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Abstract

Frequently Refactored Code Idioms

Ahmad Tahmid

It is important to refactor software source code from time to time to preserve its maintainability

and understandability. Despite this, software developers rarely dedicate time for refactoring due to

deadline pressure or resource limitations. To help developers take advantage of refactoring opportu-

nities, researchers have been working towards automated refactoring recommendation systems for

a long time. However, these techniques suffer from low precision, as many of their recommenda-

tions are irrelevant to the developers. As a result, most developers do not rely on these systems and

prefer to perform refactoring based on their own experience and intuition. To shed more light on the

practice of refactoring, we investigate the characteristics of the code fragments that get refactored

most frequently across software repositories.

Finding the most repeatedly refactored fragments can be very challenging due to the following

factors: i) Refactorings are highly influenced by the context of the code. Therefore, it is difficult to

remove context-specific information and find similarities. ii) Refactorings are usually more complex

than simple code edits such as line additions or deletions. Therefore, basic source code matching

techniques, such as token sequence matching do not produce good results. iii) A higher level of

abstraction is required to match refactored code fragments within projects of a different domain. At

the same time, the structural detail of the code must be preserved to find accurate results. In this

study, we tried to overcome the above-mentioned challenges and explore several ways to compare

refactored code from different contexts. We transformed the refactored code to different source code

representations and attempted to find non-trivial refactored code idioms, which cannot be identified

using the standard code comparison techniques.
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In this thesis, we are presenting the findings of our study, in which we examine the repetitiveness

of refactorings on a large java codebase of 1,025 projects. We discuss how we analyze our dataset

of 47,647 refactored code fragments using a combination of state-of-art code matching techniques.

Finally, we report the most common refactoring actions and discuss the motivations behind those.
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Chapter 1

Introduction

1.1 Introduction to refactoring

Refactorings are source code transformations that increase the maintainability of software sys-

tems without impacting its functionality (Opdyke, 1992). The process of refactoring makes the

source code more understandable and eliminates bad design practices and anti-patterns (W. H. Brown,

Malveau, McCormick, & Mowbray, 1998; W. J. Brown, McCormick, & Thomas, 2000). As a re-

sult, the software becomes easier to debug, test, update and extend, and the overall value of the

system increases (Du Bois, Demeyer, & Verelst, 2005; Fowler, 2018). In recent years, refactor-

ing has become an integral part of software development. In software development, the process of

refactoring consists of several distinct activities. According to Mens and Tourwé (2004), these ac-

tivities include locating the code that can benefit from refactoring, deciding which refactoring type

to apply, implementing the refactoring transformation, making sure that the behavior of the program

is preserved after the refactoring application, assessing the impact of the refactoring on design qual-

ity, and maintaining consistency between the refactored code and other software artifacts, such as

documentation, tests, and UML diagrams.
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1.2 How and Why Developers Refactor

Refactorings can be applied during all the phases of code development or maintenance. If we

look at how refactoring tasks are carried out with other programming tasks we can find two distinctly

different tactics known as floss and root canal tactics (Murphy-Hill & Black, 2008). The floss tactic

is when refactoring tasks are carried out as part of other development or maintenance tasks, such as

bug fixes or feature enhancements, in order to facilitate their completion. This type of refactorings

are smaller in nature and are performed more frequently. The root canal tactic is followed when

the sole purpose of refactoring is treating unhealthy code and improving code quality. Dedicated

resources are allocated for this purpose. The changes are larger in size and are not intermingled with

other kinds of program changes. However, it is observed that developers hardly allocate dedicated

time for root canal refactoring. Instead, they opt for more frequent floss refactoring (Murphy-Hill,

Parnin, & Black, 2011). That means, they refactor their code, but mainly when it helps them to

complete other maintenance tasks. They do not refactor, just for the sake of refactoring.

1.3 Why Existing Tools Fail

To aid developers in these tasks, software researchers have been trying to understand the com-

mon patterns and nature of refactorings for the past two decades. Many empirical studies have been

performed to find out how developers prefer to refactor. Based on the outcome of these studies,

several refactoring recommendation techniques and tools have been developed. However, develop-

ers often complain that the available tools do not meet their real-life development expectations and

needs (Murphy-Hill, Parnin, & Black, 2012). The refactoring suggestions from these tools are not

feasible to perform or not worth performing even though they are theoretically accurate. Therefore,

developers tend to avoid these tools.

To understand why refactoring tools are underused, we need to look at how developers perform

refactoring in real-life. Traditionally, it was believed that developers refactor code to eliminate

code smells and increase code quality. However, according to Silva, Tsantalis, and Valente (2016),

the actual motivation behind refactoring activities in not removing code smells. In most cases,

refactorings are motivated by other maintenance tasks, such as a feature implementation or a bug fix.
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For example, this study found that 82% of extract method refactorings are performed to facilitate

other development tasks and only 18% are done for the sake of code quality improvement. The

problem with existing tools in the market is that they propose refactorings to reduce code smells. But

this is not exactly the reason why developers want to refactor. This conflict of interest explains why

only 7% of the developers interviewed in the aforementioned study took any help from automated

refactoring tools while performing refactorings.

Another reason behind the small adoption of existing tools in practice is that these tools are built

on predefined rule sets. They do not consider what task or piece of code the developer is currently

working on. They do not take into account the refactoring history of the current developer or the

whole development community. Developers are afraid that the tools do not understand the current

working context when the refactoring is complex and opt for manual refactoring (Silva et al., 2016).

Also, in some cases, the tools produce a large number of refactoring suggestions, which are not

relevant to the developers and overwhelm them (Murphy-Hill et al., 2012).

1.4 Problem Definition

To overcome these situations and to improve the accuracy of refactoring suggestions, a handful

of empirical studies tried to find out how developers refactor in real life. These studies investi-

gated common refactoring practices in the developer community. Some studies identified the most

common refactoring tactics and types in open-source software repositories (Fowler, 2018; Mens

& Tourwé, 2004; Murphy, Kersten, & Findlater, 2006), while others focused on how refactorings

impact the quality of code (Moser, Sillitti, Abrahamsson, & Succi, 2006; Simon, Steinbruckner, &

Lewerentz, 2001). However, none of these studies investigated if there are specific single-purpose

code fragments a.k.a. ‘code idioms’ that tend to be refactored more commonly than others. In this

study, we focus on finding code idioms that tend to be repeatedly refactored across projects. We

define these code fragments as frequently refactored code idioms.
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1.5 Scope of the study

Each type of refactoring serves different purposes and motivations. We focus our study on

EXTRACT METHOD refactoring, because it is one of the most frequently applied refactoring op-

erations (Negara, Chen, Vakilian, Johnson, & Dig, 2013), and typically developers extract code

fragments that have a distinct functionality from the rest of the program into a separate function that

could be potentially reused. Therefore, an extracted code idiom represents a distinct and reusable

functionality having a single semantic purpose. We also limit the scope of our experiments to Java

projects only since the tool we are using for refactoring identification (RefactoringMiner) works

only on java code.

1.6 Contribution

Although refactoring attracted a lot of interest from the software engineering researcher com-

munity in the last couple of decades, no study has tried to find out what code idioms are refactored

most. This is the first study focusing on this issue. We hypothesize that some code idioms are refac-

tored across projects for a similar purpose. Identifying those will help in generating more relevant

refactoring recommendations for programmers. For this purpose, we worked with a large dataset

of refactorings. However, these codes belong to different contexts and contain a lot of context-

specific information. Storing these codes as is reduces comparability and increases cost in terms

of both computation and storage. Therefore, we have generated a variety of representations of

codes with different levels of abstraction. We have used control flow graphs and program depen-

dence graphs (Ferrante, Ottenstein, & Warren, 1987) to abstract the behavior of the refactored code

fragments. Based on these graphs we have generated another more abstract representation, called

Groum (T. T. Nguyen, Nguyen, Pham, Al-Kofahi, & Nguyen, 2009), which captures control and

data flow information among statements performing API calls. We applied further relaxation on the

Groum representation to filter out context-specific details. Finally, we performed graph matching

on the relaxed Groum representation to identify the most frequently refactored code idioms.

In this study, we have mined, reconstructed and cross-matched a dataset of 47,647 refactorings

4



mined from 1,025 top Java open-source projects hosted on Github. After cross-matching the refac-

tored code fragments using various techniques, such as a bag of token similarity, program depen-

dence graph matching, and Groum matching, we were able to find 185 idioms that were refactored

repeatedly in software repositories. Some of these code idioms were refactored up to 45 times in

our dataset.

1.7 Implications

This research can be beneficial to both software engineering research and software developer

communities. Understanding which code idioms are refactored most frequently can help us under-

stand developers’ common refactoring practices and preferences. Tool builders can improve their

tools to prioritize refactoring suggestions and filter out unpopular ones. Since developers do not

tend to trust automated suggestions, the data from this study can be used to justify automated sug-

gestions. For example, a refactoring recommendation with a note “You applied a refactoring on

similar code 10 days ago” or “7 of your teammates refactored similar code” or “45 developers from

other projects refactored similar code” will be more acceptable and trustworthy from the developer’s

point of view. That’s why we believe understanding frequently refactored code idioms can lead us

to build more realistic and well-accepted refactoring recommendation tools.

1.8 Thesis contents

Chapter 2 contains a brief discussion of all the works that we found related to our problem. In

Chapter 3, we are presenting the techniques we used in this study and the rationale behind them.

Chapter 4 contains the details of our experiments.
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Chapter 2

Literature Review

In this section, we are presenting numerous studies that tried to understand how refactoring is

performed in real-life development. We are also presenting code mining and matching techniques

that can be found in the literature. We will also look at existing refactoring recommendations

and assistance tools, and analyze their perks and downsides. Then, we will discuss techniques

for detecting similar code fragments that can be extended to identify refactored code idioms. After

that, we will analyze studies on how to safely apply code transformations. Finally, we will present

the techniques we will be using for our research.

2.1 Empirical studies on Refactoring Activity

In the past two decades, many studies tried to see how developers refactor in real life. Murphy et

al. (2006) was one of the first researchers who monitored developers’ behavior in IDE to understand

refactoring activities. Many other studies followed this one, which focused on various aspects of

refactoring activities such as, how refactorings are performed, what are the motivations and impacts

of refactorings.

In 2011, Murphy-Hill et al. (2011) investigated how developers carry out refactoring tasks in

software companies. They showed that programmers some times perform a number of refactoring

operations in a batch. This means they perform refactoring as a separate task and not as a part of

their regular development activity. Also, programmers perform these refactorings within a short
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time period. Most of these refactorings are performed without using any automated tool. According

to their study, 90% of refactorings are performed manually.

Researchers have always been curious to know what motivates refactorings. Wang (2009) in-

terviewed 10 professional software developers about factors that motivated them to refactor code.

He presented a list of internal and external factors such as self-motivation, peers pressure, etc. as

motivations behind refactorings.

Few types of research tried to find the connection between bugs/errors and refactorings. M. Kim,

Cai, and Kim (2011) showed that an API-level refactoring is often followed by a number of bug

fixes, which probably indicates refactorings often introduce bugs in dependent code segments. A

similar phenomenon is reported by Weißgerber and Diehl (2006). Rachatasumrit and Kim (2012)

found that some refactoring cases led to situations where up to 50% of the test cases of a system

were failing.

2.2 Code idiom mining

A code idiom is a syntactic fragment that recurs across projects and has a single semantic pur-

pose. There has been a lot of research on code idiom mining from open source repositories. Al-

lamanis and Sutton (2013) performed an extremely large scale study on 353 million lines of Java

code to find code idioms that can be reused. Allamanis and Sutton (2014) analyzed the most com-

mon idioms found in open-source repositories. According to their report, those are related to object

creation, exception handling and resource management. In another study, Allamanis et al. (2018)

investigated loop idioms in repositories. The study found that loops idioms are highly repetitive

and predictable. Only 50 loop idioms resemble 50% of all the loop instances in their dataset of 25

million source code lines.

Gharehyazie, Ray, and Filkov (2017) found that there exists a tremendous amount of code id-

ioms in open source repositories that can be reused. These idioms can be identified using cross-

project clone matching. They used the Deckard tool for code clone identification. However, they

found most of the clones come from the same project or from projects from the same domain.
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Tufano et al. (2018) introduced deep learning for finding similar code across projects. They

used different representations of code such as Abstract Syntax Trees, Control Flow Graphs, and

Bytecode, etc. in their experiments. This study shows how different representations of code can be

used to find code idioms using deep learning and discusses how these representations impact the

detection accuracy.

Lopes et al. (2017) performed a cross-project, cross-language and cross-domain code analysis

to find non-trivial duplicate codes in open source repositories. They reported that 70% of the new

codes are non-trivial copies of existing Github codes. They also found that 31% of the projects

contain at least 80% of files that can be found elsewhere.

2.3 Refactoring Recommendation

To design an effective refactoring recommendation system, first, we need to define some spe-

cific criteria based on which we can identify potential refactoring opportunities. Some researchers

in the literature suggested that recommendation systems based on the existence of code smells yield

the best results, while others prefer to do it by learning from examples, or by analyzing software

repositories. Most of these code-smell-based and learning-based techniques follow a post-mortem

approach, which means they can recommend refactorings only for already committed or released

code. However, few studies tried to recommend refactorings during development time, before the

code is committed to a repository. We will try to highlight some of the most popular recommenda-

tion techniques in this section.

2.3.1 Code Smell Based

It is believed that code smells can be used for identifying refactoring opportunities in source

code because they are indicators of poor software design. There are many refactoring tools built

on this assumption. For example, JDeodorant is one of the most popular open-source refactoring

recommendation systems. It suggests extract method, move method refactorings based on the exis-

tence of a long method, duplicate code or feature envy smells (Fokaefs, Tsantalis, & Chatzigeorgiou,

2007; Mazinanian, Tsantalis, Stein, & Valenta, 2016). Other popular clone detection tools such as
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Deckard (Jiang, Misherghi, Su, & Glondu, 2007), CCFinder (Kamiya, Kusumoto, & Inoue, 2002)

and NiCad (Cordy & Roy, 2011) are also developed based on this assumption. These tools detect

code smells accurately yet developers rarely use these tools for finding refactoring opportunities

(Yamashita & Moonen, 2013).

Yamashita and Moonen (2013) aimed to investigate the connection between code smells and

code maintenance tasks and found that the role of code smells on the overall system maintainability

is relatively minor. According to their empirical study, only 30% of the maintenance problems can

be predicted by code smells. Furthermore, Silva et al. (2016) found that refactoring is mostly per-

formed in order to make a feature implementation or a bug fix easier. For example, they found that

82% of extract method refactorings are performed to facilitate other development tasks and only

18% are done for the sake of code quality improvement. This explains why only 7% of the devel-

opers interviewed in the aforementioned study took the help of automated refactoring tools while

performing refactorings. So, it can be said that using code smells for identification of refactoring

opportunities may not be the most effective approach.

2.3.2 Learning Based

To overcome the problems that code smell based recommendation systems have, some re-

searchers proposed systems that learn from developers. Raychev, Schäfer, Sridharan, and Vechev

(2013) introduced a statistical language model-based system that finds refactoring opportunities by

synthesizing examples given by developers. In their follow-up paper, they showed that this approach

can work for predicting the use of API methods as well (Raychev, Vechev, & Yahav, 2014). How-

ever, the main difficulty, in this case, is training the system. It is simply not realistic for a developer

to perform every refactoring just to train his refactoring tool. Moreover, this tool can only work on

a single project. It will be interesting to see how this approach can scale to support cross-project

refactorings.

To handle this scalability issue, Wasserman (2013) introduced Refaster, a tool that uses compil-

able before-and-after examples of code to learn a refactoring. After training this tool, it can refactor

large-scale systems with 100% accuracy. Google has used this tool to perform a wide variety of
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refactorings across Google’s massive codebase. However, Refaster is a post-mortem tool and can-

not be used while a developer is coding. Training the system manually with examples is also an

issue.

Though existing learning-based techniques have their limitations, we believe this approach is

more reasonable than smell based techniques and propose to use it for our study. However, post-

development refactoring is not what developers do in real-life. So, we envision to apply a learning-

based technique in development time.

2.4 Refactoring Assistants

Although useful and widely available, refactoring tools are underused. According to a study,

more than 90% of all refactorings are performed by hand (Murphy-Hill et al., 2012). This is be-

cause developers often perform code maintenance tasks without having enough knowledge about

the refactoring terminology used by the IDE to trigger automated refactoring operations. For in-

stance, they do not always remember the exact name of the refactoring they are want to perform, in

order to click on the right refactoring menu option of the IDE. To address this issue, tools like Bene-

Factor (Ge, DuBose, & Murphy-Hill, 2012) and WitchDoctor (Foster, Griswold, & Lerner, 2012)

proposed systems that detect manual refactoring attempts in development time, remind developers

that automatic refactoring is available, and complete the refactoring automatically if the developer

wants. These systems provide development time refactoring support, which is faster than manual

refactoring. The best thing about these tools is that developers do not have to remember anything

before starting a refactoring task, such as the name of the refactoring or the process of using any

specific tool. However, these systems have some serious limitations. First of all, none of these

tools can detect refactoring opportunities by themselves. They only suggest a refactoring when the

developer has already started doing it manually. The “in progress” refactoring detection mechanism

is also questionable, as it is strictly rule-based. Predefined rules may not be enough to cover all

possible ways of refactoring. Though these approaches claim to be refactoring recommendation

systems, they are more like refactoring auto-completion systems. From a developer’s point of view,

these tools might have less accuracy but they certainly have better usability as they blend well with
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regular development flow.

2.5 Similar Code Detection Techniques

For our study, we will try to discover refactored code idioms based on knowledge gathered from

changes in software repositories. According to a study on 2,841 Java projects, changes in software

repositories are highly (70-100%) repetitive (H. A. Nguyen, Nguyen, Nguyen, Nguyen, & Rajan,

2013). Many studies relied on the repetitiveness of code changes in software repositories for finding

defective codes and generating automatic patches (Ke, Stolee, Goues, & Brun, 2015; D. Kim, Nam,

Song, & Kim, 2013; Long & Rinard, 2016). We aim to build a database of refactored code idioms by

extracting refactoring information from software repositories. However, there exist many challenges

for creating such a database. For instance, studies have shown that the more distant the locations

of two duplicated code fragments, the more differences (and more complex differences) they have

(Santos et al., 2017; Tsantalis, Mazinanian, & Krishnan, 2015). Our biggest challenge is to find

refactored code idioms not only from different locations of the same project but from different

projects. In this section, we will look into some well-known code matching techniques and discuss

their applicability for our study.

2.5.1 Token Based

CCFinder is one of the first clone detection tools Kamiya et al. (2002). This tool was built

to identify duplicate codes in large software repositories. For this tool, the authors developed a

matching algorithm that converts software code into tokens and tries to find clones based on token

matching. This approach was developed only to support Type-I clones (i.e., code fragments without

any syntactic differences, but with formatting differences). This tool is also limited to operate inside

a single project. For this reason, it cannot be used for our study as we are more interested in identi-

fying similar codes rather than exactly identical codes. However, if we apply relaxation techniques

in the code tokenization process, it will be possible to support Type-II clones (i.e., code fragments

with syntactic differences), and possibly Type-III clones (i.e., code fragments with changed, added,

or deleted statements).
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2.5.2 Token Based with Filtering

Another more recent token-based approach is SourcererCC (Sajnani, Saini, Svajlenko, Roy,

& Lopes, 2016). The motivation of this study was to introduce a technique that can detect both

exact (Type-I) and inexact (Type-II, Type-III) clones within a large number of different project

repositories. It operates in two phases. In the index creation phase, it parses the code blocks from

the source and tokenizes them. Then it builds an inverted index mapping the extracted tokens to the

blocks that contain them. It uses a filtering heuristic to construct a partial index of only a subset

of the tokens in each block. In the detection phase, it iterates through all of the code blocks and

retrieves their candidate clone blocks from the index. As per the filtering heuristic, only the tokens

within the sub-block are used to query the index, which reduces the number of candidate blocks.

After candidates are retrieved, SourcererCC uses another filtering heuristic, which exploits ordering

of the tokens in a code block to measure a live upper-bound and lower-bound of similarity scores

between the query and candidate blocks. Candidates whose upper-bound falls below the similarity

threshold are eliminated immediately without further processing. Similarly, candidates are accepted

as soon as their lower-bound exceeds the similarity threshold. This is repeated until the clones of

every code block are located. SourcererCC exploits symmetry to avoid detecting the same clone

twice. The authors evaluated the scalability, execution time, recall and precision of this approach,

and compared it to CCFinder (Kamiya et al., 2002), Deckard (Jiang et al., 2007), NiCad (Cordy

& Roy, 2011) and iClones (Göde & Koschke, 2009). They used BigCloneBench benchmark of

25K projects (250MLOC) for their case study and found that SourcererCC has both high recall and

precision, and is able to scale to a large inter-project repository. It is also twice as fast as its nearest

competitor CCFinder. In a newer work (Saini, Sajnani, Kim, & Lopes, 2016), they introduced

SourcererCC-I, an Eclipse plug-in, that uses SourcererCC to identify clones in a repository in real-

time during software development. We might use a similar algorithm for indexing and searching in

our refactoring database. However, we will have to increase the precision of Type-III clone detection

which is relatively low for this technique.
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2.5.3 Suffix Tree Based

Most of the current approaches create an index for available code repositories to find code

clones. The index creation, however, is a very costly process and it may not be worth the effort

if the analysis is done only once. That is why Koschke (2014) introduced suffix trees to obtain a

scalable comparison of source code without the need for index creation. They used this approach

to identify license violations in a suspected system by comparing its code to an ultra-large corpus

of open-source code. Basically, they generate a suffix tree for the subject system which they are

willing to match against the code-corpus. Once the suffix tree is created, they take every file of the

corpus and compare it against the suffix tree. This step retrieves all subsequences of the file that

are also contained in at least one file represented in the suffix tree. This technique allows them to

compare in time linear to the length of the file. Their case study shows that this approach is faster

than current index-based techniques. However, if we try to apply a suffix tree-based approach for

storing refactorings mined from the commit history of a large number of projects, we will have to

store all the raw refactored codes in our database. That means we might end up storing a huge

amount of unnecessary data. If our refactoring database is too large, it might not be possible to

recommend refactoring opportunities in real-time.

2.5.4 Code Transformation Based

To find similar codes, de Sousa et al. (2016) proposed a system called REFAZER, which learns

from code edits that developers perform and saves them using a domain-specific language (DSL).

Using this DSL, it identifies the similar phenomenons in code and tries to perform the same edits

automatically. In their evaluation conducted on 4 programming tasks performed by 720 students,

their technique was able to fix 87% of incorrect codes. The problem with this system is that it tries

to identify a single type of edit at a time. If there is a huge database of previous edits, it will not be

feasible to run this system for each edit. We could use the same DSL to identify similar refactoring

edits in the mined repositories and build the refactoring database, but unfortunately, it supports only

small edit operations while refactoring operations typically involve large edits.
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2.5.5 Graph Based

Li, Saidi, Sanchez, Schäf, and Schweitzer (2016) came up with a graph-based similarity match-

ing technique to facilitate retrieve, repair, and reuse of code across repositories. They generate the

data flow graph and API call graph for a program, compute the Weisfeiler-Leman kernel for each

graph and match it with other programs by performing graph isomorphism testing. After perform-

ing a case study on 1280 Java programs, their approach was able to detect 78% of similar programs.

Though this approach has pretty high accuracy and recall, it operates at the program level. More-

over, it uses graph isomorphism testing which has a very high computational complexity and might

increase memory usage and decrease response time dramatically for real-time recommendation (Qu,

Jia, & Jiang, 2014). Therefore, we cannot use this approach unless we configure it to work at the

method level and use some filtering mechanism to reduce the required graph matching combina-

tions.

2.5.6 Graph Based with Minimization

A. T. Nguyen and Nguyen (2015) introduced a graph-based statistical model named GraLan

for analyzing coding patterns and providing code suggestions. GraLan can learn from source code

repositories and compute the appearance probabilities of any graphs given the observed graphs. The

authors also developed an API suggestion engine and an AST-based language model named AST-

Lan. ASTLan can analyze the AST of code repositories to detect common syntactic templates and

suggest the next valid syntactic template in development time. Their case study shows that their en-

gine is more accurate in API code suggestion than the state-of-the-art approaches, and it can suggest

the correct API in 75% of the cases. ASTLan also has considerably high accuracy (between 29.8%

to 69.5% according to their experiments). This graph-based system can be applied for finding refac-

tored code idioms in our study. It will help to retrieve multiple refactoring suggestions with high

accuracy. We will use a sub-graph filtering algorithm to cut down the number of pairwise matching

combinations. It will make the response time faster and enable refactoring recommendations during

development time.
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2.6 Code Transformation Techniques

Finally, once we can identify the most frequently refactored code idioms, we will focus on ap-

plying those on a new code. The challenge here is to find the appropriate recommendation from the

refactored code idiom database for the current situation and suggest a behavior-preserving transfor-

mation. In this section, we will discuss topics regarding the application of refactoring in code.

2.6.1 Transformation Opportunity Detection

To recommend real-time refactoring opportunities, we should be able to match the code cur-

rently developed by a developer with a frequently refactored code idiom. However, most of the

matching algorithms take a post-mortem approach and cannot support matching while a developer

is still coding. To handle this problem Lee, Roh, Hwang, and Kim (2010) introduced an algorithm

that supports instant code search. At first, they convert AST into a multi-resolution numerical vector

(also known as characteristic vectors) as proposed in Deckard (Jiang et al., 2007). These characteris-

tic vectors for ASTs are often high-dimensional and not very efficient for finding matching vectors.

This is why they apply a dimension reduction algorithm on the characteristics vectors and index

those using a multidimensional indexing structure based on R*tree (Beckmann, Kriegel, Schneider,

& Seeger, 1990). R*trees are faster for executing queries on. Their approach could yield a sub-

seconds response-time during their case study on more than 1.7M code segments. It also managed

to keep over 70% precision and recall. However, it is not mentioned in this paper how it performs

for identifying different types of clones. If we want to use the R*tree for finding similar codes, we

must ensure that it finds near-miss clones with high accuracy.

Su, Bell, Harvey, et al. (2016) introduced an efficient technique named DYCLINK to find similar

codes from a large code base. DYCLINK records instruction-level traces from sample executions of

a program and creates a dynamic dependence graph from it. Then it applies its specialized sub-graph

matching technique LinkSub to find out similar code. LinkSub can reduce a significant amount of

matching pairs by analyzing all sub-graphs. Using this technique, they managed to analyze 422

million sub-graphs in 43 minutes. The only problem with this approach is it needs instruction-level

traces to find similarities. This means all the projects have to be built first. It will not be able to
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work on individual commits without building the whole project. This approach is not suitable for

our study because it is simply not possible for us to compile all the existing projects before starting

refactoring. For the same reason, we cannot use other dynamic clone detection algorithms such as

ScalClone (Farhadi et al., 2015) and Vivo Clone (Su, Bell, Kaiser, & Sethumadhavan, 2016), even

though they have a lower response time and high accuracy.

2.6.2 Applying Transformations

Finally, once we can identify frequently refactored code idioms, we will focus on actually ap-

plying those on a new code. We need to make sure the proposed code transformation is feasible and

safe. We found a few research works that tried to apply code transformations safely. Tsantalis et

al. (2015) showed how program dependence graph analysis, statement-level mapping and precondi-

tion checking can be used to safely apply code transformation. Meng, Kim, and McKinley (2011)

also proposed a tool that can safely apply code transformations learning from examples. This tool

identifies context-specific portions of code and replaces those to apply the transformation in new

situations. They applied this principle in one of their more recent studies to refactor duplicated code

without generating any error (Hua, Kim, & McKinley, 2015). Therefore, we can say that if we

can successfully extract program dependence graphs and context-specific portions from frequently

refactored code idioms, it is possible to safely apply those in new situations. And we must also

develop a set of safe transformation preconditions and come up with a mechanism to check those.

Finally, before suggesting any refactoring to a developer, we plan to rank the feasible opportunities.

Mondal, Roy, and Schneider (2016) showed that for ranking code transformations the combination

of frequency and recency technique is 16% better than only frequency and 57% better than only

recency-based techniques. Therefore, we propose to use this hybrid technique to rank refactoring

opportunities.

2.7 Use of the Literature in this Study

After reviewing the literature, we found that there is a need for a system that does not rely

on code smell detection and does not require manual training for suggesting development-time
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refactoring. The recommendation system must learn from existing refactoring history available in

various repositories for providing accurate suggestions. To this end, we should create a database

of refactorings extracted from the commit history of open-source projects. However, storing the

entire code (before and after applying refactoring) for future use is not feasible. This is why we

intend to use the graph-based GraLan approach to minimize the code segments into smaller graphs

(A. T. Nguyen & Nguyen, 2015). This will save us storage space, as well as computational power

when matching codes. One alternative to this approach can be the token-based clone detection tool

SourcererCC (Sajnani et al., 2016). This technique can reduce storage and CPU usage by converting

code into bags of tokens and the experiments performed in this study show that this technique is

quite accurate and fast for code similarity matching. R*tree based ‘Instant Search’ approach might

also be appropriate for our study (Koschke, 2014). However, before using this technique we need

to perform some preliminary studies to check how it performs for Type-III clones. Applying the

refactoring is our next challenge after detecting frequently refactored code idioms. For applying

the refactoring we plan to follow SyEdit and RASE approaches (Hua et al., 2015; Meng et al.,

2011). In these two papers, it is shown how to use context extraction techniques to apply similar

transformations for different codes. Finally, for ensuring the safety of the transformation, we plan

to use the PDG Matching and Precondition Checking techniques as proposed by Tsantalis et al.

(2015).
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Chapter 3

Research Methodology

This section describes the three major stages of this study. We started our work by creating a

database of refactorings. In this stage, we identified the repositories and refactorings we want to in-

vestigate and collect code snippets for the selected refactoring instances. The next step was to gather

missing details about the code fragments we collected to understand how they function. We name

this step code re-construction. Once we had the behavioral information of the refactored codes, we

investigated different approaches to compare them and find repetitions (i.e., frequently refactored

code idioms). These two steps are done inside our automated tool called RefactoringMatcher. The

tool is open-source and available in Github (Tahmid, 2019). Finally, we inspected manually the

results to infer the motivation behind each refactored code idiom.

3.1 Refactoring Mining

3.1.1 Repository Selection

First, we selected all Java repositories from Github that have 500 or more stargazers. We found

2,121 projects (as of 18 May 2018). Then we filtered out projects that are not mature, inactive or

not maintained anymore. The maturity conditions we set are: 1) At least 2 years old, 2) At least 10

releases, and 3) At least 100 commits. We also removed the projects that were not active for more

than a year and projects that do not have any other contributor except its owner. Finally, we ended

up with a set of 1,025 repositories. Table 3.1 summarizes our selection criteria.
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Table 3.1: Repository selection criteria

Stargazers Commits Releases Contributors Age Last Activity

>500 >100 >10 >2 >2 years <365 days ago

3.1.2 Refactoring Type Selection and Mining

To perform a large scale study on the repetitiveness of refactorings we had to limit our scope to

one refactoring type. There are at least 66 different types of refactorings according to Martin (2009).

Among those We chose to start with the Extract Method refactoring for the following reasons: 1) It

is frequently performed by developers (Murphy et al., 2006; Murphy-Hill et al., 2011), 2) It is driven

by a large number of different motivations (Silva et al., 2016), 3) There exist multiple refactoring

mining tools that can identify these refactorings with high precision and recall, such as RefFinder,

RefDiff, RefactoringMiner, 4) The findings of the study can be used for other method level or code

fragment level refactorings such as inline method, move statements, split loop etc. Among the

refactoring detection tools RefactoringMiner appears to have the highest precision (0.93) and recall

(0.72) (Tan & Bockisch, 2019; Tsantalis, Mansouri, Eshkevari, Mazinanian, & Dig, 2018) and for

this reason, we chose to use this tool for our experiments. On our selected 1,025 Github repositories,

we executed RefactoringMiner and scanned 3,106,682 commits to find all extracted methods. We

included all instances reported by the tool, but excluded some duplicate code refactorings within

the same commit. For example, if 5 duplicate code fragments in a project are extracted and unified

into a single method, RefactoringMiner reports 5 separate extract method refactoring instances. We

treat these cases as a single refactoring operation because our goal is to find frequently refactored

code idioms within different commits and projects, not within the same commit and project. In the

end, we ended up with a refactoring dataset of 47,647 Extract Method refactorings.

3.2 Code Re-construction

A refactoring instance reported by a refactoring detection tool typically contains information

about the nature and the location of the refactoring. It does not always expose details about the

code that was refactored. For example, we can see a variable being used in the refactored code
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or a method being called. However, we do not know where this variable or method is declared.

If multiple variables or methods exist with the same name, we do not have enough information

to understand which one is being used by the refactored code. For this reason, it is important to

qualify all code elements. A type reference T should be qualified as packageName.T, where

packageName is the package in which the type is declared. A field f declared in type T should be

qualified as packageName.T.f. Finally, a method m() declared in type T, should be qualified

as packageName.T.m().

When a project is built, the compiler does the qualification which we could use in our case.

However, building such a large number of repositories at 47,647 commit versions is not some-

thing that is manually feasible. The building process can not be automated either as it requires

manual intervention to resolve library dependencies and sometimes compilation errors. Performing

these tasks at each commit makes this approach infeasible (Tufano et al., 2017). To overcome this

problem, we decided to extract binding information from codes without trying to build them. The

following sections describe how we managed to collect qualified names of the variables and types

and methods signatures from partial and non-built codes.

3.2.1 API Finder Tool

We developed the tool API Finder to help us re-construct partial code segments that cannot

be built. This tool is designed to provide fully qualified method signatures, qualified type names,

and qualified field names from its database when queried. Initially, the database only contains

information about standard Java API libraries. Whenever it is queried about a type or method it

does not recognize, it searches in Maven Central Repository and downloads the relevant jar files.

It iterates through the class files inside the jars and stores their public class information, such as

qualified names of types and fields, and method signatures. It also processes the import statements

declared in Java compilation units and the dependency elements of the POM file of the current

project. POM stands for Project Object Model and is an XML representation of a Maven project

held in a file named pom.xml. Moreover, if the repository address or local project location is

provided, the tool can find release jars or local libraries to update its database. However, this tool

cannot help if the queried type, method or field is not found using any of the resources mentioned
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Figure 3.1: API Finder Tool

above. Figure 3.1 shows how API Finder works. The tool is available in GitHub in the repository

JarAnalyzer (Tahmid & Tsantalis, 2019).

3.2.2 Resolving Fields, Type and Method Signatures

We need to understand how every variable is declared, initialized and used in the extracted

codes. To accurately detect that, we need to find out the qualified types and names of these variables.

We start by going to all of the refactoring commits and download the files in which we found

refactoring operations. For each variable used in the refactored code fragments, we attempted to

identify its declaration statement, and thus find the type of the variable. If the type is not primitive,

we try to get its qualified name using the API Finder tool. We pass the unqualified name to the tool

along with all the import statements declared in the Java file. API Finder uses the import statements

21



to locate jars that contain packages with the same names. Then, it examines those jars and returns

the qualified name. For imports that are Java API libraries or any popular library that can be found

in Maven Central, the tool is able to find the qualified name. For local types or uncommon libraries,

we have to use a different approach, which we will discuss in the next subsection.

For resolving the qualified signature of a called method, first, we attempt to find a method

with the same signature declared in the current file. If found, we utilize the API Finder to get

the qualified return type, and parameter types and using that information we generate the qualified

method signature. For a method that is not declared locally, we pass the called method’s name along

with the number of arguments, and list of import statements to API Finder. API Finder searches all

packages matching the import statements and returns all the methods that are declared there with

the same name and parameter count. Finally, when found, it returns the qualified signature enabling

us to identify any method call uniquely.

3.2.3 Handling Unresolved Fields, Type and Signatures

API Finder is able to resolve most of the qualified names and signatures; however, in some

cases, it cannot find anything. For situations like that, we had to help API Finder with additional

information to enrich its database. First, we provide the Github address of the repository, so that

it can find and download a released jar of the project. The tool downloads the release closest to

the refactoring commit date and stores all qualified names and signatures. This way we resolve any

local method call and type usage.

For external types and calls, we use two techniques. The first one is passing the POM file to API

Finder. A POM file is a file located inside a java repository with a Maven build system that states

all the library dependencies of the project and where to find those libraries. Using the POM file,

API finder can locate all needed external libraries and enrich its database. The second technique is

to provide API Finder all the jars located inside a project. For example, jars located inside the lib

folder.

However, if a project does not use a POM file, a released jar in its repository, and locally copied

libraries, we have no other option, but to use the unqualified name. Unless we encounter multiple

unresolved variables or calls in the same extracted method with the same name, it won’t create a
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significant complication for us. In our dataset, we were able to uniquely identify all the variables

and method calls and did not face this rare situation.

3.3 Generating Appropriate Code Representation for Matching

For finding frequently refactored code idioms, first we have to decide how to compare the codes.

We generated the following representations and compared them to each other and finally, picked

one to conduct our experiment. In this subsection, we will discuss these representations and how

we used them.

3.3.1 Bag of Tokens

As we are looking to find refactored code idioms with similar characteristics, we decided to

utilize a proven code clone detection technique. From the history of clone detection, we found that

the bag of tokens representation is a good way to find codes that are similar but exactly not the same.

In our case, we do not expect codes from different repositories to be identical, that’s why we found

this technique to be interesting.

For utilizing this technique, we broke down the refactored codes into tokens. We took any

method that has more than one statement as a valid code block. Because we wanted to avoid getters

and setters in our experiment since they produce a huge number of meaningless matches. Then we

generated bags of tokens from each of these methods without keeping any order. While tokenizing,

we considered some language-specific factors. For example, we considered else if as one token

instead of separate else and if. We used the TXL tool for automating this process. After that,

we compared the bags of tokens with each other and obtained all similar bags that have at least a

certain percentage of tokens in common. We performed this matching using the SourcererCC clone

detector. This tool applies some other normalization techniques while performing code matching

to reduce language-specific similarities. After completing this process, we got a list of similar code

blocks that exist in the refactored codes that we extracted.

However, we found this technique not to be very reliable. It does not consider the order of the

tokens; hence the detected matches may be functionally very different. For example, the following
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matched code fragments, have different functionality.

Listing 3.1: Function1()

void Function1(){

obj = new Object();

if (obj.field == null)

obj.field = x;

}

Listing 3.2: Funtion2()

void Function2(){

obj.field = x;

if (obj.field == null)

obj = new Object();

}

3.3.2 Program Dependence Graphs

Since the bag of tokens approach does not match the logical structure or functional behavior of

the code, we experimented with the Program Dependence Graph (PDG) representation. A program

dependence graph is a graph representation of the control structure and data flow in a code fragment.

It shows how each statement controls the execution of other statements and how data is passed

between statements. Therefore, it is a good representation of the functionality of code.

We construct the PDGs in a couple of steps. In the first step, we extract the abstract syntax

tree (AST) for all refactored code fragments. Then, we analyze the branching structures in the

code to create the control flow graph (CFG) of the programs. In this graph, every node represents a

statement, and every edge directs to a statement that will be executed next. The CFG of the functions

in Listing 3.1-3.2 is shown in Figure 3.2.

Next, we add data flow information to the control dependence graph. We have already identified

all variables in the code with their qualified names. Now, we locate the statements where each of

the variables is declared, initialized and used. For each variable, we add data dependence edges

between statements of the CFG based on the execution flow. For example, if a variable is initialized

in statement x and then used in statement y, and there is no other statement modifying the value

of the variable in the control flow paths starting from x and reaching y, we add a data dependence

edge from statement x to statement y. We also add another kind of edge called the anti-dependence

edge. An anti-dependence edge for a variable from statement x to statement y denotes that x is

using the value of the variable, which is later modified in y. Therefore the sequence order of these

two statements is important to preserve the functional behavior of the program. Figure 3.2 shows
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the data dependencies of the functions in Listing 3.1-3.2.

Figure 3.2: CFGs and PDGs for Listing 3.1-3.2

We can use the PDGs of the refactored code fragments and match them against each other

using any graph isomorphism algorithm to find codes with the same functionality. However, our

intention is not to find exact duplicates, and there is a little possibility to have such duplicates

between different repositories. So, we need to relax this graph in such a way that the edges remain

the same, but the contents of the nodes become less context-specific. However, we can not remove

all the information from the nodes. For example, in listing 3.3-3.4, the PDGs for Function2()

and Function3()will be same as the PDG of Function2() in Figure 3.2. The only difference

will be in the contents of the last nodes (obj=new Object() vs. obj=new Object(y)). We

need to find a way to preserve this difference in the graph without keeping the whole content of the

node.
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Listing 3.3: Function2()

void Function2(){

obj.field = x;

if (obj.field == null)

obj = new Object();

}

Listing 3.4: Funtion3()

void Function3(){

obj.field = x;

if (obj.field == null)

obj = new Object( y );

}

3.3.3 Groums

There are two main concerns with PDG matching. On one hand, if we keep the contents of

the nodes, a PDG becomes too much context-specific. Two PDGs need to have exactly the same

statements to be matched. On the other hand, if we completely ignore the contents of the nodes, any

two nodes having the same incoming and outgoing edges will be matched. This means, statements

func(x).func(y) and func(x,y) could be matched, since they have the same incoming and

outgoing data dependencies. Similarly, if we look at the code in listing 3.3-3.4, the last lines of

the two methods are different, however, the data and control dependencies are the same. Hence,

if we run a graph matching on the two PDGs and do not consider the contents of the nodes, these

two codes will be marked as a match. Therefore, we decided to import more information from the

contents of the nodes to the graph. We expanded complex statement nodes to multiple nodes using

the following Groum composition rules (T. T. Nguyen et al., 2009).

(1) Cascading Call Node:

x.function() to x−→function

(2) Method Call Node:

function(x,y,z) to (x,y,z)−→function

(3) If Statement Node:

if(x) to x−→if

(4) While Statement Node:

while(x) to x−→while
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(5) For Statement Node:

for(x,y,z) w to x−→y−→for−→w−→z

Now the edges between the new nodes of the expanded statement represent the structure of the

initial statement node. If we erase the contents of all but the control nodes of the graph, we will

still have an abstract representation of each statement embedded in the graph as control nodes and

edges. This way we can construct a Groum from a PDG that preserves data flow, control flow as

well as statement structures without keeping any context-specific information.

If we construct PDGs for the functions in 3.3-3.4, we can see that they have the same graph

structure in their PDGs 3.3. However, the last method call in Function3() has an extra parameter

y. If we convert the PDGs into Groums, the if statement expansion rule will be applied to the

second node of both of these graphs. However, the method call node expansion rule can be applied

to Function3() only. Thus, the graphs will look different. Now, even if we remove all node

contents, the graphs will still have a different structure and will not be matched using a graph

isomorphism test. If two Groums generated from two code segments are isomorphic, we can say

that the two code segments have identical control structure, data flow, and functionally similar

statements. Therefore, we decided to use the Groum representation in our experiments.

3.3.4 Analyzing Similar Refactorings

The final and most important part of this study is inspecting the reported Groum matches. We

started the analysis by grouping all the isomorphic Groums into sets. For each of the set, we checked

the full code of each of the idiom. We checked if the only differences between idioms of the same

sets are the types and names of the variables and methods, the operators and the values of operands.

All the matches from reported by Groum matching clearly exhibited this expected behavior. There-

fore, we did not involve multiple reviewers for agreement. In the next step, we removed the matches

produced by forked repositories manually. In the remaining sets, we started inspecting the codes that

produced these Groums. We checked the refactored codes as well as the type of project, refactoring

time, commit message, etc. to understand why these code idioms are refactored most frequently.

27



Figure 3.3: PDGs and Groums for Listing 3.3-3.4
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Chapter 4

Experiment Results

To mine frequently refactored code idioms, we designed and conducted multiple experiments.

First, we experimented using one of the state-of-the-art token-based code clone detection tech-

niques, called SourcererCC. Then, we utilized graph-based source code representations. In this

section, we present the results of our experiments. We discuss the most commonly refactored code

idioms we have identified and the motivations behind those.

4.1 Clone Matching Experiment

4.1.1 Setup

First, we attempted to find similar refactorings using a token-based clone detection tool called

SourcererCC. We took our entire dataset of 47,647 refactorings for this experiment. We broke each

of the refactored code fragments into tokens and created bags of tokens for every method. For this

task, we used the TXL Tokenizer. In this tokenization process, all the separators, operators and case

of the tokens were ignored, and the default tokenization settings were used (min-block-size

= 2, min-token-count = 2, and token-limit = unlimited). Then we passed the tokens to

SourcererCC clone detector and observed the matches found by the tool. We only considered the

refactored code fragments that contain multiple lines of code, because in single line code fragments

there are no data or control dependencies. Moreover, if we include single line extracted methods,
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SourcererCC reports all getter methods in the dataset as matches, since they all only have key-

word return in common. Therefore, we configured SourcererCC to match only multi-line code

fragments.

4.1.2 Result

SourcererCC matches bags of tokens for finding code clones. It finds the matches based on a

threshold value ranging from 1 to 10. The higher this value is set, the more similar matches the

tool returns. In our experiment, we started with the highest setting 10. However, for this thresh-

old, the tool could not find any matching refactored code fragments belonging to separate projects.

Therefore, we lowered the threshold and experimented with different values from 9 to 5.

Table 4.1 presents the matches found by SourcererCC. From the table we can see that for thresh-

old value 8 and above we could find only one match. For threshold value 7, we found another match.

This match is between two refactoring activities between projects Recyclerview-animators

and UltimateRecyclerView. On April 9, 2015 a method named doAnimateRemove()

was extracted at commit c0122b13b77064b9edec3349d47c54e3dd07eb1b in Recyclerview-animators.

Another method with the same name was extracted in UltimateRecyclerView on May 11,

2015 (commit d0caccbbf9b063a3e65a24bb238365108b63ad53). The two extracted methods have

the same data and control flow and look like similar refactoring activities. However, the second

project here is a fork of the first one. Therefore, they already had a similar code-base. Hence, from

this finding, we cannot suggest that developers repeat refactoring activities.

We performed the same experiments with lower thresholds 6 and 5 and checked the matching

code fragments manually to see how similar they are. For threshold 6 we found 10 matches. 8 out

of the 10 pairs were actual matches with similar data and control flows. However, 2 out of these

8 matches were between forked repositories. For the threshold value of 5, SourcererCC found 96

matches, but the precision dropped to 45.83%, when we checked the matched codes manually. For

example, the two code segments in Listing 4.1 and 4.2 were reported as a match by this tool.
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Listing 4.1: SCC False Match

@Override

public void finish(){

if (progressDialog!= null ){

progressDialog.dismiss();

}

super . finish ();

}

Listing 4.2: SCC False Match

@Override public void finish(){

sResult= null ;

sCancel=null;

sClick=null;

sLongClick=null;

super . finish ();

}

In Listing 4.1 and 4.2, the two methods have 6 out of 11 tokens in common. Therefore, more

than half of the tokens match with a threshold value of 5. However, these two codes have completely

different functionality and cannot be considered as similar. After this experiment, we decided not

to proceed with lower threshold values.

Even though SourcererCC is a widely used clone detection tool and known for its ability to find

Type-III clones, in our case, it did not prove to be very useful. The 17 pair of codes we found using

this approach is not enough for us to support that developers repeat refactorings. Additionally, we

can say that traditional clone detection techniques are not suited for finding frequently refactored

code idioms.

Table 4.1: Matched fragments found by SourcererCC for different thresholds (manually reviewed)

SCC Threshold Match Count True Match Match in a Fork False Match Precision %

10 0 0 0 0 NA
9 1 1 0 0 100
8 1 1 0 0 100
7 2 1 1 0 100
6 10 6 2 2 80
5 96 17 27 52 45.83

4.2 Graph Matching Experiment

From our initial experiment, we figured out that clone detection techniques are not well suited

for finding frequently refactored code idioms from different repositories, because these techniques

are not context-independent and cannot ensure functional similarity. This is why we decided to
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proceed with a technique where context-specific parts of the code are entirely ignored, and func-

tional similarity is not compromised. Therefore, instead of matching code, we tried to match the

Groum (T. T. Nguyen et al., 2009) representations of the refactored code fragments, using standard

graph matching techniques. In this section, the details of the experiment along with the results are

presented.

4.2.1 Setup

The same dataset from the previous experiment is used in this experiment. We constructed the

control flow graph (CFG) and program dependence graph (PDG) for each refactored code fragment

in the dataset. Our tool API Finder was used in this reconstruction process to resolve types, qualified

names, and method signatures. The PDGs were further expanded using the Groum construction

rules (T. T. Nguyen et al., 2009). Finally, the constructed graph representations were cross-matched

using a graph isomorphism algorithm (Aho, Garey, & Ullman, 1972; Hecht & Ullman, 1972). In the

matching algorithm, we applied exact directed edge matching without any threshold. We ignored the

context-specific contents of the nodes such as variable names, variable types, and method names,

to remove context dependencies. In this way, we made sure the matched codes are functionally

exactly similar, but at the same time not dependent on any name or type. We only considered the

refactored code fragments with more than one line of code to avoid finding unnecessary getter or

setter matches. We only considered matches between different projects. Also found some matches

in the forks of the following projects - SeleniumHQ/selenium, Bigkoo/Android-PickerView and

google/guava. We filtered those out manually.

4.2.2 Result

We found 185 sets of matches from our dataset. The actual refactoring instance match count is

1744 which is 3.64% of the dataset. However, we are only interested in the matches that are cross-

project. That gives us 723 refactorings distributed in 185 sets. These sets contain between 2 to 45

refactored code fragments each from different repositories. Each of the set gives us one idiom. For

example, the code in Listing 4.3 is from project Retrolabmda, a back-port of Java 8’s lambda

expression to previous Java versions. The purpose of this code is to get a value using the parameter
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Table 4.2: Frequently Refactored Idioms

Id Name Occurrences Task

S1 Create an Object 45
- Create/get an object
- Check a condition
- Return an exception or the object

S3 Get a Value after Checking 33
- Get an object
- Check a condition
- Return an exception or the object

S4 Create Exception String 31

- Create an object
- Create another object using the first one
- Call a method and use the second object
- Return a value using the first object

S5 Safely Call a Method 26
- Call a function
- Throw an exception in case of error

S6 Serial Calls 25 - Call a series of methods one by one

S7 Safely Get a Value 22
- Call a function to get a value
- Throw an exception in case of error

S9 Copy Values 21 - Copy values from the parameter object

S10 Start Android Activity 19

- Create an object
- Pass a couple of values to the object
- Call a method inside that object
- Call a local method

S13 Complex Creation 13

- Create an object
- Pass a couple of values to the object
- Call a method
- Call another method

S14 Set a Series of Fields 12 - Set a series of fields one by one

S15 Call Multiple Methods Safely 12

- Check one parameter
- Call a method
- Check another parameter
- Call another method
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Listing 4.3: Example of a frequently refactored code idiom #1
private String getRequiredProperty(String key){

String value = p.getProperty(key);
if (value == null) {
throw new IllegalArgumentException(

"Missing required property: " + key);
}
return value;

}

passed to it. If the value is null, it throws an exception. Otherwise, it returns the value. This

code segment was extracted to method getRequiredProperty(String) on 22 July, 2013 in

commit

4b6a595ccdea131ee5d286f000fef44d6a76eacd.

This refactored code idiom was found 33 times in different projects. For example, in project

weibocom/motan, a cross-language remote procedure call framework, a similar refactoring oc-

curred at commit 6e57ccde8fd9466dba8b3dff81f3887e8c745e12.

The extracted method in Listing 4.4 might look different from the method in project Retrolambda,

but has the same functionality. More interestingly, the two projects are from a completely different

application domain, the second refactoring occurred almost four years after the first one (on June

8, 2017), and was performed by two different developers. The commit messages do not mention

anything about the developers’ intention of performing a refactoring. Another example of this type

is shown in Table 4.3 with id S1.

Out of the 185 sets of similar refactored code idioms, 11 contain more than ten refactoring

instances. This means we found 11 patterns which are repeated at least 10 times in our dataset, with

Listing 4.4: Example of frequently refactored code idiom #2
private HeartbeatFactory getHeartbeatFactory(

String heartbeatFactoryName){
HeartbeatFactory heartbeatFactory = ExtensionLoader
.getExtensionLoader(HeartbeatFactory.class)
.getExtension(heartbeatFactoryName);

if (heartbeatFactory == null) {
throw new MotanFrameworkException(

"HeartbeatFactory not exist: " +
heartbeatFactoryName);

}
return heartbeatFactory;

}
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each instance found in a different project. In the next subsection, we will discuss these discovered

refactored code idioms, their structures, and the purpose behind their application.

4.2.3 Frequently Refactored Idioms

In Tables 4.3 and 4.4, we are listing the top frequently refactored code idioms we found. We

are ignoring the ones that are repeated inside one project, as they cannot be generalized. Table 4.2

shows the names of the frequently refactored code idioms, the number of times they were found, a

representative instance, and the task performed by the refactored code.

Create an Object: The most commonly refactored code idiom we found, is when a developer

extracts the condition checking for an object to a separate method (Listing 4.5). The extracted code

fragment starts with an object creation statement or a method call to get an object followed by a

conditional statement. In the conditional statement, the object is checked against a specific value. If

the condition fails, an exception is thrown. Otherwise, the object is returned to the calling method.

Listing 4.5: Create an Object

Type func(){

Type obj = func1();

if (obj ’condition’ VALUE1) {

throw new Exception(VALUE2);

}

return obj;

}

Listing 4.6: Example for 4.5

P getPresenter(){

P presenter = delegateCallback.getPresenter();

if (presenter == null) {

throw new NullPointerException("...");

}

return presenter;

}

In most cases, the conditional statement checks whether the object is equal to null (Listing

4.6). The motivation behind this refactoring appears to be very straight forward. Developers do

not want to null-check an object every time they need this functionality. Therefore, they extract the

creation/call to get the object to a separate method, so that they can reuse this functionality when

needed. We found this refactoring occurring in 45 different projects in our dataset.

Get a Value After Checking: This pattern was repeated across 33 repositories in our dataset

(Listing 4.7). In this particular type of refactoring, the developers pass an object to the newly

extracted method as a parameter. A second object is obtained by calling a method provided by the

parameter object, and it is stored in a local variable. Then a condition is checked on the local variable
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(mostly a null check). If the condition is met, an exception is thrown inside the conditional

statement. Otherwise, the value of the local variable is returned to the calling method.

Listing 4.7: Get a Value After Checking

Type func(Type1 param1){

Type obj = func1(param1);

if (obj ’condition’) {

throw new Exception(param1);

}

return obj;

}

Listing 4.8: Example for 4.7

String getPreferredReadabilityTextSize

(Context context){

String choice = PreferenceManager

.getDefaultSharedPreferences(context)

.getString(context.getString(R.string

.pref_readability_text_size),null);

if (TextUtils.isEmpty(choice)) {

throw new Exception("..." + context);

}

return choice;

}

This type of refactoring is performed to get a secondary object from an existing object safely

and avoid null pointer exception. Instead of performing this check every time the secondary object

is needed, developers prefer to extract this functionality to a new method and reuse it.

Create Exception String: The structure of this commonly extracted code fragment is a bit

more complex than the previous two. This specific refactoring is performed to serve a very specific

purpose of creating an exception string. Its code skeleton is shown in Listing 4.9 and an instance is

shown in Listing 4.10.

Listing 4.9: Create Exception String

Type func(Type1 param1){

Type2 obj2 = new Type2();

Type3 obj3 = new Type3(obj2);

param1.func1(obj3);

return obj2.func2();

}

Listing 4.10: Example for 4.9

String stackForException (Throwable exception){

Writer buffer = new StringWriter();

PrintWriter writer = new PrintWriter(buffer);

exception.printStackTrace(writer);

return buffer.toString();

}

A StringWriter object is created at the beginning. The stack trace of an exception is passed

to the StringWriter. Finally, a string is generated from the writer and returned. This refactored

code idiom was found in 31 projects. Exception message handling is a very common piece of code

that Java developers write. It appears they tend to extract this kind of code to a separate method to
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reuse it.

Safely Call a Method: Developers often wrap a method call with a try/catch statement and

extract it to a new method (Listing 4.11).

Listing 4.11: Safely Call a Method

void func (Type1 param1, Type2 param2){

try{

func1(param1, param2);

}

catch (ExceptionType1 e){

throw new ExceptionType2(e);

}

}

Listing 4.12: Example for 4.11

void setAclOnAce (AccessControlEntryImpl ace,

AclImpl acl){

try{

fieldAcl.set(ace, acl);

}

catch (IllegalAccessException e){

throw new IllegalStateException("...",e);

}

}

The main purpose behind this refactored code idiom is to create layered exceptions to facilitate

debugging. We found 26 projects in our dataset, where developers performed this refactoring at least

once. The most common type is when two parameters are passed to a newly extracted method to call

a function. The function is called within a try/catch block. If the function produces an exception,

the exception is caught in the catch block and thrown as another exception type depending on the

project.

Serial Calls: Another common refactored code idiom is when developers extract a series of

method calls to the new method (Listing 4.13).

Listing 4.13: Serial Calls

void func(){

func1(argument1);

func2(argument2);

func3(argument3);

func4(argument4);

}

Listing 4.14: Example for 4.13

void initializeActionBar(){

getSupportActionBar().setDisplayHomeAsUpEnabled(true);

getSupportActionBar().setCustomView(R.layout

.conversation_title_view);

getSupportActionBar().setDisplayShowCustomEnabled(true);

getSupportActionBar().setDisplayShowTitleEnabled(false);

}

These calls do not have any incoming data dependence or control dependencies, which means

that the execution order of these calls is not affected by branching statements, such as if, switch,
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or for control structures. They are usually initialization, setting, or configuration method calls and

developers prefer to keep them in a separate method.

Safely Get a Value: Developers often extract try-catch blocks containing a method call to a

separate method for code reusability (Listing 4.15).

Listing 4.15: Safely Get a Value

Type func (Type1 param1){

try{

return param1.func1();

}

catch ( Exception e) {

throw new Exception2(e);

}

}

Listing 4.16: Example for 4.15

Object newExtensionObject (Class<?> extensionClass){

try {

return extensionClass.newInstance();

}

catch ( Exception e) {

throw new RuntimeException(e);

}

}

This kind of refactorings appeared 22 times in our data set. This is similar to the code idiom

shown in 4.11, we discussed earlier. The only difference is it takes only one parameter and returns

a value directly after the method call.

Copy Values: In object-oriented programming, we often pass an object as a parameter to a

constructor and copy its state to instance variables of the object instantiated by the constructor.

Listing 4.17: Copy Values

void func(Type param){

field1 = param.field1;

field2 = param.field2;

field3 = param.field3;

field4 = param.field4;

}

Listing 4.18: Example for 4.17

void copyRestoredViewStateInstanceIntoNew

(AbsParcelableLceViewState<D,V> old){

this.loadedData = old.loadedData;

this.currentViewState = old.currentViewState;

this.exception = old.exception;

this.pullToRefresh = old.pullToRefresh;

}

In many cases, more than one state variables are copied. We found that developers often extract

all these assignment statements together to a new method (Listing 4.17). To be specific, we found

this refactored code idiom to be repeated 21 times in our dataset.

Start Android Activity: We found that the code structure shown in Listing 4.19 was extracted

20 times in various repositories.
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Listing 4.19: Start Android Activity

void func(){

Type obj = new Type(VALUE1, VALUE2);

obj.func(VALUE3, VALUE4);

func2(obj);

func3();

}

Listing 4.20: Example for 4.19

void handleUpgradeDatabase() {

Intent intent = new Intent(this,

DatabaseUpgradeActivity.class);

intent.putExtra("master_secret", masterSecret);

startActivity(intent);

finish();

}

However, the structure looks to be a bit different than the refactored code idioms we described so

far. When we investigated the instances, we found one thing in common. All the repositories where

this refactoring happened were Android projects, and this particular code block is responsible for

triggering a page in an Android application. Developers extract this code segment mainly to reuse

it. They call the extracted method every time they want to start a new activity.

For example, in the code in Listing 4.20, a new intent of the DatabaseUpgradeActivity class is

created. The value of masterSecret is passed from the current intent to the new intent. And finally,

the new intent is started and the current one is dismissed.

Complex Creation: In object-oriented programming, a constructor is called to create an object.

However, in some scenarios, a couple of actions are performed on a newly created object before

starting to use it. Therefore, the constructor call needs to be followed by some other method calls.

Developers prefer to keep all these calls together in a separate method to increase reusability. This

refactored code idiom was found 13 times in the examined repositories (Listing 4.21).

Listing 4.21: Complex Creation

Type func(){

Type obj = new Type();

obj.func1(VALUE1, VALUE2);

obj.func2();

return obj;

}

Listing 4.22: Example for 4.21

AnnotationConfigApplicationContext createContext(){

AnnotationConfigApplicationContext context

= new AnnotationConfigApplicationContext();

context.register(PropertyPlaceholderAutoConfiguration

.class, ZipkinUiAutoConfiguration.class);

context.refresh();

return context;

}

Set a Series of Fields: When an object is initialized, it is often required to configure a number
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of fields. These kinds of configuration code fragments do not usually contain algorithmic logic like

most other parts of an object. For the separation of concerns, developers sometimes extract this

object configuration code to a different method. We found 12 cases where developers refactored

this code idiom (Listing 4.23).

Listing 4.23: Set a Series of Fields

void func(){

field1 = VALUE1;

field2 = VALUE2;

field3 = VALUE3;

field4 = VALUE4;

field5 = VALUE5;

}

Listing 4.24: Example for 4.23

void initializeConfiguration(){

title = DEFAULT_TITLE;

message = DEFAULT_MESSAGE;

buttonYes = DEFAULT_YES;

buttonNo = DEFAULT_NO;

targetApplications = TARGET_ALL_KNOWN;

}

The skeleton of this code idiom (Listing 4.23) may look similar to the Listing 4.17. But these

two code idioms have completely different Groum structure and motivation. In the code in Listing

4.17, values from a parameter object is assigned to different fields. The motivation here is to copy

values from the parameter object. The code in Listing 4.23 does not have any parameter. Values

from Constants or Final variables are assigned to different fields. The purpose of this code is not to

copy values, but to do initialize a class with a specific configuration (Listing 4.24).

Call Multiple Methods Safely: In our experiments, we found that code fragments that have

the structure shown in Listing 4.25, were extracted at least 12 times in different code repositories.

The purpose of this type of code is to make sure that an object is not null before using it to call a

method. This refactored code idiom is often used to close SQLite database connections safely.

Listing 4.25: Call Multiple Methods Safely

void func(Type1 param1,Type2 param2){

if (param1 ’condition’ VALUE) {

param1.func();

}

if (param2 ’condition’ VALUE) {

param2.func();

}

}

Listing 4.26: Example for 4.25

void close(Cursor cursor,SQLiteDatabase database){

if (cursor != null) {

cursor.close();

}

if (database != null) {

database.close();

}

}
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Table 4.3: Frequently Refactored Idioms (1)
Id Idiom instance

S1

P getPresenter(){
P presenter = delegateCallback.getPresenter();
if (presenter == null) {
throw new NullPointerException("...");

}
return presenter;

}

S3

@NonNull String getPreferredReadabilityTextSize(Context context){
String choice = PreferenceManager
.getDefaultSharedPreferences(context)
.getString(context
.getString(R.string.pref_readability_text_size),null);

if (TextUtils.isEmpty(choice)) {
throw new Exception("..." + context);

}
return choice;

}

S4

String stackForException(Throwable exception){
Writer buffer = new StringWriter();
PrintWriter writer = new PrintWriter(buffer);
exception.printStackTrace(writer);
return buffer.toString();

}

S5

void setAclOnAce(AccessControlEntryImpl ace,
AclImpl acl){

try {
fieldAcl.set(ace,acl);

}
catch ( IllegalAccessException e) {
throw new IllegalStateException("...",e);

}
}

S6

void initializeActionBar(){
getSupportActionBar().setDisplayHomeAsUpEnabled(true);
getSupportActionBar()

.setCustomView(R.layout.conversation_title_view);
getSupportActionBar().setDisplayShowCustomEnabled(true);
getSupportActionBar().setDisplayShowTitleEnabled(false);

}
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Table 4.4: Frequently Refactored Idioms (2)
Id Idiom instance

S7

Object newExtensionObject(Class<?> extensionClass){
try {

return extensionClass.newInstance();
}
catch ( Exception e) {

throw new RuntimeException(e);
}

}

S9

void copyRestoredViewStateInstanceIntoNew
(AbsParcelableLceViewState<D,V> old){

this.loadedData=old.loadedData;
this.currentViewState=old.currentViewState;
this.exception=old.exception;
this.pullToRefresh=old.pullToRefresh;

}

S10

void handlePushRegistration(){
Intent intent = new Intent(this,RegistrationActivity.class);
intent.putExtra("next_intent",getConversationListIntent());
startActivity(intent);
finish();

}

S13

static AnnotationConfigApplicationContext createContext(){
AnnotationConfigApplicationContext context

= new AnnotationConfigApplicationContext();
context.register(PropertyPlaceholderAutoConfiguration.class,

ZipkinUiAutoConfiguration.class);
context.refresh();
return context;

}

S14

void initializeConfiguration(){
title=DEFAULT_TITLE;
message=DEFAULT_MESSAGE;
buttonYes=DEFAULT_YES;
buttonNo=DEFAULT_NO;
targetApplications=TARGET_ALL_KNOWN;

}

S15

static void close(Cursor cursor, SQLiteDatabase database){
if (cursor != null) {

cursor.close();
}
if (database != null) {

database.close();
}

}
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4.3 Discussion

The motivation behind our experiments was to find out the answer to our research question: Are

there some code idioms that are refactored more frequently than others? We deployed a well-known

Type-III clone detection tool, named SourcererCC, to help us find out the answer. However, after

analyzing our reasonably large set of over 47K refactorings, the tool was able to report only 96 cases

of duplicate extracted methods. 54.17% of the reported matches were found not to be functionally

similar after manual inspection. This inspection enabled us to see the fact that traditional code clone

detection techniques might not be the right technique to identify frequently refactored code idioms.

We further continued our experiments by utilizing a graph-based matching technique with some

relaxations on the Groum representation of the refactored code fragments. Using a graph isomor-

phism testing algorithm, we found 185 functionally similar code structures that were extracted in

the same manner in different projects. These refactored code idioms were repeated in between 2

(minimum) to 45 (maximum) repositories, which confirmed our hypothesis that developers tend to

repeat some specific refactoring operations. Then, we investigated the most commonly refactored

idioms to understand the motivations behind the refactoring activities. Various motivations were

observed. We found that improving code reusability is the most common one.
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Chapter 5

Threats To Validity

5.1 External Validity

In this study, we only focused on Extract Method refactorings. There are many other kinds of

refactorings that developers perform. To limit the scope of this study we had to select one refactoring

for extensive investigation. We selected Extract Method, because it is one of the most frequently

performed refactorings (Negara et al., 2013). Many different design problems, such as eliminating

duplicate code and god classes, can be addressed by applying Extract Method refactorings. That is

why we decided it is a good choice for our experiment.

Our study is restricted to Java open source projects. Therefore, we cannot claim that our find-

ings apply to other industrial software or software implemented in other programming languages.

However, the Groum representation can be extracted for any programming language following the

object-oriented paradigm. Moreover, object-oriented refactoring practices are quite common in all

object-oriented languages. Therefore, we believe that focusing on only one programming language

is not a major weakness of this study.

We had to limit our study on a certain number of projects. We wanted to have projects from

multiple domains in our database. However, determining the domains and categorizing projects

according to that is another problem that is not related to our research effort. Therefore, we decided

to select some criteria and we selected all projects that met our criteria. We selected all Java reposi-

tories from Github that have 500 or more stargazers, because we wanted to have all popular projects
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in our data set. We found 2,121 projects (as of 18 May 2018). Then we filtered out projects that

are immature or inactive. The maturity conditions we set are: 1) At least 2 years old, 2) At least 10

releases, and 3) At least 100 commits. We also removed the projects that were not active for more

than a year, and projects that do not have any other contributor except its owner. Finally, we ended

up with a set of 1,025 repositories. Even though we can not ensure we have projects from every

possible application domain, we can certainly say that we have projects that are mature, active, with

many contributors and users.

5.2 Internal Validity

The result of this experiment depends highly on the accuracy of the refactoring detection tool

we used, called RefactoringMiner. This tool performs commit-based code analysis to identify refac-

toring instances. The tool consumes source code files that changed in a commit without compiling

the source code of the projects. The lack of binding information from compiling the code may lead

to some erroneous refactoring detection, because binding information can help to infer relationships

between types (e.g., inheritance) and methods (e.g., method calls and overrides). We did not verify

the 47,647 extract methods RefactoringMiner detected. Since this tool has the highest precision

(0.93) among all refactoring detection tools (Tan & Bockisch, 2019; Tsantalis et al., 2018), we

considered all refactorings reported by it to be accurate.

For our first experiment, we depend on SourcererCC Clone Detector for matching refactored

code blocks. SourcererCC is a threshold-based matching system and its result depends on chosen

values. Therefore, the results of our approach might vary if the threshold is changed. We tried to

understand how much the threshold impacts our results by performing the same study for different

thresholds. We found that, for a threshold of 60-90% similarity, the result does not differ much.

That’s why we opted for the default threshold value of 80%.

In our experiments, we only considered methods consisting of more than one line of code. This

decision might have impacted the results we obtained. However, we had to take this decision to

find more meaningful matches. With single line extract methods included in our data set, we were

flooded by getter and setter method matches across all the projects, because the Groums for all
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getters and setters are identical in most cases. The match counts raised to a number so high that it

was not feasible for us to analyze those matches manually. Therefore, we had to leave out the single

line methods. In this process, we may have missed some interesting Extract Method refactorings.

For calculating Groums we needed to resolve the qualified names of variables, types, and meth-

ods. For this purpose, we used released jars from all the repositories. However, the codes we

inspected are from individual commits, not releases. Therefore, there is a chance that some of the

codes from commits between two releases were not resolved properly.

For our Groum matching experiment, we used the Ullman directed graph isomorphism test

technique. However, we omitted the contents of the graph nodes. This way we ensured that the

contextual information from the code is ignored. This abstraction enabled us to find inter-project

matches but eliminated some critical information. For example, a chain of method calls without any

argument is the same as a single method call without any argument.
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Chapter 6

Conclusion

Refactoring is an integral part of modern-day software engineering. Developers are encouraged

to put more time and effort into refactoring than ever before. However, since the developers have to

switch back and forth between bug fixes, feature implementations, and other software development

tasks, they often find it difficult to determine what to refactor. Therefore, we decided to find what

are the code idioms that developers refactor most to help design better refactoring recommendation

systems in the future.

Our motivation behind this study was to understand if some code idioms are refactored more

frequently in software repositories than others. For this purpose, we proposed and developed a

tool that identifies similar refactorings by analyzing repositories. Using this tool we analyzed over

1025 open-source java projects (the one with most stargazers) and gathered a dataset of 47 thousand

refactorings. We generated different representations (AST, bags of tokens, CFG, PDG, and Groum)

for each of the gathered refactored code segments and cross-matched those across different projects.

Through this experiment, we were able to detect 185 code idioms that were refactored at least in

two different projects. Some of these idioms were refactored up to 45 times across different projects

and by different developers.

The findings of this study can be utilized to aid developers as well as software researchers

in many ways. For example, we have identified that developers tend to move codes related to

object creation or exception handling to separate methods. Using such information, refactoring tool

creators, as well as IDE developers, will be able to prioritize their refactoring recommendations
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more effectively.

Even though this study focused on extract methods only, the same principle is applicable for any

method level refactoring. For example, this can be applied for the inline method refactorings without

making any change. Any refactoring that happens inside one method can be matched and analyzed

using the same principles. This includes the move statement refactoring, split loop refactoring,

decompose conditional refactoring, and many more.

The results of this study can also be used to gain developers’ trust. Developers are often skepti-

cal about refactoring recommendations provided by automated tools. If the recommendations come

with a message like this - “45 developers performed this refactoring in other projects” or “10 de-

velopers in your team have performed this refactoring”, the developers may accept the suggestion

more easily. This way the knowledge about refactored code idioms can be utilized.

The main goal of this study was to see if developers tend to repeat refactorings on similar code

fragments. The next step will be experimenting with other similarity matching techniques where

we can implement a higher level of code abstraction, but preserve the structural and behavioral

properties of the code. This will allow us to learn more about the popular refactoring idioms in the

developer community. Besides this, experiments on other types of refactorings should be performed.

That will allow us to generalize our findings.
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A map of code duplicates on github. Proc. ACM Program. Lang., 1(OOPSLA), 84:1–84:28.

Retrieved from http://doi.acm.org/10.1145/3133908 doi: 10.1145/3133908

Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson Education.

Mazinanian, D., Tsantalis, N., Stein, R., & Valenta, Z. (2016). Jdeodorant: Clone refactoring.

In Proceedings of the 38th international conference on software engineering companion

(pp. 613–616). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/2889160.2889168 doi: 10.1145/2889160.2889168

52

http://dl.acm.org/citation.cfm?id=2486788.2486893
http://dl.acm.org/citation.cfm?id=2486788.2486893
http://dx.doi.org/10.1002/smr.1592
http://dx.doi.org/10.1002/smr.1592
http://doi.acm.org/10.1145/1882291.1882317
http://doi.acm.org/10.1145/1882291.1882317
http://doi.acm.org/10.1145/2914770.2837617
http://doi.acm.org/10.1145/2914770.2837617
http://doi.acm.org/10.1145/3133908
http://doi.acm.org/10.1145/2889160.2889168
http://doi.acm.org/10.1145/2889160.2889168


Meng, N., Kim, M., & McKinley, K. S. (2011). Sydit: creating and applying a program transfor-

mation from an example. In Proceedings of the 19th acm sigsoft symposium and the 13th

european conference on foundations of software engineering (pp. 440–443).
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