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ABSTRACT 

 

Defect Detection and Classification in Sewer Pipeline Inspection Videos Using Deep Neural 

Networks 

Saeed Moradi, Ph.D. 

Concordia University, 2020 

 

Sewer pipelines as a critical civil infrastructure become a concern for municipalities as they are 

getting near to the end of their service lives. Meanwhile, new environmental laws and regulations, 

city expansions, and budget constraints make it harder to maintain these networks. On the other 

hand, access and inspect sewer pipelines by human-entry based methods are problematic and risky. 

Current practice for sewer pipeline assessment uses various types of equipment to inspect the 

condition of pipelines. One of the most used technologies for sewer pipelines inspection is Closed 

Circuit Television (CCTV). However, application of CCTV method in extensive sewer networks 

involves certified operators to inspect hours of videos, which is time-consuming, labor-intensive, 

and error prone.   

The main objective of this research is to develop a framework for automated defect detection and 

classification in sewer CCTV inspection videos using computer vision techniques and deep neural 

networks. This study presents innovative algorithms to deal with the complexity of feature 

extraction and pattern recognition in sewer inspection videos due to lighting conditions, 

illumination variations, and unknown patterns of various sewer defects. Therefore, this research 

includes two main sub-models to first identify and localize anomalies in sewer inspection videos, 

and in the next phase, detect and classify the defects among the recognized anomalous frames.  

In the first phase, an innovative approach is proposed for identifying the frames with potential 

anomalies and localizing them in the pipe segment which is being inspected. The normal and 

anomalous frames are classified utilizing a one-class support vector machine (OC-SVM). The 

proposed approach employs 3D Scale Invariant Feature Transform (SIFT) to extract spatio-

temporal features and capture scene dynamic statistics in sewer CCTV videos. The OC-SVM is 

trained by the frame-features which are considered normal, and the outliers to this model are 

considered abnormal frames. In the next step, the identified anomalous frames are located by 

recognizing the present text information in them using an end-to-end text recognition approach. 

The proposed localization approach is performed in two steps, first the text regions are detected 

using maximally stable extremal regions (MSER) algorithm, then the text characters are 

recognized using a convolutional neural network (CNN).  The performance of the proposed model 

is tested using videos from real-world sewer inspection reports, where the accuracies of 95% and 

86% were achieved for anomaly detection and frame localization, respectively. Identifying the 

anomalous frames and excluding the normal frames from further analysis could reduce the time 

and cost of detection. It also ensures the accuracy and quality of assessment by reducing the 

number of neglected anomalous frames caused by operator error. 
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In the second phase, a defect detection framework is proposed to provide defect detection and 

classification among the identified anomalous frames. First, a deep Convolutional Neural Network 

(CNN) which is pre-trained using transfer learning, is used as a feature extractor. In the next step, 

the remaining convolutional layers of the constructed model are trained by the provided dataset 

from various types of sewer defects to detect and classify defects in the anomalous frames. The 

proposed methodology was validated by referencing the ground truth data of a dataset including 

four defects, and the mAP of 81.3% was achieved. It is expected that the developed model can 

help sewer inspectors in much faster and more accurate pipeline inspection. The whole framework 

would decrease the condition assessment time and increase the accuracy of sewer assessment 

reports. 
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Chapter 1 : Introduction 

 

1.1. Background 

Sewer collection system starts from civil and industrial outlets to laterals includes non-linear such 

as treatment plants, pumping stations, and lagoon systems, and linear facilities like sewer pipelines. 

Laterals convey the sewer medium to main pipes and interceptors, which then transfer sewage to 

treatment plants to provide primary, secondary, or tertiary treatment of wastewater. In the sewer 

system, pipelines make up a significant role since they expand all over the area to connect and 

deliver the sewer among the system elements. These vital networks are aging and reaching their 

service lives. In the US, it was projected that an average daily flow of around 50 million gallons 

of raw sewage is delivered to 19,500 sewer systems which are between 30 to 100 years old 

(Tuccillo et al. 2010). In Canada there are 143000 kilometers of sewer pipes that are equal to cross 

Canada 15 times from widest endpoints (Statistics Canada 2018). Despite environmental concerns 

of sewer pipelines, they are frequently neglected since they are buried and have low visibility. The 

continuous runoffs of sewer sanitary in the US reported at least 23,000 to 75,000 overflows, which 

results in the release of 3 billion to 10 billion gallons of raw sewer (Tuccillo et al. 2010).  

Based on the American society of civil engineers (ASCE) report card for America’s infrastructure 

(ASCE 2017), wastewater condition is graded as D (poor) condition in the US. According to the 

Canadian Infrastructure Report Card 2019 (FCM 2019), 18% of sewer pipelines in Canada are 

reported as poor to very poor condition and 17.3% in fair condition. Moreover, because of the 

degradation of sewer networks throughout their service life, even if they are in very good condition 

today, will require increasingly more substantial investments as they age (FCM 2019). Therefore, 

to prevent severe and costly damages, sewer system condition needs to be monitored through an 

appropriate and comprehensive periodic assessment (Guo et al. 2009b; Mohamed et al. 2019).  

In summary, sewer pipelines suffer from poor condition ratings, and they are prone to failure and 

imposing costly consequences. Therefore, governments drive massive amounts of funds into 

wastewater system rehabilitation and improvements. Thus, it is necessary to conduct proper asset 

management and planning for existing wastewater pipelines and conduct developments in the 

system.       

1.2. Problem Statement and Research Motivation 

Proper and regular assessment of the infrastructures has to be done to evaluate the condition of the 

asset and consequently, deciding to rehabilitate or replacing the assets to have a cost-efficient 

operating system. Also, the regular condition inspection plays an important role in prolonging the 

estimated service life of the infrastructure. Regular assessments provide asset managers with 

enough data to look into the current situation of the asset and predict its future condition and make 

preventive decisions to avoid severe and destructive damages. 

Sewer pipeline networks are one the vital infrastructures in cities as besides their primary service, 

any malfunctioning in their operation may affect the environment directly. Before the 1960s, 

inspecting sewer pipelines was a challenging task (Reyna et al. 1994), and the size of pipe made it 
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difficult for workers to access inside of the pipe for inspection. Thereby, innovative methods and 

technologies improved sewer inspection and assessment. Mechanical improvements in inspection 

technologies parallel to sensors and software developments offer fast and high-quality data 

acquisition. However, to select a suitable sewer inspection method, several factors such as pipe 

type, diameter, material, and cost need to be considered.  

Currently, visual inspection using CCTV is the most widespread practice in sewer pipelines 

inspection and assessment. Visual inspection requires hundreds of hour data processing by 

certified operators to detect the defects (i.e., crack, joint offset, roots, deposit, infiltration, etc.) and 

assess the severity of defect (i.e., length, number, consequences, etc.). Moreover, recognizing the 

defects and assess their severity is subject to the operator’s judgment. Based on the research 

conducted by Dirksen et al. (2013), 25% of defects are neglected by the operator during the 

inspection. Regarding the mentioned challenges, the main problems with manual visual inspection 

in assessing extensive sewer systems are that it is error-prone, subjective, and time-consuming.  

In recent years, with the availability of powerful computers and advances in optical sensing 

technologies, application of computer vision techniques to automate sewer condition assessment 

has been an active research field. However, in previous studies, identification and localization of 

critical part have been done almost manually. One contribution of this research is to sense 

automatically the regions containing anomalies and potential defects and also being able to detect 

and classify defects. Employing the automated condition assessment can ease the current manual 

inspection and condition evaluation practice, which is labor intensive and time-consuming. 

Moreover, it increases the accuracy of inspection by reducing the number of neglected defects 

caused by operator fatigue or strain.   

1.3. Research Objectives 

The main objective of this research is to develop an automated tool to classify and detect the 

defects in sewer pipeline inspection CCTV videos to meet the following requirements: (i) the 

sewer inspection algorithm should be able to deal with CCTV videos in which illumination and 

video quality vary; (ii) the proposed model should be run in an automatic manner to minimize 

operator interference and user inputs; and (iii) the system should detect, localize, and identify 

defects with high consistency and accuracy. 

Therefore, the objective can be decomposed into the following sub-objectives: 

• Identify and study defect types and different pipeline characteristics; 

• Develop an automated approach for feature extraction and anomaly detection in CCTV 

videos; 

• Localizing the identified defected frame in the sewer pipe segment; 

• Develop an automated defect detection and classification framework; and 

• Implement the proposed framework on real-world problems to evaluate its applicability 

and performance.  

1.4. Methodology Overview 

 After the statement and analysis of research problem in section 1.2 and identification of research 

objectives (Section 1.3), a comprehensive literature review has been conducted. In the literature 
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review, first, the most current inspection technologies are introduced, and their advantages and 

disadvantages are compared. The second part of the literature review inquires the potential use of 

an automated and reliable defect detection capability for sewer pipeline inspection and condition 

assessment through proposed models in recent studies. The literature review also introduces 

multiple object detection techniques that can be used in model development. 

In order to develop an automated sewer inspection framework, different computer vision methods 

have been investigated for identifying regions of interest (ROI) and automatic defect classification 

and the following research questions need to be addressed: 

• Which technologies are applicable in sewer pipeline inspection and which ones are the 

common practice? 

• What are the current practices in video processing and computer vision technologies that 

can be employed in sewer pipeline assessment?  

• What are the employed computer vision methods in automating defect detection in sewer 

pipeline assessment, and what are the achievements and limitations of each?   

• Which modifications are required to justify and improve the application of a computer 

vision method for sewer defect detection? 

• How to establish a generic methodology for automated defect detection in sewer pipelines 

considering variances in quality and illumination in CCTV inspection videos? 

Taking into consideration the characteristics of sewer visual data (i.e., numerous defects, 

illumination variations, camera pose changes, etc.), most of the existing methods in image 

reasoning and pattern recognition are not applicable for defect detection. Therefore, it is critical to 

patch up inspection practices with the application of various computer vision and image 

recognition techniques.  

Collaborative external partners such as The City of Laval and The Public Works Authority 

'Ashghal' from Qatar, have provided the data used in this research. Videos and reports have been 

studied thoroughly to figure out real-world specific needs and inspection procedures. Models have 

been developed regarding the mentioned characteristics and validated through various statistical 

methods and also comparing experimental testing results against real inspection data.   

1.5. Thesis layout 

This study report has been organized based on the discussion in the research methodology (Section 

1.3). Each chapter is intended to cover one of the research objectives and offset the limitations in 

the literature. Chapter 2 is the extended version of a previously published paper titled “Review on 

Computer Aided Sewer Pipline Defect Detection and Condition Assessment” in Infrastructures  

(Moradi et al. 2019a). In this chapter, related research about sewer pipeline inspection and 

condition assessment are reviewed and criticized. The chapter proceeds with the presentation of 

findings from the literature, the identification of research gaps, and the investigation of suitable 

techniques for the problem in hand. 

Chapter 3 presents the research methodology in detail. In the proposed framework, the first section 

presents the anomalous frames recognition and localization among sewer defect detection videos. 

This section is a slightly modified version of a previously published paper titled “Automated 

Anomaly Detection and Localization in Sewer Inspection Videos Using Proportional Data 



   4 

Modeling and Deep Learning–Based Text Recognition” published in Journal of Infrastructure 

Systems (Moradi et al. 2020).   

Following in of chapter 3, a defect detection framework is proposed for defect detection and 

classification among the identified frames in the previous step. This section is a modified and 

extended version of the formerly published paper titled “Automated Sewer Pipeline Inspection 

Using Computer Vision Techniques” in ASCE Pipelines 2018 (Moradi et al. 2018a). 

Chapter 4 starts with the description of a real-world case study and relative data collection. Then 

the introduced algorithms in chapter 3 are put into effect in the case study. The results are presented 

and tested against the available datasets to evaluate the generalizability of the proposed models. 

Finally, Chapter 6 highlights the contributions, limitations of current research, and suggestions for 

future work.   
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Chapter 2 : Literature Review 

 

Underground civil infrastructures always have been a concern for municipal asset managers since 

these utilities are exposed to unwanted and unpredicted environmental destructive causes such as 

decay, pressure, etc. Moreover, inspecting underground infrastructures is a demanding task due to 

accessibility problems. Sewer pipelines, as one the most vital infrastructures in modern cities, need 

to be assessed consequently. However, data acquisition and analysis is exhaustive and time-

consuming, subjective to the operator's judgment, and full of human error. Dirksen et al. (2013) 

categorized the subjectivity of sewer pipelines assessment into defect detection, defect 

classification, and inspection interpretation. The authors found that a human operator misses 25 % 

of defects during the inspection process (Dirksen, et al., 2013).  

In recent years, advances in visual and sensor technologies provide high-speed and high-quality 

data from sewer pipelines. Meanwhile, improvements in computer image and video analysis 

techniques have made automating sewer inspection and defect detection a point of interest for 

researchers. Several studies have been conducted through the application of various computer 

vision and machine learning algorithms on defect detection automation in sewer pipelines. In the 

following sections, these studies are introduced and criticized based on the used techniques by the 

researchers to discuss the shortcomings of each method and research gap.  

Also, not all of the available inspection tools are applicable in the inspection of sewer pipeline, so 

a comprehensive comparison of the common technologies in sewer assessment is performed to 

discuss the advantages and limitations of each technology. This comparison may provide sewer 

inspectors a valuable insight to be able to choose the most suitable tool regarding various aspects 

of inspection such as pipe material, budget, etc.  

This chapter is a slightly modified version of “Review on Computer Aided Sewer Pipline Defect 

Detection and Condition Assessment” published in Infrastructures  (Moradi et al. 2019a) and has 

been reproduced here as the copyright is retained by the authors. 

2.1 Defects in sewer pipelines 

Various defects may affect sewer pipelines performance during their service life and shorten the 

intended pipe life span. The Pipeline Assessment and Certification Program (PACP) (NASSCO 

2001), categorizes the existing defects sewer pipelines into three main categories: construction 

defects, structural defects,  and operational and maintenance defects (Figure 2-1). Considering the 

environment of sewer pipelines, they are prone to be involved with a wide range of defects. These 

pipelines are installed underground, and the pipe can be disturbed by the stress of surrounding soil, 

traffic, water, vegetation roots, etc. 
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Figure 2-1.  Sewer pipeline defect categories based on PACP  

(Adapted from PACP (NASSCO, 2001)) 

Construction defects are generated during the pipe manufacturing and installation in excavated 

trenches. In this research, the defects emerging throughout service life of the pipe are studied, so 

only structural and operational defects are taken into consideration. In the next section different 

defect categories and a brief description for each of them are represented. 

2.1.1 Structural Defects 

The structural defects reduce the structural integrity of the pipeline and may result in structural 

failure. They mainly result from the external tensions on the pipe wall. Structural defects include 

cracks and fractures, deformation, collapse, breaks, and joint displacement. Different restoration 

decisions would be made based on the severity of the defects. Typically, in the early stages of the 

defect rehabilitation measures would be conducted. However, in more severe cases such as 

collapse or excessive deformation, the pipe needs to be replaced. 

Cracks and Fracture 

The cracks and fractures usually appear on the pipe walls. Cracks are lighter than fractures since 

the cracks in pipe walls are not distinctively broken apart while in fractures, the pipeline walls 
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become noticeably open. In both defect types, the pipe wall is still in place and does not fall apart. 

There are various types of fractures and cracks, including circumferential, longitudinal, multiple 

(complex), and diagonal. A longitudinal fracture or crack is parallel to the axis of the pipe. 

Circumferential is a fracture or crack that breaks in a circular plane perpendicular to the axis of the 

pipeline. A fracture or crack is considered spiral if it changes positions along the axis of the sewer 

pipe. A combination of the longitudinal, circumferential, and spiral defects in a relatively small 

area is considered as multiple cracks or fractures. Figure 2-2 shows different types of cracks in 

sewer pipes, and figure 2-3 shows a fracture in a sewer pipe. 

   

(a) (b) (c) 

Figure 2-2. Different types of the crack in sewer pipe: (a) Longitudinal crack, (b) 

Circumferential crack, (c) Spiral crack 

 

Figure 2-3. Fracture in sewer pipe 

Deformation 

The deformation causes a reduction in cross-sectional area of pipeline that results in a decrease in 

flow capacity and surcharging of sewer sections. Deformation is measured as a percentage of the 

actual width (horizontal deformation) or height (vertical deformation) of the pipe that results in a 

noticeable change in the original cross-sectional area of the pipe.  
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Figure 2-4. Deformation  in sewer pipe (Adopted from (Iowa Great Lakes Sanitary District 

2016)) 

Collapse 

A collapsed pipe has lost its structural integrity, and half or more of the cross section is broken, 

and it is completely damaged and is out of service. A collapse defect has the highest level of 

criticality and requires immediate intervention since it stops the pipe operation in sewage transfer. 

Besides, pipe collapse results in exfiltration of sewer medium to the surrounding soil and 

contaminates underground water, which may cause serious health problems.   

 

Figure 2-5. Collapse in sewer pipe 

 

 

Breaks 

The break is splitting and falling off the pipe wall material like small pieces, usually due to the 

expansion of corroded reinforcement or poor material, which generally is associated with fracture. 

Breaks are different to collapse since a broken pipe is localized, and the integrity of the pipe is not 

lost yet (Zhao et al. 2001). However, depending on the break location, it may cause infiltration or 

exfiltration.  
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Figure 2-6. Break in sewer pipe 

Joint displacement 

A displaced joint happens where the pipe is misaligned from its axis because of loading conditions, 

lack of lateral bedding supports, and construction problems. Displaced joint depending on water 

table may let infiltration or exfiltration and also increase the Manning coefficient that leads to 

rougher pipe internal surface and reduction in the hydraulic capacity of the pipe (Zhao et al. 2001).  

 

Figure 2-7. Joint displacement in sewer pipe 

2.1.2 Operational Defects 

Operational defects are all the defects that affect the operation and decrease the functionality of 

the pipe when conveying the flow. Operational defects, including infiltration, deposits, and root 

intrusion affect the serviceability of pipe. They usually are a result of structural defects such as 

cracks or joint displacement and can be cured by maintenance measures. 

 

Infiltration 

Infiltration is the incursion of groundwater into the sewer pipes due to displaced joints, holes, 

breaks, and physical damages.  Sewer pipe infiltration can be graded as dripping, seeping, and 
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running. Moreover, exfiltration or leakage is the seeping of sewer flow out of the pipe through a 

specific defect. Both infiltration and exfiltration are damaging to the environment.  

 

Figure 2-8. Infiltration in sewer pipe 

Roots  

Roots cause a reduction in the cross-sectional area of pipes and reduce the flow of the pipe. Pipes 

that have been laid until 5 meters deep from the surface and have plantation above them are more 

prone to root intrusion(Rahman and Vanier 2004). Roots penetrate from structural defects such as 

fractures, and holes leading to a reduced flow through blocking the pipes cross-sectional area. 

Also, when roots enter the pipe they start to grow and cause further structural defects. 

 

Figure 2-9. Root intrusion in sewer pipe 

 

Deposits  

Another defect that may significantly disrupt the flow in sewer pipes is deposit. Attached deposits 

are the stuck materials on the pipe surface. While settled deposits are the remaining deposits on 

the pipe surface that could cause a reduction in pipe diameter. Deposit of silt is also called debris 

and, in some cases,, maybe a result of a piece of construction material (manufactural debris). It is 

a sign of more severe conditions in upstream (Rahman & Vanier, 2004). 
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Figure 2-10. Deposit in sewer pipe 

2.2 Sewer pipeline inspection technologies  

To predict the degradation level and consequently decide on repair or replace/renew of a sewer 

pipe, it is required to assess it and inspect the existing defects (Najafi 2016). However, the hidden 

condition of underground infrastructures makes their inspection challenging. Human direct entry 

and inspection is unfeasible due to the extensive buried pipelines, small size of the pipes, and 

safety issues. Mentioned challenges were always key attributes to motivate the development of 

more complex inspection tools for sewer pipelines inspection. The improvements in sensor and 

lens technologies made it easier and faster to innovate and improve new detection techniques. 

In this research, various technologies for sewer inspection are introduced and grouped into four 

categories. Visual technologies that are dependant on a CCTV camera to record the internal 

environment of sewer pipes. Structural and bedding inspection technologies that verify the pipe 

wall structural integrity and the condition of soil enveloping the pipe. Defect-specific technologies 

that can identify specific defect, and hybrid technologies which are combination of several tools 

(Figure 2-11). In the following, each category is illustrated entirely by describing sub-category 

methods, and the advantages and disadvantages of each are discussed. Finally, all the explained 

technologies are compared, considering different criteria.  
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Figure 2-11. Sewer pipeline inspection tools (adapted from (Moradi et al. 2019b)) 

2.2.1 Vision-based  

In order to inspect the internal sewer wall, methods such as physical man entry or closed-circuit 

television cameras can be employed (Makar 1999). Man entry inspection is impractical and 

dangerous because of the sewer pipe’s condition and environment. Therefore, camera-based 

inspection tools such as closed-circuit television (CCTV) inspection, zoom camera inspection, and 

digital scanning, are more applicable to assess the sewer pipelines visually.  

The application of CCTV for the inspection of pipelines was first introduced in the 1960s. In this 

method, a camera is attached to a rover and an operator navigate it through the pipeline remotely. 

The distinct advantage of this method is that it provides evidence by directly illuminated images 

of pipe defects, which can be examined in detail by zooming the camera or viewing the defect 

from different angles by controlling the tractor (Hao et al. 2012). CCTV camera does not provide 

any data about pipe wall structural integrity or the soil condition surrounding the pipe and only 

provides the information about the pipe surface above the waterline (Selvakumar et al. 2014). On 

the other hand, CCTV technology is a productive and cost-effective tool that provides data of a 

wide range of sewer defect types.  
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Figure 2-12. CCTV inspection for sewer pipeline. 

Image form IES (Undated) 

Zoom camera is a camera attached to a retractable rod and performs manhole inspections. Like the 

conventional CCTV, the main application of zoom cameras is producing sewer pipe images and 

video footages. Zoom camera does not move through the pipe being inspected while it is fixed and 

placed through a manhole into the pipe. The main application of zoom cameras is to skim the 

pipelines. The pipe segment does not require to be cleaned, so the initial evaluation can be 

performed quickly to identify the segments for further inspection (Selvakumar et al. 2014). 

Therefore, zoom camera can be used to skim and prioritize the pipes for detailed inspection 

provided by CCTV camera. 

The zoom camera inspection is productive, cost-efficient inspection method. However, there are 

some limitations as its application is limited to gravity sewers inspection since there is not any 

manholes access in force mains and service laterals. The same as traditional CCTV, zoom camera 

cannot inspect the pipe below the water surface. Also, if because of defects like sagging or deficient 

installation, the pipe deviates from a straight line, the hidden defects cannot be seen by the zoom 

camera. Moreover, the same detailed visual evaluation as conventional CCTV cannot be provided 

by zoom camera. Pan and tilt viewing is limited in some zoom cameras lack and the defects cannot 

accurately be measured or located. There are other limitations in image quality, illumination, and 

optical zoom. 

Digital Scanning captures the pipe walls images using a 360-degree fisheye camera lens. A digital 

scanner examines each millimeter of pipe wall by high resolution images captured every ten 

centimeters and produces a constant image of the pipe. The recorded data is transferred to the 

surface station for real-time viewing and flagging for a more detailed evaluation (Tuccillo et al. 

2010).  
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Figure 2-13. Digital side scanning  

(Image adapted from Envirosight (Adams 2010)) 

Digital scanning can deliver high-quality images of the pipe wall in a shorter period. Data is also 

more appropriate for computer vision and image analysis applications. However, the main 

drawback comparing to conventional CCTV is cost efficiency. Digital scanning is relatively more 

expensive than CCTV. 

2.2.2 Structural and bedding  

Pipe wall integrity and bedding conditions cannot be inspected using visual technologies, so other 

technologies such as Ground-penetrating radar (GPR) have been used to examine subsurface 

conditions. Currently, GPR  is the most applicable alternative to evaluate bedding and void 

conditions around the pipe wall. In addition, GPR as a non-destructive inspection method uses 

electromagnetic waves to evaluate subsurface materials (Hao et al. 2012). In GPR inspection, the 

location of pipes can be detected independent of pipe material. Therefore, precise data about the 

pipe wall and condition of the soil around pipe would be provided. However, magnetic pulses lose 

strength in conductive materials and ground material affects the penetration depth. Also, trained 

and certified operators are required to interpret the data provided by GPR (Tuccillo et al. 2010).  

Another inspection tool for evaluating invisible areas is sonar. It functions by sending high-

frequency sound waves through the pipe and signals vary based on the material condition of the 

pipeline. Sonar is able to detect defects located under the waterline as well as defects like joint 

displacement, and pipe deflection. Sonar does not need to shut down the sewer system. A sonar 

image is generated using the acoustic frequency. Considering parameters such as pipe diameter, 

amount of water sediment, and turbulence in the pipeline, various frequencies might be needed 

(Tuccillo et al. 2010). The provided reports are not straight forward need to be interpreted by 

trained operators. 

2.2.3 Defect-specific  

Defect specific technologies offer detection and severity of defects like infiltration and exfiltration. 

The electric resistance of the pipe wall defines the severity of infiltration or exfiltration. Electro 



   15 

Scan Inc. introduced a tool to sense and measure infiltration defects in the sewer pipeline and based 

on the current flow the pipe wall integrity can be determined (O’Keefe 2013). The method can be 

used for pipes with non-conductive materials such as PVC, vitrified clay pipe (VCF), reinforced 

concrete pipe (RCP), and brick.  

2.2.4 Hybrid  

In recent years, to detect various types of defects in sewer pipelines, new inspection methods have 

emerged by combining different technologies. These methods tend to cover the limitations that are 

faced in other technologies. Sewer Scanner and Evaluation Technology (SSET) employs a fisheye 

camera lens combined with an optical scanner and gyroscope technology to present a total view of 

the pipeline surface. For further analysis, the provided images are digitized as color-coded 

computer images (ECT Team 2007). RedZone company co-operated laser and CCTV methods to 

inspect large diameter pipes. The tool provides more complete condition data along with 

information of the underwater defects like deposits (Guo et al. 2009a). Other multi-sensor 

inspection methods, such as KARO and PIRAT systems can detect and sort sewer defects 

automatically (Martel et al. 2011). INNOKANIS has introduced SewerBatt to cover up the 

limitations of CCTV tools. It incorporates zoom-camera and radio technology to benefit from 

optical and acoustic tools at the same time (Plihal et al. 2016). 

 

Figure 2-14. Sample image of sewer pipe –SSET  

2.2.5 Sewer inspection technologies comparison 

A broad range of inspection tools is now available for Municipalities. However, selecting the 

inspection technology relies on parameters like available budget, type of required assessment, and 

pipe material. Some studies presented a comparison between the various inspection tools regarding 

their benefits and drawbacks and proposed a broad outline of the existing practices and their future 

developments (Costello et al. 2007; Hao et al. 2012; Makar 1999; Selvakumar et al. 2014; Tuccillo 

et al. 2010; Wirahadikusumah et al. 1998). The advantages and limitations of introduced methods 

are described in the following. 
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As the most common tool in sewer inspection, camera-based technologies are able to provide 

visual evidence of most of sewer pipe defects. They are productive and cost-efficient, and the 

information is easy to analyze. However, they are limited in providing surrounding soil 

information and defects placed under the waterline. Also, the evaluation results are highly 

dependent on image quality, lighting, and illumination condition. Furthermore, the defects severity 

and characteristics such as cracks depth or the extent of deformation are subjective and rely on the 

judgment of the operator. Structural and bedding inspection tools can provide a cross-section 

profile of pipe wall and the condition of invisible parts such as the underwater line or outer pipe 

wall can be determined. The main limitations of these methods are the complexity of inspection 

data interpretation and required certain operational conditions.  

Defect-specific tools are well established for the provided quantitative measures of the identified 

defect. In addition, the application is limited to the detection of one or two defects, costly to 

operate, and data interpretation requires trained operatives. Hybrid technologies the limitation of 

one tool is offset by employing two or more complementary tools, particularly camera-based 

methods. However, hybrid technologies are in the prototype phase and their operating expenses 

are still too high. Moreover, specialized preparation for running and data interpretation and 

supplementary equipment for fieldwork are required. Table 2-1 shows a comparison of the 

technologies mentioned above. 

Table 2-1. Sewer inspection technologies comparison (adapted from (Moradi et al. 2019a)) 

 Vision Based 
Structural 

& Bedding 

Hybrid 

Technology 

Defect 

Specific 

 CCTV 
Zoom 

camera 
GPR SSET 

Electro 

scanning 

No. of 

defects* 
6 6 3 8 3 

Complexity Low Low Medium High Medium 

Cost Medium Low Medium High Medium 

Downtime High Low High High Low 

Data analysis Low Low Medium High Low 

Operational 

equipment 
Low Low Medium High Medium 

Data quality Medium Low High High High 

 Defects that are inspected in sewer pipeline: deposits, debris, roots, sags and deflections, 

surface damage, joints displacement, cracks, infiltration, Bedding Condition. 
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2.3 Digital image 

A digital image is an encoded representation of a real scene in an array of numbers as pixels in 

matrices which can be decoded by a computer. In an image, each matrix element is called pixel, 

which each pixel corresponds to an intensity value. Digital images can be interpreted in various 

forms, such as binary images, greyscale, and color images. Binary images present the image as 0 

or 1. Greyscale images present the image in a range of 0 to 255 as the intensity level of gray in 

each pixel. A color image is a blend of several layers of intensities into one single matrix. The 

color images can be defined in numerous color spaces like RGB, CMY, HIS.   For example, RGB 

color space blends three layers of red (R), green (G), and blue (B). So, in RGB color images each 

pixel matches up to three intensity values. Therefore, the techniques that are applicable to the 

monochrome images can also be used in processing color images (Gonzalez and Woods 2006). 
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Figure 2-15. Representation of intensity values in monochrome image 

This intensity matrix is the base for all image processing operations, and also image features are 

extracted due to values of the matrix using image processing techniques. Digital image processing 

is the analysis and interprets the characteristics of digital images through mathematical algorithms. 

Digital image processing is necessary to provide data for pattern recognition and object detection. 

All computer vision problems start with video recording and image acquisition. The next steps can 

be low-level image processing techniques, image segmentation, high-level algorithms, object 

detection, and data extraction. Low-level techniques include image preprocessing methods to 

enhance acquired images.  

2.4 Image processing 

Due to special conditions of the internal environment of sewer pipelines, the recorded videos and 

captured images are usually subject to artifacts and noise. Lighting conditions and illumination 

also affects the quality of images. Thus, some specific image processing operations as a 

preprocessing stage seems to be essential for input data preparation. Image preprocessing aims to 

remove distortions in an image to enhance the image quality. Also, some algorithms tend to enrich 

 



   18 

image features like edges or apply geometric conversions like resizing and rotation on images 

(Sonka et al. 2007).  

2.4.1 Image enhancement 

Image enhancement algorithms alter the artifacts and noises in recorded videos because of imaging 

conditions and highlighting those image features which are making much of the characteristics of 

defects. Various filtering algorithms are applicable to digital images and can make them proper 

for computer image processing. Gaussian filtering is an effective 2D filtering algorithm to blur 

images and remove noise and undesired details in digital images. More image enhancement 

techniques can be found in (Jahne 2002).  

 

Figure 2-16. Example of Gaussian filtering 

The Gaussian filter determines a weighted average of the neighborhood of each pixel in which the 

pixels that are farther from the central pixels assigned smaller weight so boundaries and edges can 

be defined clearly.  

2.4.2 Morphological operation 

Morphological operation is one of the main processing techniques performed on grayscale and 

binary images. These operations capture the structural elements of image objects based on their 

shape attributes (Qidwai and Chen 2009). Morphological operators determine the output image 

pixel values based on two elements: the condition specified by the set operator and by comparing 

the corresponding pixel in the input image with its neighborhoods (3×3 pixels). The process will 

then be applied over the whole image, and the pixels are compared with the array of underlying 

pixels. If two arrays of elements pixels are consistent with the set operator condition, then the 

central pixel of the neighborhood origin will be adjusted to a predefined value (Qidwai and Chen 

2009).  

The main morphological operators are dilation and erosion, closing and opening, and thickening 

and thinning. Each pair of mentioned operators performs opposite functions, respectively. 

Extending operators dilation, closing, and thickening make white elements in a binary image more 

predominant through various degrees. On the other hand, erosion, opening, and thinning reduce 

the size of the mentioned white elements (Qidwai and Chen 2009).  
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Figure 2-17. Example of Opening operation 

 

Figure 2-18. Example of closing operation 

2.4.3 Image segmentation 

Image segmentation is one of the most important steps in image analysis. It subdivides an image 

into its constituent regions or subjects. Considering the problem in hand, the subdivision level and 

its details would be defined (Gonzalez and Woods 2006). However, image noise and artifacts 

hinder segmentation operation from being done properly.  Segmentation methods can be divided 

into three groups according to the dominant features they employ: Pixel-based, edge-based, and 

region-based.  Pixel-based methods only use the gray values of the individual pixels. Region-based 

methods analyze the gray values in larger areas. Finally, edge-based methods detect edges and 

then try to follow them in the image areas (Jahne 2002). In this section, these methods are 

illustrated shortly. 

Pixel-based (point-based) segmentation is the simplest method in image segmentation. The 

connectivity among components is grouped based on pixel connectivity in which each pixel is 

labeled with the gray level of its group. Considering these intensity values, a brightness constant 

or threshold can be determined to segment objects and the background. As the oldest segmentation 

method, thresholding is computationally inexpensive and is still widely used in simple applications 

(Gonzalez and Woods 2006). 
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Figure 2-19. Pixel-based segmentation 

 (a) Original image; (b) image histogram; (c-e) segmentation with various global thresholds.  

(Adapted from (Jahne 2002)) 

The common limitation of pixel-based segmentation is that it does not take into account the local 

neighborhood. Also, when there is not a constant gray value in the objects, the size of the 

segmented objects cannot be determined accurately (Jahne 2002).  

Edge-based segmentation detects and links edge pixels to form corners. It usually works with less 

complex algorithms comparing region-based methods. The remarked edges define highlight 

locations of discontinuities in gray level, color, texture, etc. The output image will be processed 

by a series of sequential algorithms to result in continuous edges through segmented parts (Jahne 

2002). However, this process can be influenced by image noise, and the algorithm cannot clearly 

detect edges. 

Region-based segmentation aims to detect regions in an image directly instead of defining borders 

then separating the regions as done in other algorithms. Introduced algorithms, try to classify pixels 

based on their grey values and neglect the integrity of the object. There are common techniques in 

region segmentation methods such as region growing, split and merge, watershed segmentation. 

The explanation of these techniques is out of the scope of this research and for further study please 

refer to Jain (1989), Gonzalez and Woods (2006) and Sonka et al. (2007). 

Analyzing the image regions is a critical step in image classification and recognition. Image 

features can be extracted as a collection of data and be quantized in a feature vector for the analyzed 

image.  
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2.5 Machine Learning 

Machine learning is a subgroup of artificial intelligence in which computer algorithms are trained 

to recognize the patterns of data and decide in new data automatically. Machine learning methods 

have been widely used in both feature extraction and defect classification. The algorithms can 

learn from data with or without human intervention. There are different training algorithms, and 

each can be employed, considering the type of problem in hand. The main learning mechanisms 

are supervised and unsupervised (or self-organized). A brief explanation of each one of the 

mentioned mechanisms is provided in the following. 

Supervised learning 

The supervised learning mechanism trains the algorithm by a set of labeled input data. A dataset 

is provided with instances of input stimuli and corresponding target values. The network applies 

the calculated weights and represents the outputs. The output results are continuously compared 

with the desired ones. Using a learning rule error between the actual output and the desired output 

is calculated to adjust the network’s weights. Therefore, after several iterations, the actual output 

becomes the closest match to the target output. 

Unsupervised learning 

Unsupervised learning does not need supervision, and there is not a defined output to compare 

with. Unsupervised learning relies on presented input patterns and training data. The algorithm 

arbitrary discovers emergent collective properties and organizes the patterns into categories. 

Generally, the problem of pattern recognition and defect classification from sewer pipeline images 

is typically ill-posed since the proposed models are not able to be generalized for unseen images. 

2.6 Convolutional Neural Network   

The idea of Convolutional Neural Networks (CNNs) for image recognition was first developed by 

Fukushima (1975) under the name of the Neocognitron. Later in 1998, LeCun, Bottou, Bengio, 

and Haffner introduced LeNet-5 (Lecun et al. 1998). CNNs are basically conventional neural 

networks with two extra layers as convolutional layers and pooling layers in addition to fully 

connected layers and activation functions. CNN is able to assume the images with any size as an 

explicit input. A rectangular receptive field slides across over dimensions of the image to calculate 

kernel weights that are shared in all slides of the layer. In result, the model achieves a remarkable 

reduction in the number of parameters and calculations in the network. Therefore, the local space 

of the features will not be important to any further extent. In CNNs the pre-processing and feature 

definition and extraction steps are omitted, so feature extraction and classification both are 

included in one single structure (Figure 2-20). 
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Figure 2-20. Machine learning approach and deep learning approach comparison (Moradi et al. 

2019a) 

2.6.1 CNN architecture 

A typical CNN includes a set of layers that each layer contains one or more planes. The architecture 

put together a series of convolutional and pooling layers after the input layer and ends with fully 

connected layers in final layers to present the model’s prediction. The planes can be employed as 

feature maps, and each plane has a related feature detector in a local receptive field which is sliding 

across the planes in the previous layer. The input image passes through the various convolutional 

and pooling layers and gets smaller and meanwhile richer features are extracted by convolutional 

layers. So, the primary layers extract low level features and the next layers interact with higher 

levels and determine spatial combinations of the lower features in the previous layers. Moreover, 

the network is trained with the usual backpropagation gradient-descent procedure. 
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Figure 2-21. A typical scheme of Convolutional Neural Network 
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2.6.2 Convolutional layers  

The pixel values of the input image feed to convolutional layers in which neurons act as filters. 

The input size of neurons in convolutional layers is the size of the receptive field, which is sliding 

through input image dimensions. The output of filters in each layer is a feature map and feeds to 

the next convolutional layer as an input. The filters survey across the whole previous layer with 

moving one stride each step. The receptive fields have overlap by field width – stride.  In case the 

previous layer size is not dividable by the size of the receptive field, then the filter will miss the 

information in the edges of the input feature map. To solve this problem, zero padding can be 

employed by adding zeros to the edges of the input.      

2.6.3 Pooling layer 

Another extra layer in CNNs comparing to conventional ANNs is pooling layer. The pooling layers 

decrease the number of parameters in the network by downsampling the extracted features in the 

previous layers. The down sampling function increases the computational speed and also prevents 

the network from overfitting. In pooling layers, like convolutional layers a receptive field slides 

through the extracted feature maps by a predefined stride (s). Generally, the size of stride and 

receptive fields in pooling layers are considered equal, so there will not be any overlapping among 

them. There are different types of pooling methods such as Max pooling, Average pooling, and 

L2-norm pooling. Figure 2-22 shows an example of max pooling function in a pooling layer. 
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Figure 2-22. Max pooling function with 2 x 2 filter size and stride 1. 

2.6.4 Fully connected layer 

Fully connected layers stack on top of the network to flat the feature maps into feature vectors and 

finally predicting the class probabilities using activation functions like softmax.  In a classification 

problem, the output would be a vector with the length of the number of classes, and each number 

in the classes indicates the probability of a certain class. For example, in the vector of 10 classes 

[0.2, 0, 0, 0, 0, 0, 0.1, 0.6, 0, 0.1] there is a probability of 20% that image be in class 1, 10% be in 

class 7, 60% be in class 8, and 10% be in class 10.  
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2.6.5 Activation functions 

Activation functions empower the neural networks with nonlinearities which is the main difference 

of neural networks and linear regressions. The main application of activation functions is to 

determine upon receiving the information if a neuron should be activated or should ignore it. 

Technically, activation function provides nonlinearity over the input signals, so in backpropagation 

the gradients can be supplied with error to update the weights and losses in the network (Equation 

2-1). 

𝑌 = 𝐴𝑐𝑡. (∑(𝑤𝑖 ∗ 𝑛𝑖) + 𝑏)  Equation 2-1 

Where Y is the activation function, wi is weight, and n is the neuron, b is the bias. 

Sigmoid  

Sigmoid activation function is widely used in neural networks since it is differentiable and imposes 

nonlinearity (Equation 2-2). 

𝑌 = 1/(1 + 𝑒^ − 𝑥)   Equation 2-2 

As shown in figure 2-23, it ranges from 1 to 0 with an S shape.  

 

 

 

Figure 2-23. Sigmoid activation function 

The main application of sigmoid activation function is the values classification. The main 

problems with sigmoid activation function are that it saturates beyond -3 and +3, so in those 

regions gradients become too small and resembling zero and results in the network stops learning. 

Moreover, the values in the function only range from 0 to 1, so all the received values are positive. 

Tanh 

Tanh function maps the neuron values in ranges from -1 to 1(Equation 2-3). 
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𝑡𝑎𝑛ℎ(𝑥) = 2/(1 + 𝑒^(−2𝑥))  − 1   Equation 2-3 

As shown in figure 2-24 tanh is continuous and differentiable over all the values. Also, it is 

nonlinear and in backpropagation, the errors can be easily considered.  

 

 

Figure 2-24. Tanh activation function 

The main application of tanh activation function is when it is required to classify a class with 

higher gradient values. The problem with tanh function is vanishing gradients where the function 

becomes flat at -3 and 3 regions. 

ReLU 

Rectified linear unit (ReLU) is the most widely used activation function especially in deep learning 

algorithms since it does not saturate on positive values and also it is fast and has low computational 

complexity (Equation 2-4). 

𝑌 = 𝑚𝑎𝑥(0, 𝑥)    Equation 2-4 

ReLU function is nonlinear, so backpropagation is possible. It does not activate all neurons at the 

same time, and negative values will be converted to zero. Figure 2-25 shows how ReLU activation 

function works. 
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Figure 2-25. ReLU activation function 

The main disadvantage of ReLU activation function is known as dying ReLUs, which means 

during training, some neurons are killed, and they only output zero so they will not in training 

weight updates anymore. 

Leaky ReLU 

This function is an improved ReLU function since in ReLU for negative values, the gradient is 

zero, and neurons are deactivated in that region. Leaky ReLU is introduced to solve this problem. 

In this function, a small linear hyper-parameter is defined for negative values (Equation 2-5). 

𝑓(𝑥) = {
𝑎𝑥, 𝑥 < 0
 𝑥, 𝑥 >= 0

   Equation 2-5 

The hyper parameter α defines the amount of leak in the function and ensures that neurons never 

die (Figure 2-26).  

 

 

Figure 2-26. Leaky ReLU activation function 
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Softmax 

This function is acting like sigmoid activation function and applicable in classification problems. 

In contrary to sigmoid function that is only able to handle two classes, softmax can conduct 

multiple classes. Softmax activation function considers the output of each class between 0 and 1 

and then divides by the sum of the outputs (Equation 2-6).  

𝜎(𝑧)𝑗 =  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

   Equation 2-6 

The softmax function usually is used in the last layer to predict the probability of the classes. 

2.6.6 CNN architectures 

A typical CNN architecture stack a couple of convolutional layers followed by a pooling layer, 

then a more set of convolutional and pooling layers. After each convolutional layer, an activation 

layer is placed. In recent years, many improvements have been achieved in increasing the accuracy 

of the CNNs. State-of-the-art architectures now can achieve a lower error rate near human vision. 

Competitions as ILSVRC ImageNet (Russakovsky et al. 2015) each year introduce top image 

classifiers. In this section, the top classifiers are introduced through their proposed architecture.  

LeNet-5 

LeNet-5 developed by LeCun et al. (1998) is one of the most popular CNN architectures. It is 

commonly used in natural language processing (NLP) tasks like handwritten digits recognition. 

LeNet-5 consists of 7 layers including three convolutional layers (C1, C3, and C5), two pooling 

layers (S2 and S4), and one fully connected layer (F6) and followed by output layer. The kernel 

size for convolutional layers is 5×5 with stride one and for pooling layers is 2×2. Input images 

from MNIST dataset are zero-padded from 28×28 to 32×32 pixels and the size of images decreases 

through the network. Table 2-2 represents the architecture of LeNet-5. 

 

 

 

 

 

 

 

 



   28 

Table 2-2. LeNet-5 architecture 

Layer 
Feature 

Map 
Size Kernel Size Stride Activation 

FC - 10 - - softmax 

FC - 84 - - tanh 

Conv2d 120 1x1 5x5 1 tanh 

Average 

Pooling 
16 5x5 2x2 2 tanh 

Conv2d 16 10x10 5x5 1 tanh 

Average 

Pooling 
6 14x14 2x2 2 tanh 

Conv2d 6 28x28 5x5 1 tanh 

Input 1 32x32 - - - 

 

AlexNet 

 AlexNet network is very similar to LeNet-5 but much deeper and includes more parameters. It 

was developed by Krizhevsky et al. (Krizhevsky et al. 2012) and won the 2012 ImageNet ILSVRC 

challenge. The convolutional layers stack on top of other convolutional layers in the last set of 

convolutional layers. To avoid overfitting, authors applied dropout method (0.5 dropout rate) in 

training. Moreover, data was augmented by various transformations such as flipping and offsetting. 

Figure 2-27 shows the architecture of AlexNet.  
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Figure 2-27. AlexNet architecture (adapted from (Krizhevsky et al. 2012))  

The network was split into two sections to train simultaneously on different cores. AlexNet 

employed local response normalization after ReLU step, which makes the neurons that most 

strongly activate inhibit neurons at the same location (Krizhevsky et al. 2012). This results in more 

generalization capacity of the model since the network searches for wider variety of features by 

pushing the features apart. The layers of AlexNet architecture are described in Table 2-3.  

Table 2-3.  AlexNet architecture 

Layer (type ) Output Shape Param # Activation 

input_1 (InputLayer) (None, 227, 227, 3) 0 - 

conv2d_14 (Conv2D) (None, 55, 55, 96) 34944 ReLU 

max_pooling2d_9 (None, 27, 27, 96) 0 - 

conv2d_15 (Conv2D) (None, 27, 27, 256) 614656 ReLU 

max_pooling2d_10 (None, 13, 13, 256) 0 - 

conv2d_16 (Conv2D) (None, 13, 13, 384) 885120 ReLU 

conv2d_17 (Conv2D) (None, 13, 13, 256) 884992 ReLU 

max_pooling2d_11 (None, 6, 6, 256) 0 - 

flatten_4 (Flatten) (None, 9216) 0 - 

dense_9 (Dense) (None, 4096) 37752832 ReLU 

dropout_5 (Dropout) (None, 4096) 0 - 
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dense_10 (Dense) (None, 4096) 16781312 ReLU 

dropout_6 (Dropout) (None, 4096) 0 - 

dense_11 (Dense) (None, 1000) 4097000 Softmax 

Total params: 61,050,856 

Trainable params: 61,050,856 

Non-trainable params: 0 

   

 

VGGNet 

VGGNet was developed by Simonyan and Zisserman (2014a) and was one of the top competitors 

in ILSVRC 2014. VGGNet includes 16 convolutional layers and presents a deep and uniform 

architecture. VGGNet is used as a preferred network for image feature extraction. The model 

configuration and weights are available publicly to be used in many other applications. However, 

the high number of parameters (i.e., 138 million) makes it a bit challenging to handle.  
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Figure 2-28. VGGNet architecture  

GoogLeNet 

Google developers Christian Szegedy et al. (2014) developed GoogLeNet/Inception which was 

the winner in the ILSVRC 2014 competition. The error rate was 6.67% which was very impressive 

and almost near human level accuracy. This was achieved by employing sub-networks called 

inception modules which resulted in much fewer parameters comparing previous networks like 

AlexNet (around 6 million instead of 60 million parameters). The 22-layer deep CNN utilized 

techniques like batch normalization, image distortions, and RMSprop.  

Figure 2-29 shows the architecture of inception module. The convolutional layers use various 

kernel sizes (1×1, 3×3, 5×5) making them able to capture the features at different scales. All 

convolutional layers use ReLU as the activation function. Moreover, the output is the same size as 

input since all the layers use the same padding with stride 1. This results in concatenate all the 

layers outputs along the depth dimension (Szegedy et al. 2014).  
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Convolution 1×1 Convolution 1×1 Max-Pooling 3×3

Convolution 3×3 Convolution 5×5Convolution 1×1 Convolution 1×1

Filter 

Concatenation

Previous Layer

 

Figure 2-29. Inception module 

ResNet 

Residual Neural Network (ResNet) introduced by Kaiming et al. (2015) at the ILSVRC 2015. The 

authors proposed gated units called skip connections similar to elements applied in recurrent neural 

networks (RNN) which make them able to train a network with 152 layers and error rate of 3.57% 

that is better than human level accuracy. So, the signal feeding as an input to a layer is also added 

to the output of a layer on a higher stack (Kaiming et al. 2015). ResNet architecture is simple, and 

the network starts and ends the same as GoogLeNet. Each residual module consists of two 

convolutional layers with ReLU activation function. The kernel size is 3×3, and like inception, 

modules keep the output size equal to the input size.  

2.7 Object detection models  

In addition to defect classification, the location of the defect in the pipe is important since in many 

sewer assessment protocols, the detected defect position is considered in severity evaluation. 

Generally, the assignment of detected instances in an image to a certain class is called object 

detection. In recent years, object detection algorithms evolve from image processing techniques 

which require complex feature engineering and numerous mathematical operations such as Viola-

Jones object detection framework (Viola and Jones 2001), to deep neural networks that represent 

capabilities to perform real time object detection with acceptable accuracies. In following, the most 

popular object detection architectures are introduced and explained briefly.  
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2.7.1 R-CNN 

The region-based convolutional neural network (R-CNN) (Girshick et al. 2014) proposes to check 

for objects in region proposals instead of a massive number of regions. R-CNN employs an 

external algorithm called selective search to extract the regions. The selective search identifies 

different regions in an image based on capturing all object scales and diversifications (Uijlings et 

al. 2013). The warped region proposals are fed forward to a trained CNN model to get the region 

of interest for each image, and then a support vector machine (SVM) classifies objects and 

background for the regions. Finally, using a linear regressor the objects bounding boxes are 

generated in the classified images.  

ConvNet

ConvNet

ConvNet

SVM

SVM

SVM

Bounding box 

regressor

Bounding box 

regressor

Bounding box 

regressor

(a) Input image (b) Region of interest (RoI) 

extraction

(c) Feed warped image regions to 

CNN for feature computation

(d & e) Region classification using SVM 

and Apply bounding box regression  

Figure 2-30. R-CNN typical architecture 

The multistage training pipeline of R-CNN makes it computationally expensive and time-

consuming. Also, each region proposal should pass three models for feature extraction, 

classification, and regression, so the prediction would be relatively slow, especially when the 

model deals with large datasets. Moreover, since there are FC layers in the CNN model, the input 

sizes must be fixed, and the algorithm proposes warp or crop region proposals. This may impose 

re-computation for each region and also due to the warping operation, the object can be placed 

partly in a cropped region and leads to a reduction in recognition accuracy.   

2.7.2 Fast R-CNN 

Fast R-CNN was introduced by Girshick (2015) to improve the R-CNN detection speed. In this 

approach, instead of performing the CNN for each region proposals, the convolution process is 

conducted for each image and all regions of interest (Girshick 2015). The author proposed an 

architecture to generate convolutional feature maps by processing the entire image with several 

convolutional and pooling layers and then convert each region proposal into a  feature vector 

(Girshick 2015). The extracted feature vectors are fed to the fully connected layers for 

classification using softmax probability estimation of the C+1 classes (C object classes and one 

background class) and regression for encoding bounding box positions with four real numbers for 

predicted classes. Thereby, Fast R-CNN uses a single model instead of three different models in 
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R-CNN and Fast R-CNN training time would be much faster. The detection required time is also 

reduced while the accuracy is improved by the method.  

ConvNet
FCs

Sotmax

Linear Regression

(a) Input image (b) Forward the entire image into 

ConvNet
(c) Regions of Interest (RoIs) 

extraction from a proposal 

method

(e & f) Ouput classification using 

softmax layer and linear regression 

for bounding box

(d) RoI pooling

 

Figure 2-31. Fast R-CNN architecture 

2.7.3 Faster R-CNN 

The fast R-CNN has certain limitations as it uses selective search as a proposed method to identify 

Regions of Interest, which still is slow and time-consuming when dealing with large datasets. To 

overcome these limitations, the faster R-CNN developed by Ren et al. (2017) uses Region Proposal 

Network (RPN) that identifies region proposals and shares the convolutional features with the 

detection network. RPN creates an optimized set of region proposals with higher quality compared 

to those generated by the selective search method. Finally, RPN and Fast R-CNN are merged into 

a single network while sharing their convolutional features, then the unified network can classify 

and output the bounding boxes for objects (Ren et al. 2017).  

The idea of anchor boxes is introduced by authors to cope with the differences in the objects aspect 

ratio and scale in the images. At each location, three types of anchor boxes for scale 128×128, 

256×256, and 512×512 are used (Ren et al. 2017). In the same way, for aspect ratio, the model 

applies three aspect ratios 1:1, 2:1, and 1:2. Thereby, for each location, nine boxes are presented, 

and RPN predicts if the box is background or foreground object (Ren et al. 2017). The Faster R-

CNN, like the other discussed object detection frameworks, does not capture the whole image 

regions at once and to detect the objects it requires a sequence of passes.  
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(a) Input image (b) Feature extraction (c)  RoI pooling (d & f) Ouput classification using 
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for bounding box

Region proposals 

from RPN

 

Figure 2-32- Faster R-CNN architecture 

All the introduced approaches mainly rely on a sliding window to train the classifier for object 

detection among a wide range of proposal boxes within various size scales and positions. In some 

models such as Faster R-CNN the weights can be shared; however, the main computational 

complexity that derives from convolving filters with the whole image remains especially in large 

image inputs (Mnih et al. 2014).  

2.7.4 YOLO 

Redmon et al. (2016) introduced a novel framework called You Only Look Once (YOLO), which 

directly predicts both confidences for class probabilities and bounding boxes in a single evaluation. 

YOLO divides the input image into an S×S grid, and each grid cell predicting the objects bounding 

boxes and their respective confidence scores (Redmon et al. 2016). This confidence is simply 

indicating the probability of objects existence (Pr(Object) ≥ 0) and represents the confidence of 

the prediction ( 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ ). Also, in each grid cell C condition of class probabilities 

(Pr(Classi|Object) needs to be predicted, so for each individual box, class specific confidence 

scores are calculated (Equation 2-7) (Redmon et al. 2016): 

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ ∗  (𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗   𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ       Equation 2-7 

In the proposed YOLO framework, 24 Conv layers and 2 FC layers inspired by GoogLeNet is 

used. 1×1 reduction layer followed by 3×3 Conv layers replace initial inception modules. In the 

final layer for every grid cell, a prediction tensor is generated to define the estimated probabilities 

for each class, the number and coordinates of anchor boxes, and a confidence value (Redmon et 

al. 2016). With all improvements in speed and detection accuracy, YOLO still has a limitation in 

detecting small objects due to spatial constraints caused by bounding box predictions (Redmon et 

al. 2016).  Moreover, YOLO is not able to generalize to objects with unseen aspect ratios and new 

construction (Zhao et al. 2019). 

2.8 Conventional visual inspection and assessment 

Sewer pipeline inspection using mobile CCTV is the typical approach in visual inspection 

methods. CCTV system uses a television camera mounted on a robot which is in conjunction with 

a display monitor and a recording device. The robotic system is placed in the pipeline and directs 
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by a trained operator through the pipe. Human operators are required to be trained and be familiar 

with the protocols and pipeline grading system. During the operation, the operator has to stop the 

robot to focus on suspicious areas to closer inspection and collect more evidence to decide on 

detection, classification, and criticality of the existing defects against documented protocols. 

Therefore, there would be a considerable amount of stops and starts, which increases the time of 

inspection and make it costly as well. Also, the videos might be checked off-site by specialized 

operators to either recheck the reports or inspection. The existing physical condition of the pipeline 

can then be assessed using mentioned standard protocols as PACP, WRc, or Municipalities 

condition evaluation guidelines. This results in the identification of the deterioration pattern and 

determination of the potential collapse or failure of an asset (Rahman and Vanier 2004). 

Both in site and offline reporting procedures are highly dependent on the operator’s skill and 

processing the data provided by CCTV is time-consuming and labor-intensive. There is a 

probability of missing some of the defects that are hidden from the camera by obstructions and 

certain types of defects that cannot be captured by CCTV such as those are under waterline. 

Moreover, operator skillfulness, fatigue, and concentration may affect the reliability and 

consistency of inspection results.  

2.9 Automated defect detection and condition assessment 

CCTV inspection reports have some limitations such as lack of geometric references, subjective 

assessment based on the operator’s skill, and image quality variation. Recent developments in 

digital imaging industry have led to a remarkable cutback in the cost of visual inspections for 

municipalities. In many assessment protocols, it is required to provide visual evidence for detected 

defects or faults supporting condition assessment of the pipeline. Recorded images from the pipe 

offer a complete set of data such as features, patterns, position, and severity of the faults. Moreover, 

the latest advances in processing capacity of the computers and accessibility of cloud computing 

paved the way for the employment of powerful machine learning algorithms and computer vision 

techniques. In the last decade, state-of-the-art artificial intelligence algorithms have been 

suggested by the studies in the field to automate the sewer pipe inspection and assessment. 

The research works generally analyze the inspection videos using image processing algorithms 

like morphological operations and image segmentation, then employing a machine learning 

algorithm for defect classification. However, in recent studies both feature sampling and 

classification are carried out deep neural networks. Regarding the utilized computer vision 

technique, the studies in sewer defect detection automation are categorized into three groups: 

morphology, feature extraction, and detection/recognition.  

Studies in the morphology group extracted sewer defects features using morphological operations 

and proposed a defect detection model based on geometrical features of the defects. Research 

works in feature extraction utilized various image processing techniques to process the sewer 

images regions and detect the defects based on extracted features using a machine learning 

algorithm. In the third group, the models proposed an approach to conduct feature extraction and 

defect detection and classification in one framework simultaneously. Figure 2-23 shows different 

categories of research works in sewer defect detection automation.  
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Morphology  Feature Extraction  Detection/Recognition 

Image enhancement 

Image registration 

Image restoration 

Image segmentation 

 
Template matching 

Pattern matching 
 Deep learning algorithms 

 

Figure 2-33. Computer vision techniques used in sewer defect detection (adapted from (Moradi 

et al. 2019a)) 

2.9.1 Morphology 

Morphological operators employ various non-linear mathematical operations to describe the 

structuring elements of image features. Morphological operators can establish the pixel values in 

the image considering the order quantified by the operator and comparing the equivalent pixel in 

the image with the pixel neighborhood.  

Morphological operations have been a common tool for sewer image processing in previous 

research. Researchers have employed a wide range of morphological operations to segment pipe 

defects accurately. A number of papers utilized a series of binary or greyscale segmentation 

techniques for edge detection. The studies differentiated the sewer defects from pipe walls to 

extract the geometrical features by edge detector operators and thresholding the histogram of 

segmented pixels (Chae et al. 2003; Chae and Abraham 2001; Guo et al. 2007, 2009a; b; Halfawy 

and Hengmeechai 2014a; Hawari et al. 2018; Iyer and Sinha 2005, 2006; Kirstein et al. 2012; 

McKim and Sinha 1999; Moselhi and Shehab-Eldeen 1999; Pan et al. 1994; Shehab and Moselhi 

2005; Sinha et al. 2003; Sinha and Fieguth 2006b; a; Sinha and Knight 2004; Sinha Sunil K. 2001; 

del Solar and Köppen 1996; Yang and Su 2009). Also, morphological segmentation based on edge 

detection (MSED) is used to identify the morphology representatives for sewer pipe defects on 

CCTV images such as cracks, joints, and holes (Dang et al. 2018; Su et al. 2011; Su and Yang 

2014) and MSER algorithm for text detection in sewer images (Dang et al. 2018). Table 2-4 shows 

the studies using morphological operations. 

The patterns in the sewer pipe images can be interpreted by dark and light binary shapes; therefore, 

morphological operations are applicable tools for analyzing the images (Koch et al. 2015). 

Algorithms like edge detection and thresholding are suitable to capture the shapes and are 

applicable to segment some defects like cracks. However, morphology algorithms are highly 

dependent on image quality. The conditions of the recorded images from the pipe such as 

illumination, noise, and low contrast may affect the segmentation and consequently defect 

detection accuracy. 
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Table 2-4. Studies in automated sewer defect detection using morphological operation 

Author(s) Year 

Data 

Acquisitio

n 

Pipe 

Type 
Method 

Feature 

Descriptor 
Defect(s) Classifier 

Assessment 

Protocol 

Hawari et al. 2018 CCTV VCP Gabor Filters Geometrical   PACP 

Dang et al. 2018 CCTV Concrete MSER, MFI - Crack OCR - 

Halfawy, & 

Hengmeechai 
2014 CCTV VCP 

Edge Detection, 

Hough Transform 
- Crack RuleBased WRc 

Su & Yang 2014 CCTV VCP MSED, OTHO - Crack, Joint - - 

Kirstein et al. 2012 CCTV 
VCP, 

Concrete 

Edge Detection, 

Hough 

Transforms 

- Flow-line RuleBased - 

Su et al. 2011 CCTV VCP MSED Geometrical 
Crack, Break, 

Debris, Joint 
- - 

Guo et al. 2009 RedZone 
VCP, 

Concrete 
Edge Detection 

Gradient 

Based 
ROI Rule Based PWSA 

Gou et al. 2009 CCTV VCP 
Histogram 

Matching 
- ROI 

Change 

Detection 
PACP 

Yang & Su 2009 CCTV VCP Otsu - 

Broken Pipe, 

Crack, Fracture, 

And Open Joint 

RBN - 

Gou et al. 2007 RedZone VCP Edge Detection - ROI - PACP 



   38 

Author(s) Year 

Data 

Acquisitio

n 

Pipe 

Type 
Method 

Feature 

Descriptor 
Defect(s) Classifier 

Assessment 

Protocol 

Sinha & Feiguth 2006 SSET Concrete 
Edge Detection, 

Otsu 
Geometrical Crack Rule based - 

Sinha & Feiguth 2006 SSET Concrete Segmentation Geometrical 

Cracks, Holes, 

Joints, Laterals, 

Collapse 

Rule Based - 

Iyer & Sinha 2006 SSET Concerete Segmentation Geometrical Crack Rule Based NAAPI 

Sinha & Feiguth 2006 SSET Concrete Segmentation Geometrical 
Crack, 

Joint, Lateral 
Rule Based - 

Shehab & 

Moselhi 
2005 CCTV VCP Segmentation Geometrical Infilteration ANN - 

Iyer & Sinha 2005 SSET Conceret Segmentation Goemetrcal Crack Rule Based - 

Sinha 2004 SSET Conceret Segmentation Goemetrcal Crack ANN CATT 

Sinha et al. 2003 PSET Concrete Segmentation Geometrical 
Crack, 

Joint, Lateral 
Rule Based - 

Chae et al. 2003 SSET - Segmentation Geometrical 
Crack, 

Joint, Lateral 
ANN - 

Chae & Abraham 2001 SSET Concrete Segmentation Geometrical 
Crack, 

Joint, Lateral 
Fuzzy-ANN - 

Sinha 2001 CCTV Concrete Segmentation Geometrical Crack  - 
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Author(s) Year 

Data 

Acquisitio

n 

Pipe 

Type 
Method 

Feature 

Descriptor 
Defect(s) Classifier 

Assessment 

Protocol 

Chae 2000 SSET Concrete   
Crack, 

Joint, Lateral 
Fuzzy-ANN - 

McKim & Sinha 1999 SSET Concrete Segmentation Geometrical 
Crack, Joint, 

Lateral 
Rule Based - 

Moselhi & 

Shehab 
1999 CCTV VCP Segmentation Geometrical Crack ANN - 

Solar & Koppen 1996 CCTV - 
Gabor, 

Segmentation 
Geometrical - ANN - 

Pan et al. 1994 Image - Hough Transform Geometrical Joint Rule Based - 
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2.9.2 Feature Extraction  

One of the main phases in image recognition is analyzing the image pixels and regions 

either locally or globally. Feature extraction creates an arrangement of distinguishable data 

and quantizing them in a numeric feature vector. Various contributions in design and 

employment of innovative feature extraction techniques including wavelet transform and 

co-occurrence matrices (Sinha et al. 1999; Sinha and Karray 2002; Ye et al. 2019), wavelet 

transforms and histograms of oriented gradients (HOG) (Halfawy and Hengmeechai 

2014a; b; c; Wu et al. 2015; YANG et al. 2011; Yang and Su 2008; Ye et al. 2019), GIST 

descriptor (Myrans et al. 2018, 2019), and spatio-temporal features (Moradi et al. 2016; 

Moradi and Zayed 2017) have been made. Moradi et al. (2020) introduced an innovative 

method to extract sewer inspection videos using 3D-SIFT and classify the features by OC-

SVM to identify anomalous frames. Some studies combined a series of feature extraction 

methods to come up with a unique feature vector (Fang et al. 2020; Mashford et al. 2010). 

One of the main approaches in studies is using image processing and computer vision 

techniques to determine geometrical features of the defects and train neural networks for 

defect classification (Chaki and Chattopadhyay 2010; Moselhi and Shehab-Eldeen 2000; 

Sinha and Fieguth 2006a). 

Feature extraction methods are helpful to search space dimension reduction and reducing 

the number of calculations and computational cost. In sewer pipes because of the immense 

patterns and poor lighting conditions, it is almost impossible to define templates for defects. 

Cameras pose and illumination variation may reshape the defects forms and defects 

patterns can be confused easily. Thus, relying on the extracted features for defect 

classification is doubtful and the classifier gets confused because of indefinite features and 

patterns of sewer defects. Moreover, to train the classifier the features need to be 

engineered manually to label the data which is exhaustive and time-consuming. Table 2-5 

shows the studies in automated sewer defect detection using feature extraction. 
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Table 2-5. Studies in automated sewer defect detection using feature extraction 

Author(s) Year 
Data 

Acquisition 
Pipe Type 

Feature 

Descriptor 
Defect(s) Classifier 

Assessment 

Protocol 

Moradi et al. 2020 CCTV VCP 3D-SIFT ROI OC-SVM PACP 

Xu et al. 2020 CCTV PVC 

HOG, LBP, 

Gabor, 

GLCM 

ROI Guassian-D - 

Ye et al. 2019 CCTV 

Concrete, 

HDPE, 

PVC 

Hu In variant 

Moments 

Deformation, Collapse, 

Infiltration, Deposit, 

Joint 

SVM - 

Myran et al. 2018 CCTV 

VCP, 

Concrete, 

Brick 

GIST ROI SVM - 

Myran et al. 2018 CCTV 
VCP, PVC, 

Brick 
GIST 

Crack,Deformation, 

Collapse, Infiltration, 

Deposit, Joint 

Random 

Forest 
- 

Moradi & 

Zayed 
2017 CCTV VCP Spatio- Temporal ROI HMM PACP 
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Author(s) Year 
Data 

Acquisition 
Pipe Type 

Feature 

Descriptor 
Defect(s) Classifier 

Assessment 

Protocol 

Wu et al. 2015 SSET VCP 
Haar Wavelet, 

Contourlet 
Root, Collapse, Crack 

AdaBoost, 

Random 

Forrest 

- 

Halfawy & 

Hengmeechai 
2014 CCTV VCF HOG Root SVM - 

Mashford et al. 2014 Image  Haar Wavelet Crack SVM - 

Halfawy & 

Hengmeechai 
2014 CCTV VCF HOG ROI Rule based - 

Yang et al. 2011 CCTV VCp 
Wavelet 

Transform 
Joint, Crack, Break Rule based - 

Mashford et al. 2010 PIRAT Concerete Gabor, HSB 
Hole, Root, Joint, 

Deposit, Corrosion 
SVM - 

Chaki & 

Chattopadhyay 
2010 CCTV VCP, Brick Geometrical Crack 

Fuzzy-

MDSS 
- 

Yang & SU 2008 CCTV VCP, RCP 
Wavelet 

Transform 

Joint, Crack, Break, 

Fracture 

SVM, ANN, 

RBN 
WRc 

Sinha & Fieguth 2006 SSET Concerete Geometrical 
Joint, Crack, Break, 

Fracture 

Fuzzy- 

ANN 
- 
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Author(s) Year 
Data 

Acquisition 
Pipe Type 

Feature 

Descriptor 
Defect(s) Classifier 

Assessment 

Protocol 

Sinha & Karray 2002 PSET Concerete 
Geometrical, Co-

occurrence Matrix 
Crack 

Fuzzy- 

ANN 
- 

Moselhi & 

Shehab 
2000 Image VCP Geometrical 

Crack, Joint, 

Deformation, Spalling 
ANN - 

Sinha et al. 1999 PSET Concerete 

Fourier 

Transform, 

Karliunen-Loeve 

(KL) Transforin 

Crack 
Fuzzy- 

ANN 
- 
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2.9.3 Detection and Recognition 

In recent years there is a spike of using deep learning algorithms like Convolutional Neural 

Networks (CNNs). Accessibility to inspection data besides affordable computation machines made 

it practicable to utilize deep neural networks and improve the speed and accuracy of sewer 

assessment reports. Deep learning algorithms are used both in defect classification and detection 

in sewer pipelines. The main advantage of deep learning algorithms over the traditional machine 

learning algorithms is the capability to automatically extract the features during the training. 

Therefore, the crucial and time-consuming feature engineering stage used in typical machine 

learning algorithms is excluded. Deep neural network trains can get image as input data and spit 

out the defect class as the output. The first layers extract simpler attributes of the features, while 

deeper layers represent more complex features of the input image.  

In recent researches, various architectures of convolutional neural networks (CNN) (Chen et al. 

2018; Kumar et al. 2018; Li et al. 2019; Meijer et al. 2019; Moradi et al. 2018b; Xie et al. 2019), 

and fully connected networks (FCN) (Wang and Cheng 2019), and saliency model using recurrent 

neural network (RNN) (Wang and Cheng 2019) have been employed for sewer defect 

classification. Also, various object detection frameworks such as faster region-based convolutional 

neural networks (Faster-RCNN) (Cheng and Wang 2018; Kumar et al. 2020), and You Look Only 

Once (YOLO) (Kumar and Abraham n.d.; Yin et al. 2020), and Single Shot Detector (SSD) 

(Moradi et al. 2019c) have been used for sewer images defect detection. It is believed that CNNs 

have higher classification accuracy and better generalization capability comparing the other 

classification techniques (LeCun et al. 2015). Although application of deep learning algorithms 

seems to be the future trend in sewer defect detection automation, these algorithms need large 

training datasets. Meanwhile, the training process is computationally expensive especially for 

deeper networks with many layers. In recent years, the drawbacks of deep learning algorithms are 

partially covered by innovative methods like enlarging the training dataset using data 

augmentation algorithms and benefiting from the computational power of graphic processing units 

(GPUs) (LeCun et al. 2015). Table 2-6 shows the studies in automated sewer defect detection using 

deep neural networks. 
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Table 2-6. Studies in automated sewer defect detection using deep neural networks 

Author(s) Year 
Data 

Acquisition 
Pipe Type 

Feature 

Extractor 

Classifier/ 

Detector 
Defect(s) Assessment Protocol 

Kumar et 

al. 
2020 CCTV VCP CNN 

Faster R-

CNN 
Deposit, Root - 

Yin et al. 2020 CCTV VCP CNN YOLOv3 
Break, Hole, Deposits, 

Crack, Fracture, Root 
- 

Kumar et 

al. 
2020 CCTV VCP CNN YOLOv3 

Fracture, Root, 

Deposit 
PACP 

Hassan et 

al. 
2019 CCTV Concrete - CNN 

Crack, Joint, Debris, 

Lateral 
- 

Li et al. 2019 CCTV 
Concrete, 

PDE, PVC 
- ResNet18 

Deposit, Joint, Break, 

Deformation 
NASSCO 

Meijer et 

al. 
2019 CCTV - - CNN All in Standard Code 

European standard 

coding norm EN 

13508-2 

Xie et al. 2019 CCTV PVC - CNN 
Break, Hole, Deposits, 

Crack, Fracture, Root 
- 

Wang & 

Cheng 
2019 CCTV VCP - FCN Crack, Deposits, Root - 
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Author(s) Year 
Data 

Acquisition 
Pipe Type 

Feature 

Extractor 

Classifier/ 

Detector 
Defect(s) Assessment Protocol 

Wang & 

Cheng 
2019 CCTV VCP - RNN Crack, Deposits, Root - 

Moradi et 

al. 
2019 CCTV VCP CNN SSD 

Crack, Infiltration, 

Deposit 
PACP 

Kumar et 

al. 
2018 CCTV VCP - CNN Root, Deposit, Crack - 

Cheng & 

Wang 
2018 CCTV - CNN 

Faster R-

CNN 

Root, Deposit, Crack, 

Infiltration 
- 

Chen et al. 2018 CCTV VCP  CNN ROI - 

Moradi et 

al. 
2018 CCTV VCP  CNN Crack - 
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2.10  Discussion and Gap analysis 

Existing challenges in underground infrastructure assessment for municipalities and asset 

managers motivate the engineering companies to develop new inspection technologies. 

Considering the introduced achievements in inspection tools, now the inspectors can obtain the 

data of all types of sewer defects. Moreover, the acquired inspection data has been improved both 

in quality and quantity. Thousands of hours of CCTV inspection videos are archived and 

documented in the municipalities and inspection contractors’ libraries.  

Meanwhile, improvements in machine learning and computer vision techniques have made it 

easier to propose models in sewer inspection automation and validate them by the available data. 

Research in sewer inspection automation provides substantial contributions to the detection of a 

wide range of defects. In this research, the extents of automated sewer defects assessment in the 

proposed models have been studied in four aspects: detection, localization, evaluation, and 

algorithm generalization.  

Considering the advances in computer vision and especially deep learning algorithms, almost all 

the detectable defects by CCTV can be detected automatically. In addition, the location of the 

defects in pipe’s cross section has been identified by algorithms like deep object detection 

frameworks. However, for defects like deposit, complementary tools such as laser scanner 

employed with CCTV since deposits may be hidden under the waterline. Defects severity 

evaluation is still the area requiring more study. Some research proposed algorithms based on 

pixels intensities or saliency models to quantifying the extents of the defected areas. However, 

their success is still far from an automated model in severity evaluation. The generalization 

capability of the proposed models is another area for development. The introduced algorithms and 

frameworks need to be generalized for automated defect detection in various environments and 

pipe materials. This capability can be improved by generating more comprehensive datasets and 

train more accurate machine learning models. Furthermore, the frameworks can be designed to be 

adjustable to various sewer assessment protocols such as WRc, PACP, etc. (Table 2-7).  

 

 

 

 

 

 

 

 

 



   48 

Table 2-7. Automation of sewer defects assessment (adapted from (Moradi et al. 2019a)) 

Defect type Detection Localization Evaluation 
Algorithm 

Generalization 

Cracks ◙ ◙ ◘ ◙ 

Joint ◙ ◙ ○ ◘ 

Deformation ◘ ◘ ◘ ○ 

Holes ◙ ◙ ◘ ◘ 

Root ◙ ◙ ○ ◙ 

Infiltration ◙ ◙ ○ ○ 

Deposit ◙ ◙ ○ ◙ 

(◙) achieved, (◘) partially achieved, (○) not achieved 

Although there have been remarkable achievements in sewer defect detection automation in recent 

years, there are still limitations in applicability of these models. Visual data from underground 

assets like sewer pipes are always prone to poor lighting and varying illumination. Sudden 

movements and camera pose changes make it harder to keep consistency in the data analysis. To 

add to this, sewer inspection videos include a wide range of frames without any valuable 

information like underwater, information, start, and ending frames. Thus, data cleansing and video 

preprocessing seems to an inevitable part of the frameworks.  

In addition, quality of image data from sewer pipelines is always substandard due to various noises 

and existing occlusions. The images are always supplemented with occluded and intermittent 

background. Defect features and templates may diverge by an infinite range regarding the camera 

pose, distance, defect size, pipe wall cleanness, etc. Thereby, the detection algorithms require 

larger datasets for training to improve their generalization capability. Furthermore, the whole 

assessment process is still operator interactive since measure and score the defects severity yet are 

dependent on operator’s judgment.     

The recent deep learning based frameworks offered a leading advantage in extracting image 

features automatically. Feature selection and extraction are the most important steps in a classifier 

design since features need to provide enough discriminatory information, and at the same time, be 

easy to compute. In traditional machine learning algorithms, the defect features have been selected 

based on geometric form and size of defects existing in sewer image. However, infinite patterns 
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and templates of defects in sewer images made it challenging to propose a general feature for each 

type of defect. 

Additional attribute of image analysis techniques is the usage of color channels and their 

intensities. Generally, color images are converted to one channel grayscale to decrease the 

computational cost and accelerate the calculations. However, pixels color intensities may be useful 

in differentiating among the defect and image background. Also, pipe wall color can confuse the 

classifier in detection of some types of defects like infiltration.  

The proposed deep learning algorithms for sewer defect detection presented a promising 

performance in detection accuracy but these algorithms are expensive to train and exploit. Large 

training labeled datasets and powerful computational hardware are main downsides of deep 

learning algorithms. The detection speed is another concern since employing a more accurate and 

deeper framework reduces the real-time detection capacity and speed. Small objects in pipe like 

holes is another difficulty for the existing defect detection models. A tradeoff between speed and 

accuracy may result in missing some of the defects which are too small to be detected in limited 

processing time. 

In conclusion, application of computer vision in sewer inspection automation is highly dependent 

on the provided visual data by CCTV. The algorithms analyze what has been recorded by CCTV 

cameras and whatever cannot be acquired by the camera cannot be evaluated by the computer 

vision algorithm. The quality of the performed video data needs to be standardized and camera 

angle and pose in the pipe should be justified precisely based on the procedures is available 

assessment protocols. The pipes required to be lighted properly to minimize the illumination 

fluctuation in the images. Considering all the mentioned suggestions, and future developments in 

algorithms and hardware facilities it is expected sewer pipelines assessments would be automated 

and result in a substantial decrease in inspection time and cost of sewer pipes. 
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Chapter 3 : Methodology and Model Development 

In this chapter, the proposed research methodology is presented where the developed models in 

each step are highlighted. The proposed methodology aims to support the sewer inspection process 

by automating the CCTV video analysis and defect detection. The whole framework is divided 

into two main phases: identifying the defective frames, and defect detection and classification. In 

this chapter, the proposed methodology has been explained thoroughly. The development of 

models, including anomaly detection, defect detection, and classification algorithms, are 

presented. In the following sections, first, collecting the different types of data used in model 

development is described. In the next parts, each step of the proposed methodology is 

demonstrated.  

3.1 Proposed methodology   

The current practice in sewer inspection is first to detect the areas which are suspected to be a 

defect. This step is usually conducted by the operator and is highly dependent on his or her vision 

and ability of recognition. Therefore, that is subject to the operator’s skillfulness, fatigue, 

illumination, camera pose, water level in the pipe, and other operational conditions. Based on a 

study conducted by Dirksen et al. (2013), in manual sewer inspection 25% of defects are missed 

by the operator. So, it is important to minimize human error to be able to detect all potentially 

defected areas in inspection video frames.  In this research, at the first stage, sewer CCTV videos 

would be analyzed to recognize suspicious frames, which may include any types of defects 

(anomalies).  

In current manual practice, after identifying suspicious regions, the collected evidence would be 

analyzed by the operator on-site or later by a certified expert in the office to detect the defects and 

classify them based on type, criticality, and location. This phase is also reliant on the operator and 

is subjective. Thereby, the second part of the proposed model aims to analyze the extracted 

anomalous frames using deep learning techniques to classify and detect the defects based on their 

type. The training and detection process is illustrated in section 3.3. Figure 3-1 shows the proposed 

methodology.  
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Figure 3-1. Overall view of proposed methodology 

3.2 Data collection  

In the data collection stage, required datasets for the development of the models are provided. 

These datasets comprise data extracted from CCTV inspection videos and reports for two existing 

sewage networks in Qatar and Canada, and existing literature, as shown in Figure 3-2. 
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Figure 3-2. Collected data types used in framework development 

3.2.1 Input datasets 

Each dataset is used in a specific stage of model development. Acquired CCTV footages from 

Laval and Qatar are used in the development of the first step as extracting various features of video 

frames and in training and testing the classifier in the following. Hours of inspection CCTV videos 

have been analyzed and modified to fit properly as algorithms input. These videos are used in 

classifier training and testing in the first step. Also, the frame localization step is provided by 

analyzing text information in video frames. The anomalous frames in the inspection videos and 

defect images extracted from CCTV inspection reports feed as input to neural networks in both 

the training and testing stages of the model. Features are extracted from available images, and 

image processing techniques are developed based on the CCTV inspection videos specifications 

(illumination, quality, etc.).  

Also, the videos and reports were analyzed to extract the defects and generating the relative 

datasets. The videos from City of Laval were investigated to capture the sewer defects among the 

video sequences and creating image datasets for four types of defects as cracks, infiltration, joint 

displacement, and deposits. These datasets were enlarged by adding the categorized defect images 

in the reports from Qatar.   

All the images were reviewed and studied to ensure correct classification and then the prepared 

dataset was labeled for different needs. The CCTV footage was categorized into normal videos 

(containing no defect) and videos with anomalies. A dataset of images was labeled for the text 

detection model. Image labels include English numbers and alphabets. Moreover, the images of 

defects were labeled both for the type of defect and relative location of the defect in that image. 

Details of image labeling are illustrated completely in the following sections. 
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Figure 3-3. Interaction between Different Datasets in Building Models 

3.2.2 Data augmentation  

Deep learning algorithms are thriving for data, and the more data provided for training, the better 

performance can be achieved. Training the network with small datasets may result in overfitting 

and lack of generalization capability for the developed models. So, data augmentation tends to 

generate new training data by artificially increasing the size of the dataset. A common and simple 

practice in image data augmentation is classical image transformations such as shifting, resizing, 

rotating, and cropping. The image transformations can be fused with image color adjustments such 

as histogram equalization, contrast enhancement, brightness enhancement, sharpening, and 

blurring. 

In this research, the provided dataset from sewer defect images has been augmented by various 

image transformation techniques such as resizing, rotation, flip, shifted in different color channels 

shifts, and added Gaussian noises. As result, the dataset size was increased considerably. Each 

defect sample set contained 3000 images. In some defects such as cracks, subcategories are ignored 

so longitudinal, diagonal, and complex cracks are all considered as a crack in the implementation. 

Figure 3-4 shows different image transformations applied to the dataset.   
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Figure 3-4. Example of various image data augmentation 

3.3 Anomaly detection  

This chapter is a marginally modified version of “Automated Anomaly Detection and Localization 

in Sewer Inspection Videos Using Proportional Data Modeling and Deep Learning–Based Text 

Recognition” published in Journal of Infrastructure Systems (Moradi et al. 2020) and has been 

reproduced here.  

Due to the exceptional internal conditions of sewer pipes, the recorded videos are not easy to 

analyze. Visual characteristics of the objects could be varying depending on camera pose, 

illumination condition, type of sewer, pipe material, and pipe diameter. Waterline fluctuations and 

sudden movements of camera are also affecting the uniformity of visual inspection. All the 

mentioned factors in addition to the limitations of CCTV inspection technology lead to 

unstructured and inconsistent data which can be analyzed by simple computer vision tools. 

Thereby, to develop a robust model to automate sewer inspection, complex methods should be 

integrated. In this research, an innovative framework is proposed for anomaly detection and 

localization in CCTV videos. Figure 3-5 shows the general overview of the proposed framework.  
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Figure 3-5. ROI detection and localization (adapted from (Moradi et al. 2020)) 

The input dataset needs to be cleaned and a set of operations are applied to the images to prepare 

them for model input. Considering the slow speed of the tractor (3-10 m/min) which is conveying 

the CCTV in the pipe, and the frame rate that inspection videos are recorded (i.e., 30 fps), each 

second of the recorded footage includes almost the same information and not many image features 

variations would be observed. So, in the first step, the frame rate is decreased. Thereby, the input 

dataset will shrink and there would be a remarkable reduction in input data.     

In the sewer pipeline, most of the defects can be patterned by binary (light/dark) primitive shapes 

(Moradi et al. 2019a), and image colors are not that much helpful in detecting the edges and other 

features of the defects in the sewer pipe. So, to reduce the number of calculations and increase the 

speed, the three channels RGB inspection video frames were modified to grayscale level of the 

pixels. Furthermore, the number of input pixels for each image is optimized by rescaling and 

resizing the input image size. These three operations, frame rate adjustment, greyscale conversion, 
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and rescaling, intend to increase the computational speed. As mentioned in previous sections, 

obtained image data from sewer pipes are too noisy, so it is required that the images quality be 

enhanced by noise reduction operators. 

3.3.1 Frame representation 

Sewer inspection videos include a large number of frame sequences with normal pipe conditions 

and just short durations of defected pipe frames. So, the defected (anomalous) frames features need 

to be captured densely and rich enough to construct proper feature vectors. The proposed model 

generates a grid of cuboids from both normal (healthy) and anomalous (defected) inspection video 

frames. The dense features of the image cuboids are captured using an innovative image 

representation method based on scale invariant feature transforms (SIFT) (Lowe 1999, 2004) and 

inspired from 3D SIFT approach which is an extension of the SIFT descriptor developed by 

Scovanner et al. (2007). The image features captured by SIFT descriptor are able to remain 

unchanged to rotations and scaling transformations, robust to perspective deviations, and 

illumination variations (Lowe 2004). In this research, a modified 3D SIFT approach utilized to 

encode the sewer inspection videos information.  

Scale-space Extrema Detection 

The first step in the approach is to identify image key points. Image pixels are surveyed through 

all scales and image pixels to locate potential key points using a cascade filtering approach (Lowe 

2004). In the first step, a set of image volumes with different sizes are generated. Then, a 3D 

Laplacian of Gaussian (LoG) filter with different σ values is applied to the generated image 

volumes. A lower σ Gaussian filter allocates to the small angles with high values, whereas a 

Gaussian filter with larger σ corresponds to a larger corner. In this research, image volumes were 

scaled to three octaves with three different σ levels and σ0 = √2  as initial σ based on Lowe (2004). 

LoG requires a large number of computations, so a modified function of the Difference of 

Gaussians (DoG) is applied on different image volume scales in the 3D SIFT algorithm, which is 

a close estimate of the LoG (Lowe 2004). Finally, the determined local maxima across all scales 

and spaces are a group of (x,y,z,σ) values that signify the potential key points at (x,y,z) and σ scale 

(Figure 3-6). 
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Figure 3-6. (a) A set of scale space images repeatedly convolved with Gaussians,                     (b) 

Subtraction of adjacent Gaussian images to produce the difference-of-Gaussian (DoG) images 

(adapted from (Moradi et al. 2020)). 

Then, “each represented potential keypoint was compared to its 26 neighbor pixels in the current 

volume and two other sets of 27 pixels of the upper and lower space volumes. If the pixel was a 

maximum or minimum among the other pixels, it was assigned a value of 1; otherwise, it was 0” 

(Moradi et al. 2020). Figure 3-6 presents the maxima and minima identification among the 

generated image volumes. 
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Figure 3-7. Maxima and minima of the difference-of-Gaussian image volumes by comparing a 

pixel to its neighbors (adapted from (Ni et al. 2009)) 
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Keypoint Localization 

The identified maxima and minima points are represented as the potential key points. However, 

the potential key points which do not include important information are filtered. More accurate 

extrema locations are extracted using Taylor series, considering a threshold value of 0.03 (Lowe 

2004), and low contrast key points that their intensities are lower than the threshold would be 

excluded. DoG function has a higher effect on edge pixels, and they are uninvolved by a 3×3 

Hessian matrix (H) to calculate the principal curvature (Equation 3-1). 

H = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

]      Equation 3-1 

An eigenvalue with the largest magnitude to the smallest one was considered as H (λ 1 < λ 2 < λ 3) 

and the sum of the eigenvalues from the trace of H and their product from the determinant 

computed as follows (Ni et al. 2009) (Equation 3-2 & 3-3): 

Tr (H) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧 = λ1 + λ2 + λ3  Equation 3-2 

Det (H) = 𝐷𝑥𝑥𝐷𝑦𝑦𝐷𝑧𝑧 + 2𝐷𝑥𝑥𝐷𝑦𝑦𝐷𝑧𝑧 − 𝐷𝑥𝑥𝐷𝑦𝑧
2 − 𝐷𝑦𝑦𝐷𝑥𝑧

2 − 𝐷𝑧𝑧𝐷𝑥𝑦
2 = λ1λ2λ3   Equation 3-3 

Considering r as the ratio between the largest magnitude eigenvalue and the smaller one, if the 

𝑟 =
λ3

λ1
 <  𝑟𝑚𝑎𝑥  , then the feature point is acceptable. If α = 

λ2

λ1
, then 

Tr (H)3

Det (H)
= 

(𝑟+𝛼+1)3

𝑟𝛼
    Equation 3-4 

Lowe (2004) used 10 for the value of r, which excludes key points with a ratio less than 12.1. 

eventually, the low-contrast keypoints and edge keypoints are filtered and the accurate key points 

are determined as: 

Tr (H)3

Det (H)
 <  

(2𝑟𝑚𝑎𝑥+1)3

𝑟𝑚𝑎𝑥
2    Equation 3-5 

Orientation Assignment 

Key points orientations are calculated based on local image gradient direction in each key point 

and to accomplish image rotation invariance, the overall orientation of each neighborhood is 

determined. For the relative scale, the pixels neighborhood around the keypoint location is taken 

to determine the gradient magnitude and two directions of each pixel (space-time) in the 

neighborhood. Polar coordinates of the key points were calculated by one magnitude and two 

angles using the equations introduced in (Scovanner et al. 2007) : 

M3D = √𝐺𝑋
2+𝐺𝑦

2 + 𝐺𝑡
2     Equation 3-6 

Φ = tan−1(𝐺𝑡/√𝐺𝑋
2+𝐺𝑦

2)   Equation 3-7 
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θ = tan−1(𝐺𝑦/𝐺𝑥)    Equation 3-8 

Where Gx, Gy, and Gt are gradients in Cartesian coordinates. Two distinct orientation histograms 

will be quantized using θ and 𝜑 and be weighted by the magnitude M3D which is always positive. 

Also, 𝜑 would be in the range (−
𝜋

2
 ,

𝜋

2
 ) and θ would be in the range (−𝜋 , 𝜋 ). Thereby, the 

direction of the gradients of keypoints is presented by two values (𝜑 and θ (Scovanner et al. 2007).  

 

 

Figure 3-8.Example of a cuboid with 3D SIFT descriptor in sub-regions (adapted from (Moradi 

et al. 2020)) 

“For each 4×4×4 sub-region of a cuboid, three-dimensional gradient-based features were 

computed based on pixel luminance values. Consequently, each sub-region was quantized as a 12-

bin histogram, including the values of 𝜑 in four bins and the values of θ into eight bins. For each 

3D sub-region, the orientation was accumulated into an 8x4 histogram and configured as 4×4×4 

sub-histograms” (Moradi et al. 2020).  

3.3.2 Anomaly detection using Support Vector Machine 

SVM is a powerful statistical machine learning model that is able to perform linear or nonlinear 

regression, classification, and anomaly detection. SVMs determine the best possible splitting line, 

plane, or hyperplane among two classes or more. For each class in the dataset, SVM maximizes 

the closest data points distance and the data points lying on the boundaries are called support 

vectors (Cortes and Vapnik 1995). The maximization of data point margins among the different 

classes datapoints leads to the best separating boundaries and improve the model generalization. 

The model considers a weight for the data points which are sat on the wrong side and to minimize 

their effect on the classification performance the weight tends to be lessened.  

SVMs offer some advantages over other supervised machine learning algorithms when dealing 

with small to medium size training datasets. In comparison to high parameter enabled models like 

neural networks, SVMs are faster both in training and classification phases. The main benefit of 

SVMs is their ability to cover high dimensional datasets efficiently, and classification performance 

does not affected by the size of feature space (Joachims 1998).  
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In sewer pipes most of the frames do not include any type of defect (normal frames), while short 

temporal durations of the frame may contain defects (anomalous frames). In this research, the 

sewer inspection video frames are classified into two classes of normal and anomalous frames. 

The features of anomalous frames are not known, and anomalies can be appeared in any shapes. 

On the other hand, the normal frames features are known, and their features can be extracted to 

generate the relative training dataset. Thus, normal and anomalous frames can be classified using 

a one class classifier which is trained by normal frames features. So, any datapoints of the input 

data would be classified into normal or anomaly based on its comparative position to the dataset 

used in the training. In this research, one class SVM is introduced to perform anomaly detection 

among sewer inspection video frames. 

One class SVM is a common technique in anomaly detection proved to be robust tools in anomaly 

detection in high dimensional and large scale CCTV frames (Erfani et al. 2016; Moradi et al. 2020; 

Yang et al. 2019). In the training of OC-SVM, the relative distribution of normal data is modeled 

and the data is differentiated by a specific kernel function that plots the input space to a higher 

dimensional feature space (Erfani et al. 2016). In the developed framework, the provided dataset 

from the sewer frames sequences, is split into training and test datasets. Large values of the 

attributes are required to be scaled to prevent missing smaller numeric ranges. Moreover, large 

numeric ranges result in calculation difficulty.  

In this research, OC-SVM algorithm inspired by Schölkopf et al. (2001). The proposed algorithm 

maximizes the decision boundary margin among the normal data points and the origin and 

precludes expensive calculations for high-dimensional datasets (Schölkopf et al. 2001). To 

establish the support vector, the cost function is (Schölkopf et al. 2001):    

Minimum  
1

2

‖𝑤‖2 +  𝐶 ∑ 𝜉𝑖 −  𝜌               𝑤𝐹, 𝜉𝑅, 𝜌𝑅𝑁
𝑖=1

   
   Equation 3-9 

Where 𝐶 =
1

𝑁𝜗
  and ; 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑤. 𝜑(𝑥𝑖) ≥  𝜌 − 𝜉𝑖,     𝜉𝑖 ≥ 0. 

“Where N is the number of the data points in normal dataset, ν is a regularization parameter, and 

ξi is the slack variable for point xi that allows for some anomalies to locate outside of the decision 

boundary and ξ=[ξ1,…,ξN]. The parameter v rules the fraction of normal data that possibly will be 

classified as outliers, whereas w and ρ are the parameters which determine the decision boundary 

and are the target optimization problem variables. x and 𝜑  the original data sets into feature space 

which is a higher dimensional space to linearly separate the non-separable data sets and  K(xi, xj) 

= Φ(xi) ⋅ Φ(xj) is the kernel function” (Moradi et al. 2020).  

To limit the variable dimensions, the cost function can be translated into a dual problem as follows 

(Schölkopf et al. 2001):  

min    
∑ 𝛼𝑖𝛼𝑗𝑘(𝑥𝑖, 𝑥𝑗)                𝛼𝑅𝑛

𝑖 𝑗

   
   Equation 3-10 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝛼𝑖 = 1

𝑛

𝑖=1
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0 ≤  𝛼𝑖  ≤  
1

𝑣𝑛
 

as 𝛼 denotes the Lagrange multiplier and 𝑘(𝑥𝑖, 𝑥𝑗) represents the dot product of 𝑥𝑖 and 𝑥𝑗  vectors. 

To more demonstration of the algorithm can be found in Schölkopf et al. (2001)., The decision 

boundary is determined using Lagrange techniques and utilizing a kernel function (Shahid et al. 

2015):  

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤 ⋅ 𝜙(𝑥𝑖)) − 𝜌) = 𝑠𝑔𝑛(∑ 𝛼𝑖
𝑛
𝑖=1 𝐾(𝑥, 𝑥𝑖) − 𝜌)  Equation 3-11 

 

 

 

Figure 3-9. General scheme of One-Class SVM (adapted from (Shahid et al. 2015)) 

One of the most significant aspects of the SVMs is the kernel technique. Kernel parameters impact 

the classifier’s performance and its generalization capability. The commonly employed kernel 

functions are as follows (Yin et al. 2014):   

Linear kernel: K(xi, xj) = 𝑥𝑖
𝑇 𝑥𝑗  

Polynomial kernel: K(xi, xj) = (γ𝑥𝑖
𝑇𝑥𝑗 + 𝑐)𝑝 

Radial basis function kernel: K(xi, xj) = exp(−𝛾‖𝑥 − �́�‖2) . 𝛾 

Sigmoidal kernel: K(xi, xj) = 𝑡𝑎𝑛ℎ(𝑘𝑥𝑖
𝑇𝑥𝑗 − 𝑐) 

where γ and c are constants, σ is the width of the Radial Basis Function (RBF) kernel, and p is the 

degree of the polynomial. 
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3.4 ROI localization    

Generally, sewer pipeline inspection is conducted in segments of the pipeline. A segment is from 

starting manhole till the end manhole and can be between 5 to 90 meters. The CCTV camera is 

mounted on a tractor and the covered distance from the starting manhole is measured and among 

some other information are indicated as text subtitles in the foreground of the recorded footages. 

These text subtitles can instruct operational information about the inspection such as inspected 

pipe address, GIS codes, pipe material, operator’s name, and the distance from the starting 

manhole. 

In this research, the distance information is used to locate the identified anomaly or regions of 

interest (ROIs) in the pipe segment. An innovative end-to-end text detection and recognition 

framework is proposed for ROI localization. However, applying text recognition algorithms like 

optical character recognition (OCR) on the recorded image frames from internal sewer pipeline is 

a quite difficult task. Sewer images are too noisy and include occluded background and varying 

illumination. So, the proposed approach first detects the text in image and then recognizes the text 

characters. Figure 3-10 illustrates an outline of the proposed framework. 

Pre-processing
Text confidence 

maps
CC labling

Text groupingWord Spliting

Sliding Window CNN Classifier Transcription

 

Figure 3-10. Frame localization framework (adapted from (Moradi et al. 2020)) 

To recognize a text in an image, first its location is required to be detected. There are two main 

approaches in text detection: region-based and texture based (Epshtein et al. 2010). In region-based 

approach, a neighborhood of image pixels are grouped as Connected Components (CC) that 

distinguish character candidates and exclude non-text regions by geometric constraints (Epshtein 

et al. 2010; Opitz et al. 2014). Alternatively, in texture-based approaches, the image text texture is 

defined as a distinguishable feature, and to detect the texts, the extracted text features are classified 

by a classifier (Lee et al. 2011; Pan et al. 2009). Similarly, text recognition algorithms utilize a 
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classifier to classify segmented CCs or image features such as Histogram of Oriented Gradients 

(HOG) to recognize the text characters (Opitz et al. 2014).  

In dealing with cluttered images, region based approach is proved to outperform texture based 

approach (Chen et al. 2011; Epshtein et al. 2010; Opitz et al. 2014). The input images from sewer 

inspection videos are too noisy and the background is highly patterned. Thereby, the text texture 

edges cannot be distinguished plainly from the background or the neighbor pixels. In this research, 

region-based approach is used to extract the relative CCs of texts in the sewer images and the steps 

of the approach are explained thoroughly in the following sections. 

3.4.1 Text detection  

A sequence of pre-processing operations is applied to the input images to enhance the contrast, 

sharpen the image, and to adjust pixel intensity values. Then, text confidence maps are generated 

using Maximally Stable Extremal Regions (MSER) (Matas et al. 2004). In the next step, identified 

CCs are labeled, and non-text regions are filtered. Finally, text candidates are assembled, and 

words in detected text lines are identified.  

MSER regions extraction 

MSER a robust region detector algorithm particularly when it comes to perspective change, scale, 

and brightness variations. Technically, in an image, pixels of text regions offer consistent color 

and intensity, and have a substantial difference from the background. MSER algorithm can identify 

text regions accurately. However, MSER is sensitive to image blur and in low-resolution images 

small letters are hard to detect (Chen et al. 2011). In this study, MSER algorithm is altered using 

an edge-enhancement operator to overcome the mentioned drawbacks.  

Sewer inspection images are likely to have constructional noises like white noises due to the inner 

environments of pipe. So, the edges of extremal regions are enriched by an improved Sobel edge 

detector proposed by Wenshuo Gao et al. (2010). Sobel detector determines the edges in the image 

and feeds them to MSER algorithm and pixels found outside of the detected edges by Sobel would 

be excluded. Figure 3-11 illustrates the edge enhanced text confidence maps resulted from MSER.  

 

Figure 3-11. Edge-enhanced MSER detection (image adapted from (Moradi et al. 2020)) 
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Connected component labeling  

The output of edge enhanced MSER is a set of CCs from image foreground, which are considered 

as text candidates and a rule-based approach is employed to filtered out the non-text regions among 

them. To label CCs as text and non-text geometrical characteristics of the detected regions are 

performed to label CCs (Equations 3-12 to 3-14) (González et al. 2012; Li and Lu 2012):   

𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =  
max (𝑤𝑖𝑑𝑡ℎ,ℎ𝑒𝑖𝑔ℎ𝑡)

min (𝑤𝑖𝑑𝑡ℎ,ℎ𝑒𝑖𝑔ℎ𝑡)
   Equation 3-12 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑎𝑟𝑒𝑎

𝑝𝑟𝑖𝑒𝑚𝑒𝑡𝑒𝑟∗𝑝𝑟𝑖𝑒𝑚𝑒𝑡𝑒𝑟
  Equation 3-13 

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  
𝑎𝑟𝑒𝑎

𝑐𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎
    Equation 3-14 

By the proposed ruled based approach, in the first step all the identified CCs containing numerous 

holes and very large or very small aspect ratio are removed. Then a threshold for compactness and 

solidity of regions pixels ratios is defined, and detected regions with compactness and solidity 

ratios lower than the threshold are simply identified as non-text regions and will be discarded. 

Remove non-text regions using Stroke Width  

After labeling the identified CCs, still there are some non-text regions remained that need to be 

filtered. To identify and eliminate the remained non-text regions stroke width transformation as 

another metric is utilized (Chen et al. 2011; Epshtein et al. 2010; Li and Lu 2012). “” (Moradi et 

al. 2020). Stroke width size, max stroke width, and stroke width variance ratios are calculated 

using the following calculations (Equation 3-15 to 3-17): 

𝑆𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ 𝑠𝑖𝑧𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑆𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ

max (ℎ𝑒𝑖𝑔ℎ𝑡,𝑤𝑖𝑑𝑡ℎ)
  Equation 3-15 

𝑀𝑎𝑥 𝑠𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜 =
𝑀𝑎𝑥 𝑠𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ

max (ℎ𝑒𝑖𝑔ℎ𝑡,𝑤𝑖𝑑𝑡ℎ)
  Equation 3-16 

𝑆𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑆𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑆𝑡𝑟𝑜𝑘𝑒 𝑤𝑖𝑑𝑡ℎ
 Equation 3-17 

 

As shown in figure 3-12, in a text region in image the variations in stroke width of lines and curves 

are limited over most of the region.  
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Figure 3-12. Stroke width of text regions 

Text line formation and merge text regions  

Another technique for text region detection is text line formation. Generally, text regions in an 

image form a line as they come into view one after each other, so text line is a key indicator of text 

existence. Text line detection tends to eliminate false positives identified in the previous steps. The 

text region candidates are being evaluated in a pairwise comparison to merge the CCs into text 

lines. Theoretically, word characters come within a single text line and share similar attributes 

such as stroke width, letter height, intensity, and size (Chen et al. 2011). The text information in 

sewer images appears in the form of straight lines. However, in sewer images, repeated patterns 

cause a high-level of false positives. The text lines with high level of repetitive objects would be 

identified as false positives and would be rejected. In the proposed approach a template matching 

algorithm introduced by Chen et al. (Chen et al. 2011) used to filter out the false positives amongst 

the recognized character candidates.  

Ultimately, the final text detection outcomes will be highlighted as unified text regions (Figure 3-

13). 
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Figure 3-13. Highlighted detected texts in a sewer image (adapted from (Moradi et al. 2020)) 

3.4.2 Text recognition 

In the next step of the proposed frame localization framework, the detected text regions are fed 

into a text recognition algorithm to define the text characters. The main three steps in text 

recognition methods are pre-processing, character segmentation, and character recognition (Long 

et al. 2018). As mentioned in earlier sections, sewer inspection images have complex background 

and patterned environments and segmenting the text characters is very challenging. In the latest 

researches, character segmentation has been avoided using methods such as Connectionist 

Temporal Classification (CTC) (Graves et al. 2008; Yin et al. 2017) and Attention Mechanism 

(Long et al. 2018). In this research, the CTC recognition method introduced by Yin et al. (2017), 

is utilized since it is more straightforward to employ.  

In CTC approach, the characters feature maps in the detected text regions are extracted by 

convolutional 1D sliding window. “The sliding window's height is justified based on detected text 

box height, and its width is based on the width of characters in the text image to ensure that the 

characters are covered thoroughly. In the next step, the extracted features are fed to the classifier, 

which is trained to predict the label for input features. In the end, the predicted characters are 

decoded in the transcription step (CTC layer) to recognize the word” (Moradi et al. 2020). 

In this research, text character classification is performed by a 5-layer architecture Convolutional 

Neural Network (CNN) (figure 9). The highlighted text regions are masked out input to the CNN 

and resized to 32 × 32 pixels. The inputs pass through convolutional layers with a 3×3 receptive 

field, convolution stride one, and rectified linear unit (ReLU) as the activation function. A max-

pooling layer with 2×2 window and stride 2comes right after each convolutional layer to downsize 

the number of parameters in the network. At the top of the network the feature vectors are flattened 

by two fully connected layers and the probability of each character class is determined by a softmax 

layer. 
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Figure 3-14.  Character classification model architecture (adapted from (Moradi et al. 2020)) 

For each text window, the recognized characters by the classifier are transcribed into a sequence 

character label using CTC method. CTC method omits training data pre-segmentation by 

maximizing the conditional probability P(L|Y ), as Y = y1,…., yT is the per-frame output sequence 

and L is the target label sequence (Long et al. 2018), and train the classifier straight from the input 

sequences and map to the conditional probabilities of the possible outputs (Graves et al. 2008). 

In the final step, for transcribing the recognized text characters sequence, the CTC layer is decoded 

to find the most plausible transcription (Yin et al. 2017). The transcribed sequences are transferred 

to a lexicon based decoding system in order to simulate the probable dependence along with the 

adjoining characters in the candidate words.   

3.5 Defect Detection and Classification 

Defect detection is pinpointing the location of defect in the pipe image (defect localization) and 

defect classification is to determine the type of detected defect. Introduced region based object 

detection frameworks in section 2.6 can be accomplished in three main steps: (i) descriptive region 

selection that scans the whole image with multi-scale sliding windows to identify all possible 

objects positions in the image; (ii) feature extraction to represent the features associated with 

different objects in the image and describe them; (iii) defect classification to identify the defect 

based on its distinguishable features from the other defects. These frameworks consist of several 

associated steps, and each of these steps including region proposal generation, feature extraction 

using deep neural networks, object classification, and bounding box regression required to be 

trained separately. So, the detection would be time consuming and computationally expensive. In 

this research, sewer defect detection has been conducted by the state-of-the-art object detection 

framework and their performance is compared to come up with the best defect detection model 

and its relative architecture. It is presented that one-shot models are performing better than two 

step models since the pixels are mapped directly to defect classes probabilities and bounding boxes 

coordinates.  

The proposed defect detection framework is a customized single shot multibox detector (SSD) 

inspired from (Liu, Anguelov et al. 2015). The proposed framework starts with creating the dataset 
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for different defects and ground truth boxes for each defect. The framework training and evaluation 

steps are explained in the following.  

3.5.1 Dataset  

The dataset for training the defect detection framework is developed from the sewer images and 

reports introduced in section 3.2. the dataset needs to be annotated by labels for sewer defect types 

and a bounding box for the location of the defect in the images. In order to generate the required 

labeled dataset, the images were labeled manually using LabelImg graphical image annotation tool 

(Tzutalin 2015). In total 3500 defect images were labeled in three class of defects. The image 

labels and the bounding box coordinates were saved as XML files in PASCAL VOC format. The 

prepared annotation data needs some preprocessing and conversion to be applied as input for the 

proposed model.     

3.5.2 Framework 

The SSD framework consists of three main sections, feature extractor which is a pre-trained image 

classification architecture, auxiliary layers that map the higher level features into multi scale 

convolutional features, and prediction layers to classify and localize the objects in the image. In 

this research, the feature extractor layers are studied to find the best architecture to fit the sewer 

defects dataset. The auxiliary and prediction layers are inspired from the proposed framework by 

Liu et al. (2015) and customized for the problem in hand. In this section the steps of the framework 

are explained in detail. Figure 3-15 shows the architecture of the proposed SSD model. 
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Figure 3-15. SSD architecture 

In feature extractor part, the convolutional layers of an existing architecture are utilized to capture 

the low-level features of the image. These layers are pre-trained using transfer learning. In transfer 

learning the initial weights of the layers are borrowed from a closely related subject. This part can 

be replaced by other suitable architectures as it is discussed completely in the next chapter of this 

research. However, some modifications are supposed to be done. The input image is resized to 300 

by 300 pixels. Also, in pooling layers mathematical functions as ceiling or floor are justified based 

on the feature maps dimension. The fully connected layers are removed from the end of the 

architecture since they are next to useless for the task.  

The upcoming convolutional layers in the object detection framework, represent higher level 

features by combining the fed low-level features from the feature extractor layers. Six 

convolutional layers with various filter map sizes, construct the pyramid of the image features in 
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different scales. The extracted high level feature maps are fed to the prediction layers. Defects can 

happen in infinite positions and any possible form and scale. For defect prediction. Thereby, the 

search space would be required by a predetermined set of priors. 

Priors are fixed boxes with predefined aspect ratios and positions of particular feature maps in the 

image. The priors are chosen and get matched sensibly with the ground truth bounding boxes of 

the dataset. They are positioned at all possible regions in all low level and high level feature maps 

of auxiliary layers. Priors are used in various scales regarding the feature map size and smaller 

scale priors are assigned to larger feature maps. Their scale starts from 0.1 to 0.9 of image 

dimensions. Moreover, a variety of prior aspect ratios are employed for every feature map. The 

prior ratios of 1:1, 2:1, and 1:2 for all feature maps, and two more 3:1 and 1:3 ratios for 

intermediate feature maps are used. In total, 8732 priors are specified for the feature maps of the 

auxiliary layers.  

Prior is considered as a first guess for bounding box prediction. The coordinates of the priors are 

regressed with the coordinates of the ground truth bounding box. If the coordinates of prior would 

be (px, py, pw, ph) where px and py are coordinates of the prior center, and  pw and ph are its width 

and height; and the bounding box coordinates would be (bx, by, bw, bh) where bx and by are 

coordinates of the box center, and bw and bh are its width and height, then the regress bounding 

box coordinates are [Equations 3-18 to 3-21]:   

𝑔𝑥  =  
𝑏𝑥−𝑝𝑥

𝑝𝑤
     Equation 3-18 

𝑔𝑦  =  
𝑏𝑦−𝑝𝑦

𝑝ℎ
     Equation 3-19 

𝑔𝑤 = log(
𝑏𝑤

𝑝𝑤
)     Equation 3-20 

𝑔ℎ = log(
𝑏ℎ

𝑝ℎ
)     Equation 3-21 

 

Therefore, for every prior at all feature map regions the regression of bounding box and the classes 

scores will be predicted. So, there will be 8732 predictions for regressions and class scores for all 

priors.  The Jaccard index (Intersection-over-Union) is utilized to determine the overlap extents of 

the two boxes (Equation 3-22). In this research, a threshold of 0.6 is used for Jacquard index and 

priors with IoU less than the threshold are considered as no-object and the ones with equal and 

more than the threshold are positive matches. In result, each ground truth box can be matched with 

multiple overlapping default boxes.  

𝐼𝑜𝑈 =  
𝐴∩𝐵

𝐴∪𝐵
     Equation 3-22 

The training objective is to minimize the loss of two loss functions for confidence (Lconf) and 

bonding box location (Lloc). To calculate confidence loss function, the number of negative matches 

(i.e., background) needs to be restricted using hard negative mining. In hard negative mining the 

model only considers those predictions which were the hardest to recognize as no object. The 
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confidence loss is calculated as the sum of cross entropy losses between positive and no object 

predictions (Liu et al. 2015) (Equation 3-23): 

Lconf =
1
𝑛
 (∑ 𝐶𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + ∑ 𝐶𝐸𝑛𝑜 𝑜𝑏𝑗𝑒𝑐𝑡 ) Equation 3-23 

The localization loss would be the is the smooth L1 loss between the predicted box (p) and the 

ground-truth box (g) (Girshick 2015) (Equation 3-24): 

 Lloc =  
1

𝑛
∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒    Equation 3-24 

So, the overall objective loss function is a weighted sum of these losses (Liu, Anguelov et al. 2015) 

(Equation  3-25): 

L = Lconf + αLloc     Equation 3-25 

When there are two or multiple boxes with positive prediction of the same object, they are 

considered redundant prediction. To avoid this problem Non-Maximum Suppression (NMS) 

method is used. First, the Jaccard index among all predicted boxes in a given class is calculated. 

If the index of two boxes is more than a defined threshold, then most likely these boxes are 

predicting one same object and the box with the maximum score will be kept and suppress the 

others.     

3.6 Performance evaluation 

Performance evaluation for the models represents the generalization capacity of them and their 

prediction accuracy. In this research, for each model of the proposed framework, a separate 

performance evaluation set up is introduced. The anomaly detection model is differentiating 

between a normal frame and anomalous frame, so a binary classifier performance evaluation 

system is proposed. The localization model is based on text detection and recognition algorithms. 

Thereby, evaluation metrics are introduced for text detection (i.e., text bounding box detection), 

and the accuracy of the text recognition model is calculated by comparing the test results and 

ground truth information. For the defect detection and classification model, the evaluation metrics 

for categorical classifiers are employed to assess the classifier model capabilities and detection 

performance.  

3.6.1 Anomaly detection model   

Based on (Olson and Delen 2008), if a video frame is fed to the anomaly detection model, there 

are four possible prediction outcomes. If the frame is an anomaly (positive) and it is detected as 

an anomaly (positive), it is considered to be a true positive (TP), and if the classifier predicts 

anomalous for a normal frame, it is counted as a false positive (FP). Correct classification of 

normal frames as negative would be regarded as a true negative (TN), and incorrect classification 

of the normal frame as an anomalous frame, would be counted as false negative (FN). The 

performance of the anomaly detector is evaluated by three measures introduced by (2008): 

(1) Recall or sensitivity is calculated as the ratio of correctly classified positives (TP) and the total 

positive count (TP+FN). 
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Recall (true positive rate) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    Equation 3-26 

(2) Precision is calculated as the ratio of correctly classified positives (TP) and the total classified 

positives (TP+FP).  

Precision (sensitivity) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   Equation 3-27 

(3) Overall prediction accuracy is calculated as the ratio of total correctly predicted positives and 

negatives (TP + TN) by the total number of examples (TP+TN+FP+FN). 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃++𝑇𝑁+𝐹𝑁+𝐹𝑃
    Equation 3-28 

3.6.2 Frame localization 

For text detection, various evaluation protocols were possible, including denoting the whole text 

blocks, words, and characters (Lucas 2005). In this research, the ability of the model to identify 

word rectangles in an image is measured since it is difficult to specify text blocks in distracted 

sewer images. For the text character recognition step the cropped word recognition capability is 

evaluated. Each of these protocols is explained in the next sections.  

For text detection performance evaluation, the precision and recall metrics are used as 

recommended in Lucas (2005). Precision, p is the number of texts detected correctly divided by 

the total number of detections. The low precision score shows that the system overrates the number 

of text boxes. Recall, r is the number of texts detected correctly divided by the total number of 

targets. Low recall score shows that system underrates the number of text boxes. Also, it is unlikely 

the system behaves exactly like a human in detecting the bounding boxes for an identified word 

(Lucas 2005). So, for text bounding box matching, a flexible measure is defined as the area of 

intersection of two boxes divided by the area of the minimum bounding box containing both 

rectangles (Lucas 2005). So, two rectangles are considered matched when their intersection ratio 

is between 0.7 and 1. The best match m(r, R) for a box r in a set of boxes R is defined as (Lucas 

2005): 

m(r,R)=max mp(r,r′)|r′∈R    Equation 3-29 

And, precision and recall are defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝′) =
∑𝑟𝑒∈𝐸 𝑚(𝑟𝑒,𝑇)

|𝐸|
    Equation 3-30 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑟′) =
∑𝑟𝑡∈𝑇 𝑚(𝑟𝑡,𝐸)

|𝑇|
    Equation 3-31 

Where T and E are the sets of targets and identified rectangles. An f metric is used to combine the 

estimated precision and recall into a single measure: 

𝑓 =
1

𝛼/𝑝′+(1−𝛼)/𝑟′
     Equation 3-32 
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 Where controls the relative weights and α=0.5 defines equal weights for precision and recall. 

The performance of the text detection algorithm is evaluated on sewer images from the 

generated dataset and compared with manually labeled ground truth. The capability of the 

proposed model is measured by checking the correct detection of bounding boxes around text 

information in sewer images.  

3.6.3 Defect detection and classification 

In contrary to binary classification, in categorical classification and object detection, there are no 

true negatives (TN). True positive (TP) shows the number of real defects that are correctly detected 

as defects and false positive (FP) indicates the number of non-defected images that are predicted 

as defected. Meanwhile, the number of real defects which are detected as non-defect is a false 

negative (FN). So the precision and recall are calculated as: 

Recall (true positive rate) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    Equation 3-33 

Precision (sensitivity) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   Equation 3-34 

Moreover, for defect detection in each bounding box, a confidence level, and related coordinates 

are determined. The overlap ratio of the predicted bounding box and the ground truth box can be 

used to determine TP and FP. the ratios above a certain value considered as TP. The ratio is 

calculated  as (Everingham et al. 2012):  

𝑎0 =
𝑒𝑥𝑡𝑒𝑛𝑡(𝑝 ∩ 𝑔)

𝑒𝑥𝑡𝑒𝑛𝑡(𝑝∪ 𝑔)
     Equation 3-35 

Where a0 is the ratio of overlay among the predicted bounding box p and ground truth bounding 

box g. Besides calculating precision and recall, the area under the precision-recall curve is defined 

as Average Precision (AP) (Equation 3-31) (Everingham et al. 2012). 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
     Equation 3-36 

Mathematically, the precision value for recall (ȓ) is replaced with the maximum precision for any 

recall ≥ ȓ (Everingham et al. 2012). 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max 𝑝(�̃�)          �̃� ≥ 𝑟   Equation 3-37 

Eventually, mAP is calculated for all the target classes using Equation 3-33 (Everingham et al. 

2012): 

𝑚𝐴𝑃 =  
1

𝑁𝑡
 ∑ 𝐴𝑃𝑖𝑖      Equation 3-38 

Where Nt  is the number of target classes, and APi is the AP value for class i. 
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Chapter 4 : Model Implementation and Validation 

 

In this chapter, the application of the proposed anomaly detection methodology described 

in chapter 3, is demonstrated in the context of a real-world example. The videos are taken 

from the sewer CCTV inspection videos of the City of Laval, Quebec, Canada. The 

material of sewer pipes in the data set were circular form concrete pipes, with 610 mm 

diameter. The video format is MPEG-2, at a frame rate of 30 frames per second and 

resolution of 640×480 pixels. The following section presents the implementation process 

of the proposed framework. Data is used to develop the model and verify the validation of 

the developed methodology. 

4.1 Case study  

Civic infrastructure inspection and assessment is a routine part of maintenance procedures 

in many municipalities all over the world. In this research, the inspection data has been 

provided by the City of Laval. The reports have been provided by SIMO Management Inc. 

where a camera recorded the inspection CCTV videos with a telephoto lens. The city of 

Laval intended to assess the condition of sewer pipelines and prioritize the sewer pipelines. 

The inspection project is a part of completing phase 2 of the City’s action plan. The data 

has been used for both model development and testing, and the validation of the models.  

The project, including inspection and assessment of 1900 manholes and sewer pipes in pre-

defined areas in Laval. A total length of approximately 130 kilometers of sanitary and 

combined sewer pipes with different pipe diameters ranging from 150 mm to 1500 mm 

was analyzed and assessed to provide condition assessment of manholes and pipes. Figure 

4-1 represents the areas where inspection has been conducted.  

 

Figure 4-1. Inspected areas in Laval 
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Image from Simo Inc. report 

Parts of the inspection video have been employed to develop the model. The data was 

divided into two parts, training data and testing data in order to evaluate the performance 

of the model. The training data also split up into videos including only normal frames, and 

videos including normal frames and frames containing anomalies in. Figure 4-2 shows the 

pipelines which the inspection videos are used for model development.  

 

 

Figure 4-2. Part of inspected sewer pipelines  

Image from Colmatec Inc. report 

4.2 Anomaly detection model 

In this section, the application of the proposed anomaly detection algorithm is 

demonstrated in the context of a real-world example. As mentioned before, the proposed 

model aims to perform anomaly detection in sewer pipelines inspection videos as an 

automated process. The capability and accuracy of developed models are tested using the 

datasets which are extracted from CCTV inspection videos obtained from the City of Laval, 

Quebec, Canada. The material of sewer pipes in the data set was concrete with a circular 

cross-section and 610 mm (24 inches) diameter. The video format is MPEG-2, at a frame 

rate of 30 frames per second and resolution of 640×480 pixels. The preprocessing of videos 

and SVM training have been done using MATLAB (MathWorks 2018). The 
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implementation of the models is described in the following steps. The data set split into a 

training set which includes only normal frames and a testing set which contains both 

normal and abnormal frames. The training subset contains 20 video samples, and the testing 

subset includes 12 video samples. Each sequence lasts around 1500 frames, for a total 

duration of 25 minutes. 

4.2.1 Data preparation 

The proposed approach is tested on sewer inspection videos from the mentioned data base. 

Sewer CCTV videos usually contain too many frames which do not contain any important 

information such as starting, under water, camera lens malfunctioning, and end of pipe 

frames. In this research, the mentioned frames have been neglected from being analyzed, 

and only forward view frames are captured. The data set split into a training set which 

includes only normal frames, and a testing set which contains both normal and abnormal 

frames. A preprocessing step applied to transform the frames to gray scale and resize them 

to 320 × 280 pixels. Moreover, due to the low speed of robot carrying the camera, sewer 

pipeline inspection videos contain a repeated scene with not much difference in 

consecutive frames. Thereby, to decrease the number of calculations, the frame rate 

reduced to 10 frames per seconds. Sewer inspection videos have traits that make them 

prone to noise because of sewer pipeline lighting condition and camera movements. Noise 

can be random or white noise, or coherent noise created by the device's mechanism or 

processing algorithms. Noise reduction step has been performed using a Gaussian filter of 

size [2, 2] with σ = 1.1. Figures 4-3 shows sample frames from the training sets with normal 

frames and anomalous frames, respectively. 

 

 

Figure 4-3. Sample of training set  

4.2.2 Feature extraction and scene representation 

In this step first, the preprocessing tasks are applied to the video. The frame rate is adjusted 

to 5 frames per seconds and then are converted from RGB to grayscale. The size of frames 
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is changed to 120 × 80 pixels, and a noise reduction step has been performed using a 

Gaussian filter of size [2,2] with σ = 1.1.  

The prepared video frames then are fed to 3D SIFT feature sampling algorithm. The videos 

of the training dataset are analyzed, and the frames are patched by eight frames as cuboids 

temporal length, and each one is divided into eight sub-regions, two along each side. The 

interest points of training frames are extracted, and in all the sub-regions, the orientation is 

accumulated into an 8x4 histogram and configured as 4x4x4 sub-histograms as represented 

in figure 4-4. Thereby, the final descriptor of each key point is a 2048 (4×4×4 ×8×4) 

dimensions vector.  

(a)

(a)(b) (c)
 

Figure 4-4. Illustrative example of 3D SIFT descriptor definition: (a) CCTV frame 

sequence; (b) grayscale and resized input frame; (c) construction of 3D sift descriptor 

(adapted from (Moradi et al. 2020)).  

4.2.3 Training the SVM classifier and anomaly detection  

After extracting the frames features, the data is mapped to a higher dimensional feature 

space to separate the data. For the data which is inseparable in the input space, the proper 

kernels are selected. In this paper, linear and nonlinear Gaussian radial basis function 

(RBF) kernels are used, and the performance of each is compared. In the next step, the 

appropriate parameters of a geometric figure are determined. This geometric figure is 

enclosing the feature space of sampled data vectors. In this research, the sampled data 

distribution is defined in a hyperplane with relative weight vector (w) and bias parameter 

(r). All data samples lie inside the hyperplane are considered as normal with relative 

Lagrange value of zero and the data with Lagrange value equal and greater than C are 

identified as outliers (Shahid et al. 2015).   

The main part of the model training is the selection of proper values of γ and C. Large 

values of γ result in overtraining and too many support vectors, and on the other hand, 

small values of γ lead to few support vectors and affect the generalizing of the model. Also, 

the optimum value of C needs to be estimated to regulate the number of normal data that 

possibly will be classified as outliers in the model. Different values of C and γ in the range 

of 0.001 to 100,000, are examined to determine various combinations of sensitivity and 

providing the highest accuracy for the model. So, γ = 0.001 is considered as the initial γ 
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and is increased until there is no more decrease in support vectors. Eventually, the model 

showed the best performance by values of γ = 1.0 and C=10.by the accuracy of 0.95. 

 

Figure 4-5. OC-SVM model accuracy by various C and γ 

4.2.4 Performance evaluation 

As mentioned in the last section, performance evaluation for classification models 

represents the generalization capacity of the classifier and its prediction accuracy. Based 

on (Olson and Delen 2008), given a classifier and an instance, there are four possible 

prediction outcomes as shown in Table 4-1.  
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Table 4-1. Elements of confusion matrix 

 Predict (Anomaly) Predict (Normal) 

Actual (Anomaly) TP FN 

Actual (Normal) FP TN 

 

The performance of the proposed model is compared with three other models through the 

introduced metrics. A Multivariate Gaussian distribution-based anomaly detection model 

trained with SIFT descriptors extracted from the database. Multivariate Gaussian 

distribution assumes the normal data as Gaussian distributed (Do 2008). The prepared 

dataset is converted to a Gaussian distribution and feed to the model to fit and estimate two 

parameters of μ and Σ. The algorithm calculates the probability of data points using the 

following (Do 2008): 

(𝑝|𝜇, 𝛴) =  
1

(2𝜋)
𝑛
2  |Σ|

1
2

 exp (−
1

2
(𝑑 − 𝜇)𝑇Σ−1(𝑑 − 𝜇)  Equation 4-1 

Where μ is an n-dimensional vector, and Σ is an n×n covariance matrix. 

When new data is given p(d) would be computed and compared with ε as a predefined 

threshold. If p(d) < ε then the data point is identified as an anomaly, otherwise it is 

considered normal.  

Moreover, two other OC-SVM models trained with SIFT and GIST descriptors. GIST 

descriptors rely on the shapes in an image and condenses the gradient information of 

various regions of the image to provide a global description of the scene (Douze et al. 

2009). GIST descriptor is computed by convolving the input image with 32 Gabor filters 

at four scales and eight orientations, generating 32 feature maps with a matching size of 

the input image. Then, every feature map is divided into 16 regions in 4×4 grids, and in 

each region of interest feature values are averaged. The resulted averaged values from the 

16 regions included in 32 feature maps are concatenated to turn out a 512 features GIST 

descriptor (Zhang 2015). Also, both trained models used RBF kernels. 

The trained models were tested against a data set with 300 anomalous (positive) frames 

and 300 normal (negative) frames, which were previously unseen by the models. The 

resulted performance metrics, including recall, precision, accuracy, and F1 score are 

presented as a confusion matrix in Table 4-2. The recall which represents the fraction of 

frames are correctly labeled as anomalous out of all anomalous frames in the dataset. The 

proposed model outperforms the other models by recall rate of 0.93 which shows the 

capability of the proposed model in recognize the anomalies correctly. The number of false 

alarms (false positive) has been reduced but still is high in the proposed model due to the 

low quality of sewer images. Also, higher recall is more desirable for the problem in hand 

since it shows the model does not miss anomalous frames among all the frames. All the 

OC-SVM models show almost the same precision rate of 0.80-0.82 which illustrates the 

fraction of frames are correctly labeled as anomalous (i.e., true positives) out of all the 

frames that the classifier labeled as anomalous. Moreover, regarding the accuracy, the 

proposed model outperforms other models by accuracy of 86.67%. However, the high 
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accuracy does not approve the model’s ability because it deals both false positive and false 

negetive  equally. Therefore, F1 Score is calculated for all the models for better evaluation. 

Among all four tested models, the proposed model performs better than the others by F1 

Score of 0.88.   

Table 4-2. Prediction performance metrics of the proposed model through testing data 

sets 

 Precision Recall Accuracy F1 Score 

Multivariate Gassian-D- SIFT 0.62 0.58 61.23% 0.60 

OC-SVM- GIST 0.80 0.54 70.55% 0.65 

OC-SVM- SIFT 0.81 0.67 75.33% 0.77 

OC-SVM – 3D SIFT 0.82 0.93 86.67% 0.88 

 

Receiver operating characteristic (ROC) curve represent the different values of classifier 

recognition rate corresponding to various false positive rates. The area under the ROC 

curve (AUC) should tend to 1 to show the prediction ability of the classifier and  AUC is 

less than 0.5 shows that the classifier recall is only rested on probability (Shahid et al. 

2015). As presented in figure 4-6, the AUC of the trained model with 3D SIFT features 

and RBF kernel was found to be 0.966.  The results reveal that it is feasible to use the 

proposed approach for automated sewer defect detection in CCTV videos. However, 

accuracy can be improved by reducing false alarms, which mostly are because of sudden 

changes in camera angle or water level. Overall, evaluation results show that the proposed 

model is suited for identification and localization of anomalies in sewer CCTV inspection 

videos since that it employs temporal information from sequences of frames rather than 

single static frame image.  
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Figure 4-6. The receiver operating curves (ROC) for OC-SVM on the testing dataset   

4.3 Frame Localization 

The performance of proposed text detection and text recognition are evaluated on the 

provided dataset. The videos only included text information for frame location, which is 

shown as travel distance from the manhole. However, the proposed system can detect and 

recognize other text information such as sewer pipe location, pipe section, date, and defects 

information which is registered by the operator and can be used for off-site evaluation and 

quality control purposes.  

4.3.1 Data preparation   

The text information in sewer video frames include English alphabetical and numerical 

characters. So, to provide the training dataset for the text recognition model, one single 

dataset was generated for all types of text information from cropped texts. The dataset size 

was boosted using data augmentation technique and image transformations including 

scaling, color channels shifting, adding various noises, and rotation (Figure 4-7).  
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Figure 4-7. Data augmentation using various transformations (adapted from (Moradi et 

al. 2020)) 

4.3.2 Text detection 

The text detection approach introduced in section 3.4.1 is utilized to detect the text 

information in separated anomalous frames. The quality of the images was enhanced by 

sharpening the edges and noise reduction. The extracted MSER regions were identified and 

various filters were applied to exclude non-text regions and the relative text boxes were 

highlighted. The highlighted texts in the inspection video frames were only the distance 

from the starting manhole in meters. 

The performance of the text detection was assessed by the introduced metrics in section 

3.6.2. The precision and recall metrics were calculated by studying the total number of 

correct detected texts and the ground truth bounding boxes. The low precision score 

indicates that the text detector overestimates the amount of text bounding boxes. On the 

other hand, low recall score illustrates that the text detector underestimates the number of 

text bounding boxes. Table 4-3 shows the evaluated precision, recall, and fscore of the text 

detection model. 

Table 4-3.Text detection algorithm evaluation results 

 Precision Recall f score 

Text detector 0.73 0.60 0.66 
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4.3.3 Text recognition 

The highlighted text boxes were fed to the text recognition model to classify the included 

characters. The text recognition model was trained on a synthetic 62- way dataset which 

was generated from different types of texts in sewer inspection video frames. The trained 

character classifier achieved the accuracy of 86.6% on recognition of the characters. Table 

4-4 presents the accuracies of developed text recognition model versus optical character 

recognition (OCR) model. The OCR model was created using MATLAB OCR trainer 

toolbox (2018). the proposed text recognition model shows better performance on the 

sewer images comparing the OCR model since “the OCR algorithms performing well on 

clean images and sharped text edges while sewer images are too noisy, and usually the 

texts are blurred” (Moradi et al. 2020).  

Table 4-4. Cropped word recognition results (adapted from (Saeed Moradi et al., 2020)) 

Method Accuracy 

Proposed 86.6% 

OCR 57% 

4.4 Defect detection and classification  

It is believed that the foremost causes of sewer pipeline incidents include pipe blockages, 

which are mainly caused by defects such as deposits, the disproportion of inflow and 

outflow caused by infiltration, and pipe wall breakages which can be triggered by cracks 

(EPA 2004). Thus, the prepared dataset includes four types of defects including joint 

displacement, deposit, infiltration, and crack. 

4.4.1 Dataset preparation  

The collected images are augmented by different transformations and adding noise. Images 

are rotated by 180 degrees and flipped to transform the location of the defects in images. 

Moreover, noise filters applied to add Gaussian noise to the histogram of the images and 

salt and pepper noise to the image pixels. After data augmentation, the size of dataset 

increased considerably and a total of 6000 images used for training the model. Figure 4-8 

shows an example of data augmentation operations used in the experiment. 
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(a) 

  

(b) (c) 

  
(d) (e) 

Figure 4-8. Image augmentation: (a) Original image; (b) Horizontal flip; (c) Image 

rotation; (d) Gaussian noise; (e) Salt & Pepper noise. 

To label the dataset, both the defect type and its location in the images should be annotated. 

The dataset is prepared for four sewer defects, including crack, deposit, infiltration, and 

joint displacement images. For each category, the different subtypes are ignored, and the 

category name is used as a target label for all related images. So, various types of cracks, 

including longitudinal cracks, diagonal cracks, and complex cracks, are labeled as crack. 

In the same way, different types of deposits such as attached deposits and settled deposits 

are labeled as deposit. Images containing multiple defects are also included in the dataset. 

Figure 4-9 shows images with cracks and joint displacement, deposit, and infiltration, and 

crack and infiltration.   
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(a) (b) (c) 

Figure 4-9.example of images with multiple defects: (a) cracks and joint displacement; 

(b) deposit and infiltration; (c) crack and infiltration 

Although images with higher resolution can provide more information, the training 

computational cost increases significantly. On the other hand, for getting more reliable 

results, the input images in the testing dataset should have the same size as training and 

validation datasets. Therefore, for training defect detection and classification model, all the 

images are resized to 300×300 pixels. All images are annotated to introduce ground truth 

bounding boxes and target labels using LabelImage (Tzutalin 2015) graphical annotation 

tool. The XML files generated by LabelImage need to be converted to TensorFlow records 

to be used by the developed models. Figure 4-10 shows LabelImage graphical interface. 

  

Figure 4-10. LabelImage image annotation 
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4.4.2 Experiments and results 

Several experiments are carried out to examine the performance of the proposed framework 

and other frameworks in the detection of different defects in the prepared dataset and also 

the influence of pre-training network type and hyper parameters on model performance.  In 

each experiment, 70% of the dataset is used as a training set, 10% as a validation set, and 

20% as the testing set. Also, all the experimental models are developed using Keras 

(Chollet 2015) high-level API with TensorFlow (Martin et al. 2015) backend, which 

provides libraries to create various layers of deep learning architecture. The models were 

run on the same machine with Windows operating system with an Intel Core i7-4790 CPU, 

two Nvidia GeForce GTX 1070 GPU and 32G Ram. 

Experiment 1 

In the first experiment, the ability of the model in detecting and classifying each of the four 

defects is evaluated. The precision and recall are calculated for each of them in the base 

model trained by VGG16 as initializer and five convolutional layers for feature extraction 

and mapping default boxes. The number of images samples for all defects are the same, 

and for each of the defects, 3500 images were used for training and test the model. The 

proposed model is evaluated by AP of each class and mAP of the model. Table  4-5 shows 

the AP and mAP of the model.  

Table 4-5. mAP and AP of a model for different defects (%) 

Model 
Pre-

training 
mAP 

AP (%) 

Crack Deposit Infiltration 
Joint 

Displacement 

SSD300 VGG16 79.6 76.3 88.2 74.9 81.3 

 

The model shows better performance for more distinguishable defects such as deposit and 

joint displacement. However, in defects such as cracks and infiltration, the AP results are 

slowly less as of 76.3% and 74.9% respectively. Potential reasons can be color 

resemblance, geometry of the defects, and intensity changes among the features. Also, fine-

grained nature of these type of objects makes a big challenge for the predictor model to 

distinguish them accurately. In addition, image noise and illumination affect the accuracy 

of the model, particularly in dealing with these types of defects.  
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(a) (b) 

  
(c) (d) 

Figure 4-11. Precision-recall curve: (a) Crack; (b) Deposit; (c) Infiltration; (d) Joint 

displacement 

The precision-recall curve for each defect is calculated with various confidence thresholds 

(Figure 4-11). Obviously, by increasing the confidence threshold, the number of FNs 

predictions decreases, and on the other hand, the number of FPs increases. Therefore, in 

precision-recall curves, the precision value drops as recall value increases in each model 

prediction step. In sewer defect detection, it is far more important not to miss the possible 

defects, so higher recall rate among the predictions is more crucial. Therefore, lower FNs 

prediction is more desired which results in that the model will not miss the potential pipe 

defects. 

Experiment 2 

In another experiment, the performance of five of the most common object detection 

frameworks including R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015), Faster 

R-CNN (Ren et al. 2017), YOLO (Redmon et al. 2016), and SSD (Liu et al. 2015) were 

compared. The frameworks used initialization weights trained on ImageNet classification 

dataset (Russakovsky et al. 2015) and the object detection models are trained on the 

prepared dataset of sewer defects. The defect detection results are compared based on the 

evaluated mAP. The assessed frameworks Table 4-6shows comparative results of different 

frameworks trained and tested on the provided dataset. 

 



   87 

Table 4-6. Comparative results of different object detection frameworks 

Framework 
Learning 

Method 

AP 

mAP 
Crack Deposit Infiltration 

Joint 

Displacement 

R-CNN SGD.BP 68.1 71.8 45.3 69.8 63.8 

Fast R-CNN SGD 77.0 78.4 59.6 82.6 74.4 

Faster R-

CNN 
SGD 84.3 82.0 67.8 88.6 80.7 

YOLO SGD 77.4 77.0 43.3 85.3 70.8 

SSD SGD 76.3 88.2 74.9 85.7 81.3 

 

As illustrated in the table, among the tested frameworks SSD model outperformed the other 

frameworks in sewer defect detection. The first two frameworks, R-CNN, and Fast R-CNN 

use selective search method for region proposals and achieved mAP of 63.8% and 74.4%. 

Meanwhile, Faster R-CNN uses RPN, which still is time-consuming in training and 

detection, and the resulted mAP is 80.7%. However, regression models such as YOLO and 

SSD are faster at the cost of a decrease in prediction accuracy and achieved mAP of 70.1% 

and 81.3%. Since in sewer defect detection, the aim is to inspect in real time, regression-

based models are preferred. Thereby, the SDD object detection framework has been 

selected due to its better performance comparing to YOLO framework.  

Experiment 3 

In the next experiment, various pre-trained models are examined as initialization network 

for feature extractor in SSD object detection approach to find the most proper one in sewer 

defect detection and classification. The reviewed models are top rated models in ILSVRC 

ImageNet (Russakovsky et al. 2015) including AlexNet (Krizhevsky et al. 2012), VGGNet 

(Simonyan and Zisserman 2014b), GoogleNet (Szegedy et al. 2014), and ResNet (Kaiming 

et al. 2015). The models are pre-trained on MS-COCO (Lin et al. 2014). The models are 

fine-tuned and trained six convolutional layers in SSD framework using the provided 

dataset of sewer defect images. 

All four trained models are evaluated by evaluation dataset by three criteria: classification 

loss, localization loss, and total loss of the model. In classification both models trained by 

GoogleNet and VGGNet showed better accuracy of 92.8% and 92.10% respectively, 

comparing to ResNet with accuracy of 91.68% and AlexNet with accuracy of 89.9%. 

Figure 4-12 shows the comparative loss of four different models.      
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Figure 4-12. Classification Loss with different pre-training models 

Regarding the localization loss, GoogleNet showed a considerable accuracy of 94.32%, 

which is higher the accuracy of other models. The pre-trained model with VGGNet 

achieved the accuracy of 93.60% while ResNet and Alex net achieved the accuracy of 

92.63% and 91.88% respectively. Figure 4-13 represents localization loss of different 

models. 

 

Figure 4-13. Localization Loss with different pre-training models 
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In a total loss, the model with pre-trained GoogleNet network achieved the accuracy of 

91.44% while the other models achieved 88.69%, 86.85%, and 85.18% accuracy by 

VGGNet, ResNet, and AlexNEt respectively. Therefore, GoogleNet is selected as 

initialization network for defect detection model. Figure 4-14 describes the error rate of 

different models with various training networks.  

 

Figure 4-14. Total Loss with different pre-training models 

4.4.3 Model validation 

The proposed framework for sewer defect detection is selected and trained based on the 

results of the previous experiments. In the first experiment, the ability of different object 

detection frameworks in sewer defect detection is evaluated, and the SSD framework 

presented the best performance comparing the other frameworks. So, in the second 

experiment, various pre-trained networks are examined as the backbone for the SSD object 

detection framework, and GoogleNet showed higher performance comparing the other 

networks. Therefore, the final model is developed based on SSD framework with 

GoogleNet backbone.  

The proposed defect detection and classification model was validated with the prepared 

test dataset.  The test data fed into the developed model to detect and recognize the defects 

and validated with the provided ground truth. The results showed acceptable performance 

in practice for defect detection where the accuracy of 84.4% is achieved. The figures 4-15 

to 4-17 show the detection results in sewer pipeline images. 
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Figure 4-15. Example image with multiple cracks  

 

Figure 4-16. Example image with deposit  
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Figure 4-17. Example of image with infiltration 

The proposed approach is employed on static images. However, the framework cab be 

justified to detect the defects in inspection videos as well. Regarding the availability of 

large inspections video data, the proposed framework would be helpful to analyze them. 

Moreover, there have been a few incorrect predictions for some defects. Probable reason 

can be the higher level features resemblance among the confused defects. Also, cluttered 

background in sewer images is a big obstruction for correct detection. Larger training 

datasets with the variety in defect conditions and backgrounds may improve the prediction 

performance of the framework.   
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Chapter 5 : Conclusions, Contributions and Future Work 

 

In this chapter, the different contributions of this research are presented in addition to the 

conclusion and limitations of the proposed models. Also, several suggestions are presented 

to enhance the frameworks performance and the potential areas for improvement in sewer 

pipeline assessment automation. The suggestions are applicable for future studies in the 

area and visual inspection automation studies in other underground infrastructure. 

5.1 Summary 

The main objective of this research was to develop an automated CCTV inspection tool for 

sewer pipelines. To achieve the main objective, two sub-models were developed. First, a 

novel approach for anomaly detection in sewer pipeline inspection videos has been 

proposed. There are almost infinite patterns for each sewer defect and using algorithms like 

pattern recognition and change detection seems not to be efficient. The trained OC-SVM 

based model is proposed to deal with real-world observations and numerous feasible 

patterns of anomalies in sewer pipelines. The model uses 3D SIFT features to model scene 

dynamics and appearance information. The approach is composed of demonstrating 

conditions reflected as normal and distinguishing outliers to them. Moreover, the approach 

would be able to conduct real-time detection and localization of anomalies in sewer 

inspection videos. In the following steps, the identified frames were localized using the 

text information included in sewer inspection video frames. So, the frame location in the 

pipe segment would be extracted and notified. 

In the second sub-model, a deep learning based approach was proposed to detect and 

classify defects among the identified anomalous frames. After comparing various object 

detection frameworks, SSD framework was selected as the base model for the object 

detection task. The framework was customized for the problem in hand and trained using 

collected data sets from CCTV inspection videos. The capability of the proposed 

framework defect detection and classification in anomalous frames was validated through 

different experiments. Moreover, the proposed framework was modified by tuning 

different hyper-parameters and the parameters of layers were justified to study the most 

influential factors on the performance. The influence of initialization networks was tested 

using state-of-the-art networks and the achieved localization, classification, and total 

accuracies were compared. It was depicted that the networks with deeper convolutional 

layers such as GoogleNet can improve the performance of the model. Although much 

deeper layers can extract more detailed and accurate image features, the computation time 

will increase exponentially. So, the best balance of accuracy and computational cost was 

achieved by the proposed framework. 

It is supposed that the automated inspection tool would help municipalities and 

practitioners to overcome their main problems in sewer inspection by reducing subjectivity 

and increasing productivity of condition assessment job. The application of the proposed 
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framework has been illustrated by a simple real-world CCTV inspection video of a sewer 

pipeline.  

5.2 Concluding remarks 

• An anomaly detection model was developed using an innovative spatio-temporal 

feature capturing and training an OC-SVM to classify the frames into two classes 

as normal and anomalous frames.  

• The anomaly detection model was tested, and the model achieved a recall rate of 

0.973, precision rate of 0.941, and accuracy of 0.956. 

• The frames were located by a novel end to end text detection and recognition model 

to extract the location information in inspection video frames. To overcome the 

specific pipeline images condition, various image processing techniques were 

evaluated. MSER method was used to detect the probable text regions, and non-

text regions were filtered using CC labeling criteria and stroke width calculations. 

Then, the text in detected textboxes was recognized by a CNN to classify the 

characters and predict the transcriptions. 

• The text detector model achieved the recall and precision rates of 0.73 and 0.60 

respectively and f score of 0.60. The accuracy of text recognition model reached to 

0.866 in the evaluation by test dataset. 

• The identified anomalous frames are fed to the developed deep object detection 

model, which is fine-tuned using transfer learning and trained by the provided 

dataset. Batch normalization and drop out techniques were used to avoid 

overfitting. Also, hyperparameters such as convolutional filters dimensions and 

their strides were justified to increase the accuracy of the model. In the training 

phase, the warm-up algorithm was used to schedule the learning rate in various 

training epochs. 

• The accuracy of defect detection and classification model was increased from 81% 

in the first developed network to 91.44% after applying the proposed adjustments.  

5.3 Contributions 

This research proposed a two-step approach for sewer CCTV inspection automation, which 

provides references for practitioners to apply the proposed computer vision and deep 

learning techniques to address similar problems in infrastructure visual inspection. The 

practical application of the proposed approach is expected to make a considerable reduction 

in inspection time and cost, as well as to improve the accuracy of sewer pipeline 

assessment. The contributions of this research can be summarized as: 

• A comprehensive introduction and comparison of various sewer in section 

technologies. 

• A through literature review of the research works on sewer inspection automation. 

• Automated anomaly detection through sewer CCTV inspection videos and 

localizing them in the sewer pipe segment. 

• Automated defect detection and classification in sewer CCTV inspection videos. 
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The following section presents the limitations of this research and potential areas of 

enhancement. 

5.4 Limitations 

It is obvious that the pattern recognition and object detection is still an active area in 

computer vision science, and more research is required to adopt the new techniques to 

sewer pipeline assessment methods. The proposed method for feature extraction requires 

improvements in sampling part and using clustering tools. Also, anomaly detection model 

can be justified with various kernel tricks to make them more generalized and increase the 

prediction accuracy.  

The current proposed defect detection model was tested on still images, and in case of 

applying the model on inspection videos, the network needs to be modified to reach real-

time frame rate speed. Also, there were several wrong predictions in some defects such as 

cracks and infiltration, and the model got confused in distinguishing among these defects. 

The potential reasons can be similarity in geometrical shape, same color intensity, and 

pattern changes. However, more study on the model's architecture is required to increase 

the performance of the deep network in the classification of the images taken under 

different environmental conditions.  

5.5 Recommendations and Future Research    

For sewer pipeline defect detection, the proposed models can be enhanced, and the research 

can be extended by providing the following. 

5.5.1 Models enhancement  

• For anomaly detection model, the emerging techniques in machine learning area 

can be employed. The author thinks that deep learning algorithms such as auto 

encoders can be proper tools due to the availability of more powerful computational 

hardware resources.  

• Frame localization can be revised to increase the accuracy by considering the video 

frames timeline and calculating the frame location based on tractor speed and video 

frame rate. 

• The defect detection frameworks can be improved by employing applicable 

algorithms from other areas of deep learning like Natural Language Processing 

(NLP). The architecture can be modified using concepts such as attention models 

for classification performance improvement or transformers for transfer learning.  

• The defect detection and classification framework can be modified for real time 

detection in inspection videos. The model’s hyper parameters need to be justified 

to be applicable on videos. 

• The defect detection can be expanded to detect different types of each defect such 

as various types of crack.  

• The accuracy of developed models can be increased by better input data as well as 

more input data. 
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5.5.2  Recommendation for Future Work 

• Bigger datasets can be provided for each defect with the collaboration of industries 

and governmental agencies. Also, a standard data set can be prepared to be 

introduced as a benchmark for future academic research. 

• An automated Graphical User Interface (GUI) can be designed to facilitate the 

application of defect detection models for the inspectors and end users. 

• Employing emerging computer vision methods to quantify the detected defects and 

determine the severity of the defects to use in defect specific assessments. 

• An assessment model can be developed to integrate with the defect detection model 

to estimate the pipeline and network indices. 

• A decision making model can be developed using expert systems to correlate with 

defect detection and assessment models. 
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