
Self-nolar Planar Polytopes: When Finding the Polar is Rotating by Pi

John-Mark Fortier

A Thesis

in

The Department

of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Mathematics) at

Concordia University

Montreal, Quebec, Canada

August 2020

c©John-Mark Fortier, 2020



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: John-Mark Fortier

Entitled: Self-nolar Planar Polytopes: When Finding the Polar is Rotating by Pi

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Ronald Stern, Chair and Examiner

Dr. Fred E. Szabo, Examiner

Dr. Alina Stancu, Supervisor

Approved by Dr. Cody Hyndman

Chair of Department

2020 Dr. Pascale Sicotte

Dean of Faculty of Arts and Science



ABSTRACT

Self-nolar Planar Polytopes: When Finding the Polar is Rotating by Pi

John-Mark Fortier

The impetus for our work was a preprint by Alathea Jensen, titled self-polar poly-

topes, [2]. In the preprint, Jensen describes an intriguing method to add vertices to a

self-polar polytope while maintaining self-polarity. This method, applied exclusively

to self-nolar polytopes in R2, is our main focus for our work here. We expound upon

the method, as well as clarify the underlining theoretical framework it was derived

from. In doing so, we have built up our own set-up and framework and proved the

theoretical steps independently, often differently than the original paper. In addition,

we prove some noteworthy properties of self-nolar sets such as: all self-nolar sets are

convex, the family of all self-nolar sets is uncountable, and the set of all self-nolar

planar polytopes is dense in the set of all self-nolar planar sets. We also give proofs

concerning the length of the boundary of a self-nolar set with smooth boundary, the

center of mass of self-nolar polytopes and the Mahler volume product. Moreover,

we prove an original theorem that can be used as a practical method to construct

self-nolar polytopes.
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Notations

Let A ⊆ R2 be a set in the Euclidean plane. The following is a quick guide to the

notations that will be used throughout the thesis.

• R+ denotes all positive real numbers.

• conv(A) denotes the convex hull A.

• closure(A) denotes the closure of A.

• x · y denotes the standard inner product for x, y ∈ R2.

• For any x ∈ R2, ||x|| denotes the standard, Euclidean norm of x in R2.

• [A] = closure(conv(A ∪ {0})).

• Ao = {y ∈ R2 | x · y ≤ 1, ∀x ∈ A} denotes the polar set of A.

• Let û be a unit vector and let d be a strictly positive scalar. We denote a line

in R2, with orthogonal directed distance d(û) from the origin, as

H (û, d) = {x ∈ R2 | x · û = d}

= {x ∈ R2 | x · v = 1, v =
û

d
}

= H (v) .

• For every H (û, d) in R2, we associate two mutually exclusive halfplanes:

H− (û, d) = {x ∈ R2 | x · û < d}

= {x ∈ R2 | x · v < 1, v =
û

d
}

= H− (v) ,

and
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H+ (û, d) = {x ∈ R2 | x · û > d}

= {x ∈ R2 | x · v > 1, v =
û

d
}

= H+ (v) .

Note that H+ (û, d) and H− (û, d) do not contain the boundary line H (û, d).

We will denote the respective union of each halfplane with there boundary line,

rendering them closed sets, as:

H− (û, d) = {x ∈ R2 | x · û ≤ d}

= {x ∈ R2 | x · v ≤ 1, v =
û

d
}

= H− (v),

and

H+ (û, d) = {x ∈ R2 | x · û ≥ d}

= {x ∈ R2 | x · v ≥ 1, v =
û

d
}

= H+ (v).
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Chapter 1

Preliminaries

1.1 Introduction

The basic object of study in this work are convex sets in Rn that are equal to their

polar sets under an orthogonal transformation. These sets have been used in the

past as a tool to investigate diverse mathematical inquiries. For example, they have

been used to establish the chromatic number of distance graphs on spheres [3]. In

addition, Radon curves which are boundaries of planar sets that are equal to their

polar under a π
2

rotation, proved useful in providing a scalar product in some metric

spaces that did not have a natural one [7]. More recently Jensen has investigated the

existence, construction, facial structure, and practical applications of polytopes that

are orthogonal transformations of their respective polar sets [2]. Such polytopes are

referred to as self-polar by Jensen.

The primary motivation for our work here was a preprint by Jensen, titled self-

polar polytopes, [2]. In the preprint, special attention was given to polytopes that

are equal to their polars under the negative identity transformation −I, which is

equivalent to a π-rotation. Jensen refers to these ploytopes as negatively self-polar,

but, for brevity, we call them self-nolar. In Section 7 of the preprint, Jensen de-
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scribes an intriguing method to add vertices to a self-polar polytope while maintain-

ing self-polarity. This method, applied exclusively to self-nolar polytopes in R2, is

the cornerstone of our work here. Although the method is sound, there was a need

to expound upon it, as well as clarify the underlining theoretical framework it was

derived from. In doing so, we have built our own set-up and framework and proved

the theoretical steps independently, often differently than the original paper. Along

the way, we discovered that, in fact, Figure 8 of the preprint, which is suppose to

illustrate the method, did so incorrectly.

We have organized our work into three chapters. The first chapter, titled Prelimi-

naries, gives the necessary background information for understanding and character-

izing convex polytopes that is needed to comprehend our work in subsequent chapters.

The second chapter, titled Self-nolar Planar Sets, is where we expounded on Jensen’s

method to add vertices to a self-nolar polytope while maintaining self-nolarity. Here

we clarify the underlying theoretical framework by stringing together a sequence of

original theorems, lemmas and corollaries that fit together neatly to ultimately prove

a theorem from which the method is derived. In addition, we prove how the method

can be used to reduce or preserve the number of vertices of a self-nolar polytope while

maintaining self-nolarity. Lastly, we prove that self-nolar planar polytopes must have

an odd number of vertices, a result also known to Jensen, but obtained via a different

proof. The third chapter, titled Finer Properties of Self-nolar Planar Sets, is the last

chapter. Here, we prove some noteworthy properties of self-nolar sets such as: all

self-nolar sets are convex, the family of all self-nolar sets is uncountable, and the set

of all self-nolar planar polytopes is dense in the set of all self-nolar planar sets. We

also give proofs concerning the length of the boundary of a self-nolar set with smooth

boundary, the center of mass of self-nolar polytopes and the Mahler volume product.

Moreover, we prove an original theorem that can be used as a practical method to

construct self-nolar polytopes. This entire chapter is, to the best of our knowledge,

2



new and original.

1.2 Convex Sets

Definition 1.2.1. Let A ⊆ R2 be a set in the plane. We say that A is a convex set

if λx+ µy ∈ A whenever x, y ∈ A and for any real numbers λ, µ ≥ 0 with λ+ µ = 1.

Definition 1.2.2. Let m > 0 be a positive integer and let A ⊆ R2 be a convex

set containing points a1, ..., am. If λ1, ..., λm ≥ 0 with λ1 + ... + λm = 1, we call

λ1a1+ ...+λmam a convex combination of the points a1, ..., am in A. More generally, a

convex combination of points in A is a combination of points (not necessarily distinct)

of A as above for some fixed m > 0.

1.2.1 Properties of Convex sets

a. The intersection of an arbitrary family of convex sets is convex.

b. Every convex combination of points of a convex set belongs to that set.

c. Some examples of convex sets are points, lines, rays, line segments and half-

planes.

For proof of these properties, we refer the reader to [1] and [9]

Convex Hulls

Definition 1.2.3. Let A ⊆ R2, then conv(A) is the intersection of all convex sets in

R2 containing A. We call conv(A) the convex hull of A.

1.2.2 Properties of Convex Hulls

a. conv(A) is the smallest convex set containing A.
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b. conv(A) is the set of all convex combinations of points in A.

c. If A is a finite set of points, then conv(A) is compact

For proof of these properties, we refer the reader to [9].

Definition 1.2.4. Let A ⊆ R2 be a set in the plane and denote by [A] = closure(conv(A∪

{0})).

Here closure refers to the inclusion of all limit points under the Euclidean metric.

Also, since the closure of any set contains all its limit points, and a set that contains

all its limit points is said to be closed, [A] is a closed set.

1.3 Polar of a Set

Definition 1.3.1. Let A ⊆ R2, then Ao = {y ∈ R2 | x · y ≤ 1, ∀x ∈ A}. The set Ao

is the called the polar set of A.

1.3.1 Properties of the Polar of a Set

For any A,B ⊆ R2,

a. Ao = [Ao]

b. Ao = [A]o

c. Aoo = [A]

d. Aooo = Ao

e. A ⊂ B =⇒ Bo ⊂ Ao

f. (A ∪B)o = Ao ∩Bo

g. (A ∩B)o = [Ao ∪Bo]
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h. If A is bounded, then Ao contains the origin in its interior.

i. If A contains the origin in its interior, then Ao is bounded.

j. If A is closed, convex and contains the origin, then Aoo = [A] = A.

For proof of these elementary properties, we refer the reader to [1] and [9].

1.4 Convex Polytopes in R2

Definition 1.4.1. Let û be a unit vector and let d be a strictly positive scalar. We

define a line in R2, with orthogonal directed distance d(û) from the origin, as

H (û, d) = {x ∈ R2 | x · û = d}

= {x ∈ R2 | x · v = 1, v =
û

d
}

= H (v) .

For every H (û, d) in R2, we can associate two mutually exclusive halfplanes:

H− (û, d) = {x ∈ R2 | x · û < d}

= {x ∈ R2 | x · v < 1, v =
û

d
}

= H− (v)

and

H+ (û, d) = {x ∈ R2 | x · û > d}

= {x ∈ R2 | x · v > 1, v =
û

d
}

= H+ (v) .
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Note that H+ (û, d) and H− (û, d) do not contain the boundary line H (û, d). We

will denote the respective union of each halfplane with there boundary line, rendering

them closed sets, as:

H− (û, d) = {x ∈ R2 | x · û ≤ d}

= {x ∈ R2 | x · v ≤ 1, v =
û

d
}

= H− (v)

and

H+ (û, d) = {x ∈ R2 | x · û ≥ d}

= {x ∈ R2 | x · v ≥ 1, v =
û

d
}

= H+ (v).

1.4.1 Characterizing Convex Polytopes

We define a polytope in R2 as any closed planar figure that is bounded by line seg-

ments. We will be restricting our focus to a subset of polytopes that are also convex

sets, hence called convex polytopes.

There are two well established ways to characterize convex polytopes in R2:

a. Characterization by Vertices

Any convex polytope can be described as the convex hull of a finite set of points

[9]. For a given convex polytope P , there are many finite sets of points whose

convex hull is P . However, we can always find a unique finite set whose convex

hull is P , [9]. We refer to this set as the set of minimal points in the sense that

if we were to remove any point(s) from the set and then take the convex hull

of the remaining points, it would not yield P . We denote the set of minimal
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points as V (P ), and the refer to its elements as the vertices of P . By indexing

the vertices of P counter-clockwise, with respect to its representation in the

plane, we may then define an edge E of P to be the closed line segment with

two consecutive vertices of P as endpoints.

b. Characterization by Halfplanes

Any convex polytope can also be described as the intersection of all the ele-

ments of a finite set whose elements are closed halfplanes, [9]. It is also the case

that any nonempty finite intersection of halfplanes which is bounded, meaning

it does not contain any sequences of points whose positions vectors have norms

tending to infinity, is a convex polytope, [9]. We refer to a finite intersection

of halfplanes that is not necessarily bounded as a polytopal set. If a given

polytopal set is not bounded, we do not consider it a polytope. For a given

convex polytope P , we can always find a unique finite set whose elements are

halfplanes such that the intersection of all its elements is P , [9]. We refer to this

set as the set of minimal intersections in the sense that if we were to remove any

closed halfspace from the set and then take the intersection of the remaining

halfspaces, it would not yield P . The closed halfplanes contained in the set of

minimal intersection for a given polygon P are called essential halfplanes and

their respective boundary lines are called essential support lines.

From here on, when we refer to a polytope, the reader may assume that it is a subset

of R2, that it is closed, convex, that it contains the origin in its interior and that

we are using either the set of minimal points or the set of minimal intersection to

describe it.

7



1.4.2 Relationship Between Vertices and Essential Support

Lines

Let P be a polytope described as

P =
⋂

i∈{1,2...,k}

H− (ûi, di)

=
⋂

i∈{1,2...,k}

H−(vi)

= {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ k},

where the essential support lines are indexed counter-clockwise with respect to their

representation on a Cartesian plane. Some immediate consequences of characterizing

P in this way are the following:

a. The intersection of two consecutive essential support lines is a vertex of P .

b. Every essential support line contains exactly two consecutive vertices

c. Let Ei be an edge of P, then Ei ⊂ H(vj) if and only if i = j.

d. The number of vertices of P is equal to the number of essential supporting half-

planes and/or essential supporting lines.

8



Chapter 2

Self-nolar Planar Sets

2.1 Introduction

A stronger, older and more widely used definition of self-polar, in view of Jensen’s

definition [2], is: a set A in Rn for which A = Ao. It is natural to wonder if there

exist sets in Rn that are self-polar, with respect to the aforementioned definition. It

turns out that the only set with this property is the Euclidean unit ball centered at

the origin. We present below its proof as in [2]:

Theorem 2.1.1. The only set A in Rn for which A = Ao is the unit ball, which is

defined as A = {x ∈ Rn : ||x|| ≤ 1}.

Proof. Let B denote the unit ball, that is B = {x ∈ Rn : ||x|| ≤ 1}. Clearly, from the

definition of the polar operation B = Bo. Now suppose there exist some other set A

in Rn such that A = Ao. For all x ∈ A, we have x ∈ Ao. It follows that x · x ≤ 1,

which implies that ||x|| ≤ 1. Hence A ⊆ B = Bo. We then have that B ⊆ Ao = A.

By double inclusion, we may conclude that A = B.

So, the only self-polar set in R2 is the unit disk centered at the origin. In view of

this, in order to try to obtain a larger class of sets, we relax this condition and consider

sets in R2 that are equal to their polar set under the negative identity transformation
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−I, which is equivalent to a π-rotation. In other words, we are going to focus on

the sets with the following property: A a set in R2 with A = −Ao. These sets have

been referred to in the literature as negatively self-polar, but, mainly for brevity, we

will call them self-nolar sets. Moreover, since convex polytopes are well understood,

simple to characterize, and form a dense set in the class of all planar convex bodies,

we will be exploiting the theory of convex polytopes by focusing our investigation on

self-nolar sets that are convex polytopes.

2.2 Self-nolar Polytopes

Definition 2.2.1. Let C ⊆ R2. If C = −Co, then C is said to be self-nolar.

2.2.1 Erecting the Theoretical Framework

Lemma 2.2.1. Let N be the set of all self-nolar sets. If C ∈ N , then C is convex.

Proof. Let C ∈ N , then

C = −Co

= −{y ∈ R2 | x · y ≤ 1, ∀x ∈ C}

= {y ∈ R2 | −x · y ≤ 1, ∀x ∈ C}

So, −Co can be characterized as the intersection of halfplanes. It is well-known

that halfplanes are convex sets and that any arbitrary intersection of convex sets is

convex. This implies that −Co is convex and since C = −Co, we may conclude that

C is convex.

A basic question one may ask about self-nolar polytopes is: do any such set exists?

To answer this question, we will use a theorem that can be used to verify whether

10



or not a given polytope is self-nolar. To prove this theorem, we commence with the

following lemma.

Lemma 2.2.2. Let P = {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ k}, for some fixed positive

integer k, be a polytope, then P o = conv({vi | 1 ≤ i ≤ k}).

Proof. Let Q = {vi ∈ R2 | 1 ≤ i ≤ k}, then by definition

Qo = {x | x · vi ≤ 1, 1 ≤ i ≤ k}

= P,

which implies that

Qoo = [Q]

= closure(conv(Q ∪ {0}))

= P o.

Since P is bounded and contains the origin in its interior, P o contains the origin

in its interior. It follows that conv(Q ∪ {0}) = conv(Q), otherwise we would have a

contradiction with the fact that the origin is in interior of P o. In addition, Q ∪ {0}

is a finite set of points, which implies that conv(Q ∪ {0}) is compact and therefore

closed. It follows that closure(conv(Q ∪ {0})) = conv(Q ∪ {0}).
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We may now conclude that

P o = closure(conv(Q ∪ {0}))

= conv(Q ∪ {0})

= conv(Q)

= conv({vi | 1 ≤ i ≤ k}).

2.2.2 Characterization Theorem

We will now state and prove the aforementioned theorem that we will use to determine

if a given polytope is self-nolar.

Theorem 2.2.1. Let P be a planar polytope defined, equivalently, by

P =
⋂

i∈{1,2...,k}

H− (ûi, di)

=
⋂

i∈{1,2...,k}

{
H−(vi) | vi =

ûi
di

}
= {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ k}.

Then, P is self-nolar if and only if −vi is a vertex of P and H−(vi) is an essential

halfplane with associated essential support line H(vi).

Proof. “⇒ ”

Assume P = −P o. By Lemma 2.2.2, we have that P o = conv({vi | 1 ≤ i ≤ k}).

12



Thus

P = −P o

= −conv({vi | 1 ≤ i ≤ k})

= conv({−vi | 1 ≤ i ≤ k}).

Here {−vi | 1 ≤ i ≤ k} must be the set of vertices of P , since the number of essential

supporting halfplanes must equal the number of vertices of P . It follows that −vi is

a vertex of P for all i ∈ {1, 2, ..., k}.

“⇐ ”

Assume −vi is a vertex of P for all i ∈ {1, 2, ..., k}. It follows that

P = conv({−vi | 1 ≤ i ≤ k})

= −conv({vi | 1 ≤ i ≤ k}).

By Lemma 2.2.2, we have that P o = conv({vi | 1 ≤ i ≤ k}). From this we conclude

that P = −P o.

13



2.2.3 An Example of a Self-nolar Pentagon

Now, we will provide an example of a self-nolar polytope. Consider the polytope P

characterized by the intersection of the following essential supporting halfplanes:

P =
⋂

i∈{1,2...,5}

H− (ûi, di)

=
⋂

i∈{1,2...,5}

{
H−(vi) | vi =

ûi
di

}
= {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ 5},

where

v1 = (−1, 1) =
û1
d1

=
(−1√

2
, 1√

2
)

1̂√
2

v2 = (1, 1) =
û2
d2

=
( 1√

2
, 1√

2
)

1√
2

v3 = (1, 0) =
û3
d3

=
(1, 0)

1

v4 = (0,−1) =
û4
d4

=
(0,−1)

1

v5 = (−1, 0) =
û5
d5

=
(−1, 0)

1
.

To determine the vertices of P , we find the intersection point of each pair of

consecutive support lines:

H(v1) ∩H(v2) = (0, 1) = −v4

H(v2) ∩H(v3) = (1, 0) = −v5

H(v3) ∩H(v4) = (1,−1) = −v1

H(v4) ∩H(v5) = (−1,−1) = −v2

H(v5) ∩H(v1) = (−1, 0) = −v3.

14



It follows that −vi is a vertex of P , for all i ∈ {1, 2, ..., 5}. Based on this result

we may now conclude, by employing Theorem 2.2.1, that P is self-nolar, that is

P = −P o.

Figure 2.1: A self-nolar pentagon (solid line boundary) and its polar set (dashed line
boundary).

2.3 Constructing a Self-nolar Polytope Based on a

Pre-existing One

With the previous example, have shown the existence of, at least, one self-nolar poly-

tope. Therefore, the cardinality of the set containing all self-nolar polytopes is at

least 1. In pursuit of determining the precise cardinality of the set of all self-nolar

polytopes we will construct, by way of a sequence of novel proofs, a theorem that one

can use as a method to build a new self-nolar polytope based on one already known to

exist. It is through a recursive use of this method that we will explore the cardinality

of the set of all self-nolar polytopes, denoted for simplicity N .
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In order to provide insight, we will now give a naive description regarding how the

method operates on an existing self-nolar polytope P to construct from it another

self-nolar polytope T .

a
added 
vertex

boundary of 
intersecting 
halfplane

removed
vertex

b c

Figure 2.2: Constructing a self-nolar ploytope from a pre-existing one.

a. A self-nolar triangle P (solid line boundary) and its polar set P o(dashed line
boundary)

b. Altering P (light solid line boundary) to obtain a self-nolar pentagon T (dark
solid line boundary)

c. T (solid line boundary) and its polar set T o(dashed line boundary)

Intuitively, the method alters P by first “cutting” off one of its vertices with

a new edge while simultaneously “adding” a new vertex. This is accomplished by

intersecting P with a halfplane H−
(
û∗,

1
d∗

)
(of direction different than any direc-

tion of hyperplane in the minimal set) such that H
(
û∗,

1
d∗

)
intersects two consec-

utive edges of P . Secondly, in order to ensure self-nolarity, the method ”adds” a

carefully chosen new vertex: v∗ = d∗ (−û∗), which is actually the negative polar

set of H−
(
û∗,

1
d∗

)
. This is done by taking the convex hull of the set containing

point v∗ = d∗ (−û∗) and P ∩H−
(
û∗,

1
d∗

)
. Ultimately, the method constructs the set

T = conv(P ∩H−
(
û∗,

1
d∗

)
∪ {v∗}), which will be proved to be self-nolar.

We will now prove the theorem that provides the theoretical framework of the

method described above. We construct our argument by first proving a sequence of

lemmas and corollaries, that at first glance may seem unrelated or inconsequential,

but ultimately fit neatly together to form our proof. Let us begin.
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Lemma 2.3.1. Let points xint and yint be the x and y intercepts of line H(û, d) = H(v)

(if they exist), where v =
û

d
. Let m be the slope of H(v) and let Qi be the ith quadrant

belonging to the Cartesian plane, where i ∈ {1, 2, 3, 4}.

a. If yint < 0 and m < 0, then the point of position vector −v is included in the

interior of Q1.

b. If yint < 0 and m > 0, then the point of position vector −v is included in the

interior of Q2.

c. If yint > 0 and m < 0, then the point of position vector −v is included in the

interior of Q3.

d. If yint > 0 and m > 0, then the point of position vector −v is included in the

interior of Q4.

e. If yint < 0 and m = 0, then the point of position vector −v is included in the

interior of the positive y-axis.

f. If xint < 0 and m is undefined, then the point of position vector −v is included

in the interior of the positive x-axis.

g. If yint > 0 and m = 0, then the point of position vector −v is included in the

interior of the negative y-axis.

h. If xint > 0 and m is undefined, then the point of position vector −v is included

in the interior of the negative x-axis.

Proof. Assume H(v) has yint < 0 and m < 0. This implies that xint < 0. Now, con-

sider the triangle 4 ((0, 0), (0, yint), (xint, 0)). By construction, this is a right triangle

in Q3 having line segment yint, xint as its hypotenuse.
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Let (0, 0), s be a line segment such that s ∈ H(v) with (0, 0), s and H(v) orthogo-

nal. From elementary geometry, (0, 0), s can be consider the altitude of4 (0, yint, xint)

whose foot intersects the hypotenuse yint, xint at point s with s 6= (0, yint) and

s 6= (xint, 0). This implies that s (considered as a vector) is the orthogonal directed

distance from the origin to H(v). It follows that s = d(û). Clearly, s is strictly in

Q3, which implies that s rotated by π, which is equivalent to multiplying s by the

negative identity matrix −I to obtain −s, is strictly in Q1.

From s = d(û), we obtain −v = (−û)
d

= −s
d2

. Since −s is strictly in Q1, it follows that

−s
d2

= −v is strictly in Q1. This proves a.

By rotating H(v) by π
2

and repeating a similar argument used to prove a, we prove b.

By rotating H(v) by π and repeating a similar argument used to prove a, we prove c.

By rotating H(v) by 2π
3

and repeating a similar argument used to prove a, we prove d.

Assume now that H(v) has yint < 0 and m = 0. Clearly, d(û) = yint(0,−1), im-

plying that v = −(0,−1)
yint

= (0, 1
yint

). It follows that v is on the positive y-axis. This

proves e.

By rotating H(v) by π
2

and repeating a similar argument used to prove e, we prove

f .

By rotating H(v) by π and repeating a similar argument used to prove e, we prove g.

By rotating H(v) by 2π
3

and repeating a similar argument used to prove e, we prove

h.
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Corollary 2.3.1. Let H(v) be a line in R2 which does not pass through the origin,

then −v /∈ H(v).

Proof. Without any loss of generality, let H(v) be below and parallel to the x-axis.

It follows that H(v) has yint < 0 and m = 0. By Lemma 2.3.1, −v is on the positive

y-axis. This implies that H(v) and −v are separated by the x-axis. From this, we

conclude that −v /∈ H(v).

Lemma 2.3.2. If H
(
û∗,

1
d∗

)
is a line containing the point p =

−û
d

with 0 < û∗ ·

(−û) ≤ 1, then v∗ = d∗ (−û∗) ∈ H (û, d).

Proof. Without any loss of generality, let point p = −û
d

be located on the positive

y-axis with p ∈ H
(
û∗,

1
d∗

)
.

Case one: If û∗ · (−û) = 1, then we have 1
d∗

= 1
d
, which implies d∗ = d. Thus,

v∗ = d∗ (−û∗) = d (û) ∈ H (û, d). Case two: If 0 < û∗ · (−û) < 1, then we can

construct the two similar triangles:

4
(

0,
û∗
d∗
,
−û
d

)
∼ 4

(
0, d (û) , l(−û∗)

)
. (2.1)
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Figure 2.3: Illustration of similar triangles

These triangles are similar because, by construction, they have two sets of con-

gruent angles:

∠

(
0,
û∗
d∗
,
−û
d

)
≡ ∠ (0, d (û) , l (−û∗)) (2.2)

and

∠

(
−û
d
, 0,

û∗
d∗

)
≡ ∠ (l (−û∗) , 0, d (û)) . (2.3)

Therefore, we have that
1
d

l
=

1
d∗

d
=⇒ l = d∗. (2.4)

Let vl = l (−û∗). By construction, vl ∈ H (û, d). Then,

vl = l (−û∗) = d∗ (−û∗) = v∗ (2.5)

Hence, v∗ = vl ∈ H (û, d).

Corollary 2.3.2. If H
(
û∗,

1
d∗

)
is a line containing a fixed vertex −vj =

−ûj
dj

of a

self-nolar polytope P = {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ k} with 0 < û∗ · (−ûj) ≤ 1, then

v∗ = d∗ (−û∗) ∈ H (ûj, dj), where H (ûj, dj) is an essential support line of P .

Proof. Suppose −vj =
−ûj
dj

is a vertex of P . By Theorem 2.2.1, H (ûj, dj) is an
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essential support line of P , and by Lemma 2.3.2, v∗ ∈ H (ûj, dj).

Lemma 2.3.3. Let p =
−ûj
dj

be the intersecting point of arbitrary yet distinct lines

H (ûh, dh) and H (ûh+1, dh+1). If p ∈ H
(
û∗,

1
d∗

)
, where û∗ belongs to the convex cone

with two boundary rays that originate at the origin and have direction unit vectors

ûh and ûh+1 respectively, then v∗ = d∗(−û∗) belongs to the line segment, contained in

H (ûj, dj), with end points ph =
−ûh
dh

and ph+1 =
−ûh+1

dh+1

.

Figure 2.4: Illustration of Lemma 2.3.3

Proof. Let H (ûh+1, dh+1) and H (ûh, dh) intersect at p =
−ûj
dj

. Suppose H
(
û∗,

1
d∗

)
contains point p, and that its unit normal û∗ belongs to the cone with two boundary

rays that originate at the origin and have direction unit vectors that are the unit

normals of H (ûh, dh) and H (ûh+1, dh+1), thus ûh and ûh+1 respectively. This implies,
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by symmetry with respect to the origin, that v∗ = d∗(−û∗) belongs to the convex cone

with two boundary rays that originate at the origin and have unit direction −ûh and

−ûh+1 respectively. Now, considering the extreme cases when v∗ is contained in the

boundary of the convex cone it belongs to; we have that if −û∗ = −ûh, then v∗ = ph

and if −û∗ = −ûh+1, then v∗ = ph+1. By Lemma 2.3.2, v∗ ∈ H (ûj, dj). From this,

it follows that v∗ belongs to the line segment, contained in H (ûj, dj), with endpoints

ph and ph+1.

Corollary 2.3.3. In addition to the premises of Lemma 2.3.3, let H (ûh, dh) and

H (ûh+1, dh+1) be two consecutive essential support lines of self-nolar polytope P =

{x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ k}, such that their point of intersection p =
−ûj
dj

= −vj

is a vertex of P . If Ej is the edge of P contained in essential support line H (ûj, dj),

then v∗ ∈ Ej.

Proof. By Lemma 2.3.3, v∗ is contained on the line segment with endpoints ph and

ph+1. By Theorem 2.3.2, ph = −vh and ph+1 = −vh+1 are vertices of P . In addition,

Corollary 2.3.2 implies that −vh and −vh+1 are contained in the essential hyperplane

H (ûj, dj). Therefore, the line segment with endpoints −vh and −vh+1 is the edge Ej

of P . It follows that v∗ ∈ Ej.

Lemma 2.3.4. Let P be the polytope defined by

P =
⋂

i∈{1,2...,k}

H− (ûi, di),

and consider the associated polyhedron Q, obtained by removing the jth constraint

from P , defined thus as:

Q =
⋂

i∈{1,2...,j−1,j+1,...,k}

H− (ûi, di).
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If

v ∈ Q ∩H+ (ûj, dj) ,

then

(conv(P ∪ {v}) \ P ) ⊂ H+ (ûj, dj) .

Proof. Clearly, all points in P as well as v belong to Q. Since Q is a polytope, any

convex combination of v with any point in P must also belong to Q. It follows that

(conv(P ∪ {v})) ⊂ Q.

This implies that

(conv(P ∪ {v}) \ P ) ⊂ (Q \ P ).

We also know that

(Q \ P ) ⊂
(
Q ∩H+ (ûj, dj)

)
⊂ H+ (ûj, dj) .

From this, we may conclude that

(conv(P ∪ {v}) \ P ) ⊂ H+ (ûj, dj) .

Lemma 2.3.5. Let P and Q be as defined in the previous lemma. Then

Q ∩H+ (ûj, dj) = H− (ûj−1, dj−1) ∩H− (ûj+1, dj+1) ∩H+ (ûj, dj) .

Proof. In the halfplane H− (ûj, dj), it is clear that Q contains exactly the same ver-
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tices as P . Recall that the vertices of polytope P , and therefore Q, are located only

where two consecutive essential supporting lines intersect. It follows that each of the

essential supporting lines H (ûj−1, dj−1) and H (ûj+1, dj+1) contains only one vertex

of Q in the halfspace H− (ûj, dj). Now, considering each of the supporting hyper-

planes H (ûi, di) of Q in H− (ûj, dj), apart from H (ûj+1, dj+1) and H (ûj−1, dj−1),

each contains two vertices of Q. Since P was defined by the intersection of essential

supporting halfspaces, Q is a also defined by the intersection of essential support-

ing halfspaces. As such, each H (ûi, di) of Q contains at most two vertices of Q;

one vertex if it contains a boundary ray of Q or two vertices if it contains an edge

of Q. In consequence, only H (ûj+1, dj+1) and H (ûj−1, dj−1) contribute to bound-

ary of Q in H+ (ûj, dj). This, in conjunction with the definition of Q, implies that

Q ∩H+ (ûj, dj) = H− (ûj−1, dj−1) ∩H− (ûj+1, dj+1) ∩H+ (ûj, dj) .

Lemma 2.3.6. Let Q be defined as in the previous lemma. If H (ûj−1, dj−1) and

H (ûj+1, dj+1) do not intersect in H+ (ûj, dj), then H (ûj−1, dj−1) ∩ H+ (ûj, dj) and

H (ûj+1, dj+1) ∩H+ (ûj, dj) each belong to boundary rays of Q.

Proof. By Lemma 2.3.5, H (ûj−1, dj−1) and H (ûj+1, dj+1) are the only two essential

support lines that contribute to the boundary of Q in H− (ûj, dj). They each contain

exactly one vertex of Q in H− (ûj, dj). If H (ûj−1, dj−1) and H (ûj+1, dj+1) do not

intersect in H+ (ûj, dj), it follows that they each respectively contain only one vertex

of Q and there both contained in H− (ûj, dj). This implies that, in H+ (ûj, dj), every

point belonging to H (ûj−1, dj−1) or H (ûj+1, dj+1) is a boundary point of Q. From

this, we may conclude that H (ûj−1, dj−1)∩H+ (ûj, dj) and H (ûj+1, dj+1)∩H+ (ûj, dj)

each belong to boundary rays of Q.

Lemma 2.3.7. Let P and Q be as previously defined with the addition that P is

negatively self polar, which implies that −vj−1 =
−ûj−1

dj−1
, −vj =

−ûj
dj

and −vj+1 =
−ûj+1

dj+1
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are three consecutive vertices of P . Furthermore, the line segments (−vj−1), (−vj) =

Eh and (−vj), (−vj+1) = Eh+1 are two consecutive edges of P .

Assuming that H (ûj−1, dj−1) and H (ûj+1, dj+1) do not intersect in H+ (ûj, dj), if

the hyperplane H
(
û∗,

1
d∗

)
intersects edges Eh and Eh+1 at points p1 and p2 respec-

tively, such that conv({−vj, p1, p2}) does not contain the origin, then

(conv(P ∪ {v∗}) \ P ) ⊂ H+ (ûj, dj) .

Proof. Without any loss of generality let −vj be located on the positive y-axis. Since

the conv({−vj, p1, p2}) does not contain the origin, H
(
û∗,

1
d∗

)
must contain the fol-

lowing three points; p1, p2 and py = −ûy
dy

which is a point on the y-axis that is between

−vj and the origin.

For a fixed py, in the extreme cases, H
(
û∗,

1
d∗

)
will contain either −vj−1 or −vj+1,

but never both, because that would imply, by Lemma 2.3.2, that H (ûj−1, dj−1) and

H (ûj+1, dj+1) do intersect in H+ (ûj, dj), which contradicts our assumption.

Now, let us define H (ûα, dα) to be the line that contains point py and −vj−1, and

let H (ûβ, dβ) be the line that contains points py and −vj+1.

By construction, we have that py ∈ H
(
û∗,

1
d∗

)
, where û∗ belongs to the cone

with two boundary rays that originate at the origin and have direction unit vectors

ûα and ûβ respectively. It follows, by Lemma 2.3.3, that v∗ is contained in the

line segment with endpoints −ûα
dα

and
−ûβ
dβ

. In addition, by Lemma 2.3.2, −ûα
dα
∈

H (ûj−1, dj−1),
−ûβ
dβ
∈ H (ûj+1, dj+1) and we have that v∗ ∈ H (ûy, dy) ⊂ H+ (ûj, dj).

This implies, by Lemma 2.3.6, that the endpoints −ûα
dα

and
−ûβ
dβ

of the line segment

containing v∗ are boundary points of Q. This result, combined with Q being convex,

implies that v∗ ∈ Q ∩ H+ (ûj, dj). We may now conclude, by Lemma 2.3.4, that
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(conv(P ∪ {v∗}) \ P ) ⊂ H+ (ûj, dj).

Lemma 2.3.8. Let P and Q be as previously defined and, in addition, define q1 to

be the point of intersection of H (ûj−1, dj−1) and H (ûj, dj), and q2 to be the intersec-

tion of H (ûj+1, dj+1) and H (ûj, dj). If H (ûj−1, dj−1) and H (ûj+1, dj+1) intersect in

H+ (ûj−1, dj−1) at point v, then line segments v, q1 and v, q2 belong to Q.

Proof. Since H (ûj−1, dj−1) and H (ûj+1, dj+1) are consecutive essential hyperplanes

of Q, their intersection point v is a vertex of Q. By a similar argument, q1 and q2 are

vertices of P . On the other hand, P is subset of Q, which implies that q1 and q2 are

contained in Q. By the convexity of Q, line segments v, q1 and v, q2 belong to Q.

Lemma 2.3.9. Let P and Q be as previously defined with the addition that P is

negatively self polar, which implies that −vj−1 =
−ûj−1

dj−1
, −vj =

−ûj
dj

and −vj+1 =
−ûj+1

dj+1

are three consecutive vertices of P . Furthermore, the line segments (−vj−1), (−vj) =

Eh and (−vj), (−vj+1) = Eh+1 are two consecutive edges of P .

Assuming that H (ûj−1, dj−1) and H (ûj+1, dj+1) intersect in H+ (ûj, dj), if the

hyperplane H
(
û∗,

1
d∗

)
intersects edges Eh and Eh+1 at points p1 and p2 respectively,

such that conv({−vj, p1, p2}) does not contain the origin, then

(conv(P ∪ {v∗}) \ P ) ⊂ H+ (ûj, dj) .

Proof. Without any loss of generality, let −vj be located on the positive y-axis. Since

the conv{−vj, p1, p2} does not contain the origin, H
(
û∗,

1
d∗

)
must contain the fol-

lowing three points; p1, p2 and py = −ûy
dy

which is a point on the y-axis that is strictly

between v2 and the origin.
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For a fixed py, in the extreme cases H
(
û∗,

1
d∗

)
will contain either −vj−1 or

−vj+1. If it contains both, then, by Theorem 2.3.2, v∗ is the point of intersection

of H (ûj−1, dj−1) and H (ûj+1, dj+1). Let us call the py in this situation py′ =
−ûy′
dy′

. It

is clear that for all H
(
û∗,

1
d∗

)
, py must be between vj and py′ , which implies that all

H (ûy, dy) are contained in H+ (ûj, dj) ∩H− (ûy′ , dy′).

Now, let us define H (ûα, dα) to be the line that contains point py and −vj−1, and

let H (ûβ, dβ) be the line that contains point py and −vj+1.

By construction, we have that py ∈ H
(
û∗,

1
d∗

)
where û∗ belongs to the cone with

two boundary rays that originate at the origin and have direction unit vectors ûα and

ûβ respectively. It follows, by Lemma 2.3.3, that v∗ is contained in the line segment

with endpoints −ûα
dα

and
−ûβ
dβ

. In addition, by Lemma 2.3.2, −ûα
dα
∈ H (ûj−1, dj−1),

−ûβ
dβ
∈ H (ûj+1, dj+1) and that v∗ ∈ H (ûy, dy) ⊂ H+ (ûj, dj) ∩ H− (ûy′ , dy′). This

implies, by Lemma 2.3.8, that the endpoints −ûα
dα

and
−ûβ
dβ

of the line segment con-

taining v∗ are boundary points of Q. This result, combined with Q being convex,

implies that v∗ ∈ Q ∩ H+ (ûj, dj). We may now conclude by Lemma 2.3.4 that

(conv(P ∪ {v∗}) \ P ) ⊂ H+ (ûj, dj).

Corollary 2.3.4. The net effect the set operation conv(P ∪ v∗) has on P is adding

points that are strictly in H+ (ûj, dj).

Proof. By combining Lemmas 2.3.7 and 2.3.9, we see that (conv(P ∪ v∗) \ P ) ⊂

H+ (ûj, dj) holds true whether or not H (ûj−1, dj−1) and H (ûj+1, dj+1) intersect in

H+ (ûj, dj). This implies that the sole effect the set operation conv(P ∪ v∗) has on P

is adding points that are strictly in H+ (ûj, dj).

Lemma 2.3.10. Let P , q1, q2 and v∗ be as previously defined, then conv(P ∪ v∗) =

P ∪ conv({q1, q2, v∗}).
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Proof. By Corollary 2.3.4, conv(P ∪ v∗) alters P by adding points strictly inH+ (ûj, dj).

The points that are added to P are convex combinations of v∗ and points in P .

Let Ej = q1, q2 be the edge of P that is contained in H (ûj, dj). Suppose that

x ∈ conv(P ∪v∗)\P and x 6∈ conv({q1, q2, v∗}), then x must be a convex combination

of some point s ∈ P ⊂ H− (ûj, dj) and v∗ ∈ H+ (ûj, dj). It follows that the line

segment s, v∗ ⊂ conv(P ∪ v∗) and that there exist w ∈ s, v∗ such that w ∈ H (ûj, dj).

If w ∈ Ej, then w ∈ conv({q1, q2, v∗}). Since Ej = q1, q2, we have that x ∈

conv({q1, q2, v∗}), which is a contradiction.

If w 6∈ Ej, then this would imply that conv(P ∪ v∗) added the point w 6∈ H+ (ûj, dj)

to P , which is a contradiction as well.

In consequence, if x ∈ conv(P ∪ v∗) \ P , then x ∈ conv({q1, q2, v∗}). It follows that

conv(P ∪ v∗) ⊆ P ∪ conv{q1, q2, v∗}. In addition, it is clear that P ∪ conv{q1, q2, v∗} ⊆

conv(P ∪ v∗). We may conclude, by double inclusion, that conv(P ∪ v∗) = P ∪

conv({q1, q2, v∗}).

Lemma 2.3.11. Let {v∗}o be the polar set of the set {v∗}, then −{v∗}o = H−
(
û∗,

1
d∗

)
.

Here the notation −A stands for −A = {x ∈ R2 | −x ∈ A} and uses the vector space

structure of the Euclidean plane.

Proof. By definition, {v∗}o = {x ∈ R2 | x · v∗ ≤ 1} = {x ∈ R2 | x · d∗(−û∗) ≤ 1}. It

follows that:

−{v∗}o = −{x ∈ R2 | x · v∗ ≤ 1}

= {x ∈ R2 | x · d∗(û∗) ≤ 1}

= {x ∈ R2 | x · (û∗) ≤
1

d∗
}

= H−
(
û∗,

1

d∗

)
.
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Theorem 2.3.1. Let fx and gx be mappings whose domain and codomain are the

powerset of R2. Explicitly, for some fixed x ∈ R2, define fx(S) = conv(S ∪ {x}) and

gx(S) = (S ∩ (−{x}o)).

If P and v∗ are as defined in the previous theorem, then the following equalities hold

fv∗(gv∗(P )) = conv((P ∩ (−{v∗}o)) ∪ {v∗}),

gv∗(fv∗(P )) = conv(P ∪ {v∗}) ∩ (−{v∗}o),

fv∗(gv∗(P )) = gv∗(fv∗(P )).

Proof. By Lemma 2.3.10, conv(P ∪ v∗) = P ∪ conv({q1, q2, v∗}). Moreover,

gv∗(fv∗(P )) = (conv(P ∪ {v∗}) ∩ (−{v∗}o))

= (P ∪ conv({q1, q2, v∗})) ∩ (−{v∗}o)

= (P ∩ (−{v∗}o)) ∪ (conv{q1, q2, v∗} ∩ (−{v∗}o)

= (P ∩ (−{v∗}o)) ∪ conv{q1, q2, v∗}

= gv∗(P ) ∪ conv({q1, q2, v∗}).

We claim that gv∗(P ) ∪ conv({q1, q2, v∗}) = conv(gv∗(P ) ∪ {v∗}). We will prove that

this claim is true by showing the double inclusion.

Recall that q1 and q2 are vertices of P that are contained in gv∗(P ) = (P ∩ (−{v∗}o)).

Also, gv∗(fv∗(P )) is the intersection of two convex sets, which implies that gv∗(P ) ∪

conv({q1, q2, v∗}) is convex as well.

Suppose p ∈ (gv∗(P ) ∪ conv({q1, q2, v∗})). If p ∈ gv∗(P ), then it is clear that

p ∈ conv(gv∗(P ) ∪ {v∗}). If p ∈ conv({q1, q2, v∗}), then p is a convex combina-

tion of q1, q2 and v∗. Since q1 and q2 are points in gv∗(P ), we may conclude that p ∈
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conv(gv∗(P )∪{v∗}). It follows that (gv∗(P )∪conv({q1, q2, v∗})) ⊂ (conv(gv∗(P )∪{v∗}).

Suppose p ∈ conv(gv∗(P ) ∪ {v∗}), then p is a convex combination of points in

gv∗(P ) and v∗. Since gv∗(P ) ∪ conv({q1, q2, v∗}) is convex and contains all points

in gv∗(P ) and v∗, it must contain p. It follows that (conv(gv∗(P ) ∪ {v∗}) ⊂ (gv∗(P ) ∪

conv({q1, q2, v∗})). By double inclusion, we have shown that gv∗(P )∪conv({q1, q2, v∗}) =

conv(gv∗(P ) ∪ {v∗}).

Now, we have that:

gv∗(fv∗(P )) = gv∗(P ) ∪ conv({q1, q2, v∗})

= conv(gv∗(P ) ∪ {v∗})

= conv((P ∩ (−{v∗}o)) ∪ {v∗})

= fv∗(gv∗(P )).

Lemma 2.3.12. If P and v∗ are as previously defined, then

conv(P ∪ {v∗}) = closure(conv((P ∪ {v∗}) ∪ {0}))

= [(P ∪ {v∗})]

and

conv(P ∩ (−{v∗}o)) ∪ {v∗}) = closure(conv((P ∩ (−{v∗}o) ∪ {v∗}) ∪ {0}))

= [(P ∩ (−{v∗}o)) ∪ {v∗}].

Proof. Recall that P contains the origin by definition. From this, it follows that

conv(P ∪ {v∗}) = conv((P ∪ {v∗}) ∪ {0}).
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Now, we will show by double inclusion that conv(P ∪ {v∗}) = conv(V (P ) ∪ {v∗}),

where V (P ) is the set of vertices of P . It is clear that conv(V (P )∪{v∗}) ⊂ conv(P ∪

{v∗}).

Suppose x ∈ conv(P ∪ {v∗}), then x is a convex combination of some point p ∈ P

and v∗. Since P is a convex polytope, p is a convex combination of points in V (P ).

This implies that p ∈ conv(V (P ) ∪ {v∗}). Thus p and v∗ are in conv(V (P ) ∪ {v∗}),

implying that x ∈ conv(V (P ) ∪ {v∗}). We may conclude that conv(P ∪ {v∗}) ⊂

conv(V (P )∪{v∗}). By double inclusion, we have that conv(P ∪{v∗}) = conv(V (P )∪

{v∗}).

From the above result, we see that conv(P ∪{v∗}) can be characterized as the convex

hull of a finite set of points. It follows that conv(P ∪{v∗}) is a convex polytope. It is

well known that polytopes are closed sets from which we may assert that conv(P ∪

{v∗}) is a closed set. Now, recalling that a closed set is equal to its closure, we my

conclude that

conv(P ∪ {v∗}) = closure(conv((P ∪ {v∗}) ∪ {0}))

= [(P ∪ {v∗})].

To prove the second string of set equality, we first remark that P ∩ (−{v∗}o) can

be characterized as an intersection of halfplanes and is therefore a polytope. Since

P is bounded, (P ∩ (−{v∗}o)) must be bounded too. We may now conclude that

P ∩ (−{v∗}o) is a polytope. By repeating the same argument as above with the

replacement of P with (P ∩ (−{v∗}o)), we prove that

conv(P ∩ (−{v∗}o)) ∪ {v∗}) = closure(conv((P ∩ (−{v∗}o) ∪ {v∗}) ∪ {0}))

= [(P ∩ (−{v∗}o)) ∪ {v∗}].
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Theorem 2.3.2. Let P and v∗ be as previously defined. Define T = [P ∪ {v∗}] ∩

(−{v∗}o), then T is a self-nolar polytope, that is T = −T o.

Proof.

T = [P ∪ {v∗}] ∩ (−{v∗}o)

= conv((P ∪ {v∗}) ∩ (−{v∗}o)

= conv(P ∩ (−{v∗}o) ∪ {v∗})

= [(P ∩ (−{v∗}o)) ∪ {v∗}]

= ((P ∩ (−{v∗}o)) ∪ {v∗})oo

= ((−P o ∩ (−{v∗}o)) ∪ {v∗})oo

= ((−P ∪ (−{v∗}))o ∪ {v∗})oo

= ((−P ∪ (−{v∗}))oo ∩ {v∗}o)o

= −((P ∪ ({v∗}))oo ∩ (−{v∗}o))o

= −([P ∪ {v∗}] ∩ (−{v∗}o))o

= −T o

It is Theorem 2.3.2, or more evidently the upcoming Corollary 2.3.7, which can

be used as a method to construct a new self-nolar polytope T based on one already

known to exist P .

Under the assumptions of Theorem 2.3.2, recall that −vj−1, −vj and −vj+1 are

three consecutive vertices of self-nolar polytope P = {x ∈ R2 | x · vi ≤ 1, 1 ≤

i ≤ k} such that (−vj−1), (−vj) = Eh ⊂ H (ûh, dh) and (−vj), (−vj+1) = Eh+1 ⊂

H (ûh+1, dh+1). The segments Eh and Eh+1 are edges of P , while H (ûh, dh) and

H (ûh+1, dh+1) are essential support lines, where −vj = H (ûh, dh) ∩ H (ûh+1, dh+1).
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In addition, the boundary line H
(
û∗,

1
d∗

)
of halfplane H−

(
û∗,

1
d∗

)
intersects Eh and

Eh+1 at points p1 and p2 respectively, such that conv({−vj, p1, p2}) does not contain

the origin.

Corollary 2.3.5. Let T be as previously defined, then

T =

(conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2} ∪ conv{q1, q2, v∗}.

Proof. By Theorem 2.3.1 and Lemma 2.3.12, we have that

T = [P ∪ {v∗}] ∩ (−{v∗}o)

= conv((P ∪ {v∗}) ∩ (−{v∗}o)

= (P ∩ (−{v∗}o)) ∪ conv{q1, q2, v∗}.

We also know, by Lemma 2.3.11, that −{v∗}o = H−
(
û∗,

1
d∗

)
and, by construction,

we have P ∩H−
(
û∗,

1
d∗

)
= (P \ conv({p1, p2, (−vj)}) ∪ conv({p1, p2}). In addition,

P = conv({(−v1), ..., (−vk)}), since P is a polytope.

It follows that

T =

(conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2} ∪ conv{q1, q2, v∗}.
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Corollary 2.3.6. Consistent with previous notation, we have

(conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2}

= conv{(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2, }.

Proof. By Corollary 2.3.5,

(conv({(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2}

= (P ∩ (−{v∗}o)).

Since (P ∩ (−{v∗}o)) is the intersection of two convex sets, we have that

(conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2}

is convex.

Suppose that:

x ∈ (conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2}.

In general, x must be a convex combination of the form

x = a1(−v1) + ...+ aj(−vj) + ...+ ak(−vk) + b1p1 + b2p2.

Clearly, x 6= −vj. It follows, by convexity of

(conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2},
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that aj = 0 and that x is restricted to a convex combination of the form

x = a1(−v1) + ...+ aj−1(−vj−1) + aj+1(−vj+1)...+ ak(−vk) + b1p1 + b2p2,

which are precisely all the elements of

conv{(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2}.

We may now conclude that

(conv{(−v1), ..., (−vk)} \ conv{p1, p2, (−vj)}) ∪ conv{p1, p2}

= conv{(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2}.

Corollary 2.3.7. Assuming previous notation still valid, we have

T = conv({(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2, v∗}).

Proof. By Corollaries 2.3.5 and 2.3.6,

T =

conv({(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2}) ∪ conv{q1, q2, v∗}.

T is convex. From this fact, it follows that if x ∈ T , then x must be a convex

combination of the form

x = a1(−v1)+...+aj−1(−vj−1)+aj+1(−vj+1)...+ak(−vk)+b1p1+b2p2+b3v∗+b4q1+b5q2.
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We know from Lemma 2.3.9 that q1 and q2 are vertices of self-nolar polytope P ,

which are contained in its essential support line H (ûj, dj). By definition of (−vj),

(−vj) /∈ H (ûj, dj), implying that (−vj) 6= q1 and (−vj) 6= q2. Thus, q1, q2 ∈

{(−v1), ..., (−vj−1), (−vj+1), ..., (−vk)}. Now, by combining like terms in the convex

combination expression of x, we can simplify the expression to

x = a1(−v1) + ...+ aj−1(−vj−1) + aj+1(−vj+1)...+ ak(−vk) + b1p1 + b2p2 + b3v∗.

These convex combinations forming x are precisely the elements of

conv{(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2, v∗}.

We may now conclude that

T = conv{(−v1), ..., (−vj−1), (−vj+1), ..., (−vk), p1, p2, v∗}.

2.3.1 Altering the Number of Vertices While Maintaining

Self-nolarity

Interestingly, the number of vertices T will have is dependent on the number of ver-

tices P has and on where H(û∗,
1
d∗

) intersects the boundary of P . We will now state

and prove a few propositions regarding the number of vertices of T .

Lemma 2.3.13. Suppose P has k ≥ 5 vertices. If p1 = (−vj−1) and p2 = (−vj+1),

then T will have k − 2 vertices.

Proof. Assume that p1 = (−vj−1) and p2 = (−vj+1).
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Clearly, the set vertices of P contained in H− (ûj, dj) ∩H−
(
û∗,

1
d∗

)
is {−vi | i =

1, 2, ..., k} \ {(−vj−1), (−vj), (−vj+1), q1, q2}. By Theorem 2.3.1, it follows that

T ∩H− (ûj, dj) ∩H−
(
û∗,

1

d∗

)
= P ∩H− (ûj, dj) ∩H−

(
û∗,

1

d∗

)
.

Thus the set of vertices of T contained in H− (ûj, dj) ∩H−(û∗,
1
d∗

) is also {−vi | i =

1, 2, ..., k} \ {(−vj−1), (−vj), (−vj+1), q1, q2}. We may conclude that there are exactly

k − 5 vertices of T belonging to H− (ûj, dj) ∩H−(û∗,
1
d∗

).

By construction, p1 and p2 are vertices of T belonging to H
(
û∗,

1
d∗

)
and, in

addition, T does not contain any points in H+
(
û∗,

1
d∗

)
. This implies that the only

vertices of T in H+
(
û∗,

1
d∗

)
are p1 = (−vj−1) and p2 = (−vj+1). We may conclude

that there are exactly 2 vertices of T belonging to H+
(
û∗,

1
d∗

)
. Now, the only points

belonging to T in H+ (ûj, dj) are the ones belonging to conv(v∗, q1, q2), which implies

that v∗, q1 and q2 are the only potential vertices of T in H+ (ûj, dj). By construction,

we know that v∗ is a vertex of T and that q1 and q2 are vertices of P belonging to

H (ûj, dj). By Theorem 2.2.1 and Corollary 2.3.2, H (ûh, dh) and H (ûh+1, dh+1) are

the essential support lines of P associated with q1 and q2, respectively. But since

p1 = (−vj−1) and p2 = (−vj+1), H (ûh, dh) and H (ûh+1, dh+1) do not contain edges

of T , so they cannot be essential hyperplanes of T . It follows from Theorem 2.2.1

that q1 and q2 are not vertices of T . We may conclude that there is exactly 1 vertex

of T belonging to H+ (ûj, dj). Note that, since the number of vertices of T is k ≥ 5,

the vertices in these three sets are unique and that the union of the three sets is R2.

Thus, by summing the number vertices of T in these three set, we may conclude that

T has exactly (k − 5) + 2 + 1 = k − 2 vertices.

Lemma 2.3.14. Suppose P has k ≥ 5 vertices. If p1 = (−vj−1) and p2 6= (−vj+1) or

if p1 6= (−vj−1) and p2 = (−vj+1), then T will have k vertices as well.
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Proof. Assume that p1 = (−vj−1) and p2 6= (−vj+1). Clearly, the set vertices of P

contained H− (ûj, dj) ∩H−
(
û∗,

1
d∗

)
is {−vi | i = 1, 2, ..., k} \ {(−vj), (−vj+1), q1, q2}.

By Theorem 2.3.1, it follows that

T ∩H− (ûj, dj) ∩H−
(
û∗,

1

d∗

)
= P ∩H− (ûj, dj) ∩H−

(
û∗,

1

d∗

)
.

Thus, the set of vertices of T contained in H− (ûj, dj) ∩ H−
(
û∗,

1
d∗

)
is also {−vi |

i = 1, 2, ..., k}\{(−vj), (−vj+1), q1, q2}. We may conclude that there are exactly k−4

vertices of T belonging to H− (ûj, dj) ∩H−
(
û∗,

1
d∗

)
.

By construction, p1 = (−vj−1) and p2 are vertices of T belonging to H
(
û∗,

1
d∗

)
and, in addition, T does not contain any points in H+

(
û∗,

1
d∗

)
. This implies that the

only vertices of T inH+
(
û∗,

1
d∗

)
are p1 = (−vj−1) and p2. We may conclude that there

are exactly 2 vertices of T belonging to H+
(
û∗,

1
d∗

)
. Now, the only points belonging

to T in H+ (ûj, dj) are the ones belonging to conv(v∗, q1, q2), which implies that v∗, q1

and q2 are the only potential vertices of T in H− (ûj, dj). By construction, we know

that v∗ is a vertex of T and that q1 and q2 are vertices of P belonging to H (ûj, dj).

By Theorem 2.2.1 and Corollary 2.3.2, H (ûh, dh) and H (ûh+1, dh+1) are the essential

support lines of P associated with q1 and q2 respectively. But, since p1 = (−vj−1),

H (ûh, dh) does not contain an edge of T and therefore cannot be an essential support

line of T . However, p2,−(vj+1) is an edge of T contained in H (ûh+1, dh+1), implying

that H (ûh+1, dh+1) is an essential support line of T . It follows from Theorem 2.2.1

that q1 is not a vertex of T but q2 is a vertex of T . We may conclude that there are

exactly 2 vertices of T belonging to H+ (ûj, dj).

Note that, since the number of vertices of T is k ≥ 5, the vertices in these three sets

are unique and that the union of the three sets is R2. Thus, by summing the number

vertices of T in these three set, we may conclude that T has exactly (k−4)+2+2 = k

vertices.
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Assume that p1 6= (−vj−1) and p2 = (−vj+1). By interchanging the role between

p1 and p2 in the previous argument, we may once again conclude the T has exactly k

vertices.

Lemma 2.3.15. Suppose P has k ≥ 5 vertices. If p1 6= (−vj−1) and p2 6= (−vj+1),

then T will have k + 2 vertices.

Proof. Assume that p1 6= (−vj−1) and p2 6= (−vj+1). Clearly, the set vertices of

P contained H− (ûj, dj) ∩ H−
(
û∗,

1
d∗

)
is {−vi | i = 1, 2, ..., k} \ {(−vj), q1, q2} By

theorem 2.3.1, it follows that

T ∩H− (ûj, dj) ∩H−
(
û∗,

1

d∗

)
= P ∩H− (ûj, dj) ∩H−

(
û∗,

1

d∗

)
.

Thus the set of vertices of T contained in H− (ûj, dj)∩H−
(
û∗,

1
d∗

)
is also {−vi | i =

1, 2, ..., k} \ {(−vj), q1, q2}. We may conclude that there are exactly k − 3 vertices of

T belonging to H− (ûj, dj) ∩H−
(
û∗,

1
d∗

)
.

By construction, p1 and p2 are vertices of T belonging to H
(
û∗,

1
d∗

)
and, in

addition, T does not contain any points in H+
(
û∗,

1
d∗

)
. This implies that the only

vertices of T in H+
(
û∗,

1
d∗

)
are p1 and p2. We may conclude that there are exactly

2 vertices of T belonging to H+(û∗,
1
d∗

). Now, the only points belonging to T in

H+ (ûj, dj) are the ones belonging to conv(v∗, q1, q2), which implies that v∗, q1 and q2

are the only potential vertices of T in H− (ûj, dj). By construction, we know that v∗ is

a vertex of T and that q1 and q2 are vertices of P belonging to H (ûj, dj). By Theorem

2.2.1 and corollary 2.3.2, H (ûh, dh) and H (ûh+1, dh+1) are the essential support lines

of P associated with q1 and q2 respectively.The line segment p1,−(vi−1) is an edge of

T contained in H (ûh, dh) and p2,−(vi+1) is an edge of T contained in H (ûh+1, dh+1),

implying that H (ûh, dh) and H (ûh+1, dh+1) are both an essential support lines of T .
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It follows by Theorem 2.2.1 that q1 and q2 are vertices of T . We may conclude that

there are exactly 3 vertices of T belonging to H+ (ûj, dj). Note that, since the number

of vertices of T is k ≥ 5, the vertices in these three sets are unique and that the union

of the three sets is R2. Thus, by summing the number vertices of T in these three

set, we may conclude that T has (k − 3) + 2 + 3 = k + 2 vertices.

2.3.2 Parity Restriction on the Vertices

Another question that can be asked about self-nolar polytopes is if there is a parity

restriction on the vertices. We begin to answer this question by first proving that a

self-nolar polytope cannot have exactly 4 vertices.

Lemma 2.3.16. There does not exist a self-nolar polytope with exactly 4 vertices.

Proof. Suppose

P =
⋂

i∈{1,2,3,4}

H− (ûi, di)

=
⋂

i∈{1,2,3,4}

{
H−(vi) | vi =

ûi
di

}
= {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ 4}

is a self-nolar polytope. By Theorem 2.2.1, P = conv({−vi | 1 ≤ i ≤ 4}), where each

vi is a vertex of P . In other words, P has exactly 4 vertices.

Without any loss of generality, let −v1 be located on the positive y-axis. This im-

plies, by Theorem 2.2.1 and the fact that each essential support line contains exactly

one edge, that there exists an edge E1 of P that is below the x-axis and parallel to it.

Case one: Assume P has all 4 vertices on or above the x-axis.The edge E1 of P

is located below the x-axis and contains 2 additional vertices. This implies that P
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must have in fact 6 vertices, which is a contradiction.

Case two: Assume P has exactly 3 vertices on or above the x-axis. The edge E1

of P is located below the x-axis and contains 2 additional vertices. This implies that

P must have 5 vertices, which is again a contradiction with our assumption.

Case three: Assume P has exactly 2 vertices on or above the x-axis. The edge E1

of P is located below the x-axis and contains 2 additional vertices. This implies that

there exists another vertex of P , besides −v1, located in the first or second quadrant.

Without any loss of generality, let it be in the second quadrant. let us now locate and

label the vertices of P using our predefined counterclockwise method. We first have

−v1 on the positive y-axis, −v2 in the second quadrant, −v3 in the third quadrant

and lastly −v4 in the fourth quadrant. Here, we label and locate the associated 4

edges of P , again using our predefined counterclockwise method:

E1 = (−v3), (−v4)

E2 = (−v4), (−v1)

E3 = (−v1), (−v2)

E4 = (−v2), (−v3).

Now, the slope m of E2 = (−v4), (−v1) must be negative, otherwise it would imply

the P contains the origin in its boundary, which is a contradiction. This implies that

the essential support line H(v2), containing E2, has yint > 0 and m < 0. By Lemma

2.3.1, −v2 is strictly in Q3. This contradicts −v2 being in Q2.

Case four: Assume P has exactly 1 vertex on or above the x-axis. The edge E1
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of P is located below the x-axis and contains 2 additional vertices. This implies that

there exists another vertex of P in the third or fourth quadrant. Without loss of

generality, let it be in the fourth quadrant. Let us now locate and label the vertices

of P using our predefined counterclockwise method. We first have −v1 on the positive

y-axis, −v2 in the third quadrant, −v3 in the fourth quadrant and, lastly, −v4 also

in the fourth quadrant. Here, we label and locate the associated 4 edges of P , again

using our predefined counterclockwise method:

E1 = (−v2), (−v3)

E2 = (−v3), (−v4)

E3 = (−v4), (−v1)

E4 = (−v1), (−v2).

Now, the slope m of E3 = (−v4), (−v1) must be negative, otherwise it would imply

the P contains the origin in its boundary, which is a contradiction. So, this implies

the essential support line H(v3),containing E3, has yint > 0 and m < 0. By Lemma

2.3.1, −v3 is strictly in Q3. This contradicts −v3 being in Q4.

This concludes the proof of the lemma.

Lemma 2.3.17. Every self-nolar polytope P = {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ k}

with k ≥ 5 has three consecutive vertices −vi−1,−vi and −vi+1 such that (0, 0) /∈

conv({−vi−1,−vi,−vi+1}).

Proof. If (0, 0) /∈ conv({−vi−1,−vi,−vi+1}) for all i ∈ {1, 2, ..., k}, then the lemma is

trivially true.

Assume that there exists, at least, one set of three consecutive vertices

{−vi+1,−vi+2,−vi+3} such that (0, 0) ∈ conv{−vi+1,−vi+2,−vi+3}. Since k ≥ 5, we
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may assume that {−vi−1,−vi,−vi+1,−vi+2,−vi+3} is the set of unique vertices of P

where no two are the same. It follows, by convexity of P , that

conv({−vi−1,−vi,−vi+1}) ∩ conv({−vi+1,−vi+2,−vi+3}) = {−vi+1}.

Since −vi+1 is a vertex of P , we have that −vi+1 6= (0, 0). Recalling that

(0, 0) ∈ conv{−vi+1,−vi+2,−vi+3}, we may conclude that (0, 0) /∈ conv{−vi−1,−vi,−vi+1}.

The following result has been also proved in [2], Theorem 4.4, by different methods.

Theorem 2.3.3. If P = conv{v1, v2, ..., vk} is a self-nolar polytope, then k is an odd

integer or, in other words, P has an odd number of vertices.

Proof. We have previously confirmed the existence of self-nolar polytopes by con-

structing a self-nolar pentagon. By Lemma 2.3.16, we know the k 6= 4. So, let

k = 2n with 3 ≤ n. Now, combining the results of Theorem 2.3.2, Lemma 2.3.17 and

Lemma 2.3.13, they imply that we can construct a new self-nolar polytope T1 that

has two less vertices than P . If we iterate this process n − 2 times, where the ith

iteration alters Ti−1 into Ti, we will obtain a new self-nolar polytope Tn−2 that has

2(n− 2) = 2n− 4 less vertices than P . This implies that Tn−2 is a self-nolar polytope

that has 2n − (2n − 4) = 4 vertices, which contradicts Lemma 2.3.16. From these

facts, we conclude that each self-nolar polytope must have an odd number of vertices.
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Chapter 3

Finer Properties of Self-Nolar

Planar Sets

3.1 Introduction

In this chapter we prove some noteworthy properties of self-nolar sets such as the fact

that all self-nolar sets are convex, that the family of all self-nolar sets is uncountable,

and that the set of all self-nolar planar polytopes is dense in the set of all self-nolar

planar sets. We also give proofs concerning the length of the boundary of a self-nolar

set with smooth boundary, the center of mass of self-nolar polytopes and the Mahler

product. Moreover, we prove an original theorem, theorem 3.2.2, that can be used as

a practical method to construct self-nolar polytopes.

3.2 Topological Properties

3.2.1 Cardinality

Theorem 3.2.1. The set of all self-nolar sets is uncountable.

Proof. Consider once again the pentagon P (figure 2.1) defined by
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P =
⋂

i∈{1,2...,5}

H− (ûi, di)

=
⋂

i∈{1,2...,5}

{
H−(vi) | vi =

ûi
di

}
= {x ∈ R2 | x · vi ≤ 1, 1 ≤ i ≤ 5},

where

v1 = (−1, 1) =
û1
d1

=
(−1√

2
, 1√

2
)

1√
2

v2 = (1, 1) =
û2
d2

=
( 1√

2
, 1√

2
)

1√
2

v3 = (1, 0) =
û3
d3

=
(1, 0)

1

v4 = (0,−1) =
û4
d4

=
(0,−1)

1

v5 = (−1, 0) =
û5
d5

=
(−1, 0)

1
.

We previously determined that P is self-nolar and that V (P ) = {−vi | 1 ≤ i ≤ 5}. To

determine the vertices of P , we found the intersection point of each pair of consecutive

support lines:

H(v1) ∩H(v2) = (0, 1) = −v4

H(v2) ∩H(v3) = (1, 0) = −v5

H(v3) ∩H(v4) = (1,−1) = −v1

H(v4) ∩H(v5) = (−1,−1) = −v2

H(v5) ∩H(v1) = (−1, 0) = −v3.

Let us now intersect P with H−
(
û∗,

1
d∗

)
such that û∗ = (0, 1) and 1

4
≤ 1

d∗
≤ 1

2
.
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It follows that v∗ = d∗ (−û∗) = (0,−d∗), where 2 ≤ d∗ ≤ 4. Since −v3,−v4 and

−v5 are three consecutive vertices of P , −v3,−v4 and −v4,−v5 are edges of P . By

construction, H
(
û∗,

1
d∗

)
intersects edge −v3,−v4 at point p∗ = (1− 1

d∗
, 1
d∗

) and edge

−v4,−v5 at point q∗ = ( 1
d∗
− 1, 1

d∗
). For a fixed d∗, by Corollary 2.3.7 and Lemma

2.3.15, we may assert that T∗ = conv{−v1,−v2,−v3,−v5, p∗, q∗, v∗} is a self-nolar

polygon with seven vertices. Recall that the cardinality of a nonempty interval of

the real line is uncountable. From this fact, it follows that the set of choices for

d∗ is uncountable. Now, let us choose two distinct real numbers d∗ and d∗∗, such

that 2 ≤ d∗, d∗∗ ≤ 4, and consider the two associated self-nolar polygons, T∗ =

conv{−v1,−v2,−v3,−v5, p∗, q∗, v∗} and T∗∗ = conv{−v1,−v2,−v3,−v5, p∗∗, q∗∗, v∗∗}

respectively. Note that {−v3,−v5, p∗, q∗, p∗∗, q∗∗} is a subset of the unit disc and that

|| − v1|| = || − v2|| =
√

2. In addition, we have that ||v∗|| = d∗ and ||v∗∗|| = d∗∗.

This implies that if x ∈ {−v1,−v2,−v3,−v5, p∗, q∗, p∗∗, q∗∗}, then ||x|| ≤
√

2 and if

x ∈ {v∗, v∗∗}, then 2 ≤ ||x|| ≤ 4. Suppose that T∗ and T∗∗ are congruent up to some

rigid rotation. It follows that for some x ∈ {−v1,−v2,−v3,−v5, p∗, q∗, v∗}, we have

that 2 ≤ ||x|| = ||v∗∗|| ≤ 4 . Suppose x ∈ {−v1,−v2,−v3,−v5, p∗, q∗}, this leads to

the contradiction that ||x|| ≤
√

2 and 2 ≤ ||x|| ≤ 4. Suppose ||x|| = ||v∗|| = d∗, since

||v∗∗|| = d∗∗, this implies that d∗ = d∗∗ which contradicts d∗ and d∗∗ being two distinct

real numbers. Thus, we may conclude that T∗ and T∗∗ are not congruent up to some

rigid rotation. Finally, given that the set of all choices of d∗ is uncountable and that

no two distinct choices are associated (through the application of Corollary 2.3.7) with

congruent (up to some rigid rotation) self-nolar polytopes, we may conclude that the

set of self-nolar polytopes constructed by all possible choices of d∗ is uncountable.

This implies that the set of all self-nolar sets is uncountable.
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3.2.2 Density

In this section we ultimately prove that that set of all self-nolar polytopes is dense in

the set of all self-nolar sets.

Lemma 3.2.1. Let C be a self-nolar set and let B be the closed unit disc.

a. If C is a subset of the unit disc B, then C is the unit disc B.

b. If the unit disc B is a subset of C, then C is the unit disc B.

Proof. Suppose C ⊆ B. Since C is self-nolar, we have that

B = Bo ⊆ Co = −C.

This implies that

B = −B ⊆ −(−C) = C.

By double inclusion, we have proved claim a.

Suppose C ⊆ B. Since C is self-nolar, we have that

B = Bo ⊆ Co = −C.

This implies that

B = −B ⊆ −(−C) = C.

By double inclusion, we have proved claim b.

Lemma 3.2.2. If C is as self-nolar set with boundary Bd(C), then there exist two

boundary points n,m ∈ Bd(C) such that m = − n
||n||2 , with n ·m = −1.
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Proof. Choose n ∈ Bd(C) such that ||n|| is the maximal Euclidean distance from

the origin to Bd(C). Let ||n||B be the disc centered at the origin with radius ||n||.

Clearly we have the C ⊆ ||n||B. This implies that

1

||n||
B = (||n||B)o ⊆ Co

− 1

||n||
B = −(||n||B)o ⊆ −Co = C.

Since

1

||n||
B = − 1

||n||
B,

we then have

1

||n||
B ⊆ C.

Now, define m = − n
||n||2 , so that ||m|| = 1

||n|| . Since 1
||n||B ⊆ C, we have m ∈ C.

Suppose m /∈ Bd(C), then there exist x = l(− n
||n||) ∈ Bd(C) such that ||x|| = l >

1
||n|| = ||m||. It follows, by self-nolarity of C, that −x = l( n

||n||) ∈ Bd(Co) with

|| − x|| = l > 1
||n|| = ||m||. This implies that

−x · n = || − x|| ||n|| cos(0) = l||n|| > ||m|| ||n|| = 1

||n||
||n|| = 1,

which contradicts −x ∈ Bd(Co).

As such, we may now conclude that m,n ∈ Bd(C) with m = − n
||n||2 and

n ·m = ||n|| ||m|| cos(π) = ||n|| 1

||n||
(−1) = 1(−1) = −1.

Corollary 3.2.1. In addition to the above notation, let m = dû and n = − û
d

for
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some d ∈ R+ and some unit vector û. Then

C = −Co ⊂ H−(−û, 1

d
) ∩H−(û, d).

Proof. By definition, we have Co = {x | x · c ≤ 1,∀c ∈ C} implying that

−Co ⊂ {x | x · (−m) ≤ 1} = {x | x · d(−û) ≤ 1}

= {x | x · (−û) ≤ 1

d
}

= H−(−û, 1

d
).

Similarly,

−Co ⊂ {x | x · −n ≤ 1} = {x | x · ( û
d

) ≤ 1}

= {x | x · (û) ≤ d}

= H−(û, d).

It follows that

−Co ⊂ H−(−û, 1

d
) ∩H−(û, d).

By assumption, C = −Co, which allows us to conclude that

C = −Co ⊂ H−(−û, 1

d
) ∩H−(û, d).

.

Lemma 3.2.3. Let C is a self-nolar set, θ ∈ [0, 2π] such that û = û(θ) = (cos(θ), sin(θ))

is a unit vector in R2 and d1, d2 ∈ R+. If d1(û), d2(−û) ∈ Bd(C), where d1(û) and
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d2(−û) are scalar multiplications, then d1d2 ≤ 1.

Proof. Let d1(û), d2(−û) ∈ Bd(C). Since C is a self-nolar set, we have that d1(−û), d2(û) ∈

Bd(Co). By definition, Co = {x | x · c ≤ 1, ∀c ∈ C} implying that

d1(û) · d2(û) = |d1||d2|cos(0) = d1d2 ≤ 1.

Definition 3.2.1. Let U = {(x, y) | y ≥ 0}, L = {(x, y) | y ≤ 0}, ĵ = (0, 1), N ∈ R+,

k ∈ N such that k ≥ 3 and define

Q = lim
N→∞

⋂
i∈{1,2...,k}

(
H− (ûi, di) ∩H−(−ĵ, N)

)

= lim
N→∞

(
conv{ ûi∗

di∗
| 1 ≤ i ≤ (k − 1)}∪

(
H−(ĵ,

1

N
) ∩H−

(
û1∗,

1

d1∗

)
∩H−

(
û(k−1)∗,

1

d(k−1)∗

)
∩H−(−ĵ, N)

))

to be a convex polyhedron with the assumptions that:

a. d1û1 = û1∗
d1∗

= (−1
d
, 0) and dkûk =

û(k−1)∗
d(k−1)∗

= (d, 0),

b. ûi∗
di∗
∈ H−

(
û1∗,

1
d1∗

)
∩H−

(
û(k−1)∗,

1
d(k−1)∗

)
∩ U , for 1 ≤ i ≤ (k − 1),

c. ûi∗
di∗

= H (ûi, di) ∩H (ûi+1, di+1), for 1 ≤ i ≤ (k − 1),

d. H (ûi, di) has a positive y-intercept, for 2 ≤ i ≤ (k − 1).

Equivalently, as N →∞,

Q =
⋂

i∈{1,2...,k}

H− (ûi, di)

= conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)}) ∪

(
L ∩H−

(
û1∗,

1

d1∗

)
∩H−

(
û(k−1)∗,

1

d(k−1)∗

))
.
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Lemma 3.2.4. If Q and L are defined as above, then

−Qo = conv({−ûi
di
| 1 ≤ i ≤ k})

=
⋂

i∈{1,2...,(k−1)}

H− (−ûi∗, di∗) ∩ L.

Proof. It follows, by the properties of the polar set listed in Chapter 1, and Theorem

2.2.2, that:

−Qo = lim
N→∞

conv({−ûi
di
| 1 ≤ i ≤ k} ∪ { ĵ

N
})

= lim
N→∞

⋂
i∈{1,2...,(k−1)}

H− (−ûi∗, di∗) ∩ conv{(0,−N), d1∗(−û1∗), d(k−1)∗(−û(k−1)∗), (0,
1

N
)}.

As N →∞,

−Qo = conv({−ûi
di
| 1 ≤ i ≤ k})

=
⋂

i∈{1,2...,(k−1)}

H− (−ûi∗, di∗) ∩ (L ∩H− (−û1∗, d1∗) ∩H−
(
−û(k−1)∗, d(k−1)∗

)
)

=
⋂

i∈{1,2...,(k−1)}

H− (−ûi∗, di∗) ∩ L.

Definition 3.2.2. With the same notations as in the Definition 3.2.1 of Q, define

−̃Qo =
⋂

i∈{1,2...,(k−1)}

H− (−ûi∗, di∗)

= conv({−ûi
di
| 1 ≤ i ≤ (k − 1)}) ∪

(
U ∩H−

(
−û1,

1

d1

)
∩H−

(
−ûk,

1

dk

))
.
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Theorem 3.2.2. If Q and −̃Qo are as defined above, then

Q ∩ −̃Qo =
⋂

i∈{1,2...,(k−1)}

H− (−ûi∗, di∗) ∩
⋂

i∈{1,2...,k}

H− (ûi, di)

= conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)} ∪ {−ûi

di
| 1 ≤ i ≤ k})

is a self-nolar polytope.

Proof. By assumptions a, b in Definition 3.2.1 and Lemma 2.3.1, for 1 ≤ i ≤ (k− 1),

we have

ûi∗
di∗
∈ H−

(
û1∗,

1

d1∗

)
∩H−

(
û(k−1)∗,

1

d(k−1)∗

)
∩ U

and, for 1 ≤ i ≤ k,

−ûi
di
∈ H−

(
−û1,

1

d1

)
∩H−

(
−ûk,

1

dk

)
∩ L,

where

H−
(
û1∗,

1

d1∗

)
∩H−

(
û(k−1)∗,

1

d(k−1)∗

)
= H−

(
−û1,

1

d1

)
∩H−

(
−ûk,

1

dk

)
.

The latter equality implies that

Q ∩ −̃Qo = conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)}) ∪ conv({−ûi

di
| 1 ≤ i ≤ k}).
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By the properties of polar sets, it follows that

−(Q ∩ −̃Qo)o =
(
conv({−ûi∗

di∗
| 1 ≤ i ≤ (k − 1)})

)o ∩ (conv({ ûi
di
| 1 ≤ i ≤ k})

)o
=

 ⋂
i∈{1,2...,(k−1)}

H− (−ûi∗, di∗)

 ∩
 ⋂
i∈{1,2...,k}

H− (ûi, di)


= −̃Qo ∩Q

= Q ∩ −̃Qo,

implying that Q ∩ −̃Qo is a self-nolar set.

In addition, since Q and −̃Qo are convex, we have that

Q ∩ −̃Qo = conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)}) ∪ conv({−ûi

di
| 1 ≤ i ≤ k})

is convex as well. It follows that

Q ∩ −̃Qo = conv{ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)} ∪ conv{−ûi

di
| 1 ≤ i ≤ k}

= conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)} ∪ {−ûi

di
| 1 ≤ i ≤ k}).

Finally, we conclude that

Q ∩ −̃Qo =

 ⋂
i∈{1,2...,(k−1)}

H− (−ûi∗, di∗)

 ∩
 ⋂
i∈{1,2...,k}

H− (ûi, di)


= conv({ ûi∗

di∗
| 1 ≤ i ≤ (k − 1)} ∪ {−ûi

di
| 1 ≤ i ≤ k})

is a self-nolar polytope.

Theorem 3.2.3. Let N be the set of all self-nolar convex sets, and N be the set of

all self-nolar polytopes. If C ∈ N , then for all ε > 0, there exist P ∈ N , such that
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dH(P,C) < ε.

Here dH(A,B) denotes the Hausdorff distance between sets A and B.

Proof. Let C ∈ N . By Theorem 3.2.2, there exist two boundary points n,m ∈ Bd(C)

such that m = − n
||n||2 , with n·m = −1. Without any loss of generality, we may assume

that m and n lie on the x-axis such that m = d̂i and n = − î
d

for some d ∈ R+ and

î = (1, 0). By Corollary 3.2.1, we have that

C = −Co ⊂ H−(−î, 1

d
) ∩H−(̂i, d).

Now, let { ûi∗
di∗
| 1 ≤ i ≤ r} ⊂ Bd(C), where

Q = conv({ ûi∗
di∗
| i ∈ {1, 2..., k, ..., r}}) =

⋂
i∈{1,2...,k,...,r}

H− (ûi, di) ⊆ C

such that

a. dH(Q,C) < ε∗, for a given ε∗ ∈ R+,

b. QU = Q ∩ U = conv{ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)},

c. d1û1 = û1∗
d1∗

= (−1
d
, 0) = n and dkûk =

û(k−1)∗
d(k−1)∗

= (d, 0) = m,

d. ûi∗
di∗
∈ H−

(
û1∗,

1
d1∗

)
∩H−

(
û(k−1)∗,

1
d(k−1)∗

)
∩ U , for 1 ≤ i ≤ (k − 1),

e. ûi∗
di∗

= H (ûi, di) ∩H (ûi+1, di+1), for 1 ≤ i ≤ (k − 1),

f. H (ûi, di) has a positive y-intercept, for 2 ≤ i ≤ (k − 1).

It follows that

−Qo =
⋂

i∈{1,2...,k,...,r}

H− (−ûi∗, di∗) = conv({−ûi
di
| i ∈ {1, 2..., k, ..., r}}).
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By Theorem 2.3.1,

−Qo
L

= −Qo ∩ L = conv({−ûi
di
| 1 ≤ i ≤ k}).

Since dH(Q,C) < ε∗, we have that

(1− ε∗)Q ⊆ C ⊆ (1 + ε∗)Q =⇒
(

1

1 + ε∗

)
Qo ⊆ Co ⊆

(
1

1− ε∗

)
Qo

=⇒
(

1

1 + ε∗

)
(−Qo) ⊆ −Co ⊆

(
1

1− ε∗

)
(−Qo)

=⇒
(

1

1 + ε∗

)
(−Qo) ⊆ C ⊆

(
1

1− ε∗

)
(−Qo),

=⇒

(
1−

(
ε∗

1 + ε∗

))
(−Qo) ⊆ C ⊆

(
1 +

(
ε∗

1− ε∗

))
(−Qo).

This, in conjunction with the fact that, ∀ε ∈ (0, 1
2
),

(
1−

(
ε∗

1− ε∗

))
≥ 1− 2ε∗

and (
1 +

(
ε∗

1− ε∗

))
≤ 1 + 2ε∗,

implies that dH(−Qo, C) < 2ε∗.

Let ε = 2ε∗, then

dH(Q,C) < ε =⇒ dH(QU , C ∩ U) < ε

dH(−Qo, C) < ε =⇒ dH(−Qo
L, C ∩ L) < ε.
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Define

P = QU ∪ −Qo
L

= conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)}) ∪ conv({−ûi

di
| 1 ≤ i ≤ k}).

Since dH(QU , C ∩ U) < ε, dH(−Qo
L, C ∩ L) < ε and P = QU ∪ −Qo

L, it is the case

that dH(P,C) < ε. In addition, by Theorem 3.2.2, we can conclude that

P = conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)}) ∪ conv({−ûi

di
| 1 ≤ i ≤ k}).

= conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)} ∪ {−ûi

di
| 1 ≤ i ≤ k})

=
⋂

i∈{1,2...,(k−1)}

H− (−ûi∗, di∗) ∩
⋂

i∈{1,2...,k}

H− (ûi, di)

is a self-nolar polytope.

3.3 A Practical Method to Construct Self-nolar

Polytopes

Theorem 3.2.2 enables us to construct self-nolar polytopes in a simple way. The first

step is to choose two finite sets of points M = { ûi∗
di∗
| 1 ≤ i ≤ (k−1)} and {d1û1, dkûk}

that satisfy:

a. d1û1 = û1∗
d1∗

= (−1
d
, 0) and dkûk =

û(k−1)∗
d(k−1)∗

= (d, 0),

b. ûi∗
di∗
∈ H−

(
û1∗,

1
d1∗

)
∩H−

(
û(k−1)∗,

1
d(k−1)∗

)
∩ U , for 1 ≤ i ≤ (k − 1),

c. ûi∗
di∗

= H (ûi, di) ∩H (ûi+1, di+1), for 1 ≤ i ≤ (k − 1),

d. H (ûi, di) has a positive y-intercept, for 2 ≤ i ≤ (k − 1).
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e.
⋃

i∈{1,2...,(k−2)}

ûi∗
di∗
,
û(i+1)∗
d(i+1)∗

is part of the boundary of a convex polytope.

From a, c and d we can easily determine the set of points N = {−ûi
di
| 1 ≤ i ≤ k}.

Then, by the previous theorem, we have that

M ∩N = conv({ ûi∗
di∗
| 1 ≤ i ≤ (k − 1)} ∪ {−ûi

di
| 1 ≤ i ≤ k})

is a self-nolar polytope.

The following figures of self-nolar polytopes were constructed with the aforemen-

tioned method.

Figure 3.1: A self-nolar pentagon (solid boundary line) and its polar set (dashed
boundary line).
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Figure 3.2: A self-nolar heptagon (solid boundary line) and its polar set (dashed
boundary line).

3.4 Metric Property: Boundary Length

The following facts will be used in the next lemma. Recall that for a convex set C in

R2, h : [0, 2π]→ R is the support function of C, and is 2π periodic, where:

h(û) = h(û(θ)) = max{x · û | x ∈ C}

= d,

such that H−(û, d) is an essential halfplane of C. Note that if C contains the origin

of the plane, then d > 0 in all directions. In addition, r : [0, 2π] → R is the radial

function of C, and is 2π periodic, where:

r(û) = r(û(θ))

= d,
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such that d(û) is a boundary point of C. It is a well known fact that the reciprocal

of the radial function of a convex body C is the support function of its polar Co

and vice versa. So ho(û(θ)) = 1
r(û(θ))

, where ho(û(θ)) is the support function of Co.

Another well established fact is that for a smooth convex curve, its length is simply

the integral of its support function over [0, 2π]. Proof of these facts can be found in

[6].

Lemma 3.4.1. Let C be a self-nolar set with smooth boundary Bd(C) and boundary

length L(Bd(C)), then L(Bd(C)) ≥ 2π, with equality only when C is the unit disk B.

Proof. Since C is self-nolar with smoothBd(C), thenBd(Co) is smooth and L(Bd(C)) =

L(Bd(Co)) =
∫ 2π

0
ho(û(θ))dθ =

∫ 2π

0
ho(−û(θ))dθ. From this, coupled with the AM-

GM inequality, the fact that ho(û(θ)) = 1
r(û(θ))

and Lemma 3.2.3, it follows that

2(L(Bd(C))) = L(Bd(Co)) + L(Bd(Co))

=

∫ 2π

0

(ho(û(θ)) + ho(−û(θ)))dθ

≥
∫ 2π

0

2
√

(ho(û(θ))ho(−û(θ))dθ

= 2

∫ 2π

0

1√
(r(û(θ))r(−û(θ))

dθ

≥ 2(2π).

So, (L(Bd(C))) ≥ 2π. For equality to hold, (r(û(θ))r(−û(θ)) = 1, for all directions

û, and we must have equality in AM-GM inequality, hence ho(û(θ)) = ho(−û(θ)). It

follows that r(û(θ)) = 1 in all directions and, thus, C is a disk.
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3.5 A Connection Between Self-nolar Polytopes and

the Mahler Product

In this section we estabish a connection between self-nolar polytopes and the Mahler

product by explicitly finding a self-nolar polytope that minimizes the Mahler product

in R2.

Lemma 3.5.1. If T is a self-nolar triangle with the origin (0, 0) as its center of mass,

height H and base B, then T is the unique equilateral triangle (up to a rigid rotation)

with H = 3√
2

and B = 2
√
3√
2

.

Proof. Let h, b ∈ R+. Without any loss of generality, let point (0, h) be a vertex of

triangle T . For T to be self-nolar the two other vertices must belong to line y = −1
h

.

So, let (b, −1
h

) be another vertex of T . By Theorem 2.2.1, T is self-nolar if and only

if (−(h
2+1)
bh2

, −1
h

) is also a vertex of T . So, (0, h), (b, −1
h

) and (−(h
2+1)
bh2

, −1
h

) are the three

vertices of T . It is well known that if (x1, y1), (x2, y2) and (x3, y3) are the vertices

of a triangle, then its center of mass is (x1+x2+x3
3

, y1+y2+y3
3

). Thus, for T to have the

origin as its center of mass, we must have


0 + b− (h2+1)

bh2
= 0

h− 2
h

+ 0 = 0

implying that h =
√

2 and b =
√
3√
2
. It follows that the vertices of T are (0,

√
2),(

√
3√
2
,− 1√

2
)

and (−
√
3√
2
,− 1√

2
). By inspection, we may conclude that T is and equilateral triangle

with H = 3√
2

and B = 2
√
3√
2

.

Note that based on this lemma we can say, loosely speaking, that generally a

self-nolar triangle will not have the origin as its center of mass.

For the next lemma some background information is needed. Let C be a compact

convex set in R2 with area A(C). The Mahler product is defined as the minimum,

60



for x ∈ C, of A(C)A((C − x)o). The unique point where this minimum is attained is

called the Santaló point of C. It is well known that x is the Santaló point for C if and

only if the origin is the center of mass for (C − x)o, [8]. In 1939, Mahler proved in

[4] that A(C)A((K − x)o) ≥ 27
4

and, in 1991, Meyer showed that equality holds only

for triangles, [5]. In the following lemma we explicitly construct a self-nolar triangle,

with both its center of mass and Santaló point being the origin, that minimizes the

Mahler product.

Lemma 3.5.2. There exists a self-nolar polytope that minimizes the Mahler product.

Proof. Let T be the self-nolar triangle from Lemma 3.5.1. From a direct calculation we

find that A(C) =
( 3√

2
)( 2
√
3√
2
)

2
= 3

√
3

2
. Since T is self-nolar with the origin as its center of

mass, this implies that T o also has the origin as its center of mass and A(T o) = 3
√
3

2
.

It follows that the origin is the Santaló point for C and that A(T )A((T )o = 27
4

.

Therefore, T minimizes the Mahler product.

Figure 3.3: A self-nolar triangle (solid line boundary), that minimizes the Mahler
product, and its polar set(dashed line boundary).
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