroye, Györfi, and Lugosi

(1996).

9.10 NNM Relaxed Rogers Operator (3.9, 3.10)

For the stochastic process estimate, the shatter coefficient of the class can be bounded with

s({B × [a, b]}, N) ≤
(

T∏

t=1

ptqt∏

i=1

s(B̄t
i , N)

)
s([a, b], N)

≤ N2T

T∏

t=1

ptqt∏

i=1

N (d(t−1)+1)(pt−1)+(d+1)(qt−1)

≤ N3dT
∑T

t=1 tp
2
t q

2
t
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Indeed, the VC-dimension of an interval in R
T is 2T . Each set B̄t

i can be written as U ×W . The

conditioning part U is the intersection of at most pt−1 hyperplanes, and the VC-dimension of each

hyperplane is d(t − 1) + 1. The current part W is the intersection of at most qt − 1 hyperplanes,

and the VC-dimension of each hyperplane is d+ 1. The factor of 3 is used to obtain a simple final

bound that is greater than 2. See Theorem 13.5, 13.9, 13.8 and 13.3 in Devroye, Györfi, and Lugosi

(1996).

For the point estimates, the same steps as above give the following shatter coefficient

s({B × [a, b]}, N) ≤ N3d
∑T

t=1 tp
2
t q

2
t

as the interval [a, b] is now an interval in R
d with a VC-dimension of 2d.

9.11 NNM Projected Dual Value (3.11)

Denote by D(M̄, S(Ñ)) the vector (D(M̄, Sñ, ñ = 1, 2, . . . , Ñ), and let M̄ and M̄ ′ be two projected

martingale processes. By the Lipschitz assumption

‖D(M̄, S(Ñ))−D(M̄ ′, S(Ñ))‖ =
1

Ñ

Ñ∑

ñ=1

‖D(M̄, Sñ)−D(M̄ ′, Sñ)‖

≤ 1

Ñ

Ñ∑

ñ=1

K‖M̄ − M̄ ′‖

= K‖M̄ − M̄ ′‖.

Proving that N (ǫ,D(M̄, S(Ñ))) ≤ N ( ǫ
K
, M̄).

We bound the covering number of the projected martingale process with the covering number of

the projected martingale. Indeed, with M̄ and M̄ ′ two projected martingales

‖M̄0:t − M̄ ′

0:t‖ =
1

T

T∑

t=0

‖M̄t − M̄ ′

t‖.

Proving that N (ǫ, M̄0:T ) ≤
∏T

t=0 N (ǫ, M̄t).
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Each projected martingale Mt is a step-function on a nearest-neighbor basis for the stock path and

can be written ∪ptqt
i=1Bi ×mi where mi is bounded by U , and Bi is the intersection of two Voronoi

cells, one in R
d(t−1) and one in R

d. The covering number of the decision can hence be bounded by

the product of the covering numbers, giving

N (ǫ, M̄t) ≤
(
2U

ǫ

)
N (

ǫ

2
,∪ptqt

i=1Bi).

We bound the covering number of the Voronoi tesselation ∪ptqt
i=1Bi in term of its VC-dimension.

Each cell Bi in the tesselation is the intersection of at most ptqt − 1 hyperplanes, and the VC-

dimension of each hyperplane is dt + 1. Using Theorem 1.1 in Van Der Vaart and Wellner (2009),

the VC-dimension of each cell is bounded by 3dtptqt log(4ptqt). Another application of this theorem

gives that the VC-dimension of the tesselation is bounded by 9dtp2t q
2
t log(4ptqt) log(4ptqt), or simply

cdtp3t q
3
t . By Theorem 2.6.4 in Van Der Vaart and Wellner (1996), the covering number for the

Voronoi tesselation is then given by

N (ǫ,∪ptqt
i=1Bi) ≤ cdtp3t q

3
t

(
4e

ǫ

)cdtp3t q
3
t

≤ cdTp3t q
3
t

(c
ǫ

)cdTp3t q
3
t

.

Proving that

N (ǫ, M̄t) ≤
(
2U

ǫ

)
N (

ǫ

2
,∪ptqt

i=1Bi)

≤
(
2U

ǫ

)
cdTp3t q

3
t

(c
ǫ

)cdTp3t q
3
t

≤ cdTp3t q
3
t

(
cU

ǫ

)cdTp3t q
3
t

.
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By combining all the previous results, we have

N (ǫ,D(M̄, S(N))) ≤ N (
ǫ

K
, M̄)

≤
T∏

t=0

N (
ǫ

K
, M̄t)

≤
T∏

t=0

cdTp3t q
3
t

(
cUK

ǫ

)cdTp3t q
3
t

≤ (cdTp3maxq
3
max)

T

(
UK

ǫ

)cdT 2p3maxq
3
max

, (9.17)

where (pmax, qmax) = (‖p‖∞, ‖q‖∞) is the largest nearest-neighbor size. Our estimate for the covering

number N (ǫ,D(M̄, S(N))) is crude and can be used for N ( ǫ
8
, D(M̄, S(N))). The result now follows

by Theorem 29.1 in Devroye, Györfi, and Lugosi (1996).

9.12 NNM Consistency (3.12, 3.13)

We start with the consistency of the relaxed dual value (3.13). Let M be the optimal martingale

and consider the estimation error in the relaxed dual value

| ¯̄V − V | =
∣∣∣∣∣
1

N

N∑

n=1

D(R̄m(Z̄), Sn)− E [D(M,S)]

∣∣∣∣∣ .

Denote by U the event that the projected martingale has unambiguous cells. By using (3.7) and

(3.8), this event can be written with

U =

(
sup
A

1

pt

pt∑

i=1

q
B̄i ∈ A

y
> ǫ, sup

A

1

qt

qt∑

i=1

q
B̄i ∈ A

y
> ǫ, t = 1, . . . , T

)
.

Denote by W the event that the distribution of the relaxed Rogers operator is accurate. By using

(3.10), this event can be written with

W =

(
sup
A

|νn(A)− ν(A)| > ǫ

)
.
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By conditioning, the probability of error becomes

P (| ¯̄V − V | > ǫ) = P
(
| ¯̄V − V | > ǫ

∣∣∣U,W
)
P (U,W ) + P

(
| ¯̄V − V | > ǫ

∣∣∣ (U,W )
)
P ((U,W )),

where the notation (U,W ) means that both the event U and W hold, and the notation (U,W ) is

the complementary event. By (3.7), (3.8), (3.10), and the union bound, the second term tends to

zero when (p, q) and N are large, with p2maxq
2
max < o(N). For the first term, the event U is assumed

to imply that the optimal martingale can be approximated accurately with a projected martingale.

The estimation error can hence be written with

| ¯̄V − V | =
∣∣∣∣∣
1

N

N∑

n=1

D(R̄m(Z̄), Sn)− E
[
D(M̄, S)

]
∣∣∣∣∣ .

where M̄ is the projection of the optimal martingale, and the equality is in probability. The event

W is assumed to imply that the distribution underlying the relaxed Rogers operator is accurate, so

that the following equality in distribution holds

1

N

N∑

n=1

D(R̄m(Z̄), Sn) = E
[
D(M̄, S)

]
.

As the last equality is an equality in distribution for scalars, the equality also holds in probability,

and P
(
| ¯̄V − V | > ǫ

∣∣∣U,W
)

vanishes when (p, q) and N are large, with p2maxq
2
max < o(N). The

consistency result (3.13) now follows.

For the consistency of the projected dual value (3.12), the steps are the same as above, except that

an additional step is needed. Indeed, the estimation error is now evaluated with an out-of-sample

test, and the estimation error can be written with

|V̄ − V | =

∣∣∣∣∣∣
1

Ñ

Ñ∑

ñ=1

D(R̄m(Z̄), Sñ)− E [D(M,S)]

∣∣∣∣∣∣
.

Apply the above steps, with the modification that the event W now implies the following equality
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in distribution

R̄m(Z̄) = M̄.

It hence remains to show that P
(
|V̄ − V | > ǫ

∣∣U,W
)
vanishes. To this end, use (3.11) to show that

the quantity vanishes when (p, q) and N are large, with p3maxq
3
max < o(N). The consistency result

(3.12) now follows.

9.13 NNM Convergence in Bayes-Value (3.14)

Denote by D(R̄(S(N)), S(Ñ)) the vector (D(R̄(S(N)), Sn), n = 1, 2, . . . , Ñ), we bound the covering

number of the dual payoff N (ǫ,D(R̄(S(N)), S(Ñ))) with the covering number of the general relaxed

Rogers operator. Let S(N) and S ′(N) be two random sample, by the Lipschitz assumption,

‖D(R̄(S(N)), S(Ñ))−D(R̄(S ′(N)
), S(Ñ))‖ =

1

Ñ

Ñ∑

ñ=1

‖D(R̄(S(N)), Sñ)− S(R̄(S ′(N)
), Sñ)‖

≤ 1

Ñ

Ñ∑

ñ=1

K‖R̄(S(N))− R̄(S ′(N)
)‖

= K‖R̄(S(N))− R̄(S ′(N)
)‖.

Proving that

N (ǫ,D(R̄(S(N)), S(Ñ))) ≤ N (
ǫ

K
, R̄(S(N))).

The general relaxed Rogers operator is a mapping from a random sample to a projected martingale.

The operator is hence a function of the form S(N) × M̄ . The covering number of a function can be

bound by the product of the covering number of the domain and the codomain, giving

N (ǫ, R̄(S(N))) ≤ N (
ǫ

2
, S(N))N (

ǫ

2
, M̄).
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The covering number for a random sample S(N) is equivalent to the covering number for a random

Voronoi tesselation. By (9.10), we have

N (ǫ, S(N)) ≤ cdTN3
(c
ǫ

)cdTN3

.

The covering number for a projected martingale is given by (9.17) and is

N (ǫ, M̄) ≤ (cdTp3maxq
3
max)

T

(
U

ǫ

)cdT 2p3maxq
3
max

.

By combining all the previous results, we have

N (ǫ,D(R̄(S(N)), S(Ñ))) ≤ N (
ǫ

K
, R̄(S(N)))

≤ N (
ǫ

2K
,S(N))N (

ǫ

2K
, M̄)

≤ cdTN3

(
cK

ǫ

)cdTN3

(cdTp3maxq
3
max)

T

(
UK

ǫ

)cdT 2p3maxq
3
max

≤ (cdTp3maxq
3
maxN

3)T
(
UK

ǫ

)cdT 2p3maxq
3
maxN

3

.

The result now follows by Theorem 29.1 in Devroye, Györfi, and Lugosi (1996).

9.14 NNM Universal Bayes-Value Consistency (3.15, 3.16)

To prove the universal Bayes-value efficiency, assume that the Rogers operator is restricted to the

class of martingale implied by the relaxed Rogers operator. For the projected dual value this

assumption allows to write

V = sup
R̄(S(N))

E
(
D(R̄(S(N)), S)

)
.

For the relaxed dual value, this assumption allows to write

V = sup
M̄

E
(
D(M̄, S)

)
.
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For the projected dual value, use Lemma 8.2 in Devroye, Györfi, and Lugosi (1996) to write


 sup

R̄(S(N))

1

Ñ

Ñ∑

n=1

D(R̄(S(N)), Sn)


−

(
sup
L̄

E
(
D(R̄(S(N)), S)

))

≤ 2 sup
R̄(S(N))

| 1
Ñ

Ñ∑

n=1

D(R̄(S(N)), Sn)− E
(
D(R̄(S(N)), S)

)
|.

By using (3.14), and Problem 12.1 in Devroye, Györfi, and Lugosi (1996), the expectation of the

right-hand side is bounded by

√√√√ log
(
8e(cdTp3maxq

3
maxN

3)T
(
UK
ǫ

)cdT 2p3maxq
3
maxN

3
)

Ñ/(128B2)
.

This bound implies that E
(
|V̄ − V |

)
converges to zero. The universal consistency (3.15) follows.

Similarly, for the relaxed dual value, write

(
sup
M̄

1

N

N∑

n=1

D(M̄, Sn)

)
−
(
sup
M̄

E
(
D(M̄, S)

))
≤ 2 sup

M̄

| 1
N

N∑

n=1

D(M̄, Sn)− E
(
D(M̄, S)

)
|.

Then, using (3.11), the expectation of the right-hand side is bounded by

√√√√ log
(
8e(cdTp3maxq

3
max)

T
(
UK
ǫ

)cdT 2p3maxq
3
max

)

N/(128B2)
.

The universal consistency (3.16) follows.
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9.15 An American Option: Value Function Martingale Part (Section

4.2.1)

For an American put, the value function vt is a function of the last observed stock price St. This

value function can be written with

vt(St) = max
Xt:T

E

[
T∑

s=t

e−rt (K − Ss)+ Xs

∣∣∣∣∣St

]
,

and can be found with an implicit finite difference scheme. To simulate a sample martingale path

M of the value function martingale part, the procedure is as follows. First, sample a stock path S

and obtain a sample value function path with

V = (v0(S0), v1(S1), . . . , vT (ST )),

Second, set M0 = 0, and for each time t = 0, 1, . . . , T − 1 obtain a sample of the next period stock

price conditional on the current stock price. This sample can be written with

{Si
t+1|St}ni=1.

For each next period price find the value function realization

{V i
t+1|St}ni=1 = {vt(Si

t+1)|St}.

Set the martingale realization in the next period as the current martingale plus the centered value

function

Mt+1 = Mt + Vt+1 −
1

n

n∑

i=1

V i
t+1.
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9.16 An American Option: Dual Metrics (4.3, 4.4)

To quantize a dual martingale use two samples: A sample of the stock path {Si}ni=1 and a corre-

sponding sample of the martingale {M i}ni=1 generated by the stock path. Run Lloyd’s algorithm

(Lloyd 1982, Arthur and Vassilvitskii 2007) to split the martingale sample into 10 Voronoi cells.

Denote these cells by {B1, B2, . . . , B10}. As the martingale sample is generated by the stock sam-

ple, these Voronoi cells also define a tesselation on the stock path. This implicit tesselation can be

written with

B′

i =
{
Si : M i ∈ Bi

}
,

where B′

i is the i-th cell of the implicit tesselation, for i = 1, 2, . . . , 10. This implicit tesselation

allows to map any metrics to the stock domain, and in turn, the exercise boundary domain. To

visualize a metric in the exercise boundary domain, find the stock centroid in the implicit tesselation.

This centroid can be written with

Ŝi =
1

m

m∑

j=1

Sj,

where the addition is vectorial, m is the size of the implicit cell B′

i, and Sj ∈ B′

i is a stock path in the

implicit cell B′

i. Now, any metric on a martingale cell Bi can be visualized in the exercise boundary

domain. It suffices to map the metric to the corresponding implicit cell B′

i, and to represent the

metric along the stock centroid Ŝi.

To compare the metrics of multiple dual martingales, fix the martingale tesselation and compute

the metric conditional on the fixed tesselation. For example, let {Bi} be a tesselation of a sample

{Mi} of optimal martingale path. Such a sample can be obtained with the method presented in

the previous section. Consider the dual exercise distribution metric. This metric µ1({M j}, {Sj})

is a function of a martingale path sample {M j}, and its generating stock path sample {Sj}. This
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metric can be written with

µ1({M j}, {Si}) = H
{
(Sj

tj
, tj) : tj is a dual exercise time

}
,

where H denotes the histogram operator, and the dual exercise time tj of a stock path Sj is the

time t that maximizes the dual payoff

max
x

T∑

t=0

e−rt
(
K − Sj

t

)
+
xt − xtM

j
t .

The histogram operator gives a set {(Sa, Sb, ta, tb, p)} such that the probability that the dual exercise

fall in the interval [Sa, Sb)× [ta, tb) is p. The dual exercise metric is a set-valued estimate, and can

be represented along the implicit stock centroid Ŝi with a linewidth gradient propotional to the

probability p. Similarly, the ℓ1-average metric µ2(t, {M j}, Bi) can be written with

µ2(t, {M j}, Bi) =
1

n

n∑

j=1

∣∣M j
∣∣ ,

where the sum is over the martingale path M j that falls in the reference cell Bi, and n is the number

of such path. The ℓ1-average metric is a point estimate and can be represented with a linewidth

gradient along the reference implicit stock centroid Ŝi.

9.17 Implementation

To run SPLS and NNM, we use a 100 processors machine with 100 GB RAM in the Google Cloud

(2020), and we use the linear programming solver Gurobi (2020). To find the nearest-neighbor of a

path among a set of centroids we use the multiple random projection technique of Hyvönen et al.

(2016).
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Abstract

This paper considers the valuation of equity-indexed annuity (EIA) with periodic premiums.

Together with various mortality, surrender and financial options, these products are offered

with a reinvestment option: the policyholder has the right to reinvest in the contract. This

reinvestment option allows the policyholder to increase or slow down participation in the equity

market, as each reinvestment accumulates interest according to the market indexing scheme.

We consider two indexing schemes. A fund protection scheme that guarantees a minimal

global investment return, and a premium protection scheme that guarantees a minimal return

on each reinvestment made by the policyholder. The former is inspired by variable annuity

product, while the latter is a new scheme. We propose the second scheme to help EIA issuers

to differentiate themselves from alternative investments offered by banks. EIAs are generally

priced through pricing parameters that define the proportion of return from the indexing

scheme credited to the policyholder. We obtain the fair pricing parameters that makes the

present value of the contract zero under the assumption that the policyholder is rational. Such

pricing settings can be approached either exactly with a dynamic programming algorithm, or

approximatively with the single pass lookahead search algorithm. In the numerical examples,

we present fair pricing parameters for contracts of 30 years that include both an indexing

scheme, a surrender option, and a reinvestment option. The gained rate used in the indexing

scheme is either a point-to-point rate or an annual reset rate.
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1 Introduction

An Equity-Indexed Annuity (EIA) provides limited participation in the performance of an equity

index such as the S&P 500 while guaranteeing a minimum rate of return. The guaranteed minimum

rate of return is contingent on both the return of the financial market and the mortality of the

policyholder. For example, the guaranteed return is credited only if the equity market return is

too low, or only if the policyholder dies. EIA also offers annuitization options at retirement and

the right to completely or partially surrender the contract. EIA differs from investment products

offered by banks in that EIA offers both financial and mortality guarantees, while bank products are

limited to financial guarantees only. EIAs were introduced by Keyport Life Insurance in 1995 and

have been the most innovative insurance product in recent years. They have become increasingly

popular since their debut and EIA sales reached $60 billion in 2016, and $70 billion in 2018. The

total assets in 2018 are $591 billion. For variable annuity, a product similar to EIA and for which the

tools presented here apply, the total sales in 2018 reached $93 billion and the total assets were $1.8

trillion. See the Insured Retirement Institute (2019) for more sales figures. Participating insurance

product, and unit-linked product are also similar to EIA.

Equity-linked products have been intensively studied in previous decades. Brennan and Schwartz

(1976) and Boyle and Schwartz (1977) were the first to extend the risk-neutral pricing framework

(Black and Scholes 1973, Merton 1973) to insurance products linked to the financial market. In this

extension, the financial risk and the biometric risk are considered independent, so that the financial

guarantees can be priced by standard option pricing theory, while the biometric risk is hedged away

by the insurer through diversification. This extension is since the reference framework to analyze

the various guarantees offered in EIAs. See Hardy (2003) and Møller and Steffensen (2007) for a

comprehensive study of the various guarantees. Tiong (2000) and Lee (2003) obtained closed-form

formulas for several EIAs. Lin and Tan (2003) and Kijima and Wong (2007) use a general model,

in which both the equity index and the interest rate satisfy general stochastic differential equations.
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In discrete time, Bacinello (2003a, 2005) values the surrender option for participating insurance

contracts under a binomial model for the equity index (Cox, Ross, and Rubinstein 1979), while

Andreatta and Corradin (2003) value the surrender option by least squares Monte-Carlo (Carriere

1996, Longstaff and Schwartz 2001). Gaillardetz and Lin (2006), Yuen and Yang (2010) and Wei

et al. (2013) use stochastic volatility and interest rate under a lattice-based model for the equity

index. Consiglio and De Giovanni (2008) consider the valuation of EIA in incomplete financial

models. Moore (2009) evaluates EIA under the principle of equivalent utility.

In all the previous articles, except in Brennan and Schwartz (1976), only single premium EIA

contracts are considered. The policyholder pays a lump sum at contract inception and no further

reinvestment is allowed. This assumption differs greatly from contracts commonly sold on the

market. Many contracts allow the policyholder to reinvest in the contract. These reinvestments are

not mandatory and their amounts and timing are decided by the policyholder. There have been few

studies on contracts sold with a mandatory periodic premium. In such contracts, a fixed premium

amount must be paid periodically, for example monthly, to keep the contract in force. See Bacinello

(2003b), Costabile et al.(2008), Chi and Lin (2012), and Bernard et al. (2017). However, these

periodic premium studies do not consider the amount and timing flexibility allowed in reinvestment.

We call such a flexible reinvestment right a reinvestment option. The valuation of this reinvestment

option is crucial for adequate risk management of EIA products. The goal of this article is to

provide pricing algorithms applicable to a wide variety of contracts sold with reinvestment options.

The first step in studying the reinvestment option is to define an indexing scheme. The indexing

scheme prescribes how the equity market return and the minimum guaranteed return are credited

to the reinvestments. This step is necessary because there is currently no standard way of crediting

return to reinvestments in EIA. We consider two indexing schemes. With the fund protection

scheme, the policyholder receives the maximum between the reinvestments as if they were invested

in the equity market only, and as if they were invested at the minimum guaranteed rate only. This

scheme protects the global return of the policyholder. This scheme is commonly used in variable

annuity offering a reinvestment option, but is not a standard scheme for EIA. A shortcoming of this

scheme is that the return on individual reinvestment is not guaranteed, and this could make the

product less appealing to some policyholders. To remediate this situation, we study a new premium
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protection scheme where each reinvestment is credited the maximum between the equity market

return and the minimum guaranteed return. This new scheme is of course more costly, but may

appeal to some investors. However, in the context of EIA based on the indexing scheme, this new

scheme can be hedged with the same ease than the fund protection scheme. In particular, when the

indexing scheme is defined against a stock market index, rather than a portfolio of funds, as is done

in variable annuity, an hedging strategy based on the Greeks is sufficient to hedge the guarantees

associated with the reinvestment option.

With the indexing scheme defined, we can turn to valuation algorithms for the reinvestment

option. For EIA offering American-style option, such as the surrender option, the valuation approach

commonly encountered in the literature is dynamic programming (Bertsekas 2005). The problem

of this approach for the reinvestment option is that the approach cannot scale to contract with

long maturities. Especially when the indexing scheme is path-dependent. However, this approach

is a good starting point to understand the major risk drivers in EIA and we present a valuation

algorithm based on this optimization technic. This valuation algorithm is also specialized to the case

where the index follows a binomial model. To price contract with long maturities, we resort to the

Single Pass Lookahead Search (SPLS) algorithm (Essis-Breton and Gaillardetz 2020). A recently

developed algorithm for the pricing of constrained multiple exercise American options, a class of

options to which EIAs belong. SPLS allows to price American options by Monte Carlo simulation

and linear programming: along a sample stock path, an adapted exercise strategy is extracted by

linear programming, and the option price is the average value of several such extracted strategies.

SPLS is a fast and fully general algorithm that applies to any option pricing problem expressed as a

mathematical programming problem. As any EIA can be expressed as a mathematical programming

problem, SPLS applies to any EIA currently sold in the market. In particular, SPLS allows to price

contracts where reinvestment and surrender options are jointly offered.

This paper is organized as follows. Section 2 briefly recalls the risk-neutral pricing framework

for EIAs, introduces the financial model, and presents the actuarial notation. Section 3 studies the

indexing scheme for EIA offering a reinvestment option. Section 4 displays a dynamic programming

valuation algorithm, while Section 5 introduces an SPLS algorithm. Section 6 contains numerical

examples. Section 7 concludes.
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2 Risk-Neutral Pricing Framework

Following the valuation paradigm of Brennan and Schwartz (1976) and Boyle and Schwartz (1977)

the risk-neutral biometric measure is assumed to be identical to the physical biometric measure.

This assumption is equivalent to a risk-minimizing strategy for the mortality risk (see Møller, 1998).

The financial risk-neutral measure is assumed independent of the biometric risk-neutral measure,

and the risk-neutral measure P is the product of these two measures. Denote the index price process

by S and the complete future lifetime of the policyholder by Tx. The filtration F of the contract is

the filtration generated by the index process S and the lifetime of the policyholder Tx.

Denote by n the contract maturity and denote by Ts the surrender time. The contract duration

T is the earliest between the contract maturity, the policyholder lifetime and the surrender time

T = min(n, ⌊Tx⌋+ 1, Ts),

where ⌊.⌋ is the floor function.

For the financial model, denote by r the constant risk-free rate, and denote by v the discounting

factor exp(−r). The risk-neutral dynamic of the index is assumed to be

dS = rSdt+ σSdW,

where r is the risk-free rate, σ is the volatility, and W is a standard Brownian motion. The market

is assumed frictionless, with no tax and no transaction cost. The reinvestment option and the

surrender option are assumed exercised at discrete times 0, 1, . . . , n. The reinvestment option and

the surrender option can be exercised at the beginning of a period. When the surrender option

is exercised, the exercise takes place before the reinvestment exercise and terminates the contract.

Death is assumed to be recorded during a period, after the reinvestment option is exercised, and

the mortality benefit is paid at the end of a period. Upon payment of the mortality benefit, the

contract terminates. For the actuarial notation, denote by qx+k the probability that a policyholder
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of age (x+ k) dies in the next year. This probability can be written with

qx+k = P (k < Tx ≤ k + 1|Tx > k) ,

and denote by px+k the complementary probability that the policyholder survives

px+k = 1− qx+k.

3 Indexing Schemes

The starting point to define indexing schemes for the reinvestment option is the gained rate used

in single premium contracts. The gained rate is the return credited to the initial premium at

maturity. To facilitate policyholder’s adoption, the indexing scheme should be closed to the gained

rate already offered in EIA. From Lin and Tan (2003) and Tiong (2000), there are two broad designs

for the gained rate: the point-to-point design and the annual reset design. With a point-to-point

gained rate, the credited return is based on the index return between the inception and the maturity

of the contract. While with an annual reset gained rate, the credited return is based on the annual

return index. For both designs, the effective credited return is a fraction α of the credited return.

This fraction is interpreted as a participation rate in the index return and is called the participation

rate. The effective credited return may be subject to a limit ζ, called the cap rate. Specifically, let

R be the gained rate. For a point-to-point gained rate, the gained rate Rt,T between time t and the

maturity T can be written with

Rt,T = min

(
1 + α

(
ST

St

− 1

)
, (1 + ζ)T−t

)
. (3.1)

For a single premium contract, the anchor time t is always the inception time. A direct extension

of this design to the reinvestment option allows the anchor time t to correspond to the time of

reinvestment. For an annual reset design, the gained rate Rt,T between time t and the maturity T

102



can be written with

Rt,T =
T−1∏

k=t

min

(
max

(
1 + α

(Sk+1

Sk

− 1
)
, 1

)
, 1 + ζ

)
. (3.2)

Similarly to the point-to-point gained rate, the anchor time t corresponds to the time of reinvest-

ment. The main difference between a point-to-point gained rate and an annual reset gained rate

is that the annual reset gained rate offers an additional level of guarantee where the returns of the

index during bad years are ignored. Other gained rate designs are sometimes offered. For example,

in a highwater mark design for a single premium contract, the credited return is a function of the

highest index price recorded during the contract. Similarly to the two previous gained rates, this

gained rate can be extended to the reinvestment option by allowing the anchor time to correspond

to the time of reinvestment.

With the gained rate, we can study the indexing scheme. To this end, denote by Yt the rein-

vestment of the policyholder at time t. The reinvestment may be subject to several constraints.

For example, the initial investment may be of at least y0. Also, subsequent reinvestment may be

limited to be in the interval [ymin, ymax]. If the policyholder can waive the reinvestment right, ymin

is fixed to 0. The aggregate amount of reinvestment may also be limited.

We consider two indexing schemes. The fund protection scheme guarantees a minimum overall

return of g to the policyholder, while the premium protection scheme guarantees a minimum return

of g on each reinvestment. For both indexing schemes, the participation of the policyholder in the

guaranteed return is fixed to a fraction β, and this fraction is called the guaranteed rate partici-

pation. To write these indexing schemes, denote by DT the payoff of the contract at time T . The

payoff of the fund protection scheme can be written with

DT = max

(
T−1∑

t=0

Rt,TYt, β

T−1∑

t=0

(1 + g)T−t Yt

)
, (3.3)

while the payoff of the premium protection scheme can be written with

DT =
T−1∑

t=0

max
(
Rt,T , β (1 + g)T−t

)
Yt. (3.4)
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The main difference between these two schemes is that for the fund scheme each reinvestment

increases the guaranteed amount without protecting individual premiums, while for the premium

scheme each reinvestment increases directly the guaranteed amount.

4 Dynamic Programming Algorithm

In a contract offering reinvestment and surrender options, the decision processes are the reinvest-

ment process and the surrender stopping time. To price a contract with a dynamic programming

algorithm, these decision processes need to be turned into a Markov decision process. When a

decision process is Markovian, the decision at time t depends only on the value of another adapted

process called the state variable. The state variable process captures all the information necessary

to make a decision at each time point. To find a state variable for a particular indexing scheme, the

time t, the reinvestment decision Yt, and the surrender decision at time t need to be fixed. Then,

consider all the variables needed to compute the value of the contract with payoff Dt. These vari-

ables form the state variable. The state variable is usually not uniquely defined, and the definition

with the fewest number of variables is preferred. For some indexing schemes, the state variable can

be limited to a few variables, while for some other indexing schemes, the state variable is the entire

index and reinvestment history. Examples of these extremes are a premium protection scheme with

an annual reset gained rate, and a fund protection scheme with a point-to-point gained rate. Table

4.1 summarizes the possible state variable per indexing scheme and gained rate.

Indexing scheme Gained rate State variable at time t

fund protection point-to-point ((Yk)
t−1
k=0, (Sk)

t
k=0)

annual reset
(∑t−1

k=0 Rt,TYt, β
∑t−1

k=0 (1 + g)T−t Yt, St

)

premium protection point-to-point ((Yk)
t−1
k=0, (Sk)

t
k=0)

annual reset (Dt−1, St)

Table 4.1: State variable needed in the dynamic programming algorithm by indexing scheme and
gained rate.

With the state variable defined, a dynamic programming algorithm will follow once we define the

Bellman equation. To obtain the Bellman equation, define the value function V as the difference

in the present value of the contract payoff and the remaining contract premiums given that the
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policyholder is alive. The contract payoff is the payoff DT at the contract termination time T ,

while the contract premiums are the reinvestments. To discourage the early exercise of the surrender

option, the contract payoff is reduced by a surrender penalty δT . The surrender penalty is usually

substantial at the beginning of the contract, for example 80%, and negligible near the maturity

of the contract, for example 100%. The value function is found under the assumption that the

policyholder is rational, and that the policyholder follows the optimal reinvestment and surrender

exercise strategy. With Yt:T = (Yt, Yt+1, . . . , YT ) the residual reinvestments, andHt the state variable

at time t, the value function at time t can be written with

Vt = max
T,Yt:T

E

(
vT−tδTDT −

T−1∑

k=t

vk−tYk

∣∣∣∣∣Ht

)
, (4.1)

where the expectation is taken under the risk-neutral measure and t = 0, 1, . . . , T . The Bellman

equation follows by separating the value function at time t into the payoff credited at time t and the

future payoffs. The future payoffs are then simplified by identifying them with the value function

at time t+1. In this simplification, the independence assumption between the financial risk-neutral

measure and the biometric risk-neutral measure is used. This procedure leads to the following

Bellman equation

Vt = max
Yt

E (max (δtDt, vqx+tδt+1Dt+1 + vpx+tVt+1 − Yt)|Ht) , (4.2)

where the first term in the inner maximum is the payoff received in case of immediate exercise

of the surrender option. The second term contains the continuation value in case of death of the

policyholder and the continuation value in case of survival of the policyholder.

By further simplifying the equity index process with a binomial model (Cox, Ross, and Rubin-

stein 1979), a recursive formula for the Bellman equation can be obtained. Recall that in a binomial

model with N trading date per period, the return of the index from time t to t+ 1 can take N + 1

possible values. The probability distribution for these values can be written with

wi = P

(
St+1

St

= uidN−i

)
=

(
N

i

)
piqN−i, (4.3)
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where the up move u is exp(σ/
√
N), the down move d is 1/u, the up move probability p is

(exp(r/N) − d)/(u − d), the down move probability q is 1 − p, and i = 0, 1, . . . , N . With these

assumptions, the Bellman equation simplifies to

Vt = max
Yt

max

(
δtDt,

N∑

i=0

wiv
(
qx+tδt+1Dt+1 + px+tVt+1| ui, Ht

)
− Yt

)
, (4.4)

where the notation (Zt+1| ui, Ht) is the random variable Zt+1 given that i up moves occurred between

time t and t+1, and given the state variableHt. To use this recursive formula, it suffices to construct

a grid for the state variable H from time t = 0 to time t = n. Then apply the recursive formula

backward, starting from the grid point at time t = n.

Under the equivalence premium principle (Young 2006), a contract is priced such that the value

function at time zero is zero. Such a zero initial value is called the fair value of the contract.

Pricing a contract hence amounts to finding a choice of pricing parameters that makes the contract

value fair. The pricing parameters available are either the participation rate, the guaranteed rate

participation, the guaranteed rate, or the cap rate. This article focusses on the participation rate.

5 Single Pass Lookahead Search Algorithm

The only step necessary to price an option by SPLS is to formulate the option pricing problem as a

mathematical programming problem. We start with this formulation for a contract that offers both

a reinvestment and a surrender option. Then, we briefly recall the SPLS algorithm.

To formulate the contract pricing problem as a mathematical programming problem, let X be

the surrender decision process. The surrender decision process is a process that takes values in the

set {0, 1}, and that takes the value 1 at time t only if the surrender option is exercised at time t. To

ensure that the surrender option is only exercised once, the surrender decision process is constrained

to sum to at most one. This constraint can be written with

n∑

t=0

Xt ≤ 1. (5.1)
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Since the reinvestment option can be exercised only if the contract is in force, it is necessary to

track the event that the contract is in force. This event can be tracked with the complementary

sum of the surrender decision process. This complementary sum can be written with

X0:t = 1−
t−1∑

k=0

Xk. (5.2)

The complementary sum is one when the contract is in force and zero at and after the exercise

time of the surrender option. With these auxiliary variables, the stochastic control problem for the

contract can be written with

max
X,Y

E

(
T ′∑

t=1

vtδtDtXt −
T ′

−1∑

t=0

vtYtX0:t

)
(5.3)

u.c.
n∑

t=0

Xt ≤ 1

Xt ∈ {0, 1}, t = 0, 1, . . . , n

Y0 = y0

Yt ∈ [ymin, ymax] t = 1, . . . , n

T ′ = min(n, Tx)

and the SPLS algorithm can immediately be used to price the contract. When the contract is

simpler, for example, when the contract is a single premium contract, or when the contract does

not offer neither the premium option or surrender option, the stochastic control problem can be

simplified. Table 5.1 presents the different cases. In particular, some cases reduce to a pure Monte

Carlo simulation.

To recall the SPLS algorithm, it is easier to temporarily modify the notation and to consider

the following general option pricing problem

max
X

E

(
n∑

t=0

f(X0:t, S0:t)

)
(5.4)

u.c. g(X,S) = 0
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where f is the option payoff at time t, X is the exercise decision, and g is a constraint on the exercise

decision. The payoff f depends on the previous exercise decision X0:t = (Xk)
t
k=0, and the previous

index price S0:t. Given a sample path S, SPLS extracts an exercise strategy along the path by

solving a Monte Carlo instance of the stochastic control problem (5.4) conditional on the filtration.

In the Monte Carlo instance, the stochastic exercise strategy is turned into a deterministic strategy

by approximating the exercise strategy with a step-function on a nearest-neighbor basis for the

index price. The Monte Carlo instance is usually small, for example only 100 sample paths are

used, and the resulting deterministic control problem is solved by linear programming. Specifically,

the decision X0 at time 0 is extracted by solving a Monte Carlo instance of the control problem

(5.4). The decision Xt at time t is extracted by solving a Monte Carlo instance of the following

conditional control problem

max
Xt:T

E

(
n∑

s=t

f(X0:s, S0:s)

)
(5.5)

u.c. g(X,S) = 0

where the objective and the constraint are conditional on the filtration. The filtration used here

contains all the information generated by stock, and the previously extracted exercise decision

X0:t−1. The option price is then obtained by taking the average value of several such extracted

strategies. The accuracy of the SPLS algorithm is hence characterized by three hyperparameters:

the number of simulations used in the option price average value, the number of sample paths used

in the Monte Carlo instantiations, and the size of the nearest-neighbor basis used to approximate

the exercise strategy. Through a Vapnik-Chernovenkis analysis, it is possible to show that this

algorithm converges uniformly to the option price. Uniform convergence means that the rate of

convergence of the algorithm with respect to the hyperparameters is independent of both the payoff

and the stochastic dynamic of the option. Through a metric called the filtration energy, it is also

possible to show that the algorithm converges in probability to the option price. The key idea behind

the filtration energy is to use an out-of-sample Monte Carlo simulation to measure how close in

distribution the Monte Carlo instantiations are to the true control problem. See Essis-Breton and
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Gaillardetz (2020) for more details.
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Premium Surrender Option Stochastic Control Problem

single no
E

(
vT

′

δT ′DT ′ − Y0

)

u.c. Y0 = y0

yes

max
X

E

(
T ′∑

t=1

vtδtDtXt − Y0

)

u.c.
n∑

t=0

Xt ≤ 1

Xt ∈ {0, 1} t = 0, 1, . . . , n

Y0 = y0

mandatory periodic no
E

(
vT

′

δT ′DT ′ −
T ′

−1∑

t=0

vtYt

)

u.c. Yt = y0 t = 0, 1, . . . , n

yes

max
X

E

(
T ′∑

t=1

vtδtDtXt −
T ′

−1∑

t=0

vtYtX0:t

)

u.c.
n∑

t=0

Xt ≤ 1

Xt ∈ {0, 1} t = 0, 1, . . . , n

Yt = y0 t = 0, 1, . . . , n

reinvestment option no

max
Y

E

(
vT

′

δT ′DT ′ −
T ′

−1∑

t=0

vtYt

)

u.c. Y0 = y0

Yt ∈ [ymin, ymax] t = 1, . . . , n

yes

max
X,Y

E

(
T ′∑

t=1

vtδtDtXt −
T ′

−1∑

t=0

vtYtX0:t

)

u.c.
n∑

t=0

Xt ≤ 1

Xt ∈ {0, 1} t = 0, 1, . . . , n

Y0 = y0

Yt ∈ [ymin, ymax] t = 1, . . . , n

Table 5.1: Stochastic control problem of different contracts
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6 Numerical Examples

For the numerical examples, the initial stock price is S0 = 1, the guaranteed rate participation

β is 100%, the cap rate ζ is ∞, The policyholder is 50 years old and the mortality follows the

1994 Variable Annuity MGDB Mortality Table (MGDB, 1994). The surrender penalty is a linear

function defined by δt = 1−max(5− t, 0)δ, and the penaly is applied only in case of early surrender.

A contract sold without the surrender option is denoted with δ = ∞. The risk-free rate r is 4%

unless otherwise stated.

For the dynamic programming algorithm, the index dynamic is approximated by a binomial

model with 6 trading dates, and the fair participation rate is found with the recursive formula (4.4).

The dynamic programming algorithm converges quickly with the number of trading dates per year.

In Table 6.1, all the fair participation rates presented differ by at most 2% to a fair participation

rate computed with 2 trading dates per year (not included) and differ by at most 0.5% to a fair

participation rate computed with 12 trading dates per year (not included). In the table, the fair

participation rate is indicated in percent, and the dynamic programming fair participation rate is

indicated by DP. For SPLS, the number of samples used to estimate the option price is 1, 000, the

number of samples in the Monte Carlo instantiation is 30, and the nearest-neighbor basis size is 15.

With an out-of-sample validation of 1, 000 paths, this choice of hyperparameters gives a maximum

filtration energy of 0.2 for the different cases. As the contracts considered in the examples have

a maximum maturity of 30 years, with the annual reinvestment exercise and surrender options,

this choice of hyperparameters seems reasonable. Table 6.1 confirms this intuition as the SPLS

estimates are very close to the dynamic programming estimates.

Table 6.2 presents the fair participation obtained by SPLS for contracts with long maturities.

In both Table 6.1 and Table 6.2, the fair participation rate is found by finding the root of a spline

fitted to a sample of participation rate (Press et al. 1992). For SPLS, for each sampled participation

rate, the value of a participation rate is found with a single run of SPLS. The same random seed is

used in each SPLS run. The computations are done in the Google Cloud (2020) on a 100 processors

machine with 100 GB RAM, and with the linear programming solver Gurobi (2020). The nearest-

neighbor of a path among a set of centroids is found with the multiple random projection technique
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of Hyvonen et al. 2016. Depending on the premium option complexity, each run of SPLS takes

between 1 second and 3 minutes, and obtaining a fair participation rate takes between 5 seconds

and 30 minutes. The total computing time for Table 6.2 is 40 hours.

In Table 6.2, some SPLS estimates are not perfect. For example, the fair participation rate

should increase with longer maturities, but the fair participation rate sometimes decreases when

going from a maturity of 20 years to a maturity of 30 years. In numerical experiments, we found

that this problem can be solved by using a higher number of simulations. In particular, when going

from an estimate with 1, 000 simulations to an estimate with 10, 000 simulations, the difference

in the fair participation rate is at most 5%. Further, there exists several ways to improve the

accuracy of the SPLS estimates. For example, a multi-start approach can be used where estimates

are computed from different random seeds, and the lowest fair participation rate found is retained.

Another approach is hyperparameters tuning where the estimates are computed from different

hyperparameters. The two previous approaches can also be mixed. See Essis-Breton and Gaillardetz

(2020) for more details. The goal of this article is to shed light on the reinvestment options in EIAs,

and to show that the fair participation for such EIAs can be estimated with an accuracy of 5%. We

leave the quest for sharper estimates of the fair participation rate to future research.

7 Conclusions

With appropriate pricing algorithms, the risk associated to the reinvestment option in EIAs can be

adequately priced and hedged. Such pricing algorithms are key to support innovative designs for

EIAs and to help insurers distinguish themselves from alternative investment product manufactur-

ers. The algorithms presented in this article provide such innovation support.
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Fund protection Premium protection

Point-to-point Annual reset Point-to-point Annual reset
Premium δ g σ DP SPLS DP SPLS DP SPLS DP SPLS

single ∞ 0.01 0.15 71.0 71.2 49.7 48.2 71.0 71.2 49.7 48.2
0.25 52.5 52.8 33.5 32.5 52.5 52.8 33.5 32.5
0.25 (r = 0.06) 69.8 69.9 46.3 44.9 69.8 69.9 46.3 44.9

0.03 0.15 49.9 49.8 42.8 41.9 49.9 49.8 42.8 41.9
0.25 33.5 33.3 28.0 27.5 33.5 33.3 28.0 27.5
0.25 (r = 0.06) 58.1 58.0 43.9 42.9 58.1 58.0 43.9 42.9

0.00 0.01 0.15 43.2 40.8 43.2 44.1 43.2 40.5 43.2 44.1
0.25 28.9 26.8 28.9 28.8 28.9 27.3 28.9 28.8
0.25 (r = 0.06) 42.2 39.6 42.2 43.0 42.2 40.5 42.2 43.0

0.03 0.15 28.9 27.0 28.9 26.9 28.9 26.8 28.9 26.9
0.25 18.1 17.6 18.1 17.4 18.1 17.9 18.1 17.4
0.25 (r = 0.06) 32.9 32.1 32.9 31.8 32.9 31.9 32.9 31.8

0.01 0.01 0.15 66.8 68.2 49.6 49.9 66.8 72.5 49.6 49.9
0.25 47.4 50.9 33.5 34.5 47.4 48.1 33.5 34.5
0.25 (r = 0.06) 61.0 63.2 46.3 47.3 61.0 61.8 46.3 47.3

0.03 0.15 49.3 51.6 42.8 44.0 49.3 52.6 42.8 44.0
0.25 32.8 33.0 28.0 29.1 32.8 34.9 28.0 29.1
0.25 (r = 0.06) 51.9 55.3 43.6 44.6 51.9 56.9 43.6 44.6

mandatory ∞ 0.01 0.15 67.9 67.8 49.4 48.1 63.3 63.6 49.4 48.1
periodic 0.25 49.5 49.3 33.3 32.4 45.4 45.6 33.3 32.4

0.25 (r = 0.06) 66.4 66.3 46.2 44.9 62.1 62.3 46.2 44.9
0.03 0.15 47.7 47.3 41.6 40.7 43.7 43.6 41.6 40.7

0.25 31.9 31.8 27.1 26.6 28.6 28.7 27.1 26.6
0.25 (r = 0.06) 55.3 55.1 43.3 42.4 51.0 51.1 43.3 42.4

0.00 0.01 0.15 43.2 41.8 43.2 44.0 43.2 42.5 43.2 44.0
0.25 28.9 30.7 28.9 30.2 28.9 33.3 28.9 30.2
0.25 (r = 0.06) 42.2 38.0 42.2 42.9 42.2 42.4 42.2 42.9

0.03 0.15 28.9 29.2 28.9 29.7 28.9 28.3 28.9 29.7
0.25 18.1 17.8 18.1 21.3 18.1 19.8 18.1 21.3
0.25 (r = 0.06) 32.9 34.4 32.9 41.7 32.9 32.0 32.9 41.7

0.01 0.01 0.15 63.7 67.8 49.4 52.0 61.4 63.9 49.4 52.0
0.25 44.3 49.3 33.3 34.9 43.4 48.0 33.3 34.9
0.25 (r = 0.06) 58.4 62.2 46.2 48.0 57.9 63.8 46.2 48.0

0.03 0.15 46.2 50.0 41.6 43.8 43.5 47.7 41.6 43.8
0.25 30.5 32.9 26.9 27.2 28.4 30.0 26.9 27.2
0.25 (r = 0.06) 49.3 53.5 43.2 46.0 48.5 53.9 43.2 46.0

reinvestment ∞ 0.01 0.15 65.7 67.1 49.0 47.3 62.1 64.4 49.0 47.3
option 0.25 47.5 47.7 32.9 32.2 44.2 44.6 32.9 32.2

0.25 (r = 0.06) 64.3 65.4 45.9 44.9 60.9 62.2 45.9 44.9
0.03 0.15 45.7 45.8 40.7 39.3 42.5 42.7 40.7 39.3

0.25 30.3 30.6 26.3 25.5 27.9 28.7 26.3 25.5
0.25 (r = 0.06) 53.2 54.5 42.7 41.8 49.7 50.8 42.7 41.8

0.00 0.01 0.15 43.2 44.3 43.2 45.6 43.2 49.3 43.2 45.6
0.25 28.9 34.3 28.9 33.4 28.9 28.8 28.9 33.4
0.25 (r = 0.06) 42.2 47.2 42.2 43.4 42.2 48.7 42.2 43.4

0.03 0.15 28.9 27.2 28.9 28.6 28.9 28.2 28.9 28.6
0.25 18.1 17.1 18.1 21.6 18.1 20.7 18.1 21.6
0.25 (r = 0.06) 32.9 32.1 32.9 40.4 32.9 31.6 32.9 40.4

0.01 0.01 0.15 62.5 65.6 49.0 49.0 60.4 65.8 49.0 49.0
0.25 43.7 46.6 32.9 33.5 42.6 47.7 32.9 33.5
0.25 (r = 0.06) 58.1 64.0 45.9 46.3 57.2 62.3 45.9 46.3

0.03 0.15 45.1 48.7 40.7 41.7 42.4 44.7 40.7 41.7
0.25 29.7 32.9 26.3 26.3 27.6 28.9 26.3 26.3
0.25 (r = 0.06) 48.8 51.7 42.6 43.8 48.0 52.0 42.6 43.8

Table 6.1: Comparison of the dynamic programming algorithm and the SPLS algorithm for contract
of 5 years.
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Fund protection Premium protection

Point-to-point Annual Reset Point-to-point Annual Reset
Premium δ g σ n = 10 20 30 10 20 30 10 20 30 10 20 30

single ∞ 0.01 0.15 78.7 93.1 83.6 48.4 48.9 48.0 78.7 93.1 83.6 48.4 48.9 48.0
0.25 60.8 83.3 62.7 32.7 33.2 32.5 60.8 83.3 62.7 32.7 33.2 32.5
0.25 (r = 0.06) 76.8 97.1 73.3 44.9 45.5 44.5 76.8 97.1 73.3 44.9 45.5 44.5

0.03 0.15 57.1 70.9 65.0 45.0 47.5 47.2 57.1 70.9 65.0 45.0 47.5 47.2
0.25 38.9 53.9 40.3 29.9 31.9 31.7 38.9 53.9 40.3 29.9 31.9 31.7
0.25 (r = 0.06) 65.2 85.5 65.5 44.1 45.3 44.4 65.2 85.5 65.5 44.1 45.3 44.4

0.00 0.01 0.15 41.9 43.1 45.0 43.4 44.0 46.7 42.0 43.7 43.9 43.8 43.1 45.9
0.25 27.2 27.6 31.3 31.7 31.6 31.6 28.5 27.4 31.7 31.0 31.8 31.4
0.25 (r = 0.06) 41.8 42.7 48.6 41.8 43.0 44.4 40.1 42.9 48.3 43.8 41.6 43.9

0.03 0.15 27.8 27.7 29.8 28.5 27.4 29.4 28.2 27.5 29.1 28.3 28.0 28.6
0.25 19.1 17.6 18.9 17.3 17.1 18.0 18.5 17.4 19.2 17.7 17.1 17.9
0.25 (r = 0.06) 33.4 33.3 36.5 32.6 32.4 41.0 34.4 33.5 36.3 33.1 31.7 41.0

0.01 0.01 0.15 64.9 67.6 71.7 49.7 49.5 49.9 69.7 68.8 68.9 49.8 49.4 50.4
0.25 44.8 48.9 48.9 33.8 33.2 34.0 47.5 48.0 50.3 33.7 33.2 33.8
0.25 (r = 0.06) 60.5 61.6 64.4 45.8 45.8 46.2 58.2 60.8 64.3 45.9 46.0 46.0

0.03 0.15 51.3 50.9 52.1 45.1 43.9 45.2 51.9 51.0 52.7 45.1 43.8 45.2
0.25 33.1 34.8 34.7 29.2 28.9 29.8 34.1 33.3 36.8 29.8 29.2 29.8
0.25 (r = 0.06) 49.9 53.7 55.7 43.3 43.4 44.9 51.2 55.0 53.5 43.8 43.1 45.1

mandatory ∞ 0.01 0.15 76.8 89.7 83.6 48.8 49.1 48.0 72.5 86.2 80.9 48.4 49.0 48.0
periodic 0.25 57.8 76.7 63.7 33.0 33.3 32.5 53.8 71.7 60.8 32.7 33.3 32.4

0.25 (r = 0.06) 74.6 92.0 75.5 45.2 45.7 44.4 70.6 88.4 73.5 45.0 45.6 44.4
0.03 0.15 55.2 67.9 64.5 44.2 47.3 46.9 51.1 63.5 60.7 43.0 46.5 46.4

0.25 37.3 50.8 41.4 29.2 31.7 31.4 33.8 46.1 38.5 28.3 31.1 31.0
0.25 (r = 0.06) 63.0 80.6 66.9 44.1 45.5 44.3 59.0 76.1 64.3 43.4 45.2 44.1

0.00 0.01 0.15 44.4 47.3 43.7 44.2 37.7 45.6 48.4 54.3 54.3 43.6 48.8 44.1
0.25 29.6 34.0 35.8 32.9 32.6 16.1 27.0 32.9 41.0 31.5 31.6 16.2
0.25 (r = 0.06) 40.5 52.9 55.0 44.8 42.8 43.3 40.4 44.7 48.4 43.2 43.9 44.0

0.03 0.15 31.8 30.9 27.7 31.5 31.3 28.9 28.5 29.8 32.2 29.6 31.3 29.1
0.25 20.0 17.7 21.9 16.6 14.8 14.9 18.3 20.7 20.3 20.4 19.7 19.7
0.25 (r = 0.06) 38.9 34.2 37.3 29.9 28.2 27.2 33.2 35.5 38.1 40.9 41.6 29.5

0.01 0.01 0.15 65.0 64.1 65.6 48.9 50.2 48.5 65.9 64.9 66.2 48.3 49.3 48.8
0.25 45.8 45.1 47.7 33.0 33.4 33.5 46.8 46.8 46.3 33.5 33.3 32.3
0.25 (r = 0.06) 65.1 62.3 59.7 46.1 45.7 45.7 59.6 54.4 54.3 44.7 45.9 45.2

0.03 0.15 46.1 48.9 47.5 42.7 43.2 42.5 46.4 46.1 47.2 41.7 41.1 42.4
0.25 31.9 30.7 33.3 27.2 28.8 29.5 30.8 29.6 29.7 25.9 27.6 28.5
0.25 (r = 0.06) 51.7 53.9 50.3 45.0 43.3 44.1 48.4 51.6 48.6 42.3 42.2 43.0

reinvestment ∞ 0.01 0.15 75.9 88.4 83.1 47.6 46.6 46.0 71.6 84.4 81.8 47.2 46.6 46.0
option 0.25 57.0 75.2 63.0 33.0 33.5 32.3 51.9 68.4 57.8 32.7 33.2 32.1

0.25 (r = 0.06) 73.4 91.0 79.3 45.1 45.5 44.4 69.0 86.6 73.8 44.7 45.3 44.3
0.03 0.15 53.4 66.2 63.4 44.1 45.8 45.8 50.0 60.3 59.3 42.2 45.3 45.5

0.25 36.4 48.2 40.0 27.3 30.9 30.4 33.2 43.3 38.9 26.2 29.8 29.6
0.25 (r = 0.06) 61.5 78.5 67.6 44.4 45.1 44.3 58.8 73.5 63.8 43.2 44.9 44.3

0.00 0.01 0.15 46.4 40.9 43.7 46.1 41.4 43.7 48.6 49.6 44.1 45.2 45.5 44.0
0.25 31.9 27.2 29.5 32.1 32.4 32.3 31.8 28.5 29.7 32.5 16.9 18.2
0.25 (r = 0.06) 45.9 39.7 41.6 45.1 44.2 44.2 47.1 51.0 45.5 42.6 43.8 44.7

0.03 0.15 29.7 27.7 30.5 30.7 27.8 30.5 28.3 30.0 31.4 30.2 30.7 30.3
0.25 19.0 18.0 20.2 20.6 17.9 19.2 21.6 20.5 19.5 20.0 21.4 20.8
0.25 (r = 0.06) 35.6 31.8 35.8 39.4 31.7 41.5 42.8 36.0 36.3 41.1 41.5 29.8

0.01 0.01 0.15 68.3 78.3 82.5 48.5 51.2 53.6 67.0 62.6 67.4 48.1 48.3 51.5
0.25 50.6 50.6 55.6 33.4 34.9 36.5 46.2 43.9 47.0 32.6 32.6 33.9
0.25 (r = 0.06) 64.3 66.5 69.9 45.6 46.4 47.5 61.5 60.6 61.7 45.8 45.2 44.9

0.03 0.15 54.3 58.3 74.8 45.1 51.1 56.2 44.4 46.2 49.0 39.8 41.2 44.1
0.25 32.6 37.4 50.2 29.2 33.1 39.7 29.1 30.4 31.5 25.5 27.3 30.5
0.25 (r = 0.06) 54.4 59.4 62.1 44.1 47.3 50.7 50.8 48.6 53.8 42.7 42.1 44.0

Table 6.2: SPLS fair participation rate for contract with long maturity n.
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Chapter 4

Conclusion and Future Work

The passage from a stochastic control problem to its computer solution is an important problem

that arises in many fields. In finance, in particular in option pricing, an efficient solution to this

algorithmic translation problem facilitates the risk-management of any derivative and helps in the

negotiation of complex derivative contracts. In this thesis, a new solution to this algorithmic transla-

tion problem was presented, and the solution meets the efficiency needed in option pricing practice.

The solution consists in highlighting a family of exercise strategy and a family of dual martingale

that are tractable and that exhibit good convergence guarantees. The associated algorithms are

called single pass lookahead search and nearest-neighbor martingale.

They are 3 broad possible directions for future work. A first direction for future work is the

application of the algorithms to other areas in finance. Possible areas are optimal asset allocation,

real option pricing, and high-frequency trading. These different areas usually relies on dynamic

programming and the proposed algorithms can widen the complexity of problems handled within

these areas.

A second direction for future work is to find application of the proposed algorithms in other fields

than finance. In particular, the algorithms can be used to find approximate solution to multi-stage

stochastic programs. Within this perspective, the algorithms can be embedded directly in existing

linear programming solvers, so that the solvers handle multi-stage stochastic program out-of-the-
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box. Currently available algorithmic solution to multi-stage stochastic program usually relies on

scenarios tree or genetic optimization and can hardly handle complex program or program with

long maturity.

A third direction for future work is a study of the computational complexity of the proposed

algorithms. In the thesis, probabilistic convergence proofs are provided for the speed of convergence

to the best possible solution. However, these convergence rates do not quantify the computational

effort behind the algorithms. In the numerical examples, the thesis demonstrates that the algorithms

scale to very complex options, that are intractable for dynamic programming. A proof that the

computational effort behind the algorithms grows for example polynomially with the complexity of

the option will confirm the efficiency observed empirically.
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