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Abstract

Automatic Transformation-Based Model Checking of Multi-agent

Systems

Amine Laarej

Multi-Agent Systems (MASs) are highly useful constructs in the context of real-

world software applications. Built upon communication and interaction between au-

tonomous agents, these systems are suitable to model and implement intelligent ap-

plications. Yet these desirable features are precisely what makes these systems very

challenging to design, and their compliance with requirements extremely difficult to

verify. This explains the need for the development of techniques and tools to model,

understand, and implement interacting MASs. Among the different methods devel-

oped, the design-time verification techniques for MASs based on model checking offer

the advantage of being formal and fully automated. We can distinguish between two

different approaches used in model checking MASs, the direct verification approach,

and the transformation-based approach. This thesis focuses on the later that relies

on formal reduction techniques to transform the problem of model checking a source

logic into that of an equivalent problem of model checking a target logic.

In this thesis, we propose a new transformation framework leveraging the model

checking of the computation tree logic (CTL) and its NuSMV model checker to design

and implement the process of transformation-based model checking for CTL-extension

logics to MASs. The approach provides an integrated system with a rich set of

features, designed to support the transformation process while simplifying the most

challenging and error-prone tasks. The thesis presents and describes the tool built

upon this framework and its different applications. A performance comparison with

MCMAS, the model checker of MASs, is also discussed.
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Chapter 1

Introduction

In this chapter, we introduce the context of our research. We then explain the research

problem we are trying to address and the motivations behind it, before presenting

the different features and contributions of this work. Finally, we conclude by going

over the organizational structure of this thesis.

1.1 Context of Research

1.1.1 Multi-Agent Systems

Agents have emerged as a new paradigm for software engineering over the last few

decades. Because interaction is the main characteristic of complex software systems,

and almost all real-world applications need software systems that are distributed into

many independent yet dynamically interacting components, the development of tools

and techniques to model, understand and implement systems built to interact became

a major research topic in computer science.

An agent is a computational entity (e.g., a software program) situated in an en-

vironment, upon which it can act autonomously to meet its design objectives. Thus,

an agent has full control over its own state and behavior without intervention from

other agents or humans [51]. For an agent to be considered intelligent , it has to be

[52]:

1. Reactive: it can perceive any change in its environment and react to it.
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2. Pro-active: it is capable of making decisions based on its design goals and acting

on them.

3. Social : it is capable of interacting with other agents.

4. Rational : the agent’s actions are always consistent with its goals.

A Multi-Agent System (MAS) can be defined as a ”system in which several inter-

acting, intelligent agents pursue some set of goals or perform some set of tasks” [48].

Such a system can be either compromised of heterogeneous agents (agents that have

different implementations, goals, behavior, and even programming teams and tech-

nologies) or homogeneous agents (identical agents both design and implementation-

wise, like a swarm of identical robots for example). It’s the aggregation of all these

properties that makes MASs highly complicated and hard to design, but its also what

makes them effective at modeling and solving real-world problems, ranging from com-

mercial to industrial, governmental, and healthcare applications [7, 28, 24, 47].

1.1.2 Agent Communication

It comes as no surprise that in a MAS, interaction and communication is perhaps the

most crucial aspect needed in order to define an effective MAS. Goal-oriented coor-

dination, be it within a competitive or cooperative setting, is, therefore, an essential

pattern of interaction in the context of such systems. As agents affect each other

continuously by taking actions to fulfill their goals (whether cooperating to achieve

what otherwise could not, or competing for an outcome where the success of an agent

might mean the failure of others), the need for a commonly understood language:

lingua franca for agents to communicate with each other becomes apparent. Agents

need to ’talk’ in a single commonly understood language to cooperate, negotiate, or

exchange knowledge and information, information that’s crucial for the achievement

of their goals in the most efficient manner. They also need communication protocols

to regulate and structure such communication among participants within dialogs and

negotiations.

Two approaches have been proposed to model agents communication in the liter-

ature:

• The mental approach, which focuses on mental notions such as beliefs, desires,

goals, and intentions, tries to strike a balance between these notions to meet the

2



system’s specifications effectively [40]. The biggest downside to this approach

is known as the semantics verification problem [50]. It stems from the fact that

a receiving agent cannot be sure if the sending agent didn’t violate any pre-

conditions since there is no way to access an agent’s mental state [42]. Such

pure mental semantics is impossible to use in systems of heterogeneous agents

where sincerity is not guaranteed for one reason or another. Moreover, this

semantics prevents ACLs from being general enough for the needs of heteroge-

neous systems [41]. Because of these limitations, the MAS community shifted

the focus to the second approach.

• The social approach is based on the observation that in every communication

that happens in a MAS between two agents, the system itself can be considered

an additional third side in this communication. There are thus three angles we

can view the communication from the receiver’s, the sender’s, and the society’s

(the system’s) point of view. The “social” approach, through this shift, allows

us to model notions from a more generalized perspective without having to use

an agent’s external private state. The impact of such a change on the modeling

capabilities of heterogeneous MASs is what makes more advanced notions and

frameworks possible [43].

The interacting and communicating aspect of MASs also gives rise to other advanced

desirable notions that have been studied extensively in the literature, such as trust,

reputation, knowledge, and argumentation [30, 6, 22, 27].

1.1.3 Verification of MASs

Because of the inherent complexity of a MAS, verifying that such a system complies

with its expected design goals and requirements is a challenging task. In a system

with multiple agents all behaving differently towards different goals, whether in com-

petition or collaboration or both, there should be no room for error as to the final

compliance of the system with its objectives, especially if the system is safety-critical.

Two different approaches for verification of such systems are used today, operating at

two different levels: runtime and design-time. At runtime, the most used verification

technique is monitoring, which consists of observing the behavior of the system and

its agents during execution, and checking to see if the desired properties of the system

3



are met [4, 3]. Such an approach, while simple to implement, has its shortcomings.

As this technique consists of running multiple executions of the actual system’s imple-

mentation and observing the behavior it produces to check for defects or undesirable

outcomes, it naturally suffers from its incomplete verification process limited by the

execution’s coverage. The design-time approach, on the other hand, relies on static

formal verification to verify the system’s properties during design and to catch de-

fects and correct them before going to production. It relies on intelligent exhaustive

search algorithms to check all the possible states of the system in a fully automated

manner. It can even generate counterexamples for undesired behavior of the system

allowing for defect correction. However, these logic-based techniques suffer from the

state explosion problem that limits their scalability for large systems. Multiple re-

search teams have worked on these problems and proposed solutions to improve the

different techniques, such as symbolic model checking that has been used efficiently

to automatically verify different aspects of MASs such as knowledge, trust, social

commitment, and fulfillment (Section 2.4 of Chapter 2 expands further on model

checking).

1.2 Motivations and Contributions

As discussed earlier, design-time verification techniques for MASs based on formal

verification in general, and model checking in particular offer the advantage of being

fully automated. This is by far, the main reason why these techniques are used as

the process of hand-on verification is in no way scalable for large systems.

In order to reduce cost, while preserving the robustness and automation that

such techniques offer, two model checking based design-time verification approaches

have been put forward to reason about new social properties for MASs: direct and

indirect verification techniques (cf. Figure 1.1). The direct verification method is

the straightforward one where new dedicated verification algorithms are developed to

tackle the problem of verifying the new social modalities. They are then implemented

from scratch on top of an existing model checker by augmenting it with the new al-

gorithms, or by creating a new dedicated model checker for the new logics. The idea

behind the indirect verification is to transform the problem of model checking the new

logic into the problem of model checking an existing logic (that has its own model

4



Figure 1.1: A typical design-time verification process for multi-agent systems.

checker) using reduction. This process eliminates the need to create dedicated model

checking algorithms automation purposes, and instead allows the more straightfor-

ward endeavor of automating the transformations, and then integrating them with

the existing model checker.

In practice, the indirect approach - generally referred to as transformation-based

model checking - offers the benefit of reducing post-development costs related to main-

taining the model checker, and requires simple changes in case the core model checker

undergoes significant changes that break backward compatibility. In most cases, it

also allows the use of reliable model checkers that have been in the field for years,

undergoing multiple enhancements, and enjoying the support of a big community.

In this dissertation, we focus on new social properties for MASs expressed based
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on temporal logics, as they are the only approaches that allow the introduction of

formal semantics. Specifically, we concentrate on the approaches that adopt temporal

logics to model new concepts by introducing new modalities to extend Computation

Tree Logic (CTL), rather than Linear Time Logic (LTL) or Full Computation Tree

Logic (CTL*). The reason we are singling out CTL-based extensions is due to the

difference between the model checking algorithms for CTL, LTL, and CTL*. The

standard model checking algorithm for both LTL and CTL* is exponential in the

length of the formula and linear in the size of the model [39]. The CTL standard

model checking algorithm, however, is linear in both the formula and the model [39].

So, even though CTL* is more expressive than CTL, we have no choice but to adapt

CTL, although it lacks the capabilities to model interactions and dynamic behavior

that intelligent agents presuppose. These capabilities, therefore, have to be achieved

through the extension modalities added to CTL.

The implementation of the transformation algorithms from a CTL-extension logic

to an existing logic allows us to take full advantage of the automation capabilities

that characterize model-checking techniques. While performing this implementation,

one should adequately consider the full overhead the transformation mechanism adds

to the model-checking process. Otherwise, this process might lead to high mem-

ory consumption and limited scalability. Handling these aspects gets harder as the

systems under verification grow in scale and complexity. Manually performing this

implementation is a tedious, error-prone, and time-consuming process that requires

a vast amount of knowledge and technical skills to create parsers from one logic to

another, and to allow full integration with the existing model checkers to take full

advantage of their capabilities. The current practices generally produce unreliable

software resulting in hard to replicate results and difficult to maintain software that’s

generally based on shallow integration with model checkers at best. In fact, most

implementations skip the integration with model checkers all-together and generate

an output file for manual use.

To ease the design and implementation of such transformations, we propose in this

thesis a new tool for verifying transformation-based model checking algorithms. In

this work, we aim to bridge the gap in the available tooling and frameworks to handle

these transformations as there are no dedicated tools for these needs. We built this

tool on top of the NuSMV model checker, one of the most powerful model checkers
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available today for CTL, to consistently produce high-quality software.

To summarize, the key components and features of the proposed tool are as follows:

• The core framework of the tool offers a parser and lexer generator API that

simplifies the process of generating parsers for models and transformations con-

siderably.

• The tool uses the ISPL+ formalism used in model checkers dedicated to MASs

as input. This support allows the input files to represent MASs easily and

intuitively, as opposed to SMV, the input format for NuSMV where it is hard

to model agents.

• The tool’s API also offers a UI multi-agent system builder based on the ISPL+

formalism, allowing the constructions of agents manually in an FSM-like graph-

ical format.

• The tool offers a second equivalent input format called scalability mode, where

the user can input an ISPL+ file instead of UI input, allowing for the processing

of large systems where the graphical approach would be too tedious.

• The tool offers a configurable accessibility engine to define accessibility relations

easily and automate their calculations during the transformation process.

• The tool offers complete integration with the NuSMV model checker, making

all its capabilities available.

• The tool is developed in the Java programming language, making it multi-

platform. In fact, the tool was created to be applicable in an industrial setting.

Therefore, it has been made without any modification to the NuSMV model

checker since it is distributed under the GNU Lesser General Public Li-

cense. This removes the need to release the source code of the components.

The proposed tool has been tested extensively and successfully used in multiple

research projects in multiple application domains [14, 33, 15, 18]. It has been used

with multiple CTL-extension logics and has produced exceptional results compared

to the state-of-the-art implementation approaches.
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1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we present the necessary

background needed to understand this work. Then, we review a few existing tools

that offer some exciting features. In Chapter 3, we go over our published journal

paper to see how the tool can be used in a research context and what it offers. In

Chapter 4, we dive into the tool’s architecture and implementation. Moreover, we go

in this chapter over the different performance evaluations and experimental results

used in different publications. We then summarize the obtained results and discuss

future directions in Chapter 5.

8



Chapter 2

Background

In this chapter, we briefly present some preliminary knowledge needed for the rest of

this thesis. We start by explaining the formalism of interpreted systems as the basis

of the input system of the tool both in graphical and file form in Section 2.1. Then,

in Section 2.2, we explore the Computational Tree Logic briefly as the basis of all

formal semantics used with the tool. Section 2.3 presents all the different extensions

to CTL that the tool has been used for and currently supports. Section 2.4 is devoted

to providing the proper background to model checking and its tools. After that, in

Section 2.5, we discuss relevant related work in the form of the different tools and

frameworks available, then we review their features and capabilities and contrast them

with the work done in this thesis. Finally, Section 2.6 summarizes the chapter.

2.1 Interpreted Systems

The formalism of Interpreted Systems was first introduced by Fagin et al. [21] as a

novel way to model MASs by reasoning about their temporal evolution, allowing for

a more intuitive way to capture epistemic and temporal properties.

Let us assume a given MAS is composed of n agents A = {1, ..., n}. Each agent

i ∈ A is described by a set of local states Li, and a set of local actions Acti. Each

local state of agent i, denoted li, such that li ∈ Li, represents the state of agent i at

a given moment. A global state g ∈ G represents the state of the global system at a

given moment (a ”snapshot” of sorts), it consists of the set of all local states of all

agents at that given moment (i.e., g = (l1, ..., ln)). Consequently, the set of all global
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states G is the cartesian product of all local states of the n agents G = L1 × ...×Ln.

Moreover, for each agent i ∈ A, Ii represents an initial state and P : Li −→ 2Acti

the local protocol of agent i, which denotes the possible actions at any given local

state. The agents act typically within an environment e that can also be modeled

with the same constructs: Pe, Acte and Le. The global transition function τ can be

defined as τ : G × ACT → G, where ACT = Act1 × ... × Actn, every component

a ∈ ACT is called a joint action (i.e., a tuple of actions corresponding each to an

agent).

Bentahar et al. [5] and El-Menshawy et al. [17] extended this formalism to capture

the communication construct between interacting agents. For each agent i ∈ A,

they associated a set V ari of n local Boolean variables (V ari = |n|), that represent
communication channels between agent i and all other agents. Each local state li is

therefore associated with a set of different values, corresponding each to a different

value assignment for a variable, let’s denote by lxi (g) the value of the variable x at local

state li(g). The intuition behind these added variables is to model a communication

channel between two agents, i and j, in the absence of which the two agents cannot

communicate. Meaning that a communication channel exists between two agents i

and j iff ∃!x ∈ V ari∩V arj, in other words |V ari∩V arj| = 1. For a Boolean variable

x ∈ V ari∩V arj, l
x
i (g) = lxi (g

′) means that a communicative act has happened between

agent i(in the global state g) and agent j(in the global state g′), that resulted in the

two agents sharing the same variable value for x.

2.2 Computation Tree Logic

Computation Tree Logic (CTL, for short) is a branching-time logic where the struc-

ture of time is assumed to be branching in a tree-like manner (hence the name) where

every moment in time may split into many paths in the future.

Definition 2.1: Syntax of CTL

The syntax of a CTL formula is defined using a BNF grammar as follows:

ϕ ::= p | ¬ϕ| ϕ ∨ ϕ| EXϕ |EGϕ |E(ϕ ∪ ϕ)

where p ∈ VP is an atomic proposition from the set of atomic propositions VP . ”E”
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is an existential quantifier over paths. ”A” the universal quantifier over paths can be

defined as usual in term of the above as: AXϕ = ¬EX¬ϕ; AGϕ = ¬EF¬ϕ; and
A(ϕ ∪ ψ) = ¬(E(¬psi ∪ (¬ϕ ∧ ¬ψ)) ∨ EG¬ψ).

Definition 2.2: Model of CTL

A transition system T = (S,Rt, V, I) is a tuple where S is a non-empty set of states,

Rt ⊆ S × S is a serial transition relation, V : S → sVP is an evaluation function, and

I ⊆ S is the set of initial states. A path π in T is an infinite sequence π = (s0, s1, ...)

of states such that (si, si+1) ∈ Rt ∀i ≥ 0.

Definition 2.3: Semantics of CTL

Given the model M , the satisfaction for a CTL formula ϕ in a global state s, denoted

in the standard notation (M, s) |= ϕ, is recursively defined as follows:

• (M, s) |= p ⇐⇒ p ∈ V (s);

• (M, s) |= ¬ϕ ⇐⇒ (M, s) �|= ϕ;

• (M, s) |= ϕ1 ∨ ϕ2 ⇐⇒ (M, s) |= ϕ1 or (M, s) |= ϕ2;

• (M, s) |= EXϕ ⇐⇒ there exists a path π starting at s such that (M,π(1)) |=
ϕ;

• (M, s) |= E(ϕ1 ∪ ϕ2) ⇐⇒ there exists a path π starting at s for some k ≥ 0,

(M,π(k)) |= ϕ2 and ∀ 0 ≤ i < k, (M,π(i)) |= ϕ1;

• (M, s) |= EGϕ ⇐⇒ there exists a path π starting at s such that (M,π(k)) |=
ϕ, ∀ k ≤ 0.

2.3 Extensions to CTL

In this section, we present all the different logics (extensions to CTL) that the tool

has been used for and currently supports.
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2.3.1 CTLKC+

CTLKC+, the logic of knowledge and commitments, has been first presented by Al-

Saqqar and al. [1] as a new logic to capture the interaction between knowledge and

commitment.

Definition 2.4: Syntax of CTLKC+

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕ ∪ ϕ) | EGϕ | Kiϕ | Ci→jϕ | Fu(Ci→jϕ).

where:

• p ∈ VP is an atomic proposition;

• E is the existential quantifier on paths;

• X,G, and U are CTL path modal connectives;

• The modal connective Ki stands for ’knowledge of agent i’;

• The modal connective Ci→j stands for ’commitment from agent i to agent j’;

• Fu stands for ’fulfillment’.

Definition 2.5: Model of CTLKC+

A Model M = (S, I, Rt, {≈i |i ∈ A}, {≈i→j |(i, j) ∈ A2},V) that belongs to the set

of all models M is a tuple, where:

• S ⊆ L1 × ...× Ln is the set of reachable global states for the system;

• I ⊆ S is the set of initial global states;

• Rt ⊆ S × S is the transition relation defined by (s1, s2 ∈ Rt) iff there exists a

joint action a ∈ ACT such that τ(s1, a) = s2;

• ∀i ∈ A,≈i⊆ S × S is the epistemic accessibility relationship defined by s ≈i s
′

iff li(s) = li(s
′);

• ∀(i, j) ∈ A2,≈i→j⊆ S × S is the social accessibility relationship defined by

s ≈i→j s
′ iff V ari ∩ V arj �= ø, and ∀x ∈ V ari ∩ V arj : l

x
i (s) = lxi (s

′) = lxj (s
′);
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• V : S → 2VP is the valuation function where VP is the set of atomic proposi-

tions.

The epistemic accessibility relation ≈i captures the intuition that two states s

and s′ are equivalent for agent i (in terms of knowledge). Its also worth noting that

the epistemic relation is an equivalence relation (i.e., it’s reflexive, symmetric, and

transitive).

On the other hand, the social accessibility relation ≈i→j between two global states

s and s′ is that the two agents have a communication channel (modeled through shared

variables), so that agent i sends information(in the form of a message) through the

channel in s, and agent j receives said information in s′. This communication between

the two said agents results in the shared variables between the two to have the same

values. However, this formalism imposes no constraints on the unshared variables as

they can be involved for other communications at the same time from other agents

(adapted from [1]).

Definition 2.6: Semantics of CTLKC+

The semantics of CTLKC+ is as follows. Given a model M, the satisfaction of a

CTLKC+ formula ϕ in a global state s, denoted by (M, s) |= ϕ is defined recursively

as follows:

• (M, s) |= p iff p ∈ V ;

• (M, s) |= ¬ϕ iff (M, s) �|= ϕ;

• (M, s) |= ϕ1 ∨ ϕ2 iff (M, s) |= ϕ1 or (M, s) |= ϕ2;

• (M, s) |= EXϕ iff there exists a path π starting at s such that (M, π(1)) |= ϕ;

• (M, s) |= E(ϕ1 ∪ ϕ2) iff there exists a path π starting at s for some k ≥ 0,

(M, π(k)) |= ϕ2 and ∀ 0 ≤ i < k, (M, π(i)) |= ϕ1;

• (M, s) |= EGϕ iff there exists a path π starting at s such that (M, π(k)) |= ϕ,

∀ k ≥ 0;

• (M, s) |= Kiϕ iff ∀s′ ∈ S such that s ≈i s
′, we have (M, s′) |= ϕ;
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• (M, s) |= Ci→jϕ iff ∀s′ ∈ S such that s ≈i→j s′, we have (M, s′) |= Kiϕ and

(M, s′) |= Kjϕ;

• (M, s) |= Fu(Ci→jϕ) iff ∃s′ ∈ S such that s′ ≈i→j s and (M, s′) |= Ci→jϕ or

∃s′′ ∈ S and s′′ ≈i s such that (M, s′′) |= Fu(Ci→jϕ) or ∃s′′ ∈ S and s′′ ≈j s

such that (M, s′′) |= Fu(Ci→jϕ).

2.3.2 RTCTLcc

RTCTLcc [33] is a logic for real-time conditional commitments that extends CTL

with conditional commitment modalities, fulfillment modalities, as well as timing

constraints. It allows for modeling MASs in environments equipped with the proper

mechanisms to react to events happening at precise time instants or time intervals.

Definition 2.7: Syntax of RTCTLcc

• ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕ ∪ ϕ) | EGϕ | E(ϕ ∪[m,n] ϕ) | A(ϕ ∪[m,n] ϕ) |
CC | Fu;

• CC ::= WCC(i, j, ϕ, ϕ) | SCC(i, j, ϕ, ϕ);

• Fu ::= FuW (i,WCC(i, j, ϕ, ϕ)) | FuS(i, SCC(i, j, ϕ, ϕ)).

where:

• p ∈ VP is an atomic proposition;

• E is the existential quantifier on paths;

• X,G and U are CTL path modal connectives;

• m,n ∈ N
+ denote the bounds of the time interval(n ≥ m);

• ∪[m,n] stands for bounded until;

• The modal connectives WCC, SCC, FuW, and FuS stand for weak and strong

conditional commitments, and their fulfillment respectively.
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Definition 2.8: Model of RTCTLcc

A Model M = (S, I, T, {∼i→j |(i, j) ∈ A2},V) that belongs to the set of all models

M is a tuple, where:

• S ⊆ L1 × ...× Ln × Le is the set of reachable global states for the system;

• I ⊆ S is the set of initial global states;

• T ⊆ S × S is the transition relation defined by (s1, s2 ∈ T ) iff there exists a

joint action a ∈ ACT such that τ(s1, a, ae) = s2;

• ∀(i, j) ∈ A2,∼i→j⊆ S × S is the social accessibility relationship defined by

s ∼i→j s
′ iff:

– li(s) = li(s
′);

– (s, s′) ∈ T ;

– V ari ∩ V arj �= ø, and ∀x ∈ (V ari ∩ V arj) : l
x
i (s) = lxj (s

′);

– ∀y ∈ V arj − V ari : l
y
j (s) = lyj (s

′).

• V : S → 2VP is the labeling function where VP is the set of atomic propositions.

Definition 2.9: Semantics of RTCTLcc

Given a model M,the satisfaction of a RTCTLcc formula ϕ in a global state s, denoted

by (M, s) |= ϕ is defined recursively as follows:

• (M, s) |= p iff p ∈ V ;

• (M, s) |= ¬ϕ iff (M, s) �|= ϕ;

• (M, s) |= ϕ1 ∨ ϕ2 iff (M, s) |= ϕ1 or (M, s) |= ϕ2;

• (M, s) |= EXϕ iff there exists a path π starting at s such that (M, π(1)) |= ϕ;

• (M, s) |= E(ϕ1 ∪ ϕ2) iff there exists a path π starting at s for some k ≥ 0,

(M, π(k)) |= ϕ2 and ∀ 0 ≤ i < k, (M, π(i)) |= ϕ1;

• (M, s) |= EGϕ iff there exists a path π starting at s such that (M, π(k)) |= ϕ,

∀ k ≥ 0;
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• (M, s) |= E(ϕ∪[m,n]ψ) iff there exists a pathπ such that ∃i ∈ [m,n],(M, π(i)) |=
ψ and ∀j ∈ [m, i[,(M, π(j)) |= ϕ;

• (M, s) |= A(ϕ ∪[m,n] ψ) iff ∀π such that ∃i ∈ [m,n], (M, π(i)) |= ψ and ∀j ∈
[m, i[,(M, π(j)) |= ϕ;

• (M, s) |= WCC(i, j, ψ, ϕ) iff ∀s′ ∈ S such that s ∼i→j s′ and (M, s) |= ψ,

(M, s′) |= ϕ;

• (M, s) |= SCC(i, j, ψ, ϕ) iff ∃s′ ∈ S such that s ∼i→j s
′ and (M, s) |= ψ, and

(M, s) |= WCC(i, j, ψ, ϕ);

• (M, s) |= FuW (i,WCC(i, j, ψ, ϕ)) iff ∃s′ ∈ S such that s′ ∼i→j s and (M, s′) |=
WCC(i, j, ψ, ϕ) and (M, s) |= ϕ ∨ ¬WCC(i, j, ψ, ϕ);

• (M, s) |= FuS(i, SCC(i, j, ψ, ϕ)) iff ∃s′ ∈ S such that s′ ∼i→j s and (M, s′) |=
WCC(i, j, ψ, ϕ) and (M, s) |= ψ ∨ ¬SCC(i, j, ψ, ϕ).

2.3.3 TCTL

Trust Computation Tree Logic (TCTL, for short) [16] is a combination of CTL with

trust modalities to reason about trust and time. This logic is an extension of the CTL

logic with a new operator for trust, along with its intuitive semantics, to effectively

model trust interactions.

Definition 2.10: Syntax of TCTL

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕ ∪ ϕ) | EGϕ | Tp(i, j, ϕ, ϕ)

where:

• p ∈ VP is an atomic proposition;

• E is the existential quantifier on paths;

• X,G and U are CTL path modal connectives;

• The modal connective Tp(i, j, ϕ, ψ) stands for ’Preconditional Trust’ and is read

as ”the truster i trusts the trustee j to bring about ψ if the condition ϕ holds”.
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Definition 2.11: Model of TCTL

A model of trust M is a tuple M = (S,R, I, {∼i→j |(i, j) ∈ A2},V), where:

• S ⊆ L1 × ...× Ln × Le is the set of reachable global states for the system;

• I ⊆ S is the set of initial global states;

• R ⊆ S × S is the transition relation defined by (s1, s2 ∈ R) iff there exists a

joint action a ∈ ACT such that τ(s1, a, ae) = s2;

• ∀(i, j) ∈ A2,∼i→j⊆ S × S is the direct trust accessibility relation for each

truster-trustee pair of agents defined by s ∼i→j s
′ iff:

– li(s)(v
i(j)) = li(s

′)(vi(j));

– s′ is reachable from s using transitions from R.

• V : S → 2VP is the labeling function where VP is the set of atomic propositions.

The intuition behind the trust accessibility relation ∼i→j is that, for agent i to gain

trust in agent j, the former (agent i) identifies the states where he is expecting agent

j to be trustful.

Definition 2.12: Semantics of TCTL

Given a Model M, the satisfaction of a TCTL formula ϕ in a global state s, denoted

by (M, s) |= ϕ, is defined recursively as follows:

• (M, s) |= p iff p ∈ V ;

• (M, s) |= ¬ϕ iff (M, s) �|= ϕ;

• (M, s) |= ϕ1 ∨ ϕ2 iff (M, s) |= ϕ1 or (M, s) |= ϕ2;

• (M, s) |= EXϕ iff there exists a path π starting at s such that (M, π(1)) |= ϕ;

• (M, s) |= E(ϕ1 ∪ ϕ2) iff there exists a path π starting at s for some k ≥ 0,

(M, π(k)) |= ϕ2 and ∀ 0 ≤ i < k, (M, π(i)) |= ϕ1;

• (M, s) |= EGϕ iff there exists a path π starting at s such that (M, π(k)) |= ϕ,

∀ k ≥ 0;
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• (M, s) |= Tp(i, j, ψ, ϕ) iff (M, s) |= ψ∧¬ϕ and ∃s′ �= s such that s ∼i→j s
′, and

∀s′ �= ssuch that s ∼i→j s
′, we have :(M, s′) |= ϕ.

2.3.4 TCTLC

TCTLc is an extension to TCTL with new modalities to express conditional trust

[14].

Definition 2.13: Syntax of TCTLc

The syntax of TCTLc is the same as that of TCTL in Definition 2.10. The only

addition is the operator for conditional trust: Tc(i, j, ψ, ϕ), read as ”agent i trusts

agent j about the consequent ϕ when the antecedent ψ holds.”

Definition 2.14: Model of TCTLc

TCTLc has the same model of TCTL, described in Definition 2.11.

Definition 2.15: Semantics of TCTLc

The semantics of TCTLc, for all shared modalities with TCTL, are the same. The

semantics for Tc(i, j, ψ, ϕ) however are as follows:

• (M, s) |= Tc(i, j, ψ, ϕ) iff ∃s′ �= s such that s ∼i→j s′ and s′ |= ψ,and ∀s′ �= s

such that s ∼i→j s
′ and (M, s′) |= ψ, we have (M, s′) |= ϕ.

2.4 Model Checking

Due to their nature, and their innate structure, MASs are actively used to model

safety-critical systems. These systems (e.g., medical systems, embedded controllers,

avionic systems) usually present characteristics that make them very hard to design

correctly (embedded, reactive, concurrent, real-time.. ) in comparison to “classical”

computer systems. Hence the need for powerful and reliable verification methods to

check for compliance with specifications and requirements.

Verification includes several techniques that can be used, e.g., inspections, testing,

simulation, and formal verification. None of these techniques is absolutely superior to

others; they each have their advantages, disadvantages, and domains of applications.
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In this dissertation, we focus on formal verification, which, in comparison to other

methods, gives the highest assurance of system correctness. There exist two basic

approaches to formal verification:

• Deductive methods aim to produce mathematical proofs that the system

satisfies requirements. Although this process can be partially automated (for

simple proofs), it still requires manual proof construction using deductive meth-

ods to be performed by experts. This process is time-consuming and challenging

to scale for large systems.

• Automatic methods: These methods use brute-force to try and test all pos-

sible behaviors of the system, and validate that they all satisfy the requirement.

By taking the brute-force approach, these techniques gain the advantage of be-

ing fully automatic. There is, of course, a disadvantage that has to be paid: the

high computational requirements for these methods.

Model Checking is one of the most used automatic verification methods. The next

section explains the concepts behind it.

2.4.1 The Model Checking Problem

In a nutshell, model checking is the problem of checking if, given a Model M (rep-

resenting, for example, a hardware or software model), and a temporal logic formula

ϕ (representing a specification), to check if the Model M satisfies the logical formula

ϕ. Model checkers typically have three main components [12]:

1. A specification language, based on a temporal logic.

2. A method of encoding the state machine, representing the system under verifi-

cation.

3. A verification procedure that uses an exhaustive search to determine if the

specification is met.

Model checkers, in general, terminate with a “true” answer, or they terminate by

providing a counterexample demonstrating inconsistent behavior with the specifica-

tion. Furthermore, most modern model checkers offer even the possibility to produce

witness examples in the case where the specification is valid (cf. Figure 2.1).
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Figure 2.1: A typical model checker with witness and counterexamples.

It is impossible to talk about model checking without mentioning the state ex-

plosion problem. It is a phenomenon that happens when using model checking

based on automata-theoretic techniques. The main issue is that the number of states

grows exponentially with the number of variables in the system. In fact, it is the

principal driving force behind much of the research in model checking, be it about

approaches or new model checkers.

2.4.2 Symbolic Model Checking

Symbolic model checking using OBDDs is one of the solutions to the state explosion

problem. The idea is to use data structures called Binary Decision Diagrams

(BDDs) [32] to represent the state space symbolically (like a sort of canonical form

of Boolean formulae); they are finite directed acyclic graphs (DAGs) with some in-

teresting properties. The most important of which is that they require fewer states

to represent the state space. A reduced BDD (RBDD) [23] is a BDD that has under-

gone optimizations repeatedly until reaching a fixed point, and generally results in a

quite compact representation of Boolean functions. An ordered BDD (OBDD) is a
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BDD with an ordering for some list of variables. What’s more interesting is that an

ROBDD representing a given Boolean function f is unique [9].

The main idea behind the usage of these data structures is that they allow the

manipulation of entire sets of states at a time, allowing for more efficient operations.

These properties are used in model checking CTL by representing sets of states sym-

bolically, namely, those that satisfy the formula being checked. The problem of model

checking CTL then becomes the problem of constructing the set of states satisfying

a formula ϕ: ||ϕ|| in OBDDs, and then comparing it to the set of initial states I

represented in OBDDs as well, so that if I ⊆ ||ϕ|| then the formula is true.

2.4.3 Model Checking Tools

A huge effort has been, and is being devoted to the development of model checking

tools (aka model checkers), by both academic and industrial teams, in order to verify

larger models and deal with a big selection of extended frameworks. In this section,

we will introduce and summarize two tremendous tools with their capabilities and

specification languages.

A NuSMV

NuSMV [25] is a state-of-the-art symbolic model checker written in the C language. Its

an effort to rethink the Symbolic Model Verifier, CMU SMV(the first model checker

based on BDDs). It constitutes both a redesign and an extension of SMV. NuSMV

was designed to be robust and close to industrial systems standards [11], but also to be

an open, extensible platform for model checking. This aspect has been improved with

the recent changes in version 2.6 (the latest major release), where the model checker

has been split into two distinct parts: the core engine and the interactive shell. The

goal is to allow the core module to be the basis of custom verification tools by allowing

for easier integration with existing architectures. NuSMV also offers the capability

to perform SAT-based bounded model checking by offering SAT-based techniques in

addition to the more classical BDD-based ones [10] (cf. Figure 2.2). The BDD-based

model checking functionalities use the CUDD library written in the C language [44].

The currently available SAT solvers for NuSMV are ZCHAFF SAT [45] and MINISAT

[20]. It’s worth noting that NuSMV is distributed under the LGPL.

NuSMV takes as input files written in its own extension of the SMV language. It
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Figure 2.2: The internal structure of NuSMV.
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allows the description of modules and processes and the expression of specifications

in CTL and LTL logics. The easiest way to use NuSMV is through its interactive

shell. A batch mode is also available, but it offers minimal parameters and is the

primary method for interacting with outside tools. However, it has the inconvenience

of defining a set of operations to be performed in a sequential matter without much

possibility for change, making most integrations with NuSMV shallow, unless they

actually extend the NuSMV source code. It is also worth mentioning that NuSMV

is one of the most powerful model checkers available (NASA has used NuSMV to

verify properties of models with over 10120 reachable states [49]), and is the result

of years of research and improvements. However, the main deterrent from using it

in the MAS community is that it does not support any MAS logic. The process of

extending NuSMV is not an easy endeavor, making most integrations with it shallow

at best.

B MCMAS

The model checker for multi-agent systems (MCMAS for short) [29] is a model checker

dedicated to MASs developed at the end of 2005. It’s an OBDD-based model checker

that can take as input CTL, as well as epistemic, correctness, and cooperation modal-

ities that are specific to MASs. MCMAS uses the Interpreted Systems formalism

discussed in Section 2.1 of the current chapter. The dedicated programming lan-

guage that MCMAS uses as input is called ISPL (Interpreted Systems Programming

Language) and is a text specification describing a system in the interpreted systems

formalism. MCMAS is implemented in C++ and uses the CUDD library as well for

its BDD-based algorithms.

MCMAS has been extended to handle many logics for MASs. It has been ex-

tended into MCMAS+ to deal with social commitments [27]. It has also been

used as the core basis for SMC4AC, a model checker recently launched for intel-

ligent agent communication [26]. Moreover, MCMAS has been extended recently

into MCMAS-T (Trust-extended MCMAS) [16] to handle the grammar of TCTL

(Trust-extended CTL) and its model checking. Further information can be found at

https://vas.doc.ic.ac.uk/software/mcmas/
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2.5 Related Work

In this section, we go over the available tools for different model checkers to review

their features and available properties. Since there is no available tooling currently

available that’s remotely related to what we are trying to achieve with this work, we

will simply review features of other tools to allow for better understanding.

2.5.1 gNuSMV

gNuSMV is a basic graphical user interface (GUI from now on) for NuSMV, de-

veloped using Python and built on top of the interactive shell. It was built to be a

separate process that communicates with NuSMV through the interactive shell [11].

Figure 2.3: gNuSMV model editor window.

The GUI allows the user to edit and modify the file containing the model’s de-

scription. It also offers several menus to interact with NuSMV in an easier way. This

includes:
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• An editor window provides basic editing functionalities for the input model file

(cf. Figure 2.3). Although it doesn’t offer any syntax highlighting or auto-

completion, it was the only option offered on the market till a few years ago.

• A formula editor window allowing the user to write new specifications. The

available options change in function of the kind of formula to verify. It offers

various buttons with the preset temporal modalities suitable for the type of

formula created (cf. Figure 2.4).

Figure 2.4: gNuSMV formula editor window for CTL.

gNuSMV was developed for NuSMV v1 and has been released for NuSMV v2 as

well, but all it still offers is the same basic functions it did since v1, to the point that

even the actual snapshots for the two are almost indistinguishable. It also suffers

from its design being mostly undocumented and hard to extend despite using a high-

level programming language like Python. gNuSMV2 is also behind NuSMV in its

development process, as it still has yet to update its settings with the new changes

introduced with NuSMV version, including the new heuristics, and the new ordering

techniques. It has also dropped ZCHAFF SAT support due to licensing restrictions

in order to keep both the Windows and Linux versions aligned.

2.5.2 NuSeen

NuSeen is an eclipse-based environment for NuSMV, that aims of helping NuSMV

users by offering a set of useful tools to bridge the gap in available tooling support

for NuSMV. The project started in 2013, but it wasn’t till the latest NuSMV version
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Figure 2.5: NuSeen model editor.

Figure 2.6: NuSeen counterexample tabular format.

(v2.6) and the significant design changes it introduced, that NuSeen was able to finally

integrate with NuSMV in order to offer a more extended set of features.

NuSeen mainly focuses on easing the use of NuSMV through the use of graphical

elements, menus, text highlighting, and so on. It features [2]:

• An editor (cf. Figure 2.5) that can be used for editing NuSMV models. The edi-

tor is based on a grammar (concrete syntax) based on a metamodel for NuSMV

input generated from XText in the EMF (Eclipse metamodeling framework)

model format. It provides useful features to the user, such as syntax highlight-

ing and context-aware auto-completion based on the outline.

• A counterexample visualizer (cf. Figure 2.6) that automatically detects when

a formula is false and intercepts NuSMV output to reformat it into a tabular

format.

• A way to run NuSMV from inside eclipse (cf. Figure 2.7) using one of two

options: (1) The batch mode of NuSMV to run NuSMV and return its feedback
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in an automatic manner; or (2) the interactive mode, that is run from the eclipse

terminal. However, the second mode does not offer any extra information or

ease of use compared to the regular interactive shell of NuSMV. All actions have

to still be done manually using NuSMV shell commands.

• Amodel advisor that checks a pre-defined set of properties called meta-properties

on any model to help inform the user of some usual red flags. The model advisor

supports many properties such as consistency, completeness, minimality, etc.

• A test case generator from a given model. The tool currently supports value

coverage and decision coverage.

Figure 2.7: NuSeen executor menu.

NuSeen is by far the best NuSMV tool up to the moment this thesis is written.

Although it has yet to achieve full integration with NuSMV, the set of tools it offers

are highly interesting from both the tooling and validation/verification perspectives.

2.5.3 MCMAS Eclipse Plug-in

MCMAS offers an Eclipse plugin as well. It offers an interesting set of features [29]:

• It is equipped with ISPL program editing through a model editor with syntax

highlighting. It allows the user to edit ISPL models for MCMAS from within
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Figure 2.8: MCMAS plug-in verification.

the eclipse editor. It also offers dynamic syntax checking capabilities based

using the ANTLR (Another Tool for Language Recognition) framework.

• It offers the ability to run the model in the interactive execution mode of MC-

MAS (launched with the option “−s”). It allows users to execute the model

step by step by choosing an initial state and selecting from the set of reachable

states at every step (cf. Figure 2.8).

• The GUI offers a display of counter and witness examples for formulas using the

“dot” utility from the Graphviz graph visualization software (cf. Figure 2.9).

Unlike NuSMV, MCMAS offers its own eclipse plugin developed by the same team,

and offers full integration with the model checker, meaning that the simulation and

interactive mode is fully controlled by the GUI and allows the user to bypass the

regular command-line to perform all possible actions in MCMAS from the plugin.

2.6 Summary

In this chapter, we introduced the background and concepts needed for the rest of

this dissertation. We also provided a review of the most relevant related work. In the
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Figure 2.9: MCMAS eclipse plug-in counter-example editor.

next chapter, we present the general approach employed, and present where the tool

fits into a typical transformation-based model checking process of a given logic.
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Chapter 3

Automated Transformation-based

Model Checking MAS

This chapter starts by presenting an overview of the general approach presented in

this work to automate transformation-based model checking. Then, an example of

such an extension to CTL, namely RTCTLcc, is given with its different transforma-

tion algorithms, followed by the model checking results of the entire methodology

(published in [33]). Finally, we conclude with a summary of the entire approach.

3.1 An Overview of the General Approach

Figure 3.1 illustrates the overall approach of a transformation-based model checking

process. The process consists of three phases. In the first phase, the new logic is

defined in terms of model and formulae’s semantics, syntax, and structure. Then

once the decision to use transformation-based model checking for the new logic is

taken, a formal verification technique is created, transforming the problem of model

checking the new logic (source logic) into that of model checking an already existing

logic (target logic). The choice of the target logic is mainly contingent on the ex-

istence of an already established model checker for it. The closeness to the original

logic in terms of constructs and modalities is also a desirable treat to have. In the

following implementation phase, the different transformation algorithms need to be

implemented and then used with an existing model checker for the target logic, such

as NuSMV.
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Figure 3.1: A schematic view of a transformation-based model checking.

In a nutshell, given a model M for a MAS and a formula ϕ (in the source logic)

describing a desirable property, the problem of model checking the source logic can

be defined as verifying whether or not ϕ holds for M, formally denoted M |= ϕ. The

transformation-based approach aims to transform the problem of model checking the

source logic into that of model checking the target logic, using a set of reduction

techniques. The transformation algorithms are developed based on formal reduc-

tion methods to provide accurate alignment between source and target logics, while

preserving the semantics of the source logic as well as its different model properties.

Technically, after the formal transformation algorithms for both the model and

formulae are produced, the implementation phase begins. It consists of creating a

parsing system to automate the transformation process of the defined algorithms
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Figure 3.2: A schematic view of the general approach.

for both models and formulae. The process needs to produce a target-valid system

(including the model and formulae) that’s equivalent to the original system. Finally,

the produced system can be manually checked using a model checker that supports

the target logic. However, because the design process for MASs is a highly interactive

activity, the need to automate the process and integrate the model checker into the

workflow becomes of primordial importance. The design of transformation algorithms

and their effective implementation, especially when involving integration with a model

checker, are highly challenging and prove to be the most time-consuming activities in

the entire workflow.

Figure 3.2 summarizes the entire approach proposed in this thesis. The idea is

for the transformation and integration tool to offer an entire integrated system to

speed-up the implementation phase of the transformation-based methodology. The

framework offers an integrated API that helps facilitate the complexity of the entire

implementation process considerably. It supports ANTLR generated grammars to

simplify further the different tasks for the developer. Once the implementations are
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configured into the system, it can be used by the final user to design and check

the properties of MASs using the myriad of features the tool offers. Figure 4.4 in

Section 4.2.2 goes deeper into the actual implementation activities needed to configure

the tool.

3.2 RTCTLcc Example

In this section, we present the problem of model checking the RTCTLcc presented in

Section 2.3.2 using the tool. We start by giving the transformation algorithms used,

and then we review how the logic is then transformed using the tool.

3.2.1 Transformation Algorithms

To solve the problem of model checking RTCTLcc, we propose to use the transformation-

based methodology. This approach offers several advantages. Firstly, it allows the

designers to use already existing model checkers, instead of having to create a model

checker from scratch and maintain it. Secondly, it constitutes a convenient way of

comparing different verification techniques, on the same model checking problem [17].

The approach consists in transforming the RTCTLcc logic into the RTCTL logic [19].

There are two technical reasons behind the choice of RTCTL as the target logic:

• The RTCTL model follows a Kripke structure, the same as an RTCTLcc. Thus,

the transformation process can be conducted in logarithmic space.

• The RTCTL logic is already fully backed by the NuSMVmodel checker, allowing

us to take advantage of it.

To transform the model checking problem, we establish two formal transformation

algorithms:

• Algorithm 1 automatically transforms an RTCTLcc model M to an RTCTL

model Mt.

• Algorithm 2, on the other hand, recursively transforms an RTCTLcc formula ϕ

into an RTCTL formula F(ϕ). It is worth mentioning that the transformation

of the CTL portion of RTCTLcc, as well as the quantitative formulae (lines 7
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and 8), is straightforward. The communicative formulae (lines 9-12), however,

are transformed according to the defined semantics.

The proof of the soundness and completeness of the transformation as well as the

complexity analysis can be found in [33].

Algorithm 1 An RTCTLcc model M = (S, I, T, {∼i→j |(i, j) ∈ A2},V) into an

RTCTL Model Mt = (St, It, Tt, Lt)

1: Input: the model M

2: Output: the model Mt

3: It := I;

4: St := S;

5: Lt : S → 2PV ′
where PV ′ is defined as the union of the following three sets of

atomic propositions (i.e, PV ′ := PV ∪X ∪ Y ):

• The set PV := {p, q, ...} of atomic propositions in the model M to capture

the semantics of bounded and unbounded modalities.

• The set X := {α1α1, α1α2, ..., αnαn} for the social accessibility relation ∼i→j

to capture the semantics of commitments.

• The set Y := {β1β1, β2β1, ..., βnβn} for the symmetric closure of the social

accessibility relation ∼i→j to capture the semantics of fulfillment modalities.

6: The transition relation Tt combines the temporal transition T and asymmetric

closures of the accessibility relations under the sequent conditions: for states

s, s′ ∈ S,

1. If (s, s′) ∈ T , then (s, s′) ∈ Tt,

2. If s ∼i→j s
′, then:

• If (s, s′) /∈ Tt, then Tt = Tt ∪ {(s, s′)},
• Lt(s

′) := V(s′) ∪ {αiαj}, 1 ≤ i ≤ n and 1 ≤ j ≤ n, and

• Lt(s) := V(s) ∪ {βiβj}, 1 ≤ i ≤ n and 1 ≤ j ≤ n

7: return Mt
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Algorithm 2 A RTCTLcc formula ϕ: A RTCTL formula F(ϕ).

1: F(p) = p if p is an atomic proposition,

2: F(¬ϕ) = ¬ϕ,
3: F(ϕ1 ∨ ϕ2) = F(ϕ1) ∨ F(ϕ2),

4: F(EXϕ) = EXF(ϕ),

5: F(ϕ1 ∪ ϕ2) = F(ϕ1) ∪ F(ϕ2),

6: F(EGϕ) = EGF(ϕ),

7: F(E(ϕ ∪[m,n] ψ)) = E(F(ϕ) ∪[m,n] F(ψ)),

8: F(A(ϕ ∪[m,n] ψ)) = A(F(ϕ) ∪[m,n] F(ψ)),

9: F(WCC(i, j, ψ, ϕ)) = AX((F(ψ) ∧ αiαj) ⇒ F(ϕ)),

10: F(SCC(i, j, ψ, ϕ) = EX(F(ψ) ∧ αiαj) ∧ F(WCC(i, j, ψ, ϕ)),

11: F(FuW (i,WCC(i, j, ψ, ϕ))) = EX(βiβj ∧ F(WCC(i, j, ψ, ϕ))) ∧ F(ϕ) ∧
¬F(WCC(i, j, ψ, ϕ)),

12: F(FuS(i, SCC(i, j, ψ, ϕ))) = EX(βiβj ∧ F(SCC(i, j, ψ, ϕ))) ∧ F(ψ) ∧
¬F(SCC(i, j, ψ, ϕ)).

3.2.2 Implementation

To simplify the implementation of the algorithms mentioned above, we have used the

full capabilities of the tool and the core API. As an example, the following is a step

by step description of how we implemented Algorithm 2:

1. Implement a parser for the formulae that generate the intended transformed

formulae. The easiest way to do that is by using the provided ANTLR4 in-

tegrated capabilities; however, the user is free to choose the most convenient

method. The following are the ANTLR4 compatible steps:

(a) Define an ANTLR grammar file for the formulae. For logics that extend

CTL, the tool already provides an extensible CTL ANTLR4 grammar

file, and therefore it can be augmented with the definitions of the new

modalities.

(b) Generate ANTLR artifacts (Lexer, Parser, Walker/Visitor) using the ANTLR

API.

(c) Plug-in the generated ANTLR artifacts into the tool.
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Figure 3.3: ANTLR4 grammar file, parse tree and generated artifacts.

(d) Implement the provided translator API, while making use of the CTL node

walking utilities for rules matching the CTL rules.

2. Configure the accessibility engine by implementing the provided interface so

that the engine can calculate the accessibility relations automatically.

Figure 3.4: Transformation code snippet.

Figure 3.3 presents an ANTLR4 grammar file, as well as the parse tree created

from parsing an RTCTLccc formula. Notice the ’gen’ folder in the project tree on

the left, showcasing the different ANTLR generated artifacts. Figure 3.4, on the
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other hand, provides a code snippet showcasing how the different described elements

described above interact with each other to transform a given formula.

The implementation process of Algorithm 1, on the other hand, is straightforward

as both source and target logics follow a Kripke structure. The algorithm then be-

comes a simple matter of calling the provided Kripke Structure API to initialize the

resulting model. Then looping over all the accessibilities calculated from the model

and adding the corresponding transition for the symmetric closures if needed.

Figure 3.5: The process of specifying a model and a formula using the GUI.

3.2.3 Results

Once both algorithms implemented, the tool is ready to be used for model check-

ing MASs that conform to RTCTLcc. Figure 3.5 depicts the models of two agents,

Customer and Merchant, created using the tool’s graphical interface (Model Builder

v1.0). The dashed red arrows represent the automatically computed accessibility re-

lations between the two agents. Figure 3.6 displays the formula panel and the syntax

checker in action. The syntax analyzer uses the parser to check for rule conformance

and to suggest solutions to invalid formulae. Once the model and formulae are ready,
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we can launch the transformation using the ”Model Transformation” button. In Fig-

ure 3.7, the transformed system can be seen on the left panel, while the right panel

depicts the NuSMV execution results. The execution time for each component is also

computed at runtime.

Figure 3.6: Formulae panel during syntax check.

3.3 Summary

In this chapter, we presented the general workflow of the transformation-based model

checking activities. Moreover, we situated the involvement of the tool in the life

cycle. We then proceeded to present an example of the transformation process of the

RTCTLcc logic using the tool. In the next chapter, we will present the implementation

of the tool and its general structure.
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Figure 3.7: Transformation results.
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Chapter 4

Implementation

This chapter starts by reviewing the different technologies and libraries used in the

implementation of the framework. Then, we present a detailed presentation of the

architecture of the tool and its different module components. Then in the last section,

we evaluate the efficiency of the tool’s performance through the different case studies

it was used for, in different publications, and with different logics.

4.1 Technologies Used

This section is an overview of the different technologies and APIs used by the frame-

work.

4.1.1 Java

The Java programming language is the core language for the framework. It’s a tried-

and-true cross-platform language with years of proven performance, modularity, and

flexibility in both industrial and research settings. A hugely active community sup-

ports Java and provides a big collection of frameworks and libraries that can deal with

most if not every use-case. The recent change to the Java release cycle guarantees

that the language is keeping up with the latest trends in programming paradigms,

and makes for easier integration with other languages and platforms. The framework

has been recently updated to conform to the latest Java Long-term-support version,

aka Java 11.
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4.1.2 JavaFx

JavaFx, also known as OpenJFX, is an open-source next-generation client applica-

tion platform for desktop, mobile, and embedded systems built on Java. JavaFX is

intended to replace Swing as the standard GUI library for Java SE. It behaves as a

GUI library and lends itself to the efficient and rapid development of desktop apps

and Rich Internet Applications. JavaFX uses a theater metaphor to address top-level

application containers. In FX, the scene graph collects the UI elements, including

layouts, controls, shapes, and groups. The elements are referred to as nodes, and

each one has automatically available features that the developer can readily access.

And FX also has special effects that you can easily add to create blurs, shadows, and

other textural touch-ups. FX also offers consistent support for MVC, making the

separation of concerns easier and more intuitive, which results in general in modular,

reusable code. The earlier versions of the framework implementations were developed

using Java’s own Swing library (Figure 4.8 shows the old swing interface of the model

builder). However, the tool was later upgraded to use JavaFx’s components whenever

possible(Figure 4.7 shows the new JavaFx interface for the model builder).

4.1.3 Java Native Interface

Java Native Interface, JNI for short, is a foreign function interface that allows code

running on the JVM to both call and be called by native applications and libraries,

written in C, C++, or assembly [34]. JNI is used in the context of this project to

allow for integration with the NuSMV model checker on a source-code level (since it’s

written in the C language).

Using JNI happens at two different levels:

• On the Java level, native methods and fields as declared using the native key-

word. Native libraries are then loaded using System.loadLibrary() calls (it sup-

ports ”.so” files on Linux and ”.dll” files on Windows). The native methods

are called just like regular ones, and the mapping between primitive types is

straightforward. Native header files are then generated using javac by providing

the ”-h” flag with the header output directory path.

• On the native level, the native header files generated from Java need to be

implemented in native code to be a perfect match to the generated signatures.
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Figure 4.1: JNI general workflow.

JNI provides all necessary methods to get (or convert) Java objects, through

the JNIEnv pointer that’s used in all JNI method calls (in a similar manner

to the Java Reflection API).

Most of the work with JNI happens on the native level, and the only additional

step needed from the Java side is the generation of header files, that can happen at

compile-time (cf. Figure 4.1). The generation task can even be integrated into a

makefile that generates the headers, and then compiles the native files and converts

them into dynamic libraries.

4.1.4 Java Native Access

Java Native Access, JNA for short, is an open-source library that allows the use of

native code using only Java code, without the need to write native code like in the

case of JNI.

JNA relies on the idea, that the native code necessary for the use of JNI is in most

cases, a straight forward mapping, and thus offers an infrastructure that allows the

automation of that process, by generating native code from a more detailed version

of Java code than the one needed for the JNI system.
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To achieve this, JNA offers a class called ’Structure’ that provides most of the

needed mechanisms. It also offers a set of interfaces to implement, such as ‘Struc-

ture.ByValue’ which allows us to value the mapping between Java and native code.

JNA thus offers multiple advantages over the use of classic JNI. However, it suffers

from performance issues since it needs to dynamically generate native code at runtime

(while JNI uses pre-generated stubs). It also suffers from the limitation inherent to

the library itself, since it offers a limited set of possible mappings targeting the most

common scenarios. So for advanced use-cases, JNI is still the only possible option.

4.1.5 ANother Tool for Language Recognition

ANother Tool for Language Recognition, ANTLR for short, is a powerful parser

generator that can process and translate structured text. It’s widely used in both

academia and industry to build all sorts of languages and frameworks. From Twitter’s

search query parsing, to Hadoop’s Hive and Pig languages, Lex Machina’s information

extraction from legal texts, to Oracle’s SQL developer IDE, ANTLR is known and

used everywhere! [35]. It was developed by Terence Parr in Java.

ANTLR takes as input a simple grammar file describing the language and au-

tomatically generates a lexer and a parser that can construct parse-trees. ANTLR

also offers tree-walkers that use the visitor pattern to visit all nodes and produce

application-specific behavior.

ANTLR’s grammars are simple to write since they use an intuitive syntax of rules

that follow the Backus–Naur Form. The framework then uses the grammar files to

construct a parser that would recognize these rules and apply them to the referenced

languages. The ANTLR generated lexer is responsible for tokenizing the input stream.

The parser then recognizes the defined rules and generates Abstract Syntax Trees,

that the Walker can be used to browse one node at a time, to produce the desired

application-specific behavior (Figure 4.2 explains the data flow of ANTLR).

We have mainly used ANTLR as a specification in this project, in the sense that

the framework offers a set of ANTLR compatible classes that can use an ANTLR

generated parser to create tree-walkers automatically, allowing for easier integration

with the framework, and allowing the users to ignore most of the difficulties related

to creating parsers. (Section 4.2.3 gives a more detailed overview of how ANTLR is

used in the context of this project.)
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Figure 4.2: ANTLR data flow.

4.2 Tool Modules

This section aims to give an overview of the general architecture of the tools and its

different modules. We start with a general overview of the entire architecture, and

then we review each module independently by going over its features, its design goals,

and a general overview of its architecture.

4.2.1 General Architecture

The tool was designed to follow software architecture’s best practices: to be modular,

flexible, and to respond to significant future changes. The tool is broken into a set of

different modules, each responsible for a task. Each module is entirely independent

of the rest to allow for more natural changes in the future, be it to the underlying

model checker, to the delivery mechanism (website instead of desktop application),

or any other aspect of the tool.

The tool is comprised of two portions, the core framework, and the Model Designer

(cf. Figure 4.3). The core framework is the back-end portion of the tool; It has three

primary modules:

• The transformation module: is responsible for all the parsing and transforma-

tion from any logic extending CTL into a NuSMV compatible logic. It is both

responsible for the transformation from one logic to another, but also for gen-

erating the SMV output file to be used with NuSMV later. From a functional

point of view, it consists of two different libraries: the Transformation API and

the Transformation Engine. The API exposes a set of abstract classes and in-

terfaces to allow the user to implement transformations of both the model and
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Figure 4.3: General architecture of the tool.

the formulae; it also offers a set of practical utility classes. The engine, on the

other hand, is responsible for integrating with the user-defined transformations

and is responsible for the actual transformation process.

• The accessibility engine: offers an API for the user to use for defining their

accessibility relationships. It then uses the said definitions to calculate accessi-

bility relations automatically.

• The NuSMV native interface: communicates natively with NuSMV and offers

the tool the capabilities to interact with NuSMV. It bypasses the NuSMV in-

teractive shell by directly making calls to the core NuSMV API.

The module designer is the graphical user interface of the tool. It can be further

divided into two primary packages :

• The model builder: is a GUI utility to create local agent models. It offers

an intuitive graphical interface with interactive menus to allow the designer to

specify models easily. It can save, load, and edit as many local models (agents)

as needed.
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• The general tool UI: is the basic set of UI components necessary for the desktop

application.

4.2.2 General Usage

From a usage point of view, the tool has two categories of actors (users): “Re-

searchers” and “Designers”. Researchers are responsible for creating the trans-

formation algorithms from their new CTL-extension logic to NuSMV. They are also

responsible for using these algorithms and definitions to configure the different mod-

ules of the tool to produce consistently correct results. Designers, on the other hand,

are the final intended users of the final product. They use the tool to design multi-

agent systems and then exploit the model-checking engine to verify their properties

(cf. Figure 4.4).

Figure 4.4: Data flow within the tool.
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For a designer, the tool offers multiple mechanisms and usage modes to cater to

different needs and use cases. It can function in two primary modes: the graphical

mode, and the scalability mode. It can also be used by dropping the GUI all-together

and integrating the core framework with an interactive shell, or to an existing project.

The tool in its graphical state offers two input methods:

• The graphical mode: offers the designer the possibility to design multi-agent

systems using the model builder, and then check these designs using model-

checking against a set of formulas.

• The scalability mode: offers the designer the capabilities to use an ISPL file

description of the design as an input to the tool. This mode allows for the

processing of large systems of multiple agents, instead of the graphical mode

that becomes unpractical once the number of agents grows.

A researcher, however, needs to configure the tool on multiple levels to produce

the final product:

• On the transformation level, he needs to first define the grammars for the model

and the formulae of the new logic, and use ANTLR to generate parsers to

match the logic. Then, he needs to use the transformation API to define the

transformation algorithms to be applied to the matched rules.

• On the accessibility level, if the transformations require accessibility relations,

he needs to implement the accessibility API to define each accessibility relation

so that the engine can calculate such accessibilities for any given model.

In the following sections, we go deeper into each module and present its general

features, its design goals, and a general UML class diagram to explain how each

module works. The presented class diagrams aim to explain the general architecture

of each module, and only present the most important parts of every module. The

original class diagrams are massive in comparison and are therefore almost impossible

to present as added figures.

4.2.3 Transformation Module

The transformation module offers the capabilities to support all the transformation-

related activities within the core framework. It is entirely independent of all other
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modules, and offers a rich set of features:

• For CTL-based logics, the transformation API offers extensible classes that

readily support CTL functionalities and transformations; it also offers a rich set

of utility classes to ease the transformation implementations for both models

and formulae (cf. Figure 4.5).

• For any other logic, a designer needs to manually implement the transformations

algorithms by extending the offered abstract classes (cf. Figure 4.5).

• The transformation engine supports ANTLR v4 generated parsers, lexers, and

TreeWalkers/ Listeners. We designed the engine to support these artifacts by

fully taking into account the ANTLR generation scheme meta-model. This

support also offers the added benefit of allowing the engine to support any

LL(*) grammar, as well as adaptive LL(*) grammars [36, 37, 38].

• The transformation engine also offers a ready to use ISPL system, allowing the

parsing of ISPL MASs models into SMV models. Since the Interpreted Systems

formalism is already widely used in the MASs community, this feature on its

own allows researchers to use NuSMV with MASs without any change to the

conventional processes.

This module is designed with multiple goals in mind. From a feature point of view

it aims to:

• Offer opinionated features that allow the user in most common cases to simplify

the process (CTL-based logics utilities, ANTLR support, etc.).

• Be flexible enough for users that desire to take charge of particular or all steps

manually.

Figure 4.6 offers a general architectural view of the transformation engine in rela-

tion to other modules and packages. The Transformation engine is context agnostic

since it doesn’t have any dependencies on any other modules or packages (except for

the ANTLR library). It uses a set of Boundary interfaces to deploy its calls to external

packages polymorphically, reversing, thus the dependency on other modules, in line

with the Interface segregation principle and the dependency inversion principle [31].

The interactors are responsible for the orchestration of the different sub-processes of
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Figure 4.5: General class diagram of transformation API.

the transformation. The Controllers package is the central control unit of the tool;

it contains a set of Use-Case handlers, each responsible for a specific scenario. The

ISPLEngine package contains the ISPL parsing utility mechanisms, and an interactor

responsible for orchestrating the different parts.

4.2.4 The Model Builder Module

The model builder module is in charge of offering the user a complete GUI-driven

set of functionalities that allow for an easy and intuitive building of agent models.

This module enables designers to model MASs by modeling each agent separately.

A designer can use the model builder to draw new local states of each agent. An

interactive menu offers a set of context-aware options to create local states, to connect

states with edges, and to add different properties to a state. Each local state follows

the ISPL+ formalism, and thus offers the Designer the capabilities to add a set of

atomic propositions that hold at the given state. Moreover, It allows the Designer

to set the values for the different shared and unshared variables on each local state

(Figure 4.8). The model builder also computes and draws the accessibility relations

for any given local agent model. It displays the said accessibilities as dashed edges in

the agent’s model (in Figure 4.7, the dashed edge between states s1 and s4, labeled

αi is an accessibility relation edge).

Once the design process of the entire system is complete, the Designer can trans-

form the models automatically into SMV modules, and use the formulae editor to
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Figure 4.6: General class diagram of the transformation engine.

specify requirements on the MASs. The tool then executes NuSMV in the back-

ground and model-checks the system under design against the formulas.

The general architecture of the model builder is depicted in Figure 4.9. It uses

a fixed depth Composite Pattern since the local model can contain multiple local

models of other agents. It also uses a Strategy Pattern to allow for future additions

of other types of edges.

The communication with the core package happens through a set of Interface

Boundaries that decouple both sides, allowing for a more robust design, in line with

the Dependency Inversion Principle. Both sides use Request and Response

classes that get exchanged through the boundary, to allow both sides to depend

on each other’s behavior, not implementation.

4.3 Experimental Results

The work presented in this dissertation has been used in multiple conferences and

journal publications to implement different logics for MASs [14, 33, 15, 18]. In this

section, we aim to demonstrate the broad set of possible applications for the tool by

presenting the different ranges of case studies it has successfully implemented.
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Figure 4.7: Model builder v2.0 new JavaFx interface.

Figure 4.8: Model builder v1.0 swing interface.

51



Figure 4.9: General class diagram of the model builder module.
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4.3.1 Case Study Results

Multiple new logics have used the tool as their implementation method. In this

subsection, we cover the different case studies they used and the experimental results

obtained from the tool.

A The buyer-seller ordering protocol

Experiment
no. of

agents

no. of

reachable states

time of

model transformation

in ms

average total

time in ms

1 3 5 07.00690 9.238688

2 6 25 10.414627 12.7589

3 9 125 12.253960 14.80114

4 12 625 17.273747 19.93857

5 15 3125 18.381369 21.27313

6 18 15625 20.361401 23.67727

7 21 78125 20.997321 24.92944

8 24 390625 26.318603 30.96645

9 30 9.76563e+06 29.235256 34.61843

10 36 2.44141e+08 30.089409 36.64260

11 42 6.10352e+09 31.693837 39.22330

12 66 2.38419e+15 51.885031 117.0266699

Table 4.1: Verification results of the ordering protocol using the toolkit

This ordering protocol, introduced by Desai et al. [13], specifies the rules of interac-

tion between a buyer and a seller, modeled as agents. For example, a buyer interested

in certain goods requests a quote from the seller. The seller then responds with an

offer. This interaction and many others in this context were used as a case study

in [33] to capture the conditional commitments between sellers, buyers, shippers, and

other different agents.

Table 4.1 reports the results of the different experiments used in the case study,

representing scenarios growing in complexity as the number of agents grows. Analyz-

ing the table, it’s clear that the number of reachable states grows exponentially with
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the growing number of agents. However, the transformation time increases only poly-

nomially, allowing for the model-checking of complex systems with a massive number

of reachable states.

no. agents no. reachable states execution time (ms) memory (MB)

3 17 0.01 6.7

5 28 0.012 7.04

7 50 0.019 7.73

9 94 0.032 8.71

11 182 0.058 9.97

13 358 0.093 11.06

15 710 0.287 13.11

17 1414 0.648 20.21

19 2822 2.139 21.54

21 11,270 5.346 22.19

23 22,534 16.311 27.79

25 45,062 25.269 30.37

27 90,118 56.014 40.41

29 180,230 79.802 31.44

31 360,454 86.345 49.99

33 720,902 112.162 99.85

35 1.4418e+06 192.664 131.28

Table 4.2: Verification results of the landing gear system using the toolkit

B The landing gear system case study

This case study, introduced by Boniol and Wiels [8], is an industrial case study

for complex communicative avionics systems. The interaction between the different

autonomous components makes it a rich case study in the context of multi-agent

systems since each component can be modeled as an autonomous agent. This case

study was used in both [18, 33] to model two different logics. In the first, it was used

in the process of model-based test generation for safety-critical systems. The second

used it to capture the real-time aspects of the logic as a running example.
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Table 4.2 presents the results of the tool’s usage with the landing gear system. It

reports in addition to the different system’s number of agents, and reachable states,

the memory usage in each operation. It shows how an approach based on model-

based transformation can contribute to the design activities and the verification and

validation process for safety-critical systems.

Exp.# Agents# States#

Time of model

transformation

(ms)

Time of

formulae

transformation

(ms)

Total

time (ms)

1 7 42 15 0.8 20

2 14 468 17 0.9 119

3 21 5586 22 1 1330

4 28 67236 36 1.1 8049

5 35 809682 38 1.2 45051

6 42 9.74E+06 42 1.3 210000

7 49 1.30E+08 48 1.4 390000

8 56 4.49E+12 53 1.5 540000

9 63 2.52E+15 57 1.7 792000

Table 4.3: Verification results of the AGFIL protocol using our tool

C The AGFIL case study

This case-study was introduced by Telang et al. [46]. It’s a standard industrial case

study about an insurance company in Ireland: AGFIL. This case study captures

the rules of interaction between a policyholder and the insurance company. The

interaction between the different parties in this scenario made it perfect for capturing

the aspects of trust between the different involved parties and was used as such in [14]

as a running case study.

Table 4.3 reports the results of the different experiments using the tool with the

trust logic. We can observe that the number of reachable states grows exponentially

with the number of agents. The transformation time of both the formulae and the

model is polynomial in time, however.
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(a) - Using our transformation toolkit

Exp Agents States
Total

time (ms)

1 7 42 20

2 14 468 119

3 21 5586 1330

4 28 67236 8049

5 35 809682 45051

6 42 9.74E+06 210000

7 49 1.30E+08 390000

8 56 4.49E+12 540000

9 63 2.52E+15 792000

(b) - Using the MCMAS-T model

checker

Exp Agents States
Time

(ms)

1 7 42 50

2 14 468 1020

3 21 5586 16340

4 28 67236 99723

5 35 809682 694035

6 42 9.74E+06 3333680

Table 4.4: Comparison of the verification results

4.3.2 Performance Evaluation

To evaluate the performance of the tool and the general approach against the direct

implementation approach, we decided to do a benchmark against the MCMAS model

checker, since both our tool and MCMAS take an ISPL+ file as input. We used

MCMAS-T, an extension of MCMAS with modalities of trust [16], and then we used

the implementation of the same trust logic using this tool used in [14]. We then used

the same machine that produced the results in Table Y, to run the same AGFIL

experiment files using MCMAS-T this time to compare the verification time of the

process as the number of agents grows.

Table 4.4 reports the comparison results using the same machine. It’s clear that

the transformation-based approach provides better results on all metrics. The MC-

MAS model checker, in general, can’t verify models beyond 10+e07 reachable states.

MCMAS-T is no exception and suffers the same limitations, stoping at 42 agents and

crashing on 49 agents as it takes around 24h without producing any results until the

process has to be manually stopped. In addition to that, the metric of time exe-

cution makes the tool a more efficient approach, making it a promising and viable

methodology in practice.

Figure 4.10 compares the verification results of the tool’s trust implementation

with the MCMAS-T model checker in the form of a graph. We plot the execution
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Figure 4.10: Comparison results between our tool and MCMAS-T

time as a function of the number of agents. It gives an evident appreciation of

the tool’s performance as opposed to the traditional, straightforward implementation

methodology.

4.4 Summary

In this chapter, we presented an overview of the tool’s implementation. We started by

reviewing the different technologies used. Then we went on to expose the architecture

and the different design goals of the essential modules. We concluded by a review of

the different case studies the tools logics can be used with, to demonstrate the range

of possible industrial applications, before presenting a brief performance overview

against one of the most famous and used model checkers for MASs.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we proposed a new framework to help automate the transformation-

based model checking of MAS logics. We designed the system to offer a rich and

powerful API, built to offer advanced features and performance while being modu-

lar and flexible to suit different needs. We offered an architectural overview of the

framework and its design goals. We then presented a tool built on top of this core

framework that we successfully used in multiple research settings with different logics,

before concluding with a performance comparison to the MCMAS model checker, one

of the most popular model checkers for multi-agent systems.

5.2 Future Directions

This work can be extended in many ways. One can investigate the ways we can

manage to support other logics that are not CTL based. Another potential track is

to support the integration of model checkers other than NuSMV. One can also try to

take this framework’s support to a higher level of abstraction to make it independent

of the structure of the models and formulae by taking metamodels as input instead.
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