
Nonparametric Bayesian Models Based on Asymmetric

Gaussian Distributions

Ziyang Song

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Quality Systems Engineering)

Concordia University

Montreal, Quebec, Canada

June 2020

© Ziyang Song, 2020



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Ziyang Song
Entitled: Nonparametric Bayesian Models Based on Asymmetric Gaussian

Distributions
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining commitee:

Dr. Chadi Assi Chair

Dr. Nizar Bouguila Supervisor

Dr. Farnoosh Naderkhani CIISE Examiner

Dr. Daria Terekhov External Examiner

Approved

Dr. Chadi Assi Graduate Program Director

2019 / 11 / 08

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science



Abstract

Nonparametric Bayesian Models Based on Asymmetric Gaussian
Distributions

Ziyang Song

Data clustering is a fundamental unsupervised learning approach that impacts several

domains such as data mining, computer vision, information retrieval, and pattern recog-

nition. Various clustering techniques have been introduced over the years to discover the

patterns. Mixture model is one of the most promising techniques for clustering. The design

of mixture models hence involves finding the appropriate parameters and estimating the

number of clusters in the data.

The Gaussian mixture model has especially shown good results to tackle this prob-

lem. However, the Gaussian assumption is not ideal for modeling asymmetrical data. For

achieving an accurate approximation, I investigate the asymmetric Gaussian distribution

which is capable of modeling asymmetric data.

A prevalent challenge researchers face when applying mixture models is the correct

identification of the adequate number of mixture components to model the data at hand.

Hence, in this thesis, I propose statistical algorithms based on asymmetric Gaussian mixture

models. I also present novel Bayesian inference frameworks to estimate parameters and

learn model structure.

Here, I thoroughly investigate the Bayesian inference framework, including Markov

chain Monte Carlo and variational inference approaches, to learn appropriate model struc-

ture and precisely estimate parameters. I also incorporate feature selection within the

frameworks to choose relevant features set and avoid noisy influence from uninforma-

tive features. Furthermore, I investigate nonparametric hierarchical models by introducing

Dirichlet process and Pitman-Yor process.
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Chapter 1

Introduction

1.1 Background

Clustering is a common unsupervised learning methodology for data analysis and has been

widely applied to uncover the structure of observations representing distinct groups. A

mixture model, one of most prevalent statistical clustering techniques, divides data into a

collection of homogeneous groups. This can be modeled by a density and the overall model

is represented by a weighted sum of a number of components. The Gaussian distribution

assumption has been extensively applied in many fields because it provides interpretable

results and is easily generalized to new tasks [1]. However, it is not always an adequate

choice since the shape of the distribution of the observations may not be strictly symmet-

ric [2]. Indeed, this is the case especially for natural images. For achieving an accurate

approximation, I investigate the asymmetric Gaussian distribution (AGD) which is capable

of modeling asymmetric data: AGD has left and right standard deviation parameters to

better control the shape of distribution to reflect the asymmetry of data [3].

Parameter estimation is one of the challenges required for the use of latent variable

models. Various algorithms have been studied to achieve this objective. The expectation

maximization (EM) algorithm is one of the well-known methods to estimate the param-

eters of density function. Nevertheless, the EM algorithm as a deterministic approach is

not guaranteed to converge to a global optimal due to vulnerability to initialization condi-

tions and overfitting problems. Practised solutions include Bayesian inference techniques

which are extensively discussed in approximating intractable distributions [4]. It provides

a robust theoretical framework to employ clustering algorithms. As such, Markov Chain
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Monte Carlo (MCMC) is one of the most prevalent methods to estimate parameters because

it is capable of precisely approximating a given distribution which lead to remarkable per-

formance [4] [5]. As another prevalent inference approach, variational inference, could

approximate the ideal distribution requiring relatively smaller amount of computational

time and resources compared with MCMC algorithms [6].

Several studies have been devoted to the automatic selection of the mixture components

number which best depicts the observations. Mixture models which allow the number of

components to grow to infinity as required to fit the data can be viewed as nonparametric

models [7]. I am interested in Bayesian nonparametric approaches for modeling, especially

those based on the Dirichlet process (DP). The DP allows unbounded growth of the number

of mixture components as necessary to fit the data, where the individual variables still

follow certain parametric distributions. Through DP based mixture models, it is possible

to determine the correct number of components and to extend a finite mixture model to an

infinite one. Thereby, I propose DP based infinite mixture model with Bayesian inference

framework.

On the other hand, theoretically, the higher the number of features used to represent

a given dataset, the better the clustering algorithm is expected to perform. In practice,

however, some features can be noisy, redundant, or uninformative. Thus, they can hinder

the clustering performance [8]. The presence of many irrelevant features introduces a bias

resulting in unreliable homogeneity measures. Feature selection is the process of reducing

the number of collected features to a subset of relevant features. Hence, it increases the

performance of models by eliminating noise in the data, improving model interpretation,

and decreasing the risk of overfitting [9]. Here, I consider a feature saliency approach

which consider feature selection as parameter estimation problem and recast probability

distribution as dependent and independent distributions [10]. Feature saliency is added

as new parameter to the conditional distribution of the mixture model and used to find

clusters embedded in feature subspace. Since feature saliency represents the probability of

belonging to a mixture-dependent distribution, it can be interpreted as the probability that

a feature is relevant.

In addition, I investigate the possibility of extending the proposed model to hierarchical

nonparameteric model which allows it to model grouped data with shared clusters. Within

the same group, each observation is drawn independently from a mixture model, and the

number of observations within each group may be different. The dependencies among

2



groups are caused by the assumption that the mixture models in different groups may share

mixture components. Under the settings of hierarchical modeling, parameters are shared

among groups, and the randomness of the parameters induces dependencies among differ-

ent groups. Hierarchical Bayesian models have been an attractive research topic and been

successfully applied in various fields such as language modeling, image segmentation, etc

[11]. A sound alternative to DP is Pitman-Yor process (PYP) which can be viewed as a

generalization to the DP prior for nonparametric Bayesian modeling [12]. I further extend

it to hierarchical Dirichlet process mixture and hierarchical Pitman-Yor process mixture.

1.2 Contributions

The main objective of the thesis is to demonstrate the advantage of asymmetric Gaussian

distribution and investigate thoroughly Bayesian inference framework. I also investigate the

extension of proposed model using nonparametric Bayesian approaches and, probabilistic

feature selection. The contributions of the thesis are listed as follows:

+ Data Clustering using asymmetric Gaussian mixture

I propose asymmetric Gaussian mixture which could accurately capture asym-

metry structure of data. I also extend the mixture model with nonparametric

prior to adjust components number according to the structure of the dataset.

Furthermore, I also introduce a feature selection framework for infinite mixture

model.

+ Introduction of hierarchical Bayesian learning for the proposed model

In this thesis, I consider MCMC and variational inference approaches. The

MCMC methodology includes Gibbs sampling and Metropolis-Hastings algo-

rithm and their efficiency is validated in Chapter 2 and Chapter 3. The varia-

tional inference based learning framework includes mean field variational infer-

ence and black box variational inference. Since black box variational inference

is gradient descent approach, it has to control the variance to ensure the con-

vergence. The effectiveness of the variational inference learning framework is

evaluated in Chapter 3, Chapter 4, and Chapter 5 on several models and differ-

ent applications.

3



+ Hierarchical nonparameteric Bayesian model for modelling grouped data

I introduce the Dirichlet process and Pitman-Yor process, which are popular

nonparameteric priors, to form hierarchical infinite mixture models. The pa-

rameters and structures of hierarchical infinite mixtures are learned by varia-

tional inference framework and validated on grouped datasets.

These contributions have been published in the International Conference on Image

Analysis and Recognition (ICIAR 2019) and IEEE Symposium Series on Computational

Intelligence (IEEE SSCI 2019). The contributions have been submitted and are under re-

view in Soft Computing, IET Image Processing and, Signal Processing journals.

1.3 Thesis Overview

o Chapter 1 introduces the concept of clustering and a brief overview of various con-

cepts related to the thesis. I also explain clearly the motivations behind the conducted

research work.

o In Chapter 2, I explain in detail the MCMC learning framework for infinite asym-

metric Gaussian mixture model. The efficiency of the proposed model is validated

by the challenging task of background subtraction and evaluated on several datasets.

o In chapter 3, I integrate a simultaneous feature selection algorithm within the pro-

posed infinite asymmetric Gaussian mixture. The MCMC based Bayesian inference

framework is presented to solve parameter estimation and structure learning prob-

lems. The experiments with various applications including dynamic textures cluster-

ing and scene categorization are described in detail.

o Chapter 4 describes the finite asymmetric Gaussian mixture model with variational

inference framework which includes mean-field variational inference and black box

variational inference. The model has been tested with challenging application.

o In chapter 5, I integrate simultaneous feature selection algorithm within infinite asym-

metric Gaussian mixture model. The Bayesian inference framework consists of

mean-field inference and black box variational inference. Since the gradient ascent

method lead to high variance, I propose variational reduction technique and reparam-

eterization trick to control the variance and ensure convergence.

4



o Chapter 6 describes the hierarchical Bayesian nonparametric model and statistical in-

ference framework which consists of several variational inference methods. Specif-

ically, the Dirichlet process and Pitman-Yor process are considered in the research.

The models have been tested via image clustering.

o In conclusion, I briefly summarize the contributions.

5



Chapter 2

Bayesian Learning of Infinite
Asymmetric Gaussian Mixture Models

In this chapter, I introduce an infinite asymmetric mixture model (IAGM) which provides

a better fit for asymmetric shaped observations. It estimates the parameters and chooses

the optimal number of components through the employment of Bayesian learning and the

extension of the finite asymmetric Gaussian mixture (AGM) to infinity. Furthermore, I

demonstrate the efficiency of the model by utilizing it for the background subtraction task.

the achieved results are comparable to three different methods in terms of precision, and

superior in terms of the recall metric.

2.1 Infinite Asymmetric Gaussian Mixture

2.1.1 Finite Asymmetric Gaussian Mixture

The definition of a finite AGM model with respect to observations, weights and probability

density is illustrated as follows:

p
(
X | Θ

)
=

N∏
i=1

M∑
j=1

πjp
(
Xi | ξj

)
(2.1)

whereX = (X1, ..., XN) is theN observations dataset, each observationXi = (Xi1, . . . ,

XiD) could be represented as D-dimensional random variable. M ≥ 1 is the number of

mixture components, Θ = (π1, ..., πM , ξ1, . . . , ξM) defines the complete set of parameters

fully characterizing the mixture model where π = (π1, . . . , πM) are the mixing weights

6



which must be positive and sum to one, and ξj is the set of parameters of mixture compo-

nent j.

The AGD for each component j, the probability density of each observation Xi p(Xi |
ξj) is then given by:

p(Xi | ξj) ∝
D∏
k=1

1

(Sljk)
− 1

2 + (Srjk)
− 1

2

×

exp
[
− Sljk(Xik−µjk)2

2

]
ifXik<µjk

exp
[
− Srjk(Xik−µjk)2

2

]
ifXik ≥ µjk

(2.2)

where ξj = (µj, Slj, Srj) is the parameter set for AGD with µj = (µj1, . . . , µjd),

Slj = (Slj1, . . . , Sljd) and Srj = (Srj1, . . . , Srjd). µjk, Sljk and Srjk are the mean, the

left precision and the right precision of the kth dimensional distribution. Here, I assume

independence so that the covariance matrix of Xi is diagonal matrix. This assumption

allows us to avoid costly computation during deployment.

I introduce the latent indicator variables Z = (Z1, . . . , ZN), Zi for each observation Xi

to indicate which component it belongs to. Zi = (Zi1, . . . , ZiM) where hidden label Zij
is assigned as 1 if Xi belongs to component j otherwise will be set to 0. The likelihood

function is then defined by:

p(X | Z,Θ) =
N∏
i=1

p(Xi | ξj)Zij (2.3)

Given the mixing weights π, for j = 1, . . . ,M , the indicators Z are given Multinomial

prior:

p(Z | π) = Multi(π) =
M∏
j=1

π
nj
j (2.4)

where nj is the number of observations that are associated with component j. The mix-

ing weights are considered to follow symmetric Dirichlet distribution with a concentration

parameter α/M :

p(π | α) ∼ Dir(
α

M
, ...,

α

M
) =

Γ(α)

Γ( α
M

)M

M∏
j=1

π
α
M
−1

j (2.5)

It then integrates out the mixing weights π to obtain the prior of Z:

p(Z | α) =

∫
p(Z | π)p(π | α)dπ =

Γ(α)

Γ(N + α)

M∏
j=1

Γ( α
M

+ nj)

Γ( α
M

)
(2.6)

7



The conditional prior for a single indicator is then denoted by:

p(Zij = 1 | α,Z−i) =
n−i,j + α

M

N − 1 + α
(2.7)

where the subscript−i defines all indexes except i, Z−i = (Z1, . . . , Zi−1, Zi+1, . . . , ZN),

N−i,j is the number of observations excluding Xi allocated to the component j.

Next, I extend the model to infinity by updating the posterior of indicators in Eq. (2.7)

with M →∞:

p(Zij = 1 | α,Z−i) =


n−i,j
N−1+α

, if n−i,j > 0

α
N−1+α

, if n−i,j = 0
(2.8)

where n−i,j > 0 occurs only when component j is represented. Thus, an observation

Xi is associated with an existing component by a certain probability proportional to the

number of observations already allocated to this component; while a new (when unrepre-

sented) component is proportional to α and N . Given the conditional prior in Eq. (2.7), the

conditional posterior is obtained by multiplying the prior with Eq. (2.3) resulting in:

p(Zij = 1 | ...) =


n−i,j
N−1+α

∏d
k=1 p

(
Xik | ξjk

)
, if n−i,j > 0

α
N−1+α

∫
p
(
Xi | ξj

)
p
(
ξj | λ, r, βl, βr, wl, wr)dξj, if n−i,j = 0

(2.9)

where the hyperparameter α is defined by an inverse Gamma prior with shape a and

mean b chosen as follows:

p(α−1) ∝ α−
3
2 exp(− 1

2α
) (2.10)

Given the likelihood of α in Eq. (2.6), the posterior is then:

p(α |M,N) ∝
α
M−3

2 exp(− 1
2α

)Γ(α)

Γ(N + α)
(2.11)

The conditional posterior for α depends only on number of observations, N , and the

number of components, M . The logarithmic representation of posteriors is log-concave, so

it can sample α by using the Adaptive Rejection Sampling (ARS) method [13].
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2.1.2 Bayesian Learning

In this section, I describe an MCMC-based approach for learning the proposed IAGM

model. The means of the components µjk are given Gaussian prior with hyperparameters

λ and r as follows:

p(µjk | λ, r) ∼ N (λ, r−1) . (2.12)

where the mean, λ, and precision, r, hyperparameters are common to all components in

a specific dimension. λ is given Gaussian prior with mean e and variance f , and r is given

Gaussian prior and inverse Gamma prior with shape parameter g and mean parameter h

respectively:

p(λ) ∼ N (e, f) (2.13)

p(r) ∼ Γ(g, h) (2.14)

where e and f will be µy and σ2
y , the mean and variance of the observations which are

used for the parameters of the Gaussian prior. The Gamma prior uses constant values 1 as

shape g and σ2
y as mean h.

The conditional posterior for the mean µjk is then computed by multiplying the likeli-

hood from Eq. (2.3) by the prior Eq. (2.12) as follows:

p(µjk | Xk, Sljk, Srjk, λ, r) ∝ N (
Sljk

∑n
i:Xik<µjk

Xik + srjk
∑n

i:Xik≥µjk Xik + rλ

r + psljk + (nj − p)srjk
,

1

r + psljk + (nj − p)srjk)
(2.15)

where Xk is the kth dimensional observations allocated to component j. nj is the

count number of observations Xk and p is the count number of observations Xk which are

less than µjk. For the hyperparmeters λ and r, it uses hyperposteriors to update parame-

ters. Eq. (2.12) plays the role of the likelihood function. As such, it combines Eq. (2.12),

Eq. (2.13) and Eq. (2.14) to obtain the following posteriors:

p(λ | µ1k, . . . , µMk, r) ∝ N (
µyσ

−2
y + r

∑M
j=1 µjk

σ−2
y +Mr

,
1

σ−2
y +Mr

) (2.16)
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p(r | µ1k, . . . , µMk, λ) ∝ Γ(M + 1,
M + 1

σ2
y +

∑M
j=1(µjk − λ)2

) (2.17)

The component precisions Sljk and Srjk are given Gamma priors with common hyper-

parameters β and w−1 as follows:

p(Sljk | β, w) ∼ Γ(β, w−1), p(Srjk | β, w) ∼ Γ(β, w−1) (2.18)

where β is given inverse Gamma prior with shape parameter s and mean parameter t,

and w is given Gamma prior with u and v:

p(β−1) ∼ Γ(s, t) (2.19)

p(w) ∼ Γ(u, v) (2.20)

where I set both of mean and shape parameters of hyperprior β as constant value 1, and

mean and shape parameters of hyperprior w are defined as 1 and σ2
y respectively. The con-

ditional posterior distribution for Sljk and Srjk are obtained by multiplying the likelihood

from Eq. (2.3) by the prior Eq. (2.18) as follows:

p(Sljk | Xk, µjk, Srjk, β, w) ∝ (Sl
− 1

2
jk + Sl

− 1
2

jk )Sl
β
2
−1

jk

exp
[
−
Sljk

∑n
i:Xik<µjk

(xik − µjk)2

2
− wβSljk

2

]
(2.21)

Random samples of posteriors can be drawn by using the MCMC method. In this

chapter, I use Metropolis-Hastings algorithm to sample precision parameters. For the hy-

perparameters β and w, Eq. (2.18) plays the role of the likelihood function. Combining

Eq. (2.12), Eq. (2.19), and Eq. (2.20), I obtain the following posteriors:

p(βl | Sl1k, . . . , SlMk, wl) ∝ Γ(
βl
2

)−M exp(− 1

2βl
)(
βl
2

)
Mβl−3

2

M∏
j=1

(wlSljk)
βl
2 exp(−βlwlsljk

2
)

(2.22)

p(wl | Sl1k, . . . , SlMk, βl) ∝ Γ(Mβl + 1,
Mβl + 1

σ−2
y + βl

∑M
j=1 Sljk

) (2.23)
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where I only show the left side of β and w parameters with similar posteriors for the

right side parameters. The posterior distribution of precision β is not a standard form, but

its logarithmic posterior is log-concave. Therefore, it can sample from the distribution for

log(β) using ARS technique and transform the resultant to get values for β.

The proposed complete algorithm can be summarized by the following:

Algorithm 1 Infinite Asymmetric Gaussian Mixture
1: procedure
2: Initialize assignments and parameters.
3: loop:
4: Update mixture parameters µj , Sljk and Srjk from posteriors in Eq. (2.15) and

Eq. (2.21).
5: Update hyperparameters λ, r, β, w and DP concentration parameter α from poste-

riors in Eq. (2.16), (2.17), (2.22), (2.23) and (2.11).
6: Update the indicators conditioned on the other indicators and the hyperparameters

from Eq. (2.9).
7: The convergence criteria is reached when the difference of the current value of joint

posteriors and the previous value is less than 10−4. Otherwise, repeat above procedures
until convergence.

2.2 Experimental Setup

2.2.1 Background Subtraction Application

In this section, I employ the proposed IAGM model for video background subtraction with

a pixel-level evaluation approach as in [14]. The background subtraction methodology

starts off by constructing the model using the proposed IAGM. After applying the learning

algorithm for the model, it discriminates between the mixture components for the repre-

sentation of foreground and background pixels for each of the new input frames.

Assume that each video frame has P pixels such that ~X = (X1, . . . , XP ) then each

pixel X is assigned as a foreground or background according to the trained IAGM model

p
(
X | Θ

)
=
∏N

i=1

∑M
j=1 πjp

(
Xi | ξj

)
. Components that occur frequently, i.e. with high π

value, and with a low standard deviation S−
1
2 are modeled as the background.

Accordingly, the value of πj/(||Sl
− 1

2
j || + ||Sr

− 1
2

j ||) is used to order the mixture com-

ponents, where πj is the mixing weight for component j, ||Sl
− 1

2
j || and ||Sr

− 1
2

j || are the
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respective norms of left and right standard deviations of the jth component [14]. The first

B number of components are chosen to model the background, with B estimated as:

B = argmin
b

b∑
j=1

πj > T (2.24)

where T is a measure of the minimum proportion of the data that represents the back-

ground in the scene, and the rest of the components are defined as foreground components.

2.2.2 Results and Discussion

I apply the proposed algorithm to the Change Detection 2012 dataset [15]. The dataset

consists of six categories with a total of 31 videos totaling 90,000 frames. Each of the

categories (baseline, dynamic background, camera jitter, shadows, intermittent object mo-

tion, and thermal) contains around 4 to 6 different video sequences from low-resolution IP

cameras.

In this chapter, I have selected five videos from the Change Detection dataset to evaluate

the proposed methodology. I initialize the IAGM by incrementally increasing the threshold

multiple times and choosing the optimum parameter setting. I adopt the threshold factor

T = 0.9 in the method. I set the maximum component number for the algorithm as 9 and

the standard deviation factor K = 2. Evaluation of the proposed IAGM can be observed

in the confusion matrices in Figure. 2.1. Moreover, Figure. 2.2 shows visual results of the

proposed method on sample frames in the Library and Street Light video sequences.

I also compare the results with three other methods from the literature. These include

the Gaussian mixture model-based background subtraction algorithms by Sauffer et al. [14]

and Zivkovic [16] as well as the finite asymmetric Gaussian mixture model by Elguebaly et

al. [17]. I evaluate the performance of the algorithms in terms of the recall and the precision

metrics.

Recall =
TP

TP + FN
(2.25)

Precision =
TP

TP + FP
(2.26)
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Table 2.1: Experimental results for the background subtraction application.

Stauffer Zivkovic Elguebaly IAGM
Boulevard

Recall 83.21% 79.77% 79.54% 84.72%
Precision 40.02% 43.79% 61.13% 55.80%

Abandoned Box
Recall 45.74% 45.64% 45.18% 81.53%

Precision 65.52% 62.14% 67.41% 56.23%
Street Light

Recall 32.25% 33.94% 30.33% 57.41%
Precision 89.16% 92.47% 97.56% 99.99%
Sofa
Recall 51.62% 51.41% 59.90% 53.56%

Precision 85.92% 89.25% 92.52% 93.41%
Library

Recall 28.00% 28.68% 31.33% 94.74%
Precision 84.76% 81.76% 94.66% 86.52%

where TP is the total number of true positives correctly identified by approaches, FN is

the number of false negatives, and FP represents the number of false positives. The results

can be seen in Table. 2.1.

As can be observed in Table. 2.1, the proposed IAGM mostly outperforms the other

approaches in terms of the recall metric, while achieving comparable precision results. For

instance, IAGM attains better recall results for the Street Light video sequence with a near

perfect precision. This clearly demonstrates the effectiveness of the proposed model.

In particular, the approach detects more foreground pixels; most of which are clus-

tered correctly. This ensures comparable precision results compared with the other algo-

rithms. The method does not remarkably improve the precision metric due to the sensitivity

of the proposed method to the change in environments. With higher number of detected

foreground pixels, the approach shows significant improvement in the recall metric. This

improvement is especially distinct for the Library video.

These improvements are due to the nature of the IAGM that is capable of accurately

capturing the asymmetry of the observations. This higher flexibility of AGD allows the

incorporation of the different shape distributions of objects. Furthermore, the extension to

the infinite mixture using the DP with a Chinese restaurant process construction increases

adaptability of the proposed model. Hence, I addressed both the parameter learning and the

component number determination challenges. These advantages provide a more efficient

13



Figure 2.1: Confusion matrices of the proposed method employed for background subtrac-
tion on the boulevard (top left), abandoned box (top center), street light (top right), sofa
(bottom left), and library (bottom right) videos where FG denotes the foreground and BG
denotes the background.

Figure 2.2: A sample frame from Street Light (left) and Library (right) video sequences
and the detected foreground object respectively.

model for background subtraction.
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Chapter 3

Bayesian Learning for Infinite
Asymmetric Gaussian Mixture with
feature selection

In this chapter, I integrate infinite mixture model with a feature selection technique for the

purpose of choosing the set of features that are most informative in order to construct an

appropriate model in terms of clustering accuracy. I report results based on experiments

that concern dynamic textures clustering as well as scene categorization. These show the

merits of the developed approach.

3.1 Infinite Asymmetric Gaussian Mixture with Feature

Selection

In this section, I incorporate IAGM model, which is proposed in chapter 2, with feature

selection algorithm. I start by introducing the concept of feature saliency and represent the

proposed model combined with feature selection.

3.1.1 Feature Saliency

In this section, I introduce the concept of feature saliency and consider the feature selection

problem as a parameter estimation problem [10]. It is natural to consider that different

features may have different weights for each of the mixture components. Thus, I define
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feature saliency as the weight of feature importance.

It assumes that a feature is relevant if it follows a mixture-dependent distribution AGD.

Otherwise, it may be modeled as a mixture-independent background distribution. In this

chapter, I propose a Gaussian assumption for the background distribution. By introducing

latent relevant indicator φi = (φi1, . . . , φiM) with φij = (φij1, . . . , φijD), I could then

infer if a given feature is relevant or not. The binary indicator φijk = 1 if feature k in

observation Xi is relevant for component j, otherwise φijk = 0. Thus, it is possible to

rewrite the probability density function as follows:

p(X | Θ, ξirr,Φ) =
N∏
i=1

M∑
j=1

πj

D∏
k=1

[
p(Xik | ξjk)φkp(Xik | ξirrjk )1−φk

]
(3.1)

where the ξirr = (ξirr1 , . . . , ξirrM ) represents the set of parameters for background Gaus-

sian distribution with ξirrj = (µirrj , (Sirrj )−1), µj = (µj1, . . . , µjD), Sj = (Sj1, . . . , SjD).

µirrjk and Sirrjk represent the mean and precision for Gaussian distribution, respectively.

Feature saliency defined as ρ = (ρ1, . . . , ρM) such that ρj = (ρj1, . . . , ρjD). ρjk =

p(φj = 1) represents the prior probability that the feature k is relevant in mixture compo-

nent j. Thus, it could recast the likelihood function after introducing the feature saliency

ρ. This can be denoted by:

p(Xi | ΘF ) =
M∑
j=1

πj

D∏
k=1

(ρjkp(Xik | ξjk) + (1− ρjk)p(Xik | ξirrjk )) (3.2)

where ΘF = (Θ, ρ, ξirr) is the full set of parameters of the mixture model after in-

troducing feature saliency. Eq. (3.2) offers sound generative interpretation for the model.

First, the model selects the component j by sampling from a Multinomial distribution with

mixing proportions π = (π1, . . . , πk). Then, for each feature dimension k = 1, . . . , D, it

follows a Bernoulli distribution with feature saliency ρjk; if successful, it uses the relevant

mixture component p( Xik | ξjk) to generate feature k; otherwise, the background compo-

nent p(Xik | ξirrjk ) will be used. Therefore, the model of previous chapter could be viewed

as special case when all of the features are relevant.

The conditional posteriors of DP mixture could be rewritten after bringing feature
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saliency into model as:

p(Zi = j | ...) =


n−i,j
N−1+α

∏D
k=1(ρjkp(Xik | ξjk) + (1− ρjk)p(Xik | ξirrjk )) ifn−i,j > 0

α
N−1+α

∫
p(ξj | · · · )p(ξirrj | · · · )× p(Xi | ξj)dξj ifn−i,j = 0

(3.3)

It could use these posteriors to generate new components or allocate observations. For

latent allocation variables Z = (Z1, . . . , ZN), πj = p(Zi = j) represents the prior prob-

ability that observation Xi is associated with component j. It could obtain the posterior

probability that the observation Xi is allocated to component j conditional on having ob-

servation Xi to be:

p(Zi = j | Xi) =
p(Xi | ΘF , Zi = j)

p(Xi | ΘF )
∝ πj

D∏
k=1

(ρjkp(Xik | θjk) + (1− ρjk)p(Xik | θirrjk ))

(3.4)

Latent relevancy variable φijk indicates whether the feature k is relevant for component

j given the observation Xi. ρj = p(φijk = 1) represents the prior probability that the

feature k is relevant for component j given observation Xi. The posterior probability that

the feature k is relevant for component j conditioned on Xi is given by:

p(φijk = 1, Zi = j | Xi) = p(Zi = j | Xi)
ρjkp(Xik | ξjk)

ρjkp(Xik | ξjk) + (1− ρjk)p(Xik | ξirrjk )

(3.5)

Posteriors for irrelevant features could be deduced in the same way.

p(φijk = 0, Zi = j | Xi) = p(Zi = j | Xi)
(1− ρjk)p(Xik | ξirrjk )

ρjkp(Xik | ξjk) + (1− ρjk)p(Xik | ξirrjk )

(3.6)

The likelihood function of X conditioned on the complete set of mixture parameters

can be obtained. It will be used for further Bayesian inference derivation:

p(X | Z,Φ, ξ, ξirr) =
N∏
i=1

D∏
k=1

[
p(Xik | ξjk)φkp(Xik | ξirrjk )1−φk

]
(3.7)
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3.2 Non-parametric Bayesian Inference

In the Bayesian context, the most important step is the determination of the posteriors

for inference. In this section, I describe a MCMC-based inference approach to learn the

proposed model. The goal of inference is to approximate the posteriors of parameters which

absorb the information to update the priors. Thus, I define a hierarchical Bayesian model

and use conjugacy to develop the appropriate posteriors. The parameters are inferred based

on a MCMC method.

3.2.1 Estimation for µjk and µirrjk

I consider that the relevant and irrelevant mean parameters µjk and µirrjk follow Gaussian

priors with common hyperparameters mean λ and precision r respectively as follows:

p(µjk | λ, r) ∼ N (λ, r−1) p(µirrjk | λirr, rirr) ∼ N (λirr, (rirr)−1) (3.8)

where the hyperparameters mean λ and precision r are considered as common to all

components in a specific dimension k. λ and r are given Gamma and inverse Gamma

priors with the following shape and mean hyperparameters:

p(λ) ∼ N (e, f) p(r) ∼ γ (g, h) (3.9)

where λ, λirr, r, rirr have same prior forms and I will omit replicated representation.

The conditional posteriors for µjk and µirrjk are obtained by combining the likelihood in

Eq. (3.7) and the priors in Eq. (3.8).

p(µjk | . . . ) ∝ p(µjk | λ, r
)
p(X | Z,Φ, ξ, ξirr)

p(µirrjk | . . . ) ∝ p(µirrjk | λirr, rirr)p(X | Z,Φ, ξ, ξirr) (3.10)

For the posteriors of hyperparameters λ and r, Eq. (3.8) plays the role of likelihood and

combined with priors Eq. (3.9) to obtain:
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p(λ | . . . ) ∝ p(λ)
M∏
j=1

p(µjk | λ, r)

p(r | . . . ) ∝ p(r)
M∏
j=1

p(µjk | λ, r) (3.11)

3.2.2 Estimation for Sljk, Srjk and Sirr
jk

The precision parameters Sljk, Srjk and Sirrjk are endowed with Gamma priors of common

hyperparameters β and w respectively:

p(Sljk | βl, wl ∼ γ(βl, w
−1
l )

p(Srjk | βr, wr) ∼ γ(βr, w
−1
r )

p(Sirrjk | βirr, wirr) ∼ γ(βirr, (wirr)−1) (3.12)

where the hyperparameters β, w are common to all components in specific dimension

k. β and w are given Gamma and inverse Gamma priors with the respective shape and

mean hyperparameters:

p(β−1) ∼ γ (s, t) p(w) ∼ γ (u, v) (3.13)

where βl, βr, βirr, wl, wr, wirr have the same prior forms. The conditional posteriors

for Sljk, Srjk and Sirrjk are obtained by combining the likelihood in Eq. (3.7) and the priors

in Eq. (3.12) as follows:

p(Sljk | . . . ) ∝ p(Sljk | βl, wl)p(X | Z,Φ, ξ, ξirr)

p(Srjk | . . . ) ∝ p(Srjk | βr, wr)p(X | Z,Φ, ξ, ξirr)

p(Sirrjk | . . . ) ∝ p(Sirrj | βirr, wirr)p(X | Z,Φ, ξ, ξirr) (3.14)

For the posteriors of hyperparameters β and w, Eq. (3.12) plays the role of likelihood

and combined with priors Eq. (3.13), I can then obtain the following:
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p(β | . . . ) ∝ p(β)
M∏
j=1

p(Sjk | β, w)

p(r | . . . ) ∝ p(w)
M∏
j=1

p(Sjk | β, w) (3.15)

3.2.3 Estimation for ρ

Feature saliency ρjk has support over [0, 1] and considered naturally as Beta distribution

with common hyperparameters a and b as following:

p(ρjk | a, b) ∼ Beta (a, b) (3.16)

where the shape hyperparameters a and b are common to all components and follow

Gamma priors:

p(a) ∼ γ (δ1, δ2) p(b) ∼ γ (ϕ1, ϕ2) (3.17)

I assume that the latent relevancy parameter φjk follows Bernoulli distribution with ρjk,

so I have:

p(φjk | ρjk) ∼
N∏
i=1

ρ
φijk
jk (1− ρjk)(1−φijk) = ρ

njk
jk (1− ρN−njkjk ) (3.18)

where njk =
∑N

i=1 Iφjk=1 represents the amount of feature k relevant for component

j given all of the observations. Considering Eq. (3.16) as the likelihood, I can obtain the

conditional posterior by multiplying the prior in Eq. (3.18):

p(ρjk | . . . ) ∼ p(φjk | ρjk)p(ρjk | a, b) (3.19)

Conditional posteriors can then be obtained by combing Eq. (3.16) and Eq. (3.17) as

follows:

p(a | . . . ) ∝ p(a)
M∏
j=1

p(ρjk | a, b)

p(b | . . . ) ∝ p(b)
M∏
j=1

p(ρjk | a, b) (3.20)
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3.2.4 Complete Algorithm

Following the inference approach above, I propose a MCMC based algorithm for inferring

the hierarchical Bayesian mixture model. Among Monte Carlo methods, Gibbs sampling

is one of the most popular methods, and it is also widely used for complicated posterior

sampling. I also use Metropolis-Hastings algorithm to generate non-standard posteriors.

The Gibbs sequence converges to the joint posterior distribution. The algorithm can be

summarized in Algorithm 2.

Algorithm 2 Infinite Asymmetric Gaussian Mixture with Feature Selection
1: procedure
2: Initialization:
3: Initialize the truncation levels K and T .
4: repeat:
5: Update the latent relevancy variables φ from Multivariate Bernoulli distribution

with probability p
(
φijk = 1, Zi = j | Xi

)
in Eq. (3.5).

6: Update mixture parameters µ, µirr, Sl, Sr, Sirr and ρ from conditional posteriors
in Eq. (3.10), Eq. (3.14) and Eq. (3.19).

7: Update hyperparameters λ, r, β, w, a, b from conditional posteriors and update DP
concentration parameter α from conditional posterior in Eq. (3.11), Eq. (3.15) and Eq.
(3.20) and Eq. (2.11).

8: Update the latent indicator variables Z in Eq. (3.3).
9: Update the component number M .

10: The convergence criteria is reached when the difference of the current value of
joint posteriors and the previous value is less than 10−4. Otherwise, repeat step 1-5
until convergence.

11: until convergence

3.3 Experimental Results

In this section, I validate the algorithm on several challenging experiments; particularly,

dynamic textures clustering and scene categorization. I compare the results with multiple

state-of-the-art methods.

Among these applications, the hyperparameters chosen are e = µy, f= σ2, g=2, h= 2
σ2 ,

s=0.5, t=2, u=0.5, v= 2
σ2 , δ1=2, δ2=0.5, ϕ1=2, ϕ2=0.5, κ=0.5, and η=2. µx and σ2

x are the

mean and variance of observations.
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Figure 3.1: Sample frames from the DynTex database.

Approach IGM IDM IGDM IBLM IAGM
Acc (%) 74.87 77.75 80.62 83.37 88.79

Table 3.1: Average accuracy of different algorithms for dynamic textures clustering.

3.3.1 Dynamic Textures Clustering

Dynamic textures are the temporal extension of spatial textures which are defined as se-

quences of images of moving scenes that exhibit certain stationarity properties in time

(sea-waves, smoke, foliage, whirlwind) [18]. Dynamic textures have drawn tremendous

attention during the past years due to their application in several domains in image process-

ing and pattern recognition, such as motion classification, video registration, and computer

games [19]; [20]. In the experiment, I apply the proposed IAGM with simultaneous feature

selection for clustering dynamic textures with a representation of LBP-TOP features.

I carry out the experimentation on the challenging dynamic textures dataset; Dyn-

Tex [21], for evaluating the performance of the algorithm. This dataset contains over

650 dynamic texture video sequences from several categories. In the case, I use a sub-

set of video sequences from 8 different categories: candle, flag, flower, fountain, grass,

sea, smoke and tree. Each category has about 20 video sequences. The sample frames

from each category are shown in Figure. 3.1. As a preprocessing step, I extract LBP-TOP

descriptors from the selected video sequence.

In the experiment, I adopt the parameter choice of 4,4,4,1,1,1 as suggested in [22].

The chosen setting of the LBP-TOP descriptor achieves a good performance while it also

provides a comparative shorter 48-length feature vector.
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Figure 3.2: Confusion matrix of the IAGM with feature selection for the DynTex database.
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Approach GMM-EM GMM-RPEM prob SPM BOW MLE-Scene MM-Scene IAGM
Acc (%) 69.51 69.76 63.88 66.00 71.57 69.87 71.70 73.33

Table 3.2: Average accuracy of different algorithms for scene categorization.

Obtained features are modeled using proposed IAGM algorithm. In order to evaluate

the performance of the proposed method, I compare the proposed approach with other

methods; infinite Beta-Liouville mixture, infinite generalized Dirichlet mixture, infinite

Dirichlet mixture, and infinite Gaussian mixture models. I run these approaches 30 times

and get average results for validating the performance. The averages of the clustering

accuracy can be observed in Table. 3.1. Figure. 3.2 shows the confusion matrix for the

dataset using IAGM with feature selection.

According to the results, IAGM with feature selection approach outperforms other

methods in terms of the highest categorization accuracy rate (87.02%). It shows signifi-

cant improvement compared with other methods because it could successfully distinguish

6 categories leading to a higher overall accuracy

The results of dynamic texture clustering demonstrate the advantage of applying mix-

ture model which includes asymmetry characteristics of observations for modelling non-

standard shaped observations. Meanwhile, simultaneously performing feature selection

allows for the inclusion of background noise while accurately representing important fea-

tures that contribute to better performance.

3.3.2 Scene Categorization

Humans are proficient at perceiving, recognizing and understanding natural scenes. The

representation of scene images has drawn considerable interests in recent years. In this

section, I apply the proposed algorithm to the challenging scene categorization task. Thus,

I divide the approach into three parts: feature extraction, image representation, and scene

classification.

In this application, I use the UIUC sports event dataset [23] to validate the performance

of the algorithm. This dataset consists of 8 different sport event classes: rowing (250

images), badminton (200 images), polo (182 images), bocce (137 images), snowboarding

(190 images), croquet (236 images), sailing (190 images), and rock climbing (194 images).

Fig. 3.3 demonstrates its diverse nature.

I represent each image by a collection of local image patches. Particularly, I adopt
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Figure 3.3: Sample frames from UIUC sport event dataset. the samples show the diversity
of background and complexity of information

Figure 3.4: Confusion matrix of the the IAGM with feature selection for the UIUC sport
event dataset
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scale-invariant feature transform (SIFT) descriptors of 16 × 16 pixel patches computed

over a grid with spacing of 8 pixels. Then, I employ bag of visual words (BoVW) approach

to have an overall representation of each image. I then use k-means algorithm to cluster the

training dataset in a vocabulary of V visual words. Each SIFT keypoint will be allocated to

the nearest vocabulary in codebook. The points in the image can be approximated by each

of the visual words. Thus, each image can be represented as a frequency histogram over the

V visual words. Then, I use IAGM with feature selection model to classify the processed

data. For each sport event class, I randomly select 70 images as a training and 60 images

as a testing. I run the proposed algorithm 30 times to obtain the average accuracy results

for comparison.

In order to demonstrate the advantages of the algorithm, I compared the model with a

number of state-of-the-art approaches within similar area. These approaches include Gaus-

sian mixture model with Expectation Maximization algorithm (GMM-EM) [10], Gaus-

sian mixture model with Rival Penalized Expectation Maximization (GMM-RPEM) [24],

GIST [25], multi-class supervised Latent Dirichlet Allocation and multi-class supervised

Latent Dirichlet Allocation with annotations (probabilistic) [26], Spatial pyramid matching

(SPM) [27], bag of keypoints (BOK) [28], maximum likelihood estimation Scene (MLE-

Scene) and Max-Margin Scene (MM-Scene) [29]. The evaluation results are shown at

Table. 3.2. Fig. 3.4 displays the confusion matrix for IAGM applied on sport dataset.

We can observe from the results that the proposed IAGM with simultaneous feature

selection outperforms other approaches under consideration and provides better average

accuracy results for the task of scene categorization.
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Chapter 4

Variational Inference for Finite
Asymmetric Gaussian mixture

In this chapter, I consider a finite mixture model based on AGD which provides a better fit

for the data. I apply a variational learning framework to estimate the parameters and adjust

model complexity automatically. I handle the problem of inferring non-conjugate variables

by introducing gradient ascent inference method.

4.1 Finite Asymmetric Gaussian Mixture

In this chapter, the definition of the AGD comes with standard deviation parameters instead

of with precision parameters which appear in previous chapters due to the convenience of

this setting for variational Bayes inference. Mathematically, this is denoted as follows:

p(Xi | ξj) ∝
D∏
k=1

1

σljk + σrjk
×


exp

[
− (Xik−µjk)2

2σl
2
jk

]
ifXik<µjk

exp
[
− (Xik−µjk)2

2σr2jk

]
ifXik ≥ µjk

(4.1)

where ξj = (µj, σlj, σrj) is the complete set of parameters for AGD with µj =

(µj1, . . . , µjD), σlj = (σlj1, . . . , σljD), and σrj = (σrj1, . . . , σrjD). µjk, σljk and rjk

are the mean, the left and right standard deviations for the kth-dimensional distribution,

respectively. I still consider each dimension of observation Xi as independent and thus

its covariance matrix is diagonal. This assumption reduces the computational time during

deployment.
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The latent indicator variables Z, Z = (Z1, . . . , ZN), indicate which components the

observations belong to. Zi = (Zi1, . . . , ZiM) and each element Zij is assigned value 1

when the observation Xi is associated with component j; otherwise, it is 0. The mixing co-

efficient πj = p(Zi = j), j = {1, . . . ,M} specifies the probability that an observation Xi

is allocated to component j. Hence, the marginal distribution over Z given a Multinomial

prior is as follows:

p(Z | π) ∼ Multi(π) =
N∏
i=1

M∏
j=1

π
I(Zi=j)
j (4.2)

I choose a Dirichlet distribution prior over the mixing coefficients π:

p(π) = Dir(π | α0) =
Γ(
∑M

j=1 α0)∏M
j=1 Γ(α0)

M∏
j=1

πα0−1
j (4.3)

where by symmetry I choose the same parameter α0 for each component. I assume that

µ follows a Gaussian distribution with mean λ and precision r, i.e. the inverse variance

of Gaussian distribution. The standard deviations σl and σr follow a Gaussian distribution

with a mean value whose value is set experimentally and a high value standard deviation

setting [30]:

p(µjk | λ, r) ∼ N (λjk, rjk)

p(σljk | ml, sl) ∼ N (mljk, s
2
ljk)

p(σrjk | mr, sr) ∼ N (mrjk, s
2
rjk) (4.4)

4.2 Variational Inference Framework

4.2.1 Mean field Variational Approximation

In this section, I use variational inference to closely approximate the parameter set w =(
Z, π, µ, σl, σr

)
of the mixture. I consider the problem of calculating the posterior density

p(w | x) given the model evidence p(x) which is hard to compute with latent parameter set

w [31]. The explicit rationale behind analytical intractability is that the evidence term is

usually hard to compute.
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The idea behind variational inference is to approximate the posterior p(w | x) with

variational distribution q(w) from a constrained family of distributions. The objective is

to adopt the closest one in a given variational distribution family. I choose the Kullback-

Leibler (KL) divergence to measure the distance between the posteriors and the variational

distributions:

KL
(
q(w) ‖ p(w | x)

)
= Eq[log q(w)]− Eq[log p(w | x)] (4.5)

Thus, variational inference amounts to solving an optimization problem: choosing the

variational parameters that minimizes KL divergence. The family of distributions is chosen

to make the optimization problem tractable.

However, the divergence is difficult to compute since it requires finding the distribution

that I wish to approximate. I then expand the KL divergence and find the evidence lower

bound (ELBO) in addition to the log marginal distribution of the observations as follows:

KL
(
q(w) ‖ p(w | x)

)
=Eq[log q(w)]− Eq[log p(w, x)] + log p(x)

=L(w) + log p(x) (4.6)

As such, it minimizes the ELBO that is equal to log marginal likelihood term, which is

constant with respect to variational distribution q(w), minus KL divergence. It reaches a

maximum when q(w) = p(w | x); the KL divergence is zero.

Typically, q will be constrained to a family of simpler distributions, and the ELBO is

optimized to find the distribution in the family that is closest (in terms of KL divergence)

to the true posterior. Here, I follow the mean field assumption [32]. This approach assumes

independence between latent variables to factorize the family of variational distributions

so that the true posterior is easy to compute. Then, the variational distributions have the

factorized form:

q(Z, π, µ, σl, σr) =
M∏
j=1

q(πj)
N∏
i=1

q(Zi)
M∏
j=1

D∏
k=1

q(µjk)q(σljk)q(σrjk) (4.7)

where q(πj) is a Dirichlet prior with parameter αj , q(Zi) is a Multinomial prior with

parameter φ and q(µjk) is considered as a Gaussian distribution with mean m and variance
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Σ. I also define the variational distributions of σl and σr as a Gaussian with mean ι and

standard deviation υ:

q(πj) ∼ Dir(π | αj)

q(Zi) = Multi(φi)

q(µjk) = N (mjk,Σjk)

q(σljk) = N (ιljk, υ
2
ljk)

q(σrjk) = N (ιrjk, υ
2
rjk) (4.8)

For the proposed finite AGM and using the mean field assumption, the ELBO is:

L(Θ) =
N∑
i=1

(
Eq[log p(Xi | Zi, µ, σl, σr)] + Eq[log p(Zi)]

)
+ Eq[ln p(π)]

+ Eq[log p(µ)] + Eq[log p(σl)] + Eq[log p(σr)]− Eq[log q(π, Z, µ, σl, σr)] (4.9)

By applying Eq. (4.9) to each factor, I obtain the optimal solutions for the factors of

the variational posteriors. I next present the explicit coordinate ascent variational infer-

ence (CAVI) to optimize the ELBO in Eq. (4.9) where I find the updates of the variational

parameters of mixing proportions V and indicators Z are:

φij =
rij∑
j rij

(4.10)

rij = exp{Eq[log πj]−
D∑
k

Eq[log(σljk + σrjk)]

−
D∑

k,Xik<µjk

X2
ik + Eq[µ

2
jk]− 2XikEq[µjk]

2Eq[σ2
ljk]

−
D∑

k,Xik≥µjk

X2
ik + Eq[µ

2
jk]− 2XikEq[µjk]

2Eq[σ2
rjk]

}
(4.11)

αj = α0 +
N∑
i=1

φij (4.12)

The variational updates of latent variable µ can be obtained as:
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Σjk =
( N∑
i,Xik<µjk

φij
Eq[σ2

ljk]
+

N∑
i,Xik≥µjk

φij
Eq[σ2

rjk]
+ r
)−1

mjk = Σjk

( N∑
i,Xik<µjk

φij
Xik

Eq[σ2
ljk]

+
N∑

i,Xik≥µjk

φij
Xik

Eq[σ2
rjk]

+ λr
)

(4.13)

It is intuitive to update the parameters (π, Z, µ) but closed forms are not achieved for the

standard deviation variables (σl, σr) because of non-conjugate characteristics. Although

there are multiple solutions for non-conjugate models, such as Delta Method Variational

Inference proposed in [33], Taylor Expansion cannot be used to approximate intractable

density of (σl, σr) because it is unviable to get first-order derivative solution. Thus, I con-

sider a gradient-based optimization method, the Black Box variational Inference (BBVI),

to approximate standard deviation parameters [34].

4.2.2 Black Box Variational Inference

For the BBVI, the variational lower bound of probabilistic model associated with parameter

σ = (σl, σr) is given as follows:

L(σ) = Eq(σ)[log p(x, σ)− log q(σ | θ)] (4.14)

where θ is a set of free parameters of variational distribution q(σ | θ). the objective is

to accurately approximate p(x | σ) with a setting of θ and optimize the ELBO. In BBVI, I

use stochastic optimization approach to maximize the ELBO based on the noisy estimation

of its gradient.

Given a certain learning rate ρt following Robbins-Monro conditions where t denotes

the current iteration, it is possible to guarantee that the optimized function f(x) converges

to a maximum:

xt+1 ← xt + ρtht(xt) (4.15)

where ht(xt) is a realization of the random variable H(x) whose expectation is the

gradient of objective f(x). The derivative of the ELBO with respect to the variational

distribution can be obtained:

∇θL(σ) = Eq[∇θ log q(σ | θ)
(

log p(x, σ)− log q(σ | θ)
)
] (4.16)
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where the gradient of log variational distribution, ∇θ log q(σ | θ), is considered as

the score function. Using above gradient of the objective, it can sample from variational

posterior to get noisy but unbiased gradients, which I utilize to update the parameters. The

noisy unbiased estimation of gradients of the ELBO with Monte Carlo samples from the

variational distribution can be denoted as:

∇θL(σ) =
1

S

S∑
s=1

∇θ log q(σs | θ)
(

log p(x, σs)− log q(σs | θ)
)

where σs ∼ q(σ | θ) (4.17)

where s indexes the samples and S indicates the number of samples drawn from the

variational distribution. I consider the factorized parameters σljk and σrjk to follow a diag-

onal Gaussian variational family with mean ι and standard deviation υ. Thus, the inference

using gradient ascent is performed:

∇ιljk,υljkL(σljk)

=
1

S

S∑
s=1

∇ιljk,υljk log q(σsljk | ιljk, υljk)
(

log p(x, σsljk)− log q(σsljk | ιljk, υljk)
)

∇ιrjk,υrjkL(σrjk)

=
1

S

S∑
s=1

∇ιrjk,υrjk log q(σsrjk | ιrjk, υrjk)
(

log p(x, σsrjk)− log q(σsrjk | ιrjk, υrjk)
)

(4.18)

The expectations included in the above formulas are calculated by:

Eq[µjk] = mjk Eq[µ
2
jk] = m2

jk + Σjk (4.19)

Eq[σljk] = ιljk Eq[σ
2
ljk] = ι2ljk + υ2

ljk (4.20)

Eq[σrjk] = ιrjk Eq[σ
2
rjk] = ι2rjk + υ2

rjk (4.21)

I use Jensen’s Inequity to approximate the Eq[log(σljk + σrjk)] by replacing with the

upper bound:

Eq[log(σljk + σrjk)] ≤ log(Eq[σljk + σrjk]) = log(ιljk + ιrjk) (4.22)
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Algorithm 3 Finite Asymmetric Gaussian Mixture
1: procedure
2: Initialization:
3: Initialize a relatively large starting number of mixture components K and hyperpa-

rameters m0, v0, dl0, sl0, dr0, and sr0.
4: Initialize variational parameters r, α, m and v.
5: repeat:
6: Update local variational parameters rik using Eq. (4.10) and Eq. (4.11).
7: Update global variational parameters αk,mkd and vkd using Eq. (4.12) to Eq. (4.13).
8: Update global latent variables σljk and σrjk by BBVI from Section 4.2.2.
9: Check for convergence, i.e. the difference between the current value of ELBO and

previous value is less than 10−3.
10: until convergence
11: Compute the expected values of πk, µ, σl, and σr

4.2.3 Complete Algorithm for the Proposed Framework

In this subsection, I detail the steps of the proposed AGM framework, including CCVI

and BBVI. I trace the convergence by monitoring the ELBO difference between epochs.

Convergence is achieved when the ELBO difference is less than a threshold set experimen-

tally to 10−3 for each iteration. The variational inference of the AGM is summarized in

Algorithm 3.

4.3 Experimental Results

4.3.1 Experimental Setup

In this section, I apply the proposed finite AGM framework for the background subtraction

task with a pixel-level approach. Pixel-level methods model the value of a particular pixel

over time as a mixture of poised distribution; the AGD in this case. I start by modeling

the background by using the proposed AGM then divide the mixtures into foreground and

background components.

Each pixel Xp is allocated a label as foreground or background according to the mea-

sured model p(Xp | Θ) =
∏N

i=1

∑K
k=1 πjp(Xp | ξk) where the pixel sequence X has P

pixels represented as X = (X1, . . . ,XP ). I assume that the background objects persist with

relatively low standard deviation and high weight. This is because they usually remain sta-

tionary and occur regularly for a given pixel location. Therefore, I consider the components
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that appear frequently and vary on a limited range as the background objects of a scene.

Accordingly, I rank the mixture components by the fitness value of πk/(|σlk| + |σrk|),

where πk, |σlk|, and |σrk| are the weight value, the corresponding norms of left and right

standard deviations of the kth component of the mixture model. The fitness value increases

as the distribution appears more frequently and remains stable. Hence, the first B compo-

nents are associated with the background:

B = argmin
b

b∑
j=1

πj > T (4.23)

where threshold variable T is a proportion of the minimum share of the observations

treated as the background in a given image sequence. Thus, I rank the distributions accord-

ing to the probability of belonging to the background. A pixel value is fit to the closest

distribution whereby a match occurs when a pixel value is no more than 3 standard devi-

ations away from the distribution. The parameters of the first matched component will be

adjusted as follows:

πkt = (1− β)πk(t−1) + βMkt (4.24)

µkt = (1− β)µk(t−1) + ρXt (4.25)

σl
2
kt = (1− β)σl

2
k(t−1) + ρ(Xt − µkt)2 if µkt < Xt

σr
2
kt = (1− β)σr

2
k(t−1) + ρ(Xt − µkt)2 if µkt ≥ Xt (4.26)

where β defines the learning speed and indicatorMkt indicates whether the pixel value

fits component k. πkt, µkt, σlkt and σrkt are expectations of variables given by the j the

component at t.

Finally, ρ is defined as:

ρ = βp(Xt | µkt, σlkt, σrkt) (4.27)

where p(Xt | µkt, σlkt, σrkt) represents the AGD density. When a new pixel is checked

against the existing distributions, the lowest ranking distribution is replaced by new emerged

component with low weight, high standard deviations, and the same mean value.

34



Table 4.1: Experimental results for the background subtraction task on skating image se-
quences

Stauffer et al. [14] AGM
recall 69.40% 74.72%

precision 63.22% 92.62%

(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
GMM.

(d) Result frame by
AGM.

Figure 4.1: Sample results from skating video sequences.

4.3.2 Results and Discussion

I employ the proposed approach on the Change Detection 2014 dataset (CDnet 2014) [15].

This dataset consists of numerous videos grouped into 11 categories describing a wide

range of change detection tasks. These videos obtained by different cameras varying from

low-resolution Internet Protocol (IP) cameras, through higher resolution consumer grade

camcorders to thermal cameras. Accordingly, the spatial resolutions of the video sequences

in the 2014 CDnet are 320×240 to 720×486. Videos captured by low-resolution IP cameras

suffer from noticeable radial distortion. Besides, various cameras suffer different bias due

to diverse white balancing algorithms employed. Some cameras also apply an automatic

exposure adjustment algorithm which causes a fluctuation in the brightness.

In this thesis, I select video sequences in the bad weather category, which show the

low-visibility winter storm conditions. This dataset includes a snowing scene and people

skating in the snow. It presents a double challenge: not only should the algorithm detect the

snow accumulation, it also needs to distinguish the dark tire tracks left in the snow which

have the potential to cause false positives.

In order to evaluate the performance of the proposed approach, I compare the developed

approach with state-of-the-art method introduced by Sauffer et al. [14]. In this application,

I set the initial mixture components number K as 9, the distribution matching variable

M = 3, and the threshold factor T = 0.8. For the hyperparameters used for learning,
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I sample them randomly from their respective support intervals. Figure. 4.1 shows the

samples from the input frame, the ground truth frame, the foreground segmentation result

evaluated by the GMM as well as the proposed AGM.

Figure 4.2: Confusion matrix of the proposed method for the background subtraction task
on the skating image sequences. BG denotes background and FG denotes the foreground.

For quantitative analysis, I adopt two evaluation metrics: recall and precision. Re-

call identifies the number of correctly classified foreground pixels over total number of

foreground pixels in the ground truth, while the precision represents the percentage of the

number of correctly identified foregrounds by the number of pixels detected as foreground.

The results evaluated by the proposed AGM and GMM are shown in Table. 4.1 and

the confusion matrix of the proposed method is displayed in Figure. 4.2. It is shown that

the proposed AGM outperforms GMM in terms of the precision and the recall metrics. It

considerably improves the precision due to the higher precision achieved in capturing the

shape of pixels with the asymmetric Gaussian assumption compared with Gaussian distri-

bution. The proposed approach is also more robust to background change. This includes

the motion of the pedestrians and the snow accumulation on the trees. Moreover, it has the

merit to distinguish the widespread snow in the frames. However, GMM faces a difficulty

for determining the background condition of snow; thus, achieve inferior results compared

with the adaptive asymmetric assumption.
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Chapter 5

Variational Inference for Infinite
Asymmetric Gaussian Mixture Models
with Simultaneous Feature Selection

In this chapter, I detail the variational Bayes inference framework for infinite asymmetric

Gaussian mixture based on the DP. I also incorporate feature selection approach to deter-

mine informative features set. This helps us eliminate the irrelevant features and improve

the effectiveness of the algorithm. I evaluate the performance of the models with back-

ground subtraction task.

5.1 Infinite Asymmetric Gaussian Mixture

5.1.1 Dirichet Process with the stick-breaking process

The DP is a stochastic process whose realization is a probability distribution, with a non-

negative scaling parameter α and base distribution G0 [35]. It is used to form a distribution

over discrete distributions that place their mass on a countably infinite set of atoms. For

a DP distributed random measure G ∼ DP(α,G0) is drawn from k-partitions of measure

sets {B1, . . . , Bk} which are discrete with probability one [36]:

(G(B1), . . . , G(Bk)) ∼ (αG0(B1), . . . , αG0(Bk)) (5.1)

When applied with variational inference methods, the learning approach is usually
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based on the stick-breaking process representation. This representation provides a set of la-

tent variables on which to place an approximate posterior [35] [37]. The stick-breaking pro-

cess gives an explicit representation of the DP which is based on two infinite sequences of

independent and identically distributed random variables Vj and ηj , for j ∈ {1, . . . ,∞} [38].

Here, I use this construction to form the DP mixture model as:

p(Vj | α) = Beta(1, α) p(η∗j | α,G0) ∼ G0 (5.2)

where Vj is the stick-breaking length distributed according to Beta distribution with

concentration variable α. η∗j is the atom drawn independently from base distribution G0.

Considering stick pieces as the proportion of unit length, I define the stick-breaking repre-

sentation of the random representation G as follows:

πj = Vj

j−1∏
s=1

(1− Vs) G =
∞∑
j=1

πjδη∗j (5.3)

The mixing proportions π = (πj)
∞
j=1 are formed by repetitively breaking a unit length

stick into an infinite number of pieces and noting that these proportions sum to one. δη∗ is a

probability measure concentrated at η∗ with weights π. This infinite collection of variables

forms a point on the infinite simplex.

One of the most common applications of the DP is as a nonparametric prior on the

parameters of a mixture model. Hence, I can interpret the DP mixture as a mixture model

with unbounded number of components that can grow as new data is observed. Then, I

have a set of observations x = {x1, . . . , xN} with parameters η = {η1, . . . , ηN} where N

is the number of given samples.

Combining these processes and representation, I form the distribution of random mea-

sure G according to following step:

G | {α,G0} ∼ DP(α,G0)

ηn | G ∼ G

xn | ηn ∼ p(xn | ηn) (5.4)

where the random measure G is drawn from a DP prior DP (α,G0) and atom ηn is

drawn independently and identically from measure G0 with the probability πn given by the

nth stick-breaking length Vn. This distribution is considered as a discrete distribution with
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the mass on an infinite set of atoms. The datapoint xn has a distribution p(xn | ηn) and

clusters into a small number of G although these measures place mass on an infinite set of

atoms.

I use the above DP mixture model with the stick-breaking process representation. The

random variable ηn will takes on value η∗j with weight πj . The assignment will be de-

noted by the latent indicator variable Zn representing the allocation of datapoint xn. I can

elucidate the generative process of the DP mixture model as follows:

1. Draw Vj | α ∼ Beta(1, α), j ∈ {1, . . . ,∞}.

2. Draw η∗j | G0 ∼ G0, j ∈ {1, . . . ,∞}.

3. Draw the n-th observations, n ∈ {1, . . . , N}:

• Draw Zn | V ∼ Multi(π).

• Draw xn | Zn ∼ p(xn | η∗Zn).

In this construction, the measures η are drawn from the base distribution and stick

lengths V to define a probability distribution on these measures, which specifies a set of

relative prevalence in the mixture model. For the observations, the latent indicators Z

are distributed according to a Multinomial distribution with mixing weights π, and π is

generated from sticks V .

5.1.2 Dirichlet Process of Asymmetric Gaussian Distributions

Here, I restrict the proposed distribution of p(X | η) in Eq. (5.1) to AGD with the set

of parameters ξ to obtain Dirichlet process asymmetric Gaussian mixture (DPAGM). Fur-

thermore, I set a truncation on the maximum component number M of the stick-breaking

representation. I consider a truncation level which restrict the mixture model to M compo-

nent mixture model:

p(X | Θ) =
N∏
i=1

M∑
j=1

πjp(Xi | ξj) (5.5)

where p(Xi | ξj) denotes the density function of AGD which is given in chapter 4. I

assume that each dimension of observation Xi is independent and its covariance matrix is

diagonal. This assumption reduces the computational time during deployment.
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The latent indicator variables Z, Z = (Z1, . . . , ZN), indicate which components the ob-

servations belong to and I(Zi = j) is the indicator function. According to Eq. (5.3), which

expresses the stick-breaking process construction, mixing proportions π are represented by

sticks V . Hence, the marginal distribution over Z given a Multinomial prior is as follows:

p(Z | V ) =
N∏
i=1

M∏
j=1

[Vj

j−1∏
s=1

(1− Vs)]I(Zi=j) (5.6)

With the Beta prior of sticks V given in Eq. (5.2), I truncate the number of components

to M :

p(V | α) =
M∏
j=1

Beta(1, α) =
M∏
j=1

α(1− Vj)α−1 (5.7)

where µ follows a Gaussian prior with mean λ and precision r, i.e. the inverse variance

of Gaussian distribution. The standard deviations σl and σr follow a Gaussian distribu-

tion with a mean whose value is set experimentally and a high value standard deviation

setting [30]:

p(µjk | λ, r) ∼ N (λjk, rjk)

p(σljk | ml, sl) ∼ N (mljk, s
2
ljk)

p(σrjk | mr, sr) ∼ N (mrjk, s
2
rjk) (5.8)

5.2 Variational Inference Framework

5.2.1 Variational approximation

In this section, I use variational inference to precisely approximate the parameter set w =(
V, Z, µ, σl, σr

)
of the DP mixture model. I consider the problem of calculating the poste-

rior density p(w | x) given the model evidence p(x) which is hard to compute with hidden

parameter set w [31]. The explicit rationale behind analytical intractability is that the evi-

dence term is usually hard to compute.

As such, I minimize the ELBO that is equal to log marginal likelihood term, which is

constant with respect to variational distribution q(w), minus KL divergence. It reaches a

maximum when q(w) = p(w | x); the KL divergence is zero.
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Typically, q will be constrained to a family of simpler distributions, and the ELBO is

optimized to find the distribution in the family that is closest (in KL) to the true posterior. In

this thesis, I follow the mean field assumption [32]. This approach assumes independence

between hidden variables to factorize the family of variational distributions so that the true

posterior is easy to compute. Then, the variational distributions have the factorized form:

q(V, Z, µ, σl, σr) =
M∏
j=1

q(Vj)
N∏
i=1

q(Zi)
M∏
j=1

D∏
k=1

q(µjk)q(σljk)q(σrjk) (5.9)

where q(Vj) is a Beta prior with parameters γ1 and γ2, q(Zi) is a Multinomial prior with

parameter φ and q(µjk) is considered as a Gaussian distribution with mean m and variance

Σ. I also define the variational distributions of σl and σr as Gaussian priors with mean ι

and standard deviation υ:

q(Vj) = Beta(γj1, γj2)

q(Zi) = Multi(φi)

q(µjk) = N (mjk,Σjk)

q(σljk) = N (ιljk, υ
2
ljk)

q(σrjk) = N (ιrjk, υ
2
rjk) (5.10)

For the proposed DPAGM and using the mean field assumption, the ELBO is:

L(Θ) =
N∑
i=1

(
Eq[log p(Xi | Zi, µ, σl, σr)] + Eq[log p(Zi)]

)
+ Eq[log p(V )]

+ Eq[log p(µ)] + Eq[log p(σl)] + Eq[log p(σr)]− Eq[log q(V, Z, µ, σl, σr)] (5.11)

By applying Eq. (5.9) to each factor, I obtain the optimal solutions for the factors of

the variational posteriors. I next present the explicit coordinate ascent variational infer-

ence (CAVI) to optimize the ELBO in Eq. (5.9) where I find the updates of the variational

parameters of stick lengths V and indicators Z are:

φij =
rij∑
j rij

(5.12)
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rij = exp
{
Eq[log Vj] +

j−1∑
m=1

Eq[log(1− Vm)]

−
D∑
k

Eq[log(σljk + σrjk)]

−
D∑

k,Xik<µjk

X2
ik + Eq[µ

2
jk]− 2XikEq[µjk]

2Eq[σ2
ljk]

−
D∑

k,Xik≥µjk

X2
ik + Eq[µ

2
jk]− 2XikEq[µjk]

2Eq[σ2
rjk]

}
(5.13)

γj1 = 1 +
N∑
i=1

φij γj2 = α +
N∑
i=1

M∑
m=j+1

φim (5.14)

The expectation used in the calculation of updates is:

q(Zi = j) = φi,j

q(Zi > j) =
M∑

m=j+1

φi,m

Eq[log(Vj)] = Ψ(γj,1)−Ψ(γj,1 + γj,2)

Eq[log(1− Vj)] = Ψ(γj,2)−Ψ(γj,1 + γj,2)

(5.15)

where Ψ(·) denotes the digamma function that arises from the derivative of the log nor-

malization factor in the Beta distribution. The variational parameters of µ can be obtained

as:

Σjk =
( N∑
i,Xik<µjk

φij
Eq[σ2

ljk]
+

N∑
i,Xik≥µjk

φij
Eq[σ2

rjk]
+ r
)−1

mjk = Σjk

( N∑
i,Xik<µjk

φij
Xik

Eq[σ2
ljk]

+
N∑

i,Xik≥µjk

φij
Xik

Eq[σ2
rjk]

+ λr
)

(5.16)

I consider the BBVI method proposed in chapter 4 to infer the parameters since the

black box method can easily extends to different models and usually exactly captures the

probability density.
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However, in practice, the high variance gradient function would impede the conver-

gence. Thereby, I need to develop variance control method to effectively employ inference.

The expectations that appear in the above formulas are calculated by:

Eq[µjk] = mjk Eq[µ
2
jk] = m2

jk + Σjk (5.17)

Eq[σljk] = ιljk Eq[σ
2
ljk] = ι2ljk + υ2

ljk (5.18)

Eq[σrjk] = ιrjk Eq[σ
2
rjk] = ι2rjk + υ2

rjk (5.19)

I use Jensen’s Inequity to approxmiate the Eq[log(σljk + σrjk)] by replacing with the

upper bound:

Eq[log(σljk + σrjk)] ≤ log(Eq[σljk + σrjk]) = log(ιljk + ιrjk) (5.20)

5.2.2 Variance Control

To tackle the high variance issue, I introduce an accessible technique to reduce the variance

of stochastic gradients for variational inference [39]. I adopt a reparameterization trick that

omits the score function from the derivatives and presents a new gradient estimator with

zero variance. Theoretically, the ELBO will have low variance when q(σ | θ) = p(σ | x),

i.e. the variational distribution precisely approximates the true posterior:

L̂MC(σ) = log p(x, σ)− log q(σ | θ)

= log p(σ | x) + log p(x)− log q(σ | θ)

= log p(x) = const (5.21)

Specifically, the variance of the full Monte Carlo estimator of the ELBO L̂MC will

exactly become zero. Its value is constant and the samples z are independent and identi-

cally distributed according to the variational distribution z iid∼ q(σ | θ). This suggests that

Eq. (5.21) is preferred when I believe that q(σ | x) ≈ p(σ | x).

Using the reparameterization in [40], I can decompose the gradient estimator of the

ELBO. I represent the sample σ from q(σ | θ) as deterministic function parameterized by
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θ and a random variable ε with the independent marginal distribution p(ε). Because of

the diagonal Gaussian distribution, the representation is σljk = ιljk + υljkε and σrjk =

ιrjk + υrjkε. Noise variable ε is given a standard Gaussian distribution ε ∼ N (0, 1).

Under such a reparameterization of variable set σ, I decompose the total derivative (TD)

of the integrand of the estimator as follows:

∇̂TD(ε, θ) = ∇θ

[
log p(x, σ)− log q(σ | θ)

]
= ∇θ

[
log p(σ | x) + log p(x)− log q(σ | θ)

]
= ∇σ

[
log p(σ | x) + log p(x)

]
∇θt(ε, θ)

−∇θ log q(σ | θ) (5.22)

The reparameterization gradient estimator is divided into two components: the path

derivative and the score function. The first part depends on the set of variational param-

eters θ, and the second term measures the log variational distribution log q without con-

sidering the explicit value σ as a function of θ. For stochastic gradient descent algorithm

to converge, I require an unbiased estimator of its gradient. By construction, the gradient

estimator of w is unbiased. As the score function term has a zero expected value, I can just

simply exclude score function term without biasing the stochastic gradients.

Considering the assumption q(σ | θ) = p(σ | x), the path derivative component reaches

zero when variational distribution is exactly equal to the true distribution of latent variables.

Thus, I get a desirable reparameterized gradient estimator of the ELBO whose variance

approaches to zero when as q(σ | θ) gradually gets closer to p(σ | x).

5.3 Feature Selection Approach

The main purpose of feature selection is to find the most informative feature set that bet-

ter discriminate groups and alleviate the noise influence. In this section, I introduce the

concept of feature saliency which considers feature selection as a parameter estimation

problem [10]. Feature saliencies take into consideration the potential presence of irrele-

vant features and distinguish the noise each feature contains which can used to mitigate the

influence of redundant features.

I consider a feature as relevant if it follows the mixture-dependent distribution AGD;
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else follows a mixture-independent background distribution and be independent of the clus-

ter labels. In this chapter, I propose a Gaussian assumption for the irrelevant distribution

with parameter mean µirr and variance τ irr. The prior of mean variable µirr is defined as a

Gaussian distribution and variance τ irrjk follows an inverse Gamma distribution [41].

p(µirrjk | λirr, rirr) ∼ N (λirr, rirr) p(τ irrjk | v0, w0) ∼ γ(v0, w0) (5.23)

I use a series of latent indicator variablesϕ = (ϕ1, . . . , ϕD) to represent the assignments

of relevancy, where φk = 1 if a feature is relevant; otherwise, φk = 0. Thus, I represent the

mixture density function from Eq. (5.5) as follows:

p(X | Θ, ξirr, ϕ) =
N∏
i=1

M∑
j=1

πj

D∏
k=1

[
p(Xik | ξjk)ϕkp(Xik | ξirrjk )1−ϕk

]
(5.24)

where the ξirr = (ξirr1 , . . . , ξirrM ) represents the set of parameters for background Gaus-

sian distribution with ξirrj = (µirrj , Sirrj ), µj = (µj1, . . . , µjD), τj = (τj1, . . . , τjD). µjk and

τjk represent the mean and variance for kth dimensional shared Gaussian distribution.

I define the feature saliency P = (%1, . . . , %M) such that %j = (%j1, . . . , %jD). %jk =

p(ϕj = 1) represents the probability that the kth feature is relevant for component j. Hence,

the feature saliency P is associated with the Bernoulli prior over missing relevancy label ϕ

and given a Beta prior with hyperparameters a0 and b0:

p(% | a0, b0) = Beta(a0, b0) (5.25)

I can then rewrite the likelihood function after introducing the feature saliency P:

p(Xi | ΘF ) =
M∑
j=1

πj

D∏
k=1

(
%jkp(Xik | ξjk) + (1− %jk)p(Xik | ξirrjk )

)
(5.26)

where ΘF = (π, ξ,P, ξirr) is the complete set of parameters of mixture model. Eq (5.26)

offers sound generative interpretation. First, the model selects the component j by sampling

from a Multinomial distribution with mixing proportion (π1, . . . , πk). Then, each feature

k = 1, . . . , D follows a Bernoulli prior with feature saliency ρjk; if successful, I consider

the relevant mixture component p(Xik | ξjk) generating feature k; otherwise, the back-

ground component p(Xik | ξirrjk ) will be used. Therefore, I consider the model of previous

section as a special case when all of the features are relevant.
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For latent relevancy variable ϕi = (ϕi1, . . . , ϕiM), where ϕij = (ϕij1, . . . , ϕijD) and

ϕijk indicates whether the feature k is relevant for component j given the observation Xi,

%j = p(ϕijk = 1) represents the prior probability that the feature k is relevant for compo-

nent j given observation Xi. Given observations, the model can be written hierarchically

with a set of distribution parameters, the allocation variables, and the relevancy variables

as follows:

p(X | Z, ϕ, ξ, ξirr) =
N∏
i=1

M∏
j=1

[ D∏
k=1

p(Xik | ξjk)ϕijkp(Xik | ξirrjk )1−ϕijk
]I(Zi=j) (5.27)

p(ϕ | P) =
N∏
i=1

M∏
j=1

[ D∏
k=1

ϕϕkijk(1− ϕijk)
1−ϕk

]I(Zi=j) (5.28)

Given the representation of the ELBO in Eq. (5.11), I rewrite the ELBO after introduc-

ing the relevancy parameters as follows:

L(Θ) =
N∑
i=1

(Eq[log p(Xi | Zi, µ, σl, σr, %, µirr, τ irr)] + Eq[log p(Zi)]) + Eq[log p(V )]

+ Eq[log p(µ)] + Eq[log p(σl)] + Eq[log p(σr)] + Eq[log p(%)]

+ Eq[log p(µirr)] + Eq[log p(τ irr)]− Eq[log q(V, Z, µ, σl, σr, %, µ
irr, τ irr)] (5.29)

Because the relevant distribution is the same as the original DPAGM model, I do not

need to change the updating process proposed in Section 5.2. However, I must build an

additional irrelevant component and alter the inference of latent variable Z because I intro-

duced the relevancy saliency in this section. Therefore, I propose Variational EM frame-

work to learn the parameters of the DPAGM with feature selection approach [42]. I also

adopt the factorized representation of %, µirr, and τ irr. Feature saliency %jk has support

over [0, 1] and as considered naturally to follow a Beta distribution with common hyperpa-

rameters a and b. For the irrelevant Gaussian distribution, I consider a Gaussian prior for

mean µirr and Gamma prior for precision τ irr.

q(%, µirr,Σirr) =
M∏
j

D∏
k

q(%jk | a, b)q(µirrjk | mirr,Σirr)q(τ irrjk | vjk, wjk) (5.30)
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q(µirrjk | mirr,Σirr) = N (mirr,Σirr)

q(τ irrjk | v, w) = γ(v, w)

q(% | a, b) = Beta(a, b) (5.31)

The expectation update process is then defined as follows:

A = log p
(
Xik | Zi = j, µ, σl, σr,

)
+ log p

(
µ, σl, σr | Zi = j

)
+ log %jk

− log q
(
µ, σl, σr | Zi = j)

B = log p
(
Xik | Zi = j, µirr, τ irr

)
+ log p

(
µirr, τ irr | Zi = j

)
+ log(1− %jk)

− log q
(
µirr, τ irr | Zi = j

)
(5.32)

Using the above representation, q(ϕijk = 1 | Zi = j) is written as:

q(ϕijk = 1 | Zi) =
exp(A)

exp(A) + exp(B)
(5.33)

and q(ϕijk = 0 | Zi = j) = 1 − q(ϕijk = 1 | Zi = j). The expected values of ϕ are

defined as:

Eq[ϕijk]
1 = q(ϕijk = 1 | Zi = j)

Eq[ϕijk]
0 = q(ϕijk = 0 | Zi = j) (5.34)

If I define the quantity:

rij = Eq[log Vj] +

j−1∑
m=1

Eq[log(1− Vm)] +
D∑
k

Eq[ϕijk]
1
(

log p
(
Xik | Zi = j, µ, σl, σr,

)
+ log %jk

+ log p
(
µ, σl, σr | Zi = j

)
− log q

(
µ, σl, σr | Zi = j)

)
+ Eq[ϕijk]

0
(

log p
(
Xik | Zi = j, µirr, τ irr

)
+ log(1− %jk) + log p

(
µirr, τ irr | Zi = j

)
− log q

(
µirr, τ irr | Zi = j

))
(5.35)

The variational parameters φij can be updated by normalizing the quantity rij:

φij =
rij∑
j rij

(5.36)
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Using CAVI to update variational parameters, I get:

Σirr
jk =

( N∑
i

φijEq[τ
irr
ljk ] + rirr

)−1

mirr
jk = Σirr

jk

( N∑
i

φijXikEq[τ
irr
ljk ] + λirrrirr

)
(5.37)

vjk =
Nj + v0jk

2

wjk =
2

v0jkw0jk +
∑N

i:Zi=j
(Xik − µjk)2

(5.38)

ajk = a0jk +
N∑
i=1

Eq[ϕijk]
1φij

bjk = b0jk +
N∑
i=1

Eq[ϕijk]
0φij (5.39)

5.4 Complete Learning algorithm

An important aspect when applying variational inference is the convergence assessment.

In this chapter, I trace the convergence systematically by monitoring the variational lower

bound and find the variational parameters vary narrowly when the ELBO difference is

less than 10−3 between epoches. The variational inference for DPAGM is summarized in

Algorithm 4.

In the DPAGM model, I need to test the appropriate truncation level which depends on

the data structure. Usually, I first set a truncated component number, and then rely on vari-

ational inference to infer a smaller number to model the observations. Although an infinite

mixture model may appear complicated because of the number of involved parameters, the

final model remains concise as the self-correcting component reduction process cuts the

least effective components and leave well-separated clusters. Because I consider BBVI

method to infer parameters σl and σr, I also need to adopt adequate hyparameters sample

size and epoch number to ensure convergence. The complete algorithm for DPAGM with

feature selection process can be summarized in Algorithm 5.
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Algorithm 4 Dirichlet Process Asymmetric Gaussian Mixture
1: procedure
2: Initialization:
3: Initialize the truncation level M and hyperparameters α, λ and r, mljk, sljk, mrjk

and srjk.
4: Initialize variational parameters φ, γ1, γ2, µ and Σ.
5: repeat:
6: Update local variational parameters φij using Eq. (5.12) and Eq. (5.13).
7: Update global variational parameters γj1, γj2, µjk and Σjk using Eq. (5.14) and

Eq. (5.16).
8: Update variational parameters of global latent variables σljk and σrjk by Black

Box Variational Infernece from Section 4.2.2, with variance control approach from
Section 5.2.2.

9: The convergence criteria is reached when the difference of the current value of
ELBO and previous value is less than 10−3.

10: until convergence
11: Compute the expected value of stick length Vj as Eq[Vj] = γj1/(γj1 + γj2) and the

value of mixing proportions using Eq. (5.3)
12: Detect the optimal number of components M by eliminating the components with

small mixing coefficients close to 0.

For the initialization step, I start by assuming all of the features are relevant, and update

relevancy assignments and feature saliencies by variational EM algorithm. In above pro-

cess, the model strives to take advantage of discriminative features for clustering the data

into diverse components.

(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.1: Sample results from fall video sequences.
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Algorithm 5 Dirichlet Process Asymmetric Gaussian Mixture with Feature Selection
1: procedure
2: Initialization:
3: Initialize the truncation levelM and hyperparameters α, λ, r, mljk, sljk, mrjk, srjk,
λirr, rirr, v0, w0, a0 and b0.

4: Initialize variational parameters φ, γ1, γ2, µ, Σ, mirr, Σirr, v, w, a and b.
5: repeat:
6: VB E-step:
7: Update latent relevancy assignments ϕ using Eq. (5.32) and Eq. (5.33)
8: Update local variational hyperparameter φij using Eq. (5.34) and Eq. (5.35).
9: VB M-step:

10: Update variational parameters γj1, γj2, µjk, Σjk, mirr
jk , Σirr

jk , vjk, wjk, ajk and bjk
using Eq. (5.14), Eq. (5.16), Eq. (5.36), Eq. (5.37), Eq. (5.38), and Eq. (5.39).

11: Update varaitional parameters from latent variables σljk and σrjk by Black Box
Variational Infernece from Section 4.2.2, with variance control approach from Sec-
tion 5.2.2.

12: The convergence criteria is reached when the difference of the current value of
ELBO and previous value is less than 10−3.

13: until convergence
14: Compute the expected value of stick length Vj as Eq[Vj] = γj1/(γj1 + γj2) and the

value of mixing proportions using Eq. (5.3)
15: Detect the optimal number of components M by eliminating the components with

small mixing coefficients close to 0.
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(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.2: Sample results from boulevard video sequences.

5.5 Experimental setup and results

5.5.1 Background subtraction setup

In this section, I employ the proposed DPAGM model for image background subtraction

with a pixel-level evaluation approach as in [14]. The background modeling starts off by

constructing the model using the proposed DPAGM. After applying the learning algorithm

for the model, I discriminate between the mixture components for the representation of

foreground and background pixels for each of the new input frames.

Assume that a particular pixel of a video frame sequences X has P pixels as X =

(X1, . . . ,XP ) then each pixel Xp is assigned as a foreground or background pixel with

respect to the trained DPAGM p(Xp | Θ) =
∏N

i=1

∑M
j=1 πjp(Xpi | ξj). Usually, background

objects maintain persistent appearance with relatively low variance as they usually maintain

static status compared with movable foreground objects. Besides, the background always

appears frequent in a given pixel but a foreground object appears abruptly with a low rate

of occurrence. Heuristically, I consider components that occurs frequently, i.e. with high π

value and with a low standard deviation σ, as the background of the scene.

(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.3: Sample results from traffic video sequences.

Accordingly, I use the fitness value of πj/(|σlj|+ |σrj|) as a criteria to rank the mixture
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(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.4: Sample results from abandonedBox video sequences.

components, where πj is the mixing proportions for component j, |σlj| and |σrj| are the

respective norms of left and right standard deviations of the jth component. The fitness

value increases both as a distribution gains more evidence and as it remains stable. The

first B number of components are chosen as the background model estimated as:

B = argmin
b

b∑
j=1

πj > T (5.40)

where the threshold T is a measure of the minimum share of the data that should be

counted as the background in a given pixel sequence. The rest of the observations are

defined as foreground scene. Thereby, the most probable distribution remains on the top

with the lowest one replaced by new distribution.

The pixels match a given distribution when they are no more than K standard deviation

away from the distribution. In the case, the matching occurs when it is less than 3 left

or right standard deviations given a distribution. Then, pixels are more than 3 standard

deviations away are considered foreground. The first mixture that matches the pixel value

will be updated by the following equation:

(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.5: Sample results from library video sequences.

πjt = (1− β)πj(t−1) + βMjt (5.41)
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(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.6: Sample results from corridor video sequences.

µjt = (1− β)µj(t−1) + ρXt (5.42)

σ2
ljt = (1− β)σ2

lj(t−1) + ρ(Xt − µjt)2 if µjt < Xt
σ2
rjt = (1− β)σ2

rj(t−1) + ρ(Xt − µjt)2 if µjt ≥ Xt
(5.43)

where β determines the speed of parameters change and indicator symbolMjt denotes

whether the pixel matches kth component. πjt, µjt, σljt and σrjt are expected values of

the weight, mean and standard deviations of the jth component of DPAGM at frame t,

which can be computed with Eq. (5.17), Eq. (5.18), and Eq. (5.19). The estimated values

of mixing weights π are derived from the expected value of stick length Vj as Eq[Vj] =

γj1/(γj1 + γj2) and the stick-breaking process generation from Eq. (5.3).

Finally, ρ is defined as:

ρ = βp(Xt | µjt, σljt, σrjt) (5.44)

(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.7: Sample results from diningRoom video sequences.

where p(Xt | µjt, σljt, σrjt) represents the AGD function with mean µjt and standard

deviations σljt and σrjt. If a new pixel value matches against all existing distributions,
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(a) The input frame of
video.

(b) The groundtruth
frame of video.

(c) Result frame by
DPAGM.

(d) Result frame by
DPAGM+FS.

Figure 5.8: Sample results from park video sequences.

the least probable distribution will be replaced by a new distribution with initially low

frequency, high standard deviation value, and the same mean as the current value. For the

proposed feature selection, the parameter update procedures remain same as the original

process proposed in [14] because the density function of irrelevant features is also assumed

as Gaussian.

5.5.2 Results and discussion

I apply the proposed approach on the Change Detection 2014 dataset (CDnet 2014) [15].

This dataset spans 53 realistic camera-captured videos totalling 160,000 frames organized

in 11 categories that describe a wide range of change detection tasks. Each category con-

tains 4 to 6 video sequences. The videos had been recorded using different cameras from

low-resolution Internet Protocol (IP) ones, through higher resolution consumer grade cam-

corders, and commercial pan-tilt-zoom (PTZ) cameras to thermal cameras. Consequently,

spatial resolutions of the videos vary from 320× 240 to 720× 486. The level of noise and

compression artifacts varies considerably from one to another due to the diverse lighting

conditions and compression settings. Low-end IP cameras suffer from apparent radial dis-

tortion. Different cameras may contain different bias and global brightness fluctuations as

a result of the employment of different white balancing methods and automatic exposure

adjustment.

In this chapter, I incorporated several video sequences under diverse surveillance set-

tings. I selected 4 video sequences (two outdoor and two indoor) in thermal category,

which were captured by far-infrared cameras, to evaluate infrared image background de-

tection task. These video sequences include typical thermal artifacts, heat reflection and

camouflage effects. As for visible image task, I have chosen 4 intricate sequences from the
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Dynamic Background, Camera Jitter, Intermittent Object Motion and Shadow categories:

• Dynamic Background category depicts scenes with strong background motion.

• Camera Jitter category contains videos captured by unstable cameras and the shiver

magnitude varies from one video to another.

• Shadow category consists of videos exhibiting strong as well as faint shadows. Some

shadows are fairly narrow as large objects occupy most of the scene and some are cast

by moving objects.

• Intermittent Object Motion category includes videos with scenarios known for caus-

ing ghosting artifacts in the detected motion, i.e., the moving object suddenly stop

for a while, after which they start moving again.

In order to assess the performance of the proposed approach DPAGM and DPAGM

with feature selection (DPAGM+FS), I implement 7 other state-of-the-art methods. These

algorithms can be grouped into two main categories: pixel based and nonparametric Kernel

Density Estimation (KDE) methods. For pixel based methods, I have chosen the well-

known Gaussian mixture model based background subtraction introduced by Sauffer et

al. [14] and Zivkovic [16], and also compare with the approach of KaewTrakulPong et

al. [43], and Evangelio et al. [44]. I also include finite mixture of asymmetric Gaussian

distributions proposed by Elguebaly et al. [17]. Others are from Elgammal et al. [45] and

Nonaka et al [46].

In this application, I specified the initial truncation number M as 20, the distribution

matching factor K = 3 and the threshold factor T = 0.8. The concentration parameter

α is set as 1/M and feature saliency variable ϕ is fixed to 1 as I assume all of features

are relevant initially. The hyperparameters mentioned in Algorithm 4 and Algorithm 5

are randomly drawn from their support. The relevant and irrelevant mean parameters µ

and µirr are sampled from Gaussian prior with a mean calculated by the average value

of the observations. The left and right standard deviations σl and σr are sampled from

Gaussian distribution with high mean value and irrelevant τ irr is sampled from inverse

Gamma distribution with shape parameter 2 and mean parameter 0.5.

For quantitative analysis, recall and precision are utilized to assess the performance.

Recall and precision are widely used in pattern recognition and image processing for quan-

titative analysis of binary classification. The recall and precision metrics are defined in

Eq. 2.25 and Eq. 2.26:
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In this case, I can compute recall results by dividing the number of correctly identified

foreground pixels by the number of foreground pixels in ground truth which can be seen as

a measure of fidelity. Precision is calculated by dividing the number of correctly identified

foreground pixels by the number of foreground pixels detected which can be seen as a

measure of completeness of foreground. The recall and precision are calculated based on

the averages on all the evaluated frames. The results for the selected method can be seen in

Table. 5.1 and Table. 5.2. The samples of input frame, groundtruth frame and results frame

for all sequences are shown in Figure. 5.1 to Figure. 5.8.

From Table. 5.1 and Table. 5.2, it can be observed that the proposed DPAGM and

DPAGM with feature selection approach remarkably outperform other algorithms in terms

of precision metrics while also giving relatively higher recall results. According to the def-

inition of precision, the results shows a relatively lower number of FP compared with TP

which indicates DPAGM provides robust detection compared with other methods. In Ta-

ble. 5.2, DPAGM gives better precision results although other methods imprecisely capture

the foreground pixels. For infrared images, the method achieves relatively lower precision

but with higher recall and completely detect foreground objects.

DPAGM also provides higher recall results when the precision is close to other ap-

proaches; otherwise, it significantly improves recall. Hence, the proposed approach usually

preserves the completeness of the foreground objects with similar exactness. In the Library

video sequence, the approach is the only one to completely detect the foreground objects

with approximately similar precision results with other methods barely discriminating be-

tween foreground pixels and the background. This demonstrates how the proposed method

can notably improve recall without sacrificing too much fidelity.

The reason why the approach performs better in terms of precision without sacrificing

recall results is because the AGD is capable of modeling complex asymmetric character-

istics of the observations for completely incorporating the structure of the objects. The

higher flexibility with DPAGM results in mixture models that are more adaptive and give

higher precision results. I also include DP which could automatically allocate observations

precisely through determination of the number of components for an exact representation.

These advantages show how the approach provides a more accurate and adaptive back-

ground model. Therefore, the method does not detect many incorrectly distinguished pixels

as foreground with a high proportion of groundtruth’s foreground pixels discerned.
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Table 5.1: Experimental results for the background subtraction task on infrared image .

Stauffer Zivkovic Evangelio Elgammal Nonaka Elguebaly DPAGM DPAGM+FS
Corridor
Rec.(%) 82.52 83.26 84.68 83.20 56.00 89.24 83.86 81.51
Prec.(%) 80.75 83.93 84.68 88.0 89.55 90.72 91.42 92.14
Library
Rec.(%) 28.00 28.68 30.23 92.20 8.07 31.34 94.01 93.62
Prec. 84.76 81.76 93.86 97.14 96.35 94.66 82.49 84.81
Park
Rec.(%) 63.96 59.30 39.98 60.81 89.03 64.00 63.34 60.11
Prec. 80.66 85.07 92.57 85.85 80.42 88.14 89.53 92.12
Dining
Room
Rec.(%) 70.21 69.43 77.45 75.74 40.11 79.57 85.77 84.41
Prec.(%) 93.37 92.31 94.03 88.42 95.55 93.74 92.10 93.49

Based on the results shown in Table. 5.1 and Table. 5.2, the DPAGM with feature selec-

tion algorithm greatly outperforms in precision metric at the expense of recall. The results

indicate that the feature selection algorithm could detect foreground pixels more thoroughly

compared with original DPAGM but it also misinterprets more background pixels as fore-

ground. Simultaneous feature selection clustering method prefers to identify more pixels

as foreground because it always discriminate features to find the most informative to rep-

resent clusters. Because of the sensitivity of the proposed DPAGM with feature selection

approach, it is vulnerable to a rise of noise, such as uneven illumination. Thus, the approach

sacrifices recall to improve the overall performance.
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Table 5.2: Experimental results for the background subtraction task on visible image .

Stauffer Zivkovic Evangelio Elgammal Nonaka Elguebaly DPAGM DPAGM+FS
Fall
Rec.(%) 88.38 85.60 84.79 89.21 81.75 89.14 68.40 66.75
Prec.(%) 3.91 28.17 40.33 18.75 32.12 66.12 92.15 95.94
Boulevard
Rec.(%) 83.21 79.77 75.82 77.61 58.73 79.54 60.47 59.58
Prec.(%) 40.02 43.79 65.21 33.59 70.57 61.13 84.89 86.09
Traffic
Rec.(%) 76.47 73.68 76.76 85.89 87.63 78.46 78.71 76.79
Prec.(%) 58.61 52.58 64.57 44.31 68.88 66.10 76.79 77.65
Abandon
Box
Rec.(%) 45.74 45.64 42.23 87.45 40.54 45.18 59.95 57.31
Prec.(%) 65.52 62.14 66.53 53.73 79.67 67.41 81.25 83.42
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Chapter 6

Variational Inference for Nonparametric
Hierarchical Infinite Mixture with
Asymmetric Gaussian Distribution

In this chapter, I present a Variational inference framework for hierarchical Bayesian non-

parametric model. Specifically, I propose the DP and PYP to endow nonparametric prop-

erty and extend to hierarchical cases. I illustrate the models and learning algorithms with

the challenging task of image clustering.

6.1 Hierarchical infinite asymmetric Gaussian mixture

In this section, I briefly introduce the hierarchical DP mixture model of AGD, which may

also be referred to as the hierarchical infinite asymmetric Gaussian mixture model.

6.1.1 Hierarchical Dirichlet process mixture model

The DP is a parameterized stochastic process with a positive scaling factor and base dis-

tribution. The DP forms a distribution over discrete distribution that place its mass on a

countably infinite collection of atoms. The base distribution places location of atoms and

the concentration variable controls the range of the mass spreading around atoms [36].

The hierarchical Dirichlet process (HDP) constructs a global random probability mea-

sure G0 and an indexed collection of random measures {Gj}. Thus, this model binds a

collection of group-level DPes at a single top-level DP [47]:
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G0 ∼ DP (ω,H)

Gj ∼ DP (α,G0) for each j, j ∈ {1, . . . , M} (6.1)

where j is the index for each group of the observations, random measure Gj attached

to jth group. A two-level HDP model can be defined as the following: given a grouped

dataset X with M groups, each group is associated with a DP Gj , and this indexed set of

DP Gj shares a global measure G0 which is itself distributed according to a DP with the

base distribution H and concentration ω as a result of the discreteness of the top-level DP.

In this chapter, the representation of the global-level base measure G0 and each group

measure Gj are formed by the stick-breaking process [38]. The stick-breaking process

gives an explicit representation of the HDP which is based on two infinite sequences of in-

dependent and identically distributed random variables {V ′k} and {Ωk}, for k ∈ {1, . . . ,∞}.
The stick-breaking construction of the global measure G0 is defined as:

Ωk ∼ H

V ′k ∼ Beta(1, ω)

Vk = V ′k

k−1∏
l=1

(1− V ′l )

G0 =
∞∑
k=1

VkδΩk (6.2)

where {Ωk} is a set of independent random variables drawn from global measure H

and δΩk indicates a probability measure mass at Ωk with proportion Vk. The stick-breaking

proportions {Vk} denotes the corresponding prevalence for atoms and satisfy the constraint∑∞
k=1 Vk = 1. The proportions are obtained by recursively cutting a unit length stick into

an infinite number of pieces according to a series of stick-breaking lengths V ′. This infinite

collection of variables combine to construct a point on the infinite simplex. Since G0 is

the base distribution of the DP Gj and has the stick-breaking representation as shown in

Eq. (6.2), Gj contains all of the atoms in G0 with different weights.

Since the stick-breaking weights are closely coupled between two-level DP [47], this

kind of construction does not allow an amendable closed form formula for variational in-

ference. I apply another stick-breaking representation for each group-level DP Gj which

allows for closed form update. [48]:
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$jt ∼ G0

π′jt ∼ Beta(1, α)

πjt = π′jt

t−1∏
s=1

(1− π′js)

Gj =
∞∑
t=1

πjtδ$jt (6.3)

where δ$jt represents the group-level Dirac delta measure concentrated at $jt, and

{πjt} is a set of mixing weights which must be positive and sum to one. Since group-level

atom $jt is distributed according to the base distribution G0, each atom maps onto the

base-level atoms Ωk with probability Vk. Notice there may be multiple atoms $jt which

map to a same top-level atom Ωk.

Here, I introduce a series of latent indicator variables Cjtk to denote which global-level

atom$ maps to. If the indicator Cjtk = 1, group-level atom$jt maps onto the global-level

atom Ωk which is indexed by k; otherwise, Cjtk assigned value 0. Accordingly, I have a

mapping $jt = Ω
Cjtk
k . Thereby, there is no need to explicitly maintain representation for

group-level atom $jt. The indicator variable Cjt = (Cjtk)
∞
k=1 is distributed according to

Multinomial distribution given stick parameter V as follows:

p(C | V ) =
M∏
j=1

∞∏
t=1

Multi(V ) =
M∏
j=1

∞∏
t=1

∞∏
k=1

V
Cjtk
k (6.4)

Since V is a function to take a collection of V ′ and to return the mixing weights of

each k component according to the stick-breaking construction of the DP in Eq. (6.2), I can

rewrite Eq. (6.4) as:

p(C | V ′) =
M∏
j=1

∞∏
t=1

∞∏
k=1

[V ′k

k−1∏
l=1

(1− V ′l )]Cjtk (6.5)

The stick lengths V ′ are independently drawn from Beta distribution with concentration

variable ω in Eq. (6.2). The realization of stick lengths V ′ are defined as:

p(V ′ | ω) =
∞∏
k=1

Beta(1, ωk) =
∞∏
k=1

ωk(1− V ′k)ωk−1 (6.6)
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One of the most common applications of HDP is placing DP as nonparametric prior

on the parameters of mixture model for grouped data. I then interpret the topic in HDP

as a factor which is associated with the observation Xji, where i index data point in the

jth group of the dataset and i ∈ {1, . . . , N}. HDP mixture model generates factor θji cor-

responding to each observation Xji and θj = (θj1, ..., θjN) which is distributed according

to the DP Gj . Then I can generate the observation Xji from that factor. The likelihood

function can be defined as:

θji | Gj ∼ Gj

Xji | θji ∼ F (θji) (6.7)

where F (θji) indicates the distribution of the observation Xji given factor θji. The base

distributionH ofG0 provides the prior for the factors θji. Based on above setting, known as

the HDP mixture model, each group j is associated with a mixture model, and the mixture

components are shared among these mixture models since Gj contains all of the atoms in

G0.

Since each factor θji is distributed according to Gj based on Eq. (6.7), it takes the value

$jt with probability πjt. I introduce another collection of latent indicator variables Z as

follows:

p(Z | π) =
M∏
j=1

N∏
i=1

∞∏
t=1

π
Zjit
jt (6.8)

The indicator Zjit represents which component θji belongs to. Zji = (Zjit)
∞
t=1 and

each element Zjit assigned as value 1 if θji is allocated to component t and maps to the

group-level atom $jt; otherwise, Zjit = 0. I then have the mapping θji = $
Zjit
jt . Since

group-level atom also maps to the global level atom Ωk through the indicator variables C

as well, I also write θji = $
Zjit
jt = Ω

CjtkZjit
k .

Since π is a function of π′ according to the stick-breaking construction of the DP as

shown in Eq. (6.3), I then have

p(Z | π′) =
M∏
j=1

N∏
i=1

∞∏
t=1

[π′jt

t−1∏
s=1

(1− π′js)]Zjit (6.9)
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The prior distribution of π′ is a specific Beta distribution with concentration α as de-

scribed in Eq. (6.3) as

p(π′ | α) =
M∏
j=1

∞∏
t=1

Beta(1, αjt) =
M∏
j=1

∞∏
t=1

αjt(1− π′jt)αjt−1 (6.10)

The discreteness of the corpus-level draw G0 can ensures that all the groups share the

same set of factors. The group-level draw Gj inherits the factor from G0, but weight them

according to group-level specific factors according to mixing proportions. Combining these

processes and representation, I form the generative process of the HDP is as follows:

1. Draw an infinite factor Ωk from G0, k ∈ {1, . . . ,∞}.

2. Draw global stick length V ′k ∼ Beta(1, ω), k ∈ {1, . . . ,∞}.

3. For each group j, j ∈ {1, . . . ,M}:

(a) Draw group-level topic assignment, Cjt ∼ Multi(V ), t ∈ {1, . . . ,∞}.

(b) Draw group-level stick length π′jt ∼ Beta(1, α), t ∈ {1, . . . ,∞}.

(c) For each word n, n ∈ {1, . . . , N}:

i. Draw word indicator Zji ∼ Multi(π).

ii. Draw the n th observation Xji.

The infinite number of factors are drawn as in the DP. The global-level stick lengths

V ′ describes probability distributions for these factors and drawn from Beta prior, which

denote the relative prevalence across over the grouped data. At group level, sticks π′ create

a set of probabilities and topic indices Cj , drawn from π, attach each group-level stick

length to a factor. This creates a group-level distribution over factors, and observations are

then drawn as for HDP mixture model.

6.1.2 Hierarchical Pitman-Yor process mixture model

The PYP is also known as two-parameter Poisson-Dirichlet process [49]. The PYP is a

generalization of the DP with an extra discount parameter γa in addition to the concentra-

tion parameter γb, and satisfying 0 < γa < 1, γb > −γa. When γa = 0, it is the special case

of DP with concentration parameter γb. Similar to DP, the sample drawn from PYP also
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associated with discrete distribution with support of the base distribution H [?]. The Hier-

archical Pitman-Yor process (HPYP) defines the global-level measure G0 and group-level

distribution Gj similar to HDP as shown in Eq. (6.11).

I can describe HPYP by applying the stick-breaking construction for the global-level

measure G0 and group-level measure Gj . The base measure is defined via stick-breaking

process as:

Λk ∼ H

η′k ∼ Beta(1− γa, γb + kγa)

ηk = η′k

k−1∏
l=1

(1− η′l)

G0 =
∞∑
k=1

ηkδΛk (6.11)

where Λk is independent sample drawn from base distribution H and δΛk represents

probability mass concentrated at Λk, and ηk denotes the relative prevalence of each atoms

which satisfy
∑∞

k=1 ηk = 1. The stick lengths η′ are distributed according to Beta distribu-

tion with two parameters γa and γb.

The group-level measures of HPYP also constructed via stick-breaking construction

similar to the HDP described in Section 6.1.1:

ψjt ∼ G0

p′jt ∼ Beta(1− βa, βb + tβa)

pjt = p′jt

t−1∏
s=1

(1− p′js)

Gj =
∞∑
t=1

pjtδψjt (6.12)

where ψjt is the atom of second-level PYP and δΛk indicates the corresponding realiza-

tion, and pjt represents the probability mass associated with each atoms with constraint of

sum equal to 1. The stick lengths p′ are given a Beta prior with discount parameters γa and

concentration γb.
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I also introduce the global-level indicator variables I and group-level indicator variables

W as HDP in Eq. (6.4) and Eq. (6.8). The indicators W could map the component θji to

group-level atom ψjt and I assign the lower-level atom to global-level one Λk.

p(I | η′) =
M∏
j

∞∏
t

∞∏
k

η
Ijtk
k =

M∏
j

T∏
t

K∏
k

[η′k

k−1∏
l=1

(1− η′l)]Ijtk (6.13)

p(W | p′) =
M∏
j

N∏
i

∞∏
t

p
Wjit

jt =
M∏
j

N∏
i

T∏
t

[p′jt

t−1∏
s=1

(1− pjs)]Wjit (6.14)

where the latent indicators are distributed according to the Multinomial distribution

with stick lengths. Thus, I obtain generalized hierarchical mixture model.

6.1.3 Hierarchical infinite mixture models of asymmetric Gaussian
distributions

I restrict the base distribution ofH in Eq. (6.1) as AGD with the set of parameters (µ, σl, σr).

If aD dimensional input vectorX = (X1, . . . , XD) follows AGD, then the probability den-

sity function is given by:

p(X | µ, σl,σr) ∝
D∏
d=1

1

σld + σrd
×

exp
{
− (Xd−µd)2

2σ2
ld

}
ifXd<µd

exp
{
− (Xd−µd)2

2σ2
rd

}
ifXd ≥ µd

(6.15)

where (µ, σl, σr) is the complete set of parameters for AGD, where µ = (µ1, . . . , µD),

σl = (σl1, . . . , σlD), and σr = (σr1, . . . , σrD). µd, σld and rd are the mean, the left and right

standard deviation for the dth-dimensional AGD, respectively. Here I assume each dimen-

sion of observation X is independent and its covariance matrix will be diagonal leading to

the reduction of computational expense during deployment stage.

Here I have a dataset X with N random vectors categorized into M groups, where each

D dimensional observationXji = (Xji1, . . . , XjiD) is distributed according to Hierarchical

infinite mixture model with asymmetric Gaussian, the likelihood function can be illustrated

with respect to the complete parameters set of asymmetric Gaussian (µ, σl, σr) and latent

indicators as follows:
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p(X | Z,C, µ, σl, σr) =
M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

p(Xji | µk, σlk, σrk)ZjitCjtk

p(X | W, I, µ, σl, σr) =
M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

p(Xji | µk, σlk, σrk)WjitIjtk (6.16)

where the two functions represent the HDP asymmetric Gaussian mixture (HDPAGM)

and HPYP asymmetric Gaussian mixture (HPYPAGM). The mean parameters µ follow a

Gaussian distribution with mean λ and precision r, i.e. the inverse variance of Gaussian

distribution. The standard deviation variables σl and σr are given Gaussian distribution

with high value standard deviation variable suggested by [30]:

p(µkd | λ, r) ∼ N (λkd, rkd)

p(σlkd | ml, sl) ∼ N (mlkd, s
2
lkd)

p(σrkd | mr, sr) ∼ N (mrkd, s
2
rkd) (6.17)

6.2 Variational inference

6.2.1 Variational approximation

In this section, I consider the complete Variational Bayes inference framework proposed

in chapter 5. Variational inference is a well-defined method to approximate probability

densities through optimization [6] [31].

The mean field assumption renders the latent variables independent and discovers the

true density from the posed family. Here, I adopt fully factorized form of variational distri-

butions and perform mean field variational inference on HDPAGM and HPYPAGM mix-

ture. The variational lower bound can be found as:

q(C, V ′, Z, π′, µ, σl, σr) =q(C)q(V ′)q(Z)q(π′)q(µ)q(σl)q(σr) (6.18)

q(I, η′,W, p′, µ, σl, σr) =q(I)q(η′)q(W )q(p′)q(µ)q(σl)q(σr) (6.19)
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where the latent variables of AGD have same factorized form. Consider suitable family

of variational approximations, I can obtain the following distributions as:

q(C) =
M∏
j

T∏
t

K∏
k

Multi(Cjtk | φjtk)

q(Z) =
M∏
j

N∏
i

T∏
t

Multi(Zjit | ρjit)

q(V ′) =
K∏
k

Beta(V ′k | uk, vk)

q(π′) =
M∏
j

T∏
t

Beta(π′jt | ajt, bjt)

q(I) =
M∏
j

T∏
t

K∏
k

Multi(Ijtk | ϕjtk)

q(W ) =
M∏
j

N∏
i

T∏
t

Multi(Wjit | %jit)

q(η′) =
K∏
k

Beta(η′k | ck, dk)

q(p′) =
M∏
j

T∏
t

Beta(p′jt | ejt, fjt)

q(µ) =
K∏
k

D∏
d

N (mkd | mkd,Σkd)

q(σl) =
K∏
k

D∏
d

N (σlkd | ιlkd, υ2
lkd)

q(σr) =
K∏
k

D∏
d

N (σrkd | ιrkd, υ2
rkd) (6.20)

The variational distributions for indicator variables C and Z are Multinomial. The

stick lengths V ′ and π′ follow the Beta distribution. The variational distribution of mean

parameters µ is considered as Gaussian distribution with mean m and variance Σ. σl, and

σr are given Gaussian variational distributions with mean ι and standard deviation υ.

For proposed HDPAGM, I could expand the ELBO in Eq. 6.18 by using the mean field

assumption:
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L = Eq[log p(X | C,Z, µ, σl, σr)]) + Eq[log p(C | V ′)] + Eq[log p(V ′ | ω)]

+ Eq[log p(Z | π′)] + Eq[log p(π′ | α)] + Eq[log p(µ | λ, r)] + Eq[log p(σl | ιl, υl)]

+ Eq[log p(σr | ιr, υr)]− Eq[log q(C, V ′, Z, π′, µ, σl, σr)]

(6.21)

I perform CAVI to optimize the ELBO in Eq. (6.21) with respect to the repeated updates

of each parameter. I obtain the optimal solutions for the variables of the posterior densities

by applying Eq. (6.18) and Eq. (6.20), excluding the variables associated with the standard

deviations. Since I cannot reach the closed form of standard deviation variables (σl, σr)

without the non-conjugate priors. Therefore, I apply the BBVI and variance reduction

technique proposed in chapter 5 and achieve the desired approximation since the black box

variational method is easy to extend to different models.

6.2.2 Coordinate ascent variational inference

I present the explicit coordinate ascent method to update variational parameters. The vari-

ational parameters of Multinomial distributions φ and ρ are normalized with the solutions

to each parameter in the HDP mixture as follows:

φjtk =
φ̂jtk∑K
k φ̂jtk

ρjit =
ρ̂jit∑T
t ρ̂jit

(6.22)

φ̂jtk = exp
{
Eq[log V ′k ] +

k−1∑
l=1

Eq[log(1− V ′l )]

−
N∑
i

Eq[Zjit]R̃
}

ρ̂jit = exp
{
Eq[log π′jt] +

t−1∑
s=1

Eq[log(1− π′jt)]

−
K∑
k

Eq[Cjtk]R̃
}
φ̂jtk (6.23)
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R̃ =
D∑
d

Eq[log(σlkd + σrkd)]

+
D∑

d,Xjid<µkd

X2
jid + Eq[µ

2
kd]− 2XjidEq[µkd]

2Eq[σ2
lkd]

+
D∑

d,Xjid≥µkd

X2
jid + Eq[µ

2
kd]− 2XjidEq[µkd]

2Eq[σ2
rkd]

(6.24)

uk = 1 +
M∑
j

T∑
t

Eq[Cjtk]

vk = wk +
M∑
j

T∑
t

K∑
l=k+1

Eq[Cjtl]

ajt = 1 +
N∑
i

Eq[Zjit]

bjt = αjt +
N∑
i

T∑
s=t+1

Eq[Zjis] (6.25)

Σkd =
(
r +

M∑
j

T∑
t

N∑
i,Xjid<µkd

Eq[Zjit]Eq[Cjtk]

Eq[σ2
lkd]

+
N∑

i,Xjid≥µkd

Eq[Zjit]Eq[Cjtk]

Eq[σ2
rkd]

)−1

mkd =Σkd

(
λr +

M∑
j

T∑
t

N∑
i,Xjid<µkd

Eq[Zjit]Eq[Cjtk]Xjid

Eq[σ2
lkd]

+
N∑

i,Xjid≥µkd

Eq[Zjit]Eq[Cjtk]Xjid

Eq[σ2
rkd]

)
(6.26)

The expected values for stick lengths and indicator variables in the above equations can

be calculated:

Eq[Cjtk] = φjtk Eq[Zjit] = ρjit (6.27)
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Eq[log Vk] = Eq[log V ′k ] +
k−1∑
l=1

Eq[log(1− V ′l )]

Eq[log(V ′k)] = Ψ(uk)−Ψ(uk + vk)

Eq[log(1− V ′k)] = Ψ(vk)−Ψ(uk + vk) (6.28)

Eq[log πjt] = Eq[log π′jt] +
t−1∑
s=1

Eq[log(1− π′jt)]

Eq[log(π′jt)] = Ψ(ajt)−Ψ(ajt + bjt)

Eq[log(1− π′jt)] = Ψ(bjt)−Ψ(ajt + bjt) (6.29)

where Ψ(·) denotes the Digamma function that arises from the derivative of the log

normalization factor in the Beta distribution.

The approximated expectations for the parameter set of AGD are calculated by:

Eq[µkd] = mkd Eq[µ
2
kd] = m2

kd + Σkd

Eq[σlkd] = ιl,kd Eq[σ
2
lkd] = ι2l,kd + υ2

l,kd

Eq[σrkd] = ιr,kd Eq[σ
2
rkd] = ι2r,kd + υ2

r,kd (6.30)

I present the expected value of Eq[log(σlkd + σrkd)] by applying the Jensen’s inequality

and replacing with a upper bound:

Eq[log(σlkd + σrkd)] ≤ log(Eq[σlkd + σrkd]) = log(ιl,kd + ιr,kd) (6.31)

Since the variational solutions of HPYP asymmetric Gaussian share similar character-

istics, the explicit formulas are detailed in Appendix. B.

6.3 Learning Algorithm

An important aspect when applying variational inference is the convergence assessment. In

this chapter I trace the convergence systematically by monitoring the ELBO. Convergence
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Figure 6.1: Sample frames from video sequence in different categories in the DynTex
dataset.

Algorithm 6 Hierarchical Dirichlet Process Asymmetric Gaussian Mixture
1: procedure
2: Initialization:
3: Initialize the truncation levels K and T .
4: Initialize the parameters of priors: ω, α, λ and r, mlkd, slkd, mrkd and srkd.
5: Initialize the parameters of variational distributions: φ, ρ, u, v, a, b µ and Σ.
6: repeat:
7: VB E-step:
8: Estimate the expected values in Eq. (6.27), Eq. (6.28), Eq. (6.29), and Eq. (6.30).
9: VB M-step:

10: Update the variational solutions for each factors using Eq. (6.22), Eq. (6.23),
Eq. (6.25), and Eq. (6.26).

11: Update variational hyperparameters from latent variables σlkd and σrkd by BBVI
from Section 4.2.2, with variance control approach from Section 5.2.2.

12: The convergence criteria is reached when the difference of the current value of
ELBO and previous value is less than 10−2 or the epochs number exceeds 300.

13: until convergence
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is reached when the ELBO is less than 10−2 between epochs or the number of iterations

is more than 300. The Bayesian inference framework of the HDPAGM is summarized in

Algorithm 6.

The detailed learning equations of HPYPAGM is presented in Appendix B. The com-

plete learning algorithm is summarized in Algorithm 7.

Algorithm 7 Hierarchical Pitman-Yor Process Asymmetric Gaussian Mixture
1: procedure
2: Initialization:
3: Initialize the truncation levels K and T .
4: Initialize the parameters of priors: γa, γb, βa, βb, λ and r, mlkd, slkd, mrkd and srkd.
5: Initialize the parameters of variational distributions: ϕ, %, c, d, e, f µ and Σ.
6: repeat:
7: VB E-step:
8: Estimate the expected values in Eq. (B.6), Eq. (B.7), Eq. (B.8), and Eq. (6.30).
9: VB M-step:

10: Update the variational solutions for each factors using Eq. (B.2), Eq. (B.3),
Eq. (B.4), and Eq. (B.5).

11: Update variational hyperparameters from latent variables σlkd and σrkd by BBVI
from Section 4.2.2, with variance control approach from Section 5.2.2.

12: The convergence criteria is reached when the difference of the current value of
ELBO and previous value is less than 10−2 or the epochs number exceeds 300.

13: until convergence

6.4 Experimental Results

I evaluate the effectiveness of the proposed HDP mixture and HPYP mixture model with

AGD using challenging dynamic texture clustering application. In the experiments, I ini-

tialize the global truncation level K and group level truncation level T to 120 and 60,

respectively. For HDP mixture, the hyperparameters of the stick lengths ω and α are ini-

tialized to 0.25; I set the parameters of HPYP mixture γa, γb, βa and βb as 0.25.

The hyperparameters of asymmetric Gaussian base distribution are initialized by sam-

pling from priors. The mean parameters µ are sampled from Gaussian prior with a mean

calculated by the average value of the observations. The left and right standard deviations

σl and σr are sampled from Gaussian distribution with a high mean value as studied by [30].
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Table 6.1: The accuracy results of dynamic texture clustering evaluated by different algo-
rithms.

Approach HPYPDM HDPGM HPYPGM HDPAGM HPYPAGM
Accuarcy (%) 82.75 74.96 75.19 83.47 84.21

6.4.1 Dynamic Texture Clustering

Dynamic textures are the extension of texture to the temporal domains, which can be de-

fined as sequences of images of moving scenes that exhibit certain stationary properties in

time (e.g., sea-waves, smoke, foliage, whirlwind etc.) [18]. Dynamic textures have been

applied in a vast number of applications in image processing, such as motion classification,

video registration, computer games, and motion segmentation [50].

In this chapter, I apply the proposed two hierarchical infinite mixtures to clustering

dynamic textures with the representation of scale-invariant feature transform (SIFT). The

methodology can be summarized as follows. The first step of the approach is to extract

128-dimensional SIFT descriptors [51] from each test scene frame using the difference-

of-Gaussians interest points detector and then normalized. Then, I apply the geometric

transformation for the resultant vectors and model it using the proposed HDPAGM and

HPYPAGM. In that case, each dynamic texture image Ij is treated as a group and is associ-

ated with a infinite mixture modelGj (e.g., the DP mixture model and PYP mixture model).

Thus, each extracted SIFT feature vector Xji of the dynamical texture Ij is supposed to be

drawn from Gj , where the mixture components of Gj can be considered as visual words.

Next, a global vocabulary is constructed and is shared among all groups (dynamic textures)

through the common global infinite mixture model G0 of the hierarchical model.

It is worth mentioning that most of the previously proposed bag-of-visual-words ap-

proaches have to apply a separate vector quantization technique, such as K-means algo-

rithm, to build the visual vocabulary, where the size of vocabulary is normally manually

selected. In contrast, the construction of the visual vocabulary in the approach is part of the

framework of the hierarchical infinite mixture models, and therefore, the size of the vocab-

ulary (i.e., the number of mixture components in the global-level mixture model) can be

automatically inferred from the data due to the property of nonparametric Bayesian mod-

els. Then, I employ the paradigm of bag-of-visual-words and compute a histogram of visual

words from each image. Since the objective is to determine the texture cluster that a testing

dynamic texture Ij belongs to, I introduce the indicator variable Bjm and associate each
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image with cluster label in the hierarchical infinite mixture frameworks. Bjm represents

the dynamic texture Ij allocated to the cluster m and is drawn from another infinite mix-

ture model, which is truncated at level J . As a result, the methodology requires a new level

of hierarchy to the proposed hierarchical infinite mixture modelx with a sharing vocabulary

among all clusters. In this experiment, I truncate J to 50 and initialize the hyperparameters

of the mixing probability Bjm to 0.2. Finally, I assign a testing dynamic texture into the

cluster that has the highest posterior probability according to Bayes decision rule.

6.4.2 Dataset and Results

In this experiment, the proposed HPDAGM and HPYPAGM are validated on clustering

challenging dynamic texture dataset which is known as the DynTex database [21]. This

dataset consists of more than 650 dynamic texture videos from several categories and

recorded using SONY 3 CCD camera mounted on a tripod. All sequences are captured

in Phase Alternate Line (PAL) format (720× 576), 25 Frames Per Second (fps), interlaced.

In that case, I use a subset of video sequences from 10 different categories: sea, vegetation,

trees, flags, clam water, fountains, smoke, escalator, traffic, and rotation. Each category has

about 20 video sequences. The sample frames from each category are shown in Fig. 6.1.

For preprocessing, all features in the dataset are normalized into the range of [0, 1]. I

do not need to include the class labels in the experiment since I were performing clustering

analysis. I use cross validation method to partition the dataset. I evaluate the proposed

approach and obtain average results from 30 runs. In order to evaluate the performance

of the proposed method, I compare with three other approaches, hierarchical Pitman-Yor

process mixture of Dirichlet distribution (HPYPDM) [20], Hierarchical Dirichlet Process

mixture of Gaussian distribution (HDPGM), and hierarchical Pitman-Yor process mixture

of Gaussian distribution (HPYPGM). The average results in terms of the clustering accu-

racy are summarized in Table. 6.1. Figure. 6.2 and Figure. 6.3 show the confusion matrices

for the Dyntex dataset using proposed hierarchical infinite mixture models.

According to the results shown in the table, I can observe that HDPAGM and HPY-

PAGM have shown to outperform the other three methods in terms of the categorization

accuracy rate. By contrast, the hierarchical infinite mixture models with Gaussian base dis-

tribution has obtained the worst performance. This confirms the merit of AGD in incorpo-

rating the asymmetry structure inside the dataset. Furthermore, the proposed model outper-

forms HPYPDM which is considered in modeling positive data accurately [20]. Moreover,
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Figure 6.2: Confusion matrix of HDPAGM for the DynTex dataset.

75



Figure 6.3: Confusion matrix of HPYPAGM for the DynTex dataset.
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I also find that HPYP mixture model achieves better accuracy compared with HDP mixture

model with specific distribution. It demonstrates that a PYP prior could lead to a better

modeling capability.
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Chapter 7

Conclusion

Clustering has become an inevitable part of image processing and pattern recognition do-

mains. I have explored several extensions and statistical inference approaches and demon-

strated its efficiency.

In chapter 2, I introduce a novel infinite mixture model, IAGM, that is capable of mod-

eling the asymmetry of data in contrast to the traditionally deployed GMM. Moreover, I

address the challenges of learning parameter and choosing the adequate number of compo-

nents through the employment of MCMC algorithm and the extension of model to infinity

with nonparametric prior.

In chapter 3, I integrate feature selection algorithm into mixture model for clustering

high-dimensional data which plagues unsupervised learning algorithm frequently. Through

Bayesian framework, identifying relevant features and parameter inference are unified into

the same framework.

Then, in chapter 4, I have presented and implemented an efficient variational learning

framework for finite mixture model with AGD. I choose a factorized coordinate ascent

variational approximation as well as the black box variational inference method which ap-

ply Monte Carlo estimation. It demonstrated the effectiveness of gradient ascent inference

method to deal with non-conjugate problem.

In chapter 5, I have proposed a nonparametric prior for asymmetric Gaussian mixture

to combine the learning of model complexity and the estimation of parameters together.

Moreover, I incorporate feature selection within the proposed framework which alleviates

the noisy influence of irrelevant features. Although the variance of the noisy gradient es-

timator consistently obstructs utility, a simple and general variant of variance reduction
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algorithm is developed to guarantee the convergence. All though an infinite mixture model

may appear complicated because of the number of involved parameters, the final model

remains concise as the self-correcting component reduction process cuts the least effective

components and leaves well-separated clusters.

Finally, in chapter 6 I have presented hierarchical nonparametric Bayesian models. I

consider the AGD and proposed an effective variational inference framework to estimate

latent variables for hierarchical infinite mixtures. The hierarchical nonparametric Bayesian

mixtures are evaluated on grouped image features.

The experiments with proposed frameworks are motivating and proves to be a better

solution than prevalent considered GMM for appropriate data. A promising future work is

to consider advanced automatic variational inference approach; for instance, [52] propose

Automatic Differentiation Variational Inference approach to save effort for building model.

Since a nonparametric process is not differentiable, a potential way to include such models

is to approximate the discrete latent variables by introducing adequate variational families.
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Appendix

A Full Equations of Infinite Asymmetric Gaussian with

Feature Selection

Based on the hyperparameters setting we chosen in Section 3.2, we deduce the posteriors

for all of the parameters.

For parameter α, the posteriors depend only on the number of observations N and the

number of components M , and not on how the distributions are distributed among the

mixtures:

p(α | k, n) ∝
αM−

3
2 exp(− 1

2α
)Γ(α)

Γ(N + α)
(A.1)

The complete posteriors for µ, µirr, λ and r are obtained as follows:

p(µjk | . . . ) ∝ N
(rλ+ Sljk

∑
i:φijk=1,Xik<µjk

Xik + srjk
∑

i:φijk=1,Xik≥µjk Xik

r + psljk + (nj − p)srjk)
,

1

r + psljk + (nj − p)srjk
)

(A.2)

p(µirrjk | . . . ) ∝ N
(∑i,φijk=0 x

irr
ik S

irr
jk + rirrk λirrk

rirrk + nirrj Sirrjk
,

1

rirrk + nirrj Sirrjk

)
(A.3)

p(λ | µ1k, . . . , µMk, r) ∝ N
(r∑M

j=1 µjk + µxσ
−2
x

σ−2
x +Mrk

,
1

σ−2
x +Mrk

)
(A.4)

p(r | µ1k, . . . , µMk, λ) ∝ γ
(M + 1

2
,

2

σ2
x +

∑M
j=1(µjk − λk)2

)
(A.5)

The complete posteriors for sljk, srjk, sirrjk , β and w are obtained as follows:

p(Sljk | X,µj, Srj, βl, wl) ∝ exp
{
−
Sljk

∑n
i:Xik<µjk

(xik − µjk)2

2
− wlkβlkSljk

2

}
(A.6)

85



p(Sirrj | X,µirrj , βirr, wirr) ∝ Γ
(N irr

jk β
irr
k

2
,

2

βirrk wirrk +
∑

i,φijk=0(Xik − µirrjk )2

)
(A.7)

p(βl | Sl1k, . . . , SlMk, wl) ∝ Γ(
βl
2

)−M exp(− 1

2βl
)(
βl
2

)
Mβl−3

2

M∏
j=1

(wlSljk)
βl
2 exp(−βlwlsljk

2
)

(A.8)

p(wl | Sl1k, . . . , SlMk, βl) ∝ Γ
(Mβl + 1

2
,

2

σ−2
y + βl

∑M
j=1 Sljk

)
(A.9)

N re
jk and N irr

jk are the number of observations allocated to mixture j with feature k

considered as relevant and irrelevant, respectively.

The complete posteriors for feature saliency φ with gamma parameters a and b, with

njk the number of feature k relevant for component j can then be expressed by:

p(ρjk | . . . ) ∝ Beta (a+ njk, b+N − njk) (A.10)

p(a | . . . ) ∝ ae−
a
2 (

Γ(a+ b)

Γ(a)
)M

M∏
j=1

ρa−1
jk

p(b | . . . ) ∝ be−
b
2 (

Γ(a+ b)

Γ(b)
)M

M∏
j=1

(1− ρjk)a−1 (A.11)

B The Variational Inference framework for Hierarchical

Pitman-Yor Process mixture.

The variational lower bound is shown as:
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L2 = Eq[log p(X | I,W, µ, σl, σr)])

+ Eq[log p(I | η′)] + Eq[log p(η′ | γa, γb)]

+ Eq[log p(W | p′)] + Eq[log p(p′ | βa, βb)]

+ Eq[log p(µ | λ, r)] + Eq[log p(σl | ιl, υl)]

+ Eq[log p(σr | ιr, υr)]

− Eq[log q(W, η′, I, p′, µ, σl, σr)] (B.1)

The following steps are to optimize variational distribution:

ϕjtk =
ϕ̂jtk∑K
k ϕ̂jtk

%jit =
%̂jit∑T
t %̂jit

(B.2)

ϕ̂jtk = exp
{
Eq[log η′k] +

k−1∑
l=1

Eq[log(1− η′l)]

−
N∑
i

Eq[Wjit]R̃
}

ρ̂jit = exp
{
Eq[log p′jt] +

t−1∑
s=1

Eq[log(1− p′jt)]

−
K∑
k

Eq[Ijtk]R̃
}

(B.3)

ck = 1− γak +
M∑
j

T∑
t

Eq[Ijtk]

dk = γbk + kγak +
M∑
j

T∑
t

K∑
l=k+1

Eq[Ijtl]

ejt = 1− βajt +
N∑
i

Eq[Wjit]

fjt = βbjt + tβajt +
N∑
i

T∑
s=t+1

Eq[Wjis] (B.4)
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Σkd =
(
r +

M∑
j

T∑
t

N∑
i,Xjid<µkd

Eq[Wjit]Eq[Ijtk]

Eq[σ2
lkd]

+
N∑

i,Xjid≥µkd

Eq[Wjit]Eq[Ijtk]

Eq[σ2
rkd]

)−1

mkd =Σkd

(
λr +

M∑
j

T∑
t

N∑
i,Xjid<µkd

Eq[Wjit]Eq[Ijtk]Xjid

Eq[σ2
lkd]

+
N∑

i,Xjid≥µkd

Eq[Wjit]Eq[Ijtk]Xjid

Eq[σ2
rkd]

)
(B.5)

The expectation of HPYP mixture of Asymmetric Gaussian are shown as:

Eq[Ijtk] = ϕjtk Eq[Wjit] = %jit (B.6)

Eq[log ηk] = Eq[log η′k] +
k−1∑
l=1

Eq[log(1− η′l)]

Eq[log(η′k)] = Ψ(ck)−Ψ(ck + dk)

Eq[log(1− η′k)] = Ψ(dk)−Ψ(ck + dk) (B.7)

Eq[log pjt] = Eq[log p′jt] +
t−1∑
s=1

Eq[log(1− p′jt)]

Eq[log(p′jt)] = Ψ(ejt)−Ψ(ejt + fjt)

Eq[log(1− p′jt)] = Ψ(fjt)−Ψ(ejt + fjt) (B.8)

The expectation of parameters of AGD are same as the HDP mixture. Since BBVI

adapts to different model, we would not need to drive again.
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