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ABSTRACT

On Properties of Ruled Surfaces and Their Asymptotic Curves

Sokphally Ky

Ruled surfaces are widely used in mechanical industries, robotic designs, and archi-

tecture in functional and fascinating constructions. Thus, ruled surfaces have not

only drawn interest from mathematicians, but also from many scientists such as me-

chanical engineers, computer scientists, as well as architects. In this paper, we study

ruled surfaces and their properties from the point of view of differential geometry,

and we derive specific relations between certain ruled surfaces and particular curves

lying on these surfaces. We investigate the main features of differential geometric

properties of ruled surfaces such as their metrics, striction curves, Gauss curvature,

mean curvature, and lastly geodesics. We then narrow our focus to two special ruled

surfaces: the rectifying developable ruled surface and the principal normal ruled sur-

face of a curve. Working on the properties of these two ruled surfaces, we have seen

that certain space curves like cylindrical helix and Bertrand curves, as well as Dar-

boux vector fields on these specific ruled surfaces are important elements in certain

characterizations of these two ruled surfaces. This latter part of the thesis centers

around a paper by Izmuiya and Takeuchi, [4], for which we have considered our own

proofs. Along the way, we also touch on the question of uniqueness of striction curves

of doubly ruled surfaces.
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Chapter 1

Introduction and Prerequisites

1.1 Introduction

Mathematics and architecture are related, if only, in the fundamental way that archi-

tecture has given a wonderful interpretation of the beauty of geometry used to define

all forms of construction structures. One of the most popular forms used by architects

around the world to enhance the structural elegance of architecture is a ruled surface.

Ruled surfaces have been seen widely in architecture for centuries, probably as early

as the construction of the first hyperboloid structure, one of Shukhov Water Towers,

built by Vladimir Shukhov for the 1896 All-Russian Exhibition in Russia. The ad-

vantages of geometric properties of ruled surfaces have facilitated the architects to

link ruled surfaces to contemporary free-form architectural forms by breaking down

a complex shape into small regions of many single patches or strips of ruled surfaces.

Personally, it was an eye-opening experience for me to do research on ruled surfaces

as I am able to relate this topic with visual stimulus of my environment. While doing

the research on ruled surface, I re-encountered a very intriguing building structure,

Walt Disney Concert Hall, Los Angeles, California, USA. When I lived in Los Angeles
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in 2007, I happened to pass by this beautiful building everyday without even realizing

that it actually has a name as a ruled surface until I have done this research.

Figure 1.1: Walt Disney Concert Hall, Los Angeles, California, USA. Released to
CC0 Public Domain by Jean Beaufort.

In this thesis, our goal was to understand geometric properties of ruled surfaces,

as well as the characterizations of ruled surface that is rectifying developable of a

curve and the principal normal ruled surface of a curve corresponding to properties of

curves on them. Knowing that any point p on a ruled surface is a point on a straight

line that is completely lying on the ruled surface led us to conclude that the surface

does not curve when moving from one point to another in the direction of these

straight lines (rulings). As expected, we have identified simple geometric forms that

we have seen in almost all of our classical mathematics textbooks such as cylinders,

cones, hyperbolic paraboloids, hyperboloids of one sheet, as well as more complex

forms as helicoids, Möbius strips and the Plücker’s conoid as the simplest examples

of ruled surfaces. Along the way, we analysed the intrinsic properties of ruled surfaces

by computing their Gauss and mean curvature, and investigating their geodesics as

well. We have shown that the Gauss curvature of ruled surfaces is non-positive,

which has linked ruled surfaces to developable surfaces when the Gauss curvature is

zero, and to their asymptotic directions at the point p when the Gauss curvature is
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negative (where we have locally the saddle shape). This asymptotic direction suggests

that we have another tangential direction of zero normal curvature besides the ruling

direction at point p of ruled surfaces. We also brought into focus that the Gauss

curvature of ruled surface that is rectifying developable of a curve is associated to

the cylindrical helix curve on it, the mean curvature of the principal normal ruled

surface corresponds to the Bertrand curve on it, and that its geodesics can become

its striction curves under certain conditions. Next, we have studied and have drawn

the conclusion that a ruled surface is rectifying developable of a curve α if and only if

α is a geodesic of the ruled surface which is traversal to rulings and Gauss curvature

vanishes along α. We also show that a regular ruled surface is a developable surface

provided the existence of its cylindrical helix geodesic curve with non-zero curvature.

We reproved that a ruled surface is a principal normal surface of a space curve α

if and only if α is an asymptotic curve of the ruled surface which is transversal to

rulings and mean curvature vanishes along α. We finally provided a characterization

of Bertrand curve as curves on ruled surfaces by the following concept. If there exists

two curves on a regular ruled surface such that they are disjoint asymptotic curves

on this ruled surface, both are transversal to rulings and mean curvature of the ruled

surface vanishes along these curves, then these two curves are Bertrand mate of each

other. The latter part of the thesis centers around a paper by Izmuiya and Takeuchi,

[4], for which we have considered however our own proofs. Finally in the Appendix,

we have directed our attention to the uniqueness of striction curves of the two specific

doubly ruled surfaces: the hyperbolic paraboloid and hyperboloid of one sheet. Lastly,

we could show that the striction curve of non-cylindrical ruled surface is unique to

each parametrization for a doubly ruled surface, but as a ruled surface can have two

distinct ruled parametrizations (which are not reparametrizations of each other), we

show the example of a doubly ruled surface with two distinct striction curves.

The thesis is structured as follows. We continue this chapter by introducing the
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definition, some examples, and properties of ruled surfaces in general. Next, we pro-

ceed to define the striction curves for non-cylindrical ruled surfaces along with their

properties. Lastly, in the same first chapter, we define doubly ruled surfaces and

study some examples. In Chapter 2, we examine certain curves on two specific ruled

surfaces, the ruled surface that is rectifying developable of a curve and a principal

normal surface of a curve, from the view point of geometry of curves on ruled surfaces.

We also derive the characterizations of these ruled surfaces via the properties of the

curves on them.

In this chapter, we have used several sources such as [1], Chapter 14, and [2], [5],

but whenever possible we have presented our own proofs.

1.2 Definition and Examples of Ruled Surfaces

Definition 1.2.1. [2], [5] A surface M in R3 is called a ruled surface if it admits

a parametrization X : I × J →M which consists of a collection of a one-parameter

family of straight lines indexed by v, of the form of X(u, v) = α(u) + vβ(u), where

u ∈ I, an open interval in R and v ∈ J , a possibly different open interval in R. The

curve I 7→ α(u) ∈ R3 is called the directrix or the base curve, and I 7→ β(u) ∈ R3 is

called the director curve. The straight lines are called the rulings or the generators of

the ruled surface, while X is called a ruled patch.

In our work, we assume that α and β are regular, smooth curves.

Remark 1.2.1. In general, we distinguish two types of ruled surfaces: cylindrical or

non-cylindrical. We say that a ruled surface is cylindrical if the rulings are parallel

to each other. In other words, β(u) × β′(u) is identically the zero vector. Similarly,

a non-cylindrical ruled surface is any ruled surface for which the rulings are always
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changing direction. Equivalently, a non-cylindrical ruled surface is a ruled surface for

which the vector β(u)× β′(u) is never the zero vector.

We will discuss these concepts in detail in a latter section.

Figure 1.2: Example of Ruled Surface, where α(u) = (u cosu, sinu, 0), β(u) =
(cosu/2, (cos 2u sinu)/2, 1), u ∈ (−2π, 2π), and v ∈ (0, 1).

Examples: Planes, cylinders, cones, helicoids, hyperbolic paraboloids, hyperboloids

of one sheet, Möbius strips, as well as Plücker’s conoids are common examples of

ruled surfaces.

We choose to start by presenting the Möbius strips and the Plücker’s conoid as

examples of ruled surfaces.

The parametric equation of a Möbius strip with radius r and height h is

X(u, v) =
(
r cosu+ v cos

u

2
cosu, r sinu+ v cos

u

2
sinu, v sin

u

2

)
, (1.1)

where u ∈ (−2π, 2π) and v ∈ (−h, h). We have

X(u, v) =
(
r cosu+ v cos

u

2
cosu, r sinu+ v cos

u

2
sinu, v sin

u

2

)
=

(
r cosu, r sinu, 0) + v (cos

u

2
cosu, cos

u

2
sinu, sin

u

2

)
. (1.2)

Therefore, a Möbius strip can be written as a ruled surface via X(u, v) = α(u)+vβ(u),

where the circle with radius r, α(u) = (r cosu, r sinu, 0), is the directrix curve and

5



the generators of the Möbius strip are the straight segments of length 2h that move

along the director curve β(u) = (cos u
2

cosu, cos u
2

sinu, sin u
2
).

Figure 1.3: Möbius strip with u ∈ (−2π, 2π) and v ∈ (−1, 1).

Next, we study Plücker’s conoid. In the same manner, where x, y are in the

xy-plane without the origin, Plücker’s conoid can be defined parametrically in the

Euclidean space R3 by

X(x, y) =

(
x, y,

2xy

x2 + y2

)
. (1.3)

It is not straightforward to see that Plücker’s conoid is a ruled surface unless

we convert this parametrization into a polar parametrization with x = r cos θ and

y = r sin θ, r ∈ (0,+∞) and θ ∈ (−2π, 2π). Therefore, in its new form, the Plücker’s

conoid is

X(r cos θ, r sin θ) = (r cos θ, r sin θ, 2 cos θ sin θ)

= (0, 0, sin 2θ) + r (cos θ, sin θ, 0),

and we recognize that Plücker’s conoid is a ruled surface, X̃(θ, r) = α(θ) + rβ(θ),

whose base curve α(θ) = (0, 0, sin 2θ) is in the direction of z-axis, and director

6



curve β(θ) = (cos θ, sin θ, 0) is a circle in the xy-plane. The one-parameter family

of straight lines for this ruled surface is indexed by r.

Figure 1.4: Plücker’s conoid with θ ∈ (−2π, 2π) and r ∈ (0, 1).

2

For the rest of this section, we will discuss in detail the properties of three simplest

ruled surfaces: the generalized cylinder, the generalized cone and, respectively, the

ruled surface that is tangent developable of a curve. Lastly, we will explain how the

hyperbolic paraboloid and the hyperboloid of one sheet are examples of special ruled

surfaces which are called doubly ruled surfaces.

1.2.1 The Generalized Cylinder

Definition 1.2.2. Let M ⊂ R3 be a ruled surface. We say that M is a generalized

cylinder over a curve α if and only if M can be parametrized as

X : I × J → R3, X(u, v) = α(u) + va, (1.4)

7



where, as before, the directrix curve α(u) is any curve in R3 and the director curve a

is a constant curve whose image is a fixed vector in R3, β(u) = a for all u ∈ I.

Figure 1.5: Generalized Cylinder where α(u) = (2u, sinu cosu, u4 + 1), a = (2,1,0),
u ∈ (0, 1) and v ∈ (−1, 1).

Remark 1.2.2. Referring to the definition of the generalized cylinder, we can also

assert that the generalized cylinder is a cylindrical ruled surface as in Remark 1.2.1.

As seen above, the director vector is a constant vector, a. Therefore, a × a′ = ~0 for

all u ∈ I.

The next proposition provides a relationship between the director, respectively

the directrix, curve of a generalized cylinder.

Proposition 1.2.1. For any generalized cylinder M with parametrization X(u, v) =

α(u) + va as in equation (1.4), where a is taken to be a unit vector parallel to the

rulings, we may assume that the curve α(u) lies in P, where P is a plane orthogonal

to a.

Proof. Let α̃(u) = α(u) − (α(u) · a)a be the perpendicular projection of α(u) in

a plane P orthogonal to a, which we may choose to pass through a fixed point of

the surface. We will now show that X(u, v) = α(u) + va can be reparametrized by

X̃(u, ṽ) = α̃(u) + ṽa, where ṽ = v + α(u) · a and that X(u, v) = X(u, ṽ). Therefore,

we can conclude that we may assume that the directrix curve α(u) of a generalized

cylinder is in the plane P as well.

8



First, we will show that X̃(u, ṽ) = α̃(u) + ṽ a where ṽ = v + α(u) · a is a

reparametrization of X(u, v) = α(u)+v a by showing that the map Φ : (u, ṽ)→ (u, v)

is a smooth homeomorphism and that the Jacobian matrix of this map is invertible.

To prove that the reparametrization map Φ : (u, ṽ) → (u, v) is a smooth home-

omorphism, we have that ṽ = v + α(u) · a is a smooth function of (u, ṽ) since

ṽu(u, v) = α′(u) · a and ṽv(u, v) = 1. Therefore, ṽ has continuous partial deriva-

tives of all orders with respect to u and v provided that α(u) is a smooth curve.

Clearly when u is fixed, Φ(u, ṽ) is a bijective map since it is a linear function in v.

Next, we check J(Φ), the Jacobian of Φ, is an invertible matrix. We have:

J(Φ)(u, v) =

 1 0

α′ × a 1

 .
We conclude that J(Φ) is an invertible matrix since the determinant of J(Φ) =

1 6= 0. Thus, Φ−1 exists and, similarly, is smooth as well. As the result, Φ is a smooth

homeomorphism.

Finally, we need to show that X(u, v) = X̃(u, ṽ) ◦ Φ−1.

Consider

X̃(u, ṽ) ◦ Φ−1 = α̃(u) + ṽ a

= α(u)− (α(u) · a) a + (v + α(u) · a) a

= α(u)− (α(u) · a) a + v a + (α(u) · a) a

= α(u) + v a

= X(u, v).

Thus, we have proved that X̃(u, ṽ) is a reparametrization of X(u, v).

Finally, for completeness, we want to show that α̃(u) = α(u) − (α(u) · a)a is in

the plane P perpendicular to a, thus we must show that < α̃(u), a > = 0.

9



Consider

< α̃(u), a > = < (α(u)− (α(u) · a)a), a >

= < α(u), a > − < (α(u) · a)a, a >

= < α(u), a > − < α(u), a >< a, a >

= < α(u), a > − < α(u), a > ‖a‖2.

We have that a is a fixed vector and, by hypothesis, ‖a‖2 = 1. We now can conclude

that

< α̃(u), a > = 0.

Thus, α̃(u) = α(u)− (α(u) ·a) a is in the plane P perpendicular to a. This completes

the proof of the proposition.

Note that if we start with a base curve α(u) = (r cosu, r sinu, 0), a circle in the

xy-plane with −2π < u < 2π, and take the director curve to be the fixed unit vector

a = (0, 0, 1) parallel to the z-axis, and v ∈ R, we obtain an infinitely long circular

cylinder with radius r in our standard Euclidean space R3. Moreover, the directrix

curve is in the xy-plane which is perpendicular the director curve, the line parallel to

the z-axis.

The regularity condition for the generalized cylinder will be discussed in the fol-

lowing lemma.

Lemma 1.2.1. A generalized cylinder M of parametrization X(u, v) = α(u) + va as

in the equation (1.4) is regular if and only if, for any u ∈ I, we have that α′(u)×a 6= ~0.

Proof. Note that a surfaceM is regular, if and only if the vector Xu(u, v)×Xv(u, v) 6=

~0, where Xu(u, v) is the partial derivative of X(u, v) with respect to u and Xv(u, v) is

the partial derivative of X(u, v) with respect to v. These two derivatives, form a basis

of the tangent plane at each point of the surface. We thus consider Xu(u, v)×Xv(u, v)
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for the surface patch of M, X(u, v) = α(u) + va. Then Xu(u, v) = α′(u) and

Xv(u, v) = a and, therefore, Xu(u, v)×Xv(u, v) = α′(u)×a. We conclude that having

a regular generalized cylinder is equivalent to having α′(u)× a 6= ~0, ∀u ∈ I.

1.2.2 The Generalized Cone

Definition 1.2.3. We say that a ruled surface M⊂ R3 is a generalized cone if and

only if M can be parametrized as

X : I × J → R3, X(u, v) = p+ vβ(u), (1.5)

where, as before, u 7→ β(u) ∈ R3 is a director curve, and p is a fixed point in R3

called the vertex of the generalized cone.

Figure 1.6: Generalized Cone, where β(u) = (cosu, sinu+
√
| cosu|, 1), p = (1, 1, 1),

u ∈ (−2π, 2π) and v ∈ (−1, 1).

Note that if we let the director curve β(u) = (r cosu, r sinu, 0) be a circle in the

xy-plane with radius r ∈ (0,∞) and u ∈ (−2π, 2π), the fixed point p = (0, 0, h)
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be the vertex of this cone and, respectively, v ∈ J is the parameter along the z-axis.

We can see that this ruled surface is the lateral part (without its base) of a right

cone of height h and radius r in our standard Euclidean space R3. Under the same

assumptions, if we now let the director curve β(u) = (a cosu, b sinu, 0) be an ellipse,

where a, b ∈ (0,∞), the resulting ruled surface is called an elliptic cone.

In the following lemma, we will remark on the regularity of generalized cones.

Lemma 1.2.2. For any generalized cone M with parametrization X(u, v) : I × J →

R3, X(u, v) = p + vβ(u) as in the equation (1.5), we have that M is regular at all

points where vβ(u)× β′(u) 6= ~0, thus M is never regular at its vertex p (if it belongs

to the surface).

Proof. As mentioned earlier, we only need to check whether the vector Xu(u, v) ×

Xv(u, v) 6= ~0 to infer on the regularity of M. Thus, we will compute Xu(u, v) ×

Xv(u, v) for this ruled surface. Since X(u, v) = p + vβ(u), we have that Xu(u, v) =

vβ′(u), and Xv(u, v) = β(u), thus Xu(u, v)×Xv(u, v) = vβ′(u)×β(u). Therefore,M

is regular if Xu(u, v)×Xv(u, v) = vβ′(u)× β(u) 6= ~0 whenever v 6= 0. If v = 0, then

Xu(u, v) × Xv(u, v) = ~0, so M is not regular at this point. We can then conclude

that the generalized cone is regular whenever vβ′(u)× β(u) 6= ~0 and it is not regular

at its vertex if 0 ∈ J .

1.2.3 Ruled Surfaces that are Tangent Developable of a Curve

Definition 1.2.4. A ruled surface M ⊂ R3 is said to be tangent developable of a

curve u 7→ α(u) ∈ R3 if and only if M can be parametrized by

X : I × J → R3, X(u, v) = α(u) + vα′(u), (1.6)

where α′(u) is the tangent vector to the curve α at point α(u).
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Figure 1.7: Surface developable to α, where α(u) = (5 cosu, 3 sinu, u), u ∈ (−2π, 2π),
α′(u) = (−5 sinu, 3 cosu, 1), and v ∈ (−1, 1).

The following lemma gives a criterion for the regularity of surfaces that are tangent

developable to a curve.

Lemma 1.2.3. Given any ruled surface M that is tangent developable to a curve

α(u), with parametrization X(u, v) = α(u) + vα′(u) as in the equation (1.6), we have

that M is regular everywhere except along the curve α provided that the curvature of

α(u) never vanishes, i.e. k(u) 6= 0, for all u ∈ I.

Proof. As in previous proofs, we need to check if the vector field Xu×Xv vanishes at

any points X(u, v). We have X(u, v) = α(u)+vα′(u), thus Xu(u, v) = α′(u)+vα′′(u)

and Xv(u, v) = α′(u). Therefore,

Xu ×Xv = (α′(u) + vα′′(u))× α′(u) = (α′(u)× α′(u)) + v(α′′(u)× α′(u)).

Since α′(u)× α′(u) = ~0 , ∀α′(u) ⇒ Xu(u, v)×Xv(u, v) = v(α′′(u)× α′(u)).
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Furthermore, we know from the formula of the curvature of a curve that

k(α(u)) =
‖α′′(u)× α′(u)‖
‖α′(u)‖3

6= ~0 ⇔ ‖α′′(u)× α′(u)‖ 6= ~0. (1.7)

If v 6= 0, we have Xu(u, v)×Xv(u, v) = v(α′′(u)× α′(u)) 6= ~0, which is equivalent to

having that the surface M is regular.

If v = 0, then X(u, v) = α(u) and Xu(u, v)×Xv(u, v) = v(α′′(u)× α′(u)) = ~0, which

implies thatM is not regular along α(u). Therefore, the ruled surface that is tangent

developable to a curve α(u) of non-zero curvature is regular everywhere except along

its base curve α(u).

In the next proposition, we will calculate the first fundamental form of the surface

that is tangent developable to a curve. For simplicity of calculations, we may consider

that the surface’s base curve is parametrized by arc-length. Recall that the first

fundamental form of a surface provides a distance on the surface and this distance,

also called metric, leads to an area form which allows us to calculate areas of domains

on the surface.

Proposition 1.2.2. Suppose that α : (a, b) → R3 is a unit speed curve. Then the

first fundamental form of a regular ruled surface that is tangent developable to α, of

parametrization X(u, v) = α(u) + vα′(u) as in (1.6), is

E du2 + 2F du dv +Gdv2, (1.8)

with E(u, v) = 1 + v2k2(u), F (u, v) = 1, G(u, v) = 1.

Proof. Consider Xu(u, v) = α′(u) + vα′′(v) and Xv(u, v) = α′(u). Since α(u) is a

unit-speed curve, we have ‖α′(u)‖ = 1, < α′(u), α′′(u) > = 0, and ‖α′′(u)‖ = k(u),
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where k(u) is the curvature of the curve at the point α(u). We then have

E = ‖Xu(u, v)‖2

= ‖α′(u) + vα′′(u)‖2

= < α′(u) + vα′′(u), α′(u) + vα′′(u) >

= ‖α′(u)‖2 + ‖vα′′(u)‖2 + 2v < α′(u), α′′(u) >

= 1 + v2k2(u) + 0.

Therefore,

E = 1 + v2k2(u), (1.9)

and, similarly,

G = ‖Xv(u, v)‖2 = ‖α′(u)‖2 = 1. (1.10)

Furthermore,

F = < Xv(u, v), Xu(u, v) >

= < α′(u), (α′(u) + vα′′(u)) >

= < α′(u), α′(u) > + v < α′(u), α′′(u) >

= ‖α′(u)‖2 + 0 = 1,

since < α′(u), α′′(u) > = 0 and ‖α′(u)‖2 = 1.

Hence

F = 1, (1.11)

concluding the form of the metric on M known as the first fundamental form.
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1.2.4 Hyperbolic Paraboloid and Hyperboloid of One Sheet

Hyperbolic paraboloid and hyperboloid of one sheet are special ruled surfaces because

they are doubly ruled.

Definition 1.2.5. A surface M is called doubly ruled if and only if M has two

distinct ruled patches that is through every one of its points there are two distinct

lines that lie on the surface.

We now present the hyperbolic paraboloid in Euclidean space R3 as an example

of a doubly ruled surface. The Cartesian equation of hyperbolic paraboloid is

z =
x2

a2
− y2

b2
, (1.12)

where a, b are constants and x, y are in the xy-plane of our standard Euclidean space.

For any u, v ∈ (−∞,∞), we can then parametrize the hyperbolic paraboloid with

two different surface patches.

The first surface patch is

X1(u, v) = (a(u+ v), bv, u2 + 2uv) = (au, 0, u2) + v (a, b, 2u), (1.13)

with its base curve α(u) = (au, 0, u2), and director curve β(u) = (a, b, 2u).

Another surface patch is

X2(u, v) = (a(u+ v), −bv, u2 + 2uv) = (au, 0, u2) + v (a, −b, 2u), (1.14)

where the base curve is α(u) = (au, 0, u2), and the director curve is β(u) =

(a, −b, 2u). In both cases, u, v ∈ R. Therefore, the hyperbolic paraboloid is a doubly

ruled surface with two distinct ruled patches X1(u, v) = (au, 0, u2) + v(a, b, 2u)

and X2(u, v) = (au, 0, u2) + v(a, −b, 2u).
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Figure 1.8: Hyperbolic Paraboloid, where α(u) = (u, 0, u2), u ∈ (−1, 1), β(u) =
(1,−1, 2u), and v ∈ (−1, 1).

Similarly, we can draw the same conclusion that the hyperboloid of one sheet in

R3 is doubly ruled as well. Hyperboloid of one sheet is defined non-parametrically by

x2

a2
+
y2

b2
− z2

c2
= 1, (1.15)

where constants a, b, c > 0 and the standard reparametrizations can be represented

by two different surface patches.

For any u ∈ (−2π, 2π) and v ∈ (−∞,∞), the first surface patch of hyperboloid

of one sheet is X1(u, v) = (a(cos u− v sinu), b(sinu+ v cosu), cv). Thus,

X1(u, v) = (a cosu, b sinu, 0) + v (−a sinu, b cosu, c), (1.16)

where u 7→ (a cosu, b sinu, 0) is its base curve, and u 7→ (−a sinu, b cosu, c) is its

director curve.
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The second ruled patch is X2(u, v) = (a(cosu + v sinu), b(sinu − v cosu), cv).

Thus,

X2(u, v) = (a cosu, b sinu, 0) + v (a sinu,−b cosu, c), (1.17)

as before, u 7→ (a cosu, b sinu, 0) is its base curve, and u 7→ (a sinu, −b cosu, c) is

its director curve. Hence, the hyperboloid of one sheet is a doubly ruled surface with

two distinct ruled patches X1(u, v) and X2(u, v) as in the above equations.

Figure 1.9: Hyperboloid of One Sheet, where α(u) = (cosu, 3 sinu, 0), u ∈ (−2π, 2π),
β(u) = (sinu,−3 cosu, 2), and v ∈ (−5, 5).

1.3 Properties of Ruled Surfaces

In this section, we first look at one of the common properties shared by all ruled

surfaces. This pertains to the sign of the Gaussian curvature of ruled surface in

general. We will then note the characterization of flat ruled surfaces and point out

some special cases. Next, we define the striction curve which plays an important role
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for non-cylindrical ruled surfaces. Lastly, we proceed to calculate the mean curvature,

and as well as the geodesics on non-cylindrical ruled surfaces.

1.3.1 Gaussian Curvature of Ruled Surfaces

The Gaussian curvature of a surface in the Euclidean space R3 is interesting because

it represents an intrinsic geometric property of the surface and it does not change

according to the way we immerse the surface in the Euclidean space, thus how the

surface bends. Roughly speaking, as long as the surface is not distorted, stretched

nor compressed, the Gaussian curvature of the surface remains the same. On the

other hand, the curvature of a curve in R3 is an extrinsic geometric property since its

curvature is determined by the way the curve itself bends in the Euclidean space.

There are different approaches to calculate the curvature of a surface. In our work,

we consider the Gauss curvature of a surface computed directly from the first and

second fundamental forms of a surface patch. We recall a classical result that states

that the Gaussian curvature of an oriented surface can be determined by the first and

second fundamental form of its surface patch

Suppose that M is a surface in R3 and a diffeomorphism map X(u, v) is the

surface patch of M. We say that the expression Edu2 + 2Fdudv + Gdv2 is the first

fundamental form of the surface patch X(u, v), where the coefficients E, F , G and

the linear maps du, dv depend on the choice of each surface patch of M. Similarly,

the expression Ldu2 + 2Mdudv +Ndv2 is called the second fundamental form of the

surface M where, as before, the coefficients L, M , N and the linear maps du, dv

depend on the choice of each surface patch of M as well, and they are defined as

follows. Let N = N(u, v) be a unit normal vector at point X(u, v) of the surfaceM,

N(u, v) =
Xu(u, v)×Xv(u, v)

‖Xu(u, v)×Xv(u, v)‖
,

19



then L = < Xuu(u, v), N >, N = < Xvv(u, v), N >, M = < Xuv(u, v), N >.

The Gaussian curvature K of the surface M at each point X(u, v) ∈M is

K(u, v) =
LN −M2

EG− F 2
,

where, recall from earlier computations that E = ‖Xu(u, v)‖2, F =< Xu(u, v), Xv(u, v) >,

G = ‖Xv(u, v)‖2. For simplicity, we have dropped the arguments u and v from N, and

the coefficients of the first, and second, fundamental form, though these coefficients

generally depend on the point as we mentioned earlier.

We are now ready to state the result on the Gaussian curvature of a ruled surface.

Proposition 1.3.1. The Gaussian curvature of a regular ruled surface is everywhere

non-positive.

Proof. Let X(u, v) = α(u) + vβ(u) be the surface patch of a ruled surface M. Then

Xu(u, v) = α′(u) + vβ′(u), Xv(u, v) = β(u), Xvv(u, v) = ~0, Xuu = α′′(u) + vβ′′(u),

and Xuv = β′(u).

Consequently, we have

N =
Xu(u, v)×Xv(u, v)

‖Xu(u, v)×Xv(u, v)‖
=

(α′(u) + vβ′(u))× β(u)

‖(α′(u) + vβ′(u)× β(u)‖
, (1.18)

N = < Xvv(u, v), N > = < ~0,
Xu(u, v)×Xv(u, v)

‖Xu(u, v)×Xv(u, v)‖
> = 0, (1.19)

and

M = < Xuv(u, v), N >

= < β′(u),
Xu(u, v)×Xv(u, v)

‖Xu(u, v)×Xv(u, v)‖
> .
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Thus,

M = < β′(u),
(α′(u) + vβ′(u))× β(u)

‖(α′(u) + vβ′(u)× β(u)‖
> . (1.20)

Therefore,

K =
LN −M2

EG− F 2
=

0−M2

EG− F 2
= − M2

EG− F 2
. (1.21)

For all (u, v), we know that −M2 ≤ 0 and also that

EG− F 2 = < (Xu(u, v), Xu(u, v) > < (Xv(u, v), Xv(u, v) > −(< Xu(u, v), Xv(u, v) >)2

= < (Xu(u, v)×Xv(u, v)), (Xu(u, v)×Xv(u, v)) > .

Therefore,

EG− F 2 = ‖Xu(u, v)×Xv(u, v)‖2. (1.22)

As the surface is regular, for all (u, v), we have EG−F 2 = ‖Xu(u, v)×Xv(u, v)‖2 > 0,

concluding that the Gaussian curvature of the ruled surface is negative or zero for all

values of (u, v).

We will discusss soon in greater detail the ruled surfaces whose Gauss curvature

is zero everywhere. To do so, we need first to introduce the notion of striction curve

of ruled surfaces.

1.3.2 Striction Curve of Non-Cylindrical Ruled Surfaces

As mentioned earlier, there are two types of ruled surfaces: cylindrical and non-

cylindrical ruled surfaces. In this section, we are interested in studying in detail

certain properties of non-cylindrical ruled surfaces because even though the directions

of the rulings on a non-cylindrical ruled surface are different at each point of the

surface, we can find a useful reference curve called striction curve which is unique

to non-cylindrical ruled surfaces. However, the cylindrical ruled surfaces could have
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different striction curves possibly infinitely many.

Let us start by defining formally a cylindrical, respectively a non-cylindrical, ruled

surface, then introducing the notion of striction curve of a non-cylindrical ruled sur-

face.

Definition 1.3.1. A ruled surface M ⊂ R3 parametrized by X(u, v) = α(u) + vβ(u)

is called a cylindrical ruled surface if and only if the vector β(u) × β′(u) vanishes

everywhere on the surface.

Definition 1.3.2. A ruled surface M ⊂ R3 parametrized by X(u, v) = α(u) + vβ(u)

is called a non-cylindrical ruled surface if and only if the vector β(u) × β′(u) never

vanishes for all u ∈ J .

Definition 1.3.3. Any base curve α(u) of a non-cylindrical ruled surface M ⊂ R3

of the form of X(u, v) = α(u) + vβ(u) that satisfies the properties that

< α′(u), β′(u) > = 0 and ||β(u)|| = 1 (1.23)

is called the striction curve of X(u, v).

Example: We will examine here the striction curve of a circular helicoid. LetM be

a circular helicoid with parametrization X(u, v) = (v cosu, v sinu, au) where a ∈ R

is a fixed constant, and v ∈ R, while −2π < u < 2π.

This parametrization can be written as

X(u, v) = (0, 0, au) + v(cosu, sinu, 0).

As seen, this is a ruled surface with α(u) = (0, 0, au) as its base curve, and β(u) =

(cosu, sinu, 0) as its director curve, parametrized by arc-length. Furthermore, we can

easily verify that ||β(u)|| = 1 and that < α′(u), β′(u) >= 0. By definition, we can

now say that α(u) is a striction curve of this circular helicoid.
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Figure 1.10: Circular Helicoid, where α(u) = (0, 0, 3u), β(u) = (cosu, sinu, 0), a = 1,
u ∈ (−2π, 2π), and v ∈ (−3, 3).

This striction curve is a very useful reference curve for non-cylindrical ruled surface

since it is uniquely determined by the parametrization. Only if a non-cylindrical ruled

surface admits two different parametrizations, such as doubly ruled surfaces, then the

uniqueness is, in general, no longer true. We will discuss this situation in the Appendix

and see two different possible cases.

Further, we present a lemma which shows that any surface patch of a non-

cylindrical ruled surface can be reparametrized by its striction curve.

Lemma 1.3.1. For any non-cylindrical ruled surface M with parametrization

X(u, v) = α(u) + vβ(u),

then M can be reparametrized in the form of

X̃(u, ṽ) = σ(u) + ṽγ(u), (1.24)
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where σ(u) is the striction curve of X(u, v), and

ṽ = v +
< α′(u), γ′(u) >

‖γ′(u)‖2
. (1.25)

Proof. We will prove this lemma in two parts. First, we will find the striction curve

σ(u) of this patch X(u, v) and, then, we will show that X̃(u, ṽ) is the reparametriza-

tion of X(u, v).

Let us start by finding the striction curve of X(u, v). Since we are looking for a curve

σ(u) on the surface X(u, v), then

σ(u) = α(u) + (v(u)||β(u)||) β(u)

||β(u)||
=: α(u) + v̄(u)γ(u), (1.26)

where γ(u) = β(u)/||β(u)|| and v̄(u) will be determined in order for σ to satisfy

the first property from the definition of the striction curve. Note that, with the

given notations, σ′(u) = α′(u) + v̄′(u)γ(u) + v̄(u)γ′(u), then < σ′(u), γ′(u) > = <

α′(u), γ′(u) > +v̄′(u) < γ(u), γ′(u) > +v̄(u) < γ′(u), γ′(u) > .

Since ‖γ(u)‖ = 1, or < γ(u), γ(u) > = 1, we infer that < γ′(u), γ(u) >= 0 and

< γ′(u), γ′(u) >= ‖γ′(u)‖2.

Therefore,

< σ′(u), γ′(u) > = < α′(u), γ′(u) > +0 + v̄(u)‖γ′(u)‖2

= < α′(u), γ′(u) > +v̄(u)‖γ′(u)‖2,

and, for σ(u) to be a striction curve of X(u, v), we must have < σ′(u), γ′(u) >= 0.

This implies the choice of v̄ as < α′(u), γ′(u) > +v̄(u)‖γ′(u)‖2 = 0.

⇒ v̄(u) = −< α′(u), γ′(u) >

‖γ′(u)‖2
.
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We replace

v̄(u) = −< α′(u), γ′(u) >

‖γ′(u)‖2

in the equation (1.26) and obtain

σ(u) = α(u)− < α′(u), γ′(u) >

‖γ′(u)‖2
γ(u). (1.27)

To prove X̃(u, ṽ) = σ(u) + ṽγ(u) is the reparametrization of X(u, v) = α(u) + vβ(u),

first we prove that X̃(u, ṽ) = σ(u) + ṽγ(u) is the reparametrization of ˜̃X(u, v) =

α(u)+vγ(u), and next we show that ˜̃X(u, v) = α(u)+vγ(u) is the reparametrization

of X(u, v) = α(u) + vβ(u).

Now, prove that X̃(u, ṽ) = σ(u) + ṽγ(u) is the reparametrization of ˜̃X(u, v) =

α(u) + vγ(u). Let us start by first verifying that X̃(u, ṽ) = ˜̃X(u, v).

Consider

X̃(u, ṽ) = σ(u) + ṽγ(u)

= α(u)− α′(u).γ′(u)

‖γ′(u)‖2
γ(u) + vγ(u) +

α′(u).γ′(u)

‖γ′(u)‖2
γ(u)

= α(u) + vγ(u) = ˜̃X(u, v).

Next we will show that ṽ is a smooth function of (u, v). We have as in equation (1.25),

ṽ(u, v) = v +
< α′(u), γ′(u) >

‖γ′(u)‖2
.

Then, ṽv = 1 and ṽu =

[
< α′(u), γ′(u) >

‖γ′(u)‖2

]′
.

From these calculations, and the assumption that all curves considered are smooth

and regular, we can conclude that ṽ(u, v) has derivatives of all orders with respect to

u and v, which also implies that ṽ(u, v) is a smooth function of u and v.
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Lastly, J(Φ) is an invertible matrix with Φ: (u, v) 7→ (u, ṽ). We have that

J(Φ) =

 1 0

ṽu 1


is an invertible matrix since its determinant is not zero. Therefore, X̃(u, ṽ) = σ(u) +

ṽγ(u) is the reparametrization of ˜̃X(u, v) = α(u) + vγ(u).

However, X(u, v) = α(u) + vβ(u) is also a reparametrization of ˜̃X(u, v) as

˜̃X(u, v) = α(u) + vγ(u) = α(u) +
v

‖β(u)‖
β(u) = X

(
u,

v

‖β(u)‖

)
.

We can easily check that v1 =
v

‖β(u)||
is the smooth map in u and v and the Jacobian

of the map Φ : (u, v) 7→ (u, v1)is an invertible matrix as well since we have

J(Φ) =

uu uv

v1u v1v

 =

 1 0

v1u
1

‖β(u)‖
.


Thus, X̃(u, ṽ) = σ(u) + ṽγ(u) is the corresponding parametrization of X(u, v) =

α(u) + vβ(u).

Remark 1.3.1. As we have seen in the proof of Lemma 1.3.1, assuming the director

curve of the ruled surface satisfies ||γ(u)|| = 1, ∀u ∈ I, we can derive the formula for

the striction curve σ(u) as in the equation (1.27), which, for convenience, we repeat

below

σ(u) = α(u)− < α′(u), γ′(u) >

‖γ′(u)‖2
γ(u).

From this result, we infer that the striction curve of a non-cylindrical ruled surface is

uniquely determined by its parametrization. However, for the case of a non-cylindrical

surface that is doubly ruled, though the striction curve is unique for each parametriza-
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tion of its surface patch, it is not necessarily unique as curve on the surface, see the

examples of Appendix A1 and A2.

The next lemma demonstrates that the striction curves do not depend on the base

curves of the non-cylindrical ruled surfaces.

Lemma 1.3.2. The striction curve of a non-cylindrical ruled surface M does not

depend on the choice of the base curve.

Proof. Suppose that M has two different base curves α(u) and α̃(u), respectively.

Thus,M can be reparametrized by α(u) + vβ(u) and α̃(u) + ṽ(v)β(u), where ṽ(v) is

some function v. Thus, we have

α(u) + vβ(u) = α̃(u) + ṽ(v)β(u), (1.28)

α− α̃ = (v − ṽ(v))β, (1.29)

α′ − α̃′ = (v − ṽ(v))β′. (1.30)

Let us denote by σ(u) and σ̃(u) the two corresponding striction curves of M. By

equation (1.27), we can express σ(u) and σ̃(u) as bellow:

σ(u) = α(u)− < α′(u), β′(u) >

‖β′(u)‖2
β(u), and σ̃(u) = α̃(u)− < α̃′(u), β′(u) >

‖β′(u)‖2
β(u).

Thus, dropping the argument u for simplicity of writing, we note that

σ − σ̃ = (α− α̃)− < (α′ − α̃′), β′ >
‖β′‖2

β.

Furthermore, replacing α− α̃ and α′ − α̃′ by the calculations above, we have

σ − σ̃ = [(v − ṽ(v))β]− [(v − ṽ(v))β′] · β′

‖β′‖2
β, (1.31)

and, consequently, σ = σ̃ + [(v − ṽ(v))β]− [(v − ṽ(v))β′] · β′

‖β′‖2
β, (1.32)
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which only depends on v and β, concluding the proof.

1.3.3 Flat Ruled Surfaces

Definition 1.3.4. A flat surface, sometimes also called a developable surface, is a

smooth surface whose Gaussian curvature is zero everywhere.

Roughly speaking, it is a surface that can be flattened into a planar domain with-

out distortion. Planes, and, as we will show next, generalized cylinders, generalized

cones, and surfaces that are tangent developable of a curve are some of the classical

examples of flat ruled surfaces. We will later show, in a characterization result, that

these are precisely the only flat ruled surfaces.

Proposition 1.3.2. Generalized cylinders, generalized cones, and surfaces that are

tangent developable of a curve are flat ruled surfaces.

Proof. These surfaces’ Gaussian curvatures can be computed using the equation (1.21)

and equation (1.20):

K = − M2

EG− F 2

= − 1

EG− F 2
< β′(u),

(α′(u) + vβ′(u))× β(u)

‖(α′(u) + vβ′(u)× β(u)‖
>

=
< β′(u), (α′(u) + vβ′(u))× β(u) >2

(EG− F 2)(‖(α′(u) + vβ′(u)× β(u)‖)2
. (1.33)

We will show that for each of the surfaces mentioned in the statement of the propo-

sition, the scalar product in the numerator of the formula for K is zero.

For generalized cylinders, β′(u) = a′ = ~0 implies that < β′(u), (α′(u) + vβ′(u))×

β(u) >= 0, and then the curvature of the generalized cylinder is 0.
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For generalized cones, α′(u) = 0 implies that

< β′(u), (α′(u) + vβ′(u))× β(u) > =< β′(u), vβ′(u)× β(u) >

=< β(u), vβ′(u)× β′(u) >

= 0,

which is the same as saying that the curvature of generalized cones is zero.

For any ruled surface that is tangent developable to a curve, the director curve

β(u) is α′(u), thus β′(u) = α′′(u) implies that

< β′(u), (α′(u) + vβ′(u))× β(u) > =< α′′(u), (α′(u) + vα′(u))× α′(u) >

=< α′′(u), ~0 >

= 0,

which is equivalent to the fact that the Gauss curvature of any ruled surface that is

tangent developable to a curve is zero as well.

The following theorem allows us to conclude whether a flat ruled surface is a cone,

a cylinder, or a surface that is tangent developable of its striction curve based on the

characteristics of their directrix and director curves.

Theorem 1.3.1. Suppose that X : I × R → R3, X(u, v) = α(u) + vβ(u) with

‖β(u)‖ = 1, ∀u ∈ I, is the parametrization of a flat ruled surface M. Then

i. If α′(u) ≡ ~0, then M is a cone.

ii. If β′(u) ≡ ~0, then M is a cylinder.

iii. If both α′(u) and β′(u) never vanish, then M is the tangent developable surface

of one of its striction curves.
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Proof. The proofs of these statements of Theorem 1.3.1 are as follows:

Proving part i. and ii. are immediate from the formula (1.33), and from the

definition of the cone, respectively cylinder.

Recall thatM is a cone if and only if α(u) is a fixed point in R3. For Theorem 1.3.1.i.,

we have α′(u) ≡ ~0 which implies that α(u) is a fixed point in R3. Then M is a cone

by definition.

Similarly for a cylinder, we only need to show that the director curve is a fixed vector

in R3. For Theorem 1.3.1.ii., we have β′(u) ≡ ~0, then β(u) is a constant vector in R3.

By definition, M is a cylinder.

Proving part iii. is a little bit more involved.

Let M be a flat ruled surface with X(u, v) = α(u) + vβ(u) and ‖β(u)‖ = 1, for the

simplicity of calculation, we may assume that α(u) is a unit-speed striction curve of

this surface such that α′ ·β′ = 0. We are able to assert this assumption without loss of

generality as we can always reparametrize the ruled surfaces X(u, v) = α(u) + vβ(u)

by the arc-length of its striction curve while holding the conditions that α′ ·β′ = 0 and

‖β(u)‖ = 1 true. First, let us reparametrize the surface M by the arc-length of its

striction curve as X̄(u, v) = σ(u)+vβ(u), where σ(u) is its striction curve and s is the

arc-length parametrization of the curve σ. We then can reparametrize the curve σ(u)

by it arc-length s. Let σ(u(s) = σ̃(s) be the arc-length parametrization of σ(u), and

β̃(s) be the reparametrization of β(u(s)). We then can reparametrize the surface M

again by σ̃(s) while holding the other conditions satisfied by X̃(s, ṽ) = σ̃(s) + ṽβ̃(s),

where ṽ =
v

‖β̃(s)‖
and thus ‖β̃(s)‖ = 1. Since s, ṽ are arbitrary, we can always

assume that X(u, v) = α(u) + vβ(u) with α is a unit-speed curve such that α′ ·β′ = 0

and ‖β‖ = 1.

Since M is flat, we have that K(u, v) = 0 at all points X(u, v) of the surface. By

Proposition 1.3.1, see also later Proposition 1.3.3 for the explicit calculation, we

have that < β′(u), (α′(u) × β(u)) > = 0. Thus, provided that < α′(u), β′(u) >= 0
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and < β′(u), (α′(u) × β(u)) >= 0, we have β(u) is parallel to α′(u), which means

that β(u) = λ(u)α′(u). Moreover, ‖β(u)‖ = 1 and ‖α′(u)‖ = 1 both, thus we have

|λ(u)| = 1. We may conclude that α′(u) and β(u) are, at each point, collinear vectors,

and, up to orientation, there is a unique choice so that X(u, v) can be expressed as

X(u, v) = α(u) + vα′(u). By definition, M is a surface tangent developable of its

striction curve α.

1.3.4 Gauss and Mean Curvature of Non-Cylindrical Ruled

Surfaces

Though we have calculated the Gauss curvature of an arbitrary ruled surface earlier,

in this section, we will calculate the Gaussian curvature K(u, v) of a non-cylindrical

ruled surface in terms of its striction curve and director curve. We will simplify

the formula by expressing it in terms of a new parameter λ and we will analyse the

characteristics of this function K(u, v) with respect to the change of the parameter

λ(u). Lastly, we calculate the mean curvature of a non-cylindrical surface as well.

Proposition 1.3.3. LetM ⊂ R3 be a non-cylindrical ruled surface with the parama-

trization X(u, v) = σ(u) + vγ(u), where σ(u) is its striction curve and ‖γ(u)‖ = 1.

Then the Gaussian curvature of M is

K(u, v) = − < γ′(u), (σ′(u)× γ(u)) >2

‖σ′(u)× γ(u)‖2 + v2‖γ′(u)‖2
.

1

‖σ′(u)‖2 + v2‖γ′(u)‖2− < σ′(u), γ(u) >2
.

(1.34)

Proof. From the equation (1.21), the Gaussian curvature of a non-cylindrical is

K = − M2

EG− F 2
.
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As seen in this formula, we need to compute the first and second fundamental forms

of the surface M in order to evaluate the Gaussian curvature K.

We have X(u, v) = σ(u) + vγ(u) we then can calculate Xu = σ′(u) + vγ′(u),

Xv = σ(u), Xuv = σ′(u), Xuu = σ′′(u) + vγ′′(u), and Xvv = 0.

First, we proceed with the calculation of the first fundamental form of the surface

M. We have

E = ‖Xu‖2 = ‖σ′ + vγ′‖2

= < σ′ + vγ′, σ′ + vγ′ >

= ‖σ′‖2 + v2‖γ′‖2 + 2v < σ′, γ′ > .

By hypothesis, the fact that σ(u) is a striction curve of X(u, v) implies < σ′, γ′ > = 0.

Therefore,

E = ‖σ′‖2 + v2‖γ′‖2. (1.35)

We also have G = ‖Xv‖2 = ‖γ‖2, but recall that ‖γ‖2 = 1.

Therefore,

G = 1. (1.36)

Similarly, we have

F = < Xu, Xv > = < σ′ + vγ′, γ > = < σ′, γ > +v < γ′, γ > .

By hypothesis, ‖γ‖ = 1, thus < γ, γ > = ‖γ‖2 = 12 and this implies

< γ′, γ > + < γ, γ′ > = 0

< γ′, γ > = 0.
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Therefore,

F = < α′, γ > . (1.37)

We are now ready to calculate EG− F 2,

EG− F 2 = (‖σ′‖2 + v2‖γ′‖2)1− (< σ′, γ >)2 = (‖σ′‖2 + v2‖γ′‖2)− (< σ′, γ >)2.

⇒ EG− F 2 = (‖σ′‖2 + v2‖γ′‖2)− (< σ′, γ >)2. (1.38)

Next, we compute the standard unit normal vector N to this ruled surface M at

point (u, v), where

N =
Xu ×Xv

‖Xu ×Xv‖
.

We have Xu = σ′(u) + vγ′(u) and Xv = γ(u) so

Xu ×Xv = (σ′ + vγ′)× γ = (σ′ × γ) + v(γ′ × γ),

and

‖Xu ×Xv‖2 = ‖(σ′ × γ) + v(γ′ × γ)‖2

=< (σ′ × γ) + v(γ′ × γ), (σ′ × γ) + v(γ′ × γ) >

= ‖σ′ × γ‖2 + v2‖γ′ × γ‖2 + 2v < (σ′ × γ), (γ′ × γ) > .

Now we need to calculate < (σ′ × γ), (γ′ × γ) > and ‖γ′ × γ‖ separately.

First consider < (σ′ × γ), (γ′ × γ) >. We have < σ′, γ′ > = 0, which implies that

σ′ ⊥ γ′ as well as (σ′ × γ) ⊥ (γ′ × γ). It is the same as < (σ′ × γ), (γ′ × γ) > = 0.

We compute ‖γ′ × γ‖ as follows:

‖γ′ × γ‖ = ‖γ′‖‖γ‖ sin θ = ‖γ′‖ because ‖γ‖ = 1 and sin θ = 1 as γ′ ⊥ γ.

Therefore,

‖Xu ×Xv‖2 = ‖σ′ × γ‖2 + v2‖γ′‖2. (1.39)
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To that end, we have

N =
(σ′ × γ) + v(γ′ × γ)

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
. (1.40)

The coefficients of the second fundamental form of the surface M are as follows.

First,

M = < Xuv,N >

= < γ′,
(σ′ × γ) + v(γ′ × γ)

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
>

=
< γ′, (σ′ × γ) > +v < γ′, (γ′ × γ) >

[‖σ′ × γ‖2 + v2‖β′‖2]1/2
.

We also have that < vγ′, (γ′ × γ) > = v < γ, (γ′ × γ′) > = 0 since γ′ × γ′ = 0.

Therefore,

M =
γ′.(σ′ × γ)

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
. (1.41)

L = < Xuu, N >

= < σ′′ + vγ′′,
(σ′ × γ) + v(γ′ × γ)

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
> .

Thus, we have

L =< σ′′ + vγ′′, (σ′ × γ) + v(γ′ × γ) > · 1

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
. (1.42)

Also,

N = < Xvv, N > = < 0,
(σ′ × γ) + v(γ′ × γ)

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
> = 0. (1.43)

Hence, LN = 0.
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Now we are ready to compute the Gauss curvature.

K =
LN −M2

EG− F 2

=
0−M2

EG− F 2

=
−M2

EG− F 2

= − [γ′.(σ′ × γ)]2

‖σ′ × γ‖2 + v2‖γ′‖2
.

1

‖σ′‖2 + v2‖γ′‖2− < σ′, γ >2
.

We have proved the formula claimed as

K(u, v) = − < γ′(u), (σ′(u)× γ(u)) >2

‖σ′(u)× γ(u)‖2 + v2‖γ′(u)‖2
.

1

‖σ′(u)‖2 + v2‖γ′(u)‖2− < σ′(u), γ(u) >2
.

To simplify the above formula of K(u, v), we introduce a new parameter λ, which

is sometimes also called distribution parameter, and we will express K(u, v) in terms

λ.

Lemma 1.3.3. SupposeM be a non-cylindrical ruled surface as mentioned in Propo-

sition 1.3.3, then we have

K(u, v) = − λ2(u)

[λ2(u) + v2]2
,

where

λ(u) =
< γ′(u), (σ′(u)× γ(u)) >

‖γ′(u)‖2
.

Moreover, we have the following properties of the Gauss curvature that we can express

via the distribution parameter:

a. Along a ruling (where u is fixed), limv→∞K(u, v) = 0;
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b. K(u, v) = 0⇔ λ(u) = 0;

c. If λ(u) 6= 0, and for any fixed u the Gauss curvature K(u, v) is continuous, then

|K(u, v)| attains its maximum at v = 0 and the max value is |K(u, 0)| = 1

λ2(u)

d. If λ(u) has an absolute minimum at u0 then |K(u, v)| has a maximum at (u0, 0)

and the value is |K(u, v)| = 1

λ(u0)
.

Proof. For the first part of the proof, we will show that K(u, v) = − λ2(u)

[λ2(u) + v2]2
.

By equation (1.21), we have that the Gaussian curvature of the noncylindrical M

is K(u, v) = − M2

EG− F 2
, where M =

< γ′(u), (σ′(u)× γ(u)) >

[‖σ′(u)× γ(u)‖2 + v2‖γ′(u)‖2]1/2
by equation

(1.41), and EG − F 2 = (‖σ′(u)‖2 + v2‖γ′(u)‖2) − (< σ′(u), γ(u) >)2 by equation

(1.38).

Next, we want to express M and EG− F 2 in terms of λ(u).

We have λ(u) =
< γ′(u), (σ′(u)× γ(u))

‖γ′(u)‖2
.

Then,

λ(u)‖γ′(u)‖2 =< (σ′(u)× γ(u)), γ′(u) >

= ‖σ′(u)× γ(u)‖‖γ′(u)‖ cos θ,

where θ is the angle between the vector [σ′(u)× γ(u)] and the vector γ′(u).

Since (σ′(u) × γ(u)) ⊥ γ(u) and γ′(u) ⊥ γ(u), we can infer that (σ′(u) × γ(u)) is

parallel to vector γ′(u). It is the same as saying that cos θ = ±1.

Consequently,

λ(u)‖γ′(u)‖2 = ±‖σ′(u)× γ(u)‖‖γ′(u)‖

⇒ λ(u)‖γ′(u)‖ = ±‖σ′(u)× γ(u)‖

⇒ ±λ(u)‖γ′‖ = ‖σ′(u)× γ(u)‖ = ‖σ′(u)‖‖γ(u)‖ sinφ.

Therefore,

sinφ = ±λ(u)‖γ′(u)‖
‖σ′(u)‖

, where φ is the angle between σ′(u) and γ(u).
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Now we are ready to compute EG− F 2 in terms of λ(u).

We have:

EG− F 2 = ‖(σ′(u)‖2 + v2‖γ′(u)‖2 − ‖(σ′(u)‖2 cos2 φ

= ‖σ′(u)‖2 + v2‖γ′(u)‖2 − ‖(σ′(u)‖2(1− sin2φ)

= ‖σ′(u)‖2 + v2‖γ′(u)‖2 − ‖(σ′(u)‖2[1− λ2(u)‖γ′(u)‖2

‖σ′(u)‖2]
]

= ‖(σ′(u)‖2 + v2‖γ′(u)‖2 − ‖(σ′(u)‖2 + λ2(u)‖γ′(u)‖2

= v2‖γ′(u)‖2 + λ2(u)‖γ′(u)‖2

= [λ2(u) + v2]‖γ′(u)‖2.

Therefore,

EG− F 2 = [λ2(u) + v2]‖γ′(u)‖2. (1.44)

Computing M in terms of λ(u).

Following the calculation results of the proof of Proposition 1.3.3, we have

M =
< γ′(u), (σ′(u)× γ(u)) >

[‖σ′(u)× γ(u)‖2 + v2‖γ′(u)‖2]1/2
=
< γ′(u), (σ′(u)× γ(u)) >

‖Xu ×Xv‖
,

where (‖σ′(u)× γ(u)‖2 + v2‖γ′(u)‖2)1/2 = ‖Xu ×Xv‖.

We also have: ±λ(u)‖γ′‖ = ‖σ′(u)× γ(u)‖ from the above calculation

⇒ ‖σ′(u)× γ(u)‖2 = λ2(u)‖γ′‖2.

Therefore,

‖Xu ×Xv‖ = (‖σ′(u)× γ(u)‖2 + v2‖γ′(u)‖2)1/2

= (λ2(u)‖γ′‖2 + v2‖γ′(u)‖2)1/2

= (λ2(u) + v2)1/2‖γ′(u)‖,
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and

‖Xu ×Xv‖ = (λ2(u) + v2)1/2‖γ′(u)‖. (1.45)

Lastly, we can calculate K(u, v).

K(u, v) = − M2

EG− F 2
= −< γ′(u), (σ′(u)× γ(u)) >2

‖Xu ×Xv‖2
1

EG− F 2

= − λ2(u)‖γ′(u)‖4

[λ2(u) + v2]‖γ′(u)‖2
1

[λ2(u) + v2]‖γ′(u)‖2

= − λ2(u)

[λ2(u) + v2]2
.

We have thus proved that

K(u, v) = − λ2(u)

[λ2(u) + v2]2
. (1.46)

In the following steps, we will prove part a., b., c., d. of Lemma 1.3.3.

1. Proof of Lemma 1.3.3 a.

We have

K(u, v) = − λ2(u)

[λ2(u) + v2]2
.

The Gauss curvature K(u, v) is the function of v when u is fixed along a ruling.

Assume first that λ(u) 6= 0, thus, for any fixed u,

lim
v→∞

K(u, v) = − lim
v→∞

λ2(u)

[λ2(u) + v2]2
= 0.

If λ(u) = 0, then K ≡ 0 everywhere and the limit is trivially true.

2. Proof of Lemma 1.3.3 b.
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As seen in the previous proof, we have

K(u, v) = − λ2(u)

[λ2(u) + v2]2
.

Thus K(, v) = 0⇔ λ(u) = 0 as well.

3. Proof of Lemma 1.3.3 c.

Firstly, we note that K(u, v) is a continuous function of v for each fixed u. Given

λ(u) 6= 0, we can conclude that

K(u, v) = − λ2(u)

[λ2(u) + v2]2

is well-defined for all value of (u, v), and all order partial derivatives with respect

to v of K(u, v) exist and are continuous.

We thus conclude that K(u, v) is a smooth function on the domain where λ(u) 6= 0.

Secondly, we check that |K(u, v)| has the minimum at v = 0 and this minimum

value is |K(u, 0)| = 1

λ2(u)
.

Again we have |K(u, v)| = λ2(u)

[λ2(u) + v2]2
, then

Ku =
[2λ(u)λ′(u)][λ2(u) + v2]2 − λ2(u)2[λ2(u) + v2]2λ(u)λ′(u)

[λ2(u) + v2]4

=
2λ(u)λ′(u)[λ2(u) + v2][λ2(u) + v2 − 2λ2(u)]

[λ2(u) + v2]4

=
2λ(u)λ′(u)[v2 − λ2(u)]

[λ2(u) + v2]3
.

Similarly, Kv = − 4vλ2(u)

[λ2(u) + v2]3
.

We know that any critical points of K(u, v) must satisfy both equations Ku = 0,
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and Kv = 0. Thus, we have

2λ(u)λ′(u)[v2 − λ2(u)]

[λ2(u) + v2]3
= 0, and − 4vλ2(u)

[λ2(u) + v2]3
= 0.

Since λ(u) 6= 0, then we have λ′(u) = 0 and v = 0. Therefore, the critical

point of |K(u, v)| is at v = 0 and λ′(u) = 0. The critical value of K(u, 0) is

|K(u, 0)| = λ2(u)

[λ2(u) + 0]2
=

1

λ2(u)
.

Thirdly, we need to check whether this critical value is a maximum or minimum

value.

We have λ2(u) ≤ λ2(u) + v2, for all (u, v), so

λ2(u)

[λ2(u) + v2]2
≤ λ2(u) + v2

[λ2(u) + v2]2
=

1

λ2(u) + v2
≤ 1

λ2(u)
.

Therefore, we have that
λ2(u)

[λ2(u) + v2]2
≤ 1

λ2(u)
for all (u, v).

⇒ 1

λ2(u)
is the max point of |K(u, v)| whenever u is fixed and λ(u) 6= 0.

4. Proof of Lemma 1.3.3 d.

We have |K(u, 0)| = 1

λ2(u0)
. Suppose λ(u) has an absolute minimum at u0, then

|K(u0, 0)| reaches its maximum at (u0, 0) and its value is |K(u0, 0)| =
1

λ2(u0)
as

calculated in the above proof.

We wrap-up this section by investigating the mean curvature of non-cylindrical

ruled surface. Besides the intrinsic Gauss curvature, a surface has other types of

curvature. Among them is the mean curvature, denoted by H, which is, in fact, very

relevant to the way the surface is immersed in the Euclidean space which is why, we

will see later, mean curvature is related to the notion of minimal surfaces. Both of

the Gaussian curvature and the mean curvature at a point can be calculated from the
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second fundamental form (normalized by the first fundamental form) and they are

in fact related through the so called principal curvatures. We add below a few more

details, while for a comprehensive coverage we refer the reader to [5].

Let p be a point on a surface S in R3 and let Wp = −dNp : TpS → TpS be

the Weingarten map of S at the point p. Note that the Weingarten map is a linear

map. The principal curvatures k1 and k2 at the point p are the eigenvalues of W ,

Wp(t1) = k1t1 and Wp(t1) = k1t1, where the eigenvectors t1 and t2 are called the

principal directions at the point and they form a basis of the tangent plane of M at

p. Then the mean curvature is, by definition, the trace of the Weingarten map and

the Gauss curvature is its determinant, hence if k1, k2 be the principal curvatures of a

surface at a point p, then the mean and Gaussian curvatures at that point are given

by H(p) =
(k1 + k2)

2
and K(p) = k1k2.

As we mentioned earlier, the mean curvature can be calculated from the first and

second fundamental forms of a given surface patch X(u, v) and we provide below the

formula in terms of their coefficients, similarly with the formula we have stated for

the Gauss curvature:

H(p) =
LG− 2MF +NE

2(EG− F 2)
, (1.47)

where p = X(u0, v0) for some (u0, v0) in the domain of the patch.

Definition 1.3.5. [5] A surface is called a minimal surface if its mean curvature is

zero everywhere.

Roughly speaking, the mean curvature zero means that the surface is immersed in

R3 most efficiently, minimizing the surface area of any domain of R3 with boundary

on the surface. We state below an important result of differential geometry pertinent

to ruled surfaces. Its proof is very involved and is outside the techniques of this thesis.

Theorem 1.3.2 (Catalan 1842). [2] The only minimal ruled minimal surfaces are

the plane or the helicoid (or, of course, parts of them).
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Figure 1.11: Circular Helicoid, where α(u) = (0, 0, 3u), β(u) = (cosu, sinu, 0), a = 1,
u ∈ (−2π, 2π), and v ∈ (−3, 3).

Heuristically, a part of this theorem is not hard to imagine as the Gauss curvature

of ruled surfaces is non-positive. Thus, if the product of principal curvatures k1k2 ≤ 0

and H = k1 + k2 = 0 everywhere, we must have k1 = −k2. If one of the ki’s is zero,

so is the other, and we obtain the plane. The helicoid is a ruled surface with strictly

negative Gauss curvature such that k1 = −k2 6= 0.

We return now to the mean curvature of a non-cylindrical ruled surface via the

following proposition.

Proposition 1.3.4. The mean curvature of a non-cylindrical ruled surface M with

X(u, v) = σ(u) + vγ(u), where σ(u) is its striction curve and ‖γ(u)‖ = 1, is

H =
(< σ′′ + vγ′′, (σ′ × γ + v(γ′ × γ) > −2(< σ′, γ >)(< γ′, (σ′ × γ >)

2(EG− F 2)
3
2

. (1.48)

Proof. We know that the mean curvature of a surface in R3 can be calculated us-

ing the equation 1.47 where H =
LG− 2MF +NE

2(EG− F 2)
where, as before, E,F,G and

L,M,N are the coefficients of the first and, respectively, second fundamental forms
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of M. By Proposition 1.3.3 and Lemma 1.3.3, for non-cylindrical ruled surfaces,

we have the following formulas: E = ‖σ′‖2 + v2‖γ′‖2 as in the equation (1.35),

G = 1 as in the equation (1.36), F =< σ(u)′, γ(u) > as in the equation (1.37),

M =
γ′.(σ′ × γ)

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
as in the equation (1.41), L =< σ′′ + vγ′′, (σ′ × γ) +

v(γ′ × γ) > · 1

[‖σ′ × γ‖2 + v2‖γ′‖2]1/2
as in the equation (1.43), N = 0 as in the

equation (1.43), and EG− F 2 = ‖Xu ×Xv‖2 as in the equation (1.22).

Therefore,

H =
LG− 2MF +NE

2(EG− F )2

=
(< σ′′ + vγ′′, (σ′ × γ + v(γ′ × γ) > −2(< σ′, γ >)(< γ′, (σ′ × γ >) + 0

2(EG− F 2)2(EG− F 2)

=
(< σ′′ + vγ′′, (σ′ × γ + v(γ′ × γ) > −2(< σ′, γ >)(< γ′, (σ′ × γ >)

2(EG− F 2)
3
2

.

1.3.5 Geodesics on Non-Cylindrical Ruled Surfaces

Definition 1.3.6. [5] A curve σ(t) on a surface M in R3, with t in some open

interval, is called a geodesic if and only if σ′′(t) = ~0, or, for all values of the parameter

t, the vector σ′′(t) is perpendicular to the tangent plane of the surface at the point

σ(t).

Particularly for a ruled surface M with X(u, v) = α(u) + vβ(u), a unit-speed

curve σ(u) on M defined thus by σ(u) = α(u) + v(u)β(u) where u is the arc-length

of σ(u), is a geodesic of M if and only if σ′′(u) is perpendicular to both Xu and Xv.
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Thus, by definition, σ is a geodesic on M if and only if


σ′′(u) ⊥ [α′(u) + v(u)β′(u)]

σ′′(u)⊥ β(u)
,

or, equivalently,
σ′′(u) · [α′(u) + v(u)β′(u)] = 0

σ′′(u) · β(u) = 0.

Since σ′(u) = α′(u) + v(u)β′(u) + v′(u)β(u), note that we have,

σ′′(u) · σ′(u) = σ′′(u) · [α′(u) + v(u)β′(u) + v′(u)β(u)]

= σ′′(u) · [α′(u) + v(u)β′(u)] + σ′′(u) · v′(u)β(u).

Thus,

σ′′(u) · σ′(u) = σ′′(u) · [α′(u) + v(u)β′(u)] + v′(u)σ′′(u) · β(u). (1.49)

From above, for any unit-speed geodesic curve, σ(u), we have that σ′′ · σ′ = 0. Vice

versa, if σ(u) is a unit speed curve of the ruled surfaceM with σ′′(u) ·β(u) = 0, then

σ′′(u) · [α′(u) + vβ′(u)] = 0 also holds for all u, since σ′′ · σ′ = 0 due to the unit speed

condition. Thus, we conclude the lemma below:

Lemma 1.3.4. A curve σ(u) parametrized by arc-length is a geodesic of a ruled

surfaceM with parametrization X(u, v) = α(u)+vβ(u) if and only if σ′′(u)·β(u) = 0.

In stating the next result, we will follow Izumiya-Takeuchi and call the statement

Bonnet’s theorem for non-cylindrical surfaces. We also point out that its assertion is

true for general ruled surfaces as well.

Theorem 1.3.3. [4] Suppose M is a ruled surface with parametrization of the form

of X(u, v) = α(u) + vγ(u) with ‖γ(u)‖ = 1 and that σ(u) = α(u) + v(u)γ(u) is a

curve on X(u, v), where u is the arc-length of σ(u). We consider the following three
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conditions on σ(u):

1. σ(u) is a line of striction of X(u), i.e. σ′(u) · γ′(u) = 0.

2. σ(u) is a geodesic of X(u, v), i.e. σ′′(u) · γ(u) = 0.

3. The angles between σ′(u) and γ(u) are constant, i.e. σ′(u) · γ(u) = constant.

Suppose any two of the above three conditions hold, then the other condition holds.

Proof. Assume that conditions 1. and 2. of this proposition hold, i.e. if σ(u) is a line

of striction and, simultaneously, a geodesic of X(u, v), then we must show that the

angle between σ′(u) and γ(u) is constant as a function of u. We have

(σ′ · γ)′(u) = σ′′(u) · γ(u) + σ′(u) · γ′(u) = 0, (1.50)

because (σ′ ·γ′)(u) = 0, for all u, as σ is a line of striction and (σ′′ ·γ)(u) = 0, for all u,

as σ is a geodesic of X(u, v). Thus, σ′(u)·γ(u) = ||σ′(u)|| ||γ(u)|| cos θ(u) = cos θ(u) =

constant, concluding that the angle, θ(u), between these two vectors is constant.

Now, suppose that conditions 2. and 3. are satisfied, thus we have (σ′′ · γ)(u) = 0

and (σ′ · γ)(u) = constant, for all u. Hence

(σ′ · γ)′(u) = (σ′′ · γ + σ′ · γ′)(u) = 0.

By hypothesis, (σ′′ · γ)(u) = 0 implies that (σ′ · γ)′(u) = (σ′ · γ′)(u) = 0. We

have that ‖γ(u)‖ = 1 and (σ′ · γ′)(u) = 0 . Thus σ is a striction curve of X(u, v) by

definition.

Lastly, suppose that (σ′ · γ) = constant, and (σ′ · γ′) = 0, where ||γ|| = 1, in other

words, condition 1. and 3. hold. Similarly to the previous proof, by equation (1.50),

we obtain σ′′ · γ = 0. By Lemma 1.3.4, we infer that σ is a geodesic of X(u, v).
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Chapter 2

Relationship between certain

Ruled Surfaces and their Curves

In this chapter, we will investigate the characterizations of certain ruled surfaces that

are related to the characteristics of certain curves on them. We structure Chapter 2

as follows:

We start the chapter by introducing a ruled surface called rectifying developable

of a curve. In the same first section, we will study the special curves on such ruled

surfaces and we will detail the characteristics of the ruled surfaces that are rectifying

developable of a curve.

Next, we will investigate the geodesics on cylindrical ruled surfaces. As seen in

Chapter 1, there are two categories of ruled surfaces, cylindrical and non-cylindrical.

We introduce the geodesics of cylindrical ruled surfaces in this section and we will show

that any ruled surface that is rectifying developable of a curve is a cylindrical ruled

surface. From the study of properties of ruled surfaces that are rectifying developable

of curve, we are able to draw certain conclusions on the geodesics on cylindrical ruled

surfaces as well.

Third, we will introduce another special type of ruled surface called principal
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normal surfaces of a curve. Analogous with the previous case, we will introduce

certain special curves on these ruled surfaces and their properties.

Lastly, we will examine the asymptotic curves on ruled surfaces. After introducing

the asymptotic curves as well as some of their properties on general ruled surface, we

will focus on the study of asymptotic curves on the ruled surfaces that are principal

normal surfaces of a curve. We will wrap-up the section, as well as the chapter, by

giving the characterizations of minimal asymptotic curves on ruled surfaces.

This chapter follows closely the paper by Izumiya and Takeuchi, [4]. However,

whenever possible, we have provided our own proofs filling in all steps left to the

reader, even when following the main idea of the paper.

2.1 Ruled Surfaces that are Rectifying Developable

of a Curve

In this section, we focus on a specific ruled surface called rectifying developable of its

base curve. We start this section by introducing the cylindrical and circular helix,

as well as Darboux and modified Darboux vector fields on this specific ruled surface.

We will prove that a rectifying developable is regular if and only if its base curve is

a cylindrical helix and, in this case, the surface is a cylindrical ruled surface as well.

We will also show that a ruled surface rectifying developable of a curve σ is regular if

and only if the curve σ is a geodesic of the ruled surface, transversal to rulings, and

the Gaussian curvature of the ruled surface vanishes along the curve σ.

Let us start this section by introducing cylindrical helix, circular helix, Darboux

vector field and modified Darboux vector field.
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2.1.1 Special Curves on Ruled Surfaces that are Rectifying

Developable of a Curve

The Darboux vector field is a very practical tool to geometrically illustrate the cur-

vature and torsion of a unit-speed curve α(u). In this respect, the curvature of α(u),

k(u), at each point on the curve is the measure of the rotation of the Frenet frame

about the bi-normal unit vector b(u), while the torsion, τ(u), is the measure of the

rotation of the Frenet frame about the tangent unit vector, t(u), with the precise

definition to follow shortly.

Recall that for any regular unit-speed curve α : I 7→ R3, we denote t(u) = α′(u)

as its unit tangent vector, k(u) = ‖α′′(u)‖ as its curvature, n(u)=
1

k(u)
α′′(u) as its

unit principal normal vector, and b(u) = t(u)× n(u) as its unit bi-normal vector of

α at point α(u), respectively. Note that we also have the Frenet-Serret equations of

α with nowhere vanishing curvature as below:

t′(u) = k(u)n(u) (2.1)

n′(u) = −k(u)t(u) + τ(u)b(u) (2.2)

b′(u) = −τ(u)n(u), (2.3)

where τ =
(α′ × α′′) · α′′′

‖α′ × α′′‖2
is the torsion of α at point α(u).

Definition 2.1.1. For any regular unit-speed curve α : I 7→ R3, we define the Darboux

vector field along α as the vector field defined by

D(u) = τ(u)t(u) + k(u)b(u). (2.4)

Additionally, assuming that the curve α has non-zero curvature, we also define the
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vector field

D̃(u) =
(τ
k

)
(u)t(u) + b(u) (2.5)

which is called the modified Darboux vector field of α.

Definition 2.1.2. A space curve α : I 7→ R3 with curvature k(u) 6= 0 is called a

cylindrical helix if and only if its tangent lines make a constant angle with a fixed line

in space and the ratio
(τ
k

)
(u) = constant, where τ(u) is the torsion of the curve α.

Equivalently, it can be shown that a curve α as above is a circular helix if and only if

both its torsion τ(u) and curvature k(u) are constant along the curve.

In other words, since we are assuming that the curve is non-trivially a space curve,

hence τ 6= 0, the cylindrical helix in R3 resembles a spring and is a curve on a vertical

cylinder of revolution where the curve forms a constant angle with respect to the axis

of the cylinder, taken, for example, to be the z-axis. The Cartesian parametrization

of this cylindrical helix is α(u) = (a cos (u), ±a sin (u), bu), where the parameter

u ∈ R, a > 0 is the radius of the helix, b 6= 0 is the slope or incline of the helix,

respectively. The constant angle formed by its tangent with xy-plane is 2πb, in other

words as u increase by 2π, the point (a cos (u), a sin (u), bu) rotates once round the

z-axis and moves parallel to the z-axis by 2πb. The positive number 2π|b| is called

the pitch of the helix.

The circular helix is simply a right-handed cylindrical helix with the parametriza-

tion α(u) = (a cos (u), a sin (u), bu), where as the left-handed cylindrical helix is

α(u) = (a cos (u), −a sin (u), bu). Recall that the torsion of this particular circular

helix is

τ(u) =
b

a2 + b2
(2.6)

and its curvature is

k(u) =
a

a2 + b2
, (2.7)
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and note that they are both constant functions along the curve.

Figure 2.1: Circular Helix, where α(u) = (cos u, sinu, u
4
), a = 1, u ∈ (−10, 10), a = 1,

and b = 1
4
.

2.1.2 Properties of Ruled Surfaces that are Rectifying De-

velopable of a Curve

We are now ready to define a ruled surface that is rectifying developable of a curve

and prove certain properties of this ruled surface as mentioned before.

Definition 2.1.3. A ruled surface M is called rectifying developable of a unit-speed

curve α if it can be expressed in the form

X(u, v) = α(u) + vD̃(u), (2.8)
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where D̃(u) is the modified Darboux vector field along its directrix curve α.

The lemma below characterizes the points on a ruled surface that is rectifying

developable of a curve α where the surface is singular.

Lemma 2.1.1. For any ruled surface that is rectifying developable of its directrix

curve α(u) as defined by equation (2.8), the point (u0, v0) is its singular point if and

only if (τ
k

)′
(u0) 6= 0, (2.9)

and

v0 = − 1(
τ
k

)′
(u0)

. (2.10)

Proof. Recall that a point is a singular point X(u0, v0) of a surface X(u, v) (in par-

ticular for X(u, v) = α(u) + vD̃(u) as in equation (2.8)) if and only if
∂X

∂u
(u0, v0) ×

∂X

∂v
(u0, v0) = ~0.

The definition of X(u0, v0) to be a singular point of M implies that

∂X

∂u
(u0, v0)×

∂X

∂v
(u0, v0) =

[
α′(u0) + v0D̃

′(u0)
]
× D̃(u0)

=
[
t(u0)× D̃(u0)

]
+ v0

[
D̃′(u0)× D̃(u0)

]
= ~0.

Thus, the fact that X(u0, v0) is a singular point of X(u, v) as in equation (2.8) is

equivalent to the condition

[
t(u0)× D̃(u0)

]
+ v0

[
D̃′(u0)× D̃(u0)

]
= ~0. (2.11)

Furthermore, recalling the definition of the modified Darboux vector of α, and by
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Frenet-Serret equations, we have the following equations:

D̃ =
(τ
k

)
t + b,

D̃′ =
(τ
k

)′
t +

(τ
k

)
t′ + b′,

D̃′ =
(τ
k

)′
t +

τ

k
kn− τn,

D̃′ =
(τ
k

)′
t.

Thus,

D̃′(u0) =
(τ
k

)′
(u0)t(u0). (2.12)

Substituting equation (2.8) and equation (2.12) into equation (2.11), and evalu-

ating it at (u0, v0), we have

[
t× D̃

]
+ v0

[
D̃′ × D̃

]
= ~0,

t×
[τ
k

t + b
]

+ v0

[τ
k

t + b
]
×
[(τ
k

)′
t

]
= ~0,(τ

k

)
(t× t) + (t× b) + v0

[(τ
k

)(τ
k

)′
(t× t) +

(τ
k

)′
(b× t)

]
= ~0.

Applying Frenet-Serret formulas,

~0− n(u0) + v0

(τ
k

)
(uo)n(u0) = ~0,

n(u0)
[
−1 + v0

(τ
k

)]
= ~0.

Consequently, since for all u0, n(u0) 6= ~0 we conclude that (u0, v0) is a singular point

of X(u, v), a ruled surface that is rectifying developable of α, if
(τ
k

)′
(u0) 6= 0 and

v0 = − 1(
τ
k

)′
(u0)

.

For the sufficiency condition, it is very simple to check that
∂X

∂u
(u0, v0)×

∂X

∂v
(u0, v0) =
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~0 since

∂X

∂u
(u0, v0)×

∂X

∂v
(u0, v0) = [α′(u0) + v0D̃(u0)]× D̃(u0)

=

[
t(u0)−

1(
τ
k

)′
(u0)

(τ
k

)′
(u0)t(u0)

]
× D̃(u0)

= ~0× D̃(u0)

= ~0.

Therefore, (u0, v0) is a singular point of a ruled surface that is rectifying devel-

opable of α if and only if
(τ
k

)′
(u0) 6= 0 and v0 = − 1(

τ
k

)′
(u0)

.

The proposition below will characterize ruled surfaces that are rectifying devel-

opable of a curve α.

Proposition 2.1.1. Let u ∈ I 7→ α(u) be a unit-speed curve with non-zero curvature

everywhere, k(u) 6= 0. Then the following conditions are equivalent:

1. The ruled surface that is rectifying developable of the curve α(u) as in the equation

(2.8), where X(u, v) = α(u) + vD̃(u), is a regular surface.

2. The curve α(u) is a cylindrical helix.

3. The ruled surface that is rectifying developable of α(u) is a cylindrical surface.

Proof. We will first prove that statement 1. implies statement 2. that is the same

as saying that, for any regular ruled surface that is rectifying developable of its base

curve α(u), we have that α(u) is a cylindrical helix.

By the characterization of singular points of a rectifying developable of a curve

from Lemma 2.1.1, we have that M is singular if and only if v0 = − 1(
τ
k

)′
(u0)

and(τ
k

)′
(u0) 6= 0. On the contrary,M is regular if and only if there are no points (u0, v0)

that satisfy the conditions above i.e., given that v ∈ R, for all u ∈ I,
(τ
k

)′
(u) = 0,
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so that v 6= − 1(
τ
k

)′
(u)

. Then for all (u, v), we have that
(τ
k

)
(u) is constant on I.

Hence, by Definition 2.1.2, the curve α is a cylindrical helix.

We will prove next that for any ruled surface that is rectifying developable of a

cylindrical helix is a cylindrical surface, or that statement 2. implies statement 3.

Consider D̃′ as in equation (2.12), where D̃′(u0) =
(τ
k

)′
(u0) t(u0). By hypothesis,

α(u) is a cylindrical helix, thus we have that the ratio
(τ
k

)
(u) is constant. Thus,(τ

k

)′
(u) = 0, which implies that D̃′(u0) =

(τ
k

)′
(u0) t(u0) = ~0. Therefore, for any

ruled surface that is rectifying developable to its base curve α with parametrization

X(u, v) = α(u)+vD̃(u) as in equation (2.8), we have that D̃′(u)×D̃(u) = ~0×D̃(u) =

~0. Hence, this ruled surface is a cylindrical ruled surface by definition.

Lastly, we show that any cylindrical ruled surface that is rectifying developable

to its base α is a regular ruled surface. Since X(u, v) = α(u) + vD̃(u) is a cylindrical

surface, then D̃′(u)×D̃(u) = ~0. By the definition of the modified Darboux vector field

in equation (2.5) of Definition 2.1.1, we have D̃(u) =
(τ
k

)
(u) t(u) + b(u). We have

seen that D̃(u) 6= ~0, ∀u ∈ I since t(u) 6= 0 and b(u) 6= 0, and they are non-collinear

vectors fields. Hence, D̃′(u)× D̃(u) = ~0 if and only if D̃′(u) is either the zero vector

or is parallel to D̃(u). Since, for all u ∈ I, we have D̃′(u) =
(τ
k

)′
(u) t(u), it follows

that
(τ
k

)′
(u) = 0, ∀u ∈ I.

Therefore, no point (u, v) ∈ I × J is a singular point of this ruled surface X(u, v),

which implies that X(u, v), a rectifying developable of its base curve α, is a regular

ruled surface.

We finish this section by stating the main theorem that characterizes rectifying

developable surfaces via the geodesics on them in the sense that any regular ruled

surface is rectifying developable of a curve σ if and only if the curve σ is a geodesic

of this ruled surface that is transversal to rulings and the Gaussian curvature of the

ruled surface vanishes along the curve σ.
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Theorem 2.1.1. Let M with X(u, v) = α(u) + vβ(u) be a regular ruled surface with

‖β(u)‖ = 1 and let σ(u) = α(u) + v(u)β(u) be a curve on X(u, v) with its curvature

k(u) 6= 0, where u is the arc-length of σ(u). Then, the following conditions are

equivalent:

a. The surface X(u, v) is rectifying developable of σ(u).

b. The curve σ(u) is a geodesic of X(u, v) which is transversal to rulings and

X(u, v) is a developable surface.

c. The curve σ(u) is a geodesic of X(u, v) which is transversal to rulings and the

Gaussian curvature of X(u, v) vanishes along σ(u).

Proof. To prove that statement a. is equivalent to b. we start with a regular ruled

surface M which is a rectifying developable of σ(u), as in a. and we show that σ(u)

is a geodesic of M which is transversal to rulings, thus it also implies that M is a

developable surface.

LetX(u, v) = σ(u)+vD̃(u) be the rectifying developable surface of σ(u), soXu(u, v) =

σ′(u) + vD̃′(u) and Xv(u, v) = D̃(u). Consider σ′′(u) ·Xv(u, v):

σ′′(u) ·Xv(u, v) = σ′′(u) · D̃(u)

= [k(u)n(u)] ·
[(τ
k

)
(u)t(u) + b(u)

]
=
(τ
k

)
(u)k(u)[n(u) · t(u)] + k(u)[n(u) · b(u)]

= τ(u)[n(u) · t(u)] + k(u)[n(u) · b(u)]

= 0 + 0 = 0.

Hence, σ′′(u) is perpendicular to Xv(u, v). Similarly, we will show σ′′(u) ·Xu(u, v) = 0

as well using the Frenet-Serret formulas and the equation (2.12) of the proof of Lemma
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2.1.1. We have

σ′′(u) ·Xu(u, v) = σ′′(u) · [σ′(u) + vD̃′(u)]

= 0 + v[σ′′(u) · D̃′(u)]

= v[k(u)n(u)] ·
[

τ

k(u)
)′(u)t(u)

]
= vk(u)

(τ
k

)′
(u)[n(u) · t(u)]

= 0.

Thus, σ′′(u) is perpendicular to Xu(u, v) as well. We can conclude that the acceler-

ation σ′′(u) of the unit-speed curve σ is perpendicular to the tangent plane of M at

each point σ(u). Therefore, σ(u) is a geodesic of X(u, v) as in the claim of Theorem

2.1.1.

Moreover, the Darboux vector field of the curve σ is D̃(u) =
(τ
k

)
(u) t(u) + b(u)

which represents also the rulings of the ruled surface M is always transverse to σ(u)

because, as seen in the formula above, the modified Darboux vector field contains the

tangent and bi-normal vector of the curve σ(u). Thus, D̃(u) is in the rectifying plane

of σ, and we conclude that the curve σ is transversal to the rulings ofM and X(u, v)

is the parametrization of a developable surface.

Recalling now equation (1.21), the Gauss curvature is K = − M2

EG− F 2
, where

M = D̃′(u) ·

[
(σ′(u) + vD̃′(u))× D̃(u)

‖(σ′(u) + vD̃′(u))× D̃(u)‖

]
, as derived in equation (1.20). Thus,

we only need to verify that the numerator of M is zero to conclude that K = 0. We

have D̃′ · [(σ′+ vD̃′)× D̃] = D̃′ · [(σ′× D̃) + v(D̃′× D̃)] = D̃′ · [σ′× D̃] because D̃′× D̃

is, by the nature of the vectorial product, a vector perpendicular to D̃′. Since σ is a

geodesic, then σ′′⊥ Xv = D̃ and also we have that σ′′⊥ σ′, thus we conclude that σ′

is parallel to D̃ which implies that σ′ × D̃ = ~0. Therefore, D̃′ · [σ′ × D̃] = 0, which

concludes that K(u, v) = 0 along the curve σ and M is a flat ruled surface.
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The statement c. follows directly from b. since for any developable ruled surface,

we have its Gaussian curvature vanishes everywhere on M. Hence the Gaussian

curvature of X(u, v) vanishes along the base curve σ(u) as well.

For the last part of the proof, we need to show that X(u, v) = α(u) + vβ(u) is

a rectifying developable of σ(u) provided that σ(u) is a geodesic of X(u, v) which is

transversal to the rulings with vanishing Gaussian curvature along the curve σ(u).

Since σ(u) is transverse to the rulings, and the Gaussian curvature K(u, v) = 0 along

σ(u), we may assume that σ(u) = α(u). Therefore, the ruled surface M can be

expressed as X(u, v) = σ(u) + vβ(u). Recall that a curve β is a geodesic of a surface

X(u, v) then the direction of β at a point on X(u, v) is the same as the direction of

the normal vector at that point as well. As the results, β(u) is in a rectifying plane

of σ at the point σ(u). Note that a rectifying plane is the plane that spanned by the

bi-normal b(u) and tangent vector t(u), where n(u) is a normal vector to this plane.

Then, there exists µ1(u) and µ2(u) such that

β(u) = µ1(u)t(u) + µ2(u)b(u), (2.13)

where t(u) and b(u) are the tangent and bi-normal vector of σ(u), respectively. Then

we have

β′ = µ′1t + µ1t
′ + µ′2b + µ2b

′

= µ′1t + µ1kn + µ′2b− µ2τn

= µ′1t + µ′2b + [µ1k − µ2τ ]n.
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Consider

β′ · (σ′ × β) = (β′ × t) · β

= < [µ′1t + µ′2b + (µ1k − µ2τ)n]× t, β >

= < ~0 + µ′2(b× t) + [(µ1k − µ2τ)(n× t)], β >

= < −µ′2n + (µ1k − µ2τ)b, β >

= < −µ′2n + (µ1k − µ2τ)b, µ1t + µ2b >

= 0 + 0 + 0− µ2(µ1k − µ2τ) < b, b >

= −µ2(µ1k − µ2τ).

Recall that, by hypothesis, the Gaussian curvature K(u, v) = 0, that is

K(u, v) = 0⇔ β′ · (σ′ × β) = 0,

β′ · (σ′ × β) = 0⇔ −µ2(µ1k − µ2τ) = 0.

Therefore, either µ2 = 0 or µ1k = µ2τ .

On the other hand, from equation (2.13), we have that β(u) = µ1(u)t(u)+µ2(u)b(u).

If µ2 = 0, then there exists a point β(u) such that β(u) = µ1(u)t(u), which contra-

dicts the fact the β is transversal to σ. Hence, µ1k = µ2τ or µ1 =
µ2τ

k
.

From equation (2.13), let us now note that

β = µ1t + µ2b

=
µ2τ

k
t + µ2b

= µ2(
τ

k
t + b).
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Thus,

β(u) = µ2(u)D̃(u). (2.14)

Therefore, X(u, v) = σ(u)+vβ(u) can be reparametrized by X(u, ṽ) = σ(u)+ ṽD̃(u),

where ṽ = µ2v, concluding that it is a ruled surface that is rectifying developable of

the curve σ.

With the result from Proposition 2.1.1 and Theorem 2.1.1, we can see that the

rectifying developable of a cylindrical helix is a cylindrical surface and also a surface

rectifying developable surface of a curve if and only if this curve is a geodesic of the

ruled surface. We will use these facts in the next section to draw a connection between

cylindrical helices and geodesics on cylindrical ruled surface.

Since the definition of the surface that is rectifying developable of a curve is

related to the modified Darboux vector field, from now on, note that we will say only

Darboux vector field when referring to the surface parametrization, even if we actually

are referring to the modified Darboux vector field. Moreover, for convenience, we can

always assume the condition that the norm of the director curve of the ruled surface

is equal to 1, by a possible reparametrization of v, and this assumption is applied for

the rest of this chapter.

2.2 Geodesics on Cylindrical Ruled Surfaces

In Chapter 1, we have introduced Bonnet’s theorem (Theorem 1.3.3) which relates

the line of striction of a non-cylindrical ruled surface to a geodesic of this ruled sur-

face. However, for cylindrical ruled surfaces, their geodesics provide an even stronger

characterization as the corollary of Theorem 1.3.3 shows:

Corollary 2.2.1. Consider a ruled surface X(u, v) = α(u) + vβ(u) with two distinct

geodesics σi(u), i = 1, 2, such that the corresponding angles between σ′i(u) and β(u)
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are constant. Then, the ruled surface X(u, v) is a cylindrical ruled surface and both

of σi(u) are cylindrical helices. Moreover, the direction of β(u) is the direction of the

Darboux vector of σi.

Proof. Suppose σ1 and σ2 are two distinct geodesics on the surface X(u, v) such that

angle between σ1 and β, and also, the angle between σ2 and β is constant. By

Theorem 1.3.3, then we have that both σ1 and σ2 are two distinct striction curves

of this ruled surface X(u, v) = α(u) + vβ(u). By Remark 1.3.1, if a ruled surface is

non-cylindrical, then the surface admits a unique striction curve. However, we have

just inferred that the given ruled surface has two distinct striction curves σ1 and σ2.

We thus conclude that X(u, v) is a cylindrical ruled surface.

We will now prove that the geodesics of the cylindrical ruled surface that satisfy

the above conditions are cylindrical helices. Let i ∈ {1, 2} be arbitrary, but fixed.

Since σi is a geodesic of the cylindrical ruled surface, then for any point on σi, the

direction of the normal vector to σi is the same as the direction of the normal vector to

the surface at that point i.e. the rectifying plane of σi is the tangent plane of X(u, v),

at the corresponding point, as well. Since β is the director curve of X(u, v), and σi is

geodesic, we have by Theorem 2.1.1 that X(u, v) is the surface rectifying developable

of the curve σi: X(u, ṽ) = σi(u) + ṽD̃i(u). Therefore, by Proposition 2.1.1, σi is a

cylindrical helix and the direction of β(u) is the direction of the Darboux vector of

σi. Since i was chosen arbitrarily, the conclusion follows.

Similarly, we have another characterization of cylindrical surfaces as in the follow-

ing proposition.

Proposition 2.2.1. Suppose that X(u, v) = α(u) + vβ(u) is a regular developable

surface. If there exists a cylindrical helix with non-zero curvature on X(u, v) which

is a geodesic of X(u, v), then X(u, v) is a cylindrical ruled surface.

Proof. By hypothesis, X(u, v) is a regular developable ruled surface with a geodesic
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that is a cylindrical helix where k 6= 0, then this cylindrical helix σ must be transverse

to the rulings of X(u, v). Thus, by Theorem 2.1.1, X(u, v) is a ruled surface that is

rectifying developable of the curve σ. Then, Proposition 2.1.1 implies that X(u, v) is

a cylindrical ruled surface.

Before introducing another characterization of cylindrical ruled surface, we in-

troduce the notion of line of curvature of a surface. Recall our earlier discussion

on principal curvatures, the eigenvalues of the Weingarten map. To each principal

curvature, we have associate a principal direction, the eigenvector of the Weingarten

map. Thus, we have the following definition, [2], [5].

Definition 2.2.1. A curve γ is a line of curvature of a surface if and only if its

tangent at every point is aligned along a principal curvature direction.

Remark 2.2.1. A curve α on a surface M is a line of curvature if and only if

(N(α(u)))′ = −kα′(u). where N is the standard unit normal vector to surface at a

point and k is the corresponding principal curvature. This is obvious since Wp(α′) =

kα′ = −N′ =: −dN. This formula is called Rodrigue’s formula, [5].

Corollary 2.2.2. Let X(u, v) = α(u) + vβ(u) be a regular ruled surface. If there

exists σ(u), a unit-speed planar geodesic of X(u, v) with non-zero curvature which is

perpendicular to the rulings at every point, then X(u, v) is a cylindrical surface.

Proof. Let N be a standard unit normal vector to a surface at a point p. Let σ(u)

be a planar geodesic of X(u, v) with curvature k 6= 0. Thus, its torsion τ(u) is zero.

Consider one of the Frenet-Serret formulas of the curve σ, namely

n′ = −kt + τb = −kt.

Since σ is a geodesic of X(u, v), σ′′ is parallel to N. We also have that σ′′ = kn, i.e.

σ′′ is parallel to n. Then we can conclude that N is parallel to n, and specifically,
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n = ±N. Recall that Wp(α′) = k1α
′ = k1t, where k1 is the principal curvature as

mentioned above. But we also have that Wp(α′) =: −dN = −N′. Therefore, Wp =

−dN = −N′ = ±n′ = ±kt = k1t. Thus, we have k = ±k1 and also −N′ = −k1t.

By Remark 2.2.1, σ is the line of curvature of X(u, v), i.e. the direction of σ is the

same as the principal direction. Given that σ is perpendicular to the rulings β at

every points, then the direction of the rulings is also the principal direction. But the

rulings are lines, so one of the principal curvatures is zero and the Gauss curvature,

as the product of principal curvatures, is also zero. Thus, X(u, v) is a developable

ruled surface.

Given that σ is a curve in plane, then we can assume that it is a helix since for all

plane curves, we have tnat
τ

k
(u) is constant for all value of u. By Proposition 2.2.1,

X(u, v) is a cylindrical ruled surface.

In the next section, we introduce another type of ruled surface, the principal

normal ruled surface of a curve.

2.3 Principal Normal Ruled Surface of a Curve

The principal normal ruled surface of a curve α is defined by α as the base curve and

the normal vector of α as the director curve of this ruled surface, with the rigorous

definition to follow shortly.

We open this section by studying Bertrand curves with the goal of presenting

the main result of Izumiya and Takeuchi, [4], in which Bertrand curves are special

curves on ruled surfaces. By the construction of the principal normal ruled surface

of a curve α, we will show that this specific ruled surface has a connection between a

Bertrand curve and its mean curvature, similar with the ruled surface that is rectifying

developable of a curve, as seen in previous section, that has a connection to a circular
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helix and its Gaussian curvature. We finish this section by examining the properties

of the principal normal surface of a curve such as the singularity and regularity

conditions, its mean curvature and lastly the minimal locus of a principal normal

surface of a Bertrand curve.

2.3.1 Bertrand Curves and Their Properties

Bertrand curves, or Bertrand mates, are space curves associated to each other via

their principal normal vector. A Bertrand curve is a curve that admits a Bertrand

mate and can be viewed as generalization of the circular helix. Its ratio of torsion

to curvature may not be constant, but these two quantities that identify the curve

completely satisfy an affine relation as it will be explained later.

Definition 2.3.1. A space curve α : I → R3 with the curvature k(u) 6= 0 is a

Bertrand curve if and only if there exists a curve α̃ : I → R3 such that α(u) and α̃(u)

have the same principal normal line at corresponding points u ∈ I, where I is an open

interval in R. In this case, α̃(u) is called a Bertrand mate or Bertrand conjugate of

α(u). Both curves α(u) and α̃(u) are called a pair of Bertrand curves.

Next, we explore some fundamental properties of Bertrand curves.

Proposition 2.3.1. Let α : I → R3 be a Bertrand curve with curvature k 6= 0, and

α̃ : I → R3 be its Bertrand mate. Then, the following hold:

a. The Bertrand mate α̃(u) can be parametrized by

α̃(u) = α(u) + An(u), (2.15)

where A ∈ R is a non-zero constant representing the distance between correspond-

ing points of α(u) and α̃(u) in the direction of the unit normal vector n(u) of the

curve α at u.
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b. The angle between the tangent vectors of a Bertrand pair at the corresponding

points α(u) and α̃(u) is constant.

Proof. To prove part a., note that, by definition, since a Bertrand mate of α lies on

its normal line, α̃ must be of form

α̃(u) = α(u) + A(u)n(u),

where A(u) represents the distance from corresponding points α(u) and α̃(u), a priori

depending on the parameter u ∈ I. We will show that this distance function A(u) is

constant A that does not change depending on the choice of parameter u.

Indeed, let l(a) be the normal line at point α(u) with the vector equation

l(a) = α(u) + an(u).

By hypothesis, α(u) and α̃(u) are Bertrand mates, which implies that the point

α̃(u) ∈ l(a) as well. The point α̃(u) ∈ l(a) means that there exists A(u) > 0, the

value of the distance from point α(u) to point α̃(u), such that

α̃(u) = α(u) + A(u)n(u). (2.16)

We will now show that the distance function A(u) is a constant. We start by taking

the derivative with respect to u of the equation (2.16) above to obtain

α̃′(u) = α′(u) + A′(u)n(u) + A(u)n′(u).
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Furthermore, this implies

< α̃′(u),n(u) > = < α′(u),n(u) > + < A′(u)n(u),n(u) > + < A(u)n′(u),n(u) >

= < α′(u),n(u) > + A′(u) < n(u),n(u) > + A(u) < n′(u),n(u) >,

but < α′(u),n(u) > = 0 because the unit normal vector n(u) is perpendicular to

the tangent vector α′(u) of α at u. Similarly, < α̃′(u),n(u) > = 0 since the unit

normal vector n(u) is, by the definition of the Bertrand mate, perpendicular to the

tangent vector α̃′(u) of α̃(u) at u. As n(u) is a unit vector field of the curve α, we

have < n(u),n(u) > = ‖n(u)‖2 = 1, thus < n′(u),n(u) >= 0 as well. Therefore,

A′(u) = 0 and A(u) is a constant A, completing the proof of part a. of Proposition

2.3.1.

Before we begin the proof of part b., recall that, by hypothesis, k(u) 6= 0. For

simplicity of the calculation, we assume that α(u) and α̃(ũ) are the parametrizations

by arc-length u and ũ(u) respectively. Let t(u) = α′(u) be the unit tangent vector of

α at u and t̃(ũ) = α̃′(ũ) be the unit tangent vector of α̃(ũ) at ũ .

Consider the derivative of the dot product below:

∂ < t(u), t̃(ũ) >

∂u
= <

∂t(u)

∂u
, t̃(ũ) > + < t(u),

∂t̃(ũ)

∂u
> .

Since α and α̃ are Bertrand mates then n(u) = ±ñ(u). We have

<
∂t(u)

∂u
, t̃(ũ) > = < n(u), t̃(ũ) >

= < ±ñ(u), t̃(ũ) >

= <
∂t̃(ũ)

∂ũ

∂ũ

∂u
, t̃(ũ) >

=
∂ũ

∂u
<
∂t̃(ũ)

∂ũ
, t̃(ũ) >

= 0.
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Similarly,

< t(u),
∂t̃(ũ)

∂u
> = < t(u),

∂t̃(ũ)

∂ũ

∂ũ

∂u
>

=
∂ũ

∂u
< t(u),

∂t̃(ũ)

∂ũ
>

=
∂ũ

∂u
< t(u), ñ(u) >

=
∂ũ

∂u
< t(u), ±n(u), >

= 0.

Therefore,

∂ < t(u), t̃(ũ(u)) >

∂u
= 0

implies that

< t(u), t̃(ũ) >= c,

where c is a constant. In other words, since ‖t(u)‖ = ‖t̃(ũ)‖ = 1,

< t(u), t̃(ũ) > = ‖t(u)‖‖t̃(ũ)‖ cos θ = cos θ = c,

where θ is the angle between the tangent vectors of α and α̃ at u.

Hence, we have proved that the angle between the two tangent vectors of α and

α̃ at corresponding points is constant.

The next proposition proposes the affine characterization of a Bertrand curve

mentioned in the introduction of this section.

Proposition 2.3.2. Suppose that I is an open interval in R and α : I → R3 is

a space curve with curvature k(u) 6= 0, and torsion τ(u) 6= 0. Then, the following

statements are true:

i. α(u) is a Bertrand curve if and only if there exist nonzero real numbers A,B such
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that Ak(u) +Bτ(u) = 1, for all u ∈ I.

ii. α(u) is a Bertrand curve if and only if there exists nonzero real number A such

that A[(τ ′(u)k(u)− k′(α(u))τ(u)]− τ ′(u)) = 0, for all u ∈ I.

iii. If α(u) is a Bertrand curve, and α̃(u) is its Bertrand mate, then τ(u)τ̃(u) is a

non-negative constant, where τ̃(u) is the torsion of α̃ at α̃(u).

Proof. As before, for the simplicity of calculations, we may assume that α(u) and

α̃(ũ) are parametrized by arc-length u and ũ, respectively.

To prove the necessary condition for part i., consider the dot product of tangent

vectors of the Bertrand mates α and α̃ at point u that was calculated earlier, in the

form

< t, t̃ >=

〈
t,

∂α̃

∂u

∂u

∂ũ

〉
= cos θ. (2.17)

By hypothesis, α and α̃ are Bertrand mates, then let α̃(u) = α(u) + An(u), where

A > 0 is a constant. Then

∂α̃

∂u
=
∂α

∂u
+ A

∂n

∂u

= t + A(−k(α)t + τb)

= t− Akt + Aτb.

Thus,

∂α̃

∂u
= (1− Ak)t + Aτb. (2.18)

Consider

〈
t,

∂α̃

∂u

∂u

∂ũ

〉
.

We have

〈
t,

∂α̃

∂u

∂u

∂ũ

〉
=

〈
t,

∂α̃

∂u

〉
∂u

∂ũ
.
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By equation (2.18), we have that

〈
t,

∂α̃

∂u

∂u

∂ũ

〉
= < t, (1− Ak)t + Aτb >

∂u

∂ũ

=< t, (1− Ak)t >
∂u

∂ũ
+ < t, Aτb >

∂u

∂ũ

=< t, t > (1− Ak)
∂u

∂ũ
+ 0

= (1− Ak)
∂u

∂ũ
,

concluding, from equation (2.17), that

cos θ = (1− Ak)
∂u

∂ũ
. (2.19)

Consider now

t× t̃ = t×
(
∂α̃

∂u

∂u

∂ũ

)
= [t× ((1− Ak)t + Aτb)]

∂u

∂ũ

= [t× (1− Ak)t)]
∂u

∂ũ
+ [t× (Aτb)]

∂u

∂ũ

= 0 + Aτ(t× b)
∂u

∂ũ
,

thus

‖t× t̃‖ = Aτ | ∂u
∂ũ
| ‖t‖‖b‖ sin

π

2
= Aτ

∂u

∂ũ
,

where we have assumed, without any loss of generality, that ∂u
∂ũ

> 0. On the other

hand,

‖t× t̃‖ = ‖t‖‖t̃‖ sin θ = sin θ,
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thus

sin θ = Aτ
∂u

∂ũ
. (2.20)

Dividing equation (2.20) and (2.19), we have that

cot θ =
cos θ

sin θ
=

1− Ak
Aτ

. (2.21)

By Proposition 2.3.1.b., the angle between t and t̃ at a corresponding point is constant

which implies that cot θ is constant, so

1− Ak
Aτ

= Constant,

1− Ak
τ

=: B,

1− Ak = Bτ

Ak +Bτ = 1,

where B is, by defintion, a constant.

Next, we prove the sufficient condition of 2.3.2.i. Let α̃(u) = α(u) + An(u) be a

space curve in R3 where A is the constant from hypothesis such that for A, and a

constant B, we have that the curve α satisfies the condition Ak(u) +Bτ(u) = 1. We

will show that α̃ is the Bertrand mate of α. To assist with the calculations, we assume

that α is parametrized by the arc-length u, while, as before, α̃(u) is not necessary an

arc-length parametrization. From equation (2.18), we have

α̃u =
∂α̃

∂u
= (1− Ak(u))t(u) + Aτ(u)b(u)

= Bτ(u)t(u) + Aτ(u)b(u),

where k(u), τ(u),b(u), and t(u) are the curvature, torsion, unit bi-normal vector, and

unit tangent vector of α, respectively. Let t̃(u) be the unit tangent vector of the curve
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α̃u (with one of the two choices of orientation):

t̃(u) =
τ(u)[Bt(u) + Ab(u)]√
(Bτ(u))2 + (Aτ(u))2

=
τ(u)[Bt(u) + Ab(u)]

τ(u)
√
A2 +B2

Hence,

t̃(u) =
Ab(u) +Bt(u)√

A2 +B2
, (2.22)

and, consequently,

∂t̃(u)

∂u
=

1√
A2 +B2

[
B
∂t(u)

∂u
+ A

∂b(u)

∂u)

]
,

and, by Frenet-Serret formulas,

∂t̃(u)

∂u
=

1√
A2 +B2

[Bk(u)n(u)− Aτ(u)n(u)]. (2.23)

Denoting by ũ the arc-length of α̃, we have

∂t̃(u)

∂u
=
∂t̃(u)

∂ũ

∂ũ

∂u
,

and, since
∂t̃(u)

∂ũ
= k̃(u)ñ(u), once more by Frenet-Serret formula applied now to the

curve α̃, we conclude that

∂t̃(u)

∂u
= k̃(u)ñ(u)

∂ũ

∂u
. (2.24)

We want to evaluate now the expression of the change of variables
∂ũ

∂u
, thus recall

that

∂α̃

∂u
=
∂α̃

∂ũ

∂ũ

∂u
= Bτ(u)t(u) + Aτ(u)b(u).
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Consider

<
∂α̃

∂ũ
,
∂α̃

∂u

∂u

∂ũ
> = <

∂α̃

∂ũ
, Bτ(u)t(u) + Aτ(u)b(u) >

∂u

∂ũ

=< t̃, Bτt > + < t̃, Aτb >
∂u

∂ũ

= [Bτ < t̃, t > +Aτ < t̃, b >]
∂u

∂ũ
.

However, we also have that <
∂α̃

∂ũ
,
∂α̃

∂ũ
> = ‖t̃(ũ)‖ = 1 =<

∂α̃

∂ũ
,
∂α̃

∂u

∂u

∂ũ
>, and

< t̃, t >= (1− Ak)
∂u

∂ũ
, by equation (2.17) and equation (2.19), and furthermore

< b, t̃ > = < b,
∂α̃

∂u

∂u

∂ũ
>

= < b, (Bτt + Aτb) >
∂u

∂ũ

= [< b, Bτt > + < b, Aτb >]
∂u

∂ũ

= Aτ
∂u

∂ũ
b.

Therefore,

1 =

[
Bτ(1− Ak)

∂u

∂ũ
+ AτAτ

∂u

∂ũ
b

]
∂u

∂ũ

= [B2τ 2 + A2τ 2]

(
∂u

∂ũ

)2

,

implies that

(
∂ũ

∂u

)2

= (A2 +B2)τ 2.

Thus,

∂ũ

∂u
= ±τ

√
A2 +B2. (2.25)
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Using equation (2.25) into equation (2.24), we obtain the following equality

∂t̃(u)

∂u
= k̃(u)ñ(u)

∂ũ

∂u

∂t̃(u)

∂u
= ±τ

√
A2 +B2 k̃(u)ñ(u). (2.26)

Equate equation (2.23) and equation (2.26) to conclude

±τ
√
A2 +B2k̃(u)ñ(u) =

1√
A2 +B2

[Bk(u)− Aτ ]n(u).

We conclude that, up to scaling, ñ(u) = ±n(u), thus α and α̃ are Bertrand mates,

completing the proof of Proposition 2.3.2.i.

Next, we prove part ii. From Proposition 2.3.2.i., a space curve α is a Bertrand

curve if and only if there exist constants A,B 6= 0 such that, for all u ∈ I, Ak+Bτ =

1, thus, since τ 6= 0,

B =
1− Ak
τ

and so, differentiating with respect to u,

0 =
−Ak′τ − (1− Ak)τ ′

τ 2

−Aτk′ − τ ′ + Akτ ′ = 0,

with k, τ as functions of u. Hence, α is a Bertrand curve if and only if there exists a

non-zero constant A such that A[τ ′(u)k(u)− k′(u)τ(u)]− τ ′(u) = 0, for all u ∈ I.

Lastly, we prove part iii. From equation (2.18),

t̃ =
∂α̃

∂ũ
=
∂α̃

∂u

∂u

∂ũ
= ((1− Ak)t + Aτb)

∂u

∂ũ
, (2.27)
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which, further combined with equations (2.19) and (2.20), implies

t̃ = cos θt + sin θb. (2.28)

Consider

b̃ = t̃× ñ

= (cos θt + sin θb)× ñ

= (cos θt + sin θb)× n

= cos θb− sin θt.

Differentiating with respect to u both sides of b̃ = cos θb− sin θt, we obtain

∂b̃

∂u
= cos θb′ − sin θt′ = −τn cos θ − kn sin θ = (−τ cos θ − k sin θ) n.

However, from equation (2.21),

cot θ =
1− Ak
Aτ

,

Aτ cot θ + Ak = 1,

τ cos θ + k sin θ =
sin θ

A
.

Thus,

∂b̃

∂u
= (−τ cos θ − k sin θ) n = −sin θ

A
n, (2.29)

but, on the other hand,

∂b̃

∂u
=
∂b̃

∂ũ

∂ũ

∂u
= −τ̃ ñ∂ũ

∂u
= −τ̃ Aτ

sin θ
n, (2.30)

using again that sin θ = Aτ
∂u

∂ũ
, by equation (2.20). Equating equations (2.29) and
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(2.30), and using the parts i., ii. previously proved, there exists a constant A 6= 0

and a constant angle θ ∈ (0, π) such that
sin θ

A
= τ̃

Aτ

sin θ
. Thus, for all θ such that

θ ∈ (0, π),

τ̃ τ =
(sin θ)2

A2
> 0, (2.31)

concluding the proof of part iii. that the product of the corresponding torsions of two

Bertrand mates is a non-negative constant.

The last property of Bertrand curves suggests a deeper connection between Bertrand

curves and circular helices illustrated by the following proposition.

Lemma 2.3.1. Given a space Bertrand curve α : I → R3 with curvature k(u) 6= 0

and τ(u) 6= 0, for all u, the following statements hold:

1. If α(u) admits more than one Bertrand mates, then it admits infinitely many

Bertrand mates.

2. The curve α(u) admits infinitely many Bertrand mates if and only if α(u) is a

circular helix.

Proof. Assume the hypothesis of part 1., namely that a Bertrand curve α admits

more than one Bertrand mate. In particular, let us assume that α(u) has two distinct

Bertrand mates α1(u) and α2(u), respectively,

α1(u) = α(u) + A1n(u)

α2(u) = α(u) + A2n(u),

where A1 6= A2 are non-zero constants. Since the torsion of the curve is non-zero, we

have, by equation (2.21), that

1− Ak
Aτ

= cot θ = Constant,
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furthermore, by the lemma’s assumption, we then have that two constants C1 6= C2

such that 
1− A1k

A1τ
= C1

1− A2k

A2τ
= C2

⇒


−A1k + 1 = A1C1τ

−A2k + 1 = A2C2τ

and, by differentiating,


−A1k

′(u) = A1C1τ
′(u)

−A2k
′(u) = A2C2τ

′(u)
⇒


k′(u) = −C1τ

′(u)

k′(u) = −C2τ
′(u).

Given that C1 6= C2, we can infer that k′(u) = τ ′(u) = 0, for all u. Thus, k and τ

are constant.

Since α has k and τ constant, we can conclude that there are infinitely many pairs

of real numbers (A,B) 6= (0, 0) such that Ak + Bτ = 1, which is equivalent to the

fact that α admits infinitely many Bertrand mates as well (each at distance A from

α along its normal vector field).

Proving the necessary condition for Lemma 2.3.1.2. is straight forward from the

proof of Lemma 2.3.1.1. Having constant curvature and torsion, the Bertrand curve

α is a circular helix.

For the sufficient condition, let α be a circular helix. Since α is a circular helix,

then its curvature and torsion k, τ are constant. There is a line of points (A,B) such

that Ak + bτ = 0, thus α admits infinitely many Bertrand mates.

In the following section, we will define and investigate the properties of a principal

normal surface of a curve α, which will be used later to determine the characterization

of the asymptotic curve of ruled surfaces in general.
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2.3.2 Properties of Ruled Surfaces that are Principal Normal

Surface of a Curve

Definition 2.3.2. A ruled surface M with a parametrization of the form of

X(u, v) = α(u) + vn(u) (2.32)

is defined to be the principal normal surface along a curve α in R3 if the rulings are

given by the principal normal vector n(u) of the curve at α(u).

Remark 2.3.1. Note that the principal normal surface of a curve α is a cylindrical

ruled surface since n(u)× n′(u) = ~0 at all points.

In the following lemma, we will study the singularities of the principal normal

surface of a curve.

Lemma 2.3.2. Let M be a principal normal ruled surface with a parametrization of

the form of X(u, v) = α(u) + vn(u) as in the equation (2.32), where α(u) is a unit

speed curve with curvature k(u) 6= 0. Then (u0, v0) is a singular point of M if and

only if τ(u0) = 0 and v0 =
1

k(u0)
.

Proof. As mentioned several times earlier, we only need to check that

∂X

∂u
(u0, v0)×

∂X

∂v
(u0, v0) = ~0,

where X(u, v) = α(u) + vn(u) as in equation (2.32).

If (u0, v0) is a singular point of M, then

∂X

∂u
(u0, v0)×

∂X

∂v
(u0, v0) = [α′(u0) + v0n

′(u0)]× n(u0)

= [t(u0)× n(u0)] + v0 [n′(u0)× n(u0)] = ~0.
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Using Frenet’s equations, we have further that

[t(u0)× n(u0)] + v0 [−k(u0)t(u0) + τ(u0)b(u0)]× n(u0) = ~0,

[1− v0k(u0)][t(u0)× n(u0)] + v0τ(u0)[b(u0)× n(u0)] = ~0,

[1− v0k(u0)]b(u0)− v0τ(u0)t(u0) = ~0.

By successively, taking the dot product of the above equality with t(u0), then

b(u0), we conclude that (u0, v0) is a singular point of the surface if τ(u0) = 0 and

v0 =
1

k(u0)
.

Note from above that, for arbitrary (u, v), we have

∂X

∂u
(u, v)× ∂X

∂v
(u, v) = [1− vk(u)]b(u)− vτ(u)t(u). (2.33)

Thus, for (u0, v0) with τ(u0) = 0 and v0 =
1

k(u0)
, we have

∂X

∂u
× ∂X

∂v
(u0, v0) = ~0,

concluding the sufficiency condition. This completes the proof of the lemma.

Remark 2.3.2. From this lemma we can conclude that a principal normal surface

of a curve X(u, v) is regular if and only if the directrix curve has nonzero torsion

everywhere.

Furthermore, the above lemma gives an immediate characterization of a singular

principal normal surface of a Bertand curve in our Euclidean space.

Corollary 2.3.1. Let α(u) : I 7→ R3 be a Bertrand curve. The principal normal

surface of α(u), X(u, v) = α(u) + vn(u), has a singular point if and only if α(u) is a

planar curve.

Proof. Suppose (u0, v0) is a singular point of X(u, v) = α(u) +vn(u), then τ(u0) = 0.

Since α is a Bertrand curve, let α̃ be its Bertrand mate with τ̃ its torsion. Then

τ(u0)τ̃(u0) = 0 at the point u0. Suppose that α(u) is a space curve in R3. Since α is
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a Bertrand curve, then by the equation (2.31) of Proposition 2.3.2.iii, we have that

for all u, τ(u)τ̃(u) > 0. However, their exists a point u0 such that τ(u0)τ̃(u0) = 0,

which contradicts Proposition 2.3.2.iii. Thus α must be a plane curve.

Conversely, we need to show that if α(u) is a planar curve, thenX(u, v) = α(u)+vn(u)

is a singular ruled surface. Recall that a singular point of a principal normal ruled

surface corresponds to the point u0 ∈ I such that τ(u0) = 0 and v0 =
1

k(u0)
by

Lemma 2.3.2. Given that α(u) is a planar curve, then τ(u) = 0 for all u. By equation

(2.33) where,
∂X

∂u
(u, v) × ∂X

∂v
(u, v) = [1 − vk(u)]b(u) − vτ(u)t(u), we are able to

find at least a point (u0, v0) where τ(u0) = 0 and v0 =
1

k(u0)
that satisfies the

equation
∂X

∂u
(u, v)× ∂X

∂v
(u, v) = 0. Thus, X(u, v) = α(u) + vn(u) is a singular ruled

surface.

The next lemma gives us the formula of the mean curvature of the principal normal

surface of a curve.

Lemma 2.3.3. Given a principal normal ruled surface M with parametrization

X(u, v) = α(u) + vn(u) as in equation (2.32), where u is the arc-length of α(u),

the mean curvature of the surface at X(u, v) is equal to

H(u, v) =
v[τ ′(u) + v(k′(u)τ(u)− τ ′(u)k(u))]

2(EG− F 2)
3
2 (u, v)

, (2.34)

where the curvature and torsion of α, respectively, k, τ, are non-zero, and E,F,G are

the coefficients of the first fundamental form of the surface with the metric induced

by X(u, v).

Proof. Given X(u, v) = α(u)+vn(u), then we have Xu(u, v) = α′(u)+vn′(u) = t(u)+

vn′(u), Xv(u, v) = n(u), Xuu(u, v) = kn + vn′′(u), Xvv(u, v) = 0, Xuv(u, v) = n′(u).

For simplicity of exposition, we will drop the argument u whenever we consider that
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there is no risk of confusion. Thus, we have

E = ‖Xu‖2 = ‖α′ + vn′‖2

G = ‖Xv‖2 = ‖n‖2 = 1

F = Xu ·Xv = (α′ + vn′) · n = 0.

Next, we compute the standard unit normal vector N to M at point X(u, v), where

EG− F 2 = ‖Xu ×Xv‖2 by equation (1.22). We have

N =
Xu ×Xv

‖Xu ×Xv‖
=

[1− vk]b− vτt√
EG− F 2

,

since Xu ×Xv = [1− vk(u)]b(u)− vτ(u)t(u) by equation (2.33).

The coefficients of the second fundamental form of M are:

L = Xuu ·N =
(α′′ + vn′′) · [(1− vk)b− vτt]√

EG− F 2
,

M = Xuv ·N =
n′ × (α′ · n)√
EG− F 2

= 0,

N = Xvv ·N = ~0 ·N = 0.

From equation (1.47), we haveH =
LG− 2MF +NE

2(EG− F 2)
=

L

2(EG− F 2)
.Using Frenet’s

equations, we see that the numerator of L is:

(α′′ + vn′′) · [(1− vk)b− vτt] = [kn + v(−kt + τb)′] · [(1− vk)b− vτt]

= v(−k′t−kt′+τ ′b+τb′)·[(1−vk)b−vτt] = v2k′τ+vk(1−vk)t′·b+vτ ′(1−vk)−v2τ 2b′·t.

Moreover, since t · b = 0, we have t′ · b = −t · b′ = 0.
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Thus,

H =
v2k′τ + (1− vk)vτ ′

2(EG− F 2)
3
2

=
v2k′τ + τ ′v − v2τ ′k

2(EG− F 2)
3
2

=
v(τ ′ + vk′τ − vτ ′k)

2(EG− F 2)
3
2

=
v[τ ′ + v(k′τ − τ ′k)]

2(EG− F 2)
3
2

.

Hence, we have obtained the formula for the mean curvature of a principal normal

ruled surface.

For the rest of this section, we define a minimal locus of a ruled surface and

proceed to examine the minimal locus of the principal normal surface.

Definition 2.3.3. A curve α : I → R3 of a ruled surface M with parametrization

X(u, v) = α(u) + vβ(u) is called a minimal locus of X(u, v) if and only if the mean

curvature of X(u, v) vanishes on α(u).

Proposition 2.3.3. Let α and α̃ be non-planar Bertrand mates. Then α̃ is the

minimal locus ofM, the principal normal surface of α with parametrization X(u, v) =

α(u) + vn(u).

Proof. Suppose that k̃, τ̃ are the curvature and torsion of the Bertrand curve α̃.

Given that α and α̃ are Bertrand mates, they both have the same normal direction,

and by Proposition 2.3.1, we have α̃ = α + An, where A is a non-zero constant.

We then can reparametrize M, the principal normal surface of α, of the form of

X(u, v) = α(u) + vn(u), as X(u,A) = α̃(u) + An(u). Thus, by equation (2.34), the

mean curvature of M is

H(α̃) = H(u,A) =
A[τ̃ ′ + A(k̃′τ̃ − τ̃ ′k̃)]

2(EG− F 2)
3
2

.
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However, by Proposition 2.3.2.ii, one of the properties of Bertrand curve, there exists

a non-zero constant A such that A(τ̃ ′k̃− k̃′τ̃)− τ̃ ′ = 0, for all u ∈ I, which is the same

as having τ̃ ′ + A(k̃′τ̃ − τ̃ ′k̃) = 0. Thus H(α̃) = H(u,A) = 0 for all u ∈ I, concluding

that α̃ is the minumal locus of M.

The next section will focus on asymptotic curves on the ruled surfaces in general,

which in turn will enable us to investigate asymptotic curves on ruled surfaces that

are the principal normal surfaces of a curve.

2.4 Asymptotic Curves on Ruled Surfaces

2.4.1 Asymptotic Curves

Recall that for any unit-speed curve α : I → R3 with curvature at point α(u) being

k(u) = ‖α′′(u)‖, the unit principal normal vector of α at a point α(u) is n(u) such

that α′′(u) = k(u)n(u). Suppose that the curve α is on a surface M and denote the

unit normal vector of the surfaceM by N. We also define α′′ as a linear combination

of the vectors N and N× α′ as follows

α′′ = knN + kg(N× α′), (2.35)

where kn = α′′ ·N = k cosφ and kg = α′′ · (N × α′) = k sinφ are called the normal

curvature and, respectively, the geodesic curvature of the curve α. Here, φ is the

angle between N and n and, from the definition, We note that

k2 = k2n + k2g . (2.36)

Definition 2.4.1. A curve α : I → R3 on a surface M is called an asymptotic

curve if and only if its normal curvature of α(u) is everywhere zero, in other words,
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kn(u) = α′′(u) ·N(u, α(u)) = 0 for all u in I.

Proposition 2.4.1. Let curve α : I → R3 ∈ M a regular surface be a unit-speed

curve and N(p) be the unit normal vector to M at a point p of M. Then, we have

α(u) is an asymptotic curve of M if and only if

α′(u) ·N′(u, α(u)) = 0, ∀u ∈ I. (2.37)

Proof. Since α(u) ∈ M for all u ∈ I, then α′ is always tangent to M, so α′ ·N = 0.

We differentiate both side of the equation above to obtain

(α′ ·N)′ = 0

α′′ ·N + α′ ·N′ = 0.

By Definition 2.4.1, α is an asymptotic curve if and only if α′′ · N = 0. Therefore

α′ ·N′ = 0. The converse is immediate from the same argument.

2.4.2 Characteristics of Asymptotic Curves on Ruled Sur-

faces

As seen earlier, an asymptotic curve α of a surface has zero principal normal curvature.

The lemma below is preparing the proof of the next proposition which will characterize

further asymptotic curves on a ruled surface.

Lemma 2.4.1. [4] Let e1 = (0, 1), e2 = (1, 0) be the canonical basis of the Euclidean

vector space R2 and let v1, v2 be also unit vectors in R2 such that we describe v1 =

λ(e1 +µe2) for some constants λ > 0 and µ ∈ R. Then, v2 = λ(e1−µe2) if and only

if

v2 · e1 = v1 · e1 and v1 · v2 =
1− µ2

1 + µ2
.
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Proof. We have v1 ·e1 = λ(e1+µe2) ·e1 = λe1 ·e1+λµe1 ·e2 = λ and, simultaneously,

v2 · e1 = λ(e1 − µe2) · e1 = λe1 · e1 − λµe1 · e2 = λ. Thus, v2 · e1 = v1 · e1.

Next, we consider

v1 · v2 = λ2(e1 + µe2) · (e1 − µe2)

= λ2(‖e1‖2 − µe1 · e2 + µe1 · e2 − µ2‖e2‖2)

= λ2(1− µ2).

We also have

1 = ‖v1‖2 = v1 · v1

= λ2(e1 + µe2) · (e1 + µe2)

= λ2(‖e1‖2 + µe1 · e2 + µe1 · e2 + µ2‖e2‖2)

= λ2(1 + µ2).

Then λ2 =
1

1 + µ2
.

Thus,

v1 · v2 =
1− µ2

1 + µ2
.

For sufficient condition, we have

v1 · v2 =
1− µ2

1 + µ2
= λ2(1− µ2)

= λ2(‖e1‖2 − µ2‖e2‖2)

= λ(e1 + µe2) · λ(e1 − µe2).

Since v1 = λ(e1 + µe2), then v2 must be λ(e1 − µe2).

83



Proposition 2.4.2. [4] Suppose thatM with parametrization X(u, v) = α(u)+vβ(u)

is a regular ruled surface on a unit-speed curve α(u) that is transversal to the rulings.

Then, α(u) is an asymptotic curve of X(u, v) if and only if

α′(u) · e1(u) = β(u) · e1(u), (2.38)

and

α′(u) · β(u) =
k1(u) + k2(u)

k1(u)− k2(u)
, (2.39)

where e1, e2 are the principal directions along α(u) with ‖e1‖ = ‖e2‖ = 1, and

k1(u), k2(u) are the principal curvatures of the surface along α(u), in the direction

of e1, e2, respectively.

Proof. Since e1, e2 are principal directions along α(u), then e1(u), e2(u) form a basis

of the tangent plane of the surface M along the curve α at each point α(u). Let

us denote by v1,v2 two tangent vectors at point α(u) as in Lemma 2.4.1, for λ = 1

and arbitrary constant µ, thus v1 = e1(u) + µe2(u) and v2 = e1(u) − µe2(u). By

Proposition 1.3.1, we know that the Gaussian curvature of a ruled surface is non-

positive. Assuming K 6= 0, the two principal curvatures k1(u) and k2(u) along the

principal direction e1, e2 of the curve α must have opposite sign. We can then conclude

that −k1(u)

k2(u)
> 0 and chose the constant µ to be µ :=

√
−k1(u)

k2(u)
.

We thus have,

v1 = e1(u) +

√
−k1(u)

k2(u)
e2(u), and v2 = e1(u)−

√
−k1(u)

k2(u)
e2(u).

Recall that if W = −dN is the Weingarten map of a surface M at a point X(u, v)

of M, then k1(u), k2(u), the principal curvatures of M, with principal direction vec-

tors e1, e2, are the eigenvalues of the Weingarten map with eigenvectors e1, e2. The
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eigenvectors are orthogonal to each other and form a basis of the tangent plane ofM

at the point X(u, v): W(e1) = k1e1 and W(e2) = k2e2.

We will now apply the Weingarten map to the tangent vector v1, W(v1) =

W
(

e1 +

√
−k1
k2

e2

)
= W(e1) +

√
−k1
k2
W(e2) = k1e1 +

√
−k1
k2
k2e2. Thus, W(v1) ·

v1 =

(
k1e1 +

√
−k1
k2
k2e2

)
·
(

e1 +

√
−k1
k2

e2

)
= k1 +0− k1

k2
k2 = 0. Similarly, we can

derive thatW(v2) ·v2 = 0. This means that v1 and v2 gives asymptotic directions of

M at the point α(u), i.e. there exists a tangential direction of zero normal curvature

at α.

Having finished the preparation, let us recall that, by hypothesis, α is an asymp-

totic curve of the surface X(u, v) = α(u) + vβ(u) and that α is transversal to rulings.

Thus α′, the direction of the directrix curve α, is an asymptotic direction as well.

Furthermore, we have that the rulings are asymptotic lines of the surfaceM as well.

Suppose a(v) = α + vβ is an arbitrary ruling of the surface M. Since rulings are

straight lines on the surface, then a′′(v) = 0, which also implies that kn = α′′ ·N = 0.

Hence, the ruling is asymptotic and β gives an asymptotic direction ofM at a point

α(u). Earlier, we have shown that v1 and v2 of the form above give asymptotic di-

rections of M. Then β and α′ correspond to tangent vectors v1 and v2 as above

that give the asymptotic directions of the surface M. (Up to sign, there are only

two asymptotic directions at any point.) Since α′ and β are unit vectors, we may

assume that β = λv1 = λ

(
e1 +

√
−k1
k2
e2

)
, and α′ = λv2 = λ(u)

(
e1 −

√
−k1
k2

)
,

where λ =
1√

1 +
k1
k2

is the norm of vector v1 and v2. Now we can apply Lemma

2.4.1 to the unit vectors β and α′, concluding that α′(u) · e1(u) = β(u) · e1(u), and

β · α′ = 1− µ2

1 + µ2
=

1− (−k1
k2

)

1 + (−k1
k2

)

=
k2 + k1
k2 − k1

, where µ :=

√
−k1
k2

.

The corollary below follows directly from the Proposition 2.4.2. and, according to
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its authors, is analogous to Bonnet’s theorem on geodesics of ruled surfaces.

Corollary 2.4.1. [4] LetM with parametrization X(u, v) = α(u)+vβ(u) be a regular

ruled surface on α(u), where α(u) is an asymptotic curve of the surface. We denote

k1(u), k2(u) are principal curvatures of the surface along α(u), respectively. Then, the

following conditions are equivalent:

a. The angle between α′(u) and β(u) is constant along α.

b. The ratio
k1
k2

(u) is constant along the curve α.

Proof. By Proposition 2.4.2., α(u) is an asymptotic curve of X(u, v) if and only if

α′(u) · β(u) =
k1(u) + k2(u)

k2(u)− k1(u)
.

But, the angle between α′(u) and β(u) is constant means that α′(u) ·β(u) is constant

because the length of each of the vectors is equal to one. Thus,
k1(u) + k2(u)

k2(u)− k1(u)
is

constant. Let C be a constant in R.

Then

k1(u) + k2(u)

k2(u)− k1(u)
= C

k1(u) + k2(u) = Ck2(u)− Ck1(u)

k1(u)

k2(u)
+ 1 = C − k1(u)

k2(u)
C

k1(u)

k2(u)
=
C − 1

C + 1
= Constant.
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2.4.3 Asymptotic Curves on Principal Normal Surfaces of a

Curve

In this section, we will present the main characterization of the principal normal ruled

surfaces of a curve α. It will be shown that, for any principal normal surface of a

curve α, the curve α is not only the asymptotic curve on this ruled surface, but also

a minimal asymptotic curve which is transversal to rulings and the mean curvature

of the ruled surface vanishes along α.

Definition 2.4.2. A curve α is called a minimal asymptotic curve of a surface M

in R3 if and only if α is an asymptotic curve and the mean curvature vanishes along

the curve α.

Theorem 2.4.1. [4] Consider a ruled surface M with parametrization X(u, v) =

α(u) + vβ(u) and suppose that σ(u) is a unit speed curve on M. Then, the following

conditions are equivalent:

a. X(u, v) is the principal normal surface of σ(u).

b. The curve σ(u) is a minimal asymptotic curve of X(u, v) which is transversal

to rulings.

Proof. First we will prove that for any principal normal surface of σ(u), then σ(u)

is a minimal asymptotic curve of X(u, v) which is transversal to rulings. Given that

X(u, v) = α(u) + vβ(u) is a principal normal surface of σ(u) and σ(u) is a curve on

M then we can reparametrizedM as X̃(u, v) = σ(u) + vn(u) where n(u) is the unit

normal of σ(u). Let us denote N the unit normal to M with the parametrization

X̃(u, v) = σ(u) + vn(u). Then N is perpendicular to the tangent plane of M. Thus

N(u, v) ⊥ Xv(u, v) and the latter is in fact the normal to the curve Xv(u, v) = n(u),
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more precisely, n is the unit normal vector of σ. Thus

N · n = 0

N ·
(

1

k
σ′′
)

= 0

N · σ′′ = 0,

concluding that σ is, by definition, an asymptotic curve of the ruled surface M.

To show that the curve is minimal, we need to verify that the mean curvature of

M vanishes along the curve σ. As before, by equation (2.34), we have the mean

curvature of a principal normal surface of a curve σ as follows:

H(u, v) =
v[τ ′ + v(k′τ − τ ′k)]

2(EG− F 2)
3
2

.

Along the curve σ, we have that v = 0. Thus, H(u, 0) = 0 for all u. H(u, 0) = 0

corresponds to the mean along σ vanishes along its asymptotic curve σ for all u. Thus

σ is a minimal asymptotic curve which is transversal to rulings. Note that a curve

σ is transversal to rulings means that at each point of the surface M, the curves

σ intersects orthogonally the rulings since σ′ · n = 0. Hence, we have proved that

for any base curve σ of a principal normal of the σ is an asymptotic curve which is

transversal to rulings.

Conversely, we will show that if σ(u) is a minimal asymptotic curve of X(u, v) =

α(u)+vβ(u) which is transversal to rulings, then X(u, v) is a principal normal surface

of σ(u). Since σ(u) is a minimal asymptotic curve ofM, then H(u, v) = 0 along σ(u).

Thus, at each point X(u, v) along σ, though we drop the parameters, the surface has
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zero mean curvature

H =
k1 + k2

2
= 0

k1 + k2 = 0,

where k1 and k2 are the principal curvature along σ. Since σ is an asymptotic curve

that is transversal to rulings, then we can reparametrize X(u, v) = α(u) + vβ(u) as

X̃(u, v) = σ(u) + vβ̃(u), where we may assume that ||β̃|| = 1. By Proposition 2.4.2,

we have that σ′(u) · β̃(u) =
k1(u) + k2(u)

k1(u)− k2(u)
= 0 for all u. Hence, σ′ = t is perpendicular

to β̃. Thus, at each point along σ, the ruling direction is of the form β̃ = an + bb,

for some real numbers a, b. However, σ is asymptotic, thus σ′′ ·N = 0, where, from

the parametrization, along the curve σ, we have N = t× β̃ = ab− bn. On the other

hand, from Frenet equations, σ′′ = t′ = kn, so σ′′ ·N = 0 implies b = 0. Thus β̃ is

parallel to n, and by choosing earlier the norm of β̃ to be one, we have a = 1 and

X̃(u, ṽ) = σ(u) + vn(u), concluding that the surface is the principal normal ruled

surface of σ(u).

2.4.4 Minimal Asymptotic Curves on Ruled Surfaces

Having studied the characteristics of minimal asymptotic curves on principal normal

surfaces of a curve, we then can turn our attention to the characteristics of minimal

asymptotic curves on ruled surface in general. The following proposition gives us the

characterization of a ruled surface which is a helicoid with circular helices as their

minimal asymptotic curves.

Proposition 2.4.3. [4] Any regular ruled surface M : X(u, v) = α(u) + vβ(u) with

three disjoint minimal asymptotic curves which are transversal to rulings is a helicoid,

and these minimal asymptotic curves are circular helices.

Proof. Let σi of M be the three minimal asymptotic curves which are transversal
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to rulings, where i = 1, 2, 3. By equation (1.48) of Proposition 1.3.4, we have the

mean curvature for a regular ruled surface with X(u, v) = α(u) + vβ(u) is quadratic

function of variable v. Thus, if there exists three disjoint minimal asymptotic curves

on X(u, v) = α(u) + vβ(u) which are transversal to rulings, then the mean curvature

H(u, v) vanishes in any direction. Therefore, M is a ruled minimal surface. Recall

that a minimal surface is a surface whose mean curvature is zero everywhere.

Recall that for any ruled minimal surface, it is either a plane or helicoid. By

hypothesis, M is a ruled surface, thus it must be helicoid which is can be ex-

pressed as X(u, v) = (v cos(u), v sin(u), bu), where α(u) = (0, 0, bu) and β(u) =

cos(u), sin(u), 0). For each cases of minimal asymptotic curves on the surface

M, then σ(u) can be expressed as σ(u) = (v cos(u), v sin(u), bu), which is the

parametrization of circular helix as well.

We close this section by presenting the characterization of Bertrand curves as the

minimal asymptotic curves which are transversal to rulings in any ruled surfaces.

Proposition 2.4.4. [4] Any two disjoint minimal asymptotic curves which are transver-

sal to rulings of a regular ruled surface M : X(u, v) = α(u) + vβ(u) are a pair of

Bertrand curves.

Proof. Let σ1(u), and σ2(u) be two disjoint minimal asymptotic curves which are

transversal to rulings of M, then we can express them as σ1(u) = α(u) + v1(u)β(u)

and σ2(u) = α(u)+v2(u)β(u). We have σ1(u) = α(u)+v1(u)β(u), then σ′ = α′+v′1β+

v1β
′ = Xu + v′Xv, where Xu = α′ + vβ′, Xv = β,Xuu = α′′ + vβ′′, Xuv = β′, Xvv = 0.

For the fact the σ1(u) is an asymptotic curve of X(u, v), then we have the normal

curvature of σ1(u), kn = << σ′1(u), σ′1(u) >> = Ldu2 + 2Mdudv +Ndv2 = 0, where

L,M,N are the coefficients of the second fundamental form of X(u, v) along σ′1(u).

We compute these below:

N =
Xu ×Xv

‖Xu ×Xv‖
=

(α′ + v1β
′)× β

‖Xu ×Xv‖
,
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M = Xuv·N =
β′ · [(α′ + v1β

′)× β]

‖Xu ×Xv‖
=
β · (α′ × β)

‖Xu ×Xv‖
=
β′ · (α′ × β′)
‖Xu ×Xv‖

=
det(β′, α′, β)

‖Xu ×Xv‖
,

L = Xuu ·N =
(α′′ + v1β

′′) · [(α′ + v1β
′)× β]

‖Xu ×Xv‖
=

det((α′′ + v1β
′′, α′ + v1β

′, β)

‖Xu ×Xv‖
,

N = Xvv ·N = 0.

Then Ldu2 + 2Mdudv +Ndv2 = Ldu2 + 2Mdudv = 0. We have σ′ = u′σu + v′σv.

Then << σ′, σ′ >> = Lu′2 + 2Mu′v′ = 0, for an asymptotic curve, v′ =
dvi
du

:= v′i,

i = 1, 2. Thus, for i = 1, we have

2 det (β′, α′, β) dv1 + det (α′′ + v1β
′′, α′ + v1β

′, β) = 0. (2.40)

On the other hand, by hypothesis, σ1(u) is a minimal asymptotic curve of M, then

the mean curvature along σ1(u) vanishes. By equation (1.48) of the mean curvature

of ruled surface, then we have

−2(α′ · β) det (β′, α′, β) + det (α′′ + v1β
′′, α′ + v1β

′, β) = 0. (2.41)

Equating the equation (2.40) and equation (2.41), we have v′1 = −2(α′ ·β). Similarly,

we can apply the second fundamental form on σ2(u). We obtain v′2 = −2(α′ · β).

Hence, v′1 − v′2 = 0, which implies that v1(u)− v2(u) is constant. Now, suppose that

there exists a non-zero constant A such that v1(u) = v2(u) + A. Replace v1(u) into

the equation σ1(u) = α(u) + v1(u)β(u) = α(u) + v2(u)β(u) +Aβ(u) = σ2(u) +Aβ(u).

Since σi are the minimal asymptotic curve ofM which are transversal to rulings,

by Theorem 2.4.1, X(u, v) = α(u) + vβ(u) is the principal normal surface of σ1(u)

and σ2(u). Consider the principal normal surface along σ2, X(u, v) = σ2(u) + vβ(u),

and take u the arclength parameter of σ2 so β(u) is the unit normal vector field of

σ2(u).
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Moreover, we know that the mean curvature of principal normal surface of σ2

along σ1(u) must be zero, as they are both minimal asymptotic curves. By equation

(2.34), the mean curvature formula is

H(u, v) =
v[τ ′(u) + v(k′(u)τ(u)− τ ′(u)k(u))]

2(EG− F 2)
3
2

= 0,

thus, we have σ1(u) = σ2(u) +Aβ(u) and A[τ ′(u) + v(k′(u)τ(u)− τ ′(u)k(u))] = 0. By

Proposition 2.3.2.ii., we can then conclude that σ1(u) and σ2(u) are Bertrand mates.
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Appendix A

Striction Curves of Doubly Ruled

Surfaces

We investigate the uniqueness of striction curves of doubly ruled surfaces by finding

the striction curve for the hyperbolic paraboloid and, respectively, the hyperboloid

of one sheet using their two distinct surface patches. We will show that the striction

curve for doubly ruled surfaces is different for each parametrization, and thus depends

on the parametrization, though it was shown earlier that, for each parametrization,

the striction curve is unique.

A1 Striction Curves of Hyperbolic Paraboloid

As mentioned in Chapter 1, the hyperbolic paraboloid with equation z =
x2

a2
− y2

b2

is a doubly ruled surface where the two distinct surface patches are X1(u, v) =

(au, 0, u2) + v (a, b, 2u), and X2(u, v) = (au, 0, u2) + v (a, −b, 2u), where

u, v ∈ R, as in the equation (1.13), and (1.14), respectively.

To simplify the calculations, we will consider the hyperbolic paraboloid with a =

b = 1.
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For the first surface patch of the hyperbolic paraboloid, we have

X1(u, v) = (u, 0, u2) + v (1, 1, 2u),

where α(u) = (u, 0, u2) and β(u) = (1, 1, 2u). Since β × β′ = (1, 1, 2u) × (0, 0, 2) 6=

~0,∀u 6= 0, this hyperbolic paraboloid is a non-cylindrical ruled surface. By Remark

1.3.1, the striction curve of the non-cylindrical can be computed by σ(u) = α(u) −
< α′(u), γ′(u) >

‖γ′(u)‖2
γ(u), where ‖γ(u)‖ = 1. Therefore, since ‖β(u)‖ =

√
2 + 4u2, we

calculate γ =

(
1√

2 + 4u2
,

1√
2 + 4u2

,
2u√

2 + 4u2

)
,

γ′ =

(
−4u√

(2 + 4u2)3
,

−4u√
(2 + 4u2)3

,
4√

(2 + 4u2)3

)
, ‖γ′‖2 =

8

(2 + 4u2)2
, and

α′ · γ′ = (1, 0, 2u) · ( −4u√
(2 + 4u2)3

,
−4u√

(2 + 4u2)3
,

4√
(2 + 4u2)3

)

=
−4u√

(2 + 4u2)3
+

8u√
(2 + 4u2)3

=
4u√

(2 + 4u2)3
.

Thus, the striction curve of the first patch of hyperbolic paraboloid is

σ1(u) = α− α′ · γ′

‖γ′‖2
γ

= (u, 0, u2)− 4u√
(2 + 4u2)3

(2 + 4u2)2

8

(
1√

2 + 4u2
,

1√
2 + 4u2

,
2u√

2 + 4u2

)
= (u, 0, u2)− u

√
2 + 4u2

2

(
1√

2 + 4u2
,

1√
2 + 4u2

,
2u√

2 + 4u2

)
= (u, 0, u2)−

(u
2
,
u

2
, u2
)

=
(u

2
,−u

2
, 0
)
, u ∈ R.

Therefore, the striction curve is the planar curve y = −x.
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For the second surface patch of hyperbolic paraboloid, we have

X2(u, v) = (u, 0, u2) + v (1, −1, 2u),

where α(u) = (u, 0, u2) and β(u) = (1,−1, 2u). We have the following: ‖β(u)‖ =
√

2 + 4u2, γ =

(
1√

2 + 4u2
, − 1√

2 + 4u2
,

2u√
2 + 4u2

)
,

γ′ =

(
−4u√

(2 + 4u2)3
,

4u√
(2 + 4u2)3

,
4√

(2 + 4u2)3

)
, ‖γ′‖2 =

8

(2 + 4u2)2
as before,

and

α′ · γ′ = (1, 0, 2u) · ( −4u√
(2 + 4u2)3

,
4u√

(2 + 4u2)3
,

4√
(2 + 4u2)3

)

=
−4u√

(2 + 4u2)3
+

8u√
(2 + 4u2)3

=
4u√

(2 + 4u2)3
.

Thus, the striction curve of the second patch of hyperbolic paraboloid is

σ2(u) = α− α′ · γ′

‖γ′‖2
γ

= (u, 0, u2)− 4u√
(2 + 4u2)3

(2 + 4u2)2

8

(
1√

2 + 4u2
, − 1√

2 + 4u2
,

2u√
2 + 4u2

)
= (u, 0, u2)− u

√
2 + 4u2

2

(
1√

2 + 4u2
, − 1√

2 + 4u2
,

2u√
2 + 4u2

)
= (u, 0, u2)−

(u
2
,−u

2
, u2
)

=
(u

2
,
u

2
, 0
)
, u ∈ R.

Thus, the second striction curve is the planar curve y = x, hence the two curves

are the two (different) bisectors of the quandrant II, respectively quadrant I, of the

xy-plane, as seen also from the Mathematica plot below.
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Figure A.1: Striction curves of Hyperbolic Paraboloid, where the blue graph repre-
sents the striction curve σ1 and the yellow one represents the striction curve σ2, (here
u ∈ (−20, 20))

.

A2 Striction Curves of Hyperboloid of One Sheet

Similarly, hyperbolic paraboloid with
x2

a2
+
y2

b2
− z

2

c2
= 1 is a doubly ruled surface with

the two surface patches X1(u, v) = (a cosu, b sinu, 0) + v (−a sinu, b cosu, c), and

X2(u, v) = (a cosu, b sinu, 0) + v (a sinu,−b cosu, c) as in the equation (1.16) and

(1.17), respectively.

Again, for a simpler calculation, we assume that a = b = c = 1 so this specific

hyperbolic paraboloid is defined by x2 + y2 − z2 = 1.

For the first surface patch of hyperboloid of one sheet, we have X1(u, v) =

(cosu, sinu, 0) + v (− sinu, cosu, 1), where α(u) = (cosu, sinu, 0) and β(u) =

(− sinu, cosu, 1). As before, since β×β′ = (− sinu, cosu, 1)×(− cosu, − sinu, 0) 6=

~0,∀u 6= 0, then this hyperbolic paraboloid is a non-cylindrical ruled surface. We have

the following: ‖β‖ =
√

2, γ =

(
−sinu√

2
,

cosu√
2
,

1√
2

)
,γ′ =

(
−cosu√

2
, −sinu√

2
, 0

)
,
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‖γ′‖2 =
1

2
, and α′ · γ′ = (− sinu, cosu, 0) ·

(
−cosu√

2
, −sinu√

2
, 0

)
= 0. Thus

the striction curve of the first patch of hyperbolic paraboloid is σ1(u) = α(u) =

(cosu, sinu, 0).

For the second surface patch of hyperboloid of one sheet where a = b = c = 1, we

have X2(u, v) = (cos u, sinu, 0)+v (sinu, − cosu, 1), where α(u) = (cos u, sinu, 0)

and β(u) = (sinu, − cosu, 1). We have the following:

‖β‖ =
√

2, γ =

(
sinu√

2
, −cosu√

2
,

1√
2

)
, γ′ =

(
cosu√

2
,

sinu√
2
, 0

)
, ‖γ′‖2 =

1

2
, and

α′ · γ′ = (− sinu, cosu, 0) ·
(

cosu√
2
,

sinu√
2
, 0

)
= 0. Thus the striction curve of the

second patch of hyperbolic paraboloid is σ2(u) = α(u) = (cos u, sinu, 0).

We have that σ1(u) = σ2(u) = (cosu, sinu, 0) which is precisely the base curve

and it represents a unit circle centered at the origin in the xy-plane. In the case

of the hyperboloid of one sheet, we can conclude that the striction curve is unique

independently of the parametrizations of the surface patch.
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