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Abstract
Nested Column Generation for Optical Network Optimization

Huy Duong, Ph. D.
Concordia University, 2020

Defragmentation/reoptimization of Elastic Optical Networks (EONs) reallocates con-
nections to achieve an improved system, e.g., reducing the total required spare ca-
pacity or transmission delay. EONs comprises multiple layers which have different
functionalities and management. This thesis studies two main layers of EONs that
are Logical Layer and Optical Layer. Although defragmentation/reoptimization has
many techniques and strategies, because of practical-application requirements, this
work only discusses make-before-break (MBB) technique to reduce capacity/spectrum
usage at defragmentation events predetermined by time-driven manner.

There are two directions in terms of solution strategies. In the first direction,
network operator solves the original problem of finding the optimal state that MBB
rerouting sequences can reach. This direction is hard to solve because MBB condition
makes the problem complicated. In the second direction, it decomposes the problem
into two steps. The first step computes the optimal state (target state) without MBB
condition. And the second step finds a rerouting sequence to bring current state to
the target state as close as possible under MBB condition. This direction is a heuristic
because there is no assurance that network can reach the target state. However, this
direction is easier to model and solve than the first direction.

For both directions, this work proposes several heuristic algorithms and sub-
optimal algorithms using column generation for (nested) decomposition mathematical
models. Our proposed models and algorithms enlarge the scalability of data sets in
literature.
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Chapter 1

Introduction

1.1 Motivation

The world of telecommunications is now moving towards 5G, the fifth generation
of telecommunication networks, and there are already discussions for beyond 5G,
i.e. B5G. We expect the 5G technology to be a dramatic leap from the current 4G
LTE networks. The additional features of 5G technology will offer advanced services,
followed by the diversity of performance required. Especially, the concept of 5G is
to use a single shared system that supports multiple tenants (customers). Since we
expect network traffic to grow in an explosive and very dynamic way, providers are
urgently seeking for efficient 5G network operating solutions. These solutions address
the 5G challenges, e.g., ubiquitous connectivity, ultra-high data rates, extremely low
latency, tremendous energy-saving, network function virtualization, software-defined
networking [4, 5]. One of the important aspects of the network operation is resource
fragmentation [6, 1], i.e., network resource re-optimization.

Several layers with different functionalities make up optical networks. Fragmen-
tation may occur at any layer and can be defined as follows. Because of dynamic
addition and termination of requests/connections, network provisioning is not always
possible on shortest paths. Note that, to establish a path, all the links on the path
must have enough available resources, in addition to potential continuity or conti-
guity constraints with respect to channel allocation. When we provision a request,
we do so on the best available combination of route and spectrum/bandwidth re-
sources. However, due to Service Level Agreements (SLAs), it is not interrupted and
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rerouted as soon as a better path becomes available. The state, where connections
are using longer paths than the shortest available ones, corresponds to what we call
a fragmented network, and the process is called fragmentation.

However, later on, the state of the network changes because of the dynamic con-
nection adds and drops, and fragmentation increases. Thus a global provisioning
re-optimization is required to bring the connections to an optimal (or optimized)
state. This process is called defragmentation (or reconfiguration). In this thesis, we
propose novel mathematical models and algorithms to improve further defragmen-
tation/reconfiguration operations. Our defragmentation problems and solutions are
developed with technical and directional support of Ciena Corporation (our industrial
partner).

1.2 Single-Layer and Cross-Layer Defragmentation/

Reoptimization

Logical and Optical Layer are two main layers of Optical Networks (ONs), and they
are depicted in Figure 1. Besides, the Optical Layer usually comprises several propri-
etary domains belonging to different providers and using different technologies. Thus,
these two layers work together as a transparent service. It means that Logical Layer
operates on its logical networks independently of how Optical Layer manipulates ac-
tual lightpaths.

In 5G, communication among layers is simplified thanks to Software Defined Net-
work (SDN), Network Function Virtualization (NFV) and Virtual Network Functions
(VNFs). Thus logical networks are constructed and updated more easily. It also en-
ables a paradigm that is network slicing. Network slicing refers to several virtual
networks are built on the same infrastructure. Figure 2 shows an example of network
slicing.

From this discussion about layer management, one can see that developing a com-
prehensive defragmentation/reoptimization scheme, taking into account both layers
at once (cross-layer defragmentation), is complicated. Therefore, the idea of this
thesis is first to study single-layer defragmentation/reoptimization problems (defrag-
mentation with respect to one layer), then combine them into a cross-layer scheme.

2



Figure 1: Overview of Optical Network’s architecture [2]

Figure 2: 5G Network architecture [3]
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1.3 Defragmentaion/Reoptimization Paradigms and

Strategies

In practice, a defragmentation solution has to guarantee Quality of Service (QoS)
requirements while minimizing the spectrum/bandwidth usage. Indeed, when the
network is well defragmented, it provides additional provisioning possibilities for the
incoming connection request(s), as well as a longer period until the next defragmen-
tation is triggered. Note that defragmentation events are usually triggered using a
network load threshold or a time-driven criterion. Our industrial partner advises
to only consider fixed-schedule defragmentation because service agreements do not
allow service modification at any time. Usually, defragmentation/reconfiguration is
only performed during night when traffic is lowest. Thus this thesis only focuses on
time-driven defragmentation/reoptimization.

In terms of connection disruption, the defragmentation/reoptimization process can
be classified into hitless or non-hitless paradigms [7]. The latter means a connection
is temporarily interrupted before switching to a new route. Connection disruption
degrades severely Quality of Service, thus it is not used in this thesis. On the other
hand, hitless refers to techniques by which data transferring is continuous (or almost
continuous) during rerouting.

At Optical Layer, several hitless techniques depend on the system’s technol-
ogy, e.g., push-pull, hop tuning and make before break. Push-pull and hop-tuning
techniques allow the spectrum of a connection to move along the link’s spectrum.
However, they require special devices. On the other hand, the make-before-break
paradigm establishes the new route of a connection, and transportation gradually
switches to the new route. When there is no need for the old route, the connection
is completely switched and the old route is torn down. This technique does not re-
quire special devices and ensures better service continuity. Our industrial partner also
prefers a make-before-break paradigm. The make-before-break paradigm can also be
used at Logical Layer. Therefore, this thesis focuses only on the make-before-break
paradigm.

In terms of solution strategies, researchers have investigated this connection rerout-
ing along two directions. The first one comprises two phases. The first phase computes
the optimal state (target state) without MBB condition. The second phase finds a
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rerouting sequence to bring current state as close as possible to the target state under
MBB condition. The second direction is to compute the best provisioning that is
reachable from the legacy provisioning by a sequence of connection reroutings with
no disruption, i.e., MBB paradigm, but no target state is pre-computed.

Although the first direction is not desirable as the second direction, the first
direction is easier to model and propose algorithms for each phase. Indeed, the
first direction often lacks the computation of an optimized provisioning that is the
closest one from the current provisioning, and then as a consequence, may take many
reroutings in order to be reached. For instance, for wavelength assignment, there is
an exponential number of them which are equivalent up to a permutation, while there
are a very limited number of them that are close to a given provisioning. Besides,
we notice that the optimal state without MBB is a lower bound of MBB reachable
solution (in the case of minimum bandwidth requirement). As a consequence, if the
second phase yields solution that is very close to the target state, then it is also very
close to one of the best MBB reachable states. Thus, in this thesis, we investigate
both directions.

1.4 Thesis’s Plan

This thesis is composed of six more chapters, five of which correspond to manuscripts
that have been either published or submitted for publication in international networking-
related journals, except for the last one that is under preparation. Since this thesis has
a manuscript-style, each chapter is self-contained and corresponds to a manuscript.

This thesis comprises three main parts. The first part focuses on Logical Layer
reoptimization, the second one studies Optical Layer defragmentation, and the last
part proposes a framework to optimally distribute resources over network slices in
5G networks. As discussed above, in given-target reoptimization, finding the optimal
resource allocation is a necessary phase.

Chapter 2 proposes efficient heuristics and ε-optimal solutions for Logical Layer re-
optimization problem where target state is given (first direction as defined in previous
section) while Chapter 3 proposes an ε-optimal solution for true MBB reoptimiza-
tion (second direction as in previous section). In these two chapters, the problem is
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simplified to no parallel rerouting at any given time and no more than one rerout-
ing per connection (non-multiple). In Chapter 4, parallel and multiple rerouting is
considered.

Optical Layer defragmentation is studied in Chapter 5. Chapter 6 proposes a
framework to optimally (with a small optimally gap) allocate network slices on the
same physical infrastructure. Finally, Chapter 7 lays out conclusions and future
research directions.

Note that, all ε-optimal solutions in this thesis are post evaluated, i.e., the gap
is computed after solutions and bounds are obtained. As these obtained gaps are
less than 5% for all proposed algorithms, there is no need to develop gap-guaranteed
algorithm. In addition, for all decomposition models, solving the last master problem
as an integer linear program was enough in order to reach a solution with a reasonable
optimality gap, Therefore, we did not investigate diving heuristics and branch-and-
price techniques as in, e.g., [8].
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Chapter 2

Efficient real-time scalable

make-before-break network re-routing

Dynamic traffic in optical networks leads to capacity fragmentation, which signif-
icantly reduces network performance. Consequently, non disruptive re-routing has
attracted a lot of attention from network providers as it dramatically improves the
amount of traffic that can be granted with a good quality of service. The recent
development of flexible and software-defined networks is urgently calling for faster
real-time reconfiguration algorithms at all network layers, while being highly efficient
in terms of optimized reconfiguration of connections.

We propose a very efficient non disruptive bandwidth defragmentation heuristic
(called mbb_df_h) with a make-before-break (MBB) strategy at the user layer. In
order to assess its accuracy, we also develop a near-optimal two-phase defragmenta-
tion process. Firstly, we formulate an exact optimization model for the decomposition
scheme, in order to compute the best re-routing, i.e., with minimum bandwidth re-
quirement. Secondly, we investigate whether the resulting re-routing can be reached
with a MBB policy, if not, we exhibit the best possible MBB re-routing.

We conduct extensive numerical experiments on several data sets. We first run
experiments on small to medium data sets so that the solution efficiency of the
mbb_df_h heuristic can be compared with the two-phase optimization models.
Next, we focus on the real time scalability of the mbb_df_h heuristic on large
realistic data sets.

This work was published as: B. Jaumard, H. Quang Duong, R. Armolavicius,
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T. Morris, and P. Djukic, “Efficient real-time scalablemake-before-break network re-
routing,” Journal of Optical Communications and Networking, vol. 11,p. 52, 03 2019.

2.1 Introduction

Dynamic traffic in optical networks leads to capacity fragmentation, which can reduce
network efficiency. Specifically, in time division multiple access (TDM) networks
based on the optical transport network (OTN) electrical switching protocol, dynamic
arrivals and departures of end-to-end connections can lead to "stranded capacity".
Stranded capacity consists of pockets of capacity available on individual links, which
cannot be strung together as contiguous multi-link bandwidth for end-to-end paths.
For the network operator, this issue manifests itself as either unnecessarily inflated
capital expenses – adding capacity when it is not really needed, or causing reduced
revenues – through blocking connection requests, which could otherwise be served
with the same equipment.

One way to reduce stranded capacity in an optical network is to periodically
optimize network usage by defragmenting the bandwidth. The goal of the defrag-
mentation is to decrease total network usage, thus expanding the pockets of stranded
capacity into contiguous bands of capacity available end-to-end. Generally speaking,
the defragmentation process proceeds as a series of "re-routings" where an existing
end-to-end network connection is re-routed on a new, better path. To prevent reduced
quality-of-service (QoS) to client services, a re-routing should be done in make-before-
break fashion (MBB), that is a new path for an existing connection is reserved, before
the connection’s traffic is electrically switched on this path and the old path is torn-
down. It is also important that the number of re-routings is kept at a minimum so
that the operator can optimize the network in its maintenance windows.

We note that the MBB can be accomplished by either: (1) reserving sufficient
bandwidth throughout the entire new path and then switching the entire path at
once, or (2) reserving the bandwidth on the new path only where the old path does
not currently pass and then switching only the new segments of the new path, by re-
routing each segment using MBB. The availability of each approach is dependent on
the control plane capabilities. We know that at least some equipment vendors support
the second approach and we assume throughout the paper that it is available, due
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to its advantages – namely, a connection can be re-routed without having to reserve
twice its capacity for the re-routing process.

Note that all defragmentation schemes, including make-before-break schemes, in-
cur a ”switching” disruption time. However, schemes that require connections to be
torn down before moving them to a better path (break-before-make) incur longer
disruption times. Thus, make-before-break is preferred to minimize disruptions

A key question for the optimization process is: what is the order in which con-
nections should be moved so that the maximum amount of capacity is released, while
moving the least number of connections?

Answering this question is a computationally hard problem, unlikely to yield a
computationally scalable exact solution. So, it is necessary to devise effective heuris-
tics, while being able to estimate the quality of their solutions. To this end, the
contributions of this paper can be summarized as follows:

• A real-time highly scalable defragmentation heuristic, called mbb_df_h, that
aims to reduce the bandwidth requirements. Our heuristic uses a novel ranking
criterion, called worst offender, which we found through extensive simulations
to be better than many other heuristics and to perform close to optimum.

• In order to assess the quality of the mbb_df_h heuristic, we develop original
mathematical optimization models with a three-step approach.

– A first optimization model, called defrag, relying on a column generation
(Dantzig-Wolfe) decomposition algorithm, called df_ilp, which computes
the best possible connection re-routing without worrying about MBB.

– A second decomposition optimization model, called mbb_reach, also re-
lying on a column generation decomposition algorithm, called mbb_df_ilp.
Model mbb_reach checks the reach-ability of a given connection re-
routing with a Make-Before-Break process. Not only does it allow a good
performance for a fair evaluation of the mbb_df_h heuristic with the
solutions of df_ilp, but it also helps assess the difficulty of seamlessly
reaching an optimized provisioning from a given current provisioning.

– Finally, the two solutions are combined to deduce an ε-optimal solution,
which can be used to assess the quality of the mbb_df_h heuristic.
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• Extensive simulations on real-network topologies show that the mbb_df_h

heuristic has an almost optimal performance on small to medium size instances.
While the scalability of the optimization models have been greatly improved
in comparison with the previous work [1], it is not yet possible to conduct
comparative experiments on large data instances.

It is worth reflecting on what the defragmentation problem implies from a tech-
nological perspective. The introduction of the control plane technology, based on the
Open Systems Routing Protocol (OSRP) [9] in conjunction with OTN has greatly
simplified the instantiation of new OTN services. However, due to its distributed na-
ture, this protocol is limited to finding shortest paths in the network. As the network
becomes more dynamic, the shortest path protocol leads to stranded bandwidth, re-
quiring periodic network optimization. At the same time, the network management
systems (NMSs) are becoming more advanced and are able get a more holistic view of
the network, its resource usage, as well as a way to re-route connections in a central-
ized fashion. This evolution of NMSs is now enabling network optimization, making
practical network optimization algorithms an industry relevant problem.

We also note the applicability of the algorithms proposed in this paper in the
context of packet networks using multiprotocol label switching (MPLS) and using
a centralized path computation element (PCE) or a network controller in software-
defined networking (SDN). In packet networks, the global concurrent optimization
(GCO) is intended to be used to re-optimize the labeled-switched paths (LSPs) in
order to improve network efficiency [10, 11]. The algorithms presented in this paper
can be used in this context as is.

The paper is organized as follows. In the next section, we review the key refer-
ences. A concise statement of the defragmentation problem in the user layer and the
notations which are shared by all models and algorithms are introduced in Section 2.3.
Section 2.4 describes a MBB defragmentation heuristic, called mbb_df_h heuristic.
In Section 2.5, we propose an exact decomposition model, called df_ilp in order
to identify the best re-routing in terms of minimum bandwidth requirement. The
solution scheme allows the generation of an ε-optimal routing. We then investigate in
Section 2.6 a mathematical model and an algorithm that check whether a given op-
timized routing can be reached with a MBB process. Extensive numerical results are
presented in Section 2.7 where we first evaluate the accuracy of the solutions output
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by the mbb_df_h heuristic thanks to the ILP (Integer Linear Program) decom-
position models (df_ilp and mbb_reach). Lastly, we demonstrate the real-time
scalability of the heuristic on large realistic data instances.

2.2 Literature Review

We review the references for the defragmentation at the user layer, i.e., capacity de-
framentation, a problem which has been much less studied than defragmentation at
the optical layer (i.e., either wavelength or spectrum defragmentation). We first dis-
cuss some generalities and why the graph theory tools used for wavelength/spectrum
defragmentation do not apply for capacity defragmentation, and then review the pre-
viously proposed algorithms and models.

2.2.1 Defragmentation Strategies

Defragmentation mechanisms can be classified into reactive and proactive mecha-
nisms. Reactive mechanisms are invoked when a request cannot be accommodated
given the network-wide capacity allocation. In proactive mechanisms, the capacity
allocation is performed in a manner that unused spectrum slots are proactively pre-
served for future use, such as the push-pull mechanism in spectrum defragmentation
[12].

Several of the works on wavelength/spectrum defragmentation use the concept
of dependency graph ([13, 14]) in order to identify the order in which the connec-
tions/requests can be re-routed as to maximize the number of re-routed requests,
while attempting to minimize the bandwidth requirements. The dependency graph
is such that each node is associated with a request and there is an arc between two
requests if one connection needs to be re-routed before the other one in order to be
able to achieve a make before break re-routing.

Such a graph cannot be reused in the context of capacity defragmentation as the
position of the requests in the spectrum is not fixed, e.g., no fixed center frequency
and fixed wavelength/slot spacing. As a consequence, wherever there is a unique way
to resolve a conflict in the case of wavelength or slot defragmentation, there might
be several solutions in the case of capacity defragmentation, i.e., re-route first con-
nection k1 or connection k2 in order to be be able to re-route connection k3 assuming
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10G are needed to re-route k3 while both k1 and k2 are 10G connections. A possible
direction would be to use a so-called and/or graph [15]. However, and/or graphs
are difficult to use due to the complexity of detecting circuits/cycles in them [16].
Another observation is that the dependency graph used for Layer 0 defragmenta-
tion takes into account the continuity/contiguity constraints of RWA/RSA problems,
constraints which do not exist for Layer 3 defragmentation.

However, algorithms that do not use the concept of the dependency graph can be
re-used (with some adaptations). They are reviewed in the next two sections.

2.2.2 Defragmentation with Known Optimized Re-routing

Most capacity defragmentation algorithms rely on a 2-phase process. The first phase
is equivalent to the computation of an optimal network provisioning if we do not
worry about the number of re-routings to reach it, which all proposed algorithms do.
Such a problem has been widely studied since the beginning of network optimization,
see, e.g., [17, 18, 19, 20].

The second phase deals with the best way to reach the optimum/optimized net-
work provisioning. It has been studied with different objectives, i.e., minimize the
number or the duration of the disruptions, or minimize the largest number of simulta-
neous disruptions, or minimize the maximum duration of a disruption. In agreement
with the focus of this paper, we will focus on the minimum bandwidth requirement.

In the context of Layer 3, references for the first phase can be found in the litera-
ture, but generally for a purpose other than to re-optimize the bandwidth or spectrum
usage, e.g., Maggi et al. [21] (finding a set of make-before-break compliant MPLS
connection path changes to optimize a network’s connection state while avoiding cases
where make-before-break is infeasible due to capacity limitations through rate lim-
iting some of the connections), Tajiki et al. [22] (reconfiguration of packet flows in
a network triggered by congestion events or periodically, restricted to the processor
interconnection network within a data center). Wang and Li [23] (IP/MPLS fast
re-route speed up using precomputed restore paths as close to the failure point as
possible).
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2.2.3 MBB-guaranteed Reconfiguration

The strategy of MBB-guaranteed Reconfiguration is to re-route connections one by
one under the condition that they can be carried out with a MBB condition [1, 24, 25].
While the latter direction guarantees a MBB reconfiguration, it can be at the expense
of not getting an optimal routing.

While the above sections review the first direction, we present here several works
along the second direction. Olinick and Rahman [25] proposed models which reconfig-
ure the network to offer as much available space as possible for a new demand. How-
ever, these models are restricted as they only work with a set of precomputed paths.
Joźsa and Makai [24] focus their attention on the existence of a MBB re-routing,
assuming the initial (current) and the target (optimized) re-routing are given. They
propose various heuristics, which are not very successful (around 50% of the cases for
their data instances) at finding a MBB re-routing, even when such a re-routing exists.
See also Józsa, Orincsay and Tamási [26] for an improved version of their heuristics.

Klopfenstein [1] attempted to guarantee MBB in a one step process: a move is
carried out only when it is MBB feasible. This idea is similar to the one of Olinick
and Rahman [25]. However, the proposed ILP is only able to solve toy examples.

2.3 Capacity Defragmentation: Statement of the Prob-

lem and Notations

2.3.1 Dynamic Granting & Routing and Capacity Defragmen-

tation

On-line granting and denying of connection requests (call admission control) are pe-
riodically subject to a defragmentation of the network bandwidth, which re-routes
admitted connections, as depicted in Fig. 3. The objective of this study is to inves-
tigate the alternation of the granting and routing phases with the defragmentation
phases, their mutual impact, and their efficiency.

More precisely, we propose to evaluate the performance of a two-phase heuristic,
which consists of: (i) the first (routing and granting) phase, referred to as g&r_h,
in which requests are dynamically granted and routed if granted and (ii) the second
(defragmentation) phase, called mbb_df_h, which consists of a MBB re-routing
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Figure 3: On-line Routing vs. Defragmentation

strategy, i.e., re-route as many requests as possible while minimizing the bandwidth
usage. Details of both phases are described in Section 2.4.

In order to evaluate the g&r_h heuristic, we will compare it against a simple
on-line heuristic, called the g&rsp_h heuristic, which grants and routes the granted
requests according to a simple shortest path strategy, which is described in Section
2.7.4.

In order to evaluate the performance of the mbb_df_h heuristic, which alternates
with either the g&r_h or the g&rsp_h heuristic, we next develop two optimization
models. The first optimization model determines the best possible re-routing, in terms
of bandwidth requirements, at the same defragmentation events as the mbb_df_h

heuristic. The second model, called mbb_reach, checks whether the optimized re-
routing solution of df_ilp is reachable, if not, it provides the best MBB reachable
re-routing, in terms of the number of re-routed connection requests.

In practice, we looked at several defragmentation intervals (i.e., 10, see Section
2.7 for the details) to see the impact of the granting process on the bandwidth gains
and the blocking probabilities after a defragmentation event.

2.3.2 Make Before Break

The basic make-before-break (MBB) strategy aims to facilitate hitless re-routings.
The connection is re-routed by first reserving bandwidth on the new route and then
the traffic is transferred from the old route onto the new route. Note that the new
route does not necessarily need to be link disjoint with the old one, see Fig. 4 for an
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Figure 4: MBB Re-routing

illustration, where although the green routes are link disjoint, the red routes are not,
but MBB can be achieved in both cases.

We assume that the control plane in the network is able to perform a partial
make-before-break, where the shared segments in the original and the new routes are
left in place. For example in Fig. 4, the control plane is smart enough to realize
that the red path does not need to be fully re-rerouted. The control plane works
from node 6 towards node 1 and leaves link 4-6 in place, reserves bandwidth between
3 and 4, re-routes sub-path 3-2-5-4 to sub-path 3-4 with MBB, and leaves link 1-3
in place. Only the segments which are not shared by the two routes are re-routed,
and consequently partial MBB does not require double bandwidth on shared links for
connection re-routing.

Now, if the new connection is kept totally independent of the existing one, they
are bound to compete for the resources on the network segments which are common
to both of them. Depending on the free resource availability, this competition can
prevent an admission control to allow establishment of new routes. We assume that,
in such a case, both connections, the new and the old ones, share the resources on
common links. For instance, in the context of MPLS, RSVP-TE SE (shared explicit)
reservation relate the new and old LSPs to each other to give them a sense of awareness
that they are not totally independent of each other and they must share the resources
on common segments.

2.3.3 Notations

We define all the mathematical notations we will use throughout the paper.
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The network is represented by a directed multi-graph G = (V, L) where L is the
set of links (indexed by ℓ), each link being associated with a logical link (so, if there
are two logical links from v to v′, it leads to two links ℓ and ℓ′) and V is the set
of nodes (indexed by v). We denote by ω+(v) and ω−(v) the sets of outgoing and
incoming links of node v, respectively. Let SD ⊆ V ×V be the set of node pairs with
some requests/traffic, i.e., (vs, vd) ∈ SD if there exist requests from vs to vd.

We denote by Cℓ the transport capacity of link ℓ.
Let T be the set of reconfiguration time events (indexed by t, when t = 0, it is

initial state).
Let Kt be the set of requests (indexed by k) right before the time t defragmentation

event occurs. It defines the set of legacy requests, i.e., on-going requests already
granted and routed at the previous defragmentation event (at time t− 1), minus the
set of requests that terminated between times t− 1 to t, plus the set of new incoming
and granted requests between times t − 1 to t, which are still on-going. For a given
request k, let sk be its source node, dk its destination node, and bk be the bandwidth
requirement (expressed in, e.g., ODUflex units, see Table 1) and Dk be its duration.

Let Ksd
t ⊆ Kt be the set of requests associated with node pair (vs, vd) at the

defragmentation time t.

OTU ODU
Marketing

True True

Rate
Signal Payload

(OTU) (OPU)

0 1.25G NA 1.238G/s
1 1 2.5G 2.666G/s 2.488G/s
2 2 10G 10.709G/s 9.953G/s
3 3 40G 43.018G/s 39.813G/s
4 4 100G 111.809G/s 104.794G/s

Table 1: OTN rates (ITU-T recommendation G.709, commonly called Optical Trans-
port Network (OTN)

We need some additional notation with respect to paths. Let nSP
k (resp. nSP

sd ) be
the number of links in a shortest path from source to destination of request k (resp.
the number of links in a shortest path from source vs to destination vd). We denote
by Pk a set of routes that can be used to provision request k, Psd a set of routes
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that can be used to provision requests from vs to vd, P shortest
k the set of all possible

shortest paths that can be used to provision request k, and P shortest
sd the set of all

possible shortest paths that can be used to provision requests from vs to vd.

2.4 A Defragmentation Heuristic: mbb_df_h

2.4.1 Defragmentation Context

The context is a connection-oriented network where setup and release requests arrive
at random. Setup requests signal the duration of each connection and the required
bandwidth. A routing path is defined to be a set of network links that support a
connection: the length of the path is the number of links in the path. The network
path computation algorithm attempts to find the shortest path whose links have
sufficient free capacity to support the connection. If one is found, the connection is
established and resources are allocated, otherwise the connection request is blocked
and cleared from the network.

As the network evolves and free link bandwidth decreases, connections are es-
tablished using paths that are the shortest possible at the time of setup but could
still be long in comparison to what is possible in an empty network. Additionally,
these paths may be rendered sub-optimal as connections are released and bandwidth
is freed suggesting it may be beneficial to periodically move existing connections to
shorter paths as resources become available. The goal is to decrease resource usage
allowing more connections into the network.

2.4.2 mbb_df_h Heuristic

We now describe the mbb_df_h optimization algorithm that runs at fixed intervals
and attempts to recover poorly allocated network resources by moving connections
to better (shorter) paths. The optimization algorithm can be outlined as follows:

1. The algorithm is invoked periodically at fixed intervals (in the experiments in
Section 2.7), or, in practice, is triggered by network conditions, or may be run
during maintenance windows.

2. Each active connection k is assigned a weight, which represents the excess re-
sources (computed as shown below) required by the connection using the current
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path over what would be needed using the ideal path, i.e., the shortest possible
one. We call this "worst offender" ranking.

3. The connections are sorted by decreasing weight and are assigned a sequence
number that reflects this order. The smallest sequence numbers correspond to
the “worst offenders” in terms of resource usage.

4. The algorithm then proceeds to simulate connection re-routings. Each con-
nection is considered as a move candidate in sequence order so that the worst
offenders are considered first. A connection under consideration is taken down,
virtually, releasing allocated resources, and the routing algorithm is used to find
a new path for the connection: if a new path is found, potentially reusing links
in the existing paths, and if the length of the new path is less than that of the
existing path then the connection is marked to be moved.

Before selecting the worst offender, we tried many different definitions of the
weight. We discuss below some of the attempts and comparisons we made.

For a given connection k at the time of defragmentation, let Bk be its bandwidth
requirement, Dk its (remaining) duration, hk its number of links/hops in its current
routing, h⋆

k its number of links in an "ideal" routing (shortest path in an otherwise
empty network).

We explored the following weights through simulation:

1. Wk = random (connections are selected uniformly for defragmentation until all
have been considered)

2. Wk = Bk × hk

3. Wk = Bk(hk − h⋆
k) - worst offender (excluding duration)

4. Wk = DkBkhk

5. Wk = DkBk(hk − h⋆
k) : worst offender.
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Cases 2 and 3 apply when the duration of a connection is not known at the time
of establishment; cases 4 and 5 apply when the duration of a connection is known
when it is established. The weights primarily affect the rate at which bandwidth
recovery is achieved through incremental defragmentation since in all cases if all con-
nections are defragmented (not always successfully) a similar degree of bandwidth
recovery is achieved. In general case 1 produces the least desirable rate of bandwidth
recovery, approximately linear in the number of connections defragmented. Cases 2
- 5 produced a geometric bandwidth recovery profile, with the first few connection
defragmentations generating the greatest recovery. This behaviour allows the de-
fragmentation process to be terminated early: the weights that produce the greatest
initial rate of recovery minimize the amount of "work" needed to reach an acceptable
degree of bandwidth recovery. The recovery rates for cases 2 and 3 (respectively 4
and 5) were similar with case 3 (respectively case 5) slightly higher due to the ability
of the worst offender metrics to measure the excess resources required by the current
connection over the ideal as opposed to just the total resources needed (which may
in fact be close to the optimal resources required). Only case 5 was reported in the
paper as it was assumed that connection durations were known and because this case
tended to produce the most rapid incremental bandwidth recovery.

Algorithm mbb_df_h lists the steps of the heuristic. During a defragmentation
run, it is assumed that the set of connection requests (K) is fixed, admitting no new
connection requests or releases. Each connection request k is characterized by:

• sk, dk, Dk, Bk, its source, destination, remaining duration, and bandwidth;

• Lk, the set of links associated with its routing with number of hops hk;

• #Moves(k), the number of times connection k has been moved: when the al-
gorithm starts, #Moves(k) is initialized to 0 for each connection k as shown in
lines 1-2.

Each defragmentation pass begins by sorting the connection set by worst offender
status (line 4). According to the definition of worst offender, the weight Wk of con-
nection k is computed as

Wk = BkDk(hk − h⋆
k), (2.1)

where Bk is the bandwidth assigned to the connection, Dk is the remaining duration
of the connection, hk is the number of hops the connection is using right now, and h⋆

k
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Algorithm 1 mbb_df_h
1: for k ∈ K do

2: #Moves(k)← 0

3: for Passes = 1 To GroomingPasses do

4: Sort the connections in K

5: for k ∈ K do

6: if #Moves(k) < ConnectionMoveLimit then

7: if Not OnBestPath(k) then

8: NewPath ← FindPath(k)
9: if NewPath.Length(k) < Path.Length(k) then

10: Allocate(k, NewPath)
11: LeastHops = MinHops(k)
12: OnBestPath(k)← (NewPath.Length(k) = LeastHops)
13: #Moves(k)← #Moves(k) + 1

14: Next k

15: Passes → Passes + 1

denotes the number of hops that would be required by connection k using the shortest
path in the empty network.

Sorting according to the worst offender allows the best move candidates to be
considered earliest in the defragmentation pass minimizing the defragmentation effort
by permitting an early exit of the pass after a ConnectionMoveLimit (line 6) is
reached.

The defragmentation algorithm performs GroomingPasses defragmentation passes
through the connection set K (line 3): consequently a connection k could be moved
up to GroomingPasses times unless limited by ConnectionMoveLimit (line 6). If
ConnectionMoveLimit = 1 each connection is moved at most once no matter how
many passes are used. The idea of GroomingPasses is to give an additional chance
for re-routing a given connection, once some other connections have been re-routed
and their excess resources have been released.

Each pass considers each connection k in sort order and tries to find a shorter
route NewPath (lines 8-9) using simple minimal hop routing. It should be noted that
the procedures FindPath and Allocate are extensions of what would be used for
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normal routing and connection setup in that they are able to reuse links that do not
need to be moved to establish the new path and are able to ensure make-before-break
connection setup. Finally, MoveCount keeps track of the total number of moves and
can be used to limit the total number of moves permitted per defragmentation cycle.

2.5 An Exact Re-routing Model and a ε-optimal So-

lution Scheme

We propose here an exact mathematical re-routing model, called df_ilp, aiming at
minimizing the bandwidth requirement. It relies on a decomposition scheme with
node pair configurations (Section 2.5.1), and is presented in Section 2.5.2. We discuss
how to efficiently solve the df_ilp model with a column generation solution scheme
in Section 2.5.3.

2.5.1 Node Pair Configurations

A configuration, denoted by c, is associated with a given node pair, say (vs, vd). It is
characterized by a set of paths from vs to vd and the set of requests routed on these
paths, i.e., which request from Ksd

t is routed on which path p ∈ Psd.
Let C be the overall set of configurations:

C =
⋃︂

(vs,vd)∈SD

Csd,

where Csd is the set of configurations associated with node pair (vs, vd).
A configuration c ∈ Csd is characterized by:

• δckℓ ∈ {0, 1}, where δckℓ = 1 if link ℓ is used for the route of request k in configu-
ration c, 0 otherwise.

• Note that in the worst case, the routing is unchanged, and therefore, the
DefragILP model has always a feasible routing for request k, assuming that
k ≡ (vs, vd) ∈ SD.

The df_ilp model that will be described in the next section needs to choose a unique
configuration per node pair (vs, vd) ∈ SD for all node pairs, the best one so as to
grant the overall set of alive requests. See an illustration in Fig. 5.
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A	first	potential	configuration	
for	node	pair	(v7,	v20)

A	potential	configuration	
for	node	pair	(v14,	v19)

An	alternate	configuration	
for	node	pair	(v7,	v20)

Figure 5: Examples of node pair configurations

2.5.2 df_ilp Model

We now detail the df_ilp model, an exact mathematical model, which aims at find-
ing the best re-routing at a given defragmentation point. We consider the objective
of minimizing the network capacity, i.e., sum of the link capacities over all the routes
of the granted requests. The df_ilp model requires only one set of variables: zc = 1

if route configuration c is selected, 0 otherwise.

min
∑︂
c∈C

(︄∑︂
k∈Kt

∑︂
ℓ∈L

Dkδ
c
kℓ

)︄
zc (2.2)

Constraints are written as follows.

• Capacity constraints.∑︂
(vs,vd)∈SD

∑︂
k∈Ksd

t

∑︂
c∈Csd

Dkδ
c
kℓ zc ≤ Cℓ ℓ ∈ L (2.3)

• Choose one configuration per node pair∑︂
c∈Csd

zc = 1 (vs, vd) ∈ SD : Ksd
t ̸= ∅

at least one legacy vs ↝ vd (2.4)

• Domain of the variables
zc ∈ {0, 1}. (2.5)
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2.5.3 Solution Process

As the number of variables in the df_ilp model is exponential, we need to recourse
to column generation techniques for solving its linear relaxation, and deduce an ILP
ε-optimal solution or an optimal solution using branch-and-price methods [27].

We will use the following terminology, that is classical, in the decomposition
method literature [27, 28].
Master Problem (MP): Problem (2.2) - (2.5) with all zc variables.
Restricted Master Problem (RMP): Problem (2.2) - (2.5) with a very small set
C ′ ⊆ C of zc variables.
Pricing Problem (PP): Configuration Generator Problem, also called the pricing
problem, which either concludes that, among the non included variables (columns),
none of them can contribute to a better LP solution with its addition in the current
RMP, or exhibit a new column, called the improving column, which, if added to the
current RMP, generates an improved LP value. In practice, there is no need to solve
the pricing problem exactly as long as a heuristic solution generates an improving
column, i.e., a column with a negative reduced cost [27]. When no more improving
columns can be generated with a heuristic, we switch to an exact algorithm for solving
the pricing problem in order to double check whether we can still find an improving
column, or, otherwise, conclude that we have reached the optimal LP solution of MP.

The overall ILP solution scheme consists of several phases, which we examine in
turn:

• Building an initial set of columns in order to initialize the column generation
algorithm (Section 2.5.3).

• Solving the linear programming (LP) relaxation optimally ↝ z⋆lp for its optimal
value, using first a heuristic for solving the PP (with the use of a path formu-
lation with a pre-computed set of paths/routes), and then an exact algorithm
with the use of a link formulation (Section 2.5.3).

• Solving the ILP associated with the last restricted master problem ↝ z̃ilp, using
a rounding off algorithm (Section 2.5.3). Note that z̃ilp defines an ε-optimal ILP
value for the MP problem, where ε satisfies:

ε =
z̃ilp − z⋆lp

z⋆lp
.
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• Applying a post-processing algorithm in order to refine the ILP solution (Section
2.5.3).

The flowchart in Fig. 6 summarizes the solution process.

ILP solution process

Config_GenerLINKConfig_GenerPATH

Values 
of the 
dual

variables

OpBmality 
condiBon 
saBsfied?

LP*Rounding off: 
successive MILP

Optimality 
condition 
satisfied?

Generation of new potential configurations

SelecBon of the
 best configuraBons

No

No

Yes

Yes

ε-optimal 
DEFRAG 
solution

Initial set of 
configurations

: network 
current state

Post-
processing 

optimization

Figure 6: Flowchart of the Solution Process of the df_ilp Model

Building an initial set of columns

In order to speed-up the solution of the LP relaxation of the df_ilp, we generated an
initial set of configurations. In order to overcome the feasibility issue, we ensure that
the initial set of configurations (C0) contains at least one valid node pair configuration
for any pair (vs, vd) ∈ SD : Ksd

t , hence satisfying Constraints (2.4). With respect
to the transport capacity constraints (Constraints (2.3)), we add a variable β for
measuring their violation, and minimize the objective until it reaches a zero value. If
the generated set of paths satisfies the transport capacity constraints, we can directly
move to the solution of the df_ilp model with an initial set of columns (Section 2.5.3,
otherwise we solve the df_ilp_init model that is defined below. If it happens that
we cannot reach a zero value for the objective of the df_ilp_init model, then
we conclude that there is no way to grant all the connection requests subject to the
current transport capacities. In practice, note that such an initial set of configurations
could be derived from the current network state. In this study, we assume that the
first initial state of the network is provided, and in the subsequent defragmentation
intervals, we use the solution of the last defragmentation.

The modified master problem of the df_ilp model is called the df_ilp_init

model and written as follows, with C = C0 at the outset.
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Objective: minimize the bandwidth requirements, and if any, the transport ca-
pacity violations.

min β. (2.6)

Constraints are written as follows.

• Capacity constraints.∑︂
(vs,vd)∈SD

∑︂
k∈Ksd

t

∑︂
c∈Csd

Dkδ
c
kℓ zc ≤ Cℓ + β ℓ ∈ L (2.7)

They can be equivalently rewritten:∑︂
k∈Kt

∑︂
c∈C

Dkδ
c
kℓ zc ≤ Cℓ + β ℓ ∈ L (2.8)

• Constraints (2.4)-(2.5)

• Domain of the β variable
β ≥ 0 (2.9)

Solution of the df_ilp_init model (2.6)-(2.9) uses the same solution process as the
df_ilp model, except that an optimal solution of the LP relaxation is reached much
faster.

Solving the linear programming (LP) relaxation optimally

We use two different formulations for the pricing problem, an exact one with a link
model, and a heuristic one, with a path model, which uses a set of pre-computed paths.

Link Formulation:

In this formulation, note that coefficients δckℓ of the df_ilp (Master Problem) are
determined by the values of the variables ykℓ .

ykℓ =

⎧⎨⎩1 if configuration c grants k on ℓ

0 otherwise

We next describe the link and path formulations for building a configuration c. Note
that index c is omitted to simplify the notation. Remember that the objective of the
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pricing problem in a column generation formulation is defined by the reduced cost of
the column generation variables of the master problem (see, e.g., [29] if not familiar
with generalized linear programming).
Reduced cost of df_ilp objective (variable zc):

min
∑︂

k∈Ksd
t

∑︂
ℓ∈L

Dky
k
ℓ −

∑︂
ℓ∈L

∑︂
k∈Ksd

t

Dku
(2.3)
ℓ ykℓ − u

(2.4)
sd (2.10)

Single path routing enforcement at the path endpoints of all requests:∑︂
ℓ∈ω+(sk)

ykℓ =
∑︂

ℓ∈ω−(dk)

ykℓ = 1 k ∈ Ksd
t (2.11)

∑︂
ℓ∈ω−(sk)

ykℓ =
∑︂

ℓ∈ω+(dk)

ykℓ = 0 k ∈ Ksd
t (2.12)

At most one path going through each intermediate node:∑︂
ℓ∈ω+(v)

ykℓ =
∑︂

ℓ∈ω−(v)

ykℓ ≤ 1

k ∈ Ksd
t , v ∈ V \ {sk, dk}. (2.13)

Do not exceed transport capacity (or a given threshold as defined by a fraction of the
link transport capacity): ∑︂

k∈Ksd
t

Dky
k
ℓ ≤ Cℓ ℓ ∈ L. (2.14)

Such a constraint is not mandatory, however, it helps to prevent violation of the
transport capacity constraints by the subset of paths used for a single node pair.
Domains of the variables:

ykℓ ∈ {0, 1} k ∈ Ksd
t , ℓ ∈ L. (2.15)

Path Formulation:

In this formulation, a set of paths are pre-computed, that is

P =
⋃︂

{vs,vd}∈SD

Psd,

where Psd is, e.g., the set of κ-shortest paths. In our experiments, we used P shortest
sd ,

the set of shortest paths using the geographical distances of the links. Then, for each
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node pair, the configuration generator will choose one path p ∈ Psd to provision its
demand.

Each path p ∈ P is characterized by its set of links, using the parameter δpℓ such
that δpℓ = 1 if path p contains link ℓ, 0 otherwise.

The ILP model defining the path formulation of the configuration generator uses
a single set of variables: xp

k = 1 if connection k is granted on path p, 0 otherwise.
Note that the path formulation is a compact version of the link formulation, thus

the objectives and constraints can be easily derived using the following change of
variables: ykℓ = xp

kδ
p
ℓ .

Reduced cost of df_ilp objective:

min
∑︂

k∈Ksd
t ;ℓ∈L;p∈Psd

Dkδ
p
ℓx

p
k(1− u

(2.3)
ℓ )− u

(2.4)
sd (2.16)

Single path routing enforcement for all each request:∑︂
p∈Psd

xp
k = 1 k ∈ Ksd

t (2.17)

Do not exceed transport capacity (or a given threshold as defined by a fraction of the
link transport capacity): ∑︂

k∈Ksd
t

Dkδ
p
ℓx

p
k ≤ Cℓ ℓ ∈ L. (2.18)

Domains of the variables:

xp
k ∈ {0, 1} k ∈ Ksd

t , p ∈ P. (2.19)

Deriving a First ILP Solution - Rounding Off Algorithm

We use a sequential rounding off algorithm in order to derive an ILP solution for
the df_ilp model, once the linear relaxation has been solved exactly with a column
generation algorithm. This way, we get an upper bound (z̃ilp) on the optimal ILP
value (z⋆ilp). Although it takes more computational time than solving the last RMP
exactly with an ILP solver (e.g., Gurobi v7.0.1 [30]), it provides a more accurate
upper bound, and therefore a more accurate ILP solution for the df_ilp model.

The sequential rounding off algorithm consists of rounding off a small subset of
variables at each step, and then re-optimizing the LP relaxation, hence generating ad-
ditional configurations. The subset is selected as the set of variables with a fractional
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value larger than a given threshold (e.g., .8), we set them to 1 and then re-optimize
the resulting LP relaxation with the column generation algorithm. This is also called
diving branch and price heuristic [8].

Improving the ILP Solution: A Heuristic

We observed that we could easily improve the ILP solution generated by the rounding
off algorithm. The constraints of the configuration generators are such that we route
all the connection requests involving the same node pair on the same route. However,
sometimes, a fraction of those requests can be routed on shorter routes. Consequently,
we use the following greedy heuristic. Consider each connection request in turn, in
an arbitrary order, and check whether it can be re-routed on a shorter route. If yes,
re-route the connection and iterate until no more re-routing on a shorter route is
possible..

2.6 MBB Re-routing Reachability

In this section, we develop optimization models in order to check whether a given
optimized provisioning can be reached from the current provisioning with a Make
Before Break process. The first model, called mbb_reach_compact, is a compact
one, but it is unfortunately not scalable. We therefore rewrite it using a column
generation framework, which gives the mbb_reach model. We develop two variants
of both models. In the first one, the goal is to reach the best (minimum bandwidth
requirement) network state assuming only MBB re-routing. In the second one, we
discuss how to modify the mbb_reach_compact/mbb_reach models if we aim
to reach the best state of the network, even if it means allowing interruptions. All
models use a t index in order to define the re-routing scheduling, i.e., the order in
which the requests need to be re-routed in order to reach a MBB defragmentation, or
a defragmentation with the minimum number of disruptions (or minimum disruption
duration).

2.6.1 Compact Model mbb_reach_compact

We now describe the mbb_reach_compact model. It uses three sets of variables.
Ct

ℓ ≥ 0, defines the transport capacity of link ℓ at round t of the re-routing order.
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πt
k ∈ {0, 1}, indicates whether or not a given request k is the tth re-routed one.

xmbb
k ∈ {0, 1}, identifies the requests that can be re-routed with a MBB process.

Parameters are defined as follows:
Cℓ denotes the transport capacity of link ℓ.
a0kℓ (resp. aopt

kℓ ) defines the current (resp. optimized) provisioning/routing of request
k: a0kℓ = 1 (resp. aopt

kℓ = 1) if link ℓ is used in the routing, 0 otherwise.
The objective is to maximize the number of requests that can be MBB re-routed:

if its optimal value is equal to the number of variables, then we obtain a MBB
defragmentation, i.e., all requests can be seamlessly re-routed.

The objective is written as follows.

min
∑︂
ℓ∈L

C
|T |
ℓ (2.20)

Set of constraints:

Ct
ℓ ≤ Cℓ ℓ ∈ L, t ∈ T (2.21)

Ct
ℓ = Ct−1

ℓ −
∑︂
k∈K

bk (a
0
kℓ − aopt

kℓ ) πt
k

ℓ ∈ L, t ∈ T (2.22)

xmbb
k =

∑︂
t∈T

πt
k k ∈ K (2.23)

Ct
ℓ ≥ 0 ℓ ∈ L, t ∈ T (2.24)

xmbb
k ∈ {0, 1} k ∈ K (2.25)

πt
k ∈ {0, 1} t ∈ T, k ∈ K (2.26)

Constraints (2.21) are the transport capacity: they make sure that they remain
satisfied after each re-routing. Constraints (2.22) update the bandwidth usage on
each link after each re-routing. Constraints (2.23) define the value of the variable
xmbb, i.e., whether request k has been MBB re-routed or not. The last three sets of
constraints define the domains of the three sets of variables.

We now discuss the scalability of the mbb_reach_compact model (2.20) -
(2.26). The most numerous variables are the πt

k. We need |T | × |K| of them, i.e.,
O(|K|2), which makes the mbb_reach_compact model not very scalable as soon
as the number of requests reaches 50. We next discuss a more efficient model, called
mbb_reach, based on a decomposition scheme.
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2.6.2 Decomposition Model mbb_reach

mbb_reach model relies on the concept of ordering configuration γ clustered with
respect to τ , in order to determine the τ th re-routed connection. Let Γ be the set of
possible ordering configurations, it is partitioned as follows

Γ =
⋃︂

τ∈{1..|K|}

Γτ ,

where Γτ defines the set of potential configurations defining the τ th re-routed connec-
tion. Each set Γτ is characterized by a vector πγ such that:
πγ
k = 1 if connection k is the τ th re-routed one, 0 otherwise.

Model mbb_reach introduces a new set of variables, zγ, which are decision
variables: zγ = 1 if ordering configuration γ is selected, 0 otherwise. Besides, it
reuses the first set of variables from model mbb_reach_compact, i.e., variables
Ct

ℓ, and its objective is expressed identically. The set of variables xmbb
k is not necessary

anymore, note that xmbb
k =

∑︁
γ∈Γ

πγ
k zγ.

The set of constraints is expressed as follows:∑︂
γ∈Γτ

zγ ≤ 1 τ ∈ {1..|K|} (2.27)

Cτ
ℓ ≤ Cℓ ℓ ∈ L, τ ∈ {1..|K|} (2.28)

Cτ
ℓ = Cτ−1

ℓ −
∑︂
k∈K

∑︂
γ∈Γτ

bkπ
γ
k (a

0
kℓ − aopt

kℓ )zγ

ℓ ∈ L, τ ∈ {1..|K|} (2.29)∑︂
γ∈Γ

πγ
k zγ ≤ 1 k ∈ K (2.30)

Cτ
ℓ ≥ 0 ℓ ∈ L, τ ∈ {1..|K|} (2.31)

zγ ∈ {0, 1} γ ∈ Γ. (2.32)

Assuming we solve the linear relaxation of Model mbb_reach with a column gen-
eration technique, then it is much more scalable than model mbb_reach_compact.

2.6.3 Reach of the Minimum Bandwidth Re-routing

Observe that in the above model (2.20) - (2.26), the underlying assumption is that
the requests that cannot be MBB re-routed, are re-routed with disruption after all
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the MBB re-routings with the aim of minimizing the duration of the disruptions.
However, we could also consider performing the disruptions at the beginning of the
defragmentation in order to free more bandwidth, and potentially conduct a larger
number of MBB re-routings. In order to consider such a strategy, we need to rewrite
constraints (2.21) as follows:

Ct
ℓ ≤ Cℓ +

∑︂
k∈K

a0kℓ(1− xmbb
k ) ℓ ∈ L, t ∈ T. (2.33)

In addition, we must re-establish those break before make connections at the end of
the process, and ensure the capacity constraints eventually, by introducing one more
set of constraints:

C
|K|+1
ℓ = C

|K|
ℓ +

∑︂
k∈K

a0kℓx
mbb
k ≤ Cℓ ℓ ∈ L. (2.34)

2.6.4 mbb_df_ilp: Solution Process of Decomposition Model

mbb_reach

We first discuss the solution of the linear relaxation of Model mbb_reach.
Each pricing problem, denoted by PPτ , is associated with the selection of the

re-routing position of a connection in the overall sequence of re-routings.
Let u

(2.27)
τ ≥ 0, u

(2.29)
ℓτ ⋛ 0 and u

(2.30)
k ⋛ 0 be the values of the dual variables

associated with constraints (2.27), (2.29) and (2.30), respectively.
The expression of the reduced cost, i.e., the objective of Pricing Problem PPτ is

as follows:

min cPPt = 0− u
(2.27)
t −

∑︂
k∈K

u
(2.30)
k πk

−
∑︂
ℓ∈L

∑︂
k∈K

bku
(2.29)
ℓt πk (a

0
kℓ − aopt

kℓ ). (2.35)

There is a unique constraint:∑︂
k∈K

πk = 1 (2.36)

πk ∈ {0, 1} k ∈ K. (2.37)

Again, we can consider two variants of the mbb_reach, either the above one,
in which we assume the unavoidable disruptions to be made at the beginning of the
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defragmentation, or the second one in which the durations of the disruptions are
minimized.

In order to improve the ILP solution, we design a simple post-optimizing heuristic.
Assume we obtain an ILP solution from the model with a set of columns (note that
they are only a subset of the overall set of variables/configurations which have been
used in the decomposition solution process), the network is then reconfigured using
this solution. With the post-optimizing heuristic, we next go through unreconfigured
connections, one by one. For each connection, we attempt to move those connections
to their optimized paths. If it is allowed with a make before break mechanism, the
heuristic will add one more variable, based on this re-routing, into the ILP model and
re-optimize it. The post-optimizing process is repeated until we can generate no new
configuration.

2.7 Numerical Results

We implemented the mbb_df_h heuristic in C++ and ran it on a MacBookPro, Intel
Core i7-4870HQ 2.50 GHz 1 processor, 4 cores, Memory 16384 MB 1600 MHz DDR3.
For the solution of the df_ilp and mbb_reach, we also used a C++ program on a
Linux computer with 773727 MB RAM and Intel Xeon E5-2687W v3 @ 3.10 GHz 2
processors, 20 cores, 1. After describing the data sets, we first estimate the solution
accuracy of the mbb_df_h heuristic and then describe extensive experiments that
validate its real time scalability.

2.7.1 Data Sets

We consider three networks: small_net, national and metro. The national

and metro networks are based on real Ciena customer networks. The small_net

network is derived from a Metro network in order to get a small network data instance.
Actual national and metro network connections were used to construct traffic
intensity matrices that we used in the experiments to dynamically generate realistic
random connection states. Connection requests have Poisson arrivals based on the
traffic matrix and random durations drawn from a common exponential distribution.

1Algorithms could not be run over the same computer for intellectual property reasons. Estimated
speedup ratio between the two computers is 3 times.
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Each connection has a Weibull distributed bandwidth with a coefficient of variation of
0.3. Time and bandwidth units are not specified and are not relevant as the only goal
was to generate a targeted number of network connections for the defragmentation
to operate on. Connections were routed on the shortest paths (in hop count) that
had sufficient bandwidth. A "load factor" parameter was used to globally vary the
connection arrival rates: the corresponding equilibrium connection states represent a
range of congestion levels and blocking from light to heavy. Table 2 below displays
the key attributes of the three test networks.

The small_net network has been used for the evaluation of the solution ac-
curacy of the mbb_df_h heuristic as it involves solving the optimization models
df_ilp and mbb_reach. The two other networks were used to assess the real-time
scalability of the mbb_df_h heuristic.

national metro small_net

Nodes 198 37 32
Links 1,018 268 250
Mean Node

5.14 7.24 7.81
Indegree/Outdegree

Mean Connection
5 2 10

Bandwidth
Mean Connection

5 10 10
Duration

Equilibrium Connections
6,800 – 7,500 8,900 840

(10% Loss target)

Table 2: Characteristics of the Data Sets

The node and link counts and topologies of the metro and small_net networks
are nearly identical by construction. The traffic matrix, mean connection bandwidth,
and mean connection duration of the small_net network were selected to generate
no more than 1,000 simultaneous connections. This ensured that the algorithms for
solving the mathematical programming models that have been proposed could solve
the data sets that arose with the available hardware and software. Typical numbers
of equilibrium connections for each of the networks at a 10% connection request
blocking rate are shown in Table 2. A range is given for the national network
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Load
average # of average # of granted requests,

overall ending before the next nearest
legacy requests defragmentation point

heuristic df_ilp heuristic df_ilp

0.5 777.2 777.5 305.3 304.7
0.6 894.6 902.9 339.2 341.3
0.7 951.4 952.8 369.3 368.1
0.8 971.1 985.3 378.9 387.9
0.9 993.3 1,006.0 406.9 414.8
1.0 1,015.4 1,020.6 423.6 428.4

Table 3: Comparison of Dynamic Re-routing Performance

connections due to network instabilities near the blocking target of 10%: the number
of active connections can vary within this range even within a single simulation run
accompanied by a wide variation in blocking, making the 10% blocking target difficult
to achieve. If load is increased very slightly, blocking increases to close to 20%; if load
is decreased slightly blocking can drop to less than 1%.

For each load factor, we considered 10 defragmentation events. Defragmentation
was performed with a period of 1 mean connection duration, ensuring that sufficient
connection requests and termination events occurred to produce comparably degraded
pre-fragmentation connection states. The network connection states immediately
prior to the defragmentation events as generated by the simulation model were also
used as the starting states for defragmentation by the algorithms. This permitted a
direct comparison of heuristic defragmentation results.

Last, we collect in Table 4 the names of the different models and algorithms we
will compare in the sequel.

2.7.2 Comparison of the Dynamic Routing Phases: mbb_df_h

vs. df_ilp

For each data set, all experimented schemes start with the same initial network con-
figuration. In addition, when a connection request arrives, it will be granted if enough
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Name Model/Algorithm
Introduced in
Section

g&rsp_h Grant - Routing with first Shortest available Path
g&r_h Grant - Re-routing Heuristic Section 2.7.4
df_ilp ILP Phase 1: Defragmentation Section 2.5.2

Solution in Section 2.5.3
mbb_df_h New MBB Defragmentation Heuristic Section 2.4
mbb_reach ILP Phase 2: MBB Defragmentation Check Model Section 2.5.2
mbb_df_ilp Algorithm for solving mbb_reachmodel Section 2.6.4
mbb_reach_compact ILP Model of Klopfenstein [1] Section 2.6.1

Table 4: List of Models and Algorithms

spare resources are available, on one of the shortest paths (note that there might ex-
ist several shortest paths). However, defragmentation solutions, df_ilp models and
mbb_df_h heuristic, will produce different new network connection states, leading
to significant differences in input data for each model at defragmentation points. The
average numbers of requests of defragmentation points processed by the schemes are
given in Table 3.

Firstly, we compare the pre- and post-grooming connection states to identify con-
nections which are re-routed. Secondly, those connections are switched by mbb_reach

model in the best possible order in order to avoid any disruption. The average num-
ber of re-routed connections associated with the df_ilp scheme is shown in the last
column of Table 3.

2.7.3 Performance of the df_ilp and mbb_reach Models

and their Solution Scheme

We first evaluate the efficiency of the solution process for the proposed re-routing
optimization model and mbb_reach with the number of generated columns, the
accuracy achieved and the computational times. Results are reported in Tables 5 and
6. Each value corresponds to an average over 10 defragmentation points for each data
instance.

The df_ilp model shows very high accuracy (accuracy ε is at most equal to
3.5%). Computational times are within 1 or 2 minutes. While they are not yet
real-time scalable, there are not out of reach in future work investigating the use of
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Load
# generated Accuracy Computing

columns (%) Times (Min.)

0.5 301.5 2.4 1.2
0.6 378.1 3.5 1.3
0.7 395.1 2.4 1.2
0.8 398.0 1.4 2.6
0.9 402.9 1.3 1.3
1.0 413.0 1.5 2.4

Table 5: Performance of the df_ilp Model and Solution Process

heuristics to speed up the solution of the df_ilp model.
The mbb_reach model shows satisfactory accuracy (ε is at most equal to 6.3%).

Computational times are however not as scalable as those of the df_ilp model, as
they can reach about 1 hour on the data instances with a load close to 1.

The last column of Table 6 shows the average percentage of connections moved
successfully by a MBB strategy. In other words, those connections are each recon-
figured to a new path without service interruption. We observe that almost all of
required-reconfigured connections (at least 94.5%) are able to be satisfied under the
MBB condition. The percentage is increasing as the load is increased: this can be
explained by an increased spare bandwidth that is well managed by the optimization
models, which can easily take full advantage of equivalent shortest paths.

mbb_reach model g&rsp_h + df_ilp

Load
# generated columns Accuracy Computing Times MBB re-routing success

(average) (%) (min.) (% wrt # re-routed requests)

0.5 1,074.9 5.7 1.6 80.6
0.6 1,305.5 6.3 10.2 85.2
0.7 1,429.4 5.0 38.8 86.9
0.8 1,895.9 4.9 63.3 86.5
0.9 1,809.8 4.8 61.0 87.5
1.0 1,555.1 5.1 76.4 90.1

Table 6: Performance of the mbb_reach Model and Solution Process
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Load
g&r_h + mbb_df_h g&rsp_h + mbb_df_ilp

# MBB re-routed # to be re-routed # MBB re-route

0.5 51.8 78.7 63.1
0.6 144.1 168.2 143.2
0.7 203.4 233.2 202.4
0.8 224.1 261.5 225.9
0.9 248.4 275.6 241.0
1.0 258.0 278.7 250.6

Table 7: Comparison of the Number of Re-routing

Blocking Probability (%) Bandwidth Gain (%) Computational Times (min.)

MBB Re-routing MBBM MBB Re-routing MBBM MBB Re-routing MBBM

Load mbb_df_h mbb_df_ilp df_ilp mbb_df_h mbb_df_ilp df_ilp mbb_df_h mbb_df_ilp df_ilp

0.5 2.7 2.8 2.7 6.4 [ 7.4, 7.4 × 1.057] [ 7.5, 7.5 × 1.024] 0.00038 2.7 1.1
0.6 7.7 6.8 6.6 15.8 [15.7, 15.7 × 1.063] [15.7, 15.7 × 1.035] 0.00055 11.6 1.5
0.7 14.3 14.3 13.8 21.9 [22.6, 22.6 × 1.050] [22.3, 22.3 × 1.024] 0.00100 40.0 1.4
0.8 22.8 21.5 21.6 23.0 [24.8, 24.8 × 1.049] [25.7, 25.7 × 1.014] 0.00103 65.9 1.2
0.9 27.8 26.8 27.1 24.8 [26.1, 7.4 × 1.048] [26.8, 26.8 × 1.013] 0.00087 62.3 1.6
1.0 33.0 32.5 32.0 24.6 [26.3, 26.3 × 1.057] [26.8, 26.8 × 1.015] 0.00103 78.9 1.2

Table 8: Performance Comparison

2.7.4 Performance Evaluation g&r_h heuristic

In the next experiment, we compare the number of re-routings using the mbb_df_h

and then the two phase defragmentation process. Results are reported in Table 7.
The number of re-routings for reaching an MBB defragmentation is fairly similar

(see the first and the third columns), while the number of re-routings for reaching
the best possible re-routing, i.e., the one with minimum bandwidth requirement, is
higher. However, the minimum bandwidth re-routing is usually not an MBB reachable
re-routing.

2.7.5 Performance comparison of mbb_df_h vs. df_ilp &

mbb_reach

We compare here the performance of the defragmentation solutions output by the
mbb_df_h heuristic, and those derived from the solution of the df_ilp model. We
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use three different performance parameters:

• Bandwidth Gain

• Blocking Probability

• Computational Time.

For the bandwidth gain, we compare the bandwidth requirements before and after
the defragmentation event. Note the the set of connection requests is not exactly the
same for the mbb_df_h heuristic and the df_ilp solutions. Results are summarized
in the first three columns of Table 8. Therein, we see that the bandwidth gain output
by the solution of the df_ilp model is slightly higher than the one of the mbb_df_h

heuristic, independently of the network load.
We need to make sure that the bandwidth gains are not met at the expense of the

Grade of Service (GoS). For that reason, we propose to use a Blocking Probability
(BP) estimator. It is computed as follows:

BPdefrag_ interval =
# Denied requests

Total # incoming requests
, (2.38)

where the total number of incoming requests includes those requests granted and
then terminating inside the same defragmentation interval, see Fig. 3. The blocking
probability that is next reported in Table 8 corresponds to the mean BP over all the
defragmentation intervals, i.e.,

BP =

∑︁
defrag_interval

BPdefrag_interval

# defrag. intervals
. (2.39)

We observe that the blocking probabilities of the df_ilp model are all smaller
than those of the mbb_df_h heuristic, while the bandwidth gains are higher. There-
fore, we can conclude that the better performance of the df_ilp model is not due to
a smaller number of processed requests during defragmentation events: on overage,
the GoS is higher, and the bandwidth gains are also higher.

2.7.6 Real-Time Scalability of the mbb_df_h Heuristic

The previous results have shown that the mbb_df_h heuristic is able to practically
reduce the bandwidth requirement close to the one of an ideal provisioning. It is
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of great interest for network operators that it remains time scalable for larger data
sets. Consequently, the mbb_df_h heuristic was also applied on the metro and
the national Networks. Results are reported in Table 9.

Experiments were conducted with quite high blocking probabilities, having in
mind that, even though high blocking is not a desirable operating condition it is pos-
sible for it to arise in practice: for example, Table 2 shows a range of connections
generated by simulation runs targeting a 10% blocking probability. A closer examina-
tion of a typical run shows that the simulated network exhibited unstable behavior,
alternating between high blocking and low blocking states with a stable 10% target
not being reachable in equilibrium. These types of network instabilities have been
observed before (see Akinpelu [31]). Defragmentation is one means to limit the de-
velopment of these instabilities and maintain low blocking with a relatively larger
number of supported connections.

On those data instances, the mbb_df_h heuristic consumes at most 2.66 seconds
for the heaviest traffic load of the national network. Additionally, it reduces the
blocking probability significantly, about 3 times.

2.8 Conclusions

We fulfill the first objective of the study, which was to propose a defragmentation
heuristic (mbb_df_h), which is highly scalable. While many heuristics are often
proposed, authors rarely worry about their time scalability, a stringent requirement for
network operations. The second objective of the study was to evaluate the accuracy
of the solutions output by the defragmention heuristic. We develop optimization
ILP models, based on a decomposition scheme. We then observed that on small to
medium data sets, the mbb_df_h heuristic outputs were near optimal solutions.
Enhancements of the ILP models are however required in order to validate that the
accuracy remains very good for larger data instances.
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Before DF After DF cpu (ms)

Load
Blocking # Total # Moved Blocking Routing

Routing
rate connections connections rate + DF

Metro Network

0.95 0.1584 10,054.22 551.45 0.007139 899.0 220.1
1.0 0.2124 10,292.59 1,020.97 0.028646 1,096.6 248.8
1.05 0.2604 10,283.01 1,316.38 0.066583 1,102.0 231.1
1.1 0.3003 10,253.63 1,530.51 0.100938 1,137.0 231.0
1.15 0.3326 10,177.08 1,652.82 0.136796 1,122.2 217.4
1.2 0.3604 10,110.58 1,741.08 0.171681 1,141.9 214.6

National Network

0.80 0.0003 7,551.52 175.81 0.000188 436.5 236.1
0.85 0.0007 8,027.77 260.77 0.000404 654.7 350.4
0.9 0.1980 8,483.71 398.89 0.001127 962.9 511.5
0.95 0.2404 8,924.47 708.33 0.004102 1,544.36 811.3
1.00 0.2693 9,146.89 1,240.88 0.023884 2,514.55 1,253.6
1.05 0.2983 9.194.16 1,487.84 0.056600 2,336.24 1,149.3
1.10 0.3264 9,213.87 1,706.13 0.087514 2,332.08 1,114.8
1.15 0.3499 9,237.62 1,813.70 0.116580 2,637.22 1,240.4
1.2 0.3704 9,253.68 1,898.48 0.145731 2,656.14 1,236.0

Table 9: Computational Experiments on Large Data Sets
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Chapter 3

Efficient make before break

defragmentation

Optical multilayer optimization periodically reorganizes layer 0-1-2 network elements
to handle both existing and dynamic traffic requirements in the most efficient manner.
This delays the need for adding new resources in order to cope with the evolution of
the traffic, thus saving capex.
The focus of this paper is on Layer 2, i.e., on capacity reoptimization at the optical
transport network (OTN) layer when routes (e.g., LSPs in MPLS networks) are mak-
ing unnecessarily long detours to evade congestion. Reconfiguration into optimized
routes can be achieved by re-defining the routes, one at a time, so that they use the
vacant resources generated by the disappearance of services using part of a path that
transits the congested section.
To maintain the Quality of Service, it is desirable to operate under a Make-Before-
Break (MBB) paradigm, with the minimum number of reroutings. The challenge is
to determine the best rerouting order while minimizing the bandwidth requirement.
We propose an exact and scalable optimization model for computing a minimum
bandwidth rerouting scheme subject to MBB in the OTN layer of an optical network.
Numerical results show that we can successfully apply it on networks with up to 30
nodes, a very significant improvement with respect to the state of the art. We also
provide some defragmentation analysis in terms of the bandwidth requirement vs.
the number of reroutings.

This paper is under revision as: H. Duong, B. Jaumard, R. Armolavicius and D.
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Coudert, "Efficient make before break defragmentation," IEEE/ACM Transactions
on Networking. Under review (last revision)

3.1 Introduction

Network reconfiguration is required in order to adapt to traffic changes, network
failures, or new deployment of network resources. It occurs at the optical layer in order
to make sure that the upper layer traffic, e.g., IP layer traffic, can be efficiently carried.
In such a case, we deal with lightpath reconfigurations and the primary objective is
to reduce disruptions to user traffic carried by existing lightpaths, measured by the
number of disrupted lightpaths or the duration of lightpath disruptions [32]. Network
reconfiguration may also appear in the logical layer, in order to attain a better resource
utilization [24]. In heavily loaded networks, dynamic connection request addition and
drop actions may result in a set of connection requests where some paths are not the
shortest possible ones, leading to poor resource utilization compared to an optimal or
at least an optimized state. Thus, global connections rerouting is proposed at certain
time intervals (e.g., daily, weekly) to improve the network performance.

Researchers have investigated this connections rerouting along two directions. The
first one consists in computing an optimized provisioning of the connection requests
with respect to resource utilization, and then finding a sequence of connection rerout-
ing operations in order to migrate from the current network provisioning to the op-
timized one with the minimum number of disruptions [33, 34, 35, 36, 14, 37]. These
studies usually have the constraint that a connection request can be rerouted at most
once (i.e., from legacy to optimized route). The existence of a strategy using only
make-before-break (MBB) is not always possible due to the presence of dependency
cycles. Consider the example in Figure 7 in which the state of Figure 7(c) results
from add and drop requests of states represented in Figures 7(a) and 7(b). In or-
der to reach the optimal provisioning of Figure 7(d), connection request k2 needs to
be rerouted before k3 because a link of the new route of k3 belongs to the current
route of k2, and for similar reasons, k3 needs to be rerouted before k2, as illustrated
in Figure 7. In order to find rerouting strategies, authors have proposed to use the
break-before-make (BBM) paradigm that allows for the temporary interruption of
connection requests, and so for breaking dependency cycles [33, 34, 36, 14].
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(a) Initial Provisioning:
k1, k2

(b) Provision k3, k4

v1

v3 v4

v2

k2

k3

(c) Next Provisioning:
k1, k2 drop

(d) Optimal Provision-
ing

(e) Dependency Graph

Figure 7: Optimal Provisioning is not MBB Reachable if all links and connections
are with unit capacities and requirements, respectively

The idea of the second direction is to compute the best provisioning that is reach-
able from the legacy provisioning by a sequence of connection reroutings with no
disruption, i.e., under the so-called MBB paradigm. While many studies have inves-
tigated the first direction, this second direction has received very little attention [1].
In this paper, we propose a scalable optimization model, called defrag_sim, for this
NP-Complete optimization problem. Numerical results show that we improve very
significantly against the state-of-the-art [1], enabling to solve instances on networks
with up to 30 nodes.

The paper is organized as follows. We briefly review in Section 3.2 the papers
related to reoptimization in the OTN layer, as well as the model of Klopfenstein [1],
which is the only previously proposed optimization model for rerouting subject to
MBB. We next describe in Section 3.3 our proposed decomposition model, called
defrag_sim, which requires in practice a much smaller number of variables and
constraints than the model of Klopfenstein [1]. In Section 3.4, we explain how to
solve efficiently the proposed defrag_sim model with the defrag_mbb algorithm,
which contains a polynomial time algorithm for the generation of the rerouting con-
figurations. In Section 3.6, we show how to use parallel reroutings for reducing the
number of rerouting events or, in other words, the duration of each reoptimiza-
tion event as output by defrag_sim (see Section 3.2.2 for a concise definition of
rerouting/ reoptimization events). Numerical results are presented in Section 3.7.
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Conclusions are drawn in the last section.

3.2 State of the Art

Note that we focus on Layer 2, while being aware that a lot of work has been recently
made on Layer 0 in the context of flexible optical networks. But capacity reopti-
mization differs from spectrum defragmentation as there is no need to take care of
continuity or contiguity constraints, and therefore we omit references related to Layer
0.

3.2.1 Literature Review

Several studies have been devoted to network reconfiguration with the minimum num-
ber of disruptions, following the strategy of migrating from a legacy ineffective pro-
visioning to a given pre-computed optimized/optimal one. As a result, it usually
prevents the existence of a strategy using only MBB due to the presence of depen-
dency cycles as explained in the introduction. In order to find a rerouting strategy,
authors have then proposed to use the Break-Before-Make (BBM) paradigm sparingly
to allow temporary interruption of connection requests, and so to break dependency
cycles. For instance, Jose and Somani [35] propose heuristics for minimizing the to-
tal number of BBMs used in the rerouting strategy, and Coudert et al. [33, 38] and
Solano and Pióro [14] provide scalable exact algorithms to minimize the concurrent
number of BBMs. Tradeoffs between these two conflicting objectives are investigated
by Cohen et al. [34] and Solano [36].

To further reduce the total or concurrent number of BBMs, Kadohata et al. [37]
propose to use spare wavelengths to reroute a connection request to a temporary
route rather than using a BBM. For example, assume that the current connection
k needs to be rerouted from path p to path p′, but such a rerouting cannot be
MBB due to resource dependence. Then one unavoidable BBM reroute is performed.
However, using an intermediate reroute, it may be possible to reroute k under the
MBB paradigm. For instance, assume that there exists a path p′′ such that the
reroutings from p to p′′ and from p′′ to p′ satisfy the MBB condition. In other words,
one BBM can be avoided at the expense of performing two MBBs.

The network reconfiguration problem has also been investigated in logical layers,
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and in particular for MPLS [24, 39, 40] and SDN [41] networks, with the same
constraints and objectives as above. Surprisingly, it has been found that deciding if
the problem can be solved using MBB only can be done in polynomial time for Layer
0 [42], but this decision problem is NP-Complete for logical layers, i.e., for Layer
2 [40].

On the other hand, while many studies have investigated rerouting strategies
both at the optical and the logical layers, very few studies have looked at rerouting
subject to the MBB paradigm (i.e., joint computation of optimal provisioning and
rerouting strategy subject to MBB, or, in other words, we perform a sequence of
MBB reroutings to achieve an optimal provisioning in terms of minimum bandwidth
requirement). Klopfenstein’s study [1] is the only one proposing an optimization
model, but unfortunately it is not scalable. Still, we recall it in Section 3.2.3 as an
introduction to our decomposition model in Section 3.3.

3.2.2 Notations

We consider a network represented by a directed multi-graph G = (V, L), where V

is the set of nodes (indexed by v) and L is the set of links (indexed by ℓ). Different
links may exist between two nodes in order to model different logical links, with e.g.,
different types of traffic. We denote ω−(v) (resp. ω+(v)) the set of incident links
incoming to (resp. outgoing from) node v ∈ V . Let Cℓ denote the transport capacity
of link ℓ.

Let K be the set of connection requests (indexed by k). Connection request k ∈ K

is characterized by its source sk, its destination dk, and its bandwidth requirement
bk.

In what follows, we call rerouting operation the action of rerouting a connection
request k ∈ K, and rerouting event the action of either performing a single rerouting
operation, or a set of parallel rerouting operations (see Section 3.6 for the details on
the conditions under which we conduct parallel rerouting). A reoptimization event
is an ordered sequence of rerouting events, and so of rerouting operations. Let T ,
indexed by t, be the set of rerouting events of a reoptimization event. Hence, t

designates one rerouting event. Observe that under parallel rerouting, t designates
the set of rerouting operations performed in parallel (again see Section 3.6 for the
details).
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3.2.3 Klopfenstein’s Model (2008)

The model of Klopfenstein [1] consists in finding the best possible rerouting strategy,
while guaranteeing it can be reached within a Make-Before-Break (MBB) policy.

Before developing further, we define the set of variables.

- xt
kℓ = 1 if connection request k ∈ K uses link ℓ ∈ L in its routing at step t ∈ T , 0

otherwise.

- πt
k = 1 if connection request k is rerouted at step t, 0 otherwise.

Indeed, Klopfenstein [1] proposed a very general network resource utilization func-
tion subject to a parameter α and that can be written as follows:

OBJα =
1

1− α

∑︂
ℓ∈L

(︄
Cℓ −

∑︂
k∈K

bkx
|T |
kℓ⏞ ⏟⏟ ⏞

link load

)︄1−α

, (3.1)

In the sequel, we will adopt OBJ0. The objective is then to maximize the overall
spare capacity:

max

(︄
OBJ0 =

∑︂
ℓ∈L

Cℓ −
∑︂
k∈K

bk

(︄∑︂
ℓ∈L

x
|T |
kℓ

)︄)︄
. (3.2)

These objectives and variables are decided by the set of below constraints:

∑︂
ℓ∈ω−(v)

xt
kℓ −

∑︂
ℓ∈ω+(v)

xt
kℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

k ∈ K, v ∈ V, t ∈ T (3.3)∑︂
k∈K

bkx
t
kℓ ≤ Cℓ ℓ ∈ L, t ∈ T (3.4)∑︂

k∈K

πt
k ≤ 1 t ∈ T (3.5)

xt
kℓ − xt−1

kℓ ≤ πt
k k ∈ K, ℓ ∈ L, t ∈ T (3.6)

xt
kℓ ∈ {0, 1} k ∈ K, ℓ ∈ L, t ∈ T (3.7)

πt
k ∈ {0, 1} k ∈ K, t ∈ T. (3.8)
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Constraints (3.3) are flow constraints and are used in order to establish a route for
each connection request, at each rerouting event. Due to the subsequent constraints,
the set of paths at rerouting event t will differ by at most one path from the set of
paths at rerouting event t− 1. Constraints (3.4) enforce the transport capacity con-
straints. Constraints (3.5) impose that at most one connection request is rerouted per
rerouting event. Constraints (3.6) are used to detect rerouted connection requests.
More precisely, if the route of connection request k at rerouting event t uses a link ℓ

that was not previously used to route that connection request (i.e., at time t− 1), we
have xt

kℓ = 1, xt−1
kℓ = 0, and so πt

k = 1, which indicates that connection request k has
been rerouted at rerouting event t. Now, if the route of connection request k is not
changed, we have xt

kℓ = xt−1
kℓ and πt

k ∈ {0, 1}, in which case the value of πt
k is forced to

0 by Constraints (3.5) if another request k′ is rerouted at rerouting event t. Observe
that the case πt

k = 0, xt
kℓ = 0 and xt−1

kℓ = 1 cannot happen. Indeed, it would imply
that the routing of connection request k at rerouting event t − 1 is not simple (i.e.,
is not loop-free), which is prevented by the objective. Hence, when πt

k = 0, we have
xt
kℓ = xt−1

kℓ and so the routing of connection request k is unchanged. The last two
sets of constraints define the domain of the variables. Note that if the rerouted path
has a link in common with the original one, there is no need to double the capacity
reservation corresponding to the considered connection request [1].

The largest data instance on which experiments were conducted in [1] was on a
network with 10 nodes and about 40 links with capacity Cℓ. The author was not able
to obtain optimal solutions for more than 5 rerouting operations within the time limit
imposed (30 minutes).

3.3 A Decomposition Model: defrag_sim

In this section, we propose a decomposition model, called defrag_sim, based on a
set of rerouting operations, where each rerouting operation proposes a potential MBB
rerouting of a single connection request, i.e., a connection request for which there
exists an alternate route with enough spare bandwidth for its routing. The model is
parameterized by |T |, a bound on the number of rerouting operations. A solution of
defrag_sim is an ordered sequence of at most |T | rerouting operations leading to
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the best provisioning reachable from the legacy provisioning. Observe that less than
|T | rerouting operations might be sufficient to reach that optimized provisioning. No
external connection setup or release requests are granted between these rerouting
operations. The objective is to minimize the bandwidth requirements of the best
reachable MBB provisioning within at most T reroutings. Observe that there is no
guarantee to reach the best provisioning with a monotonous sequence, i.e., such that
the overall bandwidth requirement decreases after each single rerouting operation
(of a connection request). It may happen that the overall bandwidth requirement
increases after a given rerouting operation before decreasing again in order to reach
the best reachable MBB provisioning.

Let P be the overall set of potential rerouting operations, with P =
⋃︁

k∈K
⋃︁

t∈T P t
k,

where P t
k is the set of possible routes for connection request k ∈ K at rerouting event

t ∈ T .

The integer linear programming (ILP) formulation of defrag_sim uses the following
binary variables:

- ztkp = 1 if route p ∈ P t
k is selected at rerouting event t ∈ T for the rerouting of

k ∈ K, 0 otherwise.

- Ct
ℓ = required bandwidth on link ℓ ∈ L at rerouting event t ∈ T .

It also uses the following parameters:

- a0kℓ = 1 if link ℓ ∈ L is used in the initial routing of connection request k ∈ K, 0
otherwise.

- C0
ℓ =

∑︁
k∈K bka

0
kℓ = initial bandwidth usage on link ℓ ∈ L.

- δpℓ = 1 if path p ∈ P uses link ℓ ∈ L, 0 otherwise.

The objective of defrag_sim is to maximize the spare capacity

max
∑︂
ℓ∈L

(︂
Cℓ − C

|T |
ℓ

)︂
. (3.9)

As
∑︁

ℓ∈L Cℓ is a constant value, the objective can be re-expressed as minimizing the
bandwidth usage:

[defrag_sim] min
∑︂
ℓ∈L

C
|T |
ℓ subject to (3.11)− (3.16).
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Minimize
∑︂
ℓ∈L

C
|T |
ℓ (3.10)

s.t.:
∑︂
k∈K

∑︂
p∈P t

k

ztkp ≤ 1 t ∈ T (3.11)

∑︂
t∈T

∑︂
p∈P t

k

ztkp ≤ 1 k ∈ K (3.12)

Ct
ℓ ≤ Cℓ ℓ ∈ L, t ∈ T (3.13)

Ct
ℓ = Ct−1

ℓ −
∑︂
k∈K

∑︂
p∈P t

k

bk(a
0
kℓ − δpℓ )z

t
kp

ℓ ∈ L, t ∈ T (3.14)

Ct
ℓ ≥ 0 ℓ ∈ L, t ∈ T (3.15)

ztkp ∈ {0, 1} k ∈ K, t ∈ T, p ∈ P t
k (3.16)

(Restricted) Master problem, RMP

Minimize cPPt = −u
(3.11)
t −

∑︂
k∈K

u
(3.12)
k πk

−
∑︂
ℓ∈L

∑︂
k∈K

bku
(3.14)
ℓt (πk a

0
kℓ − αkℓ) (3.17)

s.t.:
∑︂

ℓ∈ω−(v)

αkℓ −
∑︂

ℓ∈ω+(v)

αkℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−πk if v = sk

πk if v = dk

0 otherwise

k ∈ K, v ∈ V (3.18)∑︂
ℓ∈ω+(v)

αkℓ ≤ 1 k ∈ K, v ∈ V (3.19)

αkℓ ≤ πk k ∈ K, ℓ ∈ L (3.20)∑︂
k∈K

πk = 1 (3.21)

αkℓ ∈ {0, 1} k ∈ K, ℓ ∈ L (3.22)

πk ∈ {0, 1} k ∈ K. (3.23)

Pricing problem, PPt

Optimality ?

Solve exactly (ILP)
the last RMP

Dual values

No

Yes

Figure 8: Flow chart of decomposition model defrag_sim
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Constraints (3.11) in Figure 8 prevent the selection of more than one rerouting
operation at each rerouting event. Note that |T | ≤ |K| is an upper bound on the
number of rerouting operations as we cannot predict a priori the number of required
MBB reroutings. Constraints (3.12) ensure that a connection request is rerouted at
most once. Constraints (3.13) make sure that transport capacities are never exceeded
at any rerouting event. Constraints (3.14) update the bandwidth usage on link ℓ at
rerouting event t, taking into account the unique connection request that has been
rerouted at t. Constraints (3.15)-(3.16) define the domain of the variables.

Since less that |T | rerouting operations might be necessary to reach the best
possible provisioning reachable from the legacy provisioning after at most |T | rerout-
ing operations, it might be desirable to ensure that rerouting operations are per-
formed with consecutive indexes. This can be done adding Constraints (3.24) to the
model (3.10)-(3.16). Indeed, Constraints (3.24) prevent performing a rerouting op-
eration at rerouting event t + 1 if no rerouting operation is performed at rerouting
event t. ∑︂

k∈K

∑︂
p∈P t+1

k

zt+1
kp ≤

∑︂
k∈K

∑︂
p∈P t

k

ztkp t ∈ T. (3.24)

3.4 Solution Process

3.4.1 Generic Process

The model (3.10)-(3.16) has an exponential number of variables, and therefore column
generation [29] is required in order to efficiently solve its linear relaxation.

This technique consists of decomposing the original problem into a Restricted
Master Problem (RMP), i.e., model (3.10)-(3.16) with a very restricted number of
variables, and one or several pricing problems (PPs). In the particular case of model
(3.10)-(3.16), we will show in the next section that the pricing problem can be de-
composed into |K|× |T | independent smaller pricing problems, each denoted by PPk

t .
The RMP and the PP(s) are solved alternately. Solving the RMP consists in select-
ing the best connection reroutings, while solving the PPs allows for the generation of
new columns, i.e., potential connection routes, and more precisely routes such that,
if added to the current RMP, improve the optimal value of its linear relaxation. The
process continues until the optimality condition is satisfied, that is, all the so-called
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reduced costs that define the objective function of the pricing problems are positive
(see [29] if not familiar with linear programming concepts). An ε-optimal solution
is derived by solving exactly the ILP model associated with the last RMP, with ε

defined as follows:
ε = (z̃ilp − z⋆lp) /z

⋆
lp, (3.25)

where z⋆lp and z̃ilp denote the optimal LP value and the optimal ILP value of the last
RMP, respectively. The solution process is illustrated in the flowchart of Figure 9.

3.4.2 defrag_sim Algorithm

Pricing Problem PPt

Let u
(3.11)
t ≤ 0, u

(3.12)
k ≤ 0 and u

(3.14)
ℓt ⋛ 0 be the values of the dual variables

associated with constraints (3.11), (3.12) and (3.14), respectively.
We use the following binary variables:

- πk = 1 if k ∈ K is selected for rerouting, 0 otherwise.

- αkℓ = 1 if πk = 1 and the route of k ∈ K uses link ℓ ∈ L, 0 otherwise.

The goal of PPt (Figure 8) is to select a unique request for potential rerouting,
the one with a new route of minimum cost (Objective (3.17)). Constraints (3.18)
take care of identifying the best possible route, using flow constraints, for the request
that is rerouted, i.e., the unique request k such that πk = 1. Constraints (3.19) make
sure that we only output simple paths, with no loops. Constraints (3.20) make sure
that routing variables αkℓ are null if request k is not selected for rerouting during
rerouting event t, i.e., the rerouting event associated with the PPt pricing problem.
Constraints (3.21) ensure that each PPt selects exactly one connection for potential
rerouting at rerouting event t. Constraints (3.22)-(3.23) define the domain of the
variables.

Observe that we can decompose each PPt into |K| elementary pricing problems
PPk

t , each examining the option of rerouting request k ∈ K at rerouting event t by
setting πk = 1 in PPt. Then, the solution of PPt is given by

cPPt = min
k∈K
{ckPPt

: k is rerouted at rerouting event t}, (3.26)

where ckPPt
denotes the reduced cost of PPk

t , that we next describe.
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Figure 9: Flowchart of the Proposed Solution Scheme

Elementary Pricing Problem PPk
t

In each elementary pricing problem PPk
t , we examine the option of rerouting

request k at rerouting event t by setting πk = 1 in PPt. Thus, the ILP formulation
of PPk

t is as follows.

min ckPPt
= −u(3.11)

t − u
(3.12)
k −

∑︂
ℓ∈L

bku
(3.14)
ℓt (a0kl − αkℓ) (3.27)

∑︂
ℓ∈ω−(v)

αkℓ −
∑︂

ℓ∈ω+(v)

αkℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

, v ∈ V (3.28)

∑︂
ℓ∈ω+(v)

αkℓ ≤ 1 v ∈ V (3.29)

αkℓ ∈ {0, 1} k ∈ K, ℓ ∈ L. (3.30)

Now, observe that PPk
t is a weighted shortest simple path problem in a graph

with possibly negative weight cycles. This problem is NP-hard by a reduction from
the longest simple path problem (see [43, Section 24.1] or [44, Chapter 5]), and so
cannot be solved using only the Bellman-Ford-Moore (BFM) algorithm, even if it
takes care of the negative weights. However, we can still use the BFM algorithm,
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but with some additional tool. As we cannot enforce the simple path condition, the
BFM algorithm may fail to output a path with a negative reduced cost, due to the
discovery of a negative cycle. In such a case, we then recourse to the solution of
the ILP formulation of PPk

t ((3.27)-(3.30)), which includes constraints to enforce the
simple path condition.

It is worth noting that calls to the BFM algorithm can be grouped by sources. So
|V | calls to BFM suffice to solve PPt.

Theorem 1. All pricing problems can be investigated with at most O(|V |) runs of
the BFM algorithm, leading to an O (|L| × (|K|+ |V |2)× |T |) time complexity.

Proof. Note that the reduced cost in (3.27) can be rewritten:

ckPPt
= −u(3.11)

t − u
(3.12)
k −

∑︂
ℓ∈L

bku
(3.14)
ℓt a0kl⏞ ⏟⏟ ⏞

constant

+
∑︂
ℓ∈L

bku
(3.14)
ℓt αkℓ. (3.31)

This entails that the solution of PPk
t can be reduced to the solution of:

[PPgeneric
tk ] min

∑︂
ℓ∈L

u
(3.14)
ℓt φℓ subject to: (3.28)− (3.30).

Observe that problem PPgeneric
tk is equivalent to a shortest simple path problem with

negative weights, without any guarantee that it contains no negative cycles. Taking
into account that (i) the coefficients of the objective function are independent of k, and
(ii) the BFM algorithm can be easily modified in order to output a shortest path tree
from a given source node, see, e.g., [43], (i.e., it computes all the (weighted) shortest
paths from a given source node), we can then use |V | calls of the BFM algorithm,
one from each possible source node, for a given t. Then, for each connection k, we
can compute ckPPt

using (3.31) and check whether the reduced cost is negative, and,
if so, generate a new potential rerouting. For a given t, computing ckPPt

for all k can
be done in O(|K| × |L|) time, once all |V | BFM calls have been made, and each call
to BFM requires time O(|V | × |L|), hence the overall complexity

O
(︁
|L| × (|K|+ |V |2)× |T |

)︁
.
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Solution Process

In order to be done efficiently, the resolution of the |K| Elementary Pricing Prob-
lems (PPk

t ) for a given t require their grouping as seen in the previous paragraph. In
the context of a column generation model with a large set of different pricing prob-
lems, the efficiency of the solution depends on the best combination of linear program
re-optimization (i.e., solution of the current Restricted Master Problem), and the so-
lution of the whole set or a subset of pricing problems. We consider the following
three options.

1. Re-optimize the current RMP after solving all the elementary PPk
t associated with

a given t, and perform a round-robin on t. Re-optimization of the RMP (Restricted
Master Problem) is performed with all the rerouting configurations with a negative
reduced cost for a given t.

2. Solve all PPt with the same set of dual values, and add all the new improving
columns simultaneously. Again, either solve exactly each PPt or stop their solution
as soon as one PPk

t has a negative reduced cost.

3. Solve all the elementary PPk
t associated with a given t, and add to the RMP the

rerouting associated with the smallest reduced cost. More specifically, with a given
t, we perform a round-robin on k, then selected best reduced cost. This strategy
focuses on k, instead of on t as in the two previous options.

Based on a careful analysis of the pros. and cons., we went on with the third op-
tion. Details are available in Algorithm 2. Therein, function CostBFM(k, t, RMP),
using the Bellman–Ford–Moore algorithm, computes the weighted shortest path for
connection k with weights defined by the dual values associated with the optimal
solution of the current RMP. If we cannot find a shortest path due to a negative cycle
(leveraging the CostBFM function), k is included into the set Kneg. When there is
no positive reduced cost found by the BFM algorithm and the set Kneg is not empty,
we try the exact ILP model (CostILP) for the connections in Kneg, Lines 9-12.

Generation of an Initial Set of Columns

We use two complementary strategies to generate the initial set of columns. The
first strategy is to identify the subset KI ⊆ K of connection requests that can be
rerouted on a shortest path. So, none of the connection requests k ∈ KI is routed
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Algorithm 2 Solution Process
Require: RMPlp, Current Linear Relaxation of Restricted Master Problem (RMP)
1: repeat

2: for t ∈ T do

3: k′ ← argmin
k∈K

(CostBFM(k, t, RMPlp))
4: k′ ← argmax

k∈K
(CostBFM(k, t, RMPlp))

5: if reduced cost of k′ < 0 then

6: add a new column to RMPlp

7: optimize RMPlp

8: else

9: k′ ← arg min
k∈Kneg

(CostILP(k, t, RMPlp))
10: if reduced cost of k′ < 0 then

11: add a new column to RMPlp

12: optimize RMPlp

13: until no new column is found

on a shortest path in the legacy routing. Then, we arbitrarily select at most |T | of
these connection requests, and all of them if |KI | ≤ |T |, to form the initial set of
columns. The first strategy is described in Algorithm 3. Therein, function Short-

est_Avail_Path(G, k) finds the shortest path with current spare resources (it may
be different from the shortest path without capacity constraints). Note that if the
shortest path is sharing links with the current path, the resources on those links
are not required twice. The second strategy is used when |T | is large. Let T1, T2

and T3 be pairwise disjoint sets of rerouting events such that T = T1 ∪ T2 ∪ T3 and
|T | = |T1|+|T2|+|T3|. We use the first strategy to find a subset KI1 of initial columns,
with KI1 ≤ |T1|. We then use KI1 as initial columns for running the defrag_mbb

algorithm with a bound |T1| on the number of rerouting events. We next obtain as
an output a subset K1 ⊆ K of connection requests. We go on using the first strategy
to find a subset KI2 of initial columns, with KI2 ≤ |T2| and K1 ∩ KI2 = ∅. Then,
we use KI2 to run the defrag_mbb algorithm with a bound |T2| on the number of
rerouting events and the extra constraints that connection requests in K1 cannot be
rerouted (i.e., we set πk = 0 for all k ∈ K1). We obtain a subset K2 ⊆ K of connec-
tion requests such that K1 ∩K2 = ∅. We repeat the same procedure to find a subset
K3 ⊆ K of connection requests such that K1 ∩K3 = ∅ and K2 ∩K3 = ∅. Finally, we
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use K1∪K2∪K3 as the initial set of columns for running the defrag_mbb algorithm
with the bound |T | on the number of rerouting events. Observe that |K1 ∪K2 ∪K3|
might be less than |T | depending on the instance.

The number of subsets of rerouting events used in the second strategy can be
adjusted depending on the value of T . In our experiments, we used only the first
strategy when |T | = 50, the second strategy with two subsets of size 50 when |T | =
100, and the second strategy with three subsets of size 50 when |T | = 150. Reported
computation times include the time needed for generating the initial columns and
the resolution of the defrag_mbb algorithm with 50 rerouting events. The second
strategy is described in the Algorithm 4. In this algorithm, we demonstrate the case
where T is divided into three smaller non-intersecting subsets.

Algorithm 3 Initial Set of Columns - Strategy 1
Require: G, current network state
Ensure: KI , initial set of columns
1: KI ← ∅
2: #reroutes ← 0

3: for k ∈ K do

4: pnew ← Shortest_Avail_Path(G, k)
5: if pnew is shorter than k’s current path then

6: change k’s current path to pnew

7: KI ← KI ∪ {k}
8: #reroutes ← #reroutes + 1
9: update G’s state ▷ route of k is changed

10: if #reroutes = |T | then

11: break
12: return KI

3.5 Minimum Rerouting: defrag_mimo

In this section, we show how to modify the defrag_sim model in order to minimize
the total number of rerouting operations required to obtain a solution satisfying a
given bandwidth requirement (i.e., BW ⋆ is used in this section). The defrag_mimo

model, is formalized as follows.
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Algorithm 4 Initial Set of Columns - Strategy 2
Require: G, current network state
Require: T = T1 ∪ T2 ∪ T3, set of rerouting events
Ensure: KI , initial set of columns
1: KI ← ∅
2: #reroutes← 0

3: for i from 1 to 3 do

4: KIi ← initial set of columns using Strategy 1 with G,K, Ti

5: remove KIi from G

6: K ← K \KIi

7: KI ← KI ∪KIi

8: return KI

Master Problem

min
∑︂
t∈T

∑︂
k∈K

∑︂
p∈P t

k

ztkp (3.32)

subject to Constraints (3.11)-(3.16) and:∑︂
l∈L

C
|T |
l ≤ BW ⋆. (3.33)

Constraint (3.33) ensures that the solution must be at least as good as the given
bandwidth requirement BW ⋆, and the Objective (3.32) is to minimize the total num-
ber of rerouting operations.

Observe that the defrag_mimo model might not admit a feasible solution if
the given upper bound on the bandwidth requirement or on the number of rerouting
events is too small. However, if these bounds are at least the objective value (BW ⋆)
obtained from the defrag_sim model with the same number |T | of rerouting events,
then the defrag_mimo model always admits a feasible solution (at least the solution
of defrag_sim).

Pricing Problem

Let u(3.11)
t ≤ 0, u(3.12)

k ≤ 0 and u
(3.14)
ℓt ⋛ 0 be the values of the dual variables associated

with constraints (3.11), (3.12) and (3.14), respectively.
We use the following binary variables:
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- πk = 1 if k ∈ K is selected for rerouting, 0 otherwise.

- αkℓ = 1 if πk = 1 and the route of k ∈ K uses link ℓ ∈ L, 0 otherwise.

[PPmimo]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min cPPt = 1− u

(3.11)
t −

∑︁
k∈K

u
(3.12)
k πk

−
∑︁
ℓ∈L

∑︁
k∈K

bku
(3.14)
ℓt (πka

0
kℓ − αkℓ).

Subject to Constraints (3.18)-(3.23)

In the new pricing problem PPmimo, the additional term (to the original pricing
problem PP) is a constant, as the variables ztkp are introduced to the master objective
function. Thus, this additional term does not change the pricing problem principle,
i.e., the solution process of the defrag_mbb algorithm can be applied completely
to the defrag_mimo model.

3.6 Parallel Rerouting

Enabling parallel rerouting operations allows for reaching either a better provisioning
within the specified bound on the number |T | of rerouting events since more individual
rerouting operations can be performed, or the same provisioning as defrag_sim

within less rerouting events. In this section, we explore the latter advantage of parallel
rerouting operations.

In the decomposition model defrag_sim, Constraints (3.11) restrict the number
of rerouting operations per rerouting events to 1, although some rerouting operations
could be safely done in parallel with respect to the MBB paradigm. Indeed, a subset
K ′ ⊆ K of the connection requests can be rerouted in parallel, or concurrently, at
rerouting event t if the sum of their bandwidth requirements on the old and new
routes does not exceed any link’s capacity.

More formally, let Kr ⊆ K be the subset of connection requests that are rerouted
by defrag_sim, i.e., Kr contains each connection request k ∈ K such that∑︂

t∈T

∑︂
p∈P t

k

ztkp = 1.

For convenience, we assume that |Kr| = |T |. Let pk ∈ ∪t∈TP
t
k be the route selected

for the rerouting of connection request k ∈ Kr. Recall that a connection request
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can be rerouted at most once. Let B, indexed by rerouting event t ∈ T , be a set
of bins. The bin Bt corresponds to a subset of the connection requests that can be
safely rerouted in parallel at rerouting event t. Given a solution of defrag_sim, the
problem of packing the connection rerouting operations into the minimum number of
bins can be formalized as the ILP (3.34)-(3.42), using the following variables.

- qtk = 1 if k ∈ Kr is packed into bin Bt, for some t ∈ T , 0 otherwise.

- qt = 1 if bin Bt is used.

Observe that the rerouting operations of the connection requests in bin Bt must be
performed before those of bin Bt+1. Hence, our problem combines a bin packing
problem with a scheduling problem.

Minimize
∑︂
t∈T

qt (3.34)

Subject to:

∑︂
t∈T

qtk = 1 k ∈ Kr (3.35)

qtk ≤ qt k ∈ Kr, t ∈ T (3.36)

qt+1 ≤ qt t ∈ T (3.37)

Ct
ℓ ≤ Cℓ ℓ ∈ L, t ∈ T (3.38)

Ct−1
ℓ +

∑︂
k∈Kr

bkδ
pk
ℓ (1− a0kℓ)q

t
k ≤ Cℓ ℓ ∈ L, t ∈ T (3.39)

Ct
ℓ = Ct−1

ℓ −
∑︂
k∈Kr

bk(a
0
kℓ − δpkℓ )qtk ℓ ∈ L, t ∈ T (3.40)

qtk ∈ {0, 1} k ∈ Kr, t ∈ T (3.41)

qt ∈ {0, 1} t ∈ T (3.42)

Ct
ℓ ≥ 0 ℓ ∈ L, t ∈ T (3.43)

The goal of this ILP is to minimize the number of bins (Objective (3.34)), hence
minimizing the number of rerouting events needed to perform all parallel operations.
Constraints (3.35) ensure that each connection request is packed into a single bin.
Constraints (3.36) are used to identify used bins. Constraints (3.37) are used to
break symmetries in the solution, ensuring that bin Bt+1 can be used only if bin
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Bt is used. Constraints (3.38)-(3.40) make sure that the capacity of a link is never
exceeded. In particular, Constraints (3.39) ensure that the “make" part of the MBB
operations of the connection requests in bin Bt respect the capacity constraints, i.e.,
there is enough capacity to establish all the new routes before releasing the capacity
used by the legacy routes. Finally, Constraints (3.40) set the link capacities after the
rerouting operations of rerouting event t are made. Constraints (3.41)-(3.43) define
the domain of the variables.

The ILP formulation (3.34)-(3.43) is difficult to solve. Also, we now propose a
simple greedy algorithm that packs rerouting operations into bins. Let σ : T → Kr

be a mapping from rerouting events to connection requests, such that σ(t) indicates
the connection request that is rerouted at rerouting event t by defrag_sim. That
is, σ(t) =

∑︁
k∈Kr

∑︁
p∈P t

k
k · ztkp since Constraints (3.11) ensure that, for each t ∈ T , a

unique variable ztkp can be set to 1. We denote σ−1 the inverse mapping. So σ−1(k)

is the rerouting event t at which connection request k is rerouted by defrag_sim.

Algorithm 5 Parallel Rerouting with respect to Original Order
Require: σ, mapping from rerouting events to connection requests
Require: T , set of rerouting events in original ordering
Ensure: B, bins containing requests rerouted in parallel
1: B1 ← ∅ ▷ Initialize the first bin
2: i← 1 ▷ Index of the current bin
3: for t from 1 to |T | do

4: k ← σ(t)

5: if adding k to Bi violates Constraints (3.39) then

6: i← i+ 1

7: Bi ← ∅ ▷ Create a new bin

8: Bi ← Bi ∪ {k} ▷ Add k to current bin

9: return B

Algorithm 5 arranges the connection requests of Kr into bins, each bin corre-
sponding to a set of connection requests that can safely be rerouted in parallel, and
so fulfills Constraints (3.39). It proceeds as follows. After initializing the first bin,
it considers the connection requests in the rerouting ordering given by defrag_sim

(Lines 3-8). If the addition of connection request k to the current bin results in a
violation of Constraints (3.39), then a new bin is created and k is added to it. Then
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the algorithm considers the next connection requests until all connection requests
have been placed into a bin.

Algorithm 5 ensures that if connection request k is placed into bin Bt+1, then it
satisfies σ−1(k) > σ−1(k′) for all k′ ∈ Bt. In other words, the connection requests
in Bt are rerouted before those in Bt+1, which is consistent with the solution given
by defrag_sim. Furthermore, the link capacity after the rerouting operations of
bin Bt is exactly the same as the link capacity in the solution of defrag_sim after
the rerouting of connection request k = σ(

∑︁t
i=1 |Bi|). The number of bins created

by Algorithm 5 depends on the solution given by defrag_sim. In the worse case,
when no parallel rerouting operation is possible, it creates |T | bins.

3.7 Numerical Results

3.7.1 Data Sets

We consider a network with 32 nodes and 250 directed links, which corresponds ap-
proximately to a Ciena customer network. Existing network connections were used
to construct a traffic matrix input to a network simulator generating realistic ran-
dom connection states. Connection requests had Poisson arrivals based on the traffic
matrix and random durations drawn from a common exponential distribution. Each
connection had a Weibull distributed bandwidth with a coefficient of variation of
0.3. Connections were routed on the shortest path (in hop count) that had sufficient
bandwidth. A load factor parameter was used to globally vary the connection ar-
rival rates: the corresponding equilibrium (after simulation start-up transients had
disappeared) connection states represent a range of congestion levels from light (0.5)
to heavy (1.0). For each load factor, we considered 10 reoptimization events. Re-
optimization was performed with a period of 1 mean connection duration, ensuring
that sufficient connection request arrival and termination events occurred in order
to produce comparably degraded connection state. Characteristics of the data sets
are described in Table 10, where for each load factor, we provide the average num-
ber of granted requests right before each reoptimization and the average number of
connection requests that are not initially routed on a shortest path.
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Table 10: Characteristics of the data sets
Load factor Number of requests # Req. not on shortest path

0.5 777.2 90.2
0.6 894.6 199.1
0.7 951.4 252.3
0.8 971.1 268.3
0.9 993.3 285.7
1.0 1,015.4 295.7

3.7.2 Comparison with the Model of Klopfenstein [1]

Table 11: Comparison with Klopfenstein: Traffic load 0.5, |T | = 40, number of
connection requests = 250

Defrag. Bandwidth saving (%) Accuracy ε (%) # reroutings Computing times (sec.)
events (limit = 1 hour)

defrag_sim Klopfenstein [1] defrag_sim Klopfenstein [1] defrag_sim Klopfenstein [1] defrag_sim Klopfenstein [1]

210 5.7 5.7 0.00 0.00 16.0 21.0 14.7 2316.7
220 4.0 4.0 0.00 0.00 10.0 12.0 14.4 1020.8
230 3.4 2.9 0.00 0.55 9.0 8.0 13.4 limit

240 1.7 1.7 0.00 0.00 5.0 16.0 11.9 755.3
250 2.3 2.3 0.00 0.00 8.0 9.0 14.1 859.1
260 7.5 7.5 0.00 0.00 13.0 15.0 15.1 802.8
270 5.7 5.9 0.27 0.00 14.0 19.0 7.2 2249.1
280 3.0 3.0 0.00 0.00 9.0 11.0 13.9 895.1
290 2.3 2.3 0.00 0.00 6.0 13.0 13.9 479.1
300 7.1 4.5 0.00 2.81 17.0 11.0 11.6 limit

Average 4.3 4.0 0.03 0.34 10.7 13.5 13.0 1661.0
Ratio 1.1 0.08 0.8 0.0078 (≈ 1/130)

We compared the performance of our model and algorithm with the model of
Klopfenstein [1]. We use a dataset with a load factor of 0.5, |T | = 40 and for each
reoptimization event, only 250 connections from the original connection set are taken
into account. The differences are significant even for such small instances, as indicated
by the results reported in Table 11. Therein, we report the results for each of the 10
reoptimization events. Since the Klopfenstein model can take enormous time to finish,
we report the best solution found within a computation time limit of one hour. Note
that due to these computation times, we were not able to perform comparisons on
larger instances. Columns entitled defrag_sim correspond to the results obtained
with the defrag_sim model and defrag_mbb algorithm.
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As expected, our model can be solved orders of magnitude faster than the compact
ILP model of Klopfenstein [1], that is, about 130 times faster. Furthermore, the
computation time limit of one hour was reached for two instances with the compact
ILP model ( reoptimization events indexed as 230 and 300). Moreover, our model
yields on average a better accuracy (i.e., 0.03% versus 0.34%), because Klopfensteins’s
model was stopped by the time limitation twice, resulting in significant optimality
gaps.

Obviously, when optimal solutions are obtained with both models, the bandwidth
savings are equal. However, for the instances indexed 230 and 300 that were not
optimally solved with the model of Klopfenstein, the solutions computed with our
model offer better bandwidth savings. In addition, the solutions obtained with our
model involve on average less rerouting operations. This can be explained by the facts
that firstly, the minimization of the number of rerouting operations is part of none of
the objective functions of the models, and that secondly, the model of Klopfenstein
allows a connection request to be rerouted more than once.

3.7.3 Accuracy and Performance of the Reoptimization Solu-

tion

All statistics computed in this section correspond to averages over all the 10 reopti-
mization events performed for each load factor.

Table 12: Impact of the Initial Rerouting Configurations and Overall Number of
Configurations

Load
# Initial # Initial potential reroutings Overall # of generated

potential reroutings in the optimal solution potential reroutings

T = 50 T = 100 T = 150 T= 50 T = 100 T = 150 T = 50 T = 100 T = 150

0.5 43.3 68.1 70.0 18.5 (39.1%) 44.9 (63%) 42.0 (57.6%) 595.7 797.0 1401.0
0.6 50.0 99.0 145.4 15.3 (30.9%) 76.8 (77.4%) 112.8 (77.4%) 590.4 1157.7 1738.9
0.7 50.0 99.2 149.0 12.6 (25.4%) 63.9 (64.5%) 113.1 (75.8%) 546.0 1010.2 1408.2
0.8 50.0 98.6 148.5 14.1 (28.9%) 68.3 (69.4%) 110.2 (74.4%) 469.2 911.5 1348.5
0.9 50.0 99.1 149.1 12.6 (25.6%) 65.4 (66%) 122.8 (82.3%) 504.2 950.2 1283.4
1.0 50.0 99.5 149.5 12.1 (24.4%) 73.0 (73.7%) 120.5 (80.9%) 520.8 827.8 1207.8

Recall that we initialize the defrag_mbb algorithm with at most |T | potential
rerouting operations (columns). When |T | = 50, we use the first strategy presented
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in Section 3.4 for generating the initial set of columns. When |T | = 100 or |T | = 150,
we use the second strategy. We have reported in Table 10 the average number of
connection requests that are not routed on a shortest path in the legacy routing,
and in Table 12 the average size of the initial sets of potential rerouting operations
(initial columns) as produced by the first or second strategy. These sets are given as
inputs to the defrag_mbb algorithm. The relatively low number of initial potential
reroutings for the instances with traffic load 0.5 is explained by the small number of
connection requests (90.2 in average) that are not routed on a shortest path in the
legacy routing.

Concerning the choice of |T |, which can be as large as the cardinality of the whole
connection set, we conducted our experiments for values of |T | of at most 150 in order
to limit the computation time of our model to about one hour.

We now analyze the results reported in Table 12 on the efficiency of our strategies
for generating the initial potential reroutings. Observe that the number of potential
reroutings increases with the traffic load due to the increased number of routes that
are not the shortest possible ones. For |T | = 50, where the initial potential reroutings
are produced by the first strategy only, we observe in the middle set of columns of
Table 12 that at most 39.1% of the initial potential reroutings appear in the final
solutions. But, for |T | = 100 and |T | = 150, where we use the second strategy, at
least 57.6% and up to 82.3% of these initial potential reroutings are part of the final
solutions. This means that the time spent by the second strategy in the resolution of
sub-problems results in very good choices of initial potential reroutings. Furthermore,
it has a strong impact on the total number of generated potential reroutings, reported
in the last set of columns of Table 12, and so on the number of times the pricing
problem PP is solved. Indeed, the pricing problem generates a potential rerouting
only if it is expected to improve the current solution of defrag_mbb algorithm.
Hence, when many initial potential reroutings are actually part of the final solution,
fewer calls to the pricing problem are needed to solve the problem.

In Table 13, we report on the accuracy of the solutions. We first observe that the
accuracy of computed solutions is always between 1% and 3%, which is satisfactory
taking into account the additional computation time it would require for getting an
optimal solution with a branch-and-price method [27], instead of the current solution
process (Section 3.4). Furthermore, solutions obtained for larger values of |T | have a
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Table 13: Number of Reroutings and Accuracy of the Solutions

Load
Number of

Accuracy Computational times
ILP Pricing Problem

required
(ε) in minutes

computational times in seconds
rerouting (number of solved ILPs)

T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

0.5 47.2 71.2 72.9 1.2 1.7 1.5 1.5 7.1 16.1 0.0 (0.0) 0.0 (0.1) 0.0 (0.2)
0.6 49.4 99.1 145.6 2.0 1.6 1.6 2.0 20.4 89.7 0.3 (1.1) 0.2 (2.8) 3.6 (1.5)
0.7 49.6 99.0 149.1 2.4 1.3 1.2 1.8 20.0 65.9 2.0 (4.6) 0.7 (2.9) 2.2 (1.8)
0.8 48.7 98.4 148.1 2.7 1.6 1.2 1.7 15.8 63.2 1.5 (3.8) 2.0 (7.5) 2.1 (9.8)
0.9 49.1 99.0 149.1 2.2 1.3 1.2 2.0 16.8 64.3 0.4 (1.3) 0.6 (2.9) 9.7 (15.6)
1.0 49.5 99.0 148.9 2.3 1.4 1.0 2.2 14.3 45.9 1.8 (4.0) 4.0 (7.1) 3.7 (4.4)

better (smaller) accuracy, except for load factor 0.5. This shows that the proposed
solution process performs very well even on large instances.

Computation times, which include the generation of initial potential reroutings,
are also quite reasonable, although too long for a real-time reoptimization operation.
However, we expect to reduce them significantly in the near future with the addition
of heuristics to speed up the solution process. Moreover, we observe that the overall
computation time due to the resolution of the pricing problems using ILPs, which
occur when the BFM algorithm fails to find a solution, is negligible. In the last
part of Table 13, the main number is the averaged computing time spent on the ILP
executions and the number in the parentheses is the averaged number of executions.
We need less than 10 seconds (for at most 16 executions) for solving the ILPs of the
pricing problems. This supports the effectiveness of the decomposition of PP into
PPk

t subproblems, each solved independently with the BFM algorithm.

3.7.4 Reoptimization Performance

We investigated the reduction of the overall bandwidth requirements after each reop-
timization event. We have reported in Figure 10 the reduction after each reoptimiza-
tion event for the two extreme load factors, i.e., 0.5 and 1.0. As already anticipated
with the results of Table 13, enabling more than |T | = 100 rerouting operations for
the instances with load factor 0.5 does not help further reducing the overall band-
width usage. However, with load factor 1.0, enabling more rerouting operations allows
for significant reduction of the bandwidth usage. More precisely, increasing |T | from
50 to 100 leads to more than 5% gain, and increasing |T | from 100 to 150 provides
5% additional bandwidth gain. An example of bandwidth usage evolution during a

65



sequence of rerouting operations is depicted in Figure 11 for the case of load factor
0.5 and |T | = 50. We observe that the bandwidth usage is essentially monotonically
decreasing, although local increases of the bandwidth usage are possible with our
model that only ensures that the final bandwidth usage is minimized.

(a) Load factor = 0.47 (b) Load factor = 1.0

Figure 10: Reduction (%) of bandwidth requirement

Figure 11: Trend of bandwidth usage after each rerouting operation on load 0.5 within
|T | = 50.

3.7.5 Multiple Rerouting

In order to confirm the benefit of enabling multiple rerouting operations per connec-
tion requests, i.e., a connection is allowed to be rerouted more than once, we applied
defrag_sim consecutively, taking as input the routing obtained in the previous
call. More precisely, after first solving the problem with |T | = 50, we solve it again
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with |T | = 50, starting from the routing R1 computed by the first execution of de-

frag_sim, and then again producing R3 taking as input the routing R2 resulting
from the second call.

In the first set of columns of Table 14, we ensure that a connection request is
rerouted at most once. This is done by setting πk = 0 for the connection requests
that were previously rerouted. In the second set of columns of Table 14 we allow the
reroute in R2 (resp. R3) of a connection request that has already been rerouted in
R1 (resp. R1 or R2). Hence, a connection request can be rerouted up to three times.
We observe a small improvement in the bandwidth gain (around 0.1% for R3) when
enabling up to three reroutings per connection request.

Table 14: Impact of Multiple Rerouting

Load
At most one rerouting per connection & t Multiple rerouting per connection

# reroutings bandwidth gain (%) # reroutings bandwidth gain (%)
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

0.5 47.2 20.9 1.9 6.7 8.0 8.2 47.2 21.0 2.5 6.7 8.1 8.2
0.6 49.4 49.6 46.4 9.4 14.9 18.4 49.6 49.3 46.3 9.4 14.8 18.5
0.7 49.6 49.6 49.8 9.8 16.6 21.0 49.1 49.7 49.8 9.8 16.6 21.1
0.8 48.7 49.9 49.9 9.9 16.8 21.5 48.7 49.5 49.6 9.9 16.8 21.4
0.9 49.1 50 50 10.1 17.2 22.1 49.4 49.6 50.0 10.1 17.2 22.2
1 49.5 50 50 9.9 17.1 21.9 49.7 49.8 50.0 9.9 17.1 21.9

3.7.6 Minimum Rerouting

The defrag_mimo model (Section 3.5) aims at minimizing the number of rerouting
events to obtain a solution with specified quality (i.e., satisfying a given upper bound
on the bandwidth usage). Figure 12 illustrates the results of defrag_mimo and
defrag_sim for the instances with load factor 0.5 and 1.0, when |T | = 100. We ob-
serve that the reduction in the number of rerouting events offered by defrag_mimo

over defrag_sim is small. With a 0.5 load factor, there are more connections which
are being rerouted on their ultimate shortest path in terms of the number of links.
In addition, although it is allowed to use up to |T | = 100 reroutes, it is usually not
necessary to have so many before reaching an optimized or optimal rerouting (e.g., for
events 4 and 8, only about half of the allowed number of reroutes are needed). With
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a 1.0 load factor, i.e., in a competitive resource environment, there are many more
connections that are routed over longer paths than the shortest possible. As a result,
the solution must use more re-routings (more than 95 reroutings for all events). The
reason is that the objective of minimizing the number of rerouting operations was
implicitly involved into the defrag_sim model, since it is parameterized by |T |.

(a) Load factor = 0.5 (b) Load factor = 1.0

Figure 12: Number of Rerouting operations with defrag_sim and defrag_mimo

3.7.7 Parallel Rerouting

Table 15 demonstrates the efficiency of the parallel rerouting methodology (Sec-
tion 3.6) in terms of the number of required rerouting events, i.e., a rerouting event
will perform several rerouting operations in parallel provided that they do not vio-
late the capacity limitation. Assuming that the duration of a rerouting event made
of parallel rerouting operations is the same (or almost the same) as a single rerout-
ing operation, applying parallel rerouting operations reduces by a factor 10 to 30
the cost of the reconfiguration procedure. In addition, the computing time for the
defrag_par model is remarkably less than for the defrag_sim model.

Table 15: Number of Parallel Rerouting Events

Load
Heuristic (Algorithm 5) defrag_par defrag_par Computational Time (min.)

T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

0.5 7.5 12.2 12.8 4.6 6.1 5.6 3.6 5.8 6.0
0.6 9.4 16.6 20.7 5.1 6.6 7.5 3.9 8.4 13.8
0.7 9.2 16.5 21.1 5.5 7.0 6.7 3.9 8.5 14.2
0.8 9.2 16.3 21.2 5.3 7.4 6.8 3.9 8.4 12.9
0.9 8.6 16.2 20.3 4.8 6.2 6.3 4.0 8.4 12.9
1.0 10.5 17.6 21.8 5.9 6.4 6.3 4.1 8.5 13.5
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3.8 Conclusion

We have proposed a new model for progressive reoptimization, i.e., computing a se-
quence of make-before-break reroutings leading to the minimum bandwidth require-
ments. It corresponds to a huge improvement with respect to the previous model
proposed by Klopfenstein [1] as we reach up to 150 reroutings in less than a few
hours, while the model of [1] was only scalable for toy problems.

We plan to further study the proposed model so that it can handle the case of
more than one rerouting per (selected) connection. In addition, we plan to study the
adaptation of our optimization model to other seamless migrations, e.g., to requests
in Content Delivery Networks (CDNs), [45].
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Chapter 4

A nested decomposition model for

generalized MBB reoptimization

Capacity fragmentation, incurred by dynamic traffic, reduces network efficiency. Re-
optimization is a connection rerouting process improving system utilization. In the
fifth telecommunication generation technology (5G), a physical network provision
several virtual networks. So a virtual network is more dynamic and flexible in terms
of operation. Although there are many objectives for the reoptimization of capacity
networks, the most focused goal is to reduce as much as possible the total capacity
used. Thus, in this work, we are using this aim.

This work takes into account multiple and parallel rerouting. To reduce the diffi-
culty of the problem, studied works removes multiple and parallel conditions. This pa-
per proposes decomposition mathematical models and column generation algorithms
to solve this complicated problem. This proposal is not only more generalized but
also reduced the fastest CPU time in [46] by about one order of magnitude.

This paper is in preparation.

4.1 Introduction

Capacity fragmentation is incurred by dynamic traffic and it reduces network effi-
ciency. Reoptimization is a connection rerouting process by which system utilization
is improved. In the context of the fifth telecommunication generation technology
(5G), logical networks are separated from physical infrastructure, so they are more
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dynamic and flexible in terms of operation. Although there are many objectives for
reoptimization, for capacity networks, the most focused goal is to reduce as much as
possible the whole capacity used. Thus in this work, we also use this objective.

To reroute a connection, the operator first finds a new route for this connection,
then moves the connection from the current route to the new route. If the connection
is switched after the current route is terminated, so there is a disruption of this
connection and it is not recommended. Therefore the make-before-break (MBB)
paradigm is widely used in practice. In MBB, before the current route is terminated,
the new route is already established and transferring data of the connection. Once the
whole data is transferred by the new route, the old route is freed. By this paradigm,
a connection from the source to destination is not disrupted.

In [47, 46], although authors improved significantly the size of the solved instances
in literature, they did not take into account parallel and multiple rerouting. Paral-
lel rerouting allows several connections to be rerouted at the same time resulting in
a shorter reoptimization duration. It is an important factor as the network cannot
accept or terminate connections during reoptimization. On the other hand, multiple
rerouting setting allows a connection can be rerouted more than once in a reoptimiza-
tion process. This setting helps to reduce further capacity uses as it breaks difficult
rerouting situation. This multiple rerouting introduces a huge difficulty to formulate
the problem than one presented in [47, 46].

There are a few studies proposed such parallel and multiple reoptimization. Model
in [1] can be considered as the state of the art for this problem. In this paper, we
propose an optimization model that takes into account both parallel and multiple
MBB rerouting for a capacity network. Several column generation algorithms are
also presented to solve this model. Numerical results show that our algorithm is
remarkably faster than the state of the art as in [1].

The paper is organized as follows. We briefly review in Section 4.2 the papers
related to reoptimization in logical/capacity networks. We next describe in Section 4.3
our problem formally as a decomposition mathematical model. This model is solved
by the column generation algorithm which is explained in Section 4.4. Numerical
results are presented in Section 4.5. Conclusions are drawn in the last section
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4.2 Literature Review

In this section, recent studies of reoptimization/defragmentation are presented. Note
that Layer 2 connections do not have continuity and contiguity constraints, this sec-
tion only discuss Layer 0 defragmentation works that are related to Layer 2 reopti-
mization in terms of strategy and mathematics.

Several studies have been devoted to network reconfiguration with the minimum
number of disruptions, following the strategy of migrating from a legacy ineffective
provisioning to a given pre-computed optimized/optimal one. As a result, it usually
prevents the existence of a strategy using only MBB due to the presence of dependency
cycles as explained in the introduction. In order to find a rerouting strategy, authors
have then proposed to use the Break-Before-Make (BBM) paradigm sparingly to allow
temporary interruption of connection requests, and so to break dependency cycles.
For instance, Jose and Somani [35] propose heuristics for minimizing the total number
of BBMs used in the rerouting strategy, and Coudert et al. [33, 38] and Solano and
Pióro [14] provide scalable exact algorithms to minimize the concurrent number of
BBMs. Tradeoffs between these two conflicting objectives are investigated by Cohen
et al. [34] and Solano [36].

To further reduce the total or concurrent number of BBMs, Kadohata et al. [37]
propose to use spare wavelengths to reroute a connection request to a temporary
route rather than using a BBM. For example, assume that the current connection
k needs to be rerouted from path p to path p′, but such a rerouting cannot be
MBB due to resource dependence. Then one unavoidable BBM reroute is performed.
However, using an intermediate reroute, it may be possible to reroute k under the
MBB paradigm. For instance, assume that there exists a path p′′ such that the
reroutings from p to p′′ and from p′′ to p′ satisfy the MBB condition. In other words,
one BBM can be avoided at the expense of performing two MBBs. This idea is similar
to multiple rerouting for capacity reoptimization.

The idea of the second direction is to compute the best provisioning that is reach-
able from the legacy provisioning by a sequence of connection reroutings with no
disruption, i.e., under the so-called MBB paradigm. While many studies have investi-
gated the first direction, this second direction has received very little attention [1, 47].

72



4.3 Problem Statement

4.3.1 Notations

We consider a network represented by a directed multi-graph G = (V, L), where V

is the set of nodes (indexed by v) and L is the set of links (indexed by ℓ). Different
links may exist between two nodes in order to model different logical links, with e.g.,
different types of traffic. We denote ω−(v) (resp. ω+(v)) the set of incident links
incoming to (resp. outgoing from) node v ∈ V . Let Cℓ denote the transport capacity
of link ℓ.

Let K be the set of connection requests (indexed by k). Connection request
k ∈ K is characterized by its source sk, its destination dk, and its bandwidth re-
quirement bk. In what follows, we call rerouting operation the action of rerouting
a connection request k ∈ K, and rerouting event the action of either performing a
single rerouting operation, or a set of parallel rerouting operations. A reoptimization
event is an ordered sequence of rerouting events, and so of rerouting operations. Let
T = {1, 2, ..., |T |}, be the set of rerouting event indices of a reoptimization event.
Hence, t ∈ T designates one rerouting event.

A life-line configuration, γ ∈ Γk, is a "life-line" of the connection k which is
characterized by:

• λγ
t is 1 if k is rerouted at rerouting event t, 0 otherwise.

• αγ
ℓt is 1 if k uses link ℓ at the end of rerouting event t.

• δγℓt = αγ
ℓt−1−α

γ
ℓt is the difference in usage of link ℓ between the begin of rerouting

event t and its end.

• xγ
ℓt is 1 if k does not use link ℓ after rerouting event t− 1 and uses link ℓ after

rerouting event t.

Note that a connection can have as many life-lines as feasible rerouting, and a solution
has to determine exactly one life line for each connection.

4.3.2 Multiple Parallel MBB Reoptimization Model

Assuming that all feasible life-line configurations are enumerated, the multiple par-
allel MBB reoptimization model (mul_par_ro) is defined formally by following
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decomposition mathematical formulation.
The integer linear programming (ILP) formulation of mul_par_ro uses the

following variables:

- zγ is binary variable that is set to 1 if life-line γ is selected, 0 otherwise.

- Ct
ℓ = bandwidth requirement on link ℓ ∈ L after rerouting event t ∈ T .

It also uses the following parameters:

- Γk is the set of all feasible life-line configurations for connection k ∈ K.

- ainit
kℓ = 1 if link ℓ ∈ L is used in the initial routing of connection request k ∈ K,

0 otherwise.

- C init
ℓ =

∑︁
k∈K

bka
init
kℓ = initial bandwidth usage on link ℓ ∈ L.

- Rpar = limit on the number of parallel rerouting operations at a rerouting event.

- Rmul = limit on the number of rerouting operations for connection k.

Minimize
∑︂
ℓ∈L

C
|T |
ℓ (4.1)

s.t.:
∑︂
k∈K

∑︂
γ∈Γk

λγ
t zγ ≤ Rpar t ∈ T (4.2)

∑︂
γ∈Γk

zγ ≤ 1 k ∈ K (4.3)

Ct
ℓ ≤ Cℓ ℓ ∈ L, t ∈ T (4.4)

C init
ℓ =

∑︂
k∈K

bka
init
kℓ ℓ ∈ L (4.5)

Ct−1
ℓ +

∑︂
k∈K

∑︂
γ∈Γk

bkλ
γ
t x

γ
ℓtzγ ≤ Cℓ ℓ ∈ L, t ∈ T (4.6)

Ct−1
ℓ +

∑︂
k∈K

∑︂
γ∈Γk

bkλ
γ
t δ

γ
ℓtzγ ≤ Ct

ℓ ℓ ∈ L, t ∈ T (4.7)

Ct
ℓ ≥ 0 ℓ ∈ L, t ∈ T (4.8)

zγ ∈ {0, 1} k ∈ K, γ ∈ Γk (4.9)
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The objective (4.1) is to minimize the capacity usage at the end of the reopti-
mization event. Constraints (4.2) prevent the selection of more than Rpar rerouting
operations at each rerouting event. Note that |T | ≤ |K| is an upper bound on the
number of rerouting events as we cannot predict the number of required MBB rerout-
ing events and operations. In case one does not want to restrict the number of parallel
rerouting operations per rerouting event, Rpar is set to infinite and constraints (4.2)
is removed from the model. Constraints (4.3) ensure that a connection request has
at most one life-line. Constraints (4.4) make sure that transport capacities are never
exceeded after any rerouting event.

Constraints (4.5) specifies the initial bandwidth usage of each link. Constraints (4.6)
ensure that the bandwidth which is needed on link ℓ for the "make" part does not
exceed its capacity at rerouting event t. Note that if the old and new routes of a
connection go through the same link, reserved capacity on that link is not dupli-
cated. Constraints (4.7) update the bandwidth usage on link ℓ after rerouting event
t. Constraints (4.8)-(4.9) define the domain of the variables.

This formulation has one zγ variable per feasible life-line configuration of connec-
tion request k ∈ K. Hence, this formulation has an exponential number of variables.
We explain in next section how to solve it using column generation.

4.4 Solution Process

In this section, two column generation algorithms are presented. The first one uses
compact formulation for pricing problem, so it directly applies classical column gen-
eration algorithm. To accelerate the resolution of the first algorithm, the second
one uses a decomposition model for the pricing problem and solves that model using
column generation as well.

4.4.1 Compact Life Line Pricing Algorithm - cpp

The model (4.1)-(4.9) has an exponential number of variables, and therefore column
generation [29] is required in order to efficiently solve its linear relaxation.

This technique consists of decomposing the original problem into a Restricted
Master Problem (RMP), i.e., model (4.1)-(4.9) with a very restricted number of vari-
ables, and one or several pricing problems (PPs). In the particular case of model
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(4.1)-(4.9), we will show in this section that the pricing problem can be decomposed
into |K| independent smaller pricing problems, each denoted by PPk. The RMP and
the PP(s) are solved alternately. Solving the RMP consists in selecting the best con-
nection life-lines, while solving the PPs allows for the generation of new columns, i.e.,
potential connection life-line, and more precisely, a sequence of routes such that, if
added to the current RMP, improves the optimal value of its linear relaxation.

The process continues until the optimality condition is satisfied, that is, all the
so-called reduced costs that define the objective function of the pricing problems are
positive (see [29] if not familiar with linear programming concepts). An ε-optimal
solution is derived by solving exactly the ILP model associated with the last RMP,
with ε defined as follows:

ε =
(︂
ζ̃ ilp − ζ⋆lp

)︂
/ζ⋆lp, (4.10)

where ζ⋆lp and ζ̃ ilp denote the optimal LP value and the optimal ILP value of the last
RMP, respectively.

The solution process is illustrated in the flowchart of Figure 13.

Restricted master 
problem …

Initial set of rerouting 
configurations

PP!!

PP!!,#"

PP!!,##

PP!!,#!

PP!"

PP!|%|

Optimality 
condition 
satisfied?

𝜁$%∗

𝜀 − optimal
ILP solution

,𝜁'$%

Solve exactly the ILP 
associated with last 

RMP

No

Yes

Round robin on k

Figure 13: cpp Algorithm

The compact pricing problem model is described as follows.
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Note that parameters of a life-line configuration become according variables in the
pricing problem, thus their names are not changed.
Parameters:

• u
(4.2)
t ≤ 0, u(4.3)

k ≤ 0, u(4.6)
ℓt ≤ 0, and u

(4.7)
ℓt ≤ 0 are dual values from constraints

(4.2), (4.3), (4.6) and (4.7) respectively.

Variables:

• αℓt is 1 if the routing of connection k uses link ℓ ∈ L at the end of rerouting
event t, 0 otherwise.

• λt is 1 if t is a rerouting event, i.e. if a rerouting operation occurs, 0 otherwise.

• xℓt is 1 if link ℓ ∈ L is used at the end of rerouting event t but was not used at
t− 1, 0 otherwise.

• δℓt is 1 if link ℓ ∈ L is used at t but not at t− 1, −1 if it was used at t− 1 and
is no longer used, and 0 if its usage is unchanged.

Objective (reduced cost):

min cppk = −
∑︂
t∈T

u
(4.2)
t λt − u

(4.3)
k −

∑︂
ℓ∈L

∑︂
t∈T

u
(4.6)
ℓt bkλtxℓt

−
∑︂
ℓ∈L

∑︂
t∈T

bku
(4.7)
ℓt λtδℓt (4.11)
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subject to:

∑︂
ℓ∈ω−(v)

αℓt −
∑︂

ℓ∈ω+(v)

αℓt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if v = sk

− 1 if v = dk

0 otherwise

t ∈ T, v ∈ V (4.12)∑︂
ℓ∈ω+(v)

αℓt ≤ 1 t ∈ T, v ∈ V (4.13)

αℓ0 = ainit
kℓ ℓ ∈ L (4.14)∑︂

t∈t

λt ≤ Rmul (4.15)

λt ≥ αℓ,t−1 − αℓ,t t ∈ T, ℓ ∈ L (4.16)

xℓt ≥ αℓ,t − αℓ,t−1 t ∈ T, ℓ ∈ L (4.17)

xℓt ≤ λt t ∈ T, ℓ ∈ L (4.18)∑︂
ℓ∈L

xℓt ≥ λt t ∈ T (4.19)

δℓt = αℓ,t − αℓ,t−1 t ∈ T, ℓ ∈ L (4.20)

αℓt ∈ {0, 1} t ∈ T, ℓ ∈ L (4.21)

λt ∈ {0, 1} t ∈ T (4.22)

xℓt ∈ {0, 1} t ∈ T, ℓ ∈ L (4.23)

δℓt ∈ {−1, 0, 1} t ∈ T, ℓ ∈ L. (4.24)

Note that the objective function (4.11) is quadratic. However, the first quadratic
term λtxℓt can can be equivalently rewritten xℓt due to Constraints (4.18), while the
second quadratic term λtδℓt can be equivalently rewritten δℓt due to combination of
Constraints (4.16) and (4.20). Hence, we get reduced cost:

cppk = −
∑︂
t∈T

u
(4.2)
t λt − u

(4.3)
k −

∑︂
ℓ∈L

∑︂
t∈T

u
(4.6)
ℓt bkxℓt

−
∑︂
ℓ∈L

∑︂
t∈T

bku
(4.7)
ℓt δℓt. (4.11-a)

Model (4.12)-(4.24) describes the life-line of request k. Constraints (4.12) are
flow conservation constraints defining a path for each connection after each rerouting
operation, while avoiding loops along the path with constraints (4.13).
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Note that this model may still create isolated loops, disconnected from the path.
However, this issue will be solved by the nested decomposition scheme. Indeed, the
second level decomposition is a set of path configurations. Thus, if path generation
imposes the simple path condition, the decomposition model will not contain isolated
loop, disconnected from a path.

Constraints (4.14) specify the links that are used in the initial routing of request
k. Constraint (4.15) limits the number of rerouting operations on the life-line of
connection k. Constraints (4.16)-(4.19) are used to identify rerouting operations and
so rerouting events. More precisely, assume first that λt = 0. Then, Constraints (4.16)
ensure that the links used at t − 1 are still used at t, and Constraints (4.17)-(4.18)
prevent from using new links at t. Hence, the routing at t − 1 and t are the same.
Now, suppose that a rerouting operation occurs at t, that is λt = 1. Constraints (4.19)
ensure that at least one variable xℓt is set to 1, thus enabling with Constraints (4.18)
to use at t a link ℓ that was not used at t − 1. Furthermore, Constraints (4.16)
now enable to stop using at t some links that were used at t − 1. On the other way
around, if either a link is no longer used at t, or a link is used at t but was not used
at t− 1, Constraints (4.17)-(4.18) identify that a rerouting event occurs at t and set
variable λt to 1. If no new link is used at t, Constraints (4.19) force variable λt to 0,
Constraints (4.16) force to continue using at t the links that were used at t− 1, and
so the paths at t− 1 and t are the same.

Constraints (4.20) encode in δℓt the changes in links usage. Finally, Constraints (4.21)-
(4.24) define the domains of the variables.

4.4.2 Decomposition Life Line Pricing Algorithm - dpp

As model (4.11)-(4.24) is an ILP, it can be reformulated as a decomposition model
and solved by column generation algorithm. However, if the reformulated pricing
problem is not solved exactly, the optimal condition cannot be verified as in cpp.
In consequence, there is no guarantee that the obtained linear relaxation solution of
(4.1)-(4.9) is a lower bound of the original problem. Fortunately, this lower bound for
nested decomposition model is derived using simple computation applying Lagrangian
relaxation as in [48, 49].

Upper Pricing PPk
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A path configuration, π ∈ Πt
k, is a simple path (i.e., without loops) of the connec-

tion k after the rerouting event t which is characterized by:

• aℓ is 1 if k uses link ℓ after the rerouting event t

Parameters:

• u
(4.2)
t ≤ 0, u(4.3)

k ≤ 0, u(4.6)
ℓt ≤ 0, and u

(4.7)
ℓt ≤ 0 are dual values from constraints

(4.2), (4.3), (4.6) and (4.7) respectively.

Variables:

• yπ is 1 if the path configuration π is selected, 0 otherwise.

Objective (reduced cost):

min cPPk
= −

∑︂
t∈T

u
(4.2)
t λt − u

(4.3)
k −

∑︂
ℓ∈L

∑︂
t∈T

u
(4.6)
t,ℓ bkxℓt

−
∑︂
ℓ∈L

∑︂
t∈T

bku
(4.7)
ℓt (

∑︂
π∈Πt

k

απ
ℓ y

π −
∑︂

π∈Πt−1
k

απ
ℓ y

π) (4.25)

subject to: ∑︂
π∈Πt

k

yπ = 1 t ∈ T (4.26)

∑︂
t∈t

λt ≤ Rmul (4.27)∑︂
π∈Πt

k

απ
ℓ y

π −
∑︂

π∈Πt−1
k

απ
ℓ y

π ≤ λt t ∈ T, ℓ ∈ L (4.28)

∑︂
π∈Πt

k

απ
ℓ y

π −
∑︂

π∈Πt−1
k

απ
ℓ y

π ≤ xℓt t ∈ T, ℓ ∈ L (4.29)

λt ∈ {0, 1} t ∈ T (4.30)

xℓt ∈ {0, 1} t ∈ T, ℓ ∈ L (4.31)

yπ ∈ {0, 1} π ∈ Π. (4.32)

Constraints (4.26) ensure that exactly one configuration (path) is selected per
event. Constraint (4.27) limits the number of rerouting operations on the life-line
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of connection k. Constraints (4.28) identify rerouting events. Indeed, if the path
configurations at t and t − 1 are different, there is at least one link ℓ ∈ L used at t

that was not used at t−1, and so the left hand side of the inequality is 1. In addition,
when λt = 0, the path configurations at t and t−1 are necessarily the same, otherwise
contradicting that all considered path configurations are simple. Constraints (4.29)
identify the links used at t and not at t− 1. Finally, Constraints (4.30)-(4.32) define
the domains of the variables.

Model (4.25)-(4.32) has one variable yπ per path configuration π ∈ Πt
k, and so an

exponential of variables. Therefore, we use column generation to solve it, and more
precisely, we use pricing problem PPt

k to generate path configurations for connection
request k ∈ K at event t ∈ T .

Pricing Problem PPt
k

Parameters:

• u
(4.2)
t ≤ 0, u(4.3)

k ≤ 0, u(4.28)
t,l ≤ 0, and u

(4.29)
t,l ≤ 0 are dual values from constraints

(4.2), (4.3), (4.6) and (4.7) respectively.

Variables:

• αℓ is 1 if link ℓ is used on this path, 0 otherwise.

min cPPt
k
= −bku(4.7)

t,l αℓ + bku
(4.7)
t+1,lαℓ

− bku
(4.28)
t,l αℓ + bku

(4.28)
t+1,l αℓ

− bku
(4.29)
t,l αℓ + bku

(4.29)
t+1,l αℓ (4.33)

s.t.:
∑︂

ℓ∈ω−(v)

aℓ −
∑︂

ℓ∈ω+(v)

aℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

v ∈ V (4.34)∑︂
ℓ∈ω+(v)

aℓ ≤ 1 v ∈ V (4.35)

aℓ ∈ {0, 1} ℓ ∈ L. (4.36)
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Note that Π0
k has exactly one configuration corresponding to current path of k.

Constraints (4.34) are flow conservation constraints ensuring the establishment of a
path from sk to dk. Constraints (4.35) prevent loops associated with a node. Con-
straints (4.36) define the domain of the variables.

Note that this is the weighted simple shortest path problem. To solve it, we first
use an efficient combinatorial algorithm such as the Bellman-Ford algorithm. In case
that algorithm detects a negative loop, and so does not return a path, we solve the
more expensive ILP model (4.33)-(4.36).

Solution Process

Solution process for dpp is depicted in Figure 14.
Similarly to [48, 49], the bound ζ

τ

lp is computed as:

ζ
τ

lp = uτb+
∑︂
k∈K

RC⋆
lp (cppk) . (4.37)

Note that the Lagrangian relaxation upper bound does not improve monotonically [50],
thus, in order to derive the best possible upper bound, the algorithm must use:

ζlp = min
τ

ζ
τ

lp = min
τ

{︄
uτb+

∑︂
k∈K

RC⋆,τ
lp (cPPk

)

}︄
. (4.38)

where τ represents a iteration of column generation and RC⋆
lp(cPPk

) is the optimal of
linear-relaxed restricted-master-problem of pricing problem.

4.4.3 Solution Process of Non-Multiple (Single) Rerouting per

Connection

When Rmul = 1 for all k ∈ K, each connection k can be rerouted at most once.
In other words, at most one λt can be one. As in Huy et al. [46], we can easily
decompose the compact pricing problem into a set of pricing problems ppsr

kt in which
λt = 1. We then get:

cppsr
k

= min
t∈T

cppsr
kt

= −u(4.3)
k − max

t∈T

(︄
u

(4.2)
t +

∑︂
ℓ∈L

bku
(4.6)
ℓt xℓt +

∑︂
ℓ∈L

bku
(4.7)
ℓt δℓt

)︄
.

Assuming λt = 1, Constraints (4.16) and (4.18) become redundant for the selected
t, and can therefore be eliminated. The simplified pricing problem ppsr

kt with single
rerouting per connection can be written as follows.
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Figure 14: Decomposition Pricing Problem Algorithm
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Parameters:

• u
(4.2)
t ≤ 0, u(4.3)

k ≤ 0, u(4.6)
ℓt ≤ 0, and u

(4.7)
ℓt ≤ 0 are dual values from constraints

(4.2), (4.3), (4.6) and (4.7) respectively.

Variables:

• αℓt is 1 if the routing of connection k uses link ℓ ∈ L at the end of rerouting
event t, 0 otherwise.

• λt is 1 if t is a rerouting event, i.e. if a rerouting operation occurs, 0 otherwise.

• xℓt is 1 if link ℓ ∈ L is used at the end of rerouting event t but was not used at
t− 1, 0 otherwise.

• δℓt is 1 if link ℓ ∈ L is used at t but not at t− 1, −1 if it was used at t− 1 and
is no longer used, and 0 if its usage is unchanged.

Objective (reduced cost):

min cppsr
kt
= −u(4.2)

t − u
(4.3)
k −

∑︂
ℓ∈L

bku
(4.6)
ℓt xℓt −

∑︂
ℓ∈L

bku
(4.7)
ℓt (αℓt − ainit

kℓ )

= −u(4.2)
t − u

(4.3)
k +

∑︂
ℓ∈L

bku
(4.7)
ℓt ainit

kℓ⏞ ⏟⏟ ⏞
constant

−bk
∑︂
ℓ∈L

(u
(4.6)
ℓt xℓt + u

(4.7)
ℓt αℓt) (4.39)
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subject to:

∑︂
ℓ∈ω−(v)

αℓt −
∑︂

ℓ∈ω+(v)

αℓt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

v ∈ V (4.40)∑︂
ℓ∈ω+(v)

αℓt ≤ 1 v ∈ V (4.41)

xℓt ≥ αℓt − 0 ℓ ∈ Lk : αℓ,t−1 = 0 (4.42)

xℓt ≥ αℓt − 1 ℓ ∈ Lk : αℓ,t−1 = 1 (4.43)∑︂
ℓ∈L

xℓt ≥ 1 (4.44)

αℓt ∈ {0, 1} ℓ ∈ L (4.45)

xℓt ∈ {0, 1} ℓ ∈ L (4.46)

Proposition 1. If we look for only negative optimal objective value (reduced cost),
pricing problem ppsr

kt can be reduced to a shortest path problem with non negative
weights.

Proof. Firstly, we show that variables x can be eliminated. Let

u
(4.6)(4.7)
ℓt =

⎧⎨⎩u
(4.7)
ℓt if a0k,ℓ = 1

u
(4.6)
ℓt + u

(4.7)
ℓt if a0k,ℓ = 0

. (4.47)

Consider the following model.

min ccppsr
kt

= −u(4.2)
t λt − u

(4.3)
k +

∑︂
ℓ∈L

bku
(4.7)
ℓt a0k,ℓ −

∑︂
ℓ∈L

u
(4.6)(4.7)
ℓt bkαℓ,t (4.48)

subject to Constraints (4.40)-(4.46)
We will prove that the model using Objective (4.48) is equivalent to the original

pricing model of ppsr
kt using Objective (4.39). To do that, we need to prove the two

following claims.

(i) The feasible regions of these models are equal. This claim is trivial because
these problems have the same sets of constraints.
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(ii) The optimal solutions of these models are equal. This claim will be proved if
the two following statements are true:

(ii-a) c⋆ppsr
kt
≥ cc⋆ppsr

kt
;

(ii-b) ∃(x′, α′) ∈ {(4.40)− (4.46)} : cc⋆ppsr
kt
= cppsr

kt
(x′, α′).

To prove statement (ii-a), we must show that it is true for any valid assignment
of the variables, that is:

∀(x′, α′) : cppsr
kt
(x′, α′) ≥ ccppsr

kt
(x′, α′). (4.49)

Since u
(4.6)
ℓt ≤ 0 and u

(4.7)
ℓt ≤ 0, this statement holds if

∀ℓ ∈ L : −u(4.6)
ℓt x′

ℓt − u
(4.7)
ℓt α′

ℓt ≥ −u
(4.6)(4.7)
ℓt α′

ℓt

is true. It is equivalent to

∀ℓ ∈ L : u
(4.6)
ℓt x′

ℓt + u
(4.7)
ℓt α′

ℓt ≤ u
(4.6)(4.7)
ℓt α′

ℓt

is true.
Indeed,

• If ℓ ∈ L is such that a0k,ℓ = 0, we have by Constraints (4.42) that x′
ℓt ≥ α′

ℓt. Since
u

(4.6)
ℓt ≤ 0, we get u

(4.6)
ℓt x′

ℓt + u
(4.7)
ℓt α′

ℓt ≤ u
(4.6)
ℓt α′

ℓt + u
(4.7)
ℓt α′

ℓt, and Equation (4.47)
sets u

(4.6)(4.7)
ℓt = u

(4.6)
ℓt + u

(4.7)
ℓt .

• If ℓ ∈ L is such that a0k,ℓ = 1, we have by Constraints (4.43) that x′
ℓt ≥ α′

ℓt −
1. Since x′

ℓt ∈ {0, 1} and u
(4.6)
ℓt ≤ 0, we therefore have u

(4.6)
ℓt x′

ℓt ≤ 0. Since
Equation (4.47) sets u(4.6)(4.7)

ℓt = u
(4.7)
ℓt , we can conclude that u(4.6)

ℓt x′
ℓt+u

(4.7)
ℓt α′

ℓt ≤
u

(4.6)(4.7)
ℓt α′

ℓt.

We now prove statement (ii-b). Let x⋆ and α⋆ be the optimal solution of ppsr
kt .

We will show that with α′ = α⋆, and x′ such that

x′
ℓt =

⎧⎨⎩0 if a0k,ℓ = 1

α⋆
ℓt if a0k,ℓ = 0

, (4.50)

we will have cc⋆ppsr
kt
= ccppsr

kt
(α⋆, x⋆) = cppsr

kt
(α′, x′).

First, we need to show that α′ and x′ are a feasible solution of (4.40)-(4.46).
Clearly, α′ satisfies (4.40)-(4.41) because α′ = α⋆. Furthermore, Constraints (4.42)-
(4.43) are satisfied by α′ and x′ because they are hold in all cases of ℓ ∈ L. Indeed,
we have
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• If ℓ ∈ L is such that a0k,ℓ = 0, then we have x′
ℓt = α⋆

ℓt = α′
ℓt ≥ α′

ℓt − 0.

• If ℓ ∈ L is such that a0k,ℓ = 1, then we have x′
ℓt = 0 ≥ α′

ℓt − 1 (as α′
ℓt ∈ {0, 1}).

Note that we only consider the original pricing when cc⋆ppsr
kt
≤ 0. In that case,

there has to exist one ℓ ∈ L : ainit
k,l = 0 such that α⋆

lt > 0. Otherwise, α⋆
ℓt = ainit

k,ℓ for
all ℓ ∈ L (the only feasible path in this case), then

cc⋆ppsr
kt
= −u(4.2)

t λt − u
(4.3)
k > 0

=⇒ c⋆ppsr
kt
≥ cc⋆ppsr

kt
> 0,

this is contradict to assumption that c⋆ppsr
kt
≤ 0. Overall, it concludes that, in this

case, Constraint (4.44) is satisfied by x′.
When cc⋆ppsr

kt
> 0, it implies c⋆ppsr

kt
> 0, so the pricing problem cannot generate

improving configuration for the restricted master problem.
We now show that the objective values are equal. Note that ccppsr

kt
does not depend

on x⋆, and so is computed with α⋆ only. Now, we show that

∀ℓ ∈ L : u
(4.6)(4.7)
ℓt α⋆

ℓt = u
(4.6)
ℓt x′

ℓt + u
(4.7)
ℓt α′

ℓt. (4.51)

This holds trivially by the combination of (4.47) and (4.50).
To this end, we observe that variables x can be removed from the simplified

problem and it becomes the shortest path problem.

Above proof can be described as follows. The optimal solution of the pricing
problem can be a path that is the same with the current path or it has a link different
from the current path’s links. In the first case, it cannot give a negative optimal
value, thus it is not interested. In the second case, x will be redundant, and removing
x makes the pricing model the shortest path problem.

4.4.4 Formulation for Protection Scheme

Note that the pricing problem can define protection scheme related to single con-
nection. Then this protection pricing problem can work with the master problem
(4.1)-(4.9) as above algorithm. However, we keep the implementation of this protec-
tion feature for future works. Proposed protection pricing problem can be found at
Section 4.7.
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4.5 Numerical Results

For data sets and simulation description, they are taken completely from [46], and
not repeated here.

4.5.1 Non-multiple Rerouting Algorithm

In Table 16, average solutions of different load factors, with T = 20 and Rpar = 20,are
reported.

First of all, we observe that the CPU times of non-multiple rerouting algorithm
is about six times faster than algorithm in [46]. As we use much smaller number of
rerouting events (T = 20 in this work, and T = 50, 100, 150 in [46]), symmetrical and
tight possible configurations are reduced. In addition, non-multiple algorithm has
lower gap (higher accuracy) than [46].

Table 16: Non-multiple Rerouting Algorithm’s Solutions (T = 20, Rpar = 20)
Load # generated configs # in-solution routings gap (%) CPU time (s)

0.5 3351.4 87.6 0.9 530.0

0.6 3424.9 192.2 0.7 415.1

0.7 4237.8 244.9 0.6 562.1

0.8 4254.6 256.4 0.7 561.3

0.9 4695.6 272.1 0.6 638.3

1 4756.4 283.9 0.5 693.3

With T = 20 and Rpar = 20, the algorithm can reroute at most T × Rpar = 400

connections. Therefore the amounts of reduced capacity and bounds are better than
ones obtained in [46] (with at most 150 rerouting operations). The reduced capacity
percentages of the 0.5 and 1.0 load instances are reported in Figure 15.

4.5.2 Nested Column Generation Algorithm

Unfortunately, at the time of submission, the nested column generation algorithm is
not working. We keep it as future works.
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(a) Load factor = 0.5 (b) Load factor = 1.0

Figure 15: Reduction (%) of capacity requirement

4.6 Conclusions

We have proposed a new model for capacity defragmentation problem with respect to
the previous model proposed by Duong et al. in [46]. We reach up to 400 reroutings
in about 10 minutes, while the model of [46] was only scalable for 150 reroutings
requiering about one hour. We plan to further study the proposed model so that it
can handle the case of multiple reroutings per connection. In addition, we plan to
study the adaptation of our optimization model to protection scheme.

4.7 Appendix

4.7.1 Protection Case: Decomposition Formulation of Con-

nection Pricing Problem

A path configuration, π ∈ Πt
k, is a path of the connection k after the rerouting event

t which is characterized by:

• aℓ is 1 if k uses link ℓ after the rerouting event t

Variables:

• yπp is 1 if the path configuration π is selected as the primary path, 0 otherwise.

• yπb is 1 if the path configuration π is selected as the backup path, 0 otherwise.
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min cPPk
= −

∑︂
t∈T

u
(4.2)
t λt − u

(4.3)
k πk −

∑︂
ℓ∈L

∑︂
t∈T

u
(4.6)
t,ℓ bkλ

txt
ℓ

+
∑︂
ℓ∈L

∑︂
t∈T

bku
(4.7)
ℓt δtℓ (4.52)

s.t.:
∑︂
π∈Πt

k

(yπp + yπb ) = 2 ∗ λt t ∈ T (4.53)

αt
ℓ =

∑︂
π∈Πt

k

aℓ(y
π
p + yπb ) t ∈ T (4.54)

∑︂
t∈t

λt ≤ RM (4.55)

λt ≥ αt
ℓ − αt−1

ℓ t ∈ T, ℓ ∈ L (4.56)

xt
ℓ ≥ αt

ℓ − αt−1
ℓ t ∈ T, ℓ ∈ L (4.57)

δtℓ = αt
ℓ − αt−1

ℓ t ∈ T, ℓ ∈ L (4.58)

αt
ℓ ∈ {0, 1} t ∈ T, ℓ ∈ L (4.59)

λt ∈ {0, 1} t ∈ T. (4.60)

xt
ℓ ∈ {0, 1} t ∈ T, ℓ ∈ L (4.61)

δtℓ ∈ {−1, 0, 1} t ∈ T, ℓ ∈ L (4.62)

Pricing Problem PPt
k

min cPPt
k

= (4.63)

s.t.:
∑︂

ℓ∈ω−(v)

aℓ −
∑︂

ℓ∈ω+(v)

aℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

t ∈ T, v ∈ V (4.64)∑︂
ℓ∈ω+(v)

aℓ ≤ 1 t ∈ T, v ∈ V (4.65)

aℓ ∈ {0, 1} t ∈ T, ℓ ∈ L (4.66)
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4.7.2 Revised Protection Case: Decomposition Formulation of

Connection Pricing Problem

A pair of path configuration, π, π′ ∈ Πt
k, are two link disjoint paths for connection k

after the rerouting event t which is characterized by:

• aℓ is 1 if k uses link ℓ after the rerouting event t (primary path)

• a′ℓ is 1 if k uses link ℓ after the rerouting event t (backup path)

Variables:

• qπp is 1 if path configuration π is selected (primary & backup) path, 0 otherwise.

min cPPk
= −

∑︂
t∈T

u
(4.2)
t λt − u

(4.3)
k

−
∑︂
ℓ∈L

∑︂
t∈T

u
(4.6)
t,ℓ bkλtxℓt

+
∑︂
ℓ∈L

∑︂
t∈T

bku
(4.7)
ℓt (αt

ℓ − αt−1
ℓ ) (4.67)

Quadratic term λtxℓt in (4.52) can be replaced by xℓt as ....

subject to: ∑︂
π∈Πt

k

qπ ≤ λt t ∈ T (4.68)

αt
ℓ =

∑︂
π∈Πt

k

aπℓ qπ t ∈ T, ℓ ∈ L (4.69)

∑︂
t∈T

λt ≤ RM (4.70)

λt ≥ αt
ℓ − αt−1

ℓ t ∈ T, ℓ ∈ L (4.71)

xt
ℓ ≥ αt

ℓ − αt−1
ℓ t ∈ T, ℓ ∈ L (4.72)

qπ ∈ {0, 1} π ∈ Πt
k, t ∈ T (4.73)

αt
ℓ ∈ {0, 1} t ∈ T, ℓ ∈ L (4.74)

λt ∈ {0, 1} t ∈ T (4.75)

xt
ℓ ∈ {0, 1} t ∈ T, ℓ ∈ L. (4.76)
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Pricing Problem PPt
k

min cPPt
k

= −u(4.68)
t −

∑︂
ℓ∈L

u
(4.69)
t aℓ (4.77)

subject to:

∑︂
ℓ∈ω−(v)

aℓ −
∑︂

ℓ∈ω+(v)

aℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2 if v = sk

2 if v = dk

0 otherwise

t ∈ T, v ∈ V (4.78)

aℓ ∈ {0, 1} t ∈ T, ℓ ∈ L (4.79)
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Chapter 5

MBB Defragmentation with CD and

CDC ROADMs in Elastic Optical

Networks

CDC ROADM is going to be deployed widely in EONs as it removes the contention-
less issue of CD ROADM. However, there are limited studies for this expensive device
to prove it is significant. In addition, this evaluation has to take into account the
defragmentation process because it is an important application of ROADM. In this
paper, we first propose a novel defragmentation strategy in which spectrum usage
minimizing and spectrum squeezing are combined. We also propose a column gen-
eration algorithm to significantly scale up exact solution in literature, to a network
of 10 nodes, 32 links, 50 slots per link, and 250 connections. Experiments show that
our novel strategy is better than the studied ones. It also asserts that CDC ROAM
brings more advantages to the network.

This paper is in preparation.

5.1 Introduction

Telecommunication networks are constantly evolving in terms of quality, diversity
and reliability. Optical Networks (ONs) exhibit its capability with connections re-
quiring on-demand service, flexible-width bandwidth and reliability guarantee. Re-
configurable Optical Add Drop Multiplexer (ROADM) and Elastic Optical Networks

93



(EONs) are two remarkable developments for the next optical network generation.
ROADM is a well-known device to automatically and remotely configure network
provision by which it significantly accelerates the configuration time, while EONs
introduce finer granularity to improve spectrum utilization.

EONs are focused to improve networks’ capacity without bringing more physical
infrastructure to the current systems. In the fixed grid Wavelength Division Multi-
plexing (WDM) system, connection occupies exactly one same wavelength for all links
on its lightpath. Thus, if a connection is transferring less than the total wavelength
capacity, the unused spectrum range is still unavailable to other connection requests
on this path. Recently, vendors introduce new technology, so-called EONs, by which
spectrum is used more efficiently. In EONs, the spectrum is divided into a finer grid
compared to the fixed grid, i.e., each spectrum slot is 12.5 GHz or even 6.25 GHz [51].
Further, an operator can combine several consecutive spectrum slots to form a chan-
nel. Thus, a connection can be placed at any position and require diversity data rates.
In addition, EONs are enhanced by the Orthogonal Frequency Division Multiplexing
(OFDM) technique which helps bandwidth utilization more efficient [52, 53].

On the other hand, to introduce flexibility in connection routing and rerouting,
ROADM is deployed and being improved. The main advantage of ROADM over Op-
tical Add Drop Multiplexer is that it can be remotely configured by which network
operation is significantly more flexible and accelerated. However, ROADM character-
istics are improved in different generations. There are three main properties to define
a ROADM generation which are colorless, directionless and contentionless (CDC)
[54]. The latest ROADM possesses all these features and it is the so-called CDC
ROADM. However most deployed ROADM networks are still colorless and direction-
less ROADM (CD ROADM) architecture.

In practice, a CDC ROADM node costs more than a CD ROADM node. There-
fore, providers are in need of the evaluation of CDC ROADM performance to be
confident in this deployment. Although CDC ROADM avoids contention blocking at
an add/drop block consisting of many ports, several studies showed that in 50GHz
fixed grid Optical Networks, the contention blocking only occurs when the network
is really loaded [55]. Also, in the fixed 50GHz grid technology, the contention issue
is less severe because of the fixed spectrum for all datarates architecture. As soon as
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the number of local add/drop blocks of a node equal to its degree, there is no con-
tention at that node. While in EONs, the contention issue is more complicated due
to the various ranges of connection spectrum requirements. There is no such evalua-
tion for CDC ROADM in EONs in literature. Furthermore, this evaluation must be
accompanied by a defragmentation process because it is applied in a practical system.

The most frequently cited application for ROADMs is to enable optical layer
remotely routing and defragmentation [7]. Thus the purpose of this work is to inves-
tigate the defragmentation performance of CD and CDC ROADMs. In practice, the
defragmentation process must be planned and take place carefully, so the time-drive
defragmentation manner is applied in this paper. Defragmentation is also desired
to be non-disruptive, thus make-before-break (MBB) paradigm is the choice of our
algorithms. MBB paradigm ensures that the new path of a connection is established
and its data is gradually moved to the new path before the old path is torn down.

In literature, defragmentation attempts to reduce the required bandwidth or push
down connections altitude. To our best of knowledge, there is no proposed work in
literature taking into account these objectives at the same time. Thus we propose
in this work novel heuristic algorithms which are minimizing both spectrum usage
and spectrum altitude. For minimizing spectrum usage, we also present a scalable
optimal solution to estimate proposed heuristics’ performances. In addition, this
optimal solution also enlarge twice data instance sizes of the state of the art in [56].

To perform simulations, we use a well-known United States topology with two
network configurations: full CDC ROADM nodes and full CD ROADM nodes. For
the latter, all the nodes are the same CD ROADM with 2 (3, or 4 respectively)
ADD/DROP local blocks per node. Connection requests are generated in a random
manner and routed by the first-fit routing scheme. In the first scenario, the network
will not go through any defragmentation. While in the second scenario, it is defrag-
mented in a time-driven manner. In this work, we show that a full CDC ROADM
system reduces bandwidth blocking rate (in the best case) 2.5% better than a full CD
ROADM one, with various defragmentation algorithms.

In contrast with fixed 50GHz grid technology, EONs enable various connection
data rates (granularities), e.g., 100Gbps, 200Gbps, 400Gbps. In addition, the OFDM
technique interprets these data rates into various ranges of required spectrum slots
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per connection. To the best of our knowledge, the relation between connection granu-
larities and defragmentation is not studied so far in the literature. Thus this work also
proposes a simulation to evaluate the impact of connection granularities on different
defragmentation strategies.

To summarize, in this paper, we want to answer the following questions:

• What are the performances of our novel proactive defragmentation strategies?

• Which CD ROADM configuration is similar to CDC ROADM?

• What are the behaviours of connection granularities with different defragmen-
tation strategies?

The contributions of this paper are:

• Novel defragmentation strategies that minimizing both spectrum usage and
spectrum altitude at the same time.

• An exact make-before-break EON defragmentation algorithm based on decom-
position modelling and column generation algorithm. With this algorithm, we
obtained optimal solutions for instances of 10 nodes, 32 links, 50 slots per links,
50 rerouting events limitation and about 250 connections. This is notably larger
than the model proposed in [56].

This paper is organized as follows. Section 5.2 briefly presents literature of
ROADM in EONs and defragmentation algorithms in EONs. We next describe in
Section 5.3 the defragmentation problem statement. In Section 5.3, defragmentation
problem is represented by an exact decomposition mathematical model. An column
generation algorithm and three heuristic solutions are proposed in Section 5.4. In
Section 5.5, numerical results are reported. Conclusions are drawn in the last section.

5.2 Related Works

As this work related to two distinct aspects of EONs that are ROADM architecture
and defragmentation process, these aspects are reviewed one by one.
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5.2.1 CD/CDC ROADM Architectures and Contention Issue

In this section, high-level architectures of currently developed CD ROADM and CDC
ROADM are presented to explain different levels of contention. Then, several studies
evaluating contention from the ROADM perspective are reviewed.

Several architectures for CD ROADM are presented in [57, 58]. As mentioned
in these works, broadcast-and-select architecture is considered as the simplest and
most affordable implementation. In practice, vendors utilize this architecture with
their broadcasting/selecting designs so that a high number of transponders can be
attached to each add/drop block. In our study, an isolated add/drop block is called
a Direct Independent Access (DIA). The physical layout of a CD ROADM node is
illustrated in Figure 16(a).

A DIA can implement as many add/drop ports as needed. As add/drop transpon-
ders of DIA are tunable, its colorless property is trivial. Besides, a DIA is con-
nected to all directions, directionless is achieved. However, all added (dropped) con-
nections associated with a DIA go through the same line before being filtered at
ports, thus routed/rerouted connections sharing the same DIA block have to be non-
overlapping regarding to spectrum. This restriction introduces some obstacles when
routing/rerouting connections. This is also known as the ROADM contention issue.

To ease or reduce contention issue, more DIA blocks can be added. For examples,
in Figure 16(a), there are 2 DIA blocks. So at most 2 added/dropped connections
at this node can overlap their spectrum if they are not associated to the same DIA
block.

Since DIA blocks work independent mutually, overlapping connections can use
different DIA blocks. This workaround only alleviates the issue since the needed DIA
blocks cannot be predicted. Also, it is preferred to have all DIA blocks filled evenly
to reduce costs. Deploying additional DIA blocks with few active transponders harms
profit in both short term and long term. To enable more overlapping connections,
vendors introduced multicast devices that can take overlapping connections at differ-
ent input ports, then guide them to output ports. Although these devices completely
eliminate contention, their costs are remarkably higher than a CD ROADM node.

Evaluation and solution of the fixed grid ROADM contention were presented in
several studies. In [59], the authors showed that the contention issue is negligible if
less than 75% of local CD ROADM ports are used. While in [60], when a wavelength
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(a) Physical CD ROADM (private communi-
cation from Ciena)

(b) Mathematical modelling of CD ROADM

Figure 16: CD ROADM Physical and CDC-Modelling Layout

can be shared by at most 2 connections, a full CD ROADM network performs as
contentionless. To the best of our knowledge, there is no similar evaluation of EONs
in open literature.

5.2.2 Defragmentation of EONs

In EONs, defragmentation is performed by different techniques and strategies. In
consequence, they offer various conditions and efficiency. However, in this section, we
only provide references relevant to our work and point out the novel aspects of our
proposed strategy.

The defragmentation process is usually triggered when the network reaches some
predefined thresholds, e.g., a request is blocked, it is called reactive defragmentation.
Network reconfiguration can be also started in a fixed schedule, e.g., every midnight,
this is called proactive defragmentation. With reactive defragmentation, it is hard to
notify customers when the network is modified, thus it is not preferred in practice.
On the other hand, proactive defragmentation allows more control of both customers
and providers. In this section, works involving only reactive defragmentation are not
discussed.

In terms of service interruption, they can be classified into hitless and non-hitless
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defragmentation [7]. Since non-hitless techniques, e.g. break-before-make or re-
planning, interrupt significantly connections, this work does not use it, and its liter-
ature is omitted. For hitless defragmentation, there are three most-used techniques,
that are push-pull (PP), hop tuning (HT) and make-before-break (MBB). The first
two techniques require special devices that can shift the connection spectrum along
the link spectrum. On the other hand, MBB establishes the new route of a connection
concurrently with its current route. MBB is simple and affordable, thus it is used by
all our proposed algorithms.

In terms of spectrum, there are three prominent objectives: i) minimizing total
spectrum (slots) usage, ii) minimizing the highest used spectrum index overall net-
work and iii) minimizing the average altitude of spectrum usage. The objective i)
determines the least required resources, while the objectives ii) and iii) corresponds
to spectrum squeezing. In most studied works, the spectrum squeezing objective is
used as it directly improves the continuity and contiguity of the spectrum. On the
other hand, to the best of our knowledge, there is no proposed strategy and algorithm
for spectrum-usage-minimizing defragmentation. Furthermore, these two objectives
can be considered at once. Therefore, in our paper, we propose several spectrum-
usage-minimizing and/or spectrum-altitude-minimizing algorithms and evaluate their
performances.

For spectrum squeezing idea, In [56, 61], the authors evaluated spectral gain in
EONs by push-pull, hop-tuning and re-planning (without MBB) strategies. Note
that the last technique finds the first available slot block for rerouting connection, its
new path may require higher the number of total required slots. It showed that the
physical limitations of the push-pull technique obstruct its ability to effectively recon-
figure demands, whereas hop tuning was generally much closer to the full re-planning
benchmark which is the best strategy. In [62], the authors proposed a proactive
defragmentation algorithm similar to a re-planning strategy where instead it squeez-
ing connections to both low or high ends of the link spectrum (2-end re-planning).
However, [62] implemented a simulation where a 2-end re-planning strategy is oper-
ated with the reactive defragmentation, thus the actual performance of this proactive
strategy was not evaluated. When only proactive defragmentation is performed, ex-
periments of [62] showed that hop-tunning strategy is the best proactive option in
terms of blocking rate.
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Several integer linear programming systems have been proposed for the push-pull,
hop tuning and rerouting strategies in [7, 56]. To our best knowledge, there is no
interge linear programming (ILP) model for the MBB in EONs yet. However, it is
similar to re-planing models in [56]. Also, we can leverage the ILP models for Logical
Layer [47, 46] as the initial ideas to develop MBB models of Optical Layer.

5.3 Defragmentation Problem in EONs

In this section, the defragmentation problem of EONs is described. Although the
following description assuming that all nodes in the network are CDC ROADM,
a mixed-ROADM network can also use following formulations by modelling a CD
ROADM as a set of CDC ROADMs. In other words, if a node is not CDC ROADM,
it is replaced by several artificial CDC ROADM nodes. The representation of CD
ROADM node v in CDC-ROADM replacement is shown in Figure 16(b). With this
modelling, the input network is considered as a full CDC ROADM configuration.
This simplification allows us present mathematical models and algorithms for only
CDC ROADM so that fewer complicated constraints and variables are introduced.

We first introduce notations used throughout this paper, then the formal math-
ematical model (master problem) of the defragmentation problem in EONs are pre-
sented in a decomposition method. Due to decomposition method, the pricing prob-
lem formulations are also presented to be used by column generation algorithm pro-
posed in the next section.

5.3.1 Notations

We are given a physical network represented by a directed multi-graph G = (V, L).
Each link ℓ in L is associated with a directional fiber from ℓs to ℓd, with geometrical
distance ℓ∆, and its capacity is defined by a set of frequency slots indexed by set
{0, .., ℓF − 1} (around 400 assuming each frequency slot being 12.5 Ghz wide, and
1,000 assuming each frequency slot being 6.25 Ghz wide). Let Fmax = maxℓ∈L ℓF .
Nodes are associated with ROADMs, and indexed by v. ω−(v) and ω+(v) are set of
outgoing and incoming links respectively of node v ∈ V .

Due to the improvement of the OFDM technology, each data rate can be trans-
ferred with different bandwidth sizes depending on geometrical distance of routes.
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In other words, the same data rate requires fewer frequency slots on a shorter path
(geometrical distance). It is also called modulations where each modulation specifies
for each data rate: the number of required frequency slots and the range of distance
within that it can transfer. A practical specification of modulations is introduced in
Table 17. Let M be the set of modulations. Each modulation m ∈M has:

• δ(m) and δ(m) as upper and lower reachable distances.

• λ(m, r) is the number of required slots of this modulation for data rate r.

We are also given a set K of provisioned connections (set of connections). Each
connection k is characterized by a data rate kr from source ks to destination kd and
kL ⊆ L is the link set of it path with modulation km. It also occupies λ(km, kr)

frequency slots from slot index kf to kf for all ℓ ∈ kL. Let k∆ =
∑︁

ℓ∈kL ℓ∆ the
geometrical distance of the connection k.

Assume that connections are arriving one at a time and the network is reconfigured
at some pre-determined points in time manner (proactive defragmentation) during
the whole process. At a defragmentation event, a network operator needs to find a
sequence of MBB reroutings of current connections to free up the largest possible
amount of spectrum slots in the network.

A defragmentation event is divided into rerouting events, each rerouting event is
long enough to perform one rerouting operation by which one can reroute at most
one lightpath. In addition, each rerouting operation has to be carried on under the
MBB manner. Let T = {1, 2, ..., |T |} be the index set of rerouting events of a defrag-
mentation event. Assuming that network operator does not allow parallel rerouting
operations at one rerouting event because it is easier monitor defragmentation process.
Thus, it means that at most |T | connections are rerouted.

For a given provisioned network, defragmenting the network at a defragmentation
event is to minimize, i) the total required slots overall the network, and ii) the sum
of connection starting slot indices. Since this is a multiple objective problem, the
following mathematical model is explicitly and only dealing with the objective i).
However, the objective ii) is still considered by heuristic algorithms.
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5.3.2 Master Model

Let P t
k be a set of all alternative paths to reroute a connection k at rerouting event t.

Each configuration is characterized by a demand k, to be rerouted at rerouting event
t, using modulation m, on the new lightpath p. For each p ∈ P t

k, it represented by:

• αp
ℓ,f is 1 if p uses slot f on link ℓ after rerouting event t.

Note that, for a connection k, the MBB condition requires that a alternative path
have to link disjoint to the original path, otherwise, their spectrum ranges have to be
non-overlapping.
Parameters

• a0k,ℓ,f is 1 if initial connection k ∈ K uses slot f on link ℓ in its route, 0 otherwise.

Variables

• ytℓ,f : binary variable that is set to 1 if slot f on link ℓ is used after reconfiguration
event t by any connection.

• ztk,p: binary variable that is set to 1 if the solution selects configuration corre-
sponding to path p ∈ P t

k for demand k at rerouting event t, using modulation
m.

Objective

Minimize
∑︂
ℓ∈L

∑︂
f∈F

y
|T |
ℓ,f (5.1)
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subject to: ∑︂
k∈K

∑︂
p∈P t

k

ztk,p ≤ 1 t ∈ T (5.2)

∑︂
t∈T

∑︂
p∈P t

k

ztk,p ≤ 1 k ∈ K (5.3)

y0ℓ,f =
∑︂
k∈K

a0k,ℓ,f ℓ ∈ L, f ∈ ℓF (5.4)

ytℓ,f ≥ yt−1
ℓ,f −

∑︂
k∈K

∑︂
p∈P t

k

(a0k,ℓ,f − αp
ℓ,f )z

t
k,p t ∈ T, ℓ ∈ L, f ∈ ℓF (5.5)

∑︂
k∈K

∑︂
p∈P t+1

k

zt+1
k,p ≤

∑︂
k∈K

∑︂
p∈P t

k

ztk,p t ∈ T (5.6)

ytℓ,f ∈ {0, 1} t ∈ T, ℓ ∈ L, f ∈ ℓF (5.7)

ztk,p ∈ {0, 1} t ∈ T, k ∈ K, p ∈ P t
k (5.8)

Constraints (5.2) restrict at most one rerouting operation within a rerouting event.
Each demand is reconfigured no more than once by constraints (5.3). During any re-
configuration, capacity feasibility is ensured by constraints (5.5). In order to eliminate
symmetrical solutions, constraints (5.6) enforce reconfiguration will be performed in
consecutive rerouting event. The last set of constraints (5.7) and (5.8) are variables’
domain.

Path Modulation Pricing Problem

At first, we considered path pricing problem which would outputs a path together
with a proper modulation. Such pricing problem is complex to present, as well as
difficult to solve, as we need to introduce decision variables for the selection of the
modulations. Fortunately, there is only one modulation is selected by path pricing
problem, thus we can simplify this problem by decomposing it into "elementary" path
modulation pricing problems. We therefore next present path modulation pricing
problems that each outputs a path for a given modulation.
Parameters:

• k: connection related to this pricing.

• t: rerouting event.
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• m: modulation.

Variables:

• αℓ
f is a binary variables that is set to 1 if slot f on link ℓ is used for this

configuration, 0 otherwise,

• βℓ is a binary variable that is set to 1 if link ℓ has slots to be used in the
configuration, 0 otherwise,

• xf is a binary variable that is set to 1 if slot indexed f is used as the starting
slot of this demand.

Objective:

Minimize cPPt,m
k

= −u(5.2)
t − u

(5.3)
k − u

(5.6)
t + u

(5.6)
t−1

−
∑︂
ℓ∈L

∑︂
f∈F ℓ

u
(5.5)
ℓ,t,f (a0k,ℓ,f − αℓ

f ) (5.9)
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subject to: ∑︂
f∈Fmax

xf = 1 (5.10)

βℓ +

min(f,ℓF−λ(m,kr))∑︂
f ′=max(0,f−λ(m,kr)+1)

xf ′ ≤ αf
ℓ + 1 ℓ ∈ L, f ∈ F ℓ (5.11)

αf
ℓ ≤ βℓ ℓ ∈ L, f ∈ F ℓ (5.12)

αf
ℓ ≤

min(f,|Fℓ|−λ(m,kr))∑︂
f ′=max(0,f−λ(m,kr)+1)

xf ′ ℓ ∈ L, f ∈ F ℓ (5.13)

∑︂
f∈F ℓ

αℓ
f = λ(m, kr)βℓ ℓ ∈ L (5.14)

∑︂
ℓ∈ω−(v)

βℓ −
∑︂

ℓ∈ω+(v)

βℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

v ∈ V (5.15)

∑︂
ℓ∈ω+(v)

βℓ ≤ 1 v ∈ V (5.16)

δ(m) <
∑︂
ℓ∈L

ℓ∆βℓ ≤ δ(m) (5.17)

αℓ
f ∈ {0, 1} ℓ ∈ L, f ∈ F (5.18)

βℓ ∈ {0, 1} ℓ ∈ L (5.19)

xf ∈ {0, 1} f ∈ F. (5.20)

Constraints (5.10) ensure that demand k has exactly one slot as its starting slot.
Constraints (5.11), (5.12) and (5.13) make sure a slot in a link is selected if the link
is chose and the slot is in the range from the selected starting slot. Constraints (5.14)
guarantee that the set of selected slots is matched with the bandwidth requirement ac-
cording to the modulation. These first three sets of constraints collectively guarantee
the contiguity of selected slots.

Constraints (5.15) ensure the flow conditions to build a path from source to des-
tination of the demand. Constraints (5.16) help avoid any node has a loop to itself.
Since the path defined by these constraints is independent from the slot index, the
set of slots is continuous on the path.

The restriction on the distance of selected modulation is guaranteed by Constraints
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(5.17). The rest of constraint sets define variable domains.

Frequency Pricing Problem

Notice that for each pricing problem, only one starting slot is chosen. Thus the
pricing problem can be solved by less than Fmax simplified models, i.e., (5.9) and
(5.11)-(5.20), with an unique xf is fixed to 1. Therefore,

cPPt,m
k

=
Fmax−λ(m,kr)

min
f=0

{︂
cPPt,m

k,f

}︂
(5.21)

where,

cPPt,m
k,f

= min
{︂
− u

(5.2)
t − u

(5.3)
k − u

(5.6)
t + u

(5.6)
t−1

−
∑︂
ℓ∈L

∑︂
f∈F ℓ

u
(5.5)
ℓ,t,f a0k,ℓ,f +

∑︂
ℓ∈L

βℓ

f+λ(m,kr)−1∑︂
f ′=f

u
(5.5)
ℓ,t,f

}︂
(5.22)

subject to

∑︂
ℓ∈ω−(v)

βℓ −
∑︂

ℓ∈ω+(v)

βℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if v = sk

1 if v = dk

0 otherwise

v ∈ V (5.23)

∑︂
ℓ∈ω+(v)

βℓ ≤ 1 v ∈ V (5.24)

∑︂
ℓ∈L

ℓ∆βℓ ≤ δ(m) (5.25)

βℓ ∈ {0, 1} ℓ ∈ L. (5.26)

If a starting slot is given to the model and constraints (5.25) are eliminated,
the remaining problem is the shortest path problem on a positive weighted digraph.
Therefore, the sub pricing problems are first solved by Dijkstra algorithm, if any of
them satisfies the modulation distance limit constraints (5.25) and has a negative
reduced cost, then it is added to the RMP as a new column. If there is no such a
solution, the pricing problem is solved by the shortest path with resource constraint
algorithm.
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5.4 Spectrum Offender Algorithms

The general idea for all proposed heuristic solutions is to assign a priority value to
each connection. Then connections are reconfigured to its new path according to these
orders. Before going into the flows of the algorithms, we first define the important
values which are used to prior connections during the defragmentation process.

5.4.1 Spectrum Offender Value Heuristics

Assume that a set of connections K is currently provisioned by network G = (V, L),
G(K) represents the state of network G when provisioning K. Let Pk(G(K ′)) be
the set of all possible path to provision an connection request k when network G is
provisioning a connection set K ′. Then, the current number of used frequency slots
for a connection k is λ(km, kr)|kL|. Let p⋆ is the best available path for connection
k ∈ K in current state, namely:

p⋆ = arg min
p∈Pk(G(K))

{λ(pm, kr)|pL| : δ(pm) < p∆ ≤ δ(pm)}. (5.27)

Let p is the best available path for connection k in an empty network:

p = arg min
p∈Pk(G(∅))

{λ(pm, kr)|pL| : δ(pm) < p∆ ≤ δ(pm)}. (5.28)

In other words, λ(p⋆m, kr)|p⋆L| is the minimum number of frequency slots at the current
state to to reprovision this connection, while λ(p

m
, kr)|pL| is the least frequency slots

in an empty network.
At a given state of the network G(K), the immediate spectrum offender value of

the connection k is

ImmediateSpectrumOffender(k) = λ(km, kr)|kL| − λ(p⋆m, kr)|p⋆L|, (5.29)

where p⋆ is defined by 5.27, and the complete spectrum offender value of the connection
k is

CompleteSpectrumOffender(k) = λ(km, kr)|kL| − λ(p
m
, kr)|pL|, (5.30)

where p is defined by 5.28.
To compute the immediate spectrum offender value of a connection, for a given

modulation and starting slot, one must find the least hop paths from the source to the
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destination of the connection. Algorithm 6 finds the least hop path according to each
possible combination of a modulation and a starting slot of the connection. The best
path is the one having the least number of total used slots. Note that, a connection
is allowed to use a new modulation only when the new modulation’s distance limit
is better than the current one, i.e., shorter geometrical distance (it also implies that
the number of slots per link is less).

Given an starting slot f and a modulation m, the least hop path problem for
connection request k has a constraint on the path geometrical distance limit of δ(m),
and it is solved by the Algorithm 7. This algorithm is a dynamic programming algo-
rithm. For a connection request k, let variables F [h][v] be the shortest geometrical
distance among paths with h links (hops) from ks to v. Assume that the values
F [1][u], F [2][u], .., F [h][v] were computed for all v ∈ V , F [h + 1] values can be com-
puted by F [h] values. Let G(V, L,K \k, f , f) is the provisioning network whose links
which have contiguous available slots from slot f to f . Then, it is easy to figure out
that:

F [v][h + 1] = min
ℓ∈G(E,V,K,f,f)

{F [u][h] + ℓ∆ : ℓs = u and ℓd = v}. (5.31)

Therefore, when F is computed according to the increasing order of h, the first
F [kd][h] < δ(m) is the least hops path. Note that this algorithm also offers the
path whose the lowest starting slot, among the least slot paths.

The complexity of Algorithm 7 is O(|V | × |L|), then Algorithm 6 takes O(4 ×
Fmax × |V | × |L|) (assuming that there are four available modulations).

In following algorithms, ConnectionMoveLimit = 1 and RoundLimit is unlimited.
We introduce these parameters in case we want to evaluate some variation of algo-
rithms in future. For example, if a connection can reroute twice in a defragmentation
event, then ConnectionMoveLimit = 2. If we want to reduce CPU time, RoundLimit
can be set as a fixed number.

5.4.2 Immediate-Spectrum-Offender-Sorting Heuristic (ISO)

The ISO algorithm is presented in Algorithm 8. The idea is to reroute connections
with larger immediate spectrum offender value to free more resource at the beginning
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Algorithm 6 Immediate Spectrum Offender Computation
1: function ImmediateSpectrumOffender(G(V, L), K, k)
2: m← 16QAM
3: p⋆ ← k

4: while δ(m) ≤ δ(km) do

5: for f ← 0 to Fmax − λ(m, kr) do

6: p← LeastHopPath(G(V, L), K, k,m, f)

7: if p ̸= null and λ(m, p⋆m)|p⋆L| > λ(m, pm)|pL| then

8: p⋆ ← p

9: m← next modulation
10: return (λ(m, p⋆m)|p⋆L| − λ(m, km)|kL|, p⋆)

of the defragmentation process. Thus, first, all the immediate spectrum offender
values of the connections are computed. Then, the connections are sorted in the
decreasing order by their offender values.

5.4.3 Complete Spectrum Offender Sort Heuristic (CSO)

This algorithm is presented in Algorithm 9. Firstly, all complete spectrum offender
values of the connections are computed. Then, the connections are sorted in the
decreasing order by their offender values. As the complete offender value is final, the
sorting order is not recomputed after a round.

5.4.4 Spectrum Usage Sort Heuristic (SPU)

This algorithm is presented in Algorithm 10. The connections are sorted in the
decreasing order of their spectrum usage values. As the spectrum usages are changed,
the connections are reordered after every round.

5.4.5 Heuristics with PP and HT

Note that proposed so far do not exploit the spectrum squeezing method. There
are two common ideas to squeeze down spectrum which are HT and PP strategies.
The PP technique only allows continuous-spectrum to move while HT can assign a
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Algorithm 7 Least Hop Path Algorithm
1: function LeastHopPath((G(V, L), K, k,m, f)
2: f ← f + λ(m, kr)

3: path← ∅
4: for all u ∈ V and h = 0→ |V | − 1 do

5: F [u][h] =∞
6: prev_link[u][h]← null

7: F [ks][0]← 0

8: for h← 1 to |V | − 1 do

9: for ℓ ∈ G(V, L,K \ k, f , f) do

10: if F [ls][h− 1] ≤ δ(m) then

11: if F [ℓd][h] > F [ls][h− 1] + ℓ∆ then

12: F [ℓd][h]← F [ℓs][h− 1] + ℓ∆

13: prev_link[ℓd][h]← ℓ

14: if F [kd][h] ≤ δ(m) then

15: break
16: if F [d][h] ≤ δ(m) then

17: v ← kd

18: while v ̸= ks do

19: ℓ← prev_link[v][h]
20: path← path ∪ ℓ

21: v ← ℓs

22: h← h− 1

23: return path
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Algorithm 8 Immediate-Spectrum-Offender-Sorting Heuristic (ISO)
1: for k ∈ K do

2: #Moves(k)← 0

3: for move_count < |T | do

4: for k ∈ K do
5: (w[k], p⋆[k])← ImmediateSpectrumOffender(G(V,L),K, k)

6: sort K in decreasing order by W

7: k ← K.top

8: while move_count < |T | and w[k] > 0 and k ̸= K.end() do

9: if #Moves(k) < ConnectionMoveLimit then

10: if k can be rerouted to the p⋆[k] and p⋆[k] is better than kp then

11: Update lightpath of k by p⋆[k]

12: #Moves(k)← #Moves(k) + 1

13: move_count ← move_count + 1

14: k ← K.next()

Algorithm 9 Complete Spectrum Offender Sort Heuristic
1: for k ∈ K do

2: #Moves(k)← 0

3: for round_count < RoundLimit do

4: for k ∈ K do
5: (w[k], p[k])← ImmediateSpectrumOffender(G(V,L), ∅, k)

6: sort K in decreasing order by w

7: k ← K.top

8: while move_count < |T| and w[k] > 0 and k ̸= K.end() do

9: if #Moves(k) < ConnectionMoveLimit then

10: p⋆ ← ImmediateSpectrumOffender(G(V,L),K \ k, k)
11: if p⋆ is better than the current path then

12: Update lightpath of k by p⋆

13: #Moves(k)← #Moves(k) + 1

14: move_count ← move_count + 1

15: k ← K.next(k)

16: round_count← round_count+ 1
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Algorithm 10 Spectrum Usage Sort Heuristic
1: for k ∈ K do

2: #Moves(k)← 0

3: for round_count < RoundLimit do

4: w[k]← kpb × |kpL|
5: sort K in decreasing order by their spectrum usage values w[k]

6: k ← K.top

7: while move_count < |T | and w[k] > 0 and k ̸= K.end() do

8: if #Moves(k) < ConnectionMoveLimit then

9: p⋆ ← ImmediateSpectrumOffender(G(V, L), K \ k, k)
10: if p⋆ is better than the current path then

11: Update lightpath of k by p⋆

12: #Moves(k)← #Moves(k) + 1

13: move_count ← move_count + 1

14: k ← K.next(k)

15: round_count← round_count+ 1

connection to any new position. To perform these techniques, connections are sorted
in increasing order according to their current starting slots.

As these spectrum squeezing methods are used as post-processing of CSO, ISO
SPU algorithms, the following algorithms are not presented in terms of pseudo-code
to ease the readability of this paper. As a reminder, HT and PP used in this paper
as strategies, not technologies, thus they are performed under the MBB condition.
Thus, by combining three proposed algorithm with HT and PP, six new algorithms
are created: CSO-HT, CSO-PP, SPU-HT, SPU-HT, CSO-HT, CSO-PP.

5.4.6 Column Generation Algorithm

The column generation solution process is presented in Algorithm 11. Note that,
in this algorithm, costDijkstra(t, k,m, ˜︂RMP ) is the function to solve the frequency
pricing problem without distance constraints, while costILP(t, k,m, ˜︂RMP ) use the
labeling algorithm implemented by [63] to solve the exact problem.

When the column generation process finishes, the variables are set back to integer
requirements. It is obvious that the number of variables and constraints are extremely
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Algorithm 11 Solution Process

1: ˜︂RMP ← Linear Relaxation of Restricted Master Problem with initial columns
2: repeat

3: for t← 1 to |T | do

4: for k ∈ K do

5: for m ∈M with δ(m) ≤ δ(km) do

6: if costDijkstra(t, k,m, ˜︂RMP ) < 0 then

7: add the new column to ˜︂RMP

8: solve ˜︂RMP

9: else if ∃f ∈ Fmax : PP t,m
k,f ̸≡ costDijkstra(f, t, k,m, ˜︂RMP ) then

10: K ilp ← K ilp ∪ (k,mod)

11: if no new column found and K ilp ̸= ∅ then

12: for t← 1 to |T | do

13: for (k,m) ∈ K ilp do

14: while costILP(t, k,m, ˜︂RMP ) < 0 do

15: add the new column to ˜︂RMP

16: solve ˜︂RMP

17: until no new column is found
18: RMP ← ILP representation of ˜︂RMP

19: return ILP solution of RMP

113



huge for the ILP being solved. Fortunately, it is not necessary to keep all the variables
and constraints in the ILP as the restricted master problem, assuming that the number
of generated column is considerably smaller than the y variables in the restricted
master problem.

On link ℓ and frequency slot f , assuming that there are two rerouting events
t1 < t2 such that there is not generated column ztk,p associated to ℓ and f (i.e., p

use f and ℓ), and t1 < t < t2. In that case, we can remove all the constraints (5.5),
indexed by t, ℓ and f where t1 < t < t2, and change the constraints related to t2 as
yt2l,f ≥ yt1ℓ,f −

∑︁
k∈K

∑︁
p∈P t2

k
(a0k,ℓ,f − αp

ℓ,f )z
t2
k,p. Thus, we can also remove the according

variable ytl,f where t1 < t < t2.
Note that these pricing problems (5.22)-(5.26) may offer a alternative path overlap-

ping with some spectrum slots on some links of the original connection. In addition,
the master problem has no constraint to avoid this issue. Therefore, with this pric-
ing models, the ILP solution of column generation algorithm is not a solution of the
optimal MBB reachable defragmentation. However, the linear relaxation of the the
master problem is still a lower bound of the original problem.

5.5 Numerical Results

5.5.1 Simulation Setting

Simulation are run on USA topology [64] having 24 nodes and 86 directed links.
The spectrum for each link is slotted into 400 slots where each slot corresponds to a
spectrum interval of width 12.5 GHz.

With this topology, four network configurations are produced:

• All nodes are CDC ROADM,

• All nodes are CD ROADM with 2-DIA blocks, 3-DIA blocks and 4-DIA blocks,
respectively.

Each connection request requires one of three types of data rates that are 100

Gbps, 200 Gbps and 400 Gbps. The number of slots for a connection depends on
different modulation format and the data rate. This specification is given in Table
17.
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Data Rate (Gbps) Modulation #Slots Distance (km)

100

BPSK 8 >4000
QPSK 3 4000
8QAM 2 1200
16QAM 1 600

200

BPSK 16 >4000
QPSK 6 4000
8QAM 4 1200
16QAM 3 600

400

BPSK 32 >4000
QPSK 12 4000
8QAM 8 1200
16QAM 6 600

Table 17: Table of Modulations

For all simulations, a total of 300 time units are simulated from an empty network.
Requests arrive in the network with a Poisson Distribution interval, with λ100, λ200

and λ400 are expected interval time of requests of 100 Gbps, 200 Gbps and 400 Gbps
respectively. It means that in a time unit, there is average 1/λ100 100-Gbps requests
arriving, and so on. Each connection request also has a Exponential Distribution
with expected holding time λh = 10(timeunits). The offered load of a simulation is:

Er =

(︃
100

λ100

+
200

λ200

+× 400

λ400

)︃
× λh (Gbps). (5.32)

In other words, assuming all connection requests are being granted, the expected
throughput of simulation at any time (after warming up period) is Er.

The source and destination nodes are randomly selected among the nodes of the
network such that traffic started/ended at a node is propositional to its population.

All simulations are implemented by C++ language in a machine with Windows
10 operating system, processor AMD Ryzen Threadripper 2590X 16-Core 3.60 Ghz,
and 128 GB of RAM. The optimizer is Gurobi version 8.1 [65].
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5.5.2 Performance of Defragmentation Algorithms in static

simulation

Performance of column generation algorithm is presented in Table 18. It shows that
the proposed solution process for column generation is ε-optimal (with a gap of about
4%). Furthermore, the required CPU times are accelerated 10 times with double
instance size in comparison with [56] (except for 3 out of 11 cases).

Table 18: T = 50, nodes = 10, links = 32, slots = 50
Time point connections gap (%) time (s) generated

configs

100 250 4.0 743.4 24317

110 263 2.9 6072.0 35896

120 252 4.6 362.6 17924

130 251 2.0 53671.4 38407

140 263 4.3 453.6 21012

150 244 4.8 467.5 20243

160 250 8.0 596.9 22917

170 256 3.2 10633.9 36882

180 252 4.5 616.2 23991

190 252 5.8 559.8 20799

200 243 3.3 383.8 16078

Average 252.4 4.3 6778.3 25315.1

Optimality evaluation of proposed algorithms is presented in Table 19. The results
show that our proposed heuristics for spectrum usage minimizing methods are closed
to lower bound in these instances. Note that heuristic algorithms are offering better
solutions than column generation’s, it is due to we are not using heuristics solution
as initial configurations for column generation solution process.

5.5.3 Impact of defragmentation process

The average bandwidth blocking rates (BBR) of 12 defragmentation strategies are
presented in Table 20. The last column of this table also reports the BBR when
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Table 19: Algorithm optimality evaluations
Time initial CG SPU CSO Lower
point slots sol. gap (%) sol. gap (%) sol. gap (%) bound

100 1112 1044 4.0 1016 1.2 1013 0.9 1004

110 1217 1120 2.9 1118 2.8 1118 2.8 1088

120 1143 1071 4.6 1030 0.6 1024 0.0 1024

130 1189 1081 2.0 1066 0.6 1066 0.6 1060

140 1205 1146 4.3 1132 3.0 1132 3.0 1099

150 1134 1080 4.8 1049 1.7 1049 1.7 1031

160 1153 1103 8.0 1069 4.7 1033 1.2 1021

170 1202 1099 3.2 1089 2.3 1092 2.5 1065

180 1193 1126 4.5 1107 2.8 1101 2.2 1077

190 1185 1132 5.8 1109 3.6 1097 2.5 1070

200 1139 1076 3.3 1063 2.0 1060 1.7 1042

simulation does not go through any defragmentation event. Each row corresponds to
the simulation of an offered load which is shown at the first column of a row.

Firstly, when one of nine minimizing-spectrum-usage-related defragmentation strate-
gies are performed, the BRR is always reduced (by at most 2.4% where 140 Tbps with
ISO-HT). These strategies help the network has more available space for incoming
requests. Among sorting strategies, they are showing a similar impact on defragmen-
tation. On the other hand, the spectrum-squeezing strategies, HT and PP, have a
little impact on the network. Although squeezed spectrum brings more continuous
and contiguous space, this effect does not last long due to highly dynamic connection
requests. To magnify the impact of HT and PP, the network must be defragmented
more often, but the network’s customers rarely accept too many modifications to
their connections. HT and PP can even decrease the continuity and contiguity of the
network’s spectrum when connections are distributed at both ends of the spectrum
range before defragmentation events. In such a case, HT and PP reduce the big
contiguous block in the middle of the network’s spectrum.

These results are also showing that adding push-pull spectrum squeezing does not
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improve spectrum minimizing. There are 5 out of 18 data sets where minimizing-
spectrum-usage-and-push-pull defragmentation strategy is worse than minimizing-
spectrum-usage goal and 3 cases where it has little advantage. This effect is explained
as follows. After the spectrum minimizing, connections are more evenly distributed
along the link spectrum, then push-pull spectrum squeezing is very limited to move
connections downward. Conversely, hop-tuning spectrum squeezing incorporates bet-
ter with spectrum usage minimizing. There are only 3 cases where hop-tuning spec-
trum squeezing does not offer support. It is due to hop-tuning strategy has more
freedom to squeezes spectrum, rather than push-pull.

Offered load (Tbps) Overall blocking rate (%) (all CDC, mixed Gbps)

CSO-HT CSO-PP CSO SPU-HT SPU-PP SPU ISO-HT ISO-PP ISO HT PP no_defrag

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 3.5 4.3 4.2 4.1 4.1 4.1 3.8 4.1 4.1 5.2 5.2 5.3

140 11.6 11.6 12.0 11.9 12.3 12.0 11.5 11.9 11.9 13.5 13.8 13.9

180 18.7 19.3 18.8 18.7 19.4 19.4 18.7 19.0 19.3 21.4 20.5 21.1

220 23.0 23.1 23.0 22.9 23.2 22.8 22.7 23.1 23.1 24.3 24.5 24.0

260 30.0 29.7 29.4 29.7 30.1 29.8 29.6 29.6 29.9 31.7 31.5 31.7

Table 20: Heuristic Performances

5.5.4 Impact of Contentionless ROADM

In this section, impact of contentionless property of ROADM is examined. Table 21
and 22 , for an offered load of 100 Tbps and 140 Tbps respectively, reports BBR of
full 2-DIA, full 3-DIA and 4-DIA network configurations. First of all, a full 2-DIA
configuration is having highest BBR in any with defragmentation or without defrag-
mentation simulations. Since a node 2 DIA blocks accept at most two overlapping
adding/dropping connections, it has the highest contention probability when routing
and rerouting connections. When nodes have more DIA blocks or nodes upgraded by
CDC ROADM, network’s BBR is reduced with most defragmentation strategies. In
addition, notice that simulations without defragmentation report tight BBRs of full
CDC configuration and others. It means Contentionless ROADM has a significant
impact on defragmentation strategies, rather than accepting connections. It is due to,
firstly, defragmentation with CDC ROADM has more freedom to modify connections
in terms of spectrum at add/drop side, and secondly, connection arriving and termi-
nating between two defragmentation events are highly dynamic resulting contention
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at links’ side more than add/drop side.

Offered load (Tbps)
Blocking rate (%) (100 Tbps, mixed Gbps)

RI-CSO-HT RI-CSO-PP RI-CSO RI-SPU-HT RI-SPU-PP RI-SPU RI-ISO-HT RI-ISO-PP RI-ISO HT PP no_defrag

all-CDC 3.5 4.3 4.2 4.1 4.1 4.1 3.8 4.1 4.1 5.2 5.2 5.3

4-DIA 4.3 4.5 4.4 4.1 4.3 4.5 4.2 4.6 4.7 5.0 5.4 5.2

3-DIA 4.6 4.5 4.7 4.5 4.8 4.4 4.3 4.7 4.4 5.1 5.2 5.1

2-DIA 5.4 5.6 5.4 5.6 5.9 5.7 5.3 5.7 5.5 6.1 6.2 6.4

Table 21: CDC ROADM vs CD ROADM, 100 Tbps

Offered load (Tbps) Blocking rate (%) (140 Tbps, mixed Gbps)

RI-CSO-HT RI-CSO-PP RI-CSO RI-SPU-HT RI-SPU-PP RI-SPU RI-ISO-HT RI-ISO-PP RI-ISO HT PP no_defrag

all-CDC 11.6 11.6 12.0 11.9 12.3 12.0 11.5 11.9 11.9 13.5 13.8 13.9

4-DIA 11.8 12.6 12.5 12.1 12.7 12.6 11.9 12.6 12.3 13.3 14.1 13.6

3-DIA 12.6 12.6 12.8 12.4 12.8 12.5 12.6 12.5 12.8 13.8 14.3 13.7

2-DIA 14.3 14.7 14.7 14.4 14.9 14.7 14.3 14.5 14.7 15.9 15.7 15.8

Table 22: CDC ROADM vs CD ROADM, 140 Tbps

5.5.5 Impact of Connection Granularities

In this section, we are going to examine presented defragmentation strategies to con-
firm that proposed algorithms performing independently from connection granularity.
In other words, presented simulations so far have a fixed fractions of connection gran-
ularities, but it is not the case in practice, thus we want to ensure that obtained
results are general. To do that, we set two extreme cases where all connection re-
quests asking for only the smallest/biggest granularity. Table 23 and 24 reports the
overall BBR of simulations in which connections are homogeneous rate of 100 Gbps
or 400 Gbps. We see that these tables together reinforce the efficiency of proposed
defragmentation strategies in different network conditions.

Offered load (Tbps) Overall blocking rate (%) (all CDC, 100 Gbps)

RI-CSO-HT RI-CSO-PP RI-CSO RI-SPU-HT RI-SPU-PP RI-SPU RI-ISO-HT RI-ISO-PP RI-ISO HT PP no_defrag

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 0.3 0.5 0.4 0.3 0.5 0.6 0.4 0.4 0.4 0.6 0.7 0.7

140 6.8 6.9 7.0 6.8 6.9 7.2 7.0 6.8 7.0 7.6 7.7 7.7

180 12.3 12.7 12.7 12.8 12.6 12.8 12.6 12.5 12.7 13.7 13.7 13.7

220 - - - - - - - - - - - -

260 - - - - - - - - - - - -

Table 23: Overal BBR of Homogeneous 100-Gbps Data Rate
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Offered load (Tbps) Overall blocking rate (%) (all CDC, 400 Gbps)

RI-CSO-HT RI-CSO-PP RI-CSO RI-SPU-HT RI-SPU-PP RI-SPU RI-ISO-HT RI-ISO-PP RI-ISO HT PP no_defrag

60 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.1

100 5.2 5.0 5.6 4.7 5.1 5.9 5.2 4.9 5.3 6.2 6.7 6.6

140 11.6 12.1 12.1 11.9 12.6 11.9 11.9 11.9 11.9 13.6 13.3 13.7

180 18.2 17.1 17.1 17.3 17.2 16.9 17.5 17.6 17.6 18.3 18.8 18.8

220 - - - - - - - - - - - -

260 - - - - - - - - - - - -

Table 24: Overal BBR of Homogeneous 400-Gbps Data Rate

5.6 Conclusion

In this paper, impact of CDC ROADM and defragmentation in EONs are inves-
tigated. We proposed a novel defragmentation strategy in which spectrum usage
minimizing and spectrum squeezing are combined. First, experiments show that our
novel defragmentation is better than other separated strategy. Second, it also shows
the advantage of CDC ROADM over 4-DIA CD ROADM when operation includes
defragmentation process.

For the future work, we will work to improve optimal algorithm for larger in-
stance sizes. In addition, this paper simplifies many practical factors, e.g., physical
interference, so we will consider them in next studies.
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Chapter 6

A Nested Decomposition Model for

Reliable NFV 5G Network Slicing

With the 5th generation of mobile networking (5G) on our doorstep, optical network
operators are reorganizing their network infrastructures so that they can deploy dif-
ferent topologies on the same physical infrastructure on demand. This new paradigm,
called network slicing, together with network function virtualization (NFV), can be
enabled by segmenting the physical resources based on the requirements of the appli-
cation level.

In this paper, we investigate a nested decomposition scheme for the design of reli-
able 5G network slicing. It involves revisiting and improving the previously proposed
column generation models, and adding in particular the computation of dual bounds
with Lagrangian relaxation in order to assess the accuracy of the solutions.

Extensive computational results show that we can get ε-optimal reliable 5G slicing
solutions with small ε (about 1% on average) in fairly reasonable computational times.

This paper is in preparation.

6.1 Introduction

The 5th generation of mobile networking (5G) is based on the key technologies of
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) in
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order to offer multiple services with various performance requirements, e.g., low la-
tency, high throughput, high reliability, or high security. SDN allows network oper-
ators to remotely (re)configure the physical network in order to reserve on demand
networking resources. Virtual compute nodes (i.e., node with computing resources
such as servers or a data center) can enable Virtual Network Functions (VNFs) run-
ning on top of general-purpose hardware, such as a cloud infrastructure.

Within the context of 5G networks, network slicing is an end-to-end logical net-
work provisioned with a set of isolated virtual resources on a shared physical in-
frastructure. Slices are provided as different customized services to fulfill dynamic
demands, with flexible resource allocations. In other words, a network slice is a self-
contained network with its own virtual resources, topology, traffic flow, and provi-
sioning rules. Network slicing is therefore a key feature of 5G networks, which allows
the efficient resource share of a common physical infrastructure and consequently,
reduces operators’ network construction costs.

An interesting feature of SDN is its ability to process traffic while forwarding
it, using "network functions" or "network services". The latter ones can implement
header processing and payload processing functions, such as network address trans-
lation (NAT), firewall, or domain name system (DNS). They are VNFs and can be
implemented in software on conventional processing systems (e.g., servers or data
centers) that are co-located with networking equipment. The sequence of functions
that need to be set up for a specific flow is referred to as a "service chain."

In this paper, we propose a 5G network slicing design model and algorithm, based
on nested column generation. It aims at maximizing the number of granted slices
while addressing the reliability requirements of network slices. In order to avoid the
costly exact solutions of the sub-problems, we discuss how to compute bounds using
Lagrangian relaxation, so that we can assess the accuracy of the output solutions.

The paper is organized as follows. Section 6.2 contains the literature review.
Section 6.3 provides the detailed problem statement of the design of reliable 5G
network slicing. An original nested decomposition model is proposed in Section 6.4.
Algorithmic aspects are covered in Section 6.5. Numerical results are described in
Section 6.6 and conclusions are drawn in the last section.
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6.2 Literature Review

6.2.1 5G Network Slicing

Several papers and surveys have already appeared on 5G network slicing and described
their various challenges and opportunities [66, 67]. Similarly, many studies and several
surveys have been devoted to Network Function Virtualization (NFV), e.g., [68].

Very few studies look at the combination of reliable 5G slicing and NFV. Tang et
al. [69] propose a MILP for 5G network slicing that maximizes the number of granted
slices while minimizing their failure rate, without providing protection mechanisms.

Some authors looked at network slicing and NFV, more often in the wireless
networks than in the wired optical ones. Challenges are discussed in, e.g., [70, 66].

Lin et al. [71] propose an exact algorithm using column generation aiming to
minimize the total embedding cost in terms of spectrum cost and computation cost
for a single virtual network request. Moreover, validation of the exact algorithm
is made on a six node network. Large data instances are solved using a heuristic.
Destounis et al. [72] also propose an exact column generation algorithm for network
slicing without the NSF features. They solved data instances up to 200 nodes. Carella
et al. [73] exemplified Network slicing as an addition to the current Cloud architecture
and evaluated on a testbed architecture based on the Fraunhofer FOKUS and TU
Berlinopen source Open Baton toolkit.

6.2.2 Nested Column Generation Decomposition

The idea of nested column generation is not new: several authors have already in-
vestigated it for various problems, e.g., Song [74] in logistics, Dohn and Mason [75]
for staff rostering, Karabuk [76] for scheduling paratransit vehicles, Cóccola [77] for
inventory-routing problem and Vanderbeck [48] for two-dimension cutting-stock.

However, most studies did not worry about assessing accurately the quality of
the output solutions, except, e.g., [48, 78]. In [78], authors developed time consum-
ing branch-and-price algorithms by which they could obtain optimal solutions. On
the other hand, Vanderbeck proposed to leverage Lagrangian Relaxation to estimate
bounds of a nested column generation algorithm [48], without solving exactly pricing
problems. In this work, we reuse this methodology to evaluate our solutions.
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Figure 17: 5G Reliable Slicing

6.3 Problem Statement and Notations

6.3.1 Rel_5G_NFV Problem Statement

Consider a physical network Gp and a set K of connections, indexed by k. The Reli-
able 5G NFV Network Slicing (Rel_5G_NFV) problem consists of embedding/mapping
the maximum number of slices onto the physical network while ensuring each slice is
individually protected against any single link failure. We assume each slice is asso-
ciated with a given application, that is characterized with the use of a single service
function chain.

6.3.2 Notations

Physical Network. The physical network Gp = (V p, Lp) is defined by its set of
nodes V p, indexed by v, set of links ℓ ∈ Lp, with capacities capv ≥ 0 and capℓ ≥ 0

on both nodes and links, respectively.

5G Slicing. Each slice S ∈ S is associated with a virtual network S = (V S, LS,capS),
which is defined by a set of virtual nodes V S (indexed by v′), and virtual links LS

(indexed by ℓ′), with capacity requirements capS
v′ and capS

ℓ′ , respectively.
Virtual Networks. An embedding of S onto Gp consists of mapping:

• Each virtual node v′ ∈ V S onto a physical node v ∈ V p

• Each virtual link ℓ′ onto a loop-free physical path, connecting two physical nodes
u and v, to which the virtual nodes u′ and v′ have been mapped

124



• Each virtual "path" is protected by a virtual path, whose mapping is physical
link-disjoint from the mapping of the first path.

A feasible embedding is an embedding in which all physical link and node capacity
constraints are satisfied; that is, the sum of capacity demands of all virtual nodes
embedded on a physical node is less than the capacity of this physical node, and the
sum of the requests of all the virtual links going through a physical link does not
exceed the capacity of this link.

In order to simplify the model and the algorithm, we work directly with the
mapping of the virtual nodes/links, i.e., with physical nodes/links, without expressing
explicitly the virtual links and nodes.
Service Function Chaining (SFC). Let F be the set of all services functions,
indexed by f , and let C be the set of all service function chains, indexed by c. Any
chain c is defined by an ordered sequence of nc functions: c = {f0, f1, .., fnc−1}. The
routing of any demand in a slice governed by SFC c must go through virtual compute
nodes hosting the functions of c.
Application (Slice) Demand. Demands are provided for each slice S, with each
slice being associated with one particular application, characterized by a given SFC
cS. We denote by Ksd,cS the demand for node pair (vs, vd) ∈ SDcS , i.e., with traffic in
slice S, subject to the requirement of SFC cS, and by ∆sd,c

fi
the required computational

resource of function fi for demand Ksd,cS .

6.4 A Nested Decomposition Scheme

We now present a nested decomposition scheme, in which at the upper layer of the
decomposition, we select the slice configurations for each slice demand. Each slice
configuration is defined by a virtual network as defined in Section 6.3.2, which satisfies
the demand KcS associated with its required application and corresponding SFC cS.

Let Γ, indexed by γ, be set of all possible slice configurations. Each slice configura-
tion γ is characterized by a slice S and its assigned resources. Each slice configuration
γ is characterized by its slice index S, its node assigned resources Rγ

v , and its link
assigned resources Bγ

ℓ . We have Γ =
⋃︁
c∈C

ΓcS .

In order to simplify the notations, we will simply write c unless there is confusion.
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6.4.1 Master Problem

Master problem maximizes the grade of service (GoS) subject to capacity constraints.
It requires only one set of variables: zγ = 1 if potential slice virtual network γ

associated with c is selected, 0 otherwise, for γ ∈ Γc and c ∈ C.
Objective:

max
∑︂
c∈C

∑︂
γ∈Γc

∑︂
(s,d)∈SDc

Ksd,c zγ (6.1)

subject to: ∑︂
γ∈Γc

zγ ≤ 1 c ∈ C (6.2)

∑︂
c∈C

∑︂
γ∈Γc

Rγ
vzγ ≤ capv v ∈ V p (6.3)

∑︂
c∈C

∑︂
γ∈Γc

Bγ
ℓ zγ ≤ capℓ ℓ ∈ Lp (6.4)

zγ ∈ {0, 1} γ ∈ Γ (6.5)

Constraints (6.2) impose to select at most one virtual network (slice) for demand
associated with c ∈ C. Constraints (6.3) enforce the compute node capabilities, while
constraints (6.4) enforce the link transport capacities.

6.4.2 Slicing Pricing Problem (PPslice)

In order to be able to compute the required node and link resource for a given slice, the
pricing problem, or equivalently, the slice configuration generator, needs to provision
the demand Kc. We define the following parameters.
Parameters:

• π ∈ Π: a logical path that defines a service path with chain c from s to d. Note
that a logical path may go through a given physical link several times due to
the sequence of functions in c.

• Πc
sd ⊆ Π: set of all potential paths for service chain c from s to d.

• ai,πv = 1 if, on path π, function fi is hosted on physical node v, 0 otherwise.

• δπℓ = number of times path π goes through link ℓ
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• xπ
ℓ = 1 if logical path π goes through physical link ℓ at least once, 0 otherwise.

Variables:

• ysd,cπ,p = 1 if path π is the primary path to provision traffic from s to d, 0
otherwise.

• ysd,cπ,b = 1 if path π is the backup path to provision traffic from s to d, 0 otherwise.

Objective:

max RCPPslice =
∑︂

(s,d)∈SD

Ksd,c−u(6.2)
c −

∑︂
v∈V p

u(6.3)
v

∑︂
(s,d)∈SD

nc−1∑︂
i=0

∑︂
π∈Πc

sd

∆sd
fi
ai,πv (ysd,cπ,p +ysd,cπ,b )

−
∑︂
ℓ∈Lp

u
(6.4)
ℓ

∑︂
(s,d)∈SD

∑︂
π∈Πc

sd

Ksd,cδπℓ (y
sd,c
π,p + ysd,cπ,b ) (6.6)

Constraints:

One primary path per demand:∑︂
π∈Πc

sd

ysd,cπ,p = 1 (vs, vd) ∈ SD (6.7)

One backup path per demand:∑︂
π∈Πc

sd

ysd,cπ,b = 1 (vs, vd) ∈ SD. (6.8)

Link disjoint primary and backup paths:∑︂
π∈Πc

sd

xπ
ℓ (y

sd,c
π,p + ysd,cπ,b ) ≤ 1 (vs, vd) ∈ SD, ℓ ∈ Lp. (6.9)

Link and node capacities:

(Rv =)
∑︂

(vs,vd)∈SD

nc−1∑︂
i=0

∑︂
π∈Πc

sd

∆sd
fi
ai,πv (ysd,cπ,p + ysd,cπ,b ) ≤ capv v ∈ V p (6.10)

(Bℓ =)
∑︂

(vs,vd)∈SD

∑︂
π∈Πc

sd

Ksd,cδπℓ (ysd,cπ,p + ysd,cπ,b ) ≤ capℓ ℓ ∈ Lp. (6.11)
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6.4.3 Path Pricing Problem (PPsd): Service path for Demand

from vs to vd

For a given (vs, vd) ∈ SD, we look for the generation of a path π from vs to vd, which
can improve the linear programming relaxation of PPslice. The following formulations
are developed for the primary path pricing problem. However, the backup path pricing
problem is similar when we replace u

(6.7)
sd,p by u

(6.8)
sd,b .

Variables:

• xπ
ℓ = 1 if path π uses ℓ, 0 otherwise.

• δπℓ = number of times path π goes through ℓ.

• φsd,c,i
ℓ = 1 if, for service chain c, the path from vs to vd uses link ℓ to go from the

location of function fi−1 to the location of function fi, 0 otherwise. Note that,
when i = 0, φsd,c,i

ℓ represents the path from the source to the first function,
when i = nc, it is the path from the last function to the destination.

• aiv = 1 if the ith function (fi) of chain c is installed on node v, 0 otherwise.

Objective:

max

(︄
−
∑︂
v∈V p

u(6.3)
v

nc−1∑︂
i=0

∆sd
fi
aiv −

∑︂
ℓ∈Lp

u
(6.4)
ℓ Ksd,cδπℓ )

)︄
− u

(6.7)
sd,p −

∑︂
ℓ∈Lp

xπ
l u

(6.9)
sd

−
∑︂
v∈V

nc−1∑︂
i=0

∆sd
fi
aivu

(6.10)
v −

∑︂
ℓ∈L

u
(6.11)
ℓ Ksd,cδπℓ (6.12)

Constraints:

Aggregation of link usage:

δπℓ =
nc∑︂
i=0

φsd,c,i
ℓ ℓ ∈ Lp. (6.13)

Multiple usage of a link:

φi
ℓ ≤ xπ

ℓ ℓ ∈ Lp, i ∈ 0, .., nc − 1. (6.14)

This set of constraints ensures that xℓ keeps track of physical link ℓ if it is used by
any logical link. Indeed, a link can be used multiple times by a given path, this set of
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constraints result xℓ as used links, no matter how many times they are used. These
variables play the role in the upper pricing where backup path and primary path
must be disjoint.
Flow Conservation constraints

∑︂
ℓ∈ω+(v)

φsd,c,0
ℓ −

∑︂
ℓ∈ω−v

φsd,c,0
ℓ + a0v =

⎧⎨⎩1 if v = vs

0 else
v ∈ V p (6.15)

∑︂
ℓ∈ω+(v)

φsd,c,nc

ℓ −
∑︂
l∈w−v

φsd,c,nc

ℓ − anc−1
v =

⎧⎨⎩−1 if v = vd

0 else
v ∈ V p (6.16)

∑︂
ℓ∈ω+(v)

φsd,c,i
ℓ −

∑︂
ℓ∈ω−(v)

φsd,c,i
ℓ + aiv − ai−1

v = 0 v ∈ V p, 0 < i < nc.

(6.17)

Constraints (6.15) ensure that demand starts at the source node, then is transferred
through a path to the location of first function (unless first function is located at the
source node). Similarly, constraints (6.16) make sure that the demand is delivered to
the destination after it is processed by the last function (unless the last function is
installed at the destination node). From the location of function i− 1 to the location
of function i, constraints (6.17) define a path to connect them.

We next use constraints to eliminate the ineffective solutions and, as a conse-
quence, those constraints help to improve the quality of the columns, i.e., slice con-
figurations.
A unique node location for each function occurrence in the service chain:∑︂

v∈V p

aiv = 1 i = 0, 1, . . . , nc. (6.18)

Node capacity constraints:

nc−1∑︂
i=0

∆fia
i
v ≤ capv v ∈ V p (6.19)

Link capacity constraints:

δπℓ K
sd,c ≤ capℓ ℓ ∈ Lp. (6.20)

Domain constraints:
xπ
ℓ , φ

π
ℓ , a

i
v ∈ {0, 1}; δπℓ ∈ Z+ (6.21)
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We will discuss in the next section how to solve efficiently the path pricing prob-
lems, without requiring the solution of ILP programs at each iteration of the column
generation algorithm.

6.5 Nested Column Generation Algorithm

Column generation [79] is based on the fact that, in the simplex method, the solver
does not need to simultaneously access all variables of the problem. In fact, a solver
can start working only with the basis (a particular subset of the constrained variables),
then use a reduced cost to choose the other variables to access, as needed. It is today
a very well known and powerful technique [28, 80], while column generation modeling
remains an art when the decomposition is not deduced from the application of the
Dantzig-Wolfe decomposition.

We next provide the details of our nested column generation algorithm and how
we estimated the accuracies of the resulting solutions.

6.5.1 Nested CG and ILP Solution

The conceptual column generation scheme alternates between solving a restriction of
the original problem, usually called restricted master problem, and a column gener-
ation phase which is used to augment the set of variables/columns of the restricted
master problem using a so-called pricing problem. Here, the pricing problem can be
decomposed into |S| slice pricing subproblems.

In order to guarantee reaching an optimal LP solution, it is required to solve at
least once the pricing problem. In this study, we propose to solve the slice pricing
problem, indeed, the slicing pricing subproblems using again a column generation
algorithm. As these last subproblems are Integer Linear Programs (ILPs), and as we
did not develop any branch-and-price algorithms to solve them, they are never solved
optimally, and therefore we need to derive a linear relaxation bound in order to get
upper bounds, see next section for the details.

In any case, at both decomposition levels, we use the column generation algo-
rithm as long as we can derive new improving columns. For integer solutions, when
we cannot improve anymore the LP solution, we use an ILP solver on the current
constraint matrix, i.e., the constraint matrix made of all the columns generated so
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far, and deduce an ILP solution.
Flowcharts in Figure 18 summarize the algorithm. Accuracy of the output solu-

tions is assessed with ε, which is defined as follows:

ε =
zlp − z̃ilp

z̃lp
,

where zlp is an upper bound of the LP solution of problem (6.1)-(6.5), whose cal-
culation is developed in Section 6.5.2. z̃ilp is the best found ILP solution (hence a
lower bound on the ILP solution), as derived by the solution of the ILP solver on the
constraint matrix of (6.1)-(6.5) when no more improved column can be generated by
the solution of the slice pricing problem (6.6)-(6.11).

In order to speed-up the solution of the path pricing subproblems, we first use
a shortest path algorithm after noting that all the link costs are positive, taking
into account the values of the dual variables. It is worth noting that the usage of
a shortest path algorithm does not necessarily guarantee the generation of feasible
lightpaths with respect to link and node capacities. However, those capacities are
enforced in the slice pricing subproblems, and therefore taken care. When the path
pricing subproblems are not able to generate improving paths (i.e., with a positive
reduced cost), then we use an ILP solver to solve them, with the guarantee to satisfy
all node and link capacities. More details about solution process of PPslice are given
in Section 6.5.3.

6.5.2 Solution Accuracy

The nested column generation framework allows the efficient exploitation of the sub-
structures of a problem at the expense of a more difficult exact solution of the linear
programming relaxation as it a priori requires the exact solution of the upper level
pricing problem (here the slice PPslice pricing problem), i.e., a branch-and-price al-
gorithm. In order to overcome that difficulty, we propose to compute an upper bound
on the objective (i.e., reduced cost) of the PPslice problem, and then deduce an upper
bound on the optimal LP solution of the Rel_5G_NFV master problem (6.1)-(6.5).
It then allows the evaluation of the accuracy (gap) of output ILP solutions using the
algorithm described in the previous section.

Consider the compact formulation associated with (6.1)-(6.5), i.e., the compact

model such that when applying a Dantzig-Wolfe decomposition to it, we derive model
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(a) Upper level flowchart

(b) Lower level flowchart

Figure 18: Flowcharts

(6.1)-(6.5). Let

[compact] max{cx : Ax ≤ b, x ∈ X}.

Using the Dantzig-Wolfe decomposition of Model compact, the slicing pricing
problem, PPslice, can be written as follows:

RC⋆
PPslice

= max {c x : x ∈ Xpricing} . (6.22)

We simply write RC to shorten RCPPslice when there is no ambiguity so that RC⋆
PPslice

=
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RC⋆.
In Figure 19, we rank the relative positions of the various values that we discuss

below. Question marks indicate values that are not computed accurately, and that
are upper/lower bounded.

The Lagrangian relaxation of the compact Model can be written:

LR(u) = max
x∈X

⎧⎪⎨⎪⎩L(u, x) = ub+ (c− uA)x⏞ ⏟⏟ ⏞
RC(u,x)

⎫⎪⎬⎪⎭ . (6.23)

Following Vanderbeck [48] and Pessoa et al. [50], a valid upper bound for the com-

pact problem can be computed using Lagrangian Relaxation (LR). At any iteration
τ of the column generation algorithm, i.e., when we re-optimize the linear relaxation
of the master problem (6.1)-(6.5), the optimal xRC⋆ that maximizes L(uτ , xRC⋆) can
be written:

xRC⋆ = argmax
x∈X

L(uτ , x) = argmax
x∈X

RC(uτ , x)

= argmax
i∈I

RC(uτ , x
i) = arg max

x∈Xpricing
RC(uτ , x),

where xi, i ∈ I denote the extreme points of X, see [81], Section II.3.6.
As xRC⋆ is known only if we solve PPslice exactly, we can bound it in order to

get an upper bound, zlp, on the optimal value of the linear programming relaxation.
Indeed, RC⋆,τ

ilp ≤ RC⋆,τ
lp , where RC⋆,τ

lp is the optimal value of the LP relaxation of
PPslice at iteration τ of the column generation algorithm.

Consequently, L(uτ , xRC⋆) = uτb+ RC⋆,τ
ilp ≤ uτb+ RCτ

lp = zτlp.

"̃#$% "̃$% ̅"$%
"#$%∗ =? "$%∗ =? LR ,-, /01∗ =?

Figure 19: Ranking of the various LP, LR and ILP values.

At each iteration τ of the column generation algorithm, each pricing problem is
decomposed into |S| elementary slice pricing problems of the type PPslice. It implies:

zτlp = uτb+
∑︂
S∈S

RC⋆
lp (PPslice(S)) .
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Note that the Lagrangian relaxation upper bound does not improve monotonically [50],
thus, in order to derive the best possible upper bound, the algorithm must compute

zlp = min
τ

zτlp = min
τ

{︄
uτb+

∑︂
S∈S

RC⋆,τ
lp (PPslice(S))

}︄
.

It remains possible to add several columns (i.e., slices) at a time (whose ˜︂RC
τ

ilp (PPslice(S)) >

0) to the master problem (6.1)-(6.5) in one iteration, as long as they are generated
with the same set of dual values. Note that output ILP solutions of PPslice(S) are not
guaranteed to be optimal, hence the notation ˜︂RC to denote a heuristic solution of the
slice pricing problem. Indeed, the algorithm has to go through all slice subproblems
in each iteration to ensure the correctness of the Lagrangian bound.

6.5.3 Solution Process for PPslice

Note that, when the linearized PPslice pricing model is solved by column generation
algorithm, any feasible solutions of the PPsd pricing problem whose positive reduced
costs can be integrated into the current restricted problem. Therefore, it is not
necessary to solve exactly PPsd model as long as an efficient heuristic can find a
feasible solution with positive reduced cost.

If we remove the terms xπ
ℓ from the pricing problem PPsd, namely

max

(︄
−
∑︂
v∈V p

u(6.3)
v

nc−1∑︂
i=0

∆sd
fi
ai,πv −

∑︂
ℓ∈Lp

u
(6.4)
ℓ Ksd,cδπℓ )

)︄
− u

(6.7)
sd,p

−
∑︂
v∈V

nc−1∑︂
i=0

∆sd
fi
ai,πv u(6.10)

v −
∑︂
ℓ∈L

u
(6.11)
ℓ Ksd,cδπℓ (6.24)

subject to (6.13) - (6.18) and (6.21). This a simple shortest path problem in the
layered graph, as shown in Section V-B in [82], with weight wi

ℓ of the link ℓ at layer
i is equal to

wi
ℓ =

∑︂
ℓ∈L

u
(6.11)
ℓ Ksd,cδπℓ +

∑︂
ℓ∈Lp

u
(6.4)
ℓ Ksd,cδπℓ , (6.25)

and the weight of the link going from layer i to layer i+ 1 at node v is equal to

wi
v =

∑︂
v∈V p

u(6.3)
v

nc−1∑︂
i=0

∆sd
fi
ai,πv +

∑︂
v∈V

nc−1∑︂
i=0

∆sd
fi
ai,πv u(6.10)

v . (6.26)
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Since the dual values of the constraints (6.11), (6.4), (6.10) and (6.3) cannot be
negative, we use the Dijkstra algorithm to solve it. If link ℓ ∈ Lp appears in the
found path by the Dijkstra algorithm, then it is added up to the actual reduced cost
of the path. If the found path’s reduced cost is positive, then it is given to the upper
restricted problem. Otherwise, we will compute a upper bound (which is described
below). Solving this pricing problem’s ILP formulation is needed only when the upper
bound is positive.

To compute a upper bound, we can use Dijkstra algorithm one more time to
quickly estimate a PPsd problem’s upper bound. Namely, that is,

max −
∑︂
ℓ∈Lp

u
(6.9)
sd xπ

l (6.27)

subject to (6.13) - (6.18) and (6.21). This problem can be easily reduced to a simple
shortest path in the original graph with the weight wℓ of the link ℓ is

wi
ℓ = u

(6.9)
sd,ℓ (≥ 0). (6.28)

The sum of solutions of these two subproblems is an upper bound for the original
PPsd pricing problem. If the upper bound is non-positive, then this pricing problem
is skipped due to it is impossible to generate an improving column for the restricted
PPslice in this round. Otherwise, this pricing problem’s ILP formulation is solved
exactly.

To improve the solution’s accuracy, for each round, after all the pricing problems
are solved, we reconsider successful pricing problems to immediately generate link-
disjoint paths according to the generated paths. For each pricing problem offered an
improving primary/backup path, this path is then removed from the graph and the
pricing problem is modified accordingly. If the modified pricing problem produces a
backup/primary path with a positive reduced cost, then this path is also given to the
restricted master problem. In other words, for each connection request, in each round,
we try to generate a pair of disjoint paths for its primary and backup connections. If
we only use a classical solution process, i.e., generate one path (primary or backup)
for one connection request at each round, we observe that the accuracy is very low.

This low accuracy is due to the link-disjoint constraints (6.9) in the restricted
problem PPslice are easily satisfied when the variables are linear values, although
the primary and backup paths are sharing links. For example, if there is only one
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path π is generated as both primary and backup path for connection request sd, then
ysd,cπ,p = ysd,cπ,p = 0.5 in the linearized problem. However, this case leads to an infeasible
ILP formulation. In addition, this situation also forces the process early terminated
as it cannot produce feasible slice configuration resulting in a lose upper bound. By
avoiding directly this situation for each found path, the solutions are really closed to
the bounds as we show in the experiment section.

6.6 Numerical Results

We implemented the model and algorithm described in the previous sections with a
C++ program on a Linux computer with 773727 MB RAM and Intel Xeon E5-2687W
v3 @ 3.10 GHz 2 processors, 20 cores. We first describe the data sets, and then we
report on the performance of the algorithm.

6.6.1 Data Sets

We considered two topologies from SNDLib [83] and their characteristics are described
in Table 25. We re-use the traffic matrix of [82] with four SFCs. In order to derive
slice demand, for each original SFC in [82], we divided the overall traffic in 4 subsets,
resulting into traffic demands for 16 slices. Transport capacities were set with the
optimal solution when allowing only one NFV node.

Topologies
# # # connections # Offered

nodes links per slice slices load

internet2 10 34 90 16 1Tb
atlanta 15 44 210 16 1Tb
germany 50 176 2450 16 1Tb

Table 25: Data sets

6.6.2 Model and Algorithm Efficiency and Accuracy

We conducted experiments with the same link transport capacities, and increased
node capacities as we increase the number of NFV (compute) nodes. Corresponding
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accuracies and computational times (seconds) are reported in Table 26 and 27. We
observe that resulting accuracies are less than 3% except for 4 cases where the gap
can reach up to 5.6%. Data Instances are easier to solve as the number of NFVs
is increasing, and computational times are fairly reasonable taking inot account the
accuracies and the complexity of the design problem of reliable 5G network slicing.

The last four columns of these two tables report the number of generated path
configurations and solved path pricing problems. The noticeable differences between
these numbers represent the remarkable efficiency of the heuristic algorithm to pro-
duce promising paths during the column generation process.

# NFV
ϵ (%)

Generated configurations Solved PPsd

nodes Heuristic ILP Heuristic ILP

1 3.8 14584 28000 373000 65750
2 2.1 9696 16736 365608 67152
3 0.4 6992 5128 284296 7324
4 0.4 6440 2808 279700 4112
5 0.4 6208 2864 277064 4844
6 0.4 5760 976 267840 1784
7 0.4 5760 992 267840 1792
8 0.1 6000 4592 296400 11452
9 0.1 5760 728 267840 1372
10 0.1 5760 640 267840 1328

Average 0.8 7296.0 6346.4 294742.8 16691.0

Table 26: Nested CG performance - Internet2

6.6.3 Parallel Solution Processes

As the slice generators/path generators are independent of each other, the solution
process can be accelerated by parallel programming. Observe that the number of
available threads is unable to provide one thread for each path generator in each
iteration of the master problem, we propose two parallel solution processes:

• Parallel slices: in each iteration, each slice generator is corresponding to one
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# NFV
ϵ (%)

Generated configurations Solved PPsd

nodes Heuristic ILP Heuristic ILP

1 5.7 31836 45166 1600732 94095
2 4.3 63770 117200 2172902 493070
3 2.9 24534 35900 1662711 91008
4 2.9 20312 22960 1574452 49168
5 2.9 18768 20336 1558660 38512
6 2.9 17504 19856 1564884 32420
7 0.0 19112 24504 1610940 58332
8 2.9 17280 16488 1545524 37928
9 0.0 17320 17864 1555496 30524
10 0.0 17080 19200 1562200 34412
11 0.0 17160 17784 1552972 34784
12 2.9 16568 19512 1556076 30720
13 0.0 16384 20336 1557700 30628
14 0.0 16400 15072 1540144 23296
15 0.0 16168 13984 1518928 22052

Average 1.8 22013.1 28410.8 1608954.7 73396.6

Table 27: Nested CG performance - Atlanta
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thread. In other words, slice generators are solved in parallel.

• Parallel paths: in each iteration, for each slice generator, path generators of this
slice generator are divided into parallel groups. In other words, slice generators
are solved sequentially, each slice generator is then provided with a given number
of parallel threads. Path generators of this slice are equally distributed into
these threads.

In Table 28 and 29 we report the CPU time (in seconds) of these parallel solution
process.

We observe that the first parallel process offers the most acceleration although it
does not require the highest number of parallel threads. The second parallel solu-
tion process, although it can use more threads, involves a lot of parallel initiation,
communication and termination, thus it is less efficient. Another explanation is that
the slice generators require closely similar processing times while the path generators
are highly different, e.g., a path between two adjacent nodes and a path between two
far nodes. Therefore the wasted time waiting for all threads to finish are different
between these two parallel processes.

For the Germany topology, because it is a huge data set to our algorithm, we are
only able to solve two instances for the parallel slices process, as reported in Table 30.
Note that, each solved PPsd can produce two paths (one primary and one backup),
because primary and backup PPsd have the same formulation except a constant value.
Thus, the number of generated path configurations by ILP (heuristic) can be at most
double the number of solved PPsd by ILP (heuristic).

6.6.4 Network Spectrum Usage

We investigated how the network spectrum is used when the number of nodes with
compute capacities is increasing, i.e., when there are more network functions dis-
tributed all over the network. We provide the results for the atlanta topology in
Figure 20.

Plots of Figure 20 show that it is more or less the same subset of links which
are the most loaded, but their load vary with the number and location of the NFVs,
and the increase of the overall network load when the number of NFVs is increasing.
Sometimes we see a drop in the load of a link, which is explained by the increase and
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# NFV Parallel slices Parallel paths

nodes (16 threads) 1 thread 30 threads 60 threads 90 threads

1 89.7 871.7 172.1 180.2 197.2
2 98.4 978.2 205.4 228.7 250.3
3 34.1 370.7 65.6 63.2 61.2
4 31.4 349.3 60.8 57.9 57.2
5 33.7 359.3 63.1 61.5 58.9
6 29.7 334.3 57.3 56.3 52.7
7 29.6 339.7 55.9 55.3 51.9
8 47.0 485.6 86.5 88.2 83.8
9 30.6 353.8 56.4 56.1 52.7
10 31.9 359.3 56.8 56.6 52.5

Table 28: Parallel Programming performance - Internet2

position of more NFVs. In conclusion, dimensioning of the link is very dependent on
the number and location of the NFVs.

In terms of protection requirements, we investigate the amount of bandwidth
reservation for backup paths against the resource allocated to the primary ones. In
Figure 21, we report the bandwidth allocation for each instances of the Internet2
topology. It is showing that the backup paths require significantly more resource than
the primary ones (about 150%). It confirms previous network provisioning studies
that finding disjoint backup paths is more difficult than the primary ones.

We also investigated the throughput evolution when the number of NFV nodes
increases and results are depicted in Figure 22 for the atlanta network. We observe
that as soon as we reach four or five NFV nodes, then the throughput does not
increase significantly anymore.

6.7 Conclusions

We designed a first efficient nested decomposition scheme for reliable 5G slicing.
Future work will include several algorithmic enhancements such as new modeling of
pricing problems and greedy heuristics to generate an initial solution (i.e., initial
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# NFV Parallel slices Parallel paths

nodes (16 threads) 1 thread 30 threads 60 threads 90 threads

1 297.5 3316.3 541.4 536.9 547.2
2 1127.0 8488.2 2418.1 2282.2 2603.4
3 467.5 4108.8 689.7 754.3 731.7
4 325.4 3255.8 535.5 524.1 546
5 286.1 3103.8 490.6 468.9 497.4
6 276.9 3095.2 473.3 449.6 477
7 362.8 3643.8 594.3 579 607.1
8 294.8 3256.6 489.8 472.7 490.3
9 317.8 3349.3 513.4 486.9 505.2
10 325.1 3480.3 529 504.7 509.8
11 330.2 3521.6 531.2 503.7 518.6
12 328.8 3536.4 528.1 493.7 510.7
13 323.8 3574.3 527.1 496.9 508.4
14 314.3 3530.5 505.9 480 500
15 309.7 3541.3 488.5 463.4 479.3

Table 29: Parallel Programming performance - Atlanta

# NFV
ϵ (%) CPU (s)

Generated configurations Solved PPsd

nodes Heuristic ILP Heuristic ILP

50 0.0 237558 216778 214970 194472228 135397
40 0.0 211231 194278 208240 194710738 131067

Table 30: Nested CG performance - Germany

141



0 10 20 30 40
10

20

30

40

50

60

70

80

90

100

Link ID

1 NFV 8 NFVs 15 NFVs

Figure 20: Physical Link Load - atlanta Topology
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columns at both decomposition levels).
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

To recap, in this thesis, we investigate three topics:

• Defragmentation at Logical Layer,

• Defragmentation at Optical Layer,

• 5G network slicing.

For defragmentation at Logical Layer, results in Chapter 2 confirm the usefulness
of the defragmentation process at high layers of networks. Therein, the first mathe-
matical model computes a minimum bandwidth provisioning and it is not guaranteed
to be MBB reachable as the model does not take into account the sequence of rerout-
ings. We next propose a second model that computes an MBB sequence that brings
the network provisioning as close as possible to the minimum bandwidth network pro-
visioning given by the first model. Observe that the resulting network provisioning
of the second model is not necessarily the minimum bandwidth network provisioning
that is MBB reachable. Indeed, not only there may be several minimum bandwidth
network provisioning solutions (and we arbitrarily consider one of them) with differ-
ent MBB reachability status, but there also may exist better MBB reachable network
provisioning with minimum bandwidth requirements. Consequently, we address those
shortcomings in the next chapter.

In Chapter 3, we proposed a mathematical model that computes the MBB reach-
able network provisioning with minimum bandwidth requirement. This modelling not
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only allows the solution of larger instances of the state of the art but also confirms
the high efficiency of the heuristics proposed in Chapter 2.

Although models in Chapters 2 and 3 offer a significant leap in comparison with
the literature, they have some limitations as we do not consider parallel and multiple
rerouting conditions. Thus, in Chapter 4, we develop enhanced and more complex
models for the parallel-and-multiple MBB rerouting problem. Preliminary results
show that parallel rerouting reduces by about ten times the algorithm’s computational
times and the number of required rerouting events (corresponding to the system’s
defragmentation real-time duration). However, it remains to implement the multiple
rerouting feature to evaluate its impact on defragmentation, see future work in Section
7.2.

At Optical Layer, the defragmentation problem has more complicated conditions
coming from physical devices and connections. In the networks of the current cus-
tomers of Ciena, most of ROADM nodes are CD ROADM or CDC ROADM, while
connections have contiguous and continuous constraints (i.e., constraints related to
provisioning in elastic optical networks). In Chapter 5, results show that defragmen-
tation in the optical layer offers less impact on the optimization of the spectrum usage
if we trigger defragmentation in the same way as in the logical layer. Indeed, because
of the requirements of the continuity and contiguity constraints, it is more difficult to
optimize the bandwidth usage, and consequently, we need to defragment more often.
Furthermore, we must investigate more thoroughly the characteristics of this layer in
order to optimize its spectrum-usage and efficiently squeeze its spectrum. Besides,
experimented 4-DIA CD ROADM configuration shows that we can provision a num-
ber of connections that is very close to the CDC ROADM configuration, so that, in
practice, CDC ROADMs do not allow a signigicant increase of the throguhput. Net-
work providers can use this result to select the right technology when they upgrade
or deploy new network nodes.

The last part of this thesis is successful to propose an efficient nested decompo-
sition scheme for the 5G network slicing problem. In terms of the decomposition
method, it showed that the nested decomposition scheme does not lose the optimal
perspective in this problem: thanks to a Lagrangian relaxation bound, we can as-
sess the accuracy of the solutions, without developing a branch-and-price method.
Regrading 5G virtual networks, the proposed framework can evaluate heuristics for
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allocating resources with very dynamic virtual slice demands.

7.2 Future Work

For reoptimization at Logical Layer, we do not take into account protection schemes.
Besides, a network may serve several customer service level agreements, so the net-
work operator treats differently classified sets of connections. Regarding the size of
practical systems, our proposed modelling still needs more investigation and improve-
ment so that it can scale and evaluate meaningful sizes of instances. It also remains
to implement multiple rerouting features to evaluate its impact on defragmentation.

For Optical Layer, experiments are conducted with randomly generated traffic
and not networks with an optimized dimensioning. Indeed, benchmark data sets do
not include optimized dimensioning with respect of the traffic matrices. However,
in practice, network operators do optimize their link capacities, and the number of
ports of their switching equipment. While this has usually no impact/drawback when,
e.g., evaluating the performance of network provisioning algorithms, this may not be
the case for evaluating the performance of defragmentation algorithms. Indeed, the
mismatch between the network’s dimensioning and traffic poses unavoidable block-
ings. As a consequence, the evaluation, so far, of defragmentation does not reflect
completely its potential benefit. To be more accurate, we must study better the
correlation between dimensioning and defragmentation in order to properly evaluate
the efficiency of a given defragmentation strategy, i.e., both when to trigger it and
how to defragment. More recently, very few work have been proposed for network
dimensioning, so future work should first include network dimensioning for elastic op-
tical networks, and then defragmentation under the assumption of a proper network
dimensioning.

For the 5G network slicing problem, we can improve the proposed framework
to deal with dynamic virtual network requests. For example, when a new virtual
network request arrives or a virtual network needs more resources. In that case,
the network operator must re-assign some resources of the current virtual slices, and
this modification should be seamless to ensure the continuity of the current ongoing
services.
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