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Abstract

Estimation of Road Accident Risk with Machine Learning

Antoine Hébert

Road accidents are an important issue for our societies, responsible for millions of deaths

and injuries every year representing a very high cost for society. In this thesis, we evaluate

how machine learning can be used to estimate the risk of accidents in order to help address

this issue.

Previous studies have shown that machine learning can be used to identify the times

and areas of a road network with increased risk of road accidents using road characteris-

tics, weather statistics, and date-based features. In the first part of this thesis, we evaluate

whether more precise models estimating the risk for smaller areas can still reach interesting

performances. We assemble several public datasets and build a relatively accurate model

estimating the risk of accidents within an hour on a road segment defined by intersections.

In the second part, we evaluate whether data collected by vehicle sensors during driv-

ing can be used to estimate the risk of accidents of a driver. We explore two different

approaches. With the first approach, we extract features from the time series and attempt

to estimate the risk based on these features using classical algorithms. With the second

approach, we design a neural network directly using the time series data to estimate the

risk. After extensively tuning our models, we managed to reach encouraging performances

on the validation set, however, the performances of our two models on the test set were

disappointing. This led us to believe that this task might not be feasible, at least with the

dataset used.
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Chapter 1

Introduction

1.1 Context of the thesis

Road accidents are an important issue representing a very high cost for society. Despite

improvements in road safety, road accidents remain one of the leading causes of death, for

young people between 5 and 29 years old, it is the leading cause of death [51]. The World

Health Organization estimates that road accidents cause 1.35 million death and more than

20 million injuries every year in the world [51, 26]. In 2010, the cost of transport-related

injuries in Canada was estimated at 3.2 billion US dollars [30].

Trucking companies are an important user of the road network, by promoting safe driv-

ing and offering training to their employees they can help to reduce significantly the num-

ber of road accidents. Indeed, in the US in 2017, large trucks were involved in 13% of

fatal crashes [24]. Some of these fatalities could have been prevented, indeed accord-

ing to the US Federal Motor Carrier Safety Administration, for 32% of the large truck

drivers involved in fatal crashes, at least one driver-related factor was identified. The two

most common driver-related factors identified were “Speeding of Any Kind” and “Distrac-

tion/Inattention”. Although already regrettable, it can be noted that this percentage remains

better than for passenger vehicles for which a driver-related factor was recorded for more

1



than half of fatal crashes [24].

Advances in telecommunications and electronics, as well as the increasing number of

sensors already installed in trucks, make it possible and cost-efficient to collect massive

amounts of data from vehicles during driving. Telemetric solutions on the market offer

trucking companies the opportunity to improve the management of their truck fleet by

collecting some of these data and providing real-time information to fleet managers [38].

This massive amount of data represents a new opportunity to gain a better understanding

of road accidents in the trucking industry. The main research project of my thesis consisted

in exploring how this data can be used to identify patterns leading to road accidents. This

research project was conducted in collaboration with Groupe Robert. Groupe Robert is a

logistics, distribution, and transport company founded in Quebec in 1946. Groupe Robert

is a North American leader in the transportation industry employing 3,500 persons and

operating a fleet of 1,400 tractors and 3,000 trailers. For many years, Groupe Robert has

been monitoring road accidents and infractions in which their fleet was involved. In 2017,

it equipped its truck fleet with a telemetric system collecting most of the data generated by

vehicle sensors during driving. We used the data collected by this system since February

2018 to explore the potential of driving telemetric data for the prediction of road accidents.

1.2 High-Resolution Road Vehicle Collision Prediction for

the City of Montreal

The process of acquiring the massive amount of data collected on all the trucks of the

partner company for one year took a few months. While waiting to obtain the data, after

reviewing the literature in the field of road accident prediction, I initiated an additional

research project linked to the subject of my main project. This project was started as a

course project for the Big Data Analytics course taught by Dr. Tristan Glatard and was
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conducted with another student Timothée Guédon. Our initial goal was to reproduce the

state of the art in road accident prediction and to use open data provided by the city of

Montreal and the Government of Canada in order to build a model providing an estimation

of the risk of accidents for each area of Montreal and for each date. After looking at

available datasets, we decided to experiment with building a prediction model predicting

at a higher resolution than previous studies [8, 9, 42, 57, 11, 49, 62], that is to say, a

model capable of providing an estimation of the risk of accidents within one hour on a

road segment defined by road intersections. We also evaluated in this study a variation

of the Random Forests algorithm [10] designed to help with the severe class imbalance

issue inherent to accident prediction problems. This project led to the publication of a

conference paper at IEEE Big Data 2019. The first chapter of this thesis entitled “High-

Resolution Road Vehicle Collision Prediction for the City of Montreal” corresponds to the

content of this paper.

1.3 Outline

The first chapter of this thesis presents our first study on road accident prediction and cor-

responds to my first paper published at IEEE Big Data 2019. For this study, we assembled

three publicly available datasets: a dataset containing road vehicle collisions, a dataset

describing the Canadian road network, and a dataset containing historical weather infor-

mation. Using these datasets, we created meaningful features to build a high spatial and

temporal resolution road accident prediction model for the island of Montreal. In this study,

we also compare different machine learning algorithms, including the Balanced Random

Forest algorithm [10] which we implemented ourselves in Apache Spark [63].

The second chapter of this thesis presents the main research project I performed during

my Master’s and corresponds to my second paper which we will submit shortly to IEEE

Transactions on Intelligent Transportation Systems. In this study, we evaluate whether
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driving telemetric data of a driver can be used to estimate its risk of road accidents. We

experiment with two different machine learning approaches: a feature-based approach for

which we extract features from the time series data using the FRESH algorithm [15] and

then use the random forest algorithm to estimate the risk; and a representation-based ap-

proach for which we use a convolutional neural network learning a representation of the

data in order to directly estimate the risk from the time series data.
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Chapter 2

High-Resolution Road Vehicle Collision

Prediction for the City of Montreal

Road accidents are an important issue of our modern societies, responsible for millions

of deaths and injuries every year in the world. In Quebec only, in 2018, road accidents

are responsible for 359 deaths and 33 thousands of injuries. In this paper, we show how

one can leverage open datasets of a city like Montreal, Canada, to create high-resolution

accident prediction models, using big data analytics. Compared to other studies in road

accident prediction, we have a much higher prediction resolution, i.e., our models predict

the occurrence of an accident within an hour, on road segments defined by intersections.

Such models could be used in the context of road accident prevention, but also to identify

key factors that can lead to a road accident, and consequently, help elaborate new policies.

We tested various machine learning methods to deal with the severe class imbalance

inherent to accident prediction problems. In particular, we implemented the Balanced

Random Forest algorithm, a variant of the Random Forest machine learning algorithm in

Apache Spark. Interestingly, we found that in our case, Balanced Random Forest does not

perform significantly better than Random Forest.

Experimental results show that 85% of road vehicle collisions are detected by our model
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with a false positive rate of 13%. The examples identified as positive are likely to corre-

spond to high risk situations. In addition, we identify the most important predictors of

vehicle collisions for the area of Montreal: the count of accidents on the same road seg-

ment during previous years, the temperature, the day of the year, the hour and the visibility.

This chapter was published in the proceedings of the 7th IEEE International Conference

on Big Data [37].

2.1 Introduction

The World Health Organization describes the road traffic system as the most complex and

the most dangerous system with which people have to deal every day [53]. In the last

few years, the number of road traffic deaths in the world climbed, reaching 1.35 million in

2016 [51]. More particularly in Quebec, Canada, 359 people were killed in 2018, more than

a thousand were seriously injured and tens of thousands have suffered small injuries[54].

Meanwhile, Big Data Analytics has emerged in the last decade as a set of techniques

allowing data scientists to extract meaningful information from large amounts of complex

and heterogeneous data [27]. In the context of accident prediction, such techniques provide

insights on the conditions leading to an increased risk of road accidents, which in return,

can be used to develop traffic-related policies and prevention operations.

2.1.1 Open Data

Governments, states, provinces and municipalities collect and manage data for their inter-

nal operations. In the last decade, an open data movement has emerged that encourages

governments to make the data they collect available to the public as “open data". Open

data is defined as “structured data that is machine-readable, freely shared, used and built

on without restrictions" [29]. Open data should be easily accessible and published under
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terms that permit re-use and redistribution by anyone and for any purpose.

Open data is made possible by the progress of information technology which allows the

sharing of large amounts of data. In 2009, Canada, USA, UK and New Zealand, announced

new initiatives towards opening up public information. It is in this spirit that the Govern-

ment of Canada launched its first-generation of the Open Data Portal in 2011 [29], giving

access to several public datasets. In 2012, the city of Montreal launched its own open data

portal.

2.1.2 High-Resolution Road Vehicle Collision Prediction

With the emergence of open data, governments and municipalities are publishing more and

more data. At the same time, the recent progresses in Big Data Analytics have facilitated

the processing of large data volumes. This makes it possible to build efficient data models

for the study of road accidents.

Accident prediction has been extensively studied in the last decade. The goal of acci-

dent prediction is usually to provide a measure of the risk of accidents at different points

in time and space. The occurrence of an accident is the label used to train the model, and

the proposed model can be used to identify where and when the risk of accidents is sig-

nificantly higher than average in order to take actions to reduce that risk. Note that the

model cannot be used to predict whether an accident will occur or not. Indeed, in order

to accurately predict the occurrence of an accident, additional data would be needed: the

occurrence of an accident depends on many factors, including driver behavior, that cannot

be easily measured.

Several studies used relatively small datasets and performed accident prediction only

on a few selected roads [8, 9, 42, 57]. More recently, other studies performed accident pre-

diction at a larger scale, such as cities or states, using deep learning[11, 49, 62]. However,

unlike previous studies, they only provide an estimation of the risk of accidents for large
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areas, i.e., at a coarse spatial resolution. An online article[60] presents a study of high res-

olution road accident prediction in the state of Utah with good performances. This article

has inspired us to build a machine-learning model for high-resolution road vehicle colli-

sion prediction using public datasets. We used datasets provided by the city of Montreal

and the government of Canada as part of their open data initiative. Compared to [60], we

have a smaller study area, the island of Montreal, but a much higher prediction resolution.

Indeed, the size and precision of our datasets made it possible to predict the occurrence of

an accident within an hour on road segments defined by road intersections.

Road vehicle collision prediction can be seen as: (1) a regression problem: predicting

the risk of accidents, which can be translated into different ways, or (2) a binary classifi-

cation problem: predicting whether an accident will occur. We choose to approach it as a

classification problem because this simpler approach facilitates the interpretation and com-

parison of results. In addition, classification models also provide a measure of probability

that can be considered as the risk of an accident.

2.1.3 The Data Imbalance Issue

Like many real-world binary classification problems such as medical diagnosis or fraud

prediction, vehicle collision prediction suffers from the data imbalance issue. This issue

arises when we are interested in the prediction of a rare event. In this case, the dataset

contains much less examples of the class corresponding to the rare event, the positive class.

When dealing with severe data imbalance, most machine learning algorithms do not per-

form well. Indeed, they try to minimize the overall error rate instead of focusing on the

detection of the positive class [10].
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2.1.4 Our Contributions

In this study, we assembled a dataset containing road vehicle collisions, a dataset describing

the Canadian road network, and a dataset containing historical weather information. Using

these datasets, we created positive examples, corresponding to the occurrence of a colli-

sion, and negative examples, corresponding to the non-occurrence of a collision. For each

example, we extracted from the datasets relevant features for accident prediction. Then, we

built several prediction models using these examples using various machine learning algo-

rithms. We focused on tree-based machine-learning algorithms because they have already

proven their effectiveness compared to classical statistical methods [8, 9]. In addition, they

allow for easier interpretation than deep learning algorithms. We first used the Random

Forest algorithm[7]. We then used the Balanced Random Forest (BRF) algorithm[10], a

variation of Random Forest specifically designed to better manage data imbalance. As

BRF was not yet implemented in Apache Spark, we implemented it ourselves. Finally, we

considered the XGBoost algorithm[13], a gradient tree boosting algorithm which has been

used successfully for many machine learning problems and can handle data imbalance[12].

The contributions of this paper include:

• A demonstration of how open datasets can be combined to obtain meaningful features

for road accident prediction,

• A high spatial and temporal resolution road accident prediction model for the island

of Montreal,

• A comparison of three algorithms dealing with data imbalance in the context of road

accident prediction,

• An implementation of Balanced Random Forest [10] in Apache Spark for efficient

distributed training.
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All the source code used is publicly available on Github under MIT license.

Compared to other studies in accident prediction, our study is original by the size of the

datasets used and the spatial resolution of the predictions of our models. Previous studies

did either use a large dataset (millions of records in total including hundreds of thousands

of positive samples [11]) or predict at a high resolution on one particular road, but no study

combines both aspects, which is the hallmark of our study. In terms of prediction resolution,

some studies worked on only one road [8] [9] [42] while some others worked on regions

(for example 5km by 5km [11] or 500m by 500m [62]). The road accident dataset we used

also covers a wider time range than some studies and is about the maximum time range

encountered in the related papers we studied: 7 years [62] (against 6 years in our case).

For example, other studies have worked on accidents occurring during one year [8] [9] [11]

[42]. In our opinion, predicting at a higher resolution yields more useful results.

The rest of this paper is organized as follows: Section 2.2 presents the related work on

accident prediction and on learning with imbalanced data, Section 2.3 presents the datasets

we used and how we combined them to create positive and negative examples for road

accident prediction, Section 2.4 presents how we performed feature engineering, feature

selection and hyper-parameter tuning, Section 2.5 presents our results and Section 2.6 dis-

cusses them. Conclusions are drawn in the last section.

2.2 Related Work

2.2.1 Road Accident Prediction

Accident prediction has been extensively studied in the last decades. Historically, variations

of the Poisson regression such as the negative binomial regression were used to predict the

number of accidents that occurred on a given road segment [48]. During the last decade,

machine learning algorithms such as decision trees, artificial neural networks and Bayesian
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networks have been used successfully to predict road accidents [8, 9, 42, 57]. Data features

usually include information about the road such as number of lanes, average daily traf-

fic, and road curvature, as well as weather information such as average precipitation and

temperature.

In 2005, Chang [8] compared the performances of a negative binomial regression with

that of an Artificial Neural Network (ANN) to predict the number of accidents during a

year on road segments of a major freeway in Taiwan. The dataset contained data from the

years 1997 and 1998, which resulted in 1,338 accidents. The ANN achieved slightly better

results than negative binomial regression, with an accuracy of 61.4%. On the same dataset,

Chang et al. [9] also used decision trees for accident prediction, to get more insights on the

important variables for accident prediction. It appeared that the average daily traffic and

the number of days with precipitation were the most relevant features. The decision tree

reached an accuracy of 52.6%.

Lin et al. [42] compared the performances of Frequent Pattern trees[33] with that of

Random Forest for feature selection. They used k-nearest-neighbor and Bayesian networks

for real-time accident prediction on a segment of a highway. Using the mean and sometimes

the standard deviation of the weather condition, the visibility, the traffic volume, the traffic

speed, and the occupancy measured during the last few minutes their models predict the

occurrence of an accident. They obtained the best results using the Frequent Pattern trees

feature selection and achieved an accuracy of 61.7%. It should be noted that they used only

a small sample of the possible negative examples, to deal with data imbalance.

Theofilatos[57] also used real-time data on two urban arterials of the city of Athens to

study road accident likelihood and severity. Random Forest were used for feature selection

and a Bayesian logistic regression for accident likelihood prediction. The most important

features identified were the coefficients of variation of the flow per lane, the speed, and the

occupancy.

11



In addition, many studies aim at predicting the severity of an accident using various

information from the accident in order to understand what causes an accident to be fatal.

Chong et al. [47] used decision trees, neural networks and a hybrid model using a decision

tree and a neural network. They obtained the best performances with the hybrid model

which reached an accuracy of 90% for the prediction of fatal injuries. They identified that

the seat belt usage, the light conditions and the alcohol usage of the driver are the most

important features. Abellán et al. [2] also studied traffic accident severity by looking at the

decision rules of a decision tree using a dataset of 1,801 highway accidents. They found

that the type and cause of the accident, the light condition, the sex of the driver and the

weather were the most important features.

All of these studies use relatively small datasets using data from only a few years or

only a few roads. Indeed, it can be hard to collect all the necessary information to perform

road accident prediction on a larger scale, and dealing with big datasets is more difficult.

However, more recent studies [11, 49, 62] performed accident prediction at a much larger

scale, usually using deep learning models. Deep learning models can be trained online so

that the whole dataset does not need to stay in memory. This makes it easier to deal with

big datasets.

Chen et al. [11] used human mobility information coming from mobile phone GPS data

and historical accident records to build a model for real-time prediction of traffic accident

risk in areas of 500 by 500 meters. The risk level of an area is defined as the sum of the

severity of accidents that occurred in the area during the hour. Their model achieves a Root

Mean-Square Error (RMSE) of 1.0 accident severity. They compared the performance

of their deep learning model with the performances of a few classical machine learning

algorithms: Decision Tree, Logistic Regression and Support Vector Machine (SVM), which

all got worse RMSE values of respectively 1.41, 1.41 and 1.73. We note that they have

not tried the Random Forest algorithm while it usually has good prediction performances.
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Najjar et al. [49], trained a convolutional neural network using historical accident data and

satellite images to predict the risk of accidents on an intersection using the satellite image

of the intersection. Their best model reaches an accuracy of 73%. Yuan et al. [62] used an

ensemble of Convolutional Long Short-Term Memory (LSTM) neural networks for road

accident prediction in the state of Iowa. Each neural network of the ensemble is predicting

on a different spatial zone so that each neural network learns the patterns corresponding to

its zone, which might be a rural zone with highways or an urban zone. They used a high-

resolution rainfall dataset, a weather dataset, a road network dataset, a satellite image and

the data from traffic cameras. Their model reaches an RMSE of 0.116 for the prediction of

the number of accidents during a day in an area of 25 square kilometers.

These more recent studies are particularly interesting because they achieve good results

for the prediction of road accidents in time and space in larger areas than previous studies

which focused on a few roads. But unlike previous studies, they only provide an estimation

of the risk of accidents for large areas, i.e., at a coarse spatial resolution. In our study, we

decided to focus on urban accidents occurring in the island of Montreal, a 500-km2 urban

area, but with a much higher prediction resolution. We used a time resolution of one hour

and a spatial resolution defined by the road segments delimited by road intersections. The

road segments used have an average length of 124 meters, and 82% of the road segments

are less than 200 meters long.

Some of these studies define the road accident prediction problem as a classification

problem, while others define it as a regression problem. Most of the studies performing

classification only report the accuracy metric which is not well suited for problems with

data imbalance such as road accident prediction[35]. The studies performing regression

use different definitions for the risk of accidents, which makes comparisons difficult.
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2.2.2 Dealing with Data Imbalance

Road accident prediction suffers from a data imbalance issue. Indeed, a road accident is

a very rare event so we have much more examples without accident, than examples with

accidents available. Machine learning algorithms usually have difficulty learning from im-

balanced datasets [6]. There are two main types of approaches to deal with data imbalance.

The sampling approaches consist in re-sampling the dataset to make it balanced either by

over sampling the minority class, by under-sampling the majority class or by doing both.

Random under-sampling of the majority class usually performs better than more advanced

methods like SMOTE or NearMiss [6]. The cost-based approach consists in adding weights

on the examples. The negative examples receive a lower weight in order to compensate for

their higher number. These weights are used differently depending on the machine learning

algorithm.

Chen, Liaw, and Breiman[10] proposed two methods to deal with class imbalance when

using Random Forest: Weighted Random Forest and Balanced Random Forest. Weighted

Random Forest (WRF) belongs to the class of cost-based approaches. It consists in giving

more weight to the minority class when building a tree: during split selection and during

class prediction of each terminal node. Balanced Random Forest belongs to the class of

sampling approaches. It is similar to Random Forest, but with a difference during the

bootstrapping phase: for each tree of the forest, a random under-sampling of the majority

class is performed in order to obtain a balanced sample. Intuitively, Balanced Random

Forest is an adaptation of random under-sampling of the majority class making use of

the fact that Random Forest is an ensemble method. While none of the methods is clearly

better than the other in terms of predictive power, BRF has an advantage in terms of training

speed because of the under-sampling. Interestingly, Wallace et al. [59] present a theoretical

analysis of the data imbalance problem and suggest to use methods similar to Balanced

Random Forest.
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2.3 Datasets Integration

2.3.1 Open Datasets

We used three public datasets[16, 28, 32] provided by the city of Montreal and the govern-

ment of Canada:

Montreal Vehicle Collisions[16] This dataset, provided by the city of Montreal, contains

all the road collisions reported by the police occurring from 2012 to 2018 on the island of

Montreal. For each accident, the dataset contains the date and localization of the accident,

information on the number of injuries and deaths, the number of vehicles involved, and

information on the road conditions. The dataset contains 150,000 collisions, among which

134,489 contain the date, the hour and the location of the accident. We used only these three

variables since we do not have other information when no accident happened. Another

dataset with all vehicle collisions in Canada is available but without the location of the

accident, therefore we restrained our analysis to the city of Montreal.

National Road Network[28] This dataset, provided by the government of Canada, con-

tains the geometry of all roads in Canada. For each road segment, a few meta-data are

given. For roads in Québec, only the name of the road and the name of the location are

provided. The data was available in various formats, we chose to use the Keyhole Markup

Language, which is a standard of the Open Geospatial Consortium since 2008[41], This

format is based on the Extensible Markup Language (XML), which makes it easier to read

using existing implementations of XML parsers. From this dataset, we selected the 44, 111

road segments belonging to the island of Montreal (the dataset is separated into regions and

cities).
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Historical Climate Dataset[32] This dataset, provided by the government of Canada,

contains hourly weather information measured at different weather stations across Canada.

For each station and every hour, the dataset provides the temperature, the dew point tem-

perature (a measure of humidity), the humidity percentage, the wind direction, the wind

speed, the visibility, the atmospheric pressure, the Hmdx index (a measure of felt tempera-

ture) and the wind chill (another measure of felt temperature using wind information). This

dataset also contains the observations of atmospheric phenomena such as snow, fog, rain,

etc.

2.3.2 Positive and Negative Examples Generation

The accident prediction problem can be stated as a binary classification problem, where the

positive class is the occurrence of an accident and the negative class is the non-occurrence

of an accident on a given road at a given date and hour. For each accident, we identified

the corresponding road segment using its GPS coordinates. Such time-road segment pairs

are used as positive examples. For the negative examples, we generated a uniform random

sample of 0.1% of the 2.3 billions possible combinations of time and road segments in

order to obtain 2.3 million examples. We removed from these examples the few ones

corresponding to a collision in the collision dataset in order to obtain the negative examples.

The identification of the road segments for each collision and the estimation of the

weather information for each road segment made our dataset generation expensive in re-

sources and time. We used the big data framework Apache Spark [63] to implement these

dataset combination operations. Inspired by the Map Reduce programming model [19],

Apache Spark’s programming model introduced a new distributed collection called Re-

silient Distributed Dataset (RDD), which provides the “same optimization as specialized

Big Data engines but using it as libraries" through a unified API. After its release in 2010,

Apache Spark rapidly became the most active open-source project for Big Data [63]. As a

16



consequence, it benefits from a wide community and offers its Application Programming

Interface (API) in the Java, Scala, R and Python programming languages.

Apache Spark’s dataframe API, a collection based on RDDs and optimized for struc-

tured data processing, is particularly adequate for combining several datasets. Still, our

first implementation had impractical time and memory space requirements to generate the

dataset. Indeed, it was querying the Historical Climate Data API in real-time with a cache

mechanism. Collecting only the weather stations and hours necessary for our sample of

negative examples resulted in bad performances. We got a performance increase by first

building a Spark dataframe with all the Historical Climate Data for weather stations around

Montreal and then merging the two datasets. We conducted a detailed analysis of our al-

gorithm to improve its performances. We notably obtained a good performance increase

by not keeping intermediate results of the road segment identification for accidents. As

opposed to what we initially thought, recomputing these results was faster than writing and

reading them in the cache. Finally, the identification of the road segment corresponding to

accidents was very memory intensive, we modified this step to be executed by batches of

one month. With these improvements and a few other implementation improvements in-

cluding re-partitioning the data frame at key points in our algorithm, we managed to reduce

the processing times to a reasonable time of a few hours.

We also used clusters from Compute Canada to take maximum advantage of the Apache

Spark distributed nature for the generation of examples and the hyper-parameter tuning of

our models. We started with the Cedar cluster provided by West Grid and we continued

with the new Béluga cluster provided by Calcul Québec.

To facilitate tests and development, our pre-processing program saves intermediate re-

sults to disk in the Parquet format. During later execution of the algorithm, if the inter-

mediate results exists on disk, they will be read instead of being recomputed. This made

it possible to quickly test new features and different parameters by recomputing only the
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required parts of the dataset.

2.4 Model Development

2.4.1 Implementation of Balanced Random Forest

The Balanced Random Forest algorithm was not available in Apache Spark. An imple-

mentation is available in the Python library imbalanced-learn[40] which implements many

algorithms to deal with data imbalance using an API inspired by scikit-learn[40], but the

size of our dataset made it impossible for us to use this library. Therefore, we implemented

Balanced Random Forest in Apache Spark.

In the Apache Spark implementation of Random Forest, the bootstrap step is made

before starting to grow any tree. For each sample, an array contains the number of times it

will appear in each tree. When doing sampling with replacement, values in this array are

sampled from a Poisson distribution. The parameter of the Poisson distribution corresponds

to the sub-sampling rate hyper-parameter of the Random Forest, which specifies the size of

the sample used for training each tree as a fraction of the total size of the dataset. Indeed,

if for example we want each tree to use a sample of the same size as the whole dataset, the

sub-sampling ratio will be set to 1.0, which is indeed the average number of times a given

example will appear in a tree.

To implement Balanced Random Forest, we modified the parameter of the Poisson

distribution to use the class weight multiplied by the sub-sampling ratio. Hence, a negative

sample with a weight of, say, 0.25 has 4 times less chance to be chosen to appear in a given

tree. This implementation has the advantage that it did not require a big code change and is

easy to test. However, it also has the drawback that users probably expect linearly correlated

weights to be equivalent, which is not the case in our implementation since multiplying all

the weights by n is like multiplying the sub-sampling ratio by n.
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To be compatible with other possible use cases, the weights are actually applied per

samples and not per class. This is a choice made by Apache Spark developers that we

respected. To support sample weights, we create a new Poisson distribution for each sam-

ple. To make sure the random number generator is not reseeded for each sample, we use

the same underlying random number generator for all Poisson distributions, this also helps

reducing the cost of creating a new Poisson distribution object. Like with other estima-

tors accepting weights, our Balanced Random Forest implementation reads weights from a

weight column in the samples data frame. We adapted the Python wrapper of the Random

Forest classifier to accept and forward weights to the algorithm in Scala.

2.4.2 Feature Engineering

For each example, we created three types of features: weather features, features from the

road segment, and features from the date and time.

For weather features, we used data from the Historical Climate Dataset (see Section 2.3.1).

To estimate the weather information at the location of the road segment, we used the mean

of the weather information from all the surrounding weather stations at the date and hour

of the example, weighted by the inverse squared distance between the station and the road

segment. We initially used the inverse of the distance, but we obtained a small performance

improvement when squaring the inverse of the distance. We tried higher exponents, but the

results were not as good. We used all the continuous weather information provided by the

Historical Climate Dataset. In addition, we created a feature to use the observations of

atmospheric phenomenon provided by the dataset. To create this feature, we first created a

binary variable set to 1 if the following phenomena are observed during the hour at a given

station: freezing rain, freezing drizzle, snow, snow grains, ice crystals, ice pellets, ice pel-

let showers, snow showers, snow pellets, ice fog, blowing snow, freezing fog. We selected
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these phenomena because they are likely to increase the risk of accidents. Then we com-

puted the exponential moving average of this binary variable over time for each station in

order to model the fact that these phenomena have an impact after they stop being observed

and a greater impact when they are observed for a longer period of time. We used the same

method as for other weather information to get a value for a given GPS position from the

values of the weather stations.

For the features from the road segments, we were restricted by the limited metadata pro-

vided on the road segments. From the shape of the road segment, we computed the length

of the road segment, and from the name of the street, we identified the type of road (high-

way, street, boulevard, etc.). In addition, road segments are classified into three different

levels in the dataset depending on their importance in the road network: we created a cate-

gorical feature from this information. For these two categorical features, we encoded them

as suggested in The Elements of Statistical Learning [34] in Section 9.2.4. Indeed, instead

of using one-hot encoding which would create an exponential number of possible splits,

we indexed the categorical variable ordered by the proportion of the examples belonging to

the given category, which are positive samples. This encoding guarantees optimal splits on

these categorical variables. Lastly, we added a feature giving the number of accidents that

occurred previously on this road segment.

For the date features, we took the day of the year, the hour of the day, and the day of

the week. We decided to make the features “day of the year" and “hour of the day" cyclic.

Cyclic features are used when the extreme values of a variable have a similar meaning. For

example, the value 23 and 0 for the variable hour of the day have a close meaning because

there is only one hour difference between these two values. Cyclical encoding allows this

fact to be expressed. With cyclical encoding, we compute two features, the first one is the

cosine of the original feature scaled between 0 and 2π, and the second one is the sine of

the original feature scaled between 0 and 2π. In addition to these basic date features, we
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computed an approximation of the solar elevation using the hour of the day, the day of the

year and the GPS coordinates. The solar elevation is the angle between the horizon and the

sun. Note that it is of interest, because it is linked to the luminosity which is relevant for

road accident prediction.

2.4.3 Identifying the most Important Features

Random Forest measures feature importance by computing the total decrease in impurity of

all splits that use the feature, weighted by the number of samples. This feature importance

measure is not perfect for interpretability since it is biased toward non-correlated variables,

but it helps selecting the most useful features for the prediction. Random Forest usually

performs better when irrelevant features are removed. Therefore, we removed the features

wind direction, wind speed, dew point temperature, wind chill, hmdx index and day of

month which had a much lower feature importance. This improved the performances of the

model.

2.4.4 Hyper-Parameter Tuning

To determine the optimized hyper parameters, we first performed automatic hyper-parameter

tuning by performing a grid search with cross-validation. Because the processing times on

the whole dataset would have been too high, we took a small sample of the dataset. Still,

we could not test many parameter combinations using this method.

Once we got a first result with grid search we continued manually by following a plan,

do, check, adjust method. We plotted the precision-recall and ROC curves on the test and

training set to understand how the performances of our model could be improved. These

curves are obtained by computing the precision, the recall and the false positive rate met-

rics when varying the threshold used to classify an example as positive. Most classification

algorithms provide a measure of the confidence with which an example belongs to a class.
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We can reduce the threshold on the confidence beyond which we classify the example as

positive in order to obtain a higher recall but a lower precision and a higher false positive

rate. In order to obtain a general measure of the performances of a classifier at all thresh-

olds, we can use the area under the ROC curve. The area under the Precision-Recall curve,

however, should not be used [25].

Interestingly, despite using many trees, our Random Forest classifiers tended to over-fit

very quickly as soon as the maximum depth parameter went above 18. We eventually used

only 100 trees, because adding more trees did not increase performances. We have not tried

more than 200 trees, maybe many more trees would have been necessary to increase the

maximum depth without over-fitting, but then the memory requirement would become un-

reasonable. Our final parametrization used a total of 550 gigabytes of memory per training

of the Balanced Random Forest model on the cluster.

2.5 Results

2.5.1 Balanced Random Forest Performances

To test our implementation of Balanced Random Forest (BRF) in Apache Spark, we per-

formed an experiment on an imbalanced dataset provided by the imbalanced-learn library.

We chose to use the mammography dataset[61] which is a small dataset with 11,183 in-

stances and 6 features. It has an imbalance ratio of 42, i.e., there are 42 times more neg-

ative samples than positive samples. We compared the performances obtained with the

implementation of BRF in the library imbalanced-learn with those obtained with our im-

plementation of BRF in Apache Spark. We also compared these performances with the

performances obtained with both implementations of the classical Random Forest algo-

rithm. Results are summarized in Table 1. We observe that we obtain similar results with

both implementations of BRF.
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Table 1: Comparison of our BRF implementation with imbalanced-learn

Area under ROC
imbalanced-learn RF 0.932
Spark RF 0.951
imbalanced-learn BRF 0.956
Spark BRF 0.960

Figure 1 shows the precision-recall curves obtained with both implementations of the

Balanced Random Forest (BRF) and Random Forest (RF) algorithms on the mammography

dataset. We can see that, with a low recall, BRF implementations perform worse, and with

a high recall, all the models have similar performances except the Random Forest model

from Apache Spark which has a lower precision.

Figure 1: Comparison of implementations: Precision-recall curves

Figure 2 shows the Receiver operating characteristic (ROC) curves obtained with both

implementations of the Balanced Random Forest (BRF) and Random Forest (RF) algo-

rithms.
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Figure 2: Comparison of implementations: ROC curves

2.5.2 Vehicle Collision Prediction

Results were obtained by training the algorithms on the whole dataset of positive samples

and with a sub-sample of 0.1% of the 2 billion possible negative examples. This corre-

sponds to a total of 2.3 million examples with a data imbalance reduced to a factor of 17.

To evaluate our models, we used a test set containing the last two years of our dataset.

The model was trained on the 4 previous years and used only data from these years. For

instance, the “count_accident" feature contains only the count of accidents occurring from

2012 to 2016 on the road segment. In addition to the three models built using tree-based

machine learning algorithms, we created a simple baseline model. This model is very basic

in the sense that it uses only the count of accidents of the road segment. The probability of

accidents given by this model for an example whose road segment has a count of accidents

of n, is the percentage of positive examples among the examples with a count of accidents

higher than n.

Table 2 presents the results obtained on the test set with the classical Random Forest

algorithm with further under-sampling (RF), with the Balanced Random Forest algorithm

(BRF), with the XGBoost algorithm (XGB), and with the baseline model (base). The values

of the hyper-parameters we used and more details about the results are available on the
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Github repository of the project.

Table 2: Result Summary

BRF RF XGB base
Area under the ROC curve 0.916 0.918 0.909 0.874

As we can see, the three machine learning models obtain similar performances and

perform much better than the baseline model. The XGBoost model has slightly worse

performances than the two others.

Figure 3 shows the precision-recall curves of the three models.

Figure 3: Vehicle Collision Prediction: Precision-recall curves

Figure 4 shows the Receiver operating characteristic (ROC) curves of the three models.

Figure 5 shows the precision and the recall as a function of the threshold values for

BRF and RF algorithms. It shows that despite BRF and RF having similar results on the

PR and ROC curves, they have different behaviors. For an identical threshold value, BRF

has a higher recall but a lower precision than RF.

As we can see, the Balanced Random Forest model surprisingly does not perform better

than the other models. It achieves a recall of 85% with a precision of 28%, and a false

positive rate (FPR) of 13% on the test set.
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Figure 4: Vehicle Collision Prediction: ROC curves

Figure 5: Vehicle Collision Prediction: Precision and Recall as a Function of the Threshold
Values
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2.5.3 Vehicle Collision Feature Importance

With a feature importance of 67%, the number of accidents which occurred on the road

segment during the previous years is clearly the most useful feature. This shows that ac-

cidents are concentrated on specific roads. Figure 6 presents the importance of the other

features as reported by the Balanced Random Forest algorithm. As we can see, the next

most important feature is the temperature. Then, the day of the year, the cosine of the hour

of the day, which separates day from night, and the visibility follow. The solar elevation

and the humidity are the following features of importance. The remaining features have

almost the same importance, except the street type which is significantly less important.

We believe that the road features like the street length, the street level and the street type

have a lower importance because the accident count already provides a lot of information

on the dangerousness of a road segment. Surprisingly, the risky weather feature is one of

the least important ones. This suggests that our definition of risky weather may need to be

revisited.

As compared to the count of accidents, the other features seem to have almost no im-

portance, however the performance of the model decreases significantly if we remove one

of them.

2.6 Discussion

With areas under the ROC curve of more than 90%, the performances of our models are

good. However, they mostly rely on the count of previous accidents on the road segment as

we can see from the feature importance of the accident count feature and the performance

of the base model. This is not an issue for accident prediction, but it does not help to

understand why these roads are particularly dangerous. We believe that this feature is even

more useful because we do not have information about the average traffic volume for each
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Figure 6: Feature importance computed by the Balanced Random Forest excluding the
accident count feature.

road. Therefore, this feature does not only inform the machine learning algorithm about

the dangerousness of a road segment but also indirectly about the number of vehicles using

this road. Nonetheless, the performance of our models does not only rely on this feature.

As we can see from the curves, the performances of our models are significantly better than

those of the base model that exclusively relies on the count of accidents.

2.6.1 Test of our Implementation of BRF on the Mammography Dataset

As expected, we obtained similar results to the imbalanced-learn library with our imple-

mentation of the BRF algorithm. The precision-recall curve shows that the BRF algorithm

had a better precision with high recall values, but a much lower precision with low recall

values. For medical diagnosis and road vehicle collision prediction, we usually prefer to

have a higher recall with a lower precision, so BRF is more suitable for these use cases.
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2.6.2 Comparison of the Different Models for Road Vehicle Collisions

Prediction

For the road vehicle collision prediction, the Balance Random Forest algorithm obtained

slightly better results than the classical Random Forest algorithm. However, the gain in

prediction performance is very small. We believe this is caused by the fact that negative

examples are not so different from each other and the information they contain is well cap-

tured by a single random sub-sample. We observe that the BRF algorithm achieved better

performances than Random Forest with high recall values. With lower recall values, both

Random Forest algorithms had similar performances. The XGBoost algorithm obtained

worse results than the two other algorithms. However, it is still interesting because it was

much faster to train than Random Forest algorithms. This made the hyper-parameter tuning

of the XGBoost algorithm easier and much faster.

2.6.3 Real-world Performances of our Road Vehicle Collision Predic-

tion Model

As stated previously, the accuracy measure is not a good metric for road accident prediction.

Indeed, since most examples belong to the negative class, the model which obtains the

best accuracy is usually the one with the lowest false positive rate. But for rare event

prediction, we usually want a model with a high recall even if it implies a higher false

positive rate. This is especially true in accident prediction, because false positives can

correspond to high-risk situations that we probably want to detect too. For these reasons,

we decided not to use the accuracy measure. Instead we used the precision-recall curve to

compare the performances of our models. However, we should be careful when using the

precision measure on a dataset using a sample of the possible negative examples like it is

usually the case in accident prediction. Indeed, the precision computed on the test set does
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not correspond to the precision we would obtain in production. If the sample of negative

examples is representative of the population in production, the model will achieve the same

false positive rate. Because we used a sample of the possible negative examples but all the

positive examples in the test set, there will be more cases of false positive in production for

the same number of positives. As a consequence, the precision will be much lower.

Since we know the proportion of positive examples in the real world, if we assume that

the sample of negative examples is representative of the population in production, we can

provide an estimation of the precision that the model could achieve. There are on average

22, 414 collisions each year and during a year there are a total of 386, 412, 360 combina-

tions of hour and road segments. Therefore, in the real-world approximately 0.0058% of

examples are positive. With a recall of 85%, approximately 0.00493% of examples are

true positives and 0.00087% are false negatives. With a false positive rate of 13%, ap-

proximately 12.99925% of examples are false positives and 86.99495% are true negatives.

Therefore, with the real world distribution, our model would likely obtain a precision of

0.04%. If the goal of our model was to actually predict accidents, this would not be a sat-

isfying precision, but the real goal of accident prediction is to identify when and where the

risk of accidents is significantly higher than average in order to take measures. With this

precision, the probability of a collision to occur is 6 times higher than average for examples

detected as positive. By varying the threshold used by the model, we can choose when to

take actions.

2.6.4 Reproducibility of the study

The results from this study can be reproduced using the Github repository of the project.

The ’readme’ file provides more information on how to create training examples from the

datasets and how to train the models. All the figures can be reproduced with the Jupyter

notebooks available on the same repository.
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The National Road Network and the Historical Climate datasets used in this study are

open datasets from the government of Canada. One can potentially reproduce the study

for any other Canadian city as long as the the city provides open data on vehicle collisions

including the date, time and localization of such collisions in sufficient amount. For exam-

ple, the city of Toronto seems to be a good candidate with 11 years of vehicle collisions

open data available through the “Automobile" dataset provided by the Toronto Police Ser-

vice. The latter dataset contains the date, time and localization of the accidents. National

road network information and historical climate information tends to be easily found for

many countries which would allow this study to also be reproducible in other countries. For

example historical climate information for the United States can be found in the U.S. His-

torical Climatology Network dataset and road network information seems to be available

in the USGS National Transportation Dataset.

2.6.5 Future Work

We believe that a better performance could be reached by adding more features from other

datasets. For the city of Montreal, we identified two particularly interesting datasets: a

dataset with the location and dates of construction work on roads, and a dataset with the

population density. In addition, Transport Québec gives access to cameras monitoring the

main roads of Montreal. The videos from these cameras could be useful to get an estimation

of the traffic in the roads of the island. These datasets could be used to improve prediction

performances. However, this type of dataset might not be available for other geographical

areas. The current model use datasets that can easily be made available for most cities.

The most important feature is the number of accidents which happened during the pre-

vious year. While this feature helps a lot to reach useful prediction performances, it does

not help in understanding the characteristics of a road segment which makes it dangerous.

A human analysis of these particularly risky road segments could detect patterns that could
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help to take measure to reduce the number of accidents in Montreal. This can also be useful

to improve our current accident prediction model, if the detected patterns can be used by

merging other datasets.

Lastly, it would be interesting to analyze why BRF did not perform better for this prob-

lem in order to understand under which conditions it helps to deal with data imbalance.

2.7 Conclusions

In this study, we conducted an analysis of road vehicle collisions in the city of Montreal

using open data provided by Montreal city and the Government of Canada. Using three

different datasets, we built road vehicle collision prediction models using tree-based algo-

rithms. Our best model can predict 85% of road accidents in the area of Montreal with a

false positive rate of 13%. Our models predict the occurrence of a collision at high space

resolution and hourly precision. In other words, it means our models can be used to identify

the most dangerous road segments every hour, in order to take actions to reduce the risk

of accidents. Moreover, we believe that our work can easily be reproduced for other cities

under the condition that similar datasets are available. One can freely use our source code

on Github for reference. Finally, our study shows that open data initiatives are useful to

society because they make it possible to study critical issues like road accidents.
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Chapter 3

Can we Estimate Truck Accident Risk

from Telemetric Data using Machine

Learning ?

Road accidents have a high societal cost that could be reduced through improved risk pre-

dictions using machine learning. This study investigates whether telemetric data collected

on long-distance trucks can be used to predict the risk of accident associated with a driver.

We use a dataset provided by a truck transportation company containing the driving data

of 1,141 drivers for 18 months. We evaluate two different machine learning approaches

to perform this task. In the first approach, features are extracted from the time series data

using the FRESH algorithm and then used to estimate the risk using Random Forests. In

the second approach, we use a convolutional neural network to directly estimate the risk

from the time series data. We find that neither approaches is able to successfully estimate

the risk of accident on this dataset, in spite of many methodological attempts. We discuss

the difficulties of using telemetric data for the estimation of the risk of accident that could

explain this negative result.
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This chapter will be submitted shortly to IEEE Transactions on Intelligent Transporta-

tion Systems.

3.1 Introduction

Despite improvements in road safety, road accidents remain an important issue worldwide:

they lead to an estimated 1.35 million deaths and more than 20 million injuries every year,

and are the leading cause of death for people aged between 5 and 29 [51, 26]. Road acci-

dents also represent a high economic cost for society. In Canada, the yearly economic cost

of transport-related injuries is estimated to US$3.2 billions [30].

Road accidents are an important issue for truck transportation companies. Each acci-

dent can cause driver injuries, truck repair costs and the loss of transported goods. The

US Federal Motor Carrier Safety Administration (FMCSA) estimated at US$148,279 the

average cost of a truck crash for society [22]. To minimize road accidents, most truck

transportation companies analyze accidents to understand their causes and how they might

be prevented. Some companies also offer regular training to their drivers to promote safe

driving. According to the FMCSA, 5.5% of fatal truck crashes are caused by driver fatigue

and could have been prevented [23].

In the United States and Canada, it is now mandatory for motor carriers to equip their

trucks with electronic logging devices (ELD) directly connected to the vehicle to track ser-

vice hours [50, 31]. This is an opportunity for transportation companies to go beyond the

compliance requirements and install telemetric systems to collect a variety of sensor data

from the vehicle. Many such telemetric solutions are available on the market to improve

truck fleet management by providing real-time information to fleet managers [38]. Tele-

metric systems produce huge amounts of data, generated by an ever-increasing number of

sensors on the vehicle.
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The availability of big amounts of telemetric data generated by vehicles is a great op-

portunity to try to predict accidents by characterizing dangerous driving behaviour. Indeed,

it is likely that the style of driving greatly influences the risk of accidents. In this study, we

design a machine learning model using such telemetric data to estimate the risk of accident

associated with a driver.

Telemetric data generated by vehicles is in the form of time series. During driving, ve-

hicle sensors record various parameters at regular intervals and store them in the telemetric

system. We will therefore design machine learning models which can provide a measure of

the risk of accidents of a given driver by looking at times series containing the evolution of

various parameters during its driving. If we define the risk of accidents as the probability

that this driver has an accident, then estimating the risk of accident is equivalent to clas-

sifying examples as leading to an accident or not. Therefore, the problem is a time series

classification one.

Road accident prediction has been studied, but never using this type of data. Most stud-

ies predict the risk of accidents at different points in time and space using characteristics

of the road network and weather information. Instead, we are interested in predicting the

risk of accidents for a given driver based on information about their driving. Such a model

could help truck transportation companies identify drivers with riskier driving styles, and

offer them additional safe driving trainings. It could also be useful to insurance companies.

The rest of this paper is organized as follows: Section 3.2 presents the related work

on road accident prediction and on time series classification, Section 3.3 and Section 3.4

present our datasets and model creation methods, Section 3.5 presents experiments and

results, and Section 3.6 discusses these results. Conclusions are drawn in the last section.
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3.2 Related work

3.2.1 Road Accident Prediction

Many studies consider road accident prediction and aim at predicting the risk of an accident

at a given place and time. These studies would for example predict which segments of a

road are most dangerous[8], or what times and areas of a city are most dangerous[11].

They usually use information about the road such as the average daily traffic or the road

curvature, as well as weather information such as the temperature or the precipitation.

Early work on road accident prediction used classical statistical modelling, usually vari-

ants of Poisson Regression. In 2005, Chang[8] compared an artificial neural network with

a negative binomial regression for the prediction of the number of accidents on road seg-

ments of a Taiwanese freeway: it was the first work to show that machine learning meth-

ods could achieve better performances than classical statistical modelling for road accident

prediction. Later studies performed road accident prediction with various machine learning

algorithms, usually only focusing on a few roads [9, 42, 57]. More recently, other studies

performed road accident prediction at a larger scale covering larger areas or predicting at

a higher-resolution [11, 49, 62, 37]. These studies showed that weather and road charac-

teristics influence the risk of accident, and that it is possible to successfully identify places

and times where accident are much more likely to happen. Instead, our goal is to identify

the accident risk associated with a particular truck driver, regardless of location or weather

conditions.

3.2.2 Time Series Classification

The literature on time series classification is very diverse in terms of methods and models.

We identify four broad classes of methods: feature-based, model-based, distance-based[1],

and representation based[20]. Feature-based methods first derive features from the time
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series data and then apply classical classification algorithms. The model-based approach

is a generative approach that trains, for each class, a generative model learning the char-

acteristics of the class. To predict the class of a new example, each model is asked how

likely it is that this example belong to its class, and the predicted class is the class with

the highest probability. Distance-based methods define a relevant distance metric between

two time series and then use a k-nearest neighbor classifier (k-NN) or a support vector ma-

chine (SVM). Finally, representation-based methods use deep neural networks to learn a

representation of time series and classify accordingly.

The performance of different methods highly depends on the type of time series and

problems. The distance-based approach and the use of elastic distance measures were his-

torically the most popular approach [4]. Dynamic time warping (DTW) is a commonly

used distance measure. Many variants have been proposed but Lines and Bagnall [44]

have shown that none of them is significantly better than DTW. In 2016, Bagnall et al.

[3] compared the performances of different time series classification methods from the

feature-based, model-based and distance-based approaches on the datasets of the UCR time

series classification repository[18]. The best-performing algorithm was COTE [4], an en-

semble of classifiers applied on various time series transformations. COTE combines 11

distance-based classifiers and 24 feature-based ones. The same year, COTE was improved

with HIVE-COTE[45] which introduces two additional sets of classifiers and a hierarchical

voting system improving the aggregation of the different classifier results. An important

limitation of both COTE and HIVE-COTE is their very high computational requirements

as they combine many classifiers and complex transformations with complexities as high

as O(n2t4) with n the number of time series and t their length. This limitation makes it

impractical to use these algorithms with big datasets or long time series.

When using feature-based or distance-based methods, it is hard to know which distance

or which features to use without expertise on the data used. In 2016, Christ et al. [15]

37



introduced an algorithm called FRESH (FeatuRe Extraction based on Scalable Hypothesis

test) that automatically selects relevant time series features for binary classification. The

algorithm has three main steps. First, it computes many possible features from the time se-

ries, simple features such as the mean, the standard deviation or the kurtosis, but also more

advanced features such as the number of peaks or the spectral centroid. Then, for each fea-

ture, it uses a statistical test to check if the feature is relevant to predict the class, and finally

selects the best features using the Benjamini-Yekutieli procedure[5]. The resulting features

can then be used with any classical machine learning algorithm. The authors evaluate the

performances of this method when combined with an Adaboost classifier on the UCR time

series classification repository[18]. It achieves results comparable to the DTW algorithm,

with a lower computational cost as FRESH scales linearly with the number of samples

and the length of the time series. In 2019, Fawaz et al.[20] evaluated the performances of

representation-based methods and compared the performance of several deep neural net-

works. They found that a ResNet deep neural network competes with HIVE-COTE while

being much more computationally efficient. More recently, Fawaz et al.[21] introduced

a new deep neural network architecture for time series classification slightly outperform-

ing HIVE-COTE on the UCR time series classification repository with a win/draw/loss of

40/6/39. This new architecture named InceptionTime was inspired by the Inception-v4

architecture [56] used in computer vision.

In summary, time series classification made significant progress in recent years. HIVE-

COTE offers state of the art performances but has impractical computational cost. For big

datasets, deep neural networks or the FRESH algorithm coupled with classical machine

learning seems to be the two most promising approaches. We will use both approaches to

build our models.
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3.3 Datasets

The datasets used in this study were collected by Groupe Robert Inc, a transportation com-

pany based in Quebec, Canada. For many years, Groupe Robert Inc. has been monitoring

road accidents and infractions involving their truck drivers to better understand how to re-

duce the number of accidents. In 2017, it equipped its truck fleet with a telemetric system

collecting most of the data generated by vehicle sensors during driving.

We used two datasets provided by the company: (1) the data from the sensors of the

vehicle collected using the telemetric system onboard the trucks, and (2) the list of acci-

dents involving drivers of the company, extracted from the records of the company. These

datasets contain data collected for 18 months between February 2018 and June 2019.

The telemetric system records the values measured by the vehicle sensors whenever the

engine is on. Different sensors are recorded at different time intervals, every half a second,

every second, every 10 seconds or every minute. The values measured by the sensors are

collected on the CAN BUS of the vehicle using the Society of Automotive Engineers J1939

communication protocol. This protocol defines identifiers for each sensor on the vehicle

(see Table 3). We have not used 24 other recorded parameters which we identified as not

relevant for our study in agreement with the domain experts at Groupe Robert Inc.

The truck fleet of the company is not homogeneous, it is composed of different types

of trucks used for different transportation needs. The company identifies 3 different types

of trucks: long-distance trucks, short-distance trucks, and specialized trucks like container

and bulk trucks. These trucks are not equipped with the same sensors and follow different

driving patterns. In our first model, we will focus on long-distance trucks, as it is likely

that the other classes will require different models.

The company keeps track of all accidents involving their trucks, amounting to 1,434

accidents during the study period. For each accident, the date of the accident, the identifier

of the driver, and the type of accident are recorded. Table 4 shows the 30 types of accidents
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Table 3: Some of the parameters collected

Sensor identifier Description
Acc_Lat Acceleration on the lateral axis

Acc_Long Acceleration on the longitudinal axis

Acc_Long_WBVS
Acceleration on the longitudinal axis
as measured on the wheels

Acc_Vert Acceleration on the vertical axis
AccelPedalPos1 Use of the acceleration pedal

ActualEngPercentTorque Engine torque in percentage
ActualEnginePower Engine power

ActualEngineTorque Engine torque
ActualRetarderPercentTorque Retarder torque in percentage

AmbientAirTemp Ambient air temperature
BarometricPress Barometric pressure

BrakeSwitch Status of brake switch
CruiseCtrlActive Status of cruise control

EcoMode Status of economy mode
EngCoolantTemp Temperature of engine coolant

EngFuelRate Fuel rate
EngReferenceTorque Engine reference torque

EngSpeed Engine rotation speed
EngTurboBoostPress_PSI Engine turbocharger boost pressure

EstEngPrsticLossesPercentTorque
Estimated torque loss
due to engine parasitics

NominalFrictionPercentTorque Nominal friction torque in percentage
Top_Gear_State Whether the top gear is used

WheelBasedVehicleSpeed
Vehicle speed as measured on
the wheels

gps_Altitude GPS altitude
gps_Lat GPS latitude

gps_Long GPS longitude
gps_Speed Vehicle speed as reported by the GPS
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that were identified. The four most frequent types of accidents are types 1, 2, 3 and 4,

representing 61% of accidents. They correspond to non-severe accidents occurring mostly

during maneuvers.

Figure 7: Visualization of the distribution of accidents in time

Figure 7 presents the distribution of accidents in time and across drivers. Each row

corresponds to a different driver and the x-axis represents time. Each colored square corre-

spond to an accident and the color of the square correspond to the type of accident. Only

the 48% of drivers who had an accident during the study period are included in this visu-

alization. We observe that most drivers who had an accident had more than one during the

study period.

3.4 Method

3.4.1 Data preprocessing

The data obtained from Groupe Robert Inc required formatting to be usable for model train-

ing. The data was initially in the form of 14 million files with each file containing the data

collected on one truck during a driving period lasting between less than a minute to an hour.
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Table 4: Types of accident

ID Proportion Description
1 26% Accident while driving backwards
2 17.6% Hit a stationary object (except wall)
3 6.6% Accident while changing dock
4 11% Hit a stationary vehicle
5 2.2% Hit an animal
6 4.7% Rear collision
7 1.5% Damaged equipment during loading
8 4.9% Miscellaneous
9 2.3% Hit a cable

10 3.5% Rubbing

11 1%
Accident while turning right at intersection because
a third party was overtaking on the right

12 0.2% Accident while going straight through the intersection
13 3% Loss of control
14 2% Accident or fined because the truck cut off
15 1.9% Accident caused by trailer not properly coupled with truck
16 0.9% Truck stuck (in snow for example), towing necessary
17 2.1% Hit a wall or building
18 0.7% Mechanical Breakdown
19 1.7% Fined because of leaking truck
20 1.2% Improper maneuvering in tight turns

21 0.3%
Fined because of improper snow clearance of the truck
(for example ice remaining on the truck roof)

22 0.5% Accident caused by vehicle wheel ignition
23 0.7% Hit a bridge
24 1.8% Equipment damaged during unloading
25 0.6% Cargo
26 0.1% Vehicle wheel loss

27 0.3%
Accident while turning left at intersection because
a third party was overtaking on the left

28 0.1% Truck cargo theft
29 0.7% Truck cargo fell out of the truck
30 0.1% Equipment damaged without reported accident
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These files were in a proprietary format used by the telemetric system. Two MS Windows

utilities were provided to convert a file from a proprietary format to another proprietary

format and then to the CSV format. In addition, a separate CSV file identified which truck

each driver was driving at different times. We used custom Python scripts and a virtual

RAM drive to efficiently convert each file to the Apache Parquet format, using the pro-

vided utility to read files. The Apache Parquet format is a format from the Apache Hadoop

ecosystem providing efficient data compression. This conversion was a data-intensive pro-

cess that took several days. Once all files were converted to the Apache Parquet format,

we identified the driver corresponding to each file and merged files corresponding to con-

tiguous driving periods by the same driver on the same truck. As a result, we obtained 3.2

million Parquet files representing 890 GB of data.

We were informed that some of the accelerometer sensors might not be properly config-

ured, and that the reported acceleration on the lateral axis, on the longitudinal axis and on

the vertical axis might be permuted and in the wrong direction. We attempted to fix these

issues by permuting and changing the sign of these parameters so that the acceleration on

the longitudinal axis is positively correlated to the acceleration on the longitudinal axis

as measured on the wheels for each truck and each month. This correction is not perfect

since the accelerometers have been reconfigured at different dates for each truck and not

necessarily at the beginning of the month.

3.4.2 Instance creation

Trucks make frequent stops which results in gaps in the time series. To alleviate this prob-

lem, we extracted non-overlapping windows of continuous driving from the raw data (Fig-

ure 8). After a few trials, we chose a window size of one hour, meaning that 3 windows

of data could be extracted from a trip with a duration between 3 and 4 hours. A smaller

window size would discard low-frequency patterns, while a too long window size would
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make it necessary to discard more data since driving periods shorter than the window size

cannot be used. Since one hour of driving might not be enough to access the driving style of

a driver, we aggregated 60 sequential but not necessarily contiguous windows to form each

example. Therefore, our machine learning models look at 60 hours of driving to estimate

the risk of accident.

When performing statistical learning, we need to assume that examples are independent

and identically distributed. In this study, we use the data from one driver to generate several

examples, which means that examples are not all independent from each other. There is

probably some correlation between examples corresponding to the same driver. This could

affect learning, but it allows us to extract a reasonable number of examples from the limited

data available. In the next subsection, we will show how we defined our test sets carefully

so that they remain valid despite examples not being independent.

As presented in Section 3.3, a total of 51 parameters are recorded during driving, 24 of

these parameters were identified as non-relevant by the domain experts from the company.

We experimented with using various subsets of the 27 parameters left and found that the

best results on the validation set were obtained when using only 6 parameters: the acceler-

ation in the three dimensions, the position of the accelerator pedal, the engine torque and

the retarder torque. The acceleration parameters and the engine torque were recorded every

half a second while the other parameters were recorded every second. We downsampled the

acceleration parameters and the engine torque to obtain the same sampling frequency for

all parameters and reduce the computational requirement of further processings. Figure 9

presents an example of the data corresponding to a one hour window.

3.4.3 Labeling

Our goal was to obtain a model to estimate the accident risk. To train such a model in a

supervised way, we needed for each example a “ground truth" value of the risk of accidents.
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Figure 8: Illustration of example creation from raw data with 1-hour windows and 3 win-
dows per example.

We used our second dataset, containing the list of accidents, to evaluate the accident risk

associated with each example. By defining the risk of accident as the probability of having

an accident, a model estimating the accident risk can be considered as a binary classification

model. Driving data generated by a driver who had an accident belongs to the positive class,

while data generated by a driver who did not belongs to the negative class. By training the

model to classify driving data in this way, we obtained a model estimating the probability

that new driving data belongs to the positive class, this probability is the accident risk

according to our definition.

More precisely, we considered as positive the examples generated by a driver who had

an accident in the year following the date of the example. We decided not to consider as

positive the examples that followed an accident because we assumed that drivers might

adjust their driving after they have an accident. We used a duration of one year because

accidents are rare, and an incautious driving will not result in an accident right away. We

experimented with shorter durations ranging from a week to a year.

As explained in Section 3.3, there are different types of accidents in the dataset. It is

likely that some of these accident types are not related to the driving data, for example

drivers are probably not responsible for accidents of type 5 when the truck hit an animal.

Therefore, we decided to ignore some accident types, based on how well they are predicted

on the validation set. We only used the accident types 1, 2, 7, 8, 9, 11, 15, 16, 17, 22, 23.
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Figure 9: Window of one hour of driving data

3.4.4 Creation of training and test sets

As mentioned previously, there is a risk of shared information between the training and test

sets due to the way we create examples. This has consequences on how to correctly split

the examples into a training set and a testing set for performance evaluation.

If we simply take a random sample of examples to create the test set, we will be measur-

ing the ability of the model to recognise drivers, and not its ability to measure the accident

risk of a new driver. Indeed, examples from the same drivers would be present in both the

training and the testing set. In addition, most of the examples generated from the data of

one driver have the same label: if the driver never had an accident during the study pe-

riod, then all the examples will be negative; if the driver had an accident toward the end

of the study period, then almost all their examples will be positive. Therefore, the model

could correctly classify an example simply by recognizing the driver and retrieving from

the training data whether this driver had an accident after the example occurred.

We split the training and test sets by driver rather than by example, to make sure that

we evaluate the ability of the model to estimate the accident risk on unknown drivers. In
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addition, to ensure that the test set is a representative sample of the examples, we per-

formed a stratified split: we ensured that the percentage of positive examples in the test

set is approximately the same as the percentage of positive examples in the data. We used

approximately 30% of the examples to create the test set.

We did not use the test set for the tuning of preprocessing and for model selection.

Instead, we used validation sets created from the training data with the same procedure

as for the test set, i.e., by making a stratified split by driver. We performed early tuning

with one validation set containing 30% of the training examples. We noticed that reported

performance metrics could significantly change depending on which random validation set

was used, so we later used k-fold cross-validation to obtain a more stable estimation of

performances. Like for the test set, we made sure that examples corresponding to one

driver were either in the training set or the validation set and that the proportion of positive

examples in the validation set was representative of the proportion of positive examples in

the dataset.

3.4.5 Feature-based approach

We built a first model using a feature-based approach and the FRESH algorithm [15] for

feature extraction and selection. Indeed, as discussed in Section 3.2, the FRESH algorithm

seemed a promising approach for time-series classification when using big datasets.

We used the TSFRESH library [14] (version 0.14.1), a Python library implementing the

FRESH algorithm to extract features from time series and select the most promising ones.

The extraction of these features for all the examples was a long process that took several

days. To speed up the process, we excluded features labeled by the library as having a high

computational cost. A total of 4, 488 features were extracted for each example, and 1, 728

of them have been considered relevant by the FRESH algorithm. We used the Random

Forest algorithm [7] to perform classification based on these features. Hyperparameters of
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the Random Forest algorithm were tuned using 5-fold cross-validation.

3.4.6 Representation-based approach

As discussed in Section 3.2, deep neural networks have obtained state-of-the-art perfor-

mances on some TSC datasets and offer a much lower computational cost than competing

methods.

We started with the neural network architecture which obtained the best average per-

formance in [20]: a ResNet neural network[36] adapted for TSC. This architecture is com-

posed of 3 residual blocks followed by a global averaging pooling averaging feature maps

over time and a final fully-connected layer. Each residual block is composed of 3 convo-

lutional layers using batch normalization and a residual connection adding the input of the

block to the pre-activation of the last layer. This residual connection is the main character-

istic of this architecture and gave it its name which stands for Residual Network. Fawaz et

al. provide an implementation of this neural network using TensorFlow, which we reimple-

mented in PyTorch [52] for convenience.

The original architecture takes as input matrices of dimension (C,L) with C the number

of channels and L the the length of the time series. We adapted the neural network to be

able to use tensors of dimension (N,C, L) with N the number of windows. As indicated

in 3.4.2, we used N = 60 windows for each examples. We adapted the architecture by

removing the last layer and applying the rest of the neural network to each window. We

added a head combining extracted features. We initially used a few fully-connected layers

to form the head, but later found that a global average over windows followed by one final

fully-connected layer seemed to perform best.

Our initial adapted ResNet obtained very bad performances on the validation sets. We

made a lot of changes to the neural network architecture and its training procedure to obtain

better performances.
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We quickly noticed that our model was subject to overfitting, indeed, while it obtained

very good results on the training set, results on the validation sets were very bad. We

therefore added spatial dropout [58] after each convolutional layer to regularize the model.

Spatial dropout consists in randomly dropping out the activation of some feature maps

during training. With convolutional layers, it is recommended to use spatial dropout instead

of regular dropout, indeed neurons from the same feature map are usually correlated and

randomly dropping neurons independently does not affect much the learning process. We

used a high dropout rate for all layers in order to regularize our model as much as possible.

We found using automatic hyperparameter tuning that a dropout rate of 57% seemed to

perform best on the validation sets.

Even after adding heavy dropout to the neural network, and reducing the number of

feature maps, the neural network was still overfitting the training data. In order to further

reduce its capacity, we tried reducing its depth. We found that the neural network was per-

forming best on the validation set with only one residual block. This is surprising because

deeper networks trained for less epochs usually generalize better than shallower network

trained for longer. With such a shallow network, one could wonder if the residual connec-

tion is still useful, after experimenting without we found it was indeed not useful. We also

removed zero-padding which became no longer necessary.

To further reduce the capacity of the model, we tried making use of strided convolu-

tions. By using a convolutional layer with a stride greater than 1, the following convolu-

tional layer can achieve the same receptive field with a smaller kernel. We found better

results when using a stride of 2 for the first two convolutional layers while adapting the

kernel sizes accordingly.

We experimented with different activation functions. The Exponential Linear Unit

(ELU)[17] seemed to perform best, so we replaced the ReLU activations initially used

by ELU activations.
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It can be challenging to find the right set of hyperparameters for which a neural net-

work will learn successfully. The common practice is to start with the configuration of

hyperparameters used by another study on a related problem. It was not possible in this

study since to the best of our knowledge, there are no other studies making use of telemet-

ric driving data for accident prediction. To help with the search of a good configuration of

hyper-parameters, we made use of automatic hyper-parameter tuning. Thanks to the limited

size of our dataset and of our model, it was possible to try many different configurations.

The following hyperparameters were automatically tuned: the amount of weight decay, the

dropout rate, the kernel size of the three convolutional layers and the number of feature

maps. We found that the amount of weight decay did not seem to matter, this might be

because the use of batch normalization changes the effect of weight decay [64]. For other

hyperparameters, we obtained the following values: 57% for the dropout rate, 31, 8 and 4

for the kernel sizes of the first, second and third convolutional layers and 10 for the number

of feature maps.

To train the neural network, we used the Adam optimization algorithm [39] with a small

amount of weight decay. We used the corrected implementation of Adam with weight

decay [46]. We used a batch size of 32. To find a good learning rate, we used the method

presented in [55], and we obtained a learning rate of 1.1× 10−1. To determine for how

many epochs to train the model, we used early stopping: we evaluated the performances of

the model on the validation set after each epoch and stopped training when the performance

did not improve for 3 epochs in a row. Finally, we used a focal loss [43] instead of the usual

cross-entropy loss. This loss is designed to help with data imbalance and we found that it

improved our results.
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3.5 Experiments and Results

To measure the performance of our models, we used mainly the area under the Receiver Op-

erating Characteristic (ROC) curve. The ROC curve shows the evolution of the True Posi-

tive Rate (TPR) as a function of the False Positive Rate (FPR) when varying the threshold

used by the model to classify examples. The TPR is the proportion of examples identified

as positives among actual positives, and the FPR is the proportion of examples identified as

positives among actual negatives. The area under the ROC curve corresponds to the proba-

bility that the model will rank a randomly chosen positive example higher than a randomly

chosen negative one, so we believe it is appropriate to evaluate a risk estimation model.

As indicated in the previous section, for both approaches, we used k-fold cross-validation

for model selection. We decided to report results on both the validation sets and the test

set. For the validation results we report the average of the results of the different models

obtained with different splits of the training data. To obtain the average ROC curves, we

average the True Positive Rate for each False Positive Rate. For the test results, with the

feature-based approach, we simply retrain a model using the whole training dataset before

evaluating it on the test set. With the representation-based approach, the validation set is

not only used for model selection but also for early-stopping, so we cannot retrain a single

model using the whole training data. Instead, we report the average results on the test set of

the models obtained with different splits. We cannot simply select the model with the best

validation results among the models trained with different splits, because the performances

of the model on the validation set do not reflect its performances on the test set.

With the feature-based approach, we obtained an average area under the ROC curve of

58% on the validation sets, which correspond to performances slightly better than those of

a random classifier. But on the test set we obtained an area under the ROC curve of 43%

only.

With the representation-based approach, we were able to obtain better results on the
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validation sets with an average area under the ROC curve of 65%. On the test set however,

results are the same as with the feature-based approach with an area under the ROC curve

of 43%.

With both approaches, we noticed a high variation of performances measured using

the validation set across the different splits of the k-fold cross-validation. The standard

deviation of the area under the ROC curves was 9% with the feature-based approach and

7% with the representation-based one.

Figure 10 presents the ROC curves on the test set and on the validation sets obtained

with both models.

Figure 10: ROC curves of the feature-based model and of the neural network on the test set
and on the validation sets

Figure 11 shows a visualization of the risk of accidents estimated by the neural network

model on examples of the test set. Each row corresponds to a different driver and the x-axis

represents time. Each colored rectangle correspond to an example, and its color represents
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the prediction of the model. On this figure, we observe that the model usually estimates the

same risk of accident for different examples corresponding to the same driver at different

times during the study period. This is interesting because the model has no knowledge of

which driver an example correspond to.

Figure 11: Visualization of the risk of accidents estimated by the representation-based
model

3.6 Discussion

With performances on the test set worse than those of a random classifier, we cannot say

that we were able to estimate the risk of accident accurately in this study. In this section,

we discuss the reasons that could explain those results.

Road accidents are caused by a combination of many factors: how the driver drives, but

also on which road they drive and under which weather and traffic conditions. In this study,

we only use data describing the driving: we expected that by looking at whether a full-time

driver had an accident during a long study period of 18 months, these other factors would
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average out. That is to say that during the study period, drivers would have met all kind

of driving conditions and that on average drivers with accidents would show a different

driving style. Given the results we obtain, the study period or the number of drivers might

not be long and high enough for this to happen.

In addition, the driving style of a given driver is likely to significantly vary over time.

Indeed, quality of driving is likely to be affected by the hour of the day and fatigue. This

means that a driver who had an accident during the study period because they were par-

ticularly tired on that day might not necessarily show dangerous driving patterns during

the rest of the study period, and our labelling method would result in misclassified training

examples. This would suggest to label examples as dangerous only when they occur dur-

ing the few days before an accident. However, it might also happen that a driver always

drives dangerously, but because accidents are very rare only has one or even no accident

during the study period. This would also result in many misclassified training examples.

We can also imagine cases where very careful drivers are involved in an accident due to

other factors such as bad weather conditions or bad behaviors of other users of the road.

These problems result in a very noisy labelling of examples. Machine learning can work

with noisy labels as long as the majority of examples are correctly classified, but it requires

more examples or a high inductive bias. It could be interesting to experiment with semi-

supervised learning methods and different labeling methods to see if they would help to

deal with these issues.

Our telemetric data might not be able to describe driving behaviors accurately enough to

estimate the risk of accidents. For example, information about the use of the steering wheel

is only available through the lateral accelerometer, as there is no sensor on the steering

wheel. An important part of driving is the observation of everything that is happening

outside the vehicle. A good driver not only drives carefully and maneuvers smoothly, but

also consistently and accurately monitors everything happening on the road. The sensors
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we have access to do not give information about this important part of the driving activity.

This part of driving is especially important for our dataset, because as we have seen in

Section 3.3, most accidents do not happen on the road, but at slow speed during maneuvers.

It could be interesting to add sensors in trucks to collect data about visual checks performed

by the driver. We believe that recent improvements in computer vision make it possible to

use a camera aboard the vehicle to determine whether visual checks have been performed

for example.

The relation between telemetric data and the risk of accident is complex. A more dan-

gerous driver is probably not simply a driver with an higher average speed, it is likely to

be a driver for which the evolution of telemetric data in specific contexts follow different

patterns than safer drivers. For example, we might be able to evaluate to what extent a

driver anticipates turns by looking at the evolution of the speed before a turn. With the

representation-based approach, this would mean that the transformations from the raw data

to a useful representation are quite complex. For this reason, we think that a neural network

capable of applying such a complex transformation would require many layers and maybe

more powerful structures than only convolutional layers. For example, the use of attention

might make sense for our task, as it would allow the neural network to focus on windows

of the time series that are particularly useful to assess a driver’s driving style. However,

the limited size of our dataset does not make it possible to train such networks, and for this

reason we experimented mostly with relatively small networks for this study.

Another difficulty that we face when using machine learning to predict rare events like

road accidents is the data imbalance issue. Indeed, machine learning algorithms tend to

focus on the majority class and fail to account for other classes. It is quite easy to deal with

this issue by assigning a higher weight to examples of the minority class, or by resampling

the dataset. However, data imbalance sometimes hides another issue which is harder to deal

with: a too small sample of examples for one class. With too few examples from one class,
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it is harder for the algorithm to learn significant characteristics of the class to discriminate

it. Accidents are rare, so most examples belong to the negative class. Combined with the

limited size of our dataset, it makes it harder for the models to train without overfitting the

positive examples of the training set.

Our results show that there is a big difference between the performances of the models

on the validation sets and their performances on the test set. This might be because many

hyperparameters were determined by looking at the performances on the validation sets.

The validation set was used to determine how to create instances: the length of the win-

dows and the number of window per example. It was also used to determine how to label

examples, to choose which accidents are considered predictable and for how long before an

accident the driving data is labelled as positive. Finally, it was also used to determine the

list of sensors to use and the hyperparameters of the models. Some of these hyperparame-

ter values might be indeed better in general, but some of them might be particularly better

just for the limited training and validation datasets and artificially increase performances

reported using the validation set.

Because of the limited size of the dataset and the issue of noisy labels discussed earlier,

the measure of the performances on a subset of data is probably not reliable enough to take

decisions. Indeed, the standard deviations of the areas under the ROC curve obtained with

different splits of the k-fold cross-validation are quite high (7% and 9% respectively for the

feature-based approach and the representation-based approach).

In Figure 11, we observed that the neural network model usually estimates the same

risk of accidents for examples from the same driver at different dates. This suggests that

the model bases its prediction on characteristics of driving that are invariant over time for

a driver. This could be because the accident risk indeed does not change much over time

for a driver, but it could also be simply because of the way the model is trained. During

training, the model does not know that we want it to predict the risk of accident, it only
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has access to pairs of driving data and labels. As discussed in part 3.4.4, most examples

from the same driver have the same label. Because of this, the most simple way to learn

the mapping between driving data and labels might be to simply recognise drivers. Once

the model has learned to recognise drivers from the training set, it can already achieve an

almost perfect score on the training data. When presented an example from a new driver,

such model would try to recognise the driving of a driver from the training set and output

the accident risk of this driver. This behavior would lead to the kind of results we observe,

most examples from the same new driver would look like the same driver form the training

set and the model would therefore output the same accident risk.

In other words, this effect could be caused by the fact that most examples from the same

driver in the training set have the same label and that it might be easier to identify the driver

than to estimate the risk of an accident using the driving data. In order to force the model

to learn to recognise safe driving as opposed to who his driving, we might need a higher

number of different drivers in the training set. With more drivers, it would becomes more

difficult for the model to learn what the driving data of each driver look like and become

necessary for the model to start making links between the driving data of different drivers

with the same labels. A different approach could also help to deal with this issue without

requiring a higher number of different drivers. For example, we could frame the problem

as a meta-learning problem for which each task consists in classifying driving data from

one driver depending on whether it was followed by an accident or not. This would prevent

the model from cheating by recognising the driver since each episode would contain only

data from one driver. By using meta-learning, the meta-model could learn how to train a

good accident risk estimator by putting together knowledge from different drivers.

Our results show that using telemetric data to estimate the risk of accident of a partic-

ular driver is not easy, but it does not mean that it is impossible. It might require a bigger

dataset and a community of researchers and machine-learning practitioners to find the right
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approaches and methods. For this reason, we think it would be useful to publish our dataset

and make it accessible to anyone who wants to work on this problem. However, the publi-

cation of such a dataset raises important ethical issues, as the raw dataset contains personal

information such as the GPS position and the work schedule of the drivers which cannot be

published. Publishing a preprocessed version of the dataset would restrict the way one can

frame the problem.

3.7 Conclusion

We can still not give a definite answer to the question: “Can we estimate truck accident risk

from telemetric data using machine learning?". In our study, with the dataset we had access

to, it is unlikely to be possible. Indeed, we experimented with two different approaches and

many different methods without success. It would be interesting to see if this task would

become possible with larger datasets, including more drivers and with data from different

sensors. We believe that the estimation of the risk of accidents of a driver based on its

driving data remains a very difficult machine learning problem. Indeed, because of the

many factors that determine the occurrence of an accident, the number of accidents does

not seem to be a good surrogate for driving quality. It might be necessary to use a different

approach to teach a machine learning model what safe driving looks like.
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Chapter 4

Conclusion and future work

In this thesis, two aspects of machine learning for road accident prediction were covered.

With the first research project, the commonly-found problem consisting in finding times

and areas with increased risk was extended with a higher prediction resolution. Historical

data, weather information, and characteristics of the road network were enough to reach

interesting predictive performances. I believe this analysis can easily be reproduced for

other cities as long as they collect historical road accident data. Weather and road network

datasets are available for all cities in Canada [32, 28]. A project extending this analysis to

the state of Quebec is planned for summer 2020. In the future, it would also be interesting

to see what performances can be obtained by using additional datasets to add more features.

In the city of Montreal, datasets containing the history of ongoing construction work on the

road network could for example be included. Finally, I believe that it would be interesting

to evaluate other machine learning methods on this problem since only tree-based methods

have been explored so far. Some machine learning algorithms are intractable because of

the very high number of examples but some non-tree-based methods are scalable enough to

be attempted. A neural network with the use of embeddings to encode categorical features,

for example, could be an interesting model to experiment with and for which the very

high number of examples would not be a problem. It would also be interesting to further
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experiment with the Balanced Random Forest algorithm to understand why it did not lead

to significantly better results on this highly imbalanced problem.

With the second research project, we experimented with a different road accident pre-

diction problem consisting in the estimation of the risk of having an accident for a given

driver based on its driving behavior. Despite experimenting with two different approaches

successfully used for many time series classification problems, and making many different

attempts, we were not able to reach good performances. Most of the work done towards this

thesis consisted of finding and evaluating new ideas in order to reach good performances.

Only the final model and the final data processing procedure are presented in the second

chapter of this thesis since presenting the many attempted approaches would not fit the

format of a research paper. For example, I experimented with a regression approach con-

sisting in predicting the number of days before the next accident, I thought this approach

could help by avoiding the threshold effect of classifying driving examples depending on

how far in the future an accident happened. As mentioned in the paper, various ways to

label examples have also been considered. After spending the first months experimenting

with the feature-based approach for which I had some experience, I decided to attempt us-

ing a deep neural network approach based on the survey paper on deep learning for time

series classification [20]. A lot of time was spent on this new approach, indeed the design

of a neural network architecture involves many decisions and requires specific knowledge

that I have acquired on my own during the most part of my thesis. A significant effort has

been invested in adapting existing neural network architectures for time series classification

to the needs of this specific problem. Indeed, even after implementing usual regularization

techniques our model still suffered from overfitting. In hindsight, with the understanding

I gained, some of the decisions taken were probably not the best ones. All decisions were

based on experimentations and results on the validation set, however, given the size of our

validation set it might have been best to rely more heavily on my developing understanding
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and intuition. The issue of the inconsistent validation results had been identified early on,

and I also spent time experimenting with various metrics and evaluation methods in order

to try to obtain a more trustworthy method to compare different models. For example, I

compared the stability of the precision, recall, F1 score, area under the ROC curve, area

under the Precision-Recall curve and area under the Precision-Recall-Gain Curves curve

metrics [25].

After having invested substantial efforts in finding an approach and a model able to per-

form this task without success, we can conclude that this task is much harder than initially

thought. It would be incorrect to say that this task is unfeasible, but I am confident that

with the available dataset, it is not possible to reach useful performances. The main chal-

lenge during this research project has been to gather useful insights into which methods and

hyper-parameters are most efficient. Indeed, results obtained on the validation sets always

appeared noisy and, eventually, were found not to be representative of the results on the test

set. Yet, in the absence of previous studies making use of this type of data, cross-validation

results and intuition are the only means to find a successful model. This difficulty to eval-

uate the real performances of the model might be caused by a too-small dataset compared

to the complexity of the task, it could also be caused by the fact that our data examples are

not independent and identically distributed (IID) and by the limited number of drivers in

the dataset. It would be interesting to continue studying this task with the help of a bigger

dataset, however, it is likely to be difficult to get access to bigger datasets. In the future, it

would be interesting to study machine learning approaches to make better use of non-IID

data. Indeed, for many problems, it is easy to gain many samples from each subject but

harder to gain data from many different subjects. Approaches inspired by domain adap-

tation techniques and meta-learning would be interesting to explore. This task could be

useful to evaluate different methods designed to help dealing with non-IID data.
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