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Abstract

A Data-Driven Optimization Method for Taxi Dispatching Problem

Narges Rezaei

Taxi service has become one of the most important means of transportation in the

world. Optimization of the taxi service can significantly reduce transportation costs,

idle driving times, waiting times, and increase service quality. However, optimization

of the taxi service due to its specific characteristics is a cumbersome task. In this

research, we studied the taxi dispatching problem and proposed a mathematical pro-

gramming machine learning-based approach to optimize the network. We presented

a data-driven optimization methodology by combining machine learning techniques,

that incorporate historical time-series data to forecast future demand, and mathemat-

ical programming. Specifically, Support Vector Regression and K-Nearest Neighbor

are adopted to learn the passenger demand patterns based on time-series data. Then

a MIP model is built to minimize total idle driving distance concerning balancing the

supply-demand ratio in different regions. Moreover, we aimed at balancing supply ac-

cording to the demand in different regions (nodes) of a city in order to increase service

efficiency and to minimize the total ideal driving distance. We proposed a method

that utilizes historical GPS data to build demand models and applies prediction tech-

nologies to determine optimal locations for vacant taxis considering anticipated future

demand. From a system-level perspective, we compute optimal dispatch solutions for

reaching a globally balanced supply-demand ratio with the least associated cruising

distance under practical constraints. We implemented our approach to a real-world

case study from New York City to demonstrate its efficiency and effectiveness.

Keywords : Data-Driven Optimization; Machine Learning; Mathematical Pro-

gramming; Taxi Dispatching Problem
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Chapter 1

Introduction

Taxis are one of the most efficient transportation modes that deliver convenient ser-

vices for passengers. Taxi service launched in the late 1990s and has become one of

the crucial travel modes. Every taxi company must explore solutions to reduce costs

while providing quality services to customers. The key to customer satisfaction is

to optimize the demand-supply metric of drivers and passengers, in other words, to

reduce the number of empty-loaded taxis. It is also of great importance to balance

the supply-demand ratio in different regions to serve customers equally and enhance

customer satisfaction.

Taking advantage of the recent developments of GPS technology, a large number of

taxi companies and researchers aimed at creating more efficient vehicle dispatch sys-

tems in the last decades. Using recent information, advanced systems can provide

strategy supports such as practical taxi dispatching, which can remarkably increase

the efficiency of the taxi services.

There are roughly 200 million taxi rides in New York City each year. The exploitation

of taxi supply and demand could significantly increase the efficiency of the city’s taxi

system. In New York City, taxi usage frequency is much higher than any other city in

the US. Instead of providing an efficient booking system to customers, New York taxi

drivers pick up passengers on the street. Therefore, predicting taxi ridership could

result in valuable managerial insights to city planners. Such information could help

managers in answering questions regarding locating the cabs, estimating the number

of required cabs, and prediction of ridership variations. For this aim, we suggest

a data-driven optimization framework to solve the spatio-temporal time-series taxi
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dispatch problem. We focus on assigning vacant taxis in an hourly time window to

different regions of the city area using machine learning and optimization techniques.

1.1 Taxi Dispatching Process

In the Taxi Dispatching Process, taxis position at different locations, and they receive

random passenger requests. The goal of the Taxi Dispatch Problem (TDP) is to

schedule vacant taxis towards predicted passengers both spatially and temporally

with the least total idle driving distance considering service quality.

In this problem, there is a central dispatch system that receives data, including the

taxi’s GPS location, with a timestamp periodically. The data is then processed at

the dispatch center to predict the spatio-temporal patterns of passengers’ demand.

Based on the predictions, the dispatch center determines a dispatch solution and

sends decisions to vacant taxis with dispatched districts to go.

Besides balancing supply and demand, another consideration in the taxi dispatch

problem is minimizing the total idle driving distance of all taxis. A dispatch algorithm

that introduces idle distance in order to serve passenger demands can increase the

total profits of the taxi network in the long run.

1.2 An Optimization Framework to Taxi Dispatch-

ing Problem

One of the most challenging tasks in the taxi dispatching problem is the prediction of

the future taxi demand, which plays a prominent role in the efficiency of taxi services

and is one of the most advanced topics in the field.

In this study, we present a framework to allocate the available fleet of taxis to dif-

ferent regions of a given city, using spatio-temporal demand forecasting models and

optimization techniques. The goals of our research are to decrease the taxis idle driv-

ing distance and to balance the supply-demand ratio for equivalent service quality in

different regions. We use a heuristic estimation of idle driving distance to describe

anticipated future costs associated with meeting customer demands using longitude

and latitude of the center in each region, calculating Manhattan norm. Our proposed
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approach includes machine learning models to predict passenger demand, in combi-

nation with an optimization problem. We offer an adaptive system that forecasts

taxi demand at a specific location within hourly intervals. We use that information

to assign the taxis based on these predictions, which offer decision support for the

taxi drivers and strategy support for taxi companies.

The objective of our optimization model is to allocate vacant taxis toward predicted

passengers, both spatially and temporally, with the minimum total idle driving dis-

tance respecting service quality. Besides, to provide a simple structure for the prob-

lem, we consider our dispatch solution for a one hour time interval. In order to

calculate the passenger demand, we utilize machine learning techniques and use that

information as input parameters in our optimization framework. In the results and

discussion section, we evaluate the performance of our proposed framework using the

taxi data, January 2018, from New York City.

Figure 1: Taxi Dispatching Process; A combination of machine learning time series

forecasting and MIP optimization.
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1.3 Challenges for Data-Driven Taxi Dispatch Sys-

tems

The ultimate goal of a modern transportation system is to fulfill customers’ demand

while minimizing operational costs while minimizing greenhouse gas emissions. In

the context of urban environments, on-demand mobility, including taxicabs and other

ride-sharing services, has gained popularity in recent years due to the rapidly rising

expenses of car ownership in cities. However, the operation of on-demand mobility

services with limited service resources is far from optimal. Although existing methods

for mobility-on-demand service of autonomous vehicles consider system-level optimal-

ity [38, 48], such systems still ignore many factors. For instance, there is no known

framework to incorporate historical and real-time sensing data to improve dynamic

dispatching performance. Besides, there is no efficient methodology to deal with

demand uncertainties.

1.3.1 Uncertainty in Demand

Traditional taxi networks in metropolitan areas heavily rely on taxi drivers’ expe-

rience to look for passengers on streets to maximize personal profit. However, such

self-interested, uncoordinated behaviors of drivers usually result in a spatial-temporal

mismatch between taxi supply and passenger demand. Greedy algorithms are widely

employed by large taxi or ride-sharing service companies to optimize taxi networks.

Such algorithms aim at finding the nearest vacant taxi to pick up a passenger or

implement a first-come-first-served strategy to optimize the network. Considering a

transportation system such as a taxi dispatch system or an on-demand ride-sharing

system (e.g., uber, lyft, and Sidecar), the current applied service usually assigns the

nearest driver to the demand point in which the driver can reach the customer in the

shortest time once a request appears in the system. However, aiming to minimize each

individual’s waiting time does not guarantee the optimality of the total profit and effi-

ciency of the provided service. This is due to the fact that passengers at over-supplied

regions have shorter average waiting times than those at under-supplied regions, and

the service may lose the customer in the under-supplied regions. Meanwhile, without

a system-level regulator, drivers tend to stay within areas with the highest possibility

of potential customers and traverse on streets hoping to pick up the next passenger
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in a short idle distance or idle time based on their own experience. Before a request

enters the the system, drivers, do not have information about the demand; hence,

there will be an extra idle driving distance, energy consumption, and unnecessary

congestion or occupation of the roads. To the best of our knowledge, there have not

been previous works that consider this type of real-time resource allocation problem

from a system-optimal perspective, with the demand prediction based on either exist-

ing data or streaming data. Defining measures to evaluate service quality, considering

available information, is essential for improving the performance of the system.

1.3.2 Dynamic Demand

Incorporating historical data and real-time information is vital for resource allocation

for smart cities from a system-level optimality perspective due to the fact that the

resources are limited. Ride-sharing or taxi services are more flexible compared to

transportation systems such as subway, bus, and trains because they do not need a

repeated schedule every day. In other words, in ride-sharing or taxi services, dispatch

decisions should be made in real-time. However, efficient coordination of taxi net-

works based on the current system state is a challenging task in large scales. The

choice of the most promising algorithm to model and predict a particular phenomenon

is one of the most prominent activities of the temporal data forecasting. Forecasting

(or prediction), similarly to other data mining tasks, uses empirical evidence to select

the most suitable model for a problem at hand. It is difficult to find an accurate

demand model based on a large volume of data for many applications, building an

accurate model that includes appropriate information is a cumbersome task. Many

application areas need a spatial-temporal model of demand prediction for regulating

the supply more efficiently. For instance, in the field of clean and renewable energy,

an adaptive robust dispatch method has been designed for wind power systems [22]

but no probabilistic guarantee of the performance is ensured. Therefore, one of the

challenges is to choose demand prediction models. In addition, an efficient model-

ing algorithm for a large dataset needs to be developed, and different performance

measures need to be set to evaluate the models.
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1.4 Contributions of the Thesis

The main contributions of this dissertation are using Data Driven Optimization

Framework to fill the gap between demand prediction and dispatching in taxi ser-

vices from a high-level perspective. We used machine learning approaches to predict

passenger demand patterns in order to solve the taxi dispatch problem. Besides, we

want to utilize the information provided by a large amount of sensing data to optimize

taxi dispatching strategies in cities. Moreover, we design both optimal taxi dispatch

models and passenger demand modeling algorithms. Furthermore, evaluations based

on applying our methodology on a dataset from metropolitan areas in the NewYork

City show that our framework reduces the total idle distance of all taxis, and supply

is more balanced across different regions of the city.

1.5 Thesis Outline

The remainder of this research is organized as follows: Section 2 provides a survey

on research conducted and related literature. In Section 3, the problem is defined as

well as our proposed method which introduces the data-driven optimization method,

two machine learning techniques, SVR, KNN, and the Mixed Integer Programming

(MIP) formulation. In Chapter 4, experimental results based on NYC taxi data trip

is illustrated. This chapter contains a data introduction, experimental results, and

performance measures. The conclusion and future works are covered in Chapter 5.
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Chapter 2

Related Literature

The problem of spatiotemporally imbalanced taxi supply and trip demand has been

a significant difficulty to market effectiveness for a long time. When supply surpasses

the demand, the driver’s bare losses from idling around without fulfilling demand.

On the other hand, passengers suffer from a long reply period of needs when there

is a supply shortage. In this research, we present a data-driven optimization frame-

work to dispatch the available fleet of taxis to different regions in a given area, using

spatiotemporally demand forecasting models. The objective functions include de-

creasing taxi idle driving distance and matching the supply-demand ratio for equal

service quality.

Our proposed approach includes machine learning models to predict demand in com-

bination with an Operations Research (OR) model for dispatching taxis to different

regions, which results in higher taxi utilization and customer satisfaction. Then, we

solve the problem via offline optimization as a MIP problem.

TDP has been widely studied in recent years as a popular application of intelligent

transportation. A recent relevant review can be found in [28, 41, 29]. Despite past

efforts in handling the TDP, there is still much work needed to develop an applicable

methodology. In order to design an efficient system, we should incorporate the his-

torical passenger demand patterns into a demand prediction design. This leverages

the taxi supply based on the Spatio-temporal dynamics of passenger demand, instead

of taking the average or using probability distribution to create taxi dispatching. In

order to suggest an applicable methodology, we need to construct a model based on

the accurate future forecast, which can be obtained by applying machine learning
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techniques on historical data. The mainstream of this research can be categorized

into two perspectives: optimization and machine learning. Moreover, the passen-

ger demand in the taxi dispatch problem using optimization techniques can also be

predicted by stochastic/deterministic models or using machine learning-based tech-

niques. We categorize existing literature based on passenger distribution presumption

into stochastic, deterministic, and machine learning forecasting approaches.

2.1 Stochastic Optimization Models

Stochastic modeling is a technique for estimating probability distributions of potential

demands. The selection of an appropriate model is crucial as it shows the fundamen-

tal structure of the series, and the fitted model is valuable for future uses.

Most existing taxi dispatching systems consider the passenger demand following prob-

ability distribution:

Phithakkitnukoon et al. [32] used the naive Bayesian classifier with an advanced

error-based learning method to estimate the number of vacant taxis at a given time,

which can be utilized to improve the system to create online maps to navigate the

passengers to stations. The objective was to predict the number of vacant taxis in a

grid cell for a given time. For that aim, they estimated the probability of a certain

number of vacant taxis within a cell given some observable drawn from historical

data. They considered the number of vacant taxis to follow a Poisson distribution

over time intervals.

Yuan et al. [46] formulated a probabilistic formulation to integrate the taxi behaviors

on each road segment and parking place as well as the mobility patterns of passengers.

The authors calculated the overall time-dependent distribution for both the parking

places and the road segments.

Another recommendation system with no commitments to pick up has been proposed

by Lee et al. [16]. They formulated the problem as taxi-customer negotiation in

which the ultimate objective of the negotiation was to maximize the global utility

while minimizing the total waiting time for both passengers and taxis. Customers

were assumed to be generated by a stochastic process over time, which was modeled

as a Poisson point process.

A rebalancing strategy for on-demand mobility taxi stations based on the fluid model
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has been proposed in (Pavone et al.)[31]. In which customers arrived stochastically

at each station following a Poisson distribution. They showed that the optimal re-

balancing policy could be generated as a solution to a linear problem. The objective

was to make sure that every station reaches an equilibrium in which there are excess

vehicles and no waiting customers.

Yang et al.[43] used a stochastic model for estimating customer waiting time and

demand. Their objective was minimizing waiting time while maximizing taxi drivers’

net utility by optimally locating the taxis.

Lees-Miller et al.[17] investigated empty vehicle redistribution on anticipating future

requests. Their offered methods resulted in lower waiting times. The authors proved

that the movement of empty cabs remarkably decreases the waiting times. They con-

sidered passengers’ requests to follow a Poisson distribution.

Some of the existing recommendation systems are based on taxi-passenger matching

models. An advisory system based on principles of stable matching has been proposed

by Bai. R et al.[4]. They proposed an algorithm based on a game-theoretic model

that regarded the problem as a non-cooperative game among taxi drivers, such that

each taxi driver cannot find a better choice than their assigned passenger and route.

The requests for a taxi service from the passengers were randomly distributed in 240

minutes, in addition to the random distributions of their locations and destinations.

The time of each request was determined using a Poisson distribution.

Lowalekar et al. [23] investigated online Spatio-temporal matching of services in

shared transportation. In order to overcome the myopic approaches, which are widely

used in large-scale online matching, they presented a multi-stage stochastic optimiza-

tion formulation to consider potential future demands.

2.2 Deterministic Optimization Models

Another category of researchers that considered the demand to be deterministic,

while because of the random nature of travelers and destinations, this consideration

can make efficient systematic dispatching a challenge. Different strategies and mod-

els have been proposed in the literature to cope with the vehicle dispatching problem

with deterministic demand.

There are related works in order to build an advisory system based on deterministic
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demand.

Duan et al. [10] investigated the autonomous taxi (aTaxi) dispatching problem in

hybrid request mode, which involved an immediate request and reserved services.

Further, both centralized and decentralized autonomous dispatchers were planned to

create short/long term routes for aTaxis. Centralized autonomous dispatchers inte-

grated vehicle-to-passenger allocation with empty vehicle rebalance to ensure solution

quality, while the decentralized one distributes partially to reduce the centralized dis-

patcher’s workload. A certain percentage of historical requests from the New York

City taxi dataset were randomly selected for passenger demand prediction.

Powel et al. [33] considered the potential profit for taxi dispatching based on fixed

passenger demand. The methodology had the potential to maximize profit by offering

potential locations to taxicab drivers, which can reduce overall cruising time. They

created a location offering Spatial-temporal profitability (STP) map at the beginning

of a cruise trip based on a profitability score.

Shi et al.[35] offered an outline to help drivers to find a taxi stand with waiting

passengers. A discrete-event dynamic simulation model was applied to simulate the

movements of taxis and to forecast various taxi systems’ performance characteristics,

such as taxi operation profit and customer waiting time. The customer demand pat-

tern was assumed given and fixed, in a way that the average customer demand in a

taxi stands for the first half-hour was one trip every two minutes.

An advisory system, which suggests taxis to change location to areas with higher

demand by issuing advisory tokens to match the preallocation, has been developed

by Choo et al.[9]. Passenger demand was projected by adding the number of pickups.

The waiting time for clients was improved while taxis collaboratively try to determine

the regions that require more free taxis and advisory tokens were then generated to

request some nearby taxis to move to these regions.

Cheng et al.[8] proposed a service choice model that helps drivers in choosing which

taxi stand to serve. For this aim, the average number of customers per hour based

on historical data has been considered. The service choice model consisted of two

options. Option A served the taxi stand, while Option B served the general network.

The goal was to solve the problem as an optimization problem to maximize the ex-

pected revenue by calculating the expected rewards of each option.

Gao et al.[11] proposed a new mobile taxi-hailing system, which dispatches vacant
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taxis to taxi-hailing passengers proactively. The target was to maximize system util-

ity, which was consisted of the total net profits of all taxis and the waiting time of

passengers. The problem formulated as a special weighted bipartite matching prob-

lem.

The interests of passengers, drivers, and the company that may not align with one

another has been addressed by Zheng et al.[52]. Passengers and taxi drivers will have

preference orders for each other. A hybrid procedure was offered to balance the in-

terests of passengers and taxi drivers. The objective was to find a constant matching

between demand points and taxis.

Another taxi-passenger matching model was proposed by Situ et al.[37]. The goal

was to optimize the total profit of the taxi network by matching the vacant taxis

and passengers when taxi resources are insufficient. The authors used Ant Colony

Construction, an enhanced form of the ant colony optimization to solve the model.

The authors used real data from a real-world taxi company in Beijing to evaluate

their methodology.

Miao et al. studied a series of TDP from different perspectives. In [26], a Receding

Horizon Control (RHC) outline was proposed to dispatch taxis, that incorporated ex-

tremely spatio-temporally correlated demand and supply models. The objective was

to match Spatio-temporal ratio between demand and supply for service quality with

the minimum current while anticipating future taxi idle driving distance. Besides,

RHC involved a variety of predictive models and robust optimization models which

were capable of hedging against uncertainty. In [7] a hierarchical framework was pro-

posed to implement strategies that can allocate vehicles to serve passengers in different

locations considering the increasing demand and limited vehicle supply. Moreover,

the framework involved two hierarchies. In the higher hierarchy, idle mileage was

optimized based on current receding horizon control and predicted future requests, in

the lower one, pick-up and drop-off schedules were obtained by solving a MIP model.

2.3 Machine Learning-Based Models

Recent machine learning approaches for TDP can be found in [42]. We noticed that

most of the research related to the machine learning approach concerns demand pre-

diction, which plays a vital role in TDP.
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Liu et al. [21] analyzed several factors related to temporal and spatial densities of taxi

pickup locations using a Generalized Additive Mixed Model (GAMM), which was a

semi-parametric statistical approach. We note that in this research, we use GAMM

for the following three purposes: (1) temporal dependence by capturing the interac-

tion effects between a time metric and various time-varying variables, (2) applying a

non-parametric additive function to model covariate effects using a polynomial spline

estimation and (3) unobserved heterogeneity and to address data over-dispersion by

including random effects.

Zhou et al. [53] studied Multi-step Citywide Passenger Demand Prediction (MsCPDP),

which is more preferable than the next-step prediction. In order to overcome the in-

herent disadvantage of MsCPDP, which involves complicated spatiotemporal correla-

tions in the distribution of passenger demand and lack of ground truth from pre-steps

for the prediction of subsequent steps, they design a deep-learning-based prediction

model with a spatiotemporal attention mechanism. The model named ST-Attn adopts

the typical encoder-decoder framework without neural network units. Besides, the

pre-prediction result was obtained by spatiotemporal kernel density estimation, which

provides a reference to further accurate prediction.

Hu et al. [13] proposed a spatial-temporal prediction model for trip demand based

on points of interest and multivariate long/short term memory model, in which the

influence of meteorology information on the reliability of historical trip demand data

and regional imbalance caused by POI were considered in temporal and spatial predic-

tions, respectively. In order to balance the gap between customer demand and supply,

a framework that involved four components: GPS data dimensionality reduction, pat-

tern analysis, two-stage forecast model, and model verification was designed [19]. The

non-linear SVM was used to recognize not only the mobility pattern but enhance the

prediction accuracy to improve the taxi utilization.

Zhao et al. [51] proposed a framework to predict taxi and Uber demand. The ap-

proach involved a temporal-correlated entropy that measured the demand regularity

and obtained the maximum predictability and five representative predictors, which

can achieve the maximum predictability. Further, the experiment validations implied

that the maximum predictability could help determine which predictor to use in terms

of the accuracy and computational costs.
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Shou et al. [36] studied the optimal passenger-seeking policies using the Markov de-

cision process (MDP) and imitation learning for e-hailing platform. The e-hailing

drivers’ features were embedded into an MDP model, and the reward function was

covered by leveraging an inverse reinforcement learning technique. The model was

validated through a Mont Carlo simulation to show that the proposed MDP model

is capable of capturing the supply-demand ratio.

Safikhani et al. [34] proposed a generalized Spatio-temporal autoregressive (STAR)

model to explain the user demand for taxis through space and time since various

factors such as commuting, weather, road work, and closures have a great impact on

transit services. The LASSO-type penalized methods were introduced for tackling

parameter estimation.

The availability of big data shows that trips from large scale networks tend to be

periodic on spatiotemporal properties. Nevertheless, few studies aim to forecast the

demand and supply of vehicles in high-density cities.

Ling et al. [20] proposed a two-stage forecast model based on big data to fill the gap

between demand and supply in large scale the networks. The methodology combined

both non-linear support vector machine and backpropagation neural network. The

suggested framework not only revealed the mobility pattern, but it also improved the

prediction accuracy for the gap between demand and supply of taxis, thus helps to

improve the taxi utilization.

In ride-sharing services, such as UberPool and Lyftline, where multiple customers with

similar itineraries are scheduled to share a vehicle, Al-Abbasi et al.[3], developed a

framework, that uses deep Q-network (DQN) techniques to learn optimal dispatch

policies by interacting with the environment. The method efficiently incorporated

travel demand statistics and deep learning models to manage dispatching vehicles for

improved ride-sharing services.

The objective was to efficiently dispatch the available fleet of vehicles to different lo-

cations in a given area in order to achieve the following goals: (1) satisfy the demand

(or equivalently minimize the demand-supply mismatch), (2) minimize the waiting

time of the customers (time elapsed between the ride request and the pickup), as

well as the dispatch time which is the time to move to another zone to pick up new

customers (maybe, future customers), (3) the extra travel time due to participating

in ride-sharing, and (4) minimize the number of used vehicles/resources. The author
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used a convolutional neural network to predict future demand. The output of the

network represented the expected number of ride requests in a given zone for 30 min-

utes ahead.

Although these works provide solid results for related taxi scheduling problems, they

all considered a presumption for passenger demands, and none of them incorporates

the historical passenger demand patterns into a demand prediction design, leveraging

the taxi supply based on the Spatio-temporal dynamics of passenger demand. While

our contribution is using machine learning approaches to predict the passenger de-

mand pattern in order to solve the taxi dispatching problem.

The objective of this thesis is twofold: (1) to use the machine learning approaches to

predict the passenger demand, and (2) to solve the taxi dispatching problem as a MIP

model in order to minimize total idle driving distance while satisfying service quality

equally in different districts. Our work presents a simple yet practical method for

reducing cruising miles by assigning taxicab drivers to locations based on predicted

demands. In our approach, historical data serves as experience that can be feed to

the ML model in order to predict future demand.
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Chapter 3

Data Driven Optimization

3.1 Problem Statement

The proposed taxi dispatch system aims to schedule and navigate empty taxis towards

upcoming travelers with the lowest idle mileage. Considering the spatiotemporal pat-

terns of demands in the city, the dispatch center dynamically assigns empty taxis to

different regions to fulfill demand.

We utilize the supply-demand ratio of various areas as a criterion of service quality

since sending a higher number of taxis to more requests is a standard system-level

obligation, to ensure the demand of various areas similarly fulfilled. Similar service

metric )service node utilization rate( has been applied in resource allocation problems

and autonomous driving car mobility control [49]. To compute a dispatch solution,

the system is equipped with Machine Learning (ML) techniques to predict spatiotem-

poral patterns of passengers’ demands based on historical data. The data comprises

the taxi’s GPS location with a timestamp that periodically reported to the dispatch

center.

In addition to harmonizing supply and demand, including future costs when evalu-

ating a given solution is essential. It is hard to precisely forecast the future of the

large-scale taxi service system in the real-world; hence, we utilize a heuristic idle driv-

ing distance to describe anticipated future costs associated with meeting passenger

demands.

We assume that the optimization horizon is defined by set T . To provide a simple

structure for the problem, we examine the dispatch solution for the next time-slot,
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although there exists a potential for later considerations. This is mainly because our

central dispatch system does not control the drop off location, which disables the op-

timization algorithm from supporting the mobility function between time intervals.

Public and private service systems categorize the demand sites into one or more ser-

vice regions (or districts) to reduce the problem size. For simplicity in our problem,

we assume that the taxi stations are located at the center of each district. Each

district has two dimensions, corresponding to longitude and latitude. Our model

consists of one dispatch center, n districts, and capacity m, which indicates the total

number of available taxi units to serve passenger demands occurring at each region.

3.2 Sets, Parameters, and Decision Variables

With a large amount of historical data on taxi GPS and occupancy status, we extract

necessary demand information. We assume that the city is divided into n regions.

For instance, a city can be divided into administrative sub-districts. We also assume

that during a time slot, the total number of passenger demands needs to be served

by current vacant taxis at the j − th region is denoted by rj. In addition, the total

number of demands in the entire city is denoted by C =
∑j=n

j=1 rj, given that the

demand in one time slot (i.e. a one-hour period) is an unknown parameter, and the

maximum number of vacant taxis available in that time slot to be allocated is m.

The initial supply information consists of GPS position for the i − th vacant taxi,

denoted by P 0
i ∈ R2 ; while i = 1, . . . ,m.

The matrix P 0 ∈ R2 represents the initial location of available taxis with each row

as P 0
i . Before allocation, each taxi is in one of the taxi stations and we assume there

exists a taxi station at the center of each region, meaning that the i − th row of

this matrix corresponds to the position of i− th taxi (longitude and latitude) at the

beginning of first time slot.

Specifically, each region has a predicted number of passengers demands which dispatch

system needs to satisfy it by allocating vacant taxis. Note that the supply-demand

ratio at each region before dispatching is unbalanced.

With the above initial information about supply and demand, we define yij ∈ {0, 1}
as a binary variable to calculate a dispatch decision at each region for current vacant

taxis. This variable will get a value equal to 1 if taxi i is dispatched to region j, and
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0 otherwise. We assume that the allocation time horizon is one hour, given predicted

demand.

We define sets, parameters, and decision variables as follows to formulate the math-

ematical model of the problem.

Index Description

i the index of taxi

j the index of region

t the index of time slot

Sets Description

M the set of vacant taxis

N the set of regions

T the set of time slots

Parameters Description

m ∈ Z+ the total number of vacant taxis

n ∈ Z+ the total number of regions

rj ∈ Z+ the total number of predicted demand at region j

e ∈ Rn error vector

C ∈ Z+ the total number of predicted demand for all regions

α ∈ R the upper bound vector of driving distance

β ∈ R the weight factor of objective function

p0i,k ∈ P 0 ⊆ R2 the initial position of vacant taxi i in terms of longitude and latitude

for k=1 and k=2, respectively

wj ∈ W ⊆ R2 longitude and latitude of j − th region (taxi stations)

Variables Description

yi,j the binary dispatch variable that represents the region j which taxi

i should go

xi idle driving distance of the i−th taxi to reach the dispatch location

Table 1: Notations of the mathematical model

We would like to find a dispatch solution that balances the supply-demand ratio

while satisfying practical constraints and not introducing large idle driving distance.
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3.3 The Mathematical Model and Formulation

A given route for a taxi needs a starting and a destination point so that the driver

could follow the path shown on the GPS unit inside the taxi based on the informa-

tion mentioned above. Since the designing routes is not the focus of this work, the

dispatch center can only send a two dimensional GPS location for the taxi driver as

the destination. In the reality, there are several taxi places on the street in an urban

area. Taxis could choose an ideal station, or they would be randomly assigned to a

preferred station by the monitoring system in every region. This preferred location

for taxis is presented by P 0 ∈ R2. P 0
i , are the initial longitude and latitude positions

of taxi i at the beginning of the assignment.

With the above initial information about supply and predicted demand, we defined

the binary variable yij as the dispatch order variable, where yij = 1 if and only if the

i− th taxi is sent to the j − th region. We define the below constraint to dispatched

every taxi to one region.

n∑
j=1

yi,j = 1 ∀i ∈M, (1)

3.3.1 Multi-Objective Optimization

This research aims to find solutions that balance the supply-demand ratio while satis-

fying the minimum idle driving distance. Once the center has made dispatch decisions,

the solution details will be sent to vacant taxis.

In order to measure how supply matches demand at each region, we use a measure

called supply-demand ratio. For region j, the supply-demand ratio is the total num-

ber of vacant taxis divided by the total number of passengers’ demands during a given

time slot.

We assume that the supply-demand ratio for each region j is equal to that of the

entire city, so we have the following equation for j = 1, . . . ,m,∑i=m
i=1 yi,j
rj

=
m

C
(2)

We rewrite the equation (2) as the following equation:

1

m

∑
i∈M

yi,j =
rj
C

(3)
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However, the above equation can be too strict if employed as a constraint, and there

may be no feasible solutions for the problem. This is because decision variables yij,

are integer and taxis’ driving speed is limited that they may not be able to serve the

demands from any arbitrary region during a given time slot. Instead, we transform the

constraint into a soft constraint by introducing a supply-demand mismatch penalty

function JE, which means that the supply-demand ratio should be balanced across

the entire city. Based on the given illustrations, the first objective function of the

dispatch problem is presented as follows:

JE = | 1
m

∑
j∈N

(
∑
i∈M

yi,j −
rj
C

)| (4)

The second objective function, which is considered in this research, aims at reducing

the total driving distance from the initial location to the dispatch location. The

dispatch center is required to send the location of the destination to vacant taxis. For

this purpose, we locate the destination district with a longitude and latitude position.

Besides, we assume that the taxi stations are located at the center of each district.

The location of each taxi station at each region in the city is stored as a matrix W

at the dispatch center, where each row wj represents the two-dimensional geometric

position of the taxi station at district j.

Once yij takes a value of 1, then i− th taxi goes to the location yijwj. Thus we have

a driving distance p0i to yijwj for taxi i, in order to reach the dispatch position, which

is going to produce additional cost (the taxi is driving empty to reach the position to

respond to the demand). To estimate the distance without having information about

the exact path, we use the Manhattan norm. Also, xi is the estimated idle driving

distance of the i− th taxi to reach the dispatched location yijwj. In order to find the

lower bound of idle driving distance, we consider below equation:

2∑
k=1

|P 0
i,k −

∑
j∈N

yi,jwj,k| ≤ xi ∀i ∈M, (5)

As we mentioned earlier for time slots greater than one, we need to consider drop off

locations, which in our case are not directly controlled by the dispatch center. For

this project, we just consider the first time slot and practice demand prediction with

machine learning approaches as input for taxi dispatch problem, while expanding the
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project to more time slots can be considered in future studies.

Within the defined time slot, the distance that each taxi can drive should be bounded

by a constant vector of α ∈ RN . This is to regard the speed limit to respond to the

predicted demand within the time slot, so taxis cannot drive more than a certain

distance to get to the dispatched region.

Below equation provides an upper bound for idle driving distance.

xi ≤ α ∀i ∈M, (6)

The total idle driving distance of all the vacant taxis within the first time slot is

calculated by the following equation.

JD =
m∑
i=1

xi (7)

It is worth mentioning that the idle distance we estimate here is at the region-level

distance to pick up predicted passengers — the distance is nonzero only when a vacant

taxi is dispatched to a different region. We also require that the estimated distance is

a closed-form function of the locations of the original and dispatched regions, without

knowledge about certain traffic conditions or exact time to reach the dispatched re-

gion. Hence, in this work, we use Manhattan norm to approximate the idle distance.

For multi-objective optimization problems, no single solution can be found that si-

multaneously optimizes each objective. In this case, the objective functions are said

to be conflicting, and there exists a set of Pareto optimal solutions that make trade-

off among optimization of different objective functions. A solution is called non-

dominated or Pareto optimal, if none of the objective functions can be improved

in value without degrading some of the other objective values. Without additional

subjective preference information, all Pareto optimal solutions are considered equally

good. The goal may be to find a representative set of Pareto optimal solutions, and/or

quantify the trade-offs in satisfying the different objective functions. By providing

the set of Pareto optimal solutions to the Decision Maker (DM), he/she can choose

the best solution based on his/her preferences. In this research, we define a weight

parameter β when summing up the costs related to both objective functions.

Since solving a complex mixed integer programming model is not straightforward in
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large scales, one standard relaxation method is to relax the binary assumption of

the binary variables which is known as Linear Relaxation (LR) and can be derived

replacing the binary constraint

yij ∈ {0, 1} by 0 ≤ yij ≤ 1

Based on the given illustrations and notations, we propose the mathematical model

of the problem as follows.

min
yij ,xi

.J = JE + βJD =

min | 1
m

∑
j∈N

(
∑
i∈M

yi,j −
rj
C

)|+ β
∑
i∈M

xi (8)

2∑
k=1

|P 0
i,k −

∑
j∈N

yi,jwj,k| ≤ xi ∀i ∈M, (8a)

xi ≤ αi ∀i ∈M, (8b)

∑
j∈N

yi,j = 1 ∀i ∈M, (8c)

xi ≥ 0 ∀i ∈M, (8d)

yij ∈ Y ⊆ {0, 1}m×n. (8e)

The problem we consider in this work aims at reaching good service to increase global

customers’ satisfaction, which is indicated by a balanced supply-demand ratio across

different regions, instead of minimizing each customer’s waiting time when a request
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arrives at the dispatch system. A similar criterion has also been used in mobility on

demand systems [50]. In some situations, the taxi i will not pick up passengers in

its original region but will be dispatched to another region. Such a dispatch decision

results from the fact that global customers’ satisfaction level should be increased in-

stead of individual satisfaction level. For instance, when the original region of taxi i

has a higher supply-demand ratio than the dispatched region, going to the dispatched

region will help to increase customer’s satisfaction in that region. By sending taxi i to

some other region, customers’ satisfaction in the dispatched region can be increased,

and the value of the function JE can be reduced without extra idle driving distance

JD.

3.3.2 Single-Objective Optimization

As there usually exist an enormous number of Pareto optimal solutions for a multi-

objective optimization problem, thus we convert the original problem with multiple

objectives into a single-objective optimization problem to reduce solution complexity

known as e-constraint approach. While in experimental results, for the multi-objective

formulation, we compare Pareto optimal solutions; in this section, we convert the

problem into a single-objective model.

We define parameter e as a predefined supply-demand ratio error, which can be

obtained from the best and the worst values of the supply-demand ratio error objective

function. While we want to minimize the service quality in different regions, we can

define an acceptable amount for e and consider JE as a constraint (9a). Then we

can solve the allocation problem for minimizing total idle driving distance. Thus the

mathematical model is formulated as follows:

min
∑
i∈M

xi (9)

s.t. | 1
rj

∑
i∈M

yi,j −
m

C
| ≤ ej ∀j ∈ N, (9a)

2∑
k=1

|P 0
i,k −

∑
j∈N

yi,jwj,k| ≤ xi ∀i ∈M, (9b)
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xi ≤ αi ∀i ∈M, (9c)

∑
j∈N

yi,j = 1 ∀i ∈M, (9d)

xi ≥ 0 ∀i ∈M, (9e)

yij ∈ Y ⊆ {0, 1}m×n. (9f)

The new mathematical model allocates empty taxis towards predicted demand points

while minimizing the total idle driving distance for all taxis. Note that we maintain

a predefined global service quality by setting the supply-demand ratio error less than

e. The optimal solutions to the single-objective optimization problem (9) are Pareto

optimal solutions to the multi-objective optimization problem (8). Note that the

difference between this model and the model presented in the previous section is that

by assigning different weights to the objectives, we can drive several Pareto optimal

solutions for the problem in the previous section. However, in the latter model, we can

assign an upper bound based on DMs’ opinion on the supply-demand error ratio and

obtain Pareto optimal solutions that are of great importance to DMs with remarkably

less computational effort.

3.4 Data Driven Method for Taxi Dispatching Prob-

lem

In this research, we present a framework to model the TDP as a time-series decision-

making problem. More specifically, we use time-series data as an input for machine

learning demand forecasting models such as Support Vector Regression (SVR) and K-

Nearest Neighbor to predict the future passenger demand. The predicted demand will

then be fed into the MIP model to dispatch an available fleet of taxis to optimize the

objective function. The aim is to minimize the total taxis idle driving distance while
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satisfying the passenger demands at a certain service level (measured by supply-

demand ratio). Note that the mathematical models are solved using Gurobi 29.0

academic version, and KNN and SVR are implemented using Python 3.7.4 on a

laptop with an Intel i7 CPU, 16 GB RAM, and macOS 10.15.

Figure 2: Data Driven Approach for Taxi Dispatching Problem

3.5 Time Series Forecasting Methods for Taxi De-

mand Prediction

The nature of the taxi demand allocation is a time series problem, which needs an ac-

curate model to predict the distribution of future taxi demands considering historical

data. Time series prediction can be defined as a procedure that obtains essential infor-

mation from historical data and then provides future values. The study and forecast

of time series have always been the main methods in an array of practical problems,

including weather forecasting, transportation planning, traffic management, and so

on. Generally, the goal of time series y = y1, y2, ... is to estimate the value yt at

time t based on its previous k values yt−1, yt−2, ..., yt−k. This problem can be for-

mulated as a function x = yt−k, yt−k+1, ..., yt−1 for yt so that ŷt = f(x), where ŷt is

the closest estimation of yt. Different approaches for time series forecasting, such as

Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Regression

(SVR) and K-Nearest Neighborh (KNN) have been extensively studied and applied.

However, it is usually challenging to know which technique is the best for a partic-

ular data set. The choice of the most promising algorithm to model and predict a
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particular phenomenon is the first decision in time series forecasting.

Time-series methods can be categorized into parametric and nonparametric methods.

In nonparametric approaches (ML techniques), the model does not presuppose the

data distribution. However, the parametric approaches assume that data follow a

known distribution. The parametric algorithms are the state-of-the-art of time series

prediction, and they are often related to statistical approaches. The employment of

parametric approaches like ARIMA requires expertise both in the application and in

computational mathematics, as the number of parameters that need to be estimated

is more than nonparametric techniques. Moreover, DMs’ insight and knowledge are

vital for the parametric modeling procedure. Therefore, the cost of ARIMA models

is high, based on the complexity of the application domain and computational math-

ematics.

Machine learning prediction approaches, in contrast to statistical models, define the

data properties without the previous information of their distribution. These meth-

ods are extensively used for building precise prediction models based on data that

has been provided by GPS technology [27]. In the last decade, GPS-location systems

have attracted the consideration of both academics and businesses because of the

novel type of accessible information. Particularly, the location-aware sensors and the

information transmitted are tracking human behavior, and they can be used collabo-

ratively to disclose their movement patterns. Trains, Buses, and Taxi Networks [18]

are currently effectively discovering these traces. Using ML models for time series

involves the transposition of the data sequence typically into an attribute value table

to use as input to the machine learning regression algorithm. The ML models can

be divided into two categories, including global and local approaches. The global ap-

proaches consider all the observations of the training series to build a model. SVR and

Artificial Neural Network (ANN) are considered to be global nonparametric methods.

With the development and improvement of SVR techniques [47, 6], a breakthrough in

the area of demand forecasting occurred. The initial aim of SVR was to solve pattern

classification problems, but later they have been widely applied in many other fields

such as function estimation and regression problems. The impressive characteristic

of SVR is that it is intended for a better generalization of the training data. In most

cases, in SVR, the solution only depends on a subset of the training data points,

called the support vectors. Furthermore, with the help of support vector kernels, the
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input points in SVR applications are usually mapped to a high dimensional feature

space, which often generates good generalization outcomes. For this reason, the SVR

methodology has become one of the well-known techniques in recent years, especially

for time series demand forecasting problems.

The local approach partitions the time series into sub-sequences, where the closest or

most important values, connected to the present value, are combined to produce the

future values. KNN model is one of the most commonly used methods of nonpara-

metric regression and classification in order to predict future values. Since usually

a specific value is not influenced by observations that happened a long time ago,

similarity-based methods, like the KNN classifier, are characterized by not construct-

ing a model that explicitly describes the training dataset behavior. KNN is useful to

predict highly nonlinear and complex time series patterns. The approach is local, so

the closest or the most important values related to the current value are combined to

produce the future value.

In this thesis, we use SVR and KNN to forecast the passengers’ demands in a taxi

dispatch system. To forecast taxi demand in the future, many features can be con-

sidered to build a good model. While in this work, we just focused on the number of

pickups at different regions and pick up time to predict the passenger demand, which

refers to the number of pickups submitted per unit time (e.g., every hour) and per

unit region (e.g., each POI). Predicting passengers’ demand is non-trivial for large-

scale taxicab platforms because both accuracy and flexibility are essential.

Adapting the k-nearest neighbor and support vector regression models to improve

the forecasting accuracy is a favorable return of the global positioning system (GPS),

which through that, data could be observed as a channel to obtain the original data

of the demand flow. In the following sections, the necessary procedure of the KNN

and SVR models are introduced.

3.5.1 K Nearest Neighbors

Similarity-based approaches such as the KNN classifier, are categorized by not build-

ing a model that only defines the training dataset behavior. The overview of the

training set is performed whenever we request a new classification from the algorithm.

The idea behind the revision of KNN for time series prediction is very intuitive.

Given a series of data points
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1. Computing the distance (Euclidean or Manhattan) between the point and all the

other points in the training set.

2. Choosing the nearby K training data points.

3. Calculating the average or weighted average of the target output values of these

K points, which are the final predicted results.

Implementing the basic version of KNN is straightforward by calculating the distances

to all stored examples. The critical setting of KNN is the parameter K, which should

be selected carefully. A large K will help to build a model with a lower variance but

higher bias. By contrast, a small K will result in higher variance but lower bias. In

the field of taxi demand forecasting, KNN is interpreted to find the nearest patterns

in the history considering the current pattern. Those neighbors work as references to

make predictions for the future standing at the current time.

Figure 3 presents a schematic view of how KNN works. Suppose we stand at the end

of series B and try to make a prediction. By KNN, a similar series called series A

is identified as the nearest neighbor of series B, so that the historical point can be a

good reference to make the prediction.

Figure 3: One-step-ahead forecast with 2-NN regression

Figure 3 [25] shows an example of one-step-ahead forecasting using lags 1–3 as

explanatory variables. The last three values of the time series are the new instance to

be regressed on and the two sets of consecutive black dots, the two nearest neighbors,

whose targets are the triangles that are averaged to produce the forecast shown by

an asterisk. The underlying intuition to using KNN on time series forecasting is that

any time series contains repetitive patterns, so we can find previous similar patterns
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to the current series structure and use their subsequent patterns to predict the future

behavior.

Several surveys have been conducted to analyze the performance of KNN with differ-

ent distance measures. In worth mentioning that a few papers showed the efficiency

of KNN in predicting highly nonlinear and complex patterns in time series [30, 45].

3.5.2 Support Vector Regression

SVR constitutes a machine learning technique based on the statistical learning theory,

which was first proposed by Corinna Cortes and Vapnik in 1995 [40]. In other words,

the basic idea behind SVR is raising the dimension and linearization. It has many

unique advantages in solving small sample, nonlinear, and high dimensional pattern

recognition. If the predicted variable is discrete, it is called classification, and if the

predicted variable is continuous, it is called regression. SVR is suggested as a useful

technique based on using a high-dimensional feature space and penalizing the ensuing

complexity with an error function. Considering a linear model for illustration, the

prediction is given by f(x) = wTx + bo , where w is the weight vector, bo is the bias

and x is the input vector. The objective is to minimize the error function given by;

J = 1/2||w||2 + C
M∑

m=1

Loss(ym, f(xm)) (10)

where w is the weight vector, xm is the m− th training input, ym is the target output

and Loss(ym, f(xm)) is the loss function.

For nonlinear functions, the data can be mapped into a higher dimensional space,

called kernel space. Some common kernels are linear kernel function, polynomial ker-

nel function, and Gaussian kernel function. Among them, Gaussian kernel function,

also known as Radial Basis Function (RBF), is the most widely used one, which can

map data into an infinite dimension.

Support vector regression (SVR) has two significant advantages:

1. The model produced by SVR depends only on a subset of the training data, called

the support vectors, because the loss function ignores any training data close to the

model prediction. Therefore, SVR is suggested to produce better generalization re-

sults.

2. With the help of support vector kernels, the inputs of SVR are usually mapped to
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a high dimensional feature space.

The SVR model with RBF kernel requires two parameters, including (i) C, which is

a regularization term that imposes a weight on the training set errors minimizing the

model complexity; and (ii) σ, that reflects the Gaussian’s width of the kernel func-

tion [12]. The construction of an SVR implies solving a quadratic problem with linear

constraints, which depends on the set of input data, parameters, and the separation

margin. During the training phase, the Lagrange multipliers that characterize the

support vectors are obtained. These support vectors define the edges of the optimal

separation hyperplane.

3.6 Sliding Window For Time Series Data

Time series is typically measured over successive times, representing as a sequence

of data points [44]. The measurements taken during an event in a time series are

arranged in proper chronological order. Time series forecasting is the use of a model

to predict future values based on previously observed values. The use of previous time

steps to predict the next time step is called the sliding window method. In statistics

and time series analysis, this window is called time lag, and the number of previous

time steps is called the window width or size of the lag [24]. Most predictive modeling

algorithms will take some number of observations as input and predict a single output

value. As such, they cannot be used directly to make a multi-step time series forecast.

This involves making a prediction for one timestep, taking the prediction, and feeding

it into the model as an input in order to predict the subsequent time step. This process

is repeated until the desired number of steps has been forecasted. One approach where

machine learning algorithms can be used to make a multi-step time series forecast is

to use them recursively.

Recursive strategy uses forecasted values of the near future as inputs for the longer

future forecasting [14]. The function of Recursive is defined as follows:

ŷt+1 = f(yt, yt−1, . . . , yt−d+1)

ŷt+2 = f(ŷt+1, yt, . . . , yt−d+1)

... (11)

ŷt+n = f(ŷt+n−1, ŷt+n−2, . . . , ŷt−d+n)
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where t is the current time, ŷt+1, ŷt+2 . . . , ŷt+n are the forecasted values, Y1, Y2, . . .

, Yt are the historical values and d is the dimension of inputs. It is called a univariate

(or single) time series when d is equal to 1 and a multivariate time series when d is

equal to or greater than 2.

3.6.1 Choice of the Window Size

When it comes to predict the future values in a time series problem, we need to

answer this question: How many time windows (lags) we need to consider to look

back in order to predict the future values.

It is evident that the larger the window the more information about time series can

be considered. But it may decrease the sensitivity of the system which will produce

too smooth (decreased noise) prognoses. The advantage for a smaller window size is

increased sensitivity to changes in the underlying process. In order to find the optimal

window size, we use Auto Correlation Function (ACF) and Partial Auto Correlation

Function (PACF) graphs [39].

The ACF shows the correlation between the observation at current and th previous

time spots while PACF shows The correlation between observations at two time spots

given that we consider both observations are correlated to observations at other time

spots. It means PACF gives “real” correlation between two time spots after taking

out the influence of the other time spots.

By analyzing these two graphs, we can better understand the proper window size

based on the dataset we use in our experimental results.

3.7 Performance Measures:

The evaluation of each model is based on the Mean Square Error (MSE) where the

smaller values, indicate that the model has a better performance. Furthermore, we

considered the prediction accuracy where the higher accuracy indicates the better

performance of the model [15]. The considered performance metrics are defined as

follows:
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• Accuracy: Our goal is to predict precision values of Y, which consists of one

or more positive values. To find the accuracy of the prediction, we compare Ypredict

to the actual data in the test split Ytest of a given dataset. Since each Y is a vector of

multiple predictions, the average accuracy was calculated. That is the average of the

differences between Ypredict = (y
′
1,. . . ,y

′
p) and Ytest = (y1,. . . ,yp) should be calculated.

The following equation shows how to calculate the accuracy for each model:

ACC = (1− µ(|Ypredict − Ytest|)
µ(|Ytest|)

)× 100 (12)

• RMSE: The Root Mean Square Error (RMSE) is used to measure the performance

of the models [5]. RMSE is the square root of MSE. The square root is introduced to

make scale of the errors to be the same as the scale of targets. We assume that we

have determined i = 1,2, . . . ,n samples of model errors. RMSE formula is given as

follows:

RMSE =

√√√√ 1

n

n∑
n=1

(Ypredict − Ytest)2 =
√
MSE (13)
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Chapter 4

Experimental Results

In the previous chapters, we proposed two machine learning methods in order to

predict the passengers’ demand in the taxi dispatch problem. In this paper, we

implement our methodology on a real-world case study from New York City (NYC)

taxi data set [2]. NYC has a remarkably rich history of the taxi industry. A dataset

consisting of one-month (Jan 2018) NYC taxi trips is used for training and testing

the models.

The advance forecast for taxi demand distribution provides valuable decision sup-

ports for any taxi company.

The taxicabs of New York City come in two types: yellow and green. Both types

of taxis have the same fare structure, while green taxis are more restricted to some

regions of the city.

We conduct our allocation experiment based on the New York taxi data set [2] to learn

passenger requests of taxis, which serve as the input of the allocation algorithm. We

note that our learning model is not restricted to the data set used in this experiment,

and other forecasting models and data sets can also be incorporated. We implement

the allocation algorithm in Python using an optimization toolbox called CVXPY [1].

We assume that all vacant taxis can follow the dispatch solution and go to sug-

gested regions, although this solution is recommendation-based, and taxis can obey

the recommendation in their favor. Within a target region, we assume that there

is a taxi-stand in the middle of that region, and the longitude and latitude of this

taxi-stand is the center of the region. We calculate the total idle mileage by Man-

hattan norm. The mileage between two points is approximated proportional to their
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geographical distance on the road map. GPS data directly provide the geometric

location of a taxi.

4.1 Dataset

For several years, taxis in New York City have had GPS receivers to record infor-

mation. In this thesis, we consider only the green taxis for Jan 2018. We have used

Jan-2018 data to make predictions for the next one hour of the last date of the given

dataset. The dataset has been split into training sets and testing sets (80% for train-

ing and 20% for testing).

Our objective is to predict the number of passengers’ demands as accurately as pos-

sible for each district. Based on our dataset, there are 248 different location IDs.

There are different features in the main dataset like pick up location ID, passenger

counts, and trip distance. Among those, we used to pickup location ID and pick up

date-time (consists of the date and time that pick up had occurred) for our experi-

ment as follows:

- Pickup datetime: start time of the trip

- PU location ID: location ID at the start of the trip

Based on the taxi zone map of New York, we can find the IDs related to region names

to find the corresponding longitude and latitude.

After preprocessing the dataset, the result is a new dataset with the total number of

hourly pickups per region for January with 793531 records for each region.

Taxicab Dataset

Selected Features:

Pickup datetime : start time of the trip

PU location ID : location ID at the start of the trip

Taxicab Dataset

Collection Period Number of Taxis Data Size Record Number

01/01/2018-31/01/2018 989 70.9 MB 793531

Table 2: New York green taxi trips dataset for Jan 2018.
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4.1.1 Determining the Input time lag (window size)

As we explained in section 3.6.1, ACF describes the correlation between two observa-

tions at a previous time step that includes direct and indirect dependence information.

This means that if the input time window for our prediction is k, we would expect

the ACF for our time series dataset be robust to a lag of k and the inertia of that

relationship would carry on to subsequent lag values, trailing off at some point as the

effect was weakened.

PACF only defines the direct connection among observation and its lag. This shows

that there would be no correlation for lag values beyond k. For the PACF, we would

expect the plot to show a strong relationship to the lag k and a trailing off of corre-

lation from the lag onwards.

Below are ACF plots as well as PACF plots for one selected district based on the New

York city dataset on Jan 2018.

Figure 4: ACF for New York taxi passenger demand dataset on January 2018 over

50 time lags (hours) for Manhattan/Central Harlem North

Figure 4 shows how well the presented passenger demand of the NewYork taxi

dataset for January 2018 is related to its past values over the last 50 hours.

The ACF plot shows seasonal peaks at daily lag for every 24 hours. A sine wave in
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which its amplitude decreases over time.

Figure 5: PACF for New York taxi passenger demand dataset on January 2018 over

the 50 time lags (hours), for Manhattan/Central Harlem North.

Based on the figures, it becomes apparent that there is a statistically significant

correlation in the time series dataset for this district’s passenger demands at present

time lag and time lag 24, and a trailing off of correlation from this time lag downward.

By analyzing above mentioned plots for several different districts, we choose last 24

hours time interval, as our input argument (window size) for two machine learning

methods in order to predict the future passenger demand.

4.2 Demand Prediction

4.2.1 Grid Search for Hyperparameter Selection

Grid search is the most basic approach towards automating hyperparameter opti-

mization. To perform this search, the user defines a set of possible values for each

hyperparameter. Then, every possible combination of those values (which form a

grid) are evaluated for the given algorithm, and the combination of hyperparameters
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which achieves the minimum loss on the validation set is returned as the optimal con-

figuration. For our experiment, we import GridSearchCV from the sklearn package

in order to tune our machine learning hyperparameters.

4.2.2 Support Vector Regression

In this research, we used a support vector regression with a radial basis function

kernel as the forecasting method. There is an unusual noise in the taxi demand series

resulted from events such as irregular working schedule of companies, big concerts,

parade, etc., which may cause over-fitting in the models. Due to the characteristics

of better generalization, SVR is expected to have a good forecasting performance in

these cases. For choosing the best hyperparameters, we used GridSearchCV from the

sklearn package. Also, the sklearn.svm package has been used for SVR modeling.

Below table shows the list of tuned hyperparameters for our SVR model;

Hyperparameter

C 1.0

Epsilon 0.1

Kernel ’rbf’

Degree 3

Table 3: Tuned hyperparameters for SVR model using grid search.

The same training and testing dataset are used for both KNN and SVR models.

We use 80% of the dataset as the training data and 20% of the dataset as testing.

Meaning that we have 576 training samples and 144 testing samples which each one

of them contains sequences of 24 hours of the total number of pickups (passenger

demands) for each region.

Below graphs show the results for selected regions in which the blue lines present

actual demands, and the red lines show predicted demands for the selected regions.

The seasonality of the dataset can be seen in the graphs when the blue line goes

down, demand has been decreased according to the night time, and by starting the

day, it has been increased.
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Figure 6: Comparing the actual value and the predicted value of passenger demand

using SVR model for New York, January 2018 dataset location Brooklyn Heights.

Figure 7: Comparing the actual value and the predicted value of passenger demand

using SVR model for New York, January 2018 dataset location Manhattan Central.
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Figure 8: Comparing the actual value and the predicted value of passenger demand

using SVR model for New York, January 2018 dataset location Brooklyn Dumbo,

Vinegar Hill.

Figure 9: Comparing the actual value and the predicted value of passenger demand

using SVR model for New York, January 2018 dataset location Queens Elmhurst.
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4.2.3 K Nearest Neighbour

In this section, the KNN algorithm with k = 5 neighbors is used as the second

prediction method.

We use sklearn.svm package in this experiment. The same training and the testing

dataset is considered for both KNN and SVR models. We regarded 80% of the dataset

as the training data, and 20% of the dataset for testing. It worth mentioning that we

used a grid search for parameter tuning in this case study.

Below table shows the list of tuned hyperparameters for the KNN model.

Hyperparameter

N Neighbours 5

Weight ’distance’

Table 4: Tuned hyperparameters for KNN model using grid search

Below graphs show the predicted demand and actual demand for 4 selected re-

gions, using the KNN model.

Figure 10: Comparing the actual values and the predicted values of passenger demand

using KNN model for New York, January 2018 dataset location Brooklyn Heights.
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Figure 11: Comparing the actual values and the predicted values of passenger demand

using KNN model for New York, January 2018 dataset location Manhattan Central

Harlem North.

Figure 12: Comparing the actual values and the predicted values of passenger de-

mand using KNN model for New York, January 2018 dataset location Brooklyn

Dumbo/Vinegar Hill.
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Figure 13: Comparing the actual values and the predicted values of passenger demand

using KNN model for New York, January 2018 dataset location Queens Elmhurst.

4.3 Performance Measures for ML models

The prediction results for the dataset are presented in Table 5 demonstrated by a

performance metric and the overall accuracy. Based on the results, the SVR has a

smaller MSE with slightly higher accuracy. Thus, we can infer that the SVR performs

better compared to the KNN for this particular dataset. Therefore, for the MIP

optimization, we use the results from SVR demand prediction due to its superiority.

Model Performance Metric Accuracy

MSE

SVR 0.2066 81.25%

KNN 0.2294 79.86%

Table 5: Comparing the performance of SVR and KNN models for New York City

taxi dataset.
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4.4 Mixed Integer Programming for Taxi Dispatch-

ing Problem

As mentioned earlier, we have a centralized dispatch system which sends location

recommendation to taxi drivers. We conduct the taxi dispatch problem, based on

the New York taxi dataset for January 2018[2], explained in previous sections. The

parameters and variables are defined in table 1. The geographic location (latitude

and longitude) of taxis at the beginning of dispatching and predicted requests at each

region are two of the input parameters in the taxi dispatching problem under consid-

eration. After predicting the passengers’ demands with the help of machine learning

techniques, the results can be fed into our MIP model as the parameter; rj ∈ Z+.

Since the integer nature of demand, we rounded the predicted results. We implement

the dispatch algorithm in Python using the optimization toolbox called CVXPY [1].

CVXPY is a Python-embedded modeling language for convex optimization problems.

Inside a target region, we assume that there exists a taxi station in which a vacant

taxi picks up passengers in that station. We note that our learning model is not

restricted to the dataset used in this thesis, and other models and datasets can also

be incorporated.

In our assumptions, we consider each taxi station as a node, and then we calculate the

distance between every two nodes using the Manhattan norm. Hence, we consider the

path of each taxi as connected road segments determined by every two consecutive

points of the trace data we use in this section. Assume the latitude and longitude

values of two consecutive points in the trace data are (px1, py1) and (px2, py2), for a

short road segment, the mileage distance between the two points is approximated as

being proportional to the value (‖px1-px2‖+ ‖py1-py2‖).
The geometric location of a taxi is directly provided by GPS data, which in our case,

is the longitude and latitude of the initial taxi stations which taxis stand in before

dispatching.

Based on our dataset, the total number of New York regions with pickups during

Jan 2018 is 248. Also, we consider the average hourly pickups in each region and

aggregated it in order to have an estimation of the total number of vacant taxis.

Generally speaking, it is difficult to estimate the exact fleet size. Realistically this

number should be determined by taxi companies as the vehicle resource is limited,

42



and there is only a certain number of taxis to satisfy the demand. There are 31 days

in Jan 2018, and each day is 24 hours time-lag, so in total, we have 31 ∗ 24 = 744

hours, and by dividing the total number of pickups for each region over 744, we have

the average hourly demand for each region. The result of aggregating these average

amounts shows the total number of vacant taxis at 989. Also, each taxi has a unique

ID number recorded in the dispatch system center.

We also assume that information of passenger’s destination is not available to the

system when making dispatch decisions since passengers just hail a taxi at taxi sta-

tions.

4.4.1 Multi-Objective Optimization

Figure 12 shows a 27% reduction in the supply-demand mismatch error by the solution

provided by the taxi dispatch formulation compared with the historical data without

allocation. We note that the blue line in Figure 12 is the global supply-demand ratio

which is equal to total number of taxis in the city over total demand of the city.

Figure 14: Comparison of supply-demand ratio at each region, for the solution of

MIP model and historical data without allocation.
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Design Parameters for Algorithms

Parameters like (α), the upper bound of driving distance, and (β) the objective func-

tion weight parameter in eq. (8), significantly affect the results and the corresponding

optimal cost. Optimal values of parameters can vary from a given dataset to another.

Therefore, we perform sensitivity analyses and change the value of a given parameter

while keeping other parameters at the same level, and compare results. We compare

the outcomes and explain the adjustment of the parameters according to experimen-

tal results based on a given historical dataset with GPS records.

The process of choosing values of parameters for Algorithm (8) is a trial and error

process, by increasing/decreasing the values of the parameters and observing the re-

sulting change in the dispatch cost until the desired performance is reached or some

turning points occur that the cost is not reduced anymore. For instance, the objective

weight is related to the objective function of the dispatch system, whether it is more

important to reach fair service or reduce total idle distance. In addition, some pa-

rameters are related to additional information available to the system. for instance,

α, can be adjusted according to the average speed of vehicles or traffic conditions

during the considered period.

Sensitivity Analyses on β

The objective function consists of two parts: the idle geographical travel distance

(mileage) cost and the supply-demand ratio mismatch cost. This trade-off between

the two parts is addressed by β. In other words, the weight of idle distance increases

with β. A larger β returns a solution with smaller total idle geographical distance

while a larger error between the supply-demand ratio. The two components of the

cost with different β by algorithm1 and historical data without algorithm (8) are

shown in the below table.

β 0 2 10
Supply demand ratio error 0.005 0.022 0.020

Idle distance 98.9 10.72 10.723
Total cost 0.005 21.46 107.255

Table 6: Average cost comparison for different values of β
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We calculate the total cost as (s/d error +β× idle distance) . Although with β = 0 we

can dispatch vacant taxis to make the supply-demand ratio of each region closest to

that of the whole city, a larger idle geographical distance cost is introduced compared

with β = 2. Comparing the supply-demand ratio when β = 0 with β = 2 we have

77% increase, while the ratio error does not show a significant difference increasing β

to 10.

Determining Ideal Distance Threshold

Figure 13 compares the error between local supply-demand ratio and global supply-

demand ratio for different values of α. Since we directly use geographical distance

measured by the difference between longitude and latitude values of two points (GPS

locations) on the map, the threshold value is small: 0.1 degree, which is equal to 7

miles distance on the ground. We consider one degree of latitude and latitude equal

to approximately 70 miles, which means 0.1 difference in GPS data corresponds to

almost 7 miles distance on the ground. It means the upper bound driving distance

for each taxi to respond to the passenger demand is 7 miles. When this parameter

increases, the error between the local supply-demand ratio and global supply-demand

ratio decreases, because vacant taxis are more flexible to traverse further to meet

demand at farther regions.

For instance, when the length of the time slot is one hour, and α is the distance a

taxi can traverse during 20 minutes of that time slot, this constraint means a dispatch

solution involves the requirement that a taxi should be able to arrive the dispatched

position within 20 minutes in order to fulfill predicted requests.

This parameter can be adjusted according to the travel speed information available for

the dispatch system. This constraint also enables the dispatch system to consider the

fact that drivers may be reluctant to drive idly for a long distance to serve potential

customers. The threshold α is related to the length of a time slot. In general, the

longer a time slot is, the larger α can be, because of constraints like a speed limit.
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Figure 15: Comparison of supply-demand ratios at each region during one-time slot

for different values of α.
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4.4.2 Single-Objective Optimization

In the single-objective dispatch formulation, the cost function includes the idle geo-

graphical travel distance (mileage) cost. In this case, the supply-demand ratio mis-

match is added as the constraint (9a). A larger error e returns a solution with smaller

total idle geographical distance. This is because when we want to make the mismatch

between supply-demand ratio in different districts smaller, taxis need to drive longer

distances in order to respond to passenger demands at regions with lower predicted

demands. The total cost (total idle geographical travel distance) with different values

of e are shown in below table:

e 0.05 0.02 0.01 0.001 Without dispatch

Total cost 10.72 10.78 11.26 15.70 25.51

Table 7: Total cost comparison for different values of e.

As it becomes disclosed from the above table, by altering the amount of e, the

total cost is increased by 57% compared to no allocation. We note that by ”without

dispatch” we mean that we calculated the average hourly demand for each region

based on the historical data and estimated the number of required taxis in each

region.

4.5 The Impact of Prediction on the Solution Qual-

ity

In order to demonstrate the impact of prediction of final solution quality, we compared

the results of our data-driven optimization framework using SVR with optimization

using the historical average. As we can see in the below table, using SVR in the

objective function, which minimizes the total idle driving distance at a supply-demand

ratio error of 5%, has reduced the total cost by 14% comparing to the historical

average. We note that the unit of the data provided in Table 8 is degree of latitude

which is approximately equal to 69 miles.
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Total idle driving distance

Historical Average 14.49

SVR 10.72

Table 8: Total idle driving distance comparison using SVR and historical average,

e=0.05.
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Chapter 5

Conclusion and Directions for

Future Studies

Taxi service has become one of the most important means of transportation in the

world. Optimization of the taxi service can significantly reduce transportation costs,

traffic, greenhouse gas emissions, and increase service quality. However, optimization

of the taxi service due to its specific characteristics is a cumbersome task. The ex-

isting research in the literature uses mathematical programming or machine learning

approaches to handle the problem. The results of the approaches mentioned above

can be significantly improved by hybridizing the two methodologies. In this research,

we studied the taxi dispatching problem and proposed a mathematical programming

machine learning-based approach to optimize the network. We presented a data-

driven optimization methodology by combining machine learning techniques, that

incorporate historical time-series data to forecast future demand, and mathematical

programming. Moreover, we aimed at balancing supply according to the demand in

different regions (nodes) of a city in order to increase service efficiency and to mini-

mize the total ideal driving distance.

We proposed a method that utilizes historical GPS data to build demand models

and applies prediction technologies to determine optimal locations for vacant taxis

considering anticipated future demand. From a system-level perspective, we compute

optimal dispatch solutions for reaching a globally balanced supply-demand ratio with

the least associated cruising distance under practical constraints. We implemented

our approach to a real-world case study from New York City. The results revealed
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that our proposed method could remarkably improve the performance of the taxi

system by reducing total idle distance and increasing service quality. Evaluation re-

sults disclosed significant performance improvements in the network which linked to

reducing the demand-supply ratio mismatch error by 27%.

While our framework focuses on the planning of the distribution of vehicles, the

framework does not address routing decisions. Therefore, considering routing in the

proposed model can significantly increase its applicability. Also, our work focuses

on historical data as a proactive planning framework, and the framework can be ex-

panded to a real-time estimator as a practical implementation. In that case, the

framework requires a centralized authority to collect all available information and

make decisions for every vehicle in real-time. Our allocation time horizon only sup-

ports one time lag as the dispatch system does not control the drop off location.

Therefore, in future work, it would be interesting to take into account several time

lags by considering a mobility pattern function. Last but not least, considering the

traffic and road conditions can be other concerns in the future works.
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