
Extension and Implementation of Look-ahead
Supervisory Control with Buffering

Faiz Ur Rehman

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

August 2020

c© Faiz Ur Rehman, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Faiz Ur Rehman

Entitled: Extension and Implementation of Look-ahead Supervisory Con-

trol with Buffering

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. K. Skonieczny

External Examiner
Dr. W.F. Xie (MIAE)

Examiner
Dr. K. Skonieczny

Supervisor
Dr. S. Hashtrudi Zad

Approved by
Yousef Shayan, Chair
Department of Electrical and Computer Engineering

2020
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Extension and Implementation of Look-ahead Supervisory Control with
Buffering

Faiz Ur Rehman

The Supervisory Control Theory of Discrete Event Systems (DES) provides proce-

dures to design supervisors to control plants modeled as DES. The computed supervisor

issues control commands to ensure design specifications, such as safety constraints, are

met. In the supervisor design process, the plant and design specification models are used

to obtain the supervisor in the form of a DES. In this approach, the control commands are

effectively pre-calculated before implementation; thus the approach is known as Offline

Supervisor Design. The challenge associated with this method is that it requires large on-

board memory for supervisor (due to typically large DES models involved). Such large

memory is not available on embedded systems.

In order to make the implementation of supervisory control feasible for embedded sys-

tems, an approach is proposed in the literature where at any given time, supervisory com-

mands are computed on-the-fly based on models for plant and specifications covering a

small window into the future (i.e., lookahead window). This method needs a significantly

smaller onboard memory. As a result, however, frequent control command computation

is needed. This could pose a implementation challenge since control commands must be

computed after every new event in the plant. Sometimes two (or more) consecutive events

could occur in rapid succession in the plant and there may not be enough time to com-

pute control commands. To mitigate this problem, an approach has been proposed called

iii

Lookahead Supervision with Buffering in which commands are computed and buffered in

advance for a window.

This thesis makes contributions to the underlying theory of lookahead policy with

buffering. Specifically it proposes a method to use the timed model of the plant to compute

the timing information of event sequences. This timing information is used in choosing the

buffer size and was previously obtained experimentally. The thesis also develops a method

for computing plant and specification models over the loakahead window that is suited for

computer coding.

The thesis also implements the lookahead supervision with command buffering. To

study the feasibility of implementation and the complexity of proposed controller in detail,

a two-degree-of-freedom solar tracker equipped is used as plant. The goal is to generate

supervisory commands for maneuvering the solar tracker to find a bright light source for

charging battery. For implementation, all supervisory control algorithms are written in C

language for faster computation time. Look-ahead policy with command buffering is de-

signed and implemented. In several tests, the supervisor successfully calculates on-line the

control commands in a timely fashion and maneuvers the solar tracker to the bright source

while respecting design specifications. The experimental results show that the timing infor-

mation calculated with the proposed method based on timed model match the actual plant

behavior. Furthermore, the experiments demonstrate that the length of command buffer (as

design parameter) can be used to achieve a compromise between onboard memory require-

ment and computational power.

iv

Acknowledgments

In the name of ALLAH Almighty, the Most Merciful and the Most Beneficent. All

praises and thanks be to Him.

First, I would like to express my sincere gratitude to my supervisor Dr. Shahin Hashtrudi

Zad, for his invaluable guidance throughout my research. This work would not have been

possible without his continuous support.

Second, I would like to thank my loving parents, sisters, and brother for their love,

prayers, support, and encouragement. I especially dedicate this thesis to my father, who

has always been an inspiration to me.

Third, I would like to thank the Embedded team and the management of Neptronic for

their support and flexibility that helped me throughout my work. Especially, my co-orkers

who kept me motivated.

Finally, I would like to thank my friends, who were always there to encourage me.

v

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Supervisory Control Theory for DES . 2

1.2 Literature Review . 4

1.2.1 Autonomous Systems and Space Applications 4

1.2.2 Supervisory Control Theory . 6

1.2.3 Timed Discrete Event Systems . 10

1.3 Thesis Objectives and Contributions . 11

1.4 Thesis Outline . 12

2 Background 13

2.1 Discrete Event System . 13

2.1.1 Languages and Preliminaries . 14

2.1.2 Automata and Operations . 15

2.2 Timed Discrete Event Systems (TDES) 19

2.3 Supervisory Control Theory . 27

3 Research Objectives 38

vi

3.1 Review of Limited Look-ahead Policy with Buffering 39

3.1.1 Minimum Look-ahead Window Size 39

3.1.2 Supervisor Validity of LLP with Buffering 40

3.1.3 Choosing Buffer Size . 43

3.2 Thesis Objectives . 45

4 Development of Discrete Event Control Kit for Embedded Systems 47

4.1 Structures and Data Types for DECK Procedure 48

4.2 DECK Procedures . 51

4.3 Automaton I/O Functions . 60

4.4 Time Complexity Comparison . 64

5 Experimental Setup and Supervisory Design Setup 68

5.1 System Hardware . 69

5.1.1 Remote Station . 69

5.1.2 Ground Station . 73

5.2 Untimed DES Model and Supervisor Design 74

5.2.1 Components . 74

5.2.2 Interactions . 84

5.2.3 Specifications . 86

5.2.4 Supervisor Synthesis . 89

6 Calculation of Sequence Duration using Timed DES 91

6.1 Modeling of Solar Tracker as Timed DES 91

6.1.1 Modeling Time Bounds of Events 92

6.1.2 Selection of Tick Size . 96

6.1.3 TDES Model of Plant Under Supervision 100

6.2 Analysis of TDES under Supervision . 103

vii

7 Control Implementation and Analysis 108

7.1 Communication Link . 110

7.2 Execution of Controller . 112

7.2.1 Regular LLP . 117

7.2.2 LLP with Buffering . 118

7.2.3 Computation Time Analysis of LLP 120

7.2.4 Computation Time per Event . 123

7.2.5 Selection of Buffer Size for LLP 125

8 Conclusion 128

8.1 Summary . 128

8.2 Future Work . 129

Appendix A TTCT File Templates 131

Appendix B Full Sweep Spec Model 133

Appendix C Communication Packets 134

Bibliography 140

viii

List of Figures

Figure 1.1 Small Factory . 2

Figure 1.2 DES model of Small Factory. 3

Figure 1.3 Plant under supervision (closed-loop system). 4

Figure 1.4 Real-time Control Architecture [1] 7

Figure 2.1 Automaton G . 16

Figure 2.2 Gact . 25

Figure 2.3 TTG of Gact . 26

Figure 2.4 Closed Loop plant . 28

Figure 2.5 Block diagram of LLP supervisor 31

Figure 3.1 LLP with expanded window . 40

Figure 3.2 Sub-expanded Tree . 42

Figure 3.3 Timeline of LLP with buffering 44

Figure 4.1 BFS Example . 52

Figure 4.2 Self-looped Automaton G . 58

Figure (a) G . 58

Figure (b) Gs . 58

Figure 4.3 Sync Procedure . 59

Figure (a) G . 59

Figure (b) H . 59

Figure (c) sync of G,H . 59

ix

Figure 4.4 Graphical representation of automatons 61

Figure (a) Automaton with name . 61

Figure (b) Automaton with code . 61

Figure 5.1 Solar tracker as Remote station . 68

Figure 5.2 System Hardware Architecture . 70

Figure 5.3 Azimuth and Elevation Angle . 71

Figure 5.4 Pulse Width Modulation (PWM) 72

Figure 5.5 Serial Communication . 74

Figure 5.6 PV automaton . 75

Figure 5.7 Battery SOC automaton . 76

Figure 5.8 Azimuth Motor Motion automaton 77

Figure 5.9 Elevaton Motor Motion automaton 79

Figure 5.10 Azimuth Motor Range automaton 80

Figure 5.11 Elevation Motor Range automaton 82

Figure 5.12 Master Controller Automaton . 83

Figure 5.13 Wait Automaton . 84

Figure 5.14 Servo motion function of Battery SOC 85

Figure 5.15 Battery SOC function of PV panel 85

Figure 5.16 Battery SOC function of Motor Motion 86

Figure 5.17 Specification of Elevation motor motion as function of range 87

Figure 5.18 Specification of Elevation motor range as function of motion 88

Figure 6.1 Tick size trade-off for TDES . 97

Figure 6.2 Built TDES model size comparison 97

Figure 6.3 Building TDES plant under supervision 101

Figure 6.4 G6 . 102

Figure 6.5 Events occurrence in TDES . 104

x

Figure 6.6 Gτ . 105

Figure 6.7 GEv . 105

Figure 6.8 Sub-automaton of TDES under supervision 106

Figure 7.1 Main Control Loop . 109

Figure 7.2 Circular Buffer . 110

Figure 7.3 Serial Communication Flowchart 112

Figure 7.4 G . 113

Figure 7.5 Expansion of G . 114

Figure 7.6 Example for Theorem 7.2.1 . 116

Figure 7.7 Regular LLP Flowchart . 117

Figure 7.8 LLP with Buffering Flowchart . 119

Figure 7.9 Computation time for LLP . 122

Figure 7.10 Tmin(δ) . 123

Figure 7.11 Computation time per event during LLP with buffering 124

Figure 7.12 Trade off between memory and computation for buffer size 126

Figure B.1 Full Sweep Spec . 133

xi

List of Tables

Table 4.1 Comparison of execution times . 65

Table 4.2 Comparison of execution times for Reachable. 66

Table 4.3 Comparison of execution time of Product. 67

Table 5.1 PV panel events based on voltage 75

Table 5.2 Battery SOC events and percentage thresholds 76

Table 5.3 Azimuth motor events and current thresholds 78

Table 5.4 Elevation motor events and current thresholds 79

Table 5.5 Azimuth motor range events and angle thresholds 81

Table 5.6 Elevation motor range events and angle range 82

Table 5.7 Master Controller Events . 83

Table 6.1 Time bounds of Controllable events 93

Table 6.2 Time bounds of Bat SOC events 94

Table 6.3 Time bounds of PV Panel events 95

Table 6.4 Time bounds of PV Panel events 96

Table 6.5 Time bounds of all solar tracker events in Ticks 99

Table 6.6 Size comparison of automatons (Depth: 6 events form initial state) . . 102

Table 6.7 Timining information of GKτ Events 107

Table 7.1 Cmax (msec) for LLP with buffering 121

Table 7.2 Model sizes and number of Computations w.r.t. η 127

Table C.1 Communication Data Packets . 134

xii

Chapter 1

Introduction

Discrete Event Systems (DES) are systems whose state evolve following the occurrence

of events (which can be sporadic and depend on the physical state). Supervisory Control

Theory (SCT) provides an approach to generate control commands as a sequence of events

for any plant that is modeled as DES. In SCT, the plant’s behavior is restricted by the super-

visor which disables/enables events based on design specifications. This is a model-based

approach that has significant advantages such as being easy to understand and implement,

robust against programming errors and reducing the complexity of models with techniques

such as a divide-and-conquer.

Normally the supervisor is computed before implementation; this is known as “offline”

control computation. However, the number of states in the supervisor typically increases

tremendously, requiring large memory. This leads to a feasibility issue for embedded im-

plementations. An alternative approach, Limited Look-ahead Policy (LLP), is proposed

in literature where the supervisory commands are computed on-the-fly, i.e. “online”, after

each event. Using this methodology imposes, time constraints for supervisor computation

as commands must be computed during plant operation.

To overcome the implementation timing restriction, a new version of LLP with Buffering

has been recently proposed. In this thesis, we intend to implement the LLP with Buffering

1

on a solar tracker plant, and analyze the performance of the algorithm in terms of compu-

tational complexity. In the process, we aim to extend the underlying theory of LLP with

Buffering.

In this chapter, we will review SCT for DES followed by the work done in SCT implemen-

tation and LLP. Finally thesis objectives and outline will be discussed.

1.1 Supervisory Control Theory for DES

Discrete Event Systems (DES), as the name suggests, represent any system with dis-

crete state set. The state of such system changes with the occurrence of events leading

to transition from one state to another. Events depend on the dynamical behavior of the

underlying physics. An automaton is one type of DES model.

Figure 1.1: Small Factory

Let us discuss an example of a small factory modeled as DES. The setup consists of

three components, storage bin, robotic arm and machining workspace. Assume the bin will

never runs out of work-pieces and as system starts the machine is in idle state. The process

is initiated with the press of the start button (Event: Start). The arm will wait (remains in

the same state) until the machine is in idle state. The arm will place a new work-piece in

the work-space (Event: New Feed), followed by work operation (Event: Start Task). And

once the work is done, the system goes back to the idle state (Event: Task Completed). The

2

DES model is shown in Fig. 1.2.

Figure 1.2: DES model of Small Factory.

In supervisory control theory, the designed controller is referred to as supervisor and is

responsible for event disablement (in case where a certain event sequence does not meet

the design specifications) to ensure safe operation. The trajectory of events enabled must

lead the system to some state in which task is considered complete. These states are called

marked states.

Events in DES are divided into two categories

(1) Uncontrollable Events

(2) Controllable Events

Inevitable events and those which are not meant to be controlled by supervisor (e.g. emer-

gency shutdown issued by an operator) are modeled as uncontrollable event. In Fig 1.2,

“Task Completed” is uncontrollable. Such events must not be disabled by the supervisor.

While events like “Start” and “New Feed” from Fig 1.2 are controllable and can be en-

abled/disabled by supervisor. “Start Task” is uncontrollable event that can be triggered by

proximity sensor (in case when work-piece is available).

Marked states signify the completion of any task and are represented by arrow directing

away from the state (e.g. “Idle” state in Fig. 1.2).

The plant under supervision (i.e. closed-loop system) is shown in Fig. 1.3

3

Figure 1.3: Plant under supervision (closed-loop system).

1.2 Literature Review

SCT has been very appealing for controller design due to its model-based approach

(which makes it less prone to coding errors). Consequently, it is the focus of research in the

field of autonomous systems especially for space applications. A lot of successful missions

have been conducted in the past. In this section, we will discuss the study of SCT with

respect to space applications. Followed by the discussion of the implementation of SCT

in the literature, the limitations of conventional SCT and a review of limited look-ahead

policy approaches. In last section, we will review the timed discrete event systems.

1.2.1 Autonomous Systems and Space Applications

Systems that can handle the decision making without human intervention are said to

be Autonomous Systems [2]. Space exploration has always been expensive in terms of

operations and manufacturing. Integrating the autonomous system with flight software sig-

nificantly reduces the load of the task from the operating crew. Another reason for having

autonomy in spacecraft is the ability to make decisions in less time than communication

latency.

4

Deep Space 1 was the first spacecraft with artificial intelligence. In [3], an autonomous

architecture was developed and implemented on the onboard computer to have a virtual

presence in space. The hardware system and computational intelligence couples together

forming a Remote Agent. It performs autonomous operations while respecting resource

constraints. The developed architecture was integrated with DS1 flight software for testing

and displayed successful autonomy for onboard operations.

A model-based approach reduces the cost of development due to re-usability. It helps

the autonomous system to generate the model of the complete system in run-time. In [4]

uses this approach to synthesize the complete model (from discrete models of components)

for the decision-making process in case of failure of the anomaly. This architecture, Liv-

ingstone, was integrated with other components developed in [3] and implemented in DS1.

Similar model-based approaches have been used in [5] for fault diagnosis and in [4]

to develop modular and robust controller. In [5], Virtual Finite State Machine (VFSM) is

used to define control logic as a state machine in a virtual environment. It helps to perform

extensive testing of the spacecraft’s fault diagnosis system.

Generally, the development of embedded programs are application-oriented and error-

prone. Especially in case of space applications where the size of program can increase and

also robustness is crucial. In [4], a model-based programming approach is used to develop

the code, that is robust and modular as it can reconfigure a discrete model of components to

generate control commands. In the developed architecture, control goals are defined by the

Control Sequencer, which set the goals while monitoring the estimated states (also known

as configurable goals). These goals are provided to Deductive Controller; it estimates the

plant’s state using the sensor data and plant model to generate a control command for the

actual plant. In [6], an automaton based approach is proposed and implemented for the

development and verification of the sophisticated functional level robots, e.g., mars rovers,

spacecraft and UGV etc.

5

1.2.2 Supervisory Control Theory

The Supervisory Control Theory (SCT) of DES was introduced in [7] and [8], and is

known as Ramadge-Wonham framework. In this framework, the events are categorized

into controllable and uncontrollable events. Events that cannot be directly controlled (or

not meant to be controlled) are considered uncontrollable.

The supervisor restricts plant behavior. The supervisor observes the plant and disables

the undesirable events (to ensure user-defined safety behavior), but it never disables any

uncontrollable event. There may be the possibility that more than one controllable event is

enabled from a state. This problem is known as “Issue of choice”. In [9], the methodology

is proposed to assign a cost to all paths from the current state to a marked state set. It min-

imizes the cost resulting in one controllable event but it’s application is limited to acyclic

graphs only. In [10], the random selection of controllable events is made as a solution to

the problem of choice, however no formal proof is available to address problems generally.

Much work has been done in real-time implementation of SCT, especially in manufactur-

ing plants. The significant advantage of SCT applications is the automatic synthesis of the

controller using the methodology proposed in [8]. This approach is used to design the su-

pervisor for an automated assembly line in [11]. Moreover, the problem of choice has been

tackled in an ad-hoc manner.

In [1], a high-level supervisor is generated to control multiple continuous-time robots. In

this work, the supervisor generates the set of enabled events, and the task planner chooses

a specific event to be executed. Later, the selected event is sent to the low-level controller,

which translates the event to control command for the robot (voltage or PWM etc.). The

event detector monitors the occurred uncontrollable events based on sensor data and relays

it to the supervisor (Fig. 1.4).

In [12], a manually designed controller followed by automatic verification is compared with

an automatically generated controller and the feasibility of the industrial control system is

6

proved. However, such approach may result in large supervisor size, causing implementa-

tion problems.

Figure 1.4: Real-time Control Architecture [1]

A modular and local modular supervision strategy are used in [13] and [14] respectively,

to avoid the large size of the supervisor. The supervisors were designed for automated man-

ufacturing cells consisting of a robot, a vision-system for feedback, a conveyor belt and two

machines. Two PLCs were used for implementation and the resulting behavior of supervi-

sors.

In [15], Compositional Interchangeable Format (CIF) is used for modeling and implemen-

tation of SCT. CIF has the advantage of building hybrid models of a system containing

variables, conditions and differential equations other than untimed automata. SCT is im-

plemented in visualization-based simulation for MRI scanner. The same tool is also used

in [16] to control the airport baggage conveyor system. Initially, simulation is done with

soft PLC and computer (as emulator) and later tested successfully on the real-time system

at Veghel Airport.

7

Application of supervisors on PLC leads to several problems like avalanche effect, com-

munication delay and inexact synchronization [17]. In [18], a heuristic approach is adopted

to minimize these issues and implementing a non-blocking supervisor on PLC for an elec-

trical power system. Similar problems have also been studied in [19], and to address them,

local modular SCT is implemented using a micro-controller. Supervisors are stored as a

vector called Memory safe. However, in [20], conventional SCT is implemented on micro-

controller on a 2-DOF solar plant and the monolithic supervisor is stored in the form of

State-Transition Table.

A lot of research has also been done for application in robotics, aiming to reduce complex-

ity. As conventional SCT requires significant memory resources, a computer-based SCT

approach is utilized where the supervisor is implemented on desktop PC and connected

remotely to the plant. Such approach is adopted in [21] for wheeled robot. There, three-

level control architecture is proposed to achieve position control. The supervisory level is

the highest level responsible for making major decisions like motion control and obstacle

avoidance. The intermediate control is the second level and manages map building, position

updates, kinematics and generating secure control action for the robot to avoid collisions.

These tasks are implemented on PC which is connected to robot remotely, for lowest-level

control of motor actuation.

In [22], it is observed that with the increase in plant model details (or complexity), super-

visor size increases rapidly; therefore decomposing complete system to sub-systems and

building it again when required (for supervisor synthesis) is a viable solution to tackle

memory requirement for storing supervisor.

A major limitation of conventional SCT is the large memory requirement for supervisors

(which is not readily available in embedded systems, spacecraft or robotics platforms). To

handle this limitation, an innovative approach is suggested in [23] where the supervisory

command for next immediate action is computed by exploring a limited part of the plant

8

model, hence known as Limited Look-ahead Policy (LLP). The plant model is stored in

the form of its components and a complete model is only built just before the synthesis of

the supervisor. As the supervisor in computed on-the-fly, it is called “On-line Supervisor”,

while the conventional supervisor is known as “offline supervisor”.

In LLP, a significantly smaller amount of memory is required as there is no need to store

a complete supervisor. However, this comes at the cost of a high number of supervisory

computations. As the next control action is required to be available before implementation

and repeated for each iteration, not only computation frequency (for online supervisor)

increases, but it also imposes strict time constraints on the system. While computing su-

pervisory commands online, there is uncertainty in the plant’s behavior as only a limited

part of the plant model is explored. Therefore one needs to make sure of the optimality

of computed supervisory command. Two attitudes suggested in [23] for the unexplored

region of plant model are the conservative and optimistic attitudes. The choice directly af-

fects the process of computing the supervisory command. The minimally restrictive offline

supervisor is used as the benchmark for optimality of online command, i.e., if the online

supervisory command is the same as the minimally restrictive offline supervisor, then it is

said to be optimal. To compute the optimal supervisor command, the plant model is needed

to be explored for enough depth. This parameter is known as the look-ahead window. Let

the size of this window be represented by Nw. Using a large window size, complete plant

model is explored which is same as offline supervisor. It would require large memory and

not useful. Therefore, the window size is needed to be minimal to fully benefit from LLP

computation and large enough to compute the optimal supervisory command.

In [24], a forward calculation algorithm is proposed which can cause the termination of

expansion even before reaching the look-ahead window boundary. Therefore it may be less

costly (in terms of supervisor computation). A similar approach is developed in [25] to

reduce the computations using state information. In this algorithm, a cost is assigned to

9

each state: infinity if a state can lead to blocking or illegal state; otherwise zero cost is

assigned. During the plant model exploration, if the algorithm comes across a state with

already known cost, it stops expansion. Consequently, a state is not explored repeatedly

and computational operations are reduced.

In LLP, after each event occurs in the plant, a supervisory control problem needs to be

solved to find the next supervisory command. In many cases, the time between two con-

secutive events could be too short for such SCT calculations. This problem is addressed in

[26] by introducing LLP with Buffering. Instead of computing one supervisory command,

few extra commands are computed and buffered for future use. In this way, at any given

moment there is control command readily available for implementation.

1.2.3 Timed Discrete Event Systems

In untimed DES, transitions do not possess any temporal information. But in real-

world, all the systems evolve in timely fashion. Even though the transitions in SCT occurs

instantly, the execution of each event takes time. In [27] and [28], the concept of time-

based transition models is proposed and called as Timed Discrete Event System (TDES).

The time is measured by the tick of a clock and each event has associated time bounds in

terms of tick. The size of tick defines the resolution of timing information. For example,

if tick size is small, then the model will be very detailed but the number of states will be

very large. Therefore one needs to carefully tune the value of tick. Events are categorized

in two groups based on time bounds: prospective (finite upper bound) and remote events

(infinite upper bound). An event is only executed when it is enabled and a minimum time

bound condition is fulfilled. Generally, tick event can never be preempted but to avoid ille-

gal behavior, the idea of forcible events is put forth and only these events can preempt tick.

In [29], a methodology is proposed to do failure diagnosis in TDES and a manufacturing

cell is studied as an example. According to the study, state-space models can be very huge

10

because of system complexity and it could lead to computational complications. Few ap-

proaches are suggested to reduce complexity (e.g. choosing appropriate tick size, adopting

modular design).

In order to reduce the supervisor state size in timed model, an algorithm is developed in

[30]. However, in this thesis we will not implement supervisor for TDES but will use TDES

models to provide a model-based approach for the calculation of execution time of event

sequences.

1.3 Thesis Objectives and Contributions

In Lookahead Supervision with Buffering, commands are computed and buffered in ad-

vance for a window. This ensures that all the appropriate control commands are ready when

needed. This thesis aims to make contributions to (1) the underlying theory of lookahead

policy with buffering and (2) to its implementation, as described below.

- The thesis proposes a method to use the timed model of the plant to compute the timing

information of event sequences. This timing information is used in choosing the buffer size

in LLP with buffering. The timing information was previously obtained experimentally.

A theoretical approach can analyze a wider range of system trajectories, resulting in more

accurate timing information.

- An essential step in LLP is the construction of a partial model of the plant and specifi-

cation. To facilitate the coding of this construction, the thesis develops a new modular and

incremental algorithm for this construction. Furthermore, a library of supervisory control

and LLP with the buffering algorithm is coded in C language for fast execution.

- The thesis implements the lookahead supervision with command buffering on a two-

degree-of-freedom solar tracker. In several tests, the supervisor successfully calculates

on-line the control commands in a timely fashion and maneuvers the solar tracker to a

11

bright source while respecting design specifications. The experimental results show that

the timing information calculated with the proposed method based on the timed model

matches the actual plant behavior.

- Furthermore, the experiments demonstrate that the length of command buffer (as de-

sign parameter) can be used to achieve a compromise between onboard memory require-

ment and computational power.

1.4 Thesis Outline

The outline of this thesis is as follows. In Chapter 2, we will discuss some background

material of timed and untimed DES, followed by a detailed review of SCT. We will study

the shortcomings of conventional methods of SCT and review the Limited Look-ahead

Policy (LLP) and LLP with Buffering from the perspective of computational complexity,

in Chapter 3. In Chapter 4, we will present the development of computer code (in C) for

supervisory control and LLP with Buffering and compare their performance with MATLAB

and MATLAB generated C functions. In Chapter 5, we will discuss the architecture of the

solar tracker and model it as DES. Chapter 6 presents the model-based approach to compute

the execution time of event sequences using the TDES model of the plant. Furthermore, in

Chapter 7, we will present the implementation of regular LLP and LLP with Buffering on

the solar tracker. Moreover, we will discuss the feasibility of the implementation of LLP

with Buffering on systems with low resources (memory and processor). In Chapter 8 we

will discuss the conclusion and provide some suggestions for future work.

12

Chapter 2

Background

In this chapter, we will discuss the preliminaries required to work with Discrete Event

Systems (DES), operations that can be performed on any DES model and detailed review

of Timed Discrete Event System (TDES). Later, few supervisory control problems and

strategies are discussed to lay the ground-work for this thesis.

2.1 Discrete Event System

A Discrete Event System is a system with a discrete set of states. The occurrence of

events causes transitions in DES from one state to another. Hence, in order to study such

systems, discrete mathematics [31] is required. All events involved in DES form the alpha-

bet of a language on which various operations can be performed. In the following section,

some definitions and preliminary explanations of languages and automata are presented.

DES can be modeled as untimed and also as a timed automaton. In timed-DES (TDES),

all events have defined time bounds, physical set of rules. TDES helps to perform temporal

analysis on any system under supervision. Both timed and untimed models are discussed

in this chapter.

13

2.1.1 Languages and Preliminaries

Events in DES form a set of symbols called an alphabet (Σ). Any sequence of events is

called string, trace or word. Σ+ is set of all finite events. ε is used to denote the trace with

no event. Σ∗ includes all events and empty sequence.

Σ∗ = Σ+ ∪ {ε}

Length of any sequence is denoted by |s|. If s=ε, then |s| = 0.

Operations on Languages

Here we discuss some of the operation, that can be performed on languages. Let L and

M be two languages over Σ,

L,M ⊆ Σ∗

Let string l = xyz ∈ Σ∗. Then x and z are prefix and suffix of l respectively.

L denotes the set of prefixes of sequences of L.

L = {x ∈ Σ∗| ∃ y ∈ Σ∗(xy ∈ L)}

If L = L, L is called prefix-closed (or closed).

The union of two languages (L, M) is the set of strings belonging to L or M.

L ∪M = L+M = {x|x ∈ L or x ∈M}

The intersection of two languages (L, M) contains all the common strings of L and M.

L ∩M = {x|x ∈ L and x ∈M}

14

Lco denotes the complement of language L and contains all strings of Σ∗ except those

of L.

Lco = Σ∗ − L = {x ∈ Σ∗|x /∈ L}

LM is said to be the concatenation of languages L and M and contains strings formed

from catenating one sequences from L by a sequence from M.

LM = {xy |x ∈ L and y ∈M}

The Kleene-Closure of a language L is denoted by L∗ and formed by concatenation of

all (finite number of) strings of L, including empty string {ε}. This property is idempotent

i.e. (L∗)∗ = L∗

L∗ = {ε} ∪ L ∪ LL ∪ LLL...

The truncation of L until N contains all strings of L with maximum length of N (N is

a non-negative integer).

L|N = {x ∈ L| |x| ≤ N}

The post-language of L after sequence x, is denoted by L/x and contains extensions

of x in L.

L/x = {y ∈ Σ∗|xy ∈ L}

2.1.2 Automata and Operations

An automaton is a way to represent a language according to a defined set of rules. A

deterministic automaton is a five tuple,

G = (X,Σ, η, x◦, Xm)

15

where

X is finite state set

Σ is finite event set of G

η is partial transition function X × Σ→ X

x◦ is initial state (x◦ ∈ X)

Xm is set of marked states (Xm ⊆ X)

Marked states are significant as they may for example represent completion of task.

The language generated by automaton G is defined as

L(G) = {s ∈ Σ∗| η(x◦, s)!}

η(x◦, s)! means starting from xo, the sequence of events s can take place in G.

The marked language of G is defined as

Lm(G) = {s ∈ Σ∗| η(x◦, s)! and η(x◦, s) ∈ Xm}

The makred language is a subset of language generated (Lm(G) ⊆ L(G)) as it contains all

traces which lead to some marked state in G.

L(G) is always prefixed closed and called the closed behavior of G . While Lm(G) is not

always prefix-closed as any prefix of path(s) may not lead to marked state.

Consider an automaton G with Σ = {a, b} and Xm = {3} as shown in Figure 2.1.

Figure 2.1: Automaton G

16

Then, L(G) = {ε, a, ab, aba, , abaa, ... } and Lm(G) = {ab, aba, abaa, ...}.

Next we review some operations on automata.

A state x ∈ X is reachable if for some t ∈ L(G), η(xo, t) ∈ X .

A state x ∈ X is coreachable if for some t ∈ Σ∗, η(x, t) ∈ Xm.

An automaton G is non-blocking if every reachable state is coreachable.

Trim

Trim operation is used to remove all states of G which are not reachable or not co-

reachable. Let the trimmed automaton be represented by Gt.

Product

The product operation on two automatons (Ga, Gb) provides an automaton with only

common behavior of operands in terms of states, events and marked behavior.

Let Ga = {Xa,Σa, ηa, xoa, Xma} and Gb = {Xb,Σb, ηb, xob, Xmb}. Then define

Gp = {Xp,Σp, ηp, xop, Xmp}

Xp = Xa ∩Xb

Σp = Σa ∩ Σb

xop = (xoa, xob)

Xmp = Xma ∩Xmb

ηp((xa, xb), σ) =


ηa(xa, σ), ηb(xb, σ) if ηa(xa, σ)! and ηb(xb, σ)!

undefined otherwise

In Gp transition to new state will only occur when same the event can happen from

source states in Ga and Gb. Therefore transitions are synchronized. The Ga × Gb is the

reachable part of Gp. The generated and marked languages of resultant automaton are as

17

follows:

L(Ga ×Gb) = L(Ga) ∩ L(Gb)

L(Gma ×Gmb) = L(Gma) ∩ L(Gmb)

The self-loop of an event is the transition from each state to itself (x, σ, x) such that σ ∈

ΣSL and there is no transition of the event in the operand automaton i.e. η(x, σ) does not

exists.

GSL = selfloop(G,ΣSL)

The sync operation on two automatons results into a new automaton with the behaviors

of both operand automatons. Let us consider two automatons Ga and Ga then sync of them

is represented as:

Gs = Ga||Gb

Σs = Σa ∪ Σb

The transitions in sync from any state ofGa andGb happen according to the following rule:

ηs((xa, xb), σ) =


ηa(xa, σ), xb if ηa(xa, σ)!

xa, ηb(xb, σ) if ηb(xb, σ)!

undefined otherwise

18

The generated and marked languages are as follows:

L(Ga||Gb) = L(Ga)||L(Gb)

L(Gma||Gmb) = L(Gma)||L(Gmb)

One can perform the sync operation on two automatons by using product and selfloop

operations. Let G1 and G2 are two automatons over languages Σ1 and Σ2 respectively.

Then

GSL1 = selfloop(G1,Σ2 − Σ1)

GSL2 = selfloop(G2,Σ1 − Σ2)

Gs = product(GSL1, GSL2)

Complement

Complement of any automaton G = (X,Σ, η, x◦, Xm) is denoted by Gco. It generates

and marks the following languages,

L(Gco) = Σ∗

Lm(Gco) = Σ∗ − Lm(G)

2.2 Timed Discrete Event Systems (TDES)

So far we have discussed automata without timing information in their structure. Tim-

ing information provides another dimension to any DES model. This not only helps to

analyze implementation feasibility of DES but also augments untimed DES model to do

timed simulation for Supervisory Control Theory (SCT). Consequently, one gains the timed

perspective of controller execution in plant. One issue with timed models is that they are

19

significantly more complex compared with untimed models. In this section, the modeling

of TDES [32] is discussed in detail.

Similar to automaton, a TDES is also a five tuple,

Gact = (A,Σact, δact, ao, Am)

A is activity set of timed automaton.

Σact is events labels (finite) .

δact is activity function, δact : A× Σ→ A.

ao is initial activity.

Am Marked activities, Am ⊆ A

Σact is a finite event set [27]. Activity transition function is a partial function: δact : A ×

Σact → Σact. In untimed system, state transition happens at same instant when events

is enabled due to absence of timing information while in TDES, activities occur over a

duration of time, while event still occurs instantaneously. In order to augment the timing

behavior to activities, two additional parameters, lower time bound (lσ ∈ N) and upper

time bound (uσ ∈ N ∪ {∞}) are introduced for each activity (σ). This triple (σ, lσ, uσ) is

known as timed event. It is formally defined as,

Σtim = {(σ, lσ, uσ) | σ ∈ Σact}

Lower time bound (lσ) represents delay due to implementation (of control or computation)

or communication in the system, while the upper bound (uσ) signifies the maximum per-

missible delay (defined by specification or physics of real plant) and lσ is always less than

or equal to uσ.

We have two distinct types of timed-events (Σact = Σspe ∪ Σrem),

20

1: Σspe : the set of prospective events

2: Σrem : the set of remote events

Type of event is defined according to its time bounds. Events with finite upper and lower

bounds, (0 ≤ uσ < ∞) and (0 ≤ lσ ≤ uσ) are known as prospective events. If the upper

bound is infinite (uσ = ∞) and lower bound is finite (0 ≤ lσ < uσ) then such events are

called as remote event.

In TDES, time is represented by tick. It is the measure of single time unit elapsed in a

global clock. The clock is never paused or stopped at any state of timed automaton. Time

is measured with respect to global clock using tickcount : R+ → N function, where,

tickcount(t) = n, n ≤ t < n+ 1

Tick is also an event to simulate the time elapse for any event in timed model. Therefore

complete event-set for any TDES is σ,

Σ = Σact ∪ {tick}

State set (Q) for TDES is defined as,

Q = A×

q

{Tσ | σ ∈ Σact}

Here Tσ is known as timer for event σ and defined as,

Tσ =


[0, µσ] if σ ∈ Σspe

[0, lσ] if σ ∈ Σrem

21

Each state is (q) has an activity (a) and timer assigned to each activity within its range of

time bounds. Initially timers are set to default value (toσ) which is equal to µσ and lσ for

prospective and remote events respectively. If σ is defined in activity a, and a tick occurs,

the timer tσ is decremented.

State transition function defines the transitions based on events and defined as

δ : Q× Σ→ Q

From any state q, transition is only possible if there is an event (σ) enabled. Let, transition

be defined as δ(q, σ) = q′, where q and q′ are,

q = (a, {tα|α ∈ Σact})

q′ = (a′, {t′α|α ∈ Σact})

An event σ is said to be enabled at q if δact(a, σ)! and it is said to be eligible if δ(q, σ)!, as

per time bound conditions. Events which are enabled but not eligible are known as pending

events and only eligible ones can occur.

There are only three possible scenarios for σ to occur. Firstly, that event is tick and at q

there is no deadline of any prospective event; secondly it is a prospective event (i.e. activity

is defined and timer tσ is within range of its bounds); lastly σ is remote event (i.e. activity

is defined and timer is equals to 0).

σ = tick, δ(a, α)! and tα > 0, where (∀α ∈ Σspe)

σ ∈ Σspe, δ(a, σ)! and 0 ≤ tα ≤ (µσ − lσ)

σ ∈ Σrem, δ(a, σ)! and tα = 0

Tick event occurs when no prospective event is imminent. With the occurrence of each tick,

timer (tσ) of events is altered, but activities do not change. When an event occurs, its timer

22

is reset to default value immediately. If it is enabled, then tσ decreases by one with each

tick. Ultimately σ will occur or its timer reaches 0 or it is disabled due to the occurrence of

another event. In case if an event occurs, tσ will reset or it waits to be enabled again from

another state.

Any prospective event must not be delayed more than (µσ − lσ) ticks from the moment

when it gets enabled, and it can never become eligible before lσ ticks. When the timer

reaches 0, it must occur unless (only) preempted by another eligible event. While remote

event (σ) can occur any time provided that lσ ticks for tσ has elapsed. Its timer will reset

(if it does not occur from an enabled state) if another transition occurs.

So far, we have considered the event from source state (q) reference and explained how

timers in q are affected. Now let us discuss the transition from the perspective of the target

state (q′). Assume at this moment transition with σ has occurred. There are two possibili-

ties either activity is same (i.e. σ = tick) or it is altered when σ ∈ Σact.

In the case of tick event a′ = a, and only timer values are updated. If an event (σ) is

prospective and activity transition is defined, then the timer will be decremented by one

otherwise resets to µσ (default value). In case of a remote event, if the transition is defined

and also its timer value is non zero (lα is not reached), then the timer is decremented by

one. Nevertheless, if the lower bound condition is already met, then the value will remain

0 until either it is executed or disabled. If the transition is not defined from that state, then

the timer value will set to the default value (lα).

The second case is when the executed event is non-tick (σ ∈ Σact) and consequently, ac-

tivity has changed. If α is the executed event (α = σ), then timers are updated to respective

default values for both prospective and remote events. In case when the executed event is

not α, timer value remains the same only if activity α from a′ is defined; otherwise, it is set

to the default value. These unchanged timer values signify the fact that non-tick events are

instantaneous.

23

Formally we can express the above rules as follows.

(1) σ = tick. Then a′ = a

t′α =




tα − 1 if δact(a, α)! and tα > 0

µα if not δact(a, α)!

if α ∈ Σspe


tα − 1 if δact(a, α)! and tα > 0

0 if δact(a, α)! and tα = 0

lα if not δact(a, α)!

if α ∈ Σrem

(2) σ ∈ Σact, a′ = δact(a, σ)

t′α =




µα if σ ∈ Σspe

lα if σ ∈ Σrem

if α = σ


tα if δact(a, α)!

µα if not δact(a, α)! and σ ∈ Σspe

lα if not δact(a, α)! and σ ∈ Σrem

if α 6= σ

Let us consider an example. Let Gact = (A,Σact, δact, ao, Am) with,

A = Am = 1

Σact = {α, β}

Events are (α, 1, 1), (β, 1, 2) and ATG is given as below.

24

Figure 2.2: Gact

States of timed automaton are given as,

Q = {1} × Tα × Tβ

= {1} × [0, 1]× [0, 2]

= {(1, [1, 2]), (1, [0, 2]), (1, [1, 1]), (1, [0, 2]), (1, [0, 0]), (1, [1, 0])}

|Q| = 6

Fig. 2.3 shows the transitions among state set Q and is called the Timed Transition Graph

(TTG). Note that for ease of depiction, the states have been renamed as follows:

(1,[1,2]) 1

(1,[0,2]) 2

(1,[1,1]) 3

(1,[0,2]) 4

(1,[0,0]) 5

(1,[1,0]) 6

From Figure 2.3, we can see that at states 1 and 3 both events (α, β) are pending while at 2

and 5, they get eligible. Such states where event timer reaches 0, tick is preempted by the

respective event and timer value is set to default value.

25

Figure 2.3: TTG of Gact

There is a possibility that an activity can preempt tick infinitely in TTG, and is known

as activity-loop. For some q ∈ Q and s ∈ Σ+
act

δ(q, s) = q

According to this scenario tick event will never occur due to preemption (time stops) which

is physically impossible. Therefore we assume that all TTG must be activity-loop-free

(alf).

26

2.3 Supervisory Control Theory

A supervisor controls any plant by monitoring the events generated by the plant and

restricts its behavior according to the specification (also known as legal behavior). By as-

sumption, the supervisor can only manipulate controllable events while uncontrollable can

not be disabled. All events that are not intended to be disabled by the supervisor are mod-

eled as an uncontrollable event, e.g., emergency plant shutdown, manual over-ride switch,

and fault event.

Various strategies are available to implement the supervisory controller, which are ex-

plained in detail here.

Conventional Supervisory Control

Consider a plant modeled as DES denoted by G and a specification H. Suppose the

events of this system are Σ = Σc ∪ Σuc, where Σc and Σuc are controllable and uncontrol-

lable events of the plant.

A supervisor (S), limits the plant behavior to legal behavior (2.4). Formally S is a function

from language generated by plant to the power set of events.

S : L(G)→ 2Σ

27

Figure 2.4: Closed Loop plant

Define a function, Γ : x→ Pwr(Σ) to provide the active event-set feasible at any state.

Supervisor (S) will disable events from active event-set only. However, it must not disable

any active uncontrollable event because it has no control over Σuc. Such supervisors are

called an admissible supervisor. In the above figure, s denotes the sequence generated by

the plant and current state. The events permitted by the supervisor after disablement are

represented as K(s). Enabled event-set from any current state of the plant is defined as,

S(s) ∩ Γ(η(x, s)!) (1)

According to admissibility condition,

Σuc ∩ Γ(η(x, s)!) ⊆ S(s)

Only such events are executed which are enabled by supervisor, even if such event is present

in current event-set of plant. Let K/G denote the plant under supervision of K.

Generated and marked language by S/G:

The language generated by plant under supervision is denoted as L(S/G). L(S/G) is

defined as follows:

28

(1) ε ∈ L(S/G)

(2) If s ∈ L(S/G) and sσ ∈ L(G) and σ ∈ S(s), then sσ ∈ L(S/G)

Hence, according to definition L(S/G) is prefix closed language and L(S/G) ⊆ L(G).

The marked behavior of controlled plant is defined as

Lm(S/G) = L(S/G) ∩ Lm(G)

Problem: Supervisory Control Problem

Consider a DES G with uncontrollable event set Σuc and legal marked behavior E with

E 6= φ and E ⊆ Lm(G). Find a supervisor such that

(1) Lm(G) ⊆ E (safety property)

(2) Lm(S/G) = L(S/G) (Non blocking property)

Theorem 2.3.1 (discussed in the following) provides the set of following Supervisory

Control Problem in terms of controllable and Lm(G) − closed sub-languages. Before we

present the theorem we review the definitions of controllable languages and Lm(G) −

closure property.

Definition 2.3.1 A language K is controllable (with respect to a DES G) if

KΣuc ∩ L(G) ⊆ K

The set of controllable sub-languages of a given language K is denoted C(K).

For any K, C(K) is nonempty and has a supremal element denoted by SupC(K).

Definition 2.3.2 A language K ⊆ Lm(G) is Lm(G)− closed if

K = K ∩ Lm(G)

29

It can be shown that if K is Lm(G)− closed, SupC(K) is also Lm(G)− closed.

Theorem 2.3.1 Consider the Supervisory Control Problem. For every nonempty sub-language

K ⊆ E that is controllable and Lm(G) − closed, there is a solution S to the Supervisory

Control Problem such that Lm(S/G) = K and vice versa.

It follows from the theorem that if E is Lm(G) − closed, SupC(K) offers the minimally

restrictive solution.

Limited Lookahead Policy based Supervisory Control

The supervisor can be built offline. However, as the plant size increases, the number of

states will increase exponentially. This leads to high memory consumption during imple-

mentation. In order to mitigate the memory issue, a new methodology is introduced in [23].

It provides a formal approach to compute supervisory control on-the-fly i.e., to compute the

supervisor in run-time. This method is called Limited Look-ahead Policy (LLP).

In LLP based supervisory control, the DES model is expanded as a tree till N-levels from

current state and control action is generated based on the behavior of the expanded model.

Parameter N can vary depending on multiple factors such as processing power, memory

availability or plant depth. Once the N-level tree is expanded, traces in the expansion are

assigned an attitude to define their behavior (legal or illegal). Two attitudes considered

in[23] are: 1) “Optimistic” in which traces are assumed legal and 2) “Conservative” in

which pending traces are assumed illegal. Afterward, control action is computed in a few

steps as explained below.

Consider an automaton G over alphabet Σ = Σuc ∪ Σc. Suppose a trace s has been exe-

cuted during online control implementation and current state is x. The next steps are taken

to compute Supervisory Control Command denoted by γN(s)

30

Figure 2.5: Block diagram of LLP supervisor

Step 1: From state x, G is expanded to N-levels beyond trace s to explore limited behavior

into the future (block fNL(G)).

fNL(G)(s) = L(G)/s|N , Lm(G)/s|N

Step 2: Block fNK identifies and removes the illegal traces in N-level tree from result of

first step.

fNK ◦ fNL(G)(s) = (K/s|N , K/s|N)

Step 3: Remaining traces in N-level tree are known as pending traces. These traces may

have an uncontrollable event which can either lead the system to illegal zone or create

blocking. As supervisor has to deal with this ambiguity two attitudes are introduced.

• Optimistic attitude: All pending traces are considered marked and legal

• Conservative attitude: All pending traces are considered illegal.

31

Block fNa adopts one of the attitude regarding pending traces.

fNa ◦ fNK ◦ fNL(G)(s) =


optimistic: K/s|N

conservative: K/s|N−1

Step 4: The block fN↑ computes the supremal controllable sub-language of result of fNa

w.r.t. Σuc.

fN(s) = fN↑ ◦ fNa ◦ fNK ◦ fNL(G)(s) = [fNa ◦ fNK ◦ fNL(G)(s)]
↑/s|N

Step 5: The final step is to compute the control action by limiting the result of fN↑ to level

one only. Afterwards the set of uncontrollable events after trace s is added to it in

order to avoid the disablement of uncontrollable event(s).

γN(s) = fNu ◦ fN↑ = fN |1 ∪ Σuc ∩ ΣL(G)(s)

ΣL(G)(s) is defined as the active set after trace s: ΣL(G)(s) = {σ ∈ Σ : sσ ∈ L(G)}.

For the implementation of above discussed algorithm the following two notions have to

be examined, validity and Run-Time Error.

Definition 2.3.3 Validity: Any control policy, γN of LLP supervisor is said to be valid if

L(G, γN) = K↑

This notion will make sure that result of computed control policy is same as offline super-

visor and no control action will lead the plant to illegal region due to an uncontrollable

event.

32

Definition 2.3.4 Run-Time Error (RTE): During LLP computation if fN(s) 6= φ for any

trace, s ∈ L(G, γN), then it is said to be RTE. In special case if s = ε then, RTE is known

as starting-error (SE).

Proposition 2.3.1 For any valid control action γN the following statements are true.

(i) (∀s ∈ L(G, γN)) γN(s) = K↑/s1

(ii) K↑ 6= φ and (∀s ∈ K↑) γN(s) = K↑/s1

We know at in function block fNa one of the two attitudes are adopted regarding the

pending traces to compute control action. An important question is that is there a minimum

value for N that can guarantee validity and RTE.

Optimistic Attitude

In this policy all pending traces are assumed to be legal and marked to provide freedom

(which can have some events, in controllable action, leading to illegal zone or blocking

state). Therefore one would have to look far enough into the model, choose large N, to

have valid behavior. Two cases are considered.

Case 1: K = K

Denote the longest trace of uncontrollable events in language L by Nu(L).

Nu(L) =


max|s| such that s ∈ Σ∗uc and (∃u, v ∈ Σ∗)usv ∈ L if exists

undefined if not

Theorem 2.3.2 For K = K, if N ≥ Nu(K) + 2 or N ≥ Nu(L(G)) + 1, then computed

control action is valid. L(G, γNopt = K↑)

33

Case 2: K ⊆ K

In case if K is not closed, another constraint for non-blocking is required to be respected

while finding minimum bound. Therefore one has to explore (more than the case of closed-

K) at-least till the boundary for illegal region, known as frontier.

Definition 2.3.5 Let Kmc be the language that contains all traces lead to marked states

with controllable events only.

Kmc = {s ∈ K such that (∀σ ∈ Σuc) sσ 6∈ L(G)}

Definition 2.3.6 Let Kfc be the language that contains traces leading to illegal zone,

L(G)−K, due to uncontrollable event.

Kfc = ((L(G)−K)/Σuc) ∩K

In optimistic policy, supervisor will continue until it foresees traces leading to illegal

zone from marked states with only controllable events (σc), which will cause RTE by dis-

abling σc. Therefore minimum bound must be large enough that supervisor can see traces

leading to Kfc from Kmc in N-level expanded.

Nmcfc =


max{|t| : (∃s ∈ Kmc ∪ ε) [st ∈ Kfc ∧ (∀ε < v < t)sv 6∈ Kfc ∪Kmc]} ifexists

undefined otherwise

Theorem 2.3.3 Let K↑ 6= φ, if N ≥ Nmcfc + 1 then L(G, γopt) = K↑

34

Conservative Attitude

In this policy the worst case scenario is assumed i.e. all pending traces are illegal or may

lead to blocking. Consequently, close-loop behavior is more restrictive than conventional

supervisor, hence L(G, γNcon) ⊆ K↑. The the following two cases of K are required to be

analyzed for computing Nmin.

Case 1: K = K

Unlike optimistic policy, conservative attitude have no relation with RTE but minimum

bounds for validity can be computed by deriving closed language of L(G, γNcon), in case of

no SE.

Theorem 2.3.4 For closed K, if there is no SE in close-loop behavior, L(G, γNcon) and K ∩

ΣN−1
uc = φ then,

L(G, γNcon) = (K − (K/ΣN−1
uc)Σ∗)↑

The following corollary is inferred from above theorem.

Corollary 2.3.1 For closed K, if there is no SE in L(G, γNcon) and if N ≥ Nu(K) + 2, then

L(G, γNcon) = K↑.

According to Corollary 2.3.1, complete K is required but if its not available once can

use this minimum bound constraint, N ≥ Nu(L)+2, asK ⊆ L. Also from Theorem 2.3.2,

N ≥ Nu(L) + 1 which is smaller than the above result. Hence in case of closed-K, one can

use N ≥ Nu(L) + 2, valid for both attitudes.

35

Case 2: K ⊆ K

As all pending traces are immediately invalidated by supervisor, it is required to check

the marking and legality of upcoming traces in N-tree till marked state with only control-

lable events. This condition is necessary so that supervisor can disable controllable event

prior to execution of illegal trace due to any uncontrollable event.

Definition 2.3.7 Nmcmc is window size from current or initial state, with only controllable

events, to the state with same property.

Nmcmc =


max{|t| : (∃s ∈ Kmc ∪ {ε}) [st ∈ Kmc ∧ (∀ε < p < t) sp 6∈ Kmc]} ifexists

undefined otherwise

Theorem 2.3.5 Assuming K = Kmc and there is no SE in L(G, γNcon), if N ≥ Nmcmc + 1

then L(G, γNcon) = K↑

If the supremal controllable sub-language K is not empty and K = Kmc, all marked states

of supervisor have only controllable events, then Nmcmc ≥ Nmcfc can be proven. As a

result minimum bound from Theorem2.3.5 will also compute valid supervisor by adopting

optimistic policy.

State based Limited Look-ahead Policy

In [23], the plant model has explored N events into the future from the current state and

the expanded model is used to compute the supervisory command, but no information of

model state is used during computation, therefore, we call this as event-based LLP. This

computation gets complicated if there is a loop uncontrollable event because it will make

the minimum look-ahead window infinity (unbounded). Furthermore, it is vital to explore

plant at least until minimum window to guarantee the validity of computed supervisory

36

command.

In [25], information of the model’s state is used, which bounds the minimum window

length, as the maximum number of states can never be larger than the total number of

states of the model.

Definition 2.3.8 Let the set of marked states with only controllable events be denoted by

Xmc. Then

Xmc = {x ∈ Xm such that ΣG(x) ⊆ Σc}

Definition 2.3.9 Let ω(x, s) denotes the state set from x, following the sequence s such

that none of the forth-coming states belongs to Xmc and illegal states.

ω(x, s) =


{δ(x, t) : t ≤ s} if (∀t ≤ s)(δ(x, t) /∈ Xmc ∧ δ(x, t) ∈ XH)

φ otherwise

In above equation, XH is the set of legal states (in specification automaton H). If H is

not the sub-automaton of G then one need to transform it such that Lm(H) = K, using

procedure provided in [33]. Once the H is transformed then minimum bound for the validity

of supervisor is defined as NB.

NB = max
x∈X,s∈L(G)/[x]

|ω(x, s)|

37

Chapter 3

Research Objectives

We discussed the LLP algorithm for SCT implementation (in section 2.3). In LLP, only

one valid control action for the next step is computed after the occurrence of each event in

a plant. As a result, computation time is constrained, especially in embedded applications.

Computing new commands are very computationally expensive in terms of processing and

also sometimes there may not be enough time to compute the next command due to the

occurrence of back-to-back events. To uproot this problem, an innovative idea is suggested

in [26]; instead of computing only one command, supervisory commands are generated for

multiple events which are buffered and can be used readily once required. Next computa-

tion is only triggered when buffer level reach to lower bound (user-defined). This strategy

is called as LLP with buffering. As a result, all the supervisory command can be calculated

in timely fashion.

In this chapter, first of all, we plan to discuss the theoretical framework of LLP with buffer-

ing in detail. Later, we will formulate the research objectives, of this thesis, based on the

current knowledge of LLP with buffering. Afterwards in chapters 4 to 6, we will present

a model-based approach to calculate the execution time of event sequences and develop

C-code for the efficient implementation of LLP with buffering.

38

3.1 Review of Limited Look-ahead Policy with Buffering

In LLP [23], the proposed methodology computes the supervisor on-the-fly (as dis-

cussed thoroughly in section 2.3). In real-time implementations, computing supervisory

commands in each iteration may not be feasible in some situations due to different con-

straints. For example, if multiple events occur consecutively, there may not be enough time

to compute the next event. Waiting for the next control command to be computed may

cause undesired behavior or unnecessary delay.

To uproot this problem, an innovative strategy is proposed in [26] to compute the super-

visor. In this methodology, in addition to the next control command, the commands for

the following few events are computed and buffered. This strategy is called Limited Look-

ahead Policy with Buffering. Similar to LLP, the plant model is expanded for some window

in future called limited look-ahead window of the length Nw but instead of expanding it for

only the minimum length Nmin, the plant is explored for an extra ∆ events (Fig. 3.1).

This section contains a discussion for the selection of buffer sizes and conditions for the

validity of the computed supervisor using LLP with buffering.

3.1.1 Minimum Look-ahead Window Size

During LLP computations, as the plant model is expanded to a certain depth called the

look-ahead window. Therefore the main selection criterion of selecting minimum window

length of generating supervisory command such that it is minimally restrictive. Look-ahead

window size Nmin depends on several factors, one of them is the length of uncontrollable

strings in the plant.

Solar tracker plant (used in this thesis) has no state without any uncontrollable event and

therefore, infinite controllable loops are available throughout the plant automaton. Due

to this reason, the length of the maximum string of uncontrollable events (Nu(L(G))),

discussed in section 2.3, becomes infinity. Consequently, methods used in [23] cannot be

39

Figure 3.1: LLP with expanded window

used to compute minimum bound for solar tracker.

In section 2.3, we studied [25] in which a state-based approach is proposed to implement

LLP. In this approach, a finite upper bound for Nmin exists (and denoted by NB). In [26],

using the brute force method, Nmin was found to be 6.

3.1.2 Supervisor Validity of LLP with Buffering

In Chapter 2, we defined an LLP supervisor to be valid if it is minimally restrictive

(optimal). For an LLP supervisor to be valid, the size of the expansion window must be

sufficiently large. We denote the minimum window size for LLP supervisor validity by

Nmin (Fig. 3.1). As mentioned in, 2.3, in state-based LLP, Nmin is always bounded. In

fact, Nmin ≤ N where N is the number of states of the plant (if specifications are in the

form of a subset of plant states).

In LLP with buffering, we wish to calculate the set of enabled events for present and up to

40

∆ events (∆ ≥ 1) in the future. In [26] it is shown that the minimum window size, in this

case, will Nmin + ∆, and the solution of supervisory control problem for the plant model

expanded by Nw = Nmin + ∆ events provides the control policy up to ∆ events in the

future.

Performing computation using a window of Nmin guarantees the validity and optimality

of the behavior of the supervisor for an immediate subsequent event. In the LLP with

buffering, expansion size is increased by ∆ to have control commands of ∆ events beyond

the current state and buffered for later use. In order to discuss the validity of buffered

events, let us consider the following theorem.

Theorem 3.1.1 [34] If s ∈ K↑, then

(K↑)/s = (K/s)↑

Here, K↑ is the SupC(K) with respect to language L(G), generated by automaton G and

Σuc (uncontrollable events). It states that post-language of supremal controllable sub-

language (K↑) of any string (s) is equivalent to the supremal controllable sub-language

of post-language of the string.

Let us consider an example in which a small portion of expanded plant tree is shown in Fig

3.2,

41

Figure 3.2: Sub-expanded Tree

Let s be a trace in plant G from initial state x◦ to current state x permitted by the

optimal supervisor (s in Fig 3.2). Then according to Theorem 3.1.1, any event σi after i

steps allowed by LLP supervisor, also belongs to supremal controllable sub-language of

post-language of s.

Plant Depth

Plant Depth (PD) is defined as the minimum size of the look-ahead window size for

which the entire plant model must be explored for the LLP window. PD depends on the

plant model and specifications. One can use this parameter to measure the efficiency of

LLP, e.g., if online computations are done with a window ofNw close to PD, then complete

plant model is explored and the behavior of LLP is close to conventional supervisory (thus

requiring long computation time and large memory). In this case, LLP is not efficient.

In other words, one needs to keep the ratio of the look-ahead window to plant depth as

small as possible (to explore a small portion of the plant) and fully utilize the advantages

of LLP computation. Therefore

Nw

PD
and (Nw ≥ Nmin)

are the measures of usefulness of LLP in a particular problem.

42

Plant depth of solar tracker is 11 and using minimum look-ahead window size to ensure

validity of online LLP supervisor,

Nw

PD
=

6

11
= 0.54

3.1.3 Choosing Buffer Size

Once events are buffered, one does not have to worry about rapidly executed events

as no computation is required. During this free time, CPU can be used to compute the

supervisory command for the next window, but there is time constraint as computation must

be finished before the execution of previously buffered events. Otherwise, there would be

a delay which might have undesirable consequences. To find a suitable buffer size, two

functions are defined.

Definition 3.1.1 Minimum Execution Duration Tmin : N→ R

Tmin(n) is a function which returns the minimum execution time of any sequence with n

number of events.

Tmin = min{ T (s
′
) | ∃s, ss′ ∈ L(G) and |s′| = n}

where T (s
′
) is the execution time of sequence s′ .

Definition 3.1.2 Maximum Computation Delay Cmax : N→ R

Cmax(Nw) provides the maximum time consumed during LLP computation over the window

size of Nw.

Due to hard time constraints, all computations must be done in a very timely manner, and

control commands (events) must be readily available for the implementation, causing no

unnecessary delay. The timeline of LLP with buffering for events is shown in Fig. 3.3.

43

Figure 3.3: Timeline of LLP with buffering

The following explains the sequence of operations.

Step 1 As initial step (n=0), supervisory commands are computed for a window of Nw =

Nmin + ∆. At this point we have ∆ number of valid events in buffer.

Step 2 Let δ denotes the count of events left in buffer when new ∆ supervisory commands

are computed. Once ∆− δ events pass, LLP computations of supervisor is done for

a window of Nw = Nmin + ∆ + δ, generating events for interval ∆ − δ to 2∆. The

computations must be done in δ events (before n=∆). Thus

Cmax(Nw) ≤ Tmin(δ) and δ < ∆

It signifies that LLP computation must be done prior to the execution of δ events

(remaining in the buffer).

Step 3 After n=∆, the newly computed supervisory commands between n=∆ up to n=2∆

will be used. New LLP computation begins at 2∆− δ, similar to step-2 followed by

third step and so on.

In [26], LLP with buffering was implemented successfully in MATLAB on 2-DOF solar

tracker (to be discussed in Chapter 5) for trajectory control.

In order to optimize the computation time of supervisor generation, MATLAB code was

converted to C-code using MATLAB R© CoderTM. Consequently, no optimization is done

to reduce memory usage, e.g., same data type (double) are used in C-code (MATLAB

44

generated) as that in MATLAB and a large number of variables are declared to perform

the same task. The default data type of MATLAB is double (consumes 8bytes). In [26],

the maximum number of transitions of the plant is 16800, which can be represented by

an unsigned integer (consumes 2bytes), which immediately cuts down the memory usage

by four times. Furthermore, machine-generated code can be optimized in terms of code

execution (which can be achieved by the compiler) while hand-written code is optimized

in terms of process. For example, memory to store automaton can be allocated dynamically

i.e., allocate memory according to the requirement in run-time.

Improvement in computation time of supervisor is observed (later discussed in section 4.4)

but still algorithms can be further improved by using modified search algorithm and few

other customized features.

In [26] execution time of events is computed by extensive experiments. Therefore one

needs to perform a real-time experiment to obtain function Tmin.

3.2 Thesis Objectives

In this thesis, we will translate LLP supervisory control procedures to C-language for

optimization and prepare them for implementation on embedded systems. C-language is

a low-level language compared to MATLAB and therefore has more advantages in terms

of memory and time complexity. Nevertheless, these benefits come at the cost of the pro-

gramming complexities as one haS to manually manage memory at the hardware level. The

aim is to reduce the execution time of the algorithm by customizing them and especially,

to improve memory management during run-time (Details in section 4.2).

Previously, values for Tmin function were obtained experimentally. In this thesis, we

present a model-based approach to compute the Tmin function via theoretical analysis us-

ing Timed Discrete Event Systems (TDES). This methodology will eliminate the need for

experimentation and be used with any plant to study the timed closed-loop system.

45

To study the implementation of LLP with command buffering, two degrees of freedom (2

DOF) solar-tracker will be used as a plant. It is equipped with a micro-controller for data

acquisition and low-level control (motor control). Closed-loop timed solar tracker will be

compared with experimental results for validation. Online supervisory will be implemented

to maneuver the plant to find the brightest light spot for battery charging. This step will

be used to explore the efficiency of LLP with buffering. This would help with a better

understanding of the benefits and limitations of LLP with buffering.

46

Chapter 4

Development of Discrete Event Control

Kit for Embedded Systems

In this chapter, we will discuss the development of DECK procedures in C-language

with all required alterations. A model-based methodology is proposed to generate and an-

alyze timed plants under the supervisor using the developed code and TTCT software. At

the end of the chapter, we will perform the comparison of manually developed C-code, and

MATLAB converted C-code.

A major purpose of this thesis is to translate LLP supervisory control procedures to C-

language for embedded systems applications (i.e., computing supervisory command using

minimal resources). Being a low-level language has critical advantages over other lan-

guages, as it provides more control over code and hardware (RAM, flash memory, etc.).

Let us consider an example of the spacecraft Perseverance (a MARS rover), which is sched-

uled to launch in 2020. The rover is equipped with single board radiation-hardened com-

puter RAD750, possessing the processing power of up-to 200MHz with RAM of 256MB

while desktop used for this thesis has 8GB RAM with quad Core-i5-2400 @3.10GHz pro-

cessor. DES model of a solar plant used in this thesis (equipped with far fewer components

as compared to the rover), has 16800 transitions and 1584 states, which requires 102KB

47

https://mars.nasa.gov/mars2020/mission/rover/brains/
https://www.baesystems.com/en/our-company/our-businesses/electronic-systems/product-sites/space-products-and-processing/processors

and 60KB for a supervisor to store on RAM and take 2.5 seconds for computing supervisor

in MATLAB. Let us say, if the plant model has 100,000 states and 1,000,000 transitions,

then 5.91MB will be required. One can observe the exponential trend of memory require-

ment. Hence, it is not feasible to perform the computations for supervisory controls using

onboard resources. To tackle this problem, DECK procedures are written from scratch in

C language to optimize LLP algorithms with respect to embedded applications.

A limited look-ahead policy with buffering was suggested and implemented successfully

using the MATLAB generated C code in [26]. In this strategy, a complete plant is not

required to generate a supervisor. Consequently, time and memory complexities are de-

creased. In order to do further optimizations, only main procedures for LLP with buffering

are develop in C along-with a few other assisting functions, discussed in detail in section

4.2.

4.1 Structures and Data Types for DECK Procedure

In this section, we will define structures that are required during the development of

functions. All required structures and data types are defined in header file “structs.h”.

An unsigned integer deck int is defined and used throughout the algorithms because the

number of states and transitions will never be negative.

typedef uint16 t deck int;

Size of deck int can be changed to 8/16/32/64 bit unsigned integer, in “structs.h”, according

to the number of states or transitions of the automaton. Following structures are defined to

manipulate DES models LLP algorithms.

Array

In C language, array of any data type needs special attention as C does not have any

parameter to keep the track of its size. Array is handled using pointer which contains the

48

address of a first element only. Consequently, when a pointer is passed as argument, we

also need to send the size of the array, to avoid the illegal memory access (memory beyond

the actual array size). Rather then using new variable every-time, an array structure (with

two elements) is defined as follows.

typedef struct array{

deck int size;

deck int element[max Array Size];}

max Array Size is the maximum number of elements. It can be customized, for this

thesis it is fixed to 3000.

Automaton

Automaton structure is used to store DES model. It is defined as:

typedef struct automaton{

deck int N ; (states)

deck int TLs; (transition list size)

deck int Xms; (marked states size)

deck int ∗ TL; (pointer to transition list)

deck int ∗Xm;} (pointer to marked states)

Automaton’s transition list and marked states are stored in 2D and 1D arrays, respec-

tively. TL and Xm are the pointers containing the address of transitions and marked state

arrays. To keep track of the array’s size, separate variables (TLs and Xms) are used. Au-

tomaton’s number of states is stored in a separate variable (N).

Memory for transition list and marked states is allocated dynamically to avoid wastage of

49

memory. When an automaton undergoes through an operation like trim, product, or reach-

able, it is size can change. For example, the resultant of trimming an automaton can reduce

the number of transitions and states due to the removal of co-reachable states. Let us con-

sider sync operation with the example of two automatons, A and B. Suppose A has ten

transitions while B has 20. If we sync A and B, in the worst-case scenario where

ΣA ∩ ΣB = ∅

the resultant automaton will have 200 states and if

ΣA ∩ ΣB 6= ∅

then resultant automaton will have fewer transitions than 200. Thus the unused allocated

memory will be wasted.

Sometimes, memory required to store an automaton exceeds the stack memory of the func-

tion, causing the stack overflow. To solve this issue and also to reduce memory complexity,

dynamic memory allocation is used. In this method, memory is allocated (in run-time) on

the heap memory instead of the stack. Following function is developed for the dynamic

memory allocation,

automaton G = aut alloc (G, tls, xms);

A downside of dynamic memory allocation is a problem of memory leakage. In a program,

during the run-time, if memory is allocated dynamically and not freed after usage, it will

remain allocated. Moreover, recursive calls to that function will continue allocating more

memory, and eventually, the system will run out of RAM. This process is known as mem-

ory leakage. Hence, each dynamically allocated memory block must be freed manually

after usage. For this purpose, the following function is developed.

init automaton (&G);

50

Timed Ev

Timed Ev structure is defined to work with timed event (discussed in section 2.2). It

consists of three components, event code, lower bound and upper bound of the event.

typedef struct Timied Ev{

deck int Event;

deck int LowerBound;

deck int UpperBound;}

Timed Ev array

Array of timed events is statically defined with size of 30 elements. However, it can be

customized before executing program, according to the required number of events.

typedef struct Timed Ev array{

deck int Size;

Timed Ev element[Max Timed Ev Array Size];}

4.2 DECK Procedures

All DECK [35] procedures are implemented in source file “deck c.c” along-with the

few customized supportive functions to ease the design of main algorithms and visualiza-

tion. Procedures to compute a DES supervisor are,

• reach

• reachable

• trim

• product

51

• supcon

Generally, Breadth First Search graph traversal strategy is used to explores the transi-

tions in an automaton.

Breadth First Search (BFS)

BFS is a common graph traversing algorithm [36]. It initializes from source state and

explore all branches before moving to next node. Transitions from each node is explored

only once and newly discovered nodes are explored in the same order as they are discov-

ered.

Figure 4.1: BFS Example

Consider Fig. 4.1. Let node 1 (layer 0) be the source state. From 1, BFS will explore

node 3 then 2 in layer 1 and add them to the queue. Node 3 is the next in the queue to be

explored, here nodes 6 and 5 are discovered and added to the queue, next to the node 2.

Now, node 2 will be explored and process will continue until queue of unexplored states is

empty or all the nodes are explored. The final order of the graph exploration using BFS is

as follows.

1→ 3→ 2→ 6→ 5→ 4

52

Binary Search Algorithm (BSA)

The Binary Search Algorithm is a very efficient way to find elements in a sorted 1D

array of distinct elements. It uses the “divide and rule” concept. Suppose, there is an array

(arr) of n elements and we have to find x in this array. Then

• Find teh mid point of array and compare it with x. If x == arr[n−0
2

], then return.

• If x < arr[n−0
2

] search in left side, i.e. from left (0) to mid (n−0
2

).

• If x > arr[n−0
2

] search in right side, i.e. from mid (n−0
2

) to end (n).

This process will continue until the element x is found, assuming x belongs to the array.

It can be noticed that after each iteration the search horizon is halved. Therefore the time

complexity of BSA is O(log n) i.e. if the size of an array increases exponentially, the time

to find the element x will increase linearly.

Let us discuss the example of finding element 8 in the following array.

arr = [1, 2, 5, 6, 7, 8, 10]

The mid point of array is at index 4 so, arr[4] = 6, which is less than 8 therefore the left side

is discarded. Current search index ranges from 4 to 7. Mid point is at 5 i.e. arr[5] = 7 < 8.

So now the algorithm will leave right side of new portion and search in indexes from 5 to

7. Mid of this portion is at 6 and arr[6] = 8, the element is found. We can see that instead

of 7 iterations element was found in 3 only.

To use this algorithm in this thesis two customizations are done,

(1) Adjust it for array with repeating elements

(2) Adopt it for 2D array

53

In this thesis, transition lists are stored in 1D arrays mapped from a 2D array. For example,

transitions G.TL,

G.TL =


1 10 3

1 20 4

2 10 1


are stored as,

G.TL = [1, 10, 3, 1, 20, 4, 2, 10, 1]

Therefore as 1D array it seems unsorted but as 2D it is sorted in first column and also

repetitive, with respect to source state (two transitions from state 1). After changes this

BSA was ready to use in DECK procedure.

Reach

This procedure computes the reachable states in an automaton from an array of source

states.

reach(G,Sr, s);

Inputs:

G is the automaton to be explored.

Sr is pointer to array of source states.

s is array size.

Output:

It does not return anything but stores reachable states in global array Xr.

Global variables are useful, when the data is required to share among multiple functions

frequently. Therefore, instead of using the variables as an argument (with limited scope) to

the function, they are defined for the global scope.

54

Reachable

This function returns the reachable sub-automaton of an input automaton.

Gr = reachable(G);

Inputs:

G automaton.

Output:

Gr is the reachable automaton.

Trim

This function returns sub-automaton with transitions to or from only those states which

are reachable and co-reachable. It also stores the co-reachable states in global array Xrcr.

Gt = trim(G)

Inputs:

G automaton.

Output:

Gt is trimmed automaton.

55

Product

This functions take two automatons as input. The output automaton is the product of

both input automatons. To implement a limited look-ahead policy, we need to take the

product up until a certain depth of automatons. Therefore general Deck product algorithm

is modified by introducing limitations in depth during automaton traversing. This is con-

trolled by a signed integer (nw) as an argument.

In the previous version of this procedure, the memory of input automatons remained allo-

cated. In order to optimize memory, another feature is added in the function which frees

the memory of input automatons, if required, using the boolean argument (memFree).

All states explored during the execution of product are stored in prod states[max TLr][3],

global 2D array separately for troubleshooting. These states can be displayed using flag

“Inter Prod State”. The maximum size of this array can be changed; for thesismax TLr =

30000.

Gp = product LLP (nw,G,H,memFree);



default product nw < 0

LLP product nw ≥ 0

keep input memory memFree = false

free input memory memFree = true

In the case of large transition lists, it can be very time consuming to explore transitions

through a transition matrix due to a large number of iterations for finding the required

state. Hence customized BSA algorithm is used as explained in section 4.2.

Inputs:

G is first input.

56

H is second input.

nw is depth control parameter.

memFree is a flag to free memory.

Output:

Gp is the resultant automaton.

Supcon

Supcon algorithm [37] builds a minimally restrictive supervisor of a plant(G), specifi-

cation(H) and uncontrollable events (Euc).

K = supcon(G,H,Euc);

Inputs:

G is plant automaton.

H is specification automaton.

Euc is array of uncontrollable events.

Output:

K is supervisor automaton

Selfloop Ev

This function adds self loops of events to all states of an input automaton.

57

Gs = selfloop Ev(G,Ev,Evs);

Inputs:

G is plant automaton.

Ev is array of events.

Evs is array size.

Output:

Gf is self-looped automaton.

(a) G (b) Gs

Figure 4.2: Self-looped Automaton G

In Fig 4.2 self-loops of events 88 and 99 are added using selfloop.

Sync

Sync is used for the synchronous product of automatons. It is typically used to build

plant model from components and interactions. This function is not written in C because

sync can be performed by executing already available procedures, explained here. For to

automatons G and H, the following three steps yields the synchronous product of G and H.

58

• Self-loop G with events ΣH − ΣG

• Self-loop H with events ΣG − ΣH

• Product of self-looped G and H

Let us consider and example in Fig. 4.3. The event sets are,

ΣG = {111, 222, 333}

ΣH = {111, 222, 444}

According to the procedure firstly ,G is self-looped with event ΣH − ΣG = {444} and

H is self-looped with ΣG−ΣH = {333}. The resulting automatons are not shown here for

brevity. Then product function is used for the resultant automatons and final automaton P

in Fig 4.3(c) which is the sync of G and H. For simplicity all states are consider marked in

this example.

(a) G (b) H (c) sync of G,H

Figure 4.3: Sync Procedure

59

It is not necessary to write a separate function for the sync procedure.

4.3 Automaton I/O Functions

Other functions have been written to integrate DECK-C with TTCT software and MAT-

LAB in addition to the mentioned DECK procedures. These functions explained in detail

in the following section.

Draw automaton

In order to represent automaton graphically, an open-source software Graphviz [38] is

used. It is visualization software that represents structure information in the form of a net-

work or graph. This software can be used as a library or standalone software in different

operating systems (Windows, Linux and Mac etc.).

Using Draw automaton, automaton is written in text file according to Graphviz file for-

mat. Once the file is created, gvedit.exe application is executed and graphical automaton is

drawn by opening the generated file and executing run command.

draw automaton(G, filename, ShowName);

Inputs:

G is plant automaton.

filename is a character string.

ShowName is a flag to display event name instead of code.

Output:

Gvedit readable ASCII file named “filename”.

60

In order to display a label for each event instead of a numeric code third argument can be

set to true (otherwise false). The labels of event codes must be defined inEvCode to EvName(event),

defined in “deck c.c”, prior to using this function. It takes event code as input and stores

event name in global variable EvName. Fig. 4.4 is an example by Graphviz.

(a) Automaton with name (b) Automaton with

code

Figure 4.4: Graphical representation of automatons

Aut to file

The purpose of aut to file is to write automaton information on a file. One can also

use this function to manually write an automaton. For this, empty automaton will be given

as input to this function and the parameters of automatons will be updated using simple

text editor.

aut to file(filename,G);

Inputs:

filename is character string.

G is plant automaton.

Output:

61

Automaton file named “filename”.

For this thesis, a simple text file is used, but it’s format can be changed in the function.

File to aut

This function reads automaton and stores it in program memory. One can also use this

function to import automatons from other software e.g., MATLAB, provided that the file

data format is in accordance with the readable data format.

G = file to aut(filename);

Inputs:

filename is character string.

Output:

G is automaton.

Aut to TTCT AAS

TTCT software only reads the files of format .AAS, tAut to TTCT AAS writes an au-

tomaton in this specific format. The purpose of this function is to export any un-timed

automaton, with its events time bounds, from DECK-C to TTCT.

aut to TTCT AAS(filename,G, timed Ev array);

Inputs:

62

filename is character string.

G is automaton.

timed Ev array is array of timed events.

Output:

filename.AAS

Before using this function, it is important to convert the events and time bounds of input

automaton according to the TTCT format. The following are the rules used in TTCT for

automatons,

(1) Event code range is 1 to 999

(2) Odd event code represents controllable events

(3) Even event code represents uncontrollable events

(4) Lower and upper timed bound range is 0 to 1000

(5) 1000 time bound is interpreted as infinity.

Once changes are done in automaton, the above function can be used to generate TTCT

compatible file.

TTCT PDS to aut

In TTCT, once a timed automaton is computed, it is written in file a .PDS file. TTCT PDS to aut

can be used to read timed automaton and store it as automaton in program’s memory, event

code zero (0) is fixed for tick. The filename of a timed automaton file generated by TTCT

software is an input to this function.

G = TTCT to PDS to aut(filename);

63

Inputs:

filename is character string.

Output:

G is timed automaton.

4.4 Time Complexity Comparison

In this section, a comparison of DECK procedures, written in different languages is dis-

cussed. Any function to be analyzed is compared based on execution time of computation

for three sizes of automatons on the same machine. Programs are written in MATLAB,

MATLAB generated C code and C-language (from scratch).

The computer used for experiments has following specifications,

• Intel CoreTM i5-2400

• Max Clock speed: 3.10 GHz

• RAM: 8 GB

MATLAB Coder tool is used to convert MATLAB code to C language, and after con-

version, the generated program, in the form of MEX file, is either executed in MATLAB as

a function or exported to C compiler to be executed as standard C code. However, as the

code is converted by machine, it is not as optimized as the manually written C-code. This

can be validated with the results of the following analysis.

Execution time values in the following tables are the average of 10 to 200 tests.

64

Reach

Reach function takes an automaton, traverse its graph using BFS, and stores reachable

states in an array.

Machine: Intel CoreTM i5-2400

Automaton Size Code Language

Time (ms)

States Transitions MATLAB MATLAB generated C Manual C-Code

42 101 0.35 0.085 0.0047

323 1495 5.061 5.513 0.468

Table 4.1: Comparison of execution times

Reachable

This procedure generates the reachable sub-automaton. In Table 4.2, automatons of

three different sizes are used as input arguments. It can be seen that when transitions are

low, MEX format is twice fast as MATLAB. In contrast, when the model size increases

to thousands, the performance of mex functions degrades and becomes almost identical to

MATLAB. However, there is a significant difference when manually written C code is used;

even when the automaton’s transitions increase significantly, C code is still quite efficient:

fourteen times faster than MATLAB function.

65

Machine: Intel CoreTM i5-2400

Automaton Size Code Language

Time (ms)

States Transitions MATLAB MATLAB generated C Manual C-Code

42 101 0.500 0.102 0.0062

323 1495 7.028 6.114 0.535

969 6809 101.75 97.97 7.394

Table 4.2: Comparison of execution times for Reachable.

Product

Here is the comparison of product procedures with various automaton sizes. This is

one of the expensive algorithms in the DECK as both automatons need to be traversed

concurrently using the BFS search. Moreover, an increase in the number of transitions

from the same state causes a significant change in the loop iterations, as the algorithm has

to look for source state in the transition list in each iteration. Modified BSA is used to

minimize the number of iterations during the exploration of the product.

66

Machine: Intel CoreTM i5-2400

Automaton Size (G,H) Code Language

Time (ms)

States Transitions MATLAB MATLAB generated C Manual C-Code

134,9 471,50 3.29 1.18 0.059

323,130 1495,974 13.84 4.677 0.206

969,355 6809,3362 132.06 55.78 3.875

Table 4.3: Comparison of execution time of Product.

In Table 4.3, the first two columns contains the number of states and transitions of

the input automatons (G and H) of product function, separated by comma. It can be seen

that MATLAB generated C code is on average three times faster than MATALB, while

C code written from scratch is at-least 14 times faster then MATLAB generated C code.

It is interesting to see that as the automaton size increases, the time difference between

MATLAB and C code decreases but even when input automatons have transitions of the

order of thousands, C code is 34 times faster.

To sum up, manually written C-code has a significant advantage over the other programs.

This efficiency is due to run-time memory management of dynamic allocations, the use of

optimized data types, and a modified search algorithm instead of a brute-force approach.

67

Chapter 5

Experimental Setup and Supervisory

Design Setup

In this chapter, we will discuss the hardware architecture of the plant. In section 2, the

solar tracker is modeled as untimed DES, followed by the supervisor synthesis based on

the provided specifications.

Figure 5.1: Solar tracker as Remote station

68

5.1 System Hardware

The primary purpose of this thesis is to improve the implementation of DES-based

supervisory controls. Here first, the hardware setup is briefly explained.

Complete setup is comprised of two main systems:

(1) Remote Station and

(2) Ground Station

Fig. 5.2 depicts the schematic diagram.

5.1.1 Remote Station

Generally, any system controlled from a remote location using wireless communication

is known as Remote Station.

In this thesis, a solar tracker plant [20] is selected as a remote station. It is equipped with a

PV panel, two servo motors for maneuvering providing two degrees of freedom in motion

(2 DOF), a micro-controller, a battery, and a communication module.

The solar tracker is meant to find the brightest light source in its surrounding to charge the

batteries with a PV panel. It follows the user-defined trajectory (modeled as specification

and will be discussed later in this chapter) to find the light source.

69

Figure 5.2: System Hardware Architecture

PV panel

The PV panel converts light to electrical energy, which is used to charge the battery.

For this thesis Flexible Solar Cell is used. It is in the form of a flexible sheet; this avoids

damage. The maximum power that can be generated is 3.08 watts at 15.4 Volts and 200mA.

To harvest maximal energy, the Maximum Power Point Tracker (MPPT) is used to regulate

the voltage level to generate full power and store in the battery. MPPT uses a DC-DC con-

verter for the generation of approximately 3W continuously and keeps the battery charging

volt at the optimal level. For this purpose SparkFun Sunny Buddy is used, which is ca-

pable of seamless power flow due to the parallel connection of solar panel and single-cell

lithium-ion polymer (LiPo) battery. It can work with up to an input of 20 V, which is higher

than the maximum solar panel output voltage (15.4V).

Precision Voltage Sensor is used to keep track of the solar panel voltage. It can measure

±30V, and output is in the range of 0 to 5V.

70

https://flexsolarcells.com/pt15-300/
https://www.sparkfun.com/products/12885
https://www.phidgets.com/?tier=3&catid=16&pcid=14&prodid=108

Servo Motors

Two servo motors are used to control motion in both azimuth and elevation directions

of the solar panel. Both motors are capable of moving clockwise (CW) and counterclock-

wise(CCW).

Figure 5.3: Azimuth and Elevation Angle

Azimuth and elevation coordinates are used to measure a celestial body’s position in

the sky from a particular point of reference. As shown in figure 5.3, zenith is the vertical

axis at the location of the observer, azimuth is the clockwise angle between the projected

object on observer plane and north, while elevation is the vertical angle between observer

plane and object. In this setup, the origin point is the midpoint of the solar plane, and the

sun will be the source of light.

HS-645MG and HS-805MG are the motors for azimuth and elevation motion with the

ranges of 0◦ to 180◦ and 0◦ to 90◦ respectively. The latter has higher torque than the former

because it has to move the panel against gravity. For this thesis, the initial conditions of

angle set to be as 90◦ and 45◦ for azimuth and elevation motor, respectively. Then maneuver

constraints are defined with respect to the physical constraints of motors, as:

• Azimuth motor range: −90◦ ≤ θAZ ≤ 90◦

• Elevation motor range: −45◦ ≤ θEL ≤ 45◦

71

https://hitecrcd.com/products/servos/sport-servos/analog-sport-servos/hs-645mg/product
https://hitecrcd.com/products/servos/giant-servos/analog-giant-servos/hs-805mg/product

These motors have high speed, specifically taking 0.20 seconds and to 0.18 seconds to

rotate 60◦ by azimuth and elevation motors. Hence it is necessary to limit there speed for

safe operation. The following two safety constraints are imposed on both motors to avoid

physical damages:

• Single step of rotation = 2◦

• 2 sec wait time between two consecutive steps

These limitations will keep the maneuvers slow and safe. Motors are getting power from the

battery while the control signal (PWM) comes from a micro-controller. Pulse Width Mod-

ulation (PWM) is a square wave whose on-time signifies the time for which the armature

of the servo will be energized, and the internal feedback controller will keep the position

locked. In order to rotate the motor PWM signal with different on-time is generated.

Figure 5.4: Pulse Width Modulation (PWM)

The health of motors is monitored by measuring current consumed continuously during

operation. If the drawn current crosses the limit (stall current of motors 2500mA and

6000mA for azimuth and elevation motor), it means the motor is obstructed. SparkFun

Current Sensor is interfaced with micro-controller for motor health monitoring.

Micro-Controller

The micro-controller is the brain of the remote station. It is responsible for all process-

ing and communications. EFM32TM Leopard Gecko micro-controller has 48MHz, 32bit

72

https://www.sparkfun.com/products/14544
https://www.sparkfun.com/products/14544
https://www.silabs.com/products/mcu/32-bit/efm32-leopard-gecko

ARM Cortex M3 processor, 256KB flash memory, 32KB RAM and 12bit ADC. It is very

suitable for low power applications due to its flexible energy modes.

Battery

A Lithium Polymer (Li-Po) is used as the primary energy source for the system. It has a

nominal voltage of 3.7V and 2000 mAH current capacity. The PV panel charges this battery

during operation. A fuel sensor is attached to measure the state of the battery charge. This

sensor is interfaced with the micro-controller via the IIC communication protocol.

5.1.2 Ground Station

The ground station is responsible for computing and transmitting high-level supervi-

sory commands based on the sensors’ measurements received from the solar tracker.

Here, the ground station is a windows-based computer with a wireless transceiver for com-

munication with the remote station. Hardware specifications of the computer are:

• Processor: Inter(R) Core(TM) i5-2400 CPU@ 3.10 GHz

• RAM: 8 GB

Communication module

For wireless communications, a pair of Digi XBee S1 802.15.4 modules are used. It is

serial asynchronous communication, UART(Universal Asynchronous Receiver-Transmitter).

The speed for this protocol can be customized; however, in this thesis, the maximum baud

rate of 115,200 bps is used for high-speed communication, and packets are also encoded

for transmission.

73

https://www.digi.com/support/productdetail?pid=3257

Figure 5.5: Serial Communication

5.2 Untimed DES Model and Supervisor Design

Initially, to start DES modeling, all basic components of plants are modeled (as discrete

event systems in the form of the automaton); next, the component interactions are modeled.

This step is very significant as it defines the dependency of plant components; even one in-

teraction can lead to the plant’s unwanted behavior. Afterward, specifications are defined;

these are the set of behaviors expected from the plant. The last step is to define uncontrol-

lable events, which the supervisor can never disable them. Sometimes, those events that

are not wanted to be controlled by a supervisor are also modeled as uncontrollable e.g., an

emergency shutdown of the plant. For the sake of simplicity, all states are marked.

5.2.1 Components

PV Panel

PV panel generates power based on the intensity and angle of the incident of light.

Maximum energy is generated when the light source is normal to the surface of the PV

panel. If the generated power is not enough, it will not be able to charge the battery.

Therefore the followings are states that are selected for modeling:

1: Dark

2: Dim

3: Bright

74

Events are defined based on the panel voltage changes, as shown in Table 5.1. As the

light source is an environmental factor that cannot be controlled, all related events are

uncontrollable. In the table, e.g., ≥ 6 means voltage has passed the threshold 6V.

Figure 5.6: PV automaton

Event Analog Voltage (V) Controllability

Dark to Dim ≥ 6 Uncontrollable

Dim to Bright ≥ 16 Uncontrollable

Bright to Dim ≤ 15 Uncontrollable

Dim to Dark ≤ 5 Uncontrollable

Table 5.1: PV panel events based on voltage

PV panel voltages can be noisy, which may lead to undesirable event triggering. To

prevent this, the thresholds of increasing and decreasing the voltages have been chosen to

differ by 1V. Consequently, the event will only trigger when there is a difference of at least

1V. Moreover, PV can only charge the battery when it generates sufficient power, i.e. when

it is in a bright state.

Battery State of Charge

Battery’s charge is measured in percentage using a fuel gauge sensor interfaced with

the micro-controller. The battery is modeled with the following three states.

1: Safe

2: Full

75

3: Critical

Each state is related to the percentage of battery charge (SOC). Hysteresis of 5% is

included when defining the SOC limit for events to avoid undesired event triggers due to

noisy data acquisition. The reason is that when servo motor is actuated, high current is

drawn, which leads to a sudden drop in battery’s SOC.

Figure 5.7: Battery SOC automaton

The charging state of the battery cannot be controlled; therefore, all relevant events

uncontrollable. SOC thresholds for events are defined in Table 5.2. As mentioned before,

Event Battery’s SOC Controllability
Crit to Safe ≥ 55% Uncontrollable
Safe to Full ≥ 95% Uncontrollable
Full to Safe ≤ 90% Uncontrollable
Safe to Crit ≤ 50% Uncontrollable

Table 5.2: Battery SOC events and percentage thresholds

servo motor motion requires significant current to keep the armature energized, which is

not possible in a critical state due to insufficient charge. However, servo motor motion is

possible in the other two states.

76

Azimuth Motor Motion

Azimuth motor can rotate in either direction clockwise(CW) or counter-clockwise(CCW)

(provided that it is in within range, discussed in 5.2.1)). The motion of the azimuth motor

has three distinct states:

1: Idle

2: Turning CW

3: Turning CCW

When the micro-controller issues command to move, the position of the servo changes

according to the specified direction in a step of 2◦. The motor is considered to remain in

the state of motion until AZ X OK (X = CW,CCW). After each motor step, there is a

short delay of 2sec for safety. Once the movement is done, the state of the model changes

back to idle. A current sensor is used for feedback To measure the completion of motion.

If the motor current decreases to less than 500mA, it signifies a successful motion.

Motor movement commands are controllable events and sent by the supervisor while the

events defining successful motions are uncontrollable.

Figure 5.8: Azimuth Motor Motion automaton

Azimuth motion is considered as fault free for simplicity.

77

Events Current Threshold Controllability

AZ CW MOVE N/A Controllable

AZ CCW MOVE N/A Controllable

AZ CW OK ≤ 500mA Uncontrollable

AZ CCW OK ≤ 500mA Uncontrollable

Table 5.3: Azimuth motor events and current thresholds

Elevation Motor Motion

Elevation motion has the same movement description as azimuth motion except that

it is not assumed to be fault-free. If the elevation motor failure occurs due to electrical

problems or physical hindrance, the model transits to a faulty state.

Failure of the elevation motor will be detected by checking the current. If the motor’s

average current remains above 500mA, it is considered stuck, and EL FAIL MOVE event

is triggered. This failure is assumed to be permanent (it cannot be removed). The elevation

model has the same states as the azimuth motor with an additional faulty state:

1: Idle

2: Turning CCW

3: Turning CW

4: Faulty State

78

Figure 5.9: Elevaton Motor Motion automaton

All the events related to the current threshold are shown in Table 5.4.

Event Current Threshold Controlability

EL CW MOVE N/A Controllable

EL CCW MOVE N/A Controllable

EL CW OK ≤ 500mA Uncontrollable

EL CCW OK ≤ 500mA Uncontrollable

EL FAIL MOVE ≥ 500mA Uncontrollable

Table 5.4: Elevation motor events and current thresholds

Elevation motion follows the same safety specification as azimuth motor i.e., 2◦ unit

rotation step and waits for 2 seconds after each step.

Azimuth Motor Range

In this thesis, azimuth motion is restricted to a certain angle range of 0◦ ≤ θ ≤ 180◦.

Initial position for azimuth motor is θ = 90◦. From here, it can move 90◦ in either direction

79

CW or CCW. The position of the servo is stored in a micro-controller.

As illustrated in Figure 5.10, azimuth servo angle is polled by event AZ POLL RANGE.

If the position has reached maximum boundary AZ MAX CW or AZ MAX CCW is trig-

gered; otherwise, AZ RANGE OK, followed by azimuth motor movement and process,

continues. The states are:

1: Idle

2: AZ Polling Range

3: Maximum CCW

4: Maximum CW

Figure 5.10: Azimuth Motor Range automaton

The controllability and range of relevant events are provided in Table 5.5

80

Events Angle Range Controllability

AZ MAX CCW θ = 0◦ Uncontrollable

AZ MAX CW θ = 180◦ Uncontrollable

AZ RANGE OK 0◦ < θ < 180◦ Uncontrollable

AZ POLL RANGE N/A Controllable

Table 5.5: Azimuth motor range events and angle thresholds

Elevation Motor Range

The range of elevation servo angle is 0◦ ≤ φ ≤ 90◦; at the initial position φ is set to

90◦. The mechanism of this model is identical to the azimuth motor shown Figure 5.11,

and the corresponding events are shown in Table 5.6. The states of this model are:

1: Idle

2: EL Polling Range

3: Maximum CCW

4: Maximum CW

81

Figure 5.11: Elevation Motor Range automaton

Events Angle Range Controllability

EL MAX CCW φ = 0◦ Uncontrollable

EL MAX CW φ = 90◦ Uncontrollable

EL RANGE OK 0◦ < φ < 90◦ Uncontrollable

EL POLL RANGE N/A Controllable

Table 5.6: Elevation motor range events and angle range

Master Controller

In Supervisory Control Theory, the supervisor does not generate new events; it can

only enable or disable them. Therefore, events that are not part of the plant components are

modeled by a hypothetical one state component. For this thesis, the master controller (MC)

is such a hypothetical component shown in Figure 5.12. The controllability of the events

is shown in Table 5.7. Note that the three controllable events are signals that are generated

by the supervisory control system.

82

Figure 5.12: Master Controller Automaton

Events Controllability

Full Sweep Uncontrollable

Sweep Failure Controllable

EL Motor Fail Controllable

Bright Detected Controllable

Table 5.7: Master Controller Events

Delay for Servo motion

Servo motors can rotate with very high speed. Hence a delay of two seconds is added

after each step rotation to impose safe and smooth motion, which is considered to be the

same for both motors. Therefore, whenever a move command is issued for either motor

in either direction, automatons reach the state of “wait of two seconds”. Once the time

duration is complete, the current of the motor is used to check for failures. Figure 5.13

represents the model of this component. In this model, event “wait 2 sec” is uncontrollable.

83

Figure 5.13: Wait Automaton

5.2.2 Interactions

The crucial interaction models must be obtained to complete the plant model, as they

define the physics or working of the plant. In interactions, the dependency of components

is also modeled e.g., the motion of servo motor depends on the state of the battery. If there

is sufficient charge (safe or full state of battery) only then motor motion is possible; hence

the model must prevent the servo rotating if the battery is in a critical state. Therefore, it

is imperative to capture the physical attributes of the plant. All interactions of the solar

tracker are defined in this section.

Motor Motion as function of Battery

In a solar tracker, motor motions are only possible if the battery is in a SAFE or FULL

state (SOC ≥ 50%). This condition will allow successful servo rotation. Consequently,

events that represent motion completion are only allowed at SAFE and FULL states, as

shown in Figure 5.14.

84

Figure 5.14: Servo motion function of Battery SOC

Battery as function of PV Panel Illumination

The PV panel charges the battery, and the charging process is only possible when the

PV panel generates enough power. According to PV specifications, when PV is in Dim

or Bright state, sufficient power is generated, hence battery SOC can increase, and con-

sequently, the events Crit to Safe and Safe to Full can occur. Conversely, battery SOC

can reduce at any given instance due to servo motor motion; therefore, events (related to

decrease in battery SOC) Full to Safe and Safe to Crit can occur in all states of PV panel.

Figure 5.15: Battery SOC function of PV panel

85

Battery as function of Motor Motion

As discussed above, motor motion is only possible if the battery is in Safe or Full state,

and as the motion happens, battery SOC decreases every time. Only PV panel charges the

battery, and according to PV specification, a maximum of 200mA current can be generated

(while no-load current for azimuth and elevation servos are 450mA and 520mA). Hence

discharging current is always higher than charging. Therefore, the state of battery SOC

always decreases during motion, and only Full to Safe and Safe to Crit events are possible

during the states of motion. While all the events can occur when both motors are idle, or

azimuth motor is idle, and elevation motor failed.

To build this interaction, the synchronous product of both motor motions (Figure 5.8 and

Figure 5.9) is formed and suitable self-loops of events are added (according to the above

discussion) on resultant automaton, as shown in Figure 5.16.

Figure 5.16: Battery SOC function of Motor Motion

As we have all the required models, all components’ simple synchronous product is

formed to build plant automaton. The generated model has 1584 states and 16800 number

of transitions.

5.2.3 Specifications

Specifications are the set of rules, defines by the user, to be imposed on the plant. The

following are the specifications considered for this thesis.

86

Motor motion as function of motor range

Servo motors work in the preset range defined by the manufacturer. Therefore, to en-

sure the safety of both servos, elevation, and azimuth ranges are limited to 90◦ and 180◦,

respectively. If the elevation motor reaches to maximum limits of CCW (0◦) and CW (90◦),

it must not be allowed to move further in the same direction as shown in Figure 5.17. Sim-

ilarly, the motion of the azimuth servo is restricted. For brevity, the specification model of

azimuth servo is not shown.

Figure 5.17: Specification of Elevation motor motion as function of range

Motor range as function of motor motion

This specification states that motor motion is only allowed when motors are idle (state 1

in Figure 5.8 and Figure 5.9). Once the event for successful motion (XX YY OK) occurs,

and the motor is in idle state, it can be polled to get the position and rotate according to the

next command, as shown in Figure 5.18. For brevity, the azimuth motor specification is not

included.

87

Figure 5.18: Specification of Elevation motor range as function of motion

Maneuver Specifications

The specifications defined so far are crucial concerning the operation safety. In the fol-

lowing specification, the motion trajectory will be defined to find a bright spot. A thorough

exploration of the hemisphere may be required to search for a sufficient light source. There-

fore sequences of motions are executed in a particular order, leaving no portion unexplored.

This scenario is similar to the industrial case where the plant is required to follow a specific

set of steps for a particular task, such as emergency, shutdown, or startup sequences. In this

thesis, it is named as “Full Sweep”.

Full sweep is initiated once the remote station receives the command for full sweep

(CMD Full Sweep). In the beginning, azimuth and elevation motors are set to initial po-

sitions (θ = 90◦ and φ = 45◦, respectively). Once the sweep begins, the motor will start

rotating in commanded direction. Only one motor is allowed to rotate at the moment to

keep the battery voltage at a sufficient level for motion. Once either motor has reached its

limit (CW or CCW), it begins to rotate in the reverse direction. Meanwhile, if any bright

spot is detected, the sweep maneuver is terminated by sending the “Bright Detected” signal

to the ground station. Otherwise motor continues until it reaches the end of maneuver and

88

sends “Sweep Failure”. Sweep motion is also terminated in case of elevation motor failure,

thus generating “El Motor Fail”.

Full sweep motion consists of small sweep sequences as follows:

(1) Rotate azimuth motor till maximum CCW.

(2) Rotate azimuth motor till maximum CW.

(3) Sweep elevation motor to maximum CCW.

(4) Sweep elevation motor to maximum CW.

This specification has 58 states and 209 transitions and is shown in Appendix B.

Now all specifications are modeled; the last step is to include the self-loops of all irrelevant

events. Hence, the product of all specs is built to get the complete specification model. The

size of the final resultant model is given below:

• 416 states

• 4216 transitions.

5.2.4 Supervisor Synthesis

The supervisor of the plant is generated by using Discrete Event Control Kit (DECK)[35]

developed in the MATLAB environment. In this thesis DECK procedure is written in C lan-

guage in Code::Blocks.

We already have plant model G and specification model H and a list of uncontrollable

events Σuc. Thus using the supcon algorithm, the supremal sub-language of the product of

marked language of plant and specification Lm(G) ∩ Lm(H) is generated with respect to

L(G) and Σuc [37].

The generated supervisor is in the form of an automaton with,

89

http://www.codeblocks.org

• 2061 states

• 9527 transitions.

This is offline supervisor for the complete plant model.

90

Chapter 6

Calculation of Sequence Duration using

Timed DES

In this chapter, we will first discuss the timed modeling of the solar tracker. Next, we

will propose a method for the built timed model of the plant under supervision to calculate

the execution time of the event sequences. Moreover, in the last section, we will compare

the built timed plant under supervision with the event sequence generated during the real-

time implementation of an untimed solar tracker.

6.1 Modeling of Solar Tracker as Timed DES

At the beginning of this section, all the components of the solar tracker are modeled as

TDES. As discussed earlier, time is measured in terms of tick in TDES. Therefore, we will

discuss the effect of tick size on the timed model. Afterward, a methodology is proposed

to develop a timed plant under supervision.

The timed model of automatons is built using Timed Toy Control Theory (TTCT) [39].

All models with time bounds are written to file in DECK C and exported to TTCT. Then

TDES of the plant is imported to DECK C and multiplied by the supervisor (possessing

91

time information). Resultant automaton is timed plant under supervision, which is used to

analyze the execution time of events theoretically.

6.1.1 Modeling Time Bounds of Events

As discussed in section 2.2, Σact is the set of activities, equipped with lower time bound

(lσ ∈ N) and upper bound (µσ ∈ N∪∞). These bounds signify the delay that can be caused

due to various factors like communication or computation and represent the maximum per-

missible time limit. An event can be affected by different factors e.g., Dark to Dim event

depends on the light intensity of an environment or orientation of PV panel with respect

to the light source while AZ CW OK merely depends on the computation time of micro-

controller. We have thirty (30) events in total for this project. Each one is required to be

modeled as accurately as the physical system to obtain TDES of the plant. All controllable

events are prospective events. Therefore, the associated upper bound is infinity.

Note: All time bounds are modeled in seconds.

Controllable Events

As mentioned earlier, all controllable events are prospective events. Therefore they

have an upper bound of infinity. Lower time-bound of these events is set to sampling time

(50ms) of the system. Anything that happens before 50ms is not detectable as change is

only observed at every 50ms. Communication delay is 15ms which is well under the sam-

pling time.

92

Events Lower bound Upper bound

Bright Detected 0.05 ∞

Sweep Failure 0.05 ∞

EL Motor Fail 0.05 ∞

AZ Poll Range 0.05 ∞

EL Poll Range 0.05 ∞

AZ Move CW 0.05 ∞

AZ Move CCW 0.05 ∞

EL Move CW 0.05 ∞

EL Move CW 0.05 ∞

Table 6.1: Time bounds of Controllable events

Battery SOC related Events

In this thesis, 2000mAH LiPo of 3.7V is used, and it is charged by PV panel via the

MPPT module. The current charging rating of the MPPT module and servo motor’s current

consumption is used to model the time bounds of events according to the physical behavior.

Time bounds of all events are shown in Table 6.2.

According to the datasheet of MPPT charging current is 450mA. So the total time to charge

is calculated as,

Charging/discharging time =
battery capacity

charging/discharging current
(2)

discharge time =
2000

450

= 4.44hours

= 267minutes

93

Now from Table 5.2, the minimum time for Safe to Full to occur is when battery SOC

changes from 94% to 95%. And maximum time this event can take is when SOC changes

from 55% to 95%. Similarly, time for Crit to Safe is calculated.

The battery is always discharging when motors are in motion and the maximum current

consumed by motor is 520mA and using equation 2, calculated discharging time from

100% to 0% is 267 minutes. Using this information, time bounds for decreasing SOC are

calculated.

Events Lower bound Upper bound

Safe to Full 960 7200

Full to Safe 1380 6240

Crit to Safe 960 2400

Safe to Crit 720 6240

Table 6.2: Time bounds of Bat SOC events

PV panel related Events

As this project is built in a constrained lab environment, the light source is fixed at one

point to simplify the experiment. Time bounds for relevant events depending on the relative

motion of light source and PV panel; therefore, upper bounds can be infinity. Consequently,

events are modeled according to the lab (constrained) environment. Threshold voltages for

event occurrence are provided in Table 5.1.

The minimum time bound for all relevant events is chosen as 2.1 seconds because unit

step motion (2◦ motion followed by 2 sec wait time plus delay in communication and

implementation of 100ms) can trigger these events while maximum time bounds depend

on the time taken by PV to change orientation to achieve target voltage (for an event). Due

to the ambient light of the lab, the PV panel generates voltage relevant to the dim state.

94

Therefore events related to dim states have the longest upper bounds. Time bounds of all

relevant events are shown in Table 6.3.

Events Lower bound Upper bound

Dark to Dim 2.1 60

Dim to Bright 2.1 150

Bright to Dim 2.1 150

Dim to Dark 2.1 60

Table 6.3: Time bounds of PV Panel events

Rest of the Events

Events other than those discussed in section 6.1.1 and 6.1.1 are simple to model as they

are not environment-dependent. Instead, they only depend on the interval factor of compu-

tation in the micro-controller. As discussed earlier, the sampling time is 50ms, which is the

time interval available to measure the change in the plant. Hence minimum time-bound is

set to sampling time while the upper bound is fixed at 0.5 sec. This number is chosen by

factoring in computation time, communication delay and some required flexibility.

Event “wait 2sec‘’ is to implement a safety delay of 2 sec. Hence lower and upper bounds

are 2 and 2.1sec. The upper limit is set a bit higher to provide some room for flexibility.

95

Events Lower bound Upper bound

AZ CW OK 0.05 1

AZ CCW OK 0.05 1

AZ MaxX CW 0.05 1

AZ Max CCW 0.05 1

AZ Range OK 0.05 1

EL CW OK 0.05 1

EL CCW OK 0.05 1

EL Max CW 0.05 1

EL Max CCW 0.05 1

EL Range OK 0.05 1

EL Fail Move 0.05 1

Full Sweep 0.05 1

Wait 2sec 2 2.1

Table 6.4: Time bounds of PV Panel events

Now the time bounds of all events are modeled. The next step is to choose the Tick.

Selecting a reasonable Stick size is very important because it affects the size of the timed

automaton model and adjusts the details of timing information of events. This is discussed

in detail in the following section.

6.1.2 Selection of Tick Size

In TDES models, time is measured in terms of global ticks, as discussed in section

2.2. The size of the tick can range from milliseconds to hours, depending on the nature of

the event. Using a smaller tick size is a detailed TDES; consequently, the size of TDES

96

increases drastically. In contrast, if the larger tick size is selected, the timed model’s size

will be smaller at the cost of fewer details with respect to timing information. Hence there is

a trade-off between the model size and timing information in TDES, as shown symbolically

in Figure 6.1.

Figure 6.1: Tick size trade-off for TDES

In order to build TDES for this project, different tick sizes were selected. Figure 6.2

provides a brief insight to this relation. It can be seen that when tick size is 0.5sec, number

of transitions is 2904819 while that of states is 363192. As tick size increases to 1 second,

transition and state numbers decrease by ≈ 80%.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Tick Size in seconds

0

0.5

1

1.5

2

2.5

3
10

6 TDES model size comparision

Number of States

Number of transitions

Figure 6.2: Built TDES model size comparison

Initially we began with the tick size of 50ms. But due to the significant large number

97

of states, computer ran out of memory. The tick size was gradually increased up to 2 sec.

However, model size was still too large to be stored on available memory. Finally, we built

the timed model of partial plant with tick size of 0.5 sec, for which enough memory of

computer was available.

In TTCT manual[40], it is defined that infinity timed bound must be represented as 1000

ticks. Therefore the maximum number of ticks representing finite timed bound is 999. All

the time bounds in ticks (according to selected tick size) are shown in Table 6.5.

For some events related to the battery, the lower bound (in ticks) surpasses the defined limit.

For example, the minimum time-bound of Safe to Crit is 720sec (i.e. 1440ticks > 999).

The lower bound is chosen as 999 in such events. This makes the TDES model a bit more

conservative. In these cases, the upper bounds are infinity because if upper tick bound were

also set to 999, then it would imply that event must occur at 999th tick, which is inaccurate.

Hence upper ticks bounds are set to infinity even though they are finite. This will avoid

hard time constraint for such events.

98

Events Tick bounds Events Tick bounds

Lower Upper Lower Upper

Safe to Full 999 1000 AZ POLL RANGE 1 1000

Full to Safe 999 1000 EL POLL RANGE 1 1000

Crit to Safe 999 1000 EL CCW OK 1 2

Safe to Crit 999 1000 EL CW OK 1 2

Dark to Dim 5 120 EL CCW MOVE 1 1000

Dim to Bright 5 300 EL CW MOVE 1 1000

Dim to Dark 5 300 EL FAIL MOVE 1 2

Bright to Dim 5 120 EL MAX CW 1 2

AZ CCW OK 1 2 EL MAX CCW 1 2

AZ CW OK 1 2 EL RANGE OK 1 2

AZ CCW MOVE 1 1000 Wait 2sec 4 5

AZ CW MOVE 1 1000 Full Sweep 1 5

AZ MAX CW 1 2 Bright Detect 1 1000

AZ MAX CCW 1 2 Sweep Failure 1 1000

AZ RANGE OK 1 2 EL MOTOR FAIL 1 1000

Table 6.5: Time bounds of all solar tracker events in Ticks

For events, whose where minimum bound is less than 50ms, the lower bound in ticks is

99

taken as one tick (0.5 sec) because this is the minimum time required according to selected

tick size and sampling time of the plant. Now all the events are modeled next step is to

build TDES using this information.

6.1.3 TDES Model of Plant Under Supervision

The untimed model of the solar tracker has 1584 states and 16800 transitions with 30

unique events. Figure 6.3 shows the process of building a TDES plant under the supervi-

sor. Template for .AAS file is provided in Appendix A. The constructed TDES model is

imported in Deck C in text format (.PDS) for other operations.

First, all untimed component models and timed events are modeled in Deck C, then rewrit-

ten in a compatible format to export. All models are then converted to an activity transition

graph (ATG) in TTCT. Meanwhile, the untimed supervisor computed (in Chapter 5) is

self-looped with a Tick event on each state (in Deck C). This step incorporates the time

information in the un-timed supervisor and builds a timed model for the plant under su-

pervision. In TTCT, Timed Graph function [40] is used to convert ATG to timed transition

graph (TTG). Once TDES of all components is ready, a complete TDES model of plant can

be computed using sync operation. The resulting model is not in a readable format (.TDS

); therefore it is converted (within TTCT) to text format (.PDS) to be imported in Deck C;

the template is provided in Appendix A.

100

Figure 6.3: Building TDES plant under supervision

The resulting system under supervision is computed by the TDES plant product and

timed supervisor in Deck C. This model is then further used to explore the timing behavior

of event sequences.

Due to the limited processing power of the ground station (desktop computer), it was im-

possible to build the TDES for the complete plant. Also, the TTCT software is only com-

patible with Windows OS; therefore, Linux based fast servers could not be used. Further-

more, while TTG for a complete plant was being built using available desktop PC, there

was an error of illegal memory access after 4 hours of computation indicating RAM’s in-

sufficiency. Hence the following new strategy was adopted to build a timed model. Rather

than building TDES of the whole plant, a subset of the complete model was used.

101

Figure 6.4: G6

Instead of exporting all untimed components to TTCT, the complete plant model is

computed in Deck C. Then it is explored to limited depth to get a sub-automaton, which is

exported to TTCT to build TDES. The solar tracker plant is explored to a depth of 6 events

from the initial state. To get the desired sub-automaton of plant, a new automaton (G6) with

seven states was built, as shown in Figure 6.4. Transitions of all events (Σ) from one state

to another were added. Taking the product of this automaton with complete plant models

results in a sub-automaton of the plant (GsubP lant) with the depth of 6 events.

GsubP lant = Gplant ×G6 (3)

The resulting automaton is exported to TTCT to build the timed model and the meantime

untimed-supervisor is computed in Deck C and self-looped with tick. Subsequently, the

product of both automatons (timed-plant and supervisor with ticks) is used to build the

closed-loop timed-plant. The size of the computed models is shown in Table 6.6.

- Untimed Model Timed Model TDES Under Supervision

States 2095 363192 12547

Transitions 12476 2904819 42509

Table 6.6: Size comparison of automatons (Depth: 6 events form initial state)

The above process can be used to build the timed model with a depth 6 from various

starting states.

102

6.2 Analysis of TDES under Supervision

To explore the TDES under supervision, a new function is written in C language. Event

string used to explore the model is generated during the real-time implementation of LLP

with buffering. TDES is built for a depth of 6. Therefore the system is simulated for only

six non-tick events. Figure 6.5, is the result of simulation.

Using Table 6.5, we can verify the occurrence of events in Figure 6.5. For example, once

Full Sweep is enabled, it will become eligible when the lower bound condition is met;

therefore this event is executed after 1 tick. Similarly, Wait 2Sec must not execute until 4

ticks (2 sec) have passed from the enabled state. After the execution of AZ CCW Move,

wait event is enabled but not eligible and therefore tick is executed once time condition is

met. A string of events executed in the experiment is as follows;

(1) Full Sweep

(2) AZ Poll Range

(3) AZ Range OK

(4) AZ CC Move

(5) Wait 2sec

Hence, we can say that the theoretical exploration of timed solar tracker is in-accordance

with real-time results.

So far, only one sequence of TDES is explored. Of course there are several scenarios in

which TDES can be explored. In the above method, the system is simulated by selecting

the eligible events manually, but this methodology is not enough if one wants to explore

all possible trajectories during execution. Therefore, a proper strategy is required to exten-

sively analyze the timed model of a closed-loop system (GKT).

103

0 2 4 6 8 10 12

Timeline (Ticks)

E
v
e

n
ts

Timed Analysis of System Undersupervision

Tick

FullSweep

AZPollRange

Tick

AZRangeOK
AZCCWMove

Tick Tick Tick Tick

wait2sec

Dark2Dim

Tick

FullSweep

AZPollRange

Tick

AZRangeOK

AZCCWMove

Tick

Tick

Tick

Tick

wait2sec

Dark2Dim

Figure 6.5: Events occurrence in TDES

So far, we have only explored six events in a timed plant under supervision (GKT).

While exploring, it was observed that beyond specific state, no non-tick events could occur.

This state is named as boundary state, which signifies the depth of GKT . One can compute

the system’s depth by iterating through each state until no further non-tick events are avail-

able.

Once the depth is known, an automaton, Gτ as shown in Fig 6.6, is built with the same

depth. In Gτ , state transition occurs only due to tick (τ), while in the case of non-tick

events state remains unchanged. However, there is also a self-loop of τ in the last state

only, as we know beyond this state only tick is available.

104

Figure 6.6: Gτ

Next we build GR as, GR = sync(GKT , Gτ).

We can use the GR automaton to extract the timing information of each sequence. In both

DECK (MATLAB) and Deck C, all states of sync operation can be saved in an array as

pair (x, y), where x and y are states of the first and second argument of sync function

respectively. Hence, each state of GR is in the form (x, ητ), where x is the state of timed

model GKT and ητ is the number of ticks that it takes to reach x. This bu exploring all

states of GR we can extract timing information of each sequence.

Let another automaton GEv, with same depth as Gτ but with transitions of all events (Σ)

and self-loops of ticks(τ),as shown in Fig. 6.7.

Figure 6.7: GEv

If we perform sync operation on GR and GEv as,

GR′ = sync(GR, GEv)

The output state set of GR′ automaton can be represented as ((x,nτ), ne), where,

x: State of TDES model

nτ : Ticks to reach xth state

ne: Number of events to reach xth state

105

Performing the above operations in the same procedure, we can have complete information

of number of events and ticks to reach a state of GKT .

Let us consider the few transitions of sub-automaton of solar tracker TDES under super-

vision (GKτ) built with the proposed methodology, as shown in Fig. 6.8 and the event

information of the states are provided in Table 6.7 .

Figure 6.8: Sub-automaton of TDES under supervision

106

x ητ ηe

1 0 0

2 1 0

3 1 1

4 2 0

5 1 2

6 2 1

7 2 1

8 3 0

9 2 2

10 2 2

Table 6.7: Timining information of GKτ Events

Let us consider the state five from above table. We can see that state 5 requires one

tick event (represented by 0) and two non-tick events to reach from the initial state. And

from Fig. 6.8, the event sequence from state 1 to 5 is:{τ, α, β}. One can also compute the

transitions to reach any state of TDES under supervision by adding ητ and ηe of the relevant

state, i.e., is 3 in case of the provided example.

In the next chapter, we will use the procedure described above to design a lookahead

policy with buffering for the solar tracker.

107

Chapter 7

Control Implementation and Analysis

In this chapter, we discuss a detailed implementation of LLP with and without buffer-

ing on the plant in real-time and provide an analysis. The computation time of supervisory

commands is measured experimentally, then compared with the execution time of events

to validate the timed plant under supervision generated by the proposed methodology in

Chapter 6. A formulation is proposed to compute time per event during LLP with buffer-

ing for performance analysis that helps for selecting buffer size while fully utilizing LLP’s

benefits with command buffering.

Solar tracker and computer are the two main hardware components of this project. There-

fore communication between them is very crucial for the proper implementation of the

controller.

In a solar tracker, all sensors are scanned periodically to measure the dynamics of the plant.

The sampling time of 50ms is enough to check the event occurrence and measure feedback

from sensors. All uncontrollable events of the plant are tracked within a micro-controller

while both uncontrollable and uncontrollable events are transmitted to PC. Only control-

lable events are sent back to the solar tracker from PC in order to reduce the effect of

communication delay. The detailed flow chart of the control algorithm is shown in Fig 7.1.

108

In this thesis, both algorithms, LLP and LLP with buffering, have been implemented

to compare the computation time. During the execution of the controller, all necessary

information (e.g., automaton sizes and supervisor computation time etc.) is stored in a text

file for analysis.

The software architecture of the ground station consists of two main parts:

(1) Communication link

(2) Controller Loop

Figure 7.1: Main Control Loop

We start by presenting the communication link, especially it is software implementation

and timing characteristics. After that, we turn our attention to the main topic of control

logic and its implementation.

109

7.1 Communication Link

Data sent by the remote station is sporadic because event occurrence depends on the

plant’s real-time dynamics; consequently, communication with the ground is also sporadic.

As C language follows the procedural programming paradigm, a single program is not

capable of doing multiple tasks simultaneously (communication and computation). If serial

data arrives during the supervisor’s computation, the control loop will surely miss that data.

And also, sometimes multiples (uncontrollable) events happen back to back (e.g., when

servo motor is polled (AZ Poll Range), AZ CCW OK will occur within milliseconds and

transmitted to the ground station immediately). In this case, the system will receive an

event while updating the supervisor according to the previous event (AZ Poll Range), thus

missing the subsequent event.

In order to tackle this problem multi-threaded programming [41] is implemented. In multi-

threading, the program runs multiple tasks concurrently, not in parallel, as they are not

being executed simultaneously. Also, one task is not blocked by another because tasks are

switched to each other when in the waiting state. This makes the program to handle two

tasks at once, and it is called concurrency.

Once a separate thread is created for serial communication, the buffer is required to store

the received packets. If data is not stored, it will be rewritten and lost. To avoid this situation

First In First Out (FIFO) circular buffer is designed. It is a fixed-size buffer implemented

using a 2D array. Once the maximum slots are occupied, new incoming data is stored to

the initial position, as shown in Fig 7.2.

Figure 7.2: Circular Buffer

All serial tasks are handled by a communication link in a separate thread initiated at the

110

beginning of the main program. Mainly two tasks are performed by this thread:

• Receive/Transmit data

• Store frame in memory

Each frame is received/transmitted via Universal Asynchronous Receiver/Transmitter

(UART) [42], single byte each time. The validity of each packet is checked before process-

ing. If data is valid, it is stored in memory immediately. Otherwise, the program waits for

the next packet. To avoid overwriting of memory, data is always stored at an empty frame

location in the FIFO buffer. When the controller has read the data (from the main thread),

it is deleted to make room for upcoming packets.

There is no instance when both tasks (reception/transmission) are required to be done si-

multaneously. Because the program only starts reading once, the interrupt of data reception

goes high. Fig 7.3 represents the detailed process of serial communication.

Communication delay is measured using CPU clock cycles, 15msec. Only initiation com-

mands (e.g., Reset motor, Full Sweep etc.) and controllable events are sent to remote

stations from PC to minimize the effect of communication delay.

111

Figure 7.3: Serial Communication Flowchart

The data packet may contain encoded commands or sensor readings. Each frame con-

sists of ten characters in the following arrangement:

!**@xxxxx&

! and & represents the start and end of the frame respectively while @ is acting as a separa-

tor between identifier and data. These symbols are also used for packet validation. ** is the

header identifier and XXXXX is formatted data e.g, the identifier for battery state of charge

is “05” and “xxxxx” will contain the value. A list of all packets is shown in Appendix C.

7.2 Execution of Controller

Both types of controllers (regular LLP and LLP with buffering) are implemented in the

main thread. First of all, minimum plant depth [26] (already discussed in Chapter 3) is

needed to be determined to implement these controllers. Recall that Nmin is the minimum

depth of plant expansion, which confirms the computed supervisor’s validity. Secondly,

112

the look-ahead window(Nw) is defined to explore the plant. In the case of the solar tracker,

Nmin = 6. To compute a valid supervisor, Nw must be a minimum of 6.

Nw ≥ Nmin (4)

In the case of LLP with buffering Nw is a sum of three parameters, Nmin, ∆ and δ. ∆

is the size of the buffer, while δ is the time (in events) required to calculate the ∆ events in

the buffer. If δ events are left in the buffer from ∆, then the new supervisor is computed

over a window of Nw.

Nw = Nmin + ∆ + δ (5)

For this thesis, as we will see later, δ is chosen to be 2, while ∆ is changed over the

range of values to measure computation time.

To compute the supervisor at each step of a state-based LLP with a look-ahead window of

size Nw, first state starting from the current state, the plant’s model must be built up to Nw

events into the future. Let G denotes the plant model with the current plant state chosen as

the initial state of model G. Then define G|Nw , with Nw ≥ 0, as the sub-automaton of G

consisting of states that can be reached with a sequence of length Nw or less.

Example: Suppose G is as given below

Figure 7.4: G

Then G|0, G|1, G|2 and G|3 are shown below.

113

(a) G|0 (b) G|1

(c) G|2 (d) G|3

Figure 7.5: Expansion of G

Note that in G|3, G is completely expanded hence G|3 = G.

In LLP calculations, G|Nw is obtained using the synchronous product of components and

interactions. For this, the first component and interactions are self-looped appropriately,

and then the product will be formed. Finally, the product of the resulting automaton and

spec automatons will be computed. Hence the overall computation (after self-loops) is in

the form of

G = G1 ×G2 × · · · ×Gn

A computer code can compute the product using a breadth-first search limited to Nw

steps to find G|Nw . This would require a product procedure with n input arguments. If

the plant model or specs change, n and as a result the product procedure would have to

change. An easier way is to code a product procedure with two input arguments (say, Gi

and Gj to find Gi × Gj). Since we would like to avoid building the large model G =

G1×G2× · · · ×Gn (and thus obtain GNw), it would be interesting to see if we could build

G|nw = (G1 × G2 × · · · × Gn)|Nw using G1|Nw × G2|Nw × · · · × Gn|Nw . The following

theorem provides the answer.

114

Theorem 7.2.1 Suppose for automata G1 and G2, Σ1 = Σ2. Then for every integer N ≥ 0

(G1 ×G2)|N = (G1|N ×G2|N)|N

Note: In the theorem it is assumed that the labels of states Gi|N is the same as the corre-

sponding states in Gi. Also the states of G1 ×G2 is (x1 × x2) with xi the states of Gi.

To prove the theorem, we use the following lemma. The proof of the lemma is easy and

omitted for brevity.

Lemma 7.2.1 Suppose automaton G1 is a sub-automaton of G2 (G1 ⊆ G2). Then for

integer N ≥ 0,

G1|N ⊆ G2|N

Proof of Theorem 7.2.1

First we show

(G1|N ×G2|N) ⊆ (G1 ×G2)|N (6)

It follows from definition that G1|N ⊆ G1 and G2|N ⊆ G2. Thus G1|N × G2|N ⊆

G1 ×G2 and finally by Lemma 7.2.1:

(G1|N ×G2|N)|N ⊆ (G1 ×G2)|N

Next we show

(G1 ×G2)|N ⊆ (G1|N ×G2|N)|N (7)

115

Suppose (x1, x2) is a state of (G1×G2)|N . Then there exists a sequence s ∈ L(G1)∩L(G2)

with length |s| ≤ N such that in (G1 ×G2)|N (and thus in G1 ×G2)

(x1o , x2o)
s−→ (x1, x2)

Here x1o and x2o are initial states of G1 and G2. Therefore in G1|N , x1o
s−→ x1 and in

G2|N , x2o
s−→ x2. Hence in G1|N ×G2|N

(x1o , x2o)
s−→ (x1, x2)

This implies that (x1, x2) is a state of (G1|N ×G2|N)|N . Thus every state of (G1 ×G2)|N

is a state of (G1|N ×G2|N)|N . A similar argument can be used to show that every sequence

s ∈ L((G1 × G2)|N) also belongs to L((G1|N × G2|N)|N). This shows equation (7). The

theorem follows from (6) and (7).

Remarks: Note that G1|N ×G2|N and (G1|N ×G2|N)|N are not necessarily equal. Here is

an example.

Figure 7.6: Example for Theorem 7.2.1

116

7.2.1 Regular LLP

In regular LLP, unlike offline supervisor computation, partial plant and specification

models are computed. All components are synced up till Nw window for the plant, and all

specifications (with Nw ≥ Nmin) are built up until the same depth using product operation.

After models are ready, the valid supervisor is computed for a limited window (according

to eq(4)) using the supcon procedure. New events enabled by the supervisor are used as a

control command. This process iterates and in each iteration, partial plant and spec models

are computed. Although building models for small windows decrease the size of resulting

automata, computation in each iteration makes it expensive in terms of time.

Figure 7.7: Regular LLP Flowchart

When an event occurs, it is compared with already enabled events in the control algo-

rithm of regular LLP. Then the supervisor is updated based on this event and new enabled

117

events are prepared. Controllable events are sent to micro-controller if available, and the

loop continues. The flowchart of the regular limited look-ahead algorithm is shown in the

above figure.

We can imagine that using this method for computing supervisor is not feasible for real-time

applications, as it requires high processing speed. Consequently, it is not possible for an

embedded system application where limited computing resources are available on-board.

To tackle this problem, a new methodology was suggested to compute the supervisor for a

few extra events further into the future instead of only for the next immediate action, i.e.,

LLP with buffering. In this method, the supervisor is computed for a larger window, with

added depth providing future buffered supervisory commands.

7.2.2 LLP with Buffering

In LLP with buffering, ∆ and δ are defined before control loop initiation. To get the

look-ahead window size Nw, we need to define the size of all parameters of equation (5).

For the solar tracker Nmin = 6. δ is the time (in terms of the number of events) required for

the calculation of supervisory commands over the window of Nw. Experimental, as well

as theoretical calculations, show that δ = 2 is enough. Lower values 0 and 1 may not leave

a suitable margin. Buffered length ∆ is varied over the range of 3 to 30. The minimum

∆ = 3 is because δ < ∆.

As the control loop begins, after initiating the serial communication thread, plant and spec-

ification models are built over the selected window size. Once the supervisor is computed,

the Full Sweep command is sent to the remote station. Full sweep maneuver consists of

complete azimuth and elevation sweeps in both directions clockwise (CW) and counter-

clockwise (CCW), with a defined range of 35◦ to 145◦ for elevation motor and 90◦ to 270◦

for azimuth motor.

The flowchart of LLP with buffering is shown in Fig 7.8. When the command is sent, the

118

micro-controller updates the supervisor’s state and sends enabled events to PC. The number

of executed events is tracked in LLP with buffering. If the event counter counts down to δ,

the flag is raised to start LLP computation, as shown in Fig. 3.3. Once the event counter

reaches zero, it is reset to ∆, and the new supervisor replaces the previous one. If there is a

problem with validation, i.e., the event enabled contradicts the new events allowed by the

supervisor, the control loop will not proceed, and the program will exit.

Figure 7.8: LLP with Buffering Flowchart

If two controllable events are enabled, it means there is a problem of choice. In the

solar tracker, there is no such issue.

Unlike regular LLP in this algorithm, the supervisor is computed for several extra events as

119

a buffer, hence saving processing power for other essential tasks. Generated data (compu-

tation time, size of plant spec and supervisor models, and selected events) during compu-

tations are written on separate text files for later analysis.

7.2.3 Computation Time Analysis of LLP

In order to measure the computation time of the supervisor, CPU clock cycles are used.

To measure the accuracy of measuring the computation time, the small program was cre-

ated, in which the program was forced to sleep for a known amount of time (e.g., 1 sec)

and then sleep duration was measured in clocks cycles. The error of ±16ms was observed.

The following two main functions associated with LLP with buffering are already discussed

in section 3.1.3:

(1) Maximum Computation Time Cmax

(2) Minimum Execution Duration Tmin

Cmax(Nw) is the maximum computation time needed to find supervisory commands over

the look-ahead window of Nw and is determined by experimentation only. While Tmin(n)

is the minimum execution duration of n events. It can be calculated by extensive experi-

mentation or by building the timed model of the plant under supervision as suggested in

chapter 6.

Let η = ∆+δ. To calculate the computation time for LLP, it is implemented over the range

of 0 ≤ η ≤ 30. When η = 0, there is no event in the buffer; therefore, the supervisor is

valid for only one event. This is the regular LLP.

Plant and specification depths are 12 and 25 respectively. While using Nmin = 6, the ex-

panded plant model is identical to complete model when η = 6 and complete product of

plant and spec model for η = 19. Hence using buffer size larger than 19 will not affect

120

η 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

δ 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2

∆ 0 1 2 2 3 3 4 5 6 7 8 9 10 11 12

Cmax 62 78 110 156 187 187 188 250 265 281 281 328 312 312 328

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

312 312 328 312 328 330 328 312 312 328 312 312 312 312 328 312

Table 7.1: Cmax (msec) for LLP with buffering

supervisor size and computation time. Let us name this look-ahead window size as Satura-

tion Point (SP). Using the above values SP for solar tracker plant is computed as,

SP = Nmin + 19 = 25 (8)

Figure 7.9 depicts the minimum, average and maximum computation times. For this

plot Full Sweep maneuver is executed to explore the system model from each possible

state.

Red and black plots represent the maximum and minimum computation time bounds for

complete maneuver. It can be seen that the maximum time taken is 330ms at η = 20. It

can be verified from Table 7.1 that after η = 11 computation time is almost the same, time

difference (of 16ms) is due to accuracy factor of machine explained in the beginning of

this section.

Note that for η = 0, δ and ∆ are zero, signifying that the supervisor is generated for only

one subsequent transition (case of regular LLP). For η = 1 and 2, ∆ is non-zero, but δ is

zero, which means that the LLP computations are executed in each iteration with one and

two buffered events (respectively). However, from η ≥ 3, ∆ number of events are buffered

and the LLP computations are triggered when δ number of events is reached.

121

Figure 7.9: Computation time for LLP

In this thesis, execution time of events is calculated by building the timed model of the

plant using TTCT. For the successful implementation (without unnecessary delay) of LLP,

the computation of the supervisor must be done before the execution of the commands left

in buffer. Therefore

Cmax(Nw) ≤ Tmin(δ) (9)

Fig 7.10 depicts the execution time (in milliseconds) up to six events plotted in blue color.

The least count is of 0.5 second, due the selected tick (1 Tick = 0.5sec) size as mentioned

in Chap. 6. After building the timed plant under supervision, the resultant automaton was

explored using the trajectory followed by the real-time solar tracker. Therefore it only ex-

plores one branch of the tree. One can explore all the scenarios, using the method explained

in Chap. 6.

Since Nmin = 6, δ = 2 and if we choose ∆ = 18 (η = 20), then

Cmax(26) = 330ms

122

and

Tmin(2) = 500ms

Thus Cmax ≤ Tmin(δ).

Figure 7.10: Tmin(δ)

Therefore, we have 170ms for communication and other tasks (if required), which is

more than enough. Also that it can be seen in Fig. 7.9 that computation time for all

windows is well under execution time of Tmin = 500ms. Figure 6.5 shows the occurrence

of events with respect to the Ticks, in the same order as explored using timed plant under

supervision.

7.2.4 Computation Time per Event

Let Cmax(Nw) is maximum computation time for ∆ + 1 events. Therefore computation

time for a single event (C1) can be calculated by,

123

C1 =
Cmax(Nw)

∆ + 1
=
Cmax(Nmin + ∆ + δ)

∆ + 1
(10)

Figure 7.11: Computation time per event during LLP with buffering

When supervisor is computed for window of Nw = Nmin + ∆ + δ, it has control

command for one immediate action and ∆ buffered events for future. Hence Cmax(Nw) is

divided by ∆ + 1.

Fig. 7.11 depicts the plot of C1 based on the data in Table 7.1. For example, for ∆ = 18,

δ = 2,

C1 =
330

18 + 1
= 17.36ms (11)

In case of regular LLP, η = 0, as no event is buffered, from Table 7.1,

C1 =
Cmax(0)

0 + 1
=

62

1
= 62ms (12)

From Eq. 11 and 12, we can calculate that LLP with buffering consumes 3.57 times less

124

time than regular LLP for computation of single event, therefore three times more efficient

at event buffer size of ∆ = 18, δ = 2.

In Fig 7.11, the trend of computation time for a single event decreases along the buffer

window axis. The reason behind it that after SP, the complete plant is explored and time to

generate the supervisor remains the same while ∆ remains increasing i.e., numerator and

denominator of Eq. 10 respectively. Consequently, time to compute single event decreases

but memory requirement increases at the same time since the whole plant is explored and

resulting in larger supervisor size.

Note that when SP is reached, LLP calculates the offline supervisor. Once could take

∆ =∞ which results in C1 = 0.

It leads to a compromise of a selection of buffer size, such that one can fully utilize the

benefits of LLP with buffering at the cost of minimal resources.

7.2.5 Selection of Buffer Size for LLP

As we know that a finite-state DES model has maximum depth known as Plant depth

(PD). If η reaches to SP then during LLP computation complete plant and spec models are

explored. Therefore it becomes offline supervisor and memory complexity of algorithm

increases. While if we decrease η till Nmin (for valid supervisor), control algorithm be-

comes regular LLP and computation will occur after each event (requiring more processing

power), as shown in Fig 7.12,

125

Figure 7.12: Trade off between memory and computation for buffer size

In Fig. 7.12, one can notice the increase in supervisor states as buffer size increases.

The solar tracker saturates at depth of 25 therefore at η = 20, Nw is 26, hence from this

point onwards, size of the supervisor remains the same. Table 7.2 provides the average

automaton sizes used in LLP for various ηs. At η = 0 models are only explored till the

depth of Nmin. Consequently, plant size is approximately half of full size. As PD of solar

tracker is 12 therefore at η = 5 (here Nw = 6 + 5 = 11) plant is almost completely

explored, and size is constant till the end while that of spec keep on increasing till 20 and

on-wards and complete models are explored, and therefore supervisor size is the same as

of offline.

One fascinating observation is that the number of LLP computation (supervisor generation)

during complete maneuver decreased significantly. Even while using small buffer size (e.g.,

η = 5), LLP computations are decreased by more than 50%. In real-time systems, control

tasks are of high priority, and task scheduler needs to free the processor for processing

low priority tasks to avoid starvation. Performing computation in high frequency might

preempt other tasks. Hence by varying buffer size, one can also avoid all such scenarios by

126

decreasing the number of calls to compute the supervisor.

(Nmin = 6) Number of LLP Computation Time Supervisor Size

η Computations Per Event C1 (msec) (States,Transitions)

0 1152 62 208, 763

5 472 46.75 659, 2825

10 178 35.12 1505, 6776

15 110 22.28 2010, 9261

20 79 18.22 2061, 9527

25 64 14.26 2061, 9527

Table 7.2: Model sizes and number of Computations w.r.t. η

Keeping in mind all of the above discussion, we need to carefully choose η to utilize

LLP’s advantages with buffering. Selecting the buffer size of η = 10 generates a supervisor

with significantly less memory requirement i.e., only two-third of offline supervisor in

contrast gain for computation time per event during buffering is reduced to 43.35%, from

Table 7.1. One can notice that a substantial percentage of 85% reduces the frequency of

supervisor computation.

As we know that in any system, a control algorithm is one of the highest priority tasks,

and therefore, by minimizing control command generation time, the processor becomes

available for other tasks. Furthermore, less processor consumption will allow the use of the

low-speed processor, resulting in cutting-down power usage and ultimately decreasing the

system’s cost.

127

Chapter 8

Conclusion

In this chapter, we will finalize our discussion by summarizing the work done and the

results achieved. Also, some suggestions for the future work in online-SCT are provided.

8.1 Summary

In this thesis, DECK procedures are translated in C language to improve the compu-

tation time and memory complexity of the supervisor computation. It has improved the

computation time by at least 85% as compared to the MATLAB version. C language is

selected since it provides more control over code and hardware (RAM). Consequently, one

has more capability to optimize algorithm development. Also, C language is very suitable

for application in embedded systems.

As a proof of concept for feasibility of online supervisory control computation, the solar

tracker is used as a physical plant and Cortex-M3 based micro-controller is used for low-

level control and communications.

Both supervisors, conventional and LLP with buffering, are successfully implemented in

this work. Moreover, the analysis for supervisor computation time is done on the data

received from the real-time implementation results. In the previous work, execution time

128

was computed by measuring the time between two events (experimentally); in this thesis, a

model-based theoretical approach is proposed. The Tmin function is computed by building

the timed discrete events system of the solar tracker. The time bounds for all the events are

modeled by experimentation and data-sheets of sensors. Due to a large number of states of

the untimed plant model, the timed model of the complete plant is not generated, instead

only sub-plant is developed. The timed model of solar tracker is explored using the event

string generated by the real-time implementation. The analyses proved the feasibility of an

online LLP strategy with buffering as the supervisor’s computation time is well under the

execution time. A method is also suggested to compute the execution time from each state

by exploring TDES using a brute-force approach.

8.2 Future Work

For real-world applications, FPGAs are more appropriate, as one can modify it (con-

figuring memory and processing speed) according to certain an application. Also, FPGAs

are customizable for multi-core processing, thus very suitable for online-SCT implemen-

tations. For example, while computing supervisor in an online fashion one can build plant

and specification in parallel which may decrease computation time by factor up-to 50%.

In case of single-core processors, adopting multi-threading in DECK C procedures will en-

able algorithms to perform computations concurrently rather than performing sequentially

(as performed in this thesis).

During the online supervisor computation with buffering, the size of buffer events is con-

stant in this work, and it would be interesting to adopt the variable buffer size approach

based on the execution time of events. Let us say at any time instance during LLP with

buffering, few events are left in the event buffer, and the execution time of those events

provides enough time margin for computation of subsequent supervisor, then one can in-

crease the buffer size. Formally we can say that by getting the Tmin function of remaining

129

events in the buffer, one can customize the current buffer size. This approach will help to

reduce the computation time per event, as it is inversely proportional to buffer size.

130

Appendix A

TTCT File Templates

TTCT AAS Template

AZ Mtr Motion

State size (State set will be (0,1....,size-1)):
– Enter state size, in range 0 to 2000000, on line below.
3
Marker states:
– Enter marker states, one per line.
To mark all states, enter *.
*
Vocal states:
– Enter vocal output states, one per line.
If no vocal states, leave line blank.

Transitions:
– Enter transition triple, one per line.
0 405 1
1 402 0
0 403 2
2 400 0
Event time bounds:
– Enter time bound triple, one per line.
Lower Time Bound in range 0..1000
Upper Time Bound in range 0..1000 [Note: 1000 = Infinity].
400 0 2
402 0 2

131

403 0 1000
405 0 1000
Forcible events:
– Enter forcible events, one per line.
To mark all events, enter *.

TTCT PDS Template
Name # states: 7 state set: 0 ... 6 initial state: 0
marker states: 0 1 2 3 4 5 6
vocal states: none
forcible events: none
state and timer information:
0 : 0 [403, 0] [405, 0]

1 : 2 [400, 2]

2 : 1 [402, 2]

3 : 2 [400, 1]

4 : 1 [402, 1]

5 : 2 [400, 0]

6 : 1 [402, 0]
transitions: 13
transitions:
[0, 0, 0] [0,403, 1] [0,405, 2] [1, 0, 3]
[1,400, 0] [2, 0, 4] [2,402, 0] [3, 0, 5]
[3,400, 0] [4, 0, 6] [4,402, 0] [5,400, 0]
[6,402, 0]

132

Appendix B

Full Sweep Spec Model

Figure B.1: Full Sweep Spec

133

Appendix C

Communication Packets

Header Data Packet Sent by
00 Start Command GS
01 EL current RS
02 AZ current RS
03 PV panel voltage RS
04 System Time RS
05 Battery Voltage RS
06 Battery SOC RS
15 Full Sweep Command GS
20 Bright Source Found RS
21 Sweep Failure RS
22 EL Motor Fail RS
23 AZ Poll Range GS
24 EL Poll Range GS
25 AZ CW Move GS
26 AZ CCW Move GS
27 EL CW Move GS
28 EL CCW Move GS
29 Bright Detected GS
30 Sweep Failure GS
31 EL Motor Fail GS
32 Online Command GS
33 Reset Motors Command GS

Table C.1: Communication Data Packets

134

Bibliography

[1] J. Goryca and R. C. Hill, “Formal synthesis of supervisory control software for mul-

tiple robot systems,” in 2013 American Control Conference, 2013, pp. 125–131.

[2] C. Frost, “Challenges and opportunities for autonomous systems in space,” in Fron-

tiers of Engineering: Reports on Leading-Edge Engineering from the 2010 Sympo-

sium, 2010.

[3] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, “Remote agent: To boldly

go where no ai system has gone before,” Artificial intelligence, vol. 103, no. 1-2, pp.

5–47, 1998.

[4] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, “Model-based program-

ming of intelligent embedded systems and robotic space explorers,” Proceedings of

the IEEE, vol. 91, no. 1, pp. 212–237, 2003.

[5] M. Pekala, G. Cancro, and J. Moore, “Verifying executable specifications of space-

craft autonomy,” in Proceedings of the 9th International Symposium on Artificial In-

telligence, Robotics and Automation in Space, Los Angeles, 2008.

[6] S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A verifiable and correct-by-

construction controller for robot functional levels,” arXiv preprint arXiv:1309.0442,

2013.

135

[7] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event

processes,” SIAM journal on control and optimization, vol. 25, no. 1, pp. 206–230,

1987.

[8] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event systems,” Pro-

ceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[9] S. R. Mohanty, V. Chandra, and R. Kumar, “A computer implementable algorithm

for the synthesis of an optimal controller for acyclic discrete event processes,” in

Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.

No. 99CH36288C), vol. 1. IEEE, 1999, pp. 126–130.

[10] A. B. Leal, D. L. L. da Cruz, and M. d. S. Hounsell, “Supervisory control implemen-

tation into programmable logic controllers,” in 2009 IEEE Conference on Emerging

Technologies Factory Automation, 2009, pp. 1–7.

[11] V. Chandra, Zhongdong Huang, and R. Kumar, “Automated control synthesis for an

assembly line using discrete event system control theory,” IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 33, no. 2, pp.

284–289, 2003.

[12] E. Tronci, “Automatic synthesis of control software for an industrial automation con-

trol system,” in 14th IEEE International Conference on Automated Software Engi-

neering, 1999, pp. 247–250.

[13] B. A. Brandin, “The real-time supervisory control of an experimental manufacturing

cell,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 1–14, 1996.

[14] M. H. de Queiroz and J. E. R. Cury, “Synthesis and implementation of local modular

supervisory control for a manufacturing cell,” in Sixth International Workshop on

Discrete Event Systems, 2002. Proceedings., 2002, pp. 377–382.

136

[15] J. Geurts, “Supervisory control of mri subsystems,” Master’s thesis, Eindhoven Uni-

versity of Technology.

[16] R. Kamphuis, “Design and real-time implementation of a supervisory controller for

baggage handling at veghel airport,” Master’s thesis, Eindhoven University of Tech-

nology, 2013.

[17] M. Fabian and A. Hellgren, “Plc-based implementation of supervisory control for

discrete event systems,” in Proceedings of the 37th IEEE Conference on Decision and

Control (Cat. No.98CH36171), vol. 3, 1998, pp. 3305–3310 vol.3.

[18] M. Noorbakshsh and A. Afzalian, “Design and plc based implementation of super-

visory control for under-load tap-changing transformers,” in 2007 International Con-

ference on Control, Automation and Systems, 2007, pp. 901–906.

[19] Y. K. Lopes, A. Leal, R. Rosso Jr, and E. Harbs, “Local modular supervisory imple-

mentation in microcontroller,” 2012.

[20] K. Searle and S. Hashtrudi-Zad, “Microcontroller based supervisory control of a so-

lar tracker,” in 2017 IEEE 30th Canadian Conference on Electrical and Computer

Engineering (CCECE), April 2017, pp. 1–6.

[21] M. O. Bayoume, M. A. El-Geliel, and S. F. Rezeka, “Supervisory position control

for wheeled mobile robot,” in 2016 20th International Conference on System Theory,

Control and Computing (ICSTCC), 2016, pp. 228–233.

[22] M. Cantarelli and J. Roussel, “Reactive control system design using the supervisory

control theory: Evaluation of possibilities and limits,” in 2008 9th International Work-

shop on Discrete Event Systems, 2008, pp. 200–205.

137

[23] S.-L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in supervisory

control of discrete event systems,” IEEE Transactions on Automatic Control, vol. 37,

no. 12, pp. 1921–1935, 1992.

[24] S. Chung, S. Lafortune, and F. Lin, “Supervisory control using variable lookahead

policies,” in 1993 American Control Conference, 1993, pp. 1203–1208.

[25] N. B. Hadj-Alouane, S. Lafortune, and F. Lin, “Variable lookahead supervisory con-

trol with state information,” IEEE Transactions on Automatic control, vol. 39, no. 12,

pp. 2398–2410, 1994.

[26] E. Ghaheri, “Limited lookahead supervisory control with buffering in discrete event

systems,” Master’s thesis, Concordia University, August 2018.

[27] B. A. Brandin and W. M. Wonham, “Supervisory control of timed discrete-event sys-

tems,” IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 329–342, Feb

1994.

[28] B. A. Brandin and W. M. Wonham, “The supervisory control of timed discrete-event

systems,” in [1992] Proceedings of the 31st IEEE Conference on Decision and Con-

trol, 1992, pp. 3357–3362 vol.4.

[29] Yi-Liang Chen and G. Provan, “Modeling and diagnosis of timed discrete event

systems-a factory automation example,” in Proceedings of the 1997 American Control

Conference (Cat. No.97CH36041), vol. 1, 1997, pp. 31–36 vol.1.

[30] A. Saadatpoor and W. M. Wonham, “Supervisor state size reduction for timed

discrete-event systems,” in 2007 American Control Conference, 2007, pp. 4280–4284.

[31] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems. Springer

Science & Business Media, 2009.

138

[32] W. M. Wonham, Supervisory Control of Discrete-Event Systems. Springer, 2019.

[33] S. Lafortune and E. Chen, “The infimal closed controllable superlanguage and its

application in supervisory control,” IEEE Transactions on Automatic Control, vol. 35,

no. 4, pp. 398–405, April 1990.

[34] S. Chung, “Addendum to’limited lookahead policies in supervisory control of dis-

crete event systems,’proofs of technical results,” Tech. Rep. CGR-92-6, College of

Engineering Control Group Reports, 1992.

[35] S. Hashtrudi Zad, S. Zahirazami, and F. Boroomand, “Discrete event control kit

(deck),” November 2013. [Online]. Available: https://users.encs.concordia.ca/∼shz/

deck/

[36] K. H. Rosen and K. Krithivasan, Discrete mathematics and its applications: with

combinatorics and graph theory. Tata McGraw-Hill Education, 2012.

[37] W. Wonham and P. Ramadge, “On the supremal controllable sublanguage of a given

language,” SIAM Journal on Control and Optimization, vol. 25, no. 3, pp. 637–659,

1987. [Online]. Available: https://doi.org/10.1137/0325036

[38] “Graphviz - graph visualization software.” [Online]. Available: https://www.

graphviz.org

[39] W. M. Wonham, “Timed toy control theory (ttct),” July 2016. [Online]. Available:

https://www.control.utoronto.ca/cgi-bin/dlttctdos.cgi

[40] C. Medar and A. Saadarpoor, “Timed toy control theory (ttct) user manual,” July

2006. [Online]. Available: https://www.control.utoronto.ca/cgi-bin/dlttctdos.cgi

[41] J. M. Hart, Windows System Programming. Pearson Education Incorporated, 1900.

[Online]. Available: https://books.google.co.in/books?id=vb6NJPlpP9sC

139

https://users.encs.concordia.ca/~shz/deck/
https://users.encs.concordia.ca/~shz/deck/
https://doi.org/10.1137/0325036
https://www.graphviz.org
https://www.graphviz.org
https://www.control.utoronto.ca/cgi-bin/dlttctdos.cgi
https://www.control.utoronto.ca/cgi-bin/dlttctdos.cgi
https://books.google.co.in/books?id=vb6NJPlpP9sC

[42] N. Grattan and M. Brain, Windows CE 3.0: application programming. Prentice Hall

Professional, 2001.

140

	List of Figures
	List of Tables
	Introduction
	Supervisory Control Theory for DES
	Literature Review
	Autonomous Systems and Space Applications
	Supervisory Control Theory
	Timed Discrete Event Systems

	Thesis Objectives and Contributions
	Thesis Outline

	Background
	Discrete Event System
	Languages and Preliminaries
	Automata and Operations

	Timed Discrete Event Systems (TDES)
	Supervisory Control Theory

	Research Objectives
	Review of Limited Look-ahead Policy with Buffering
	Minimum Look-ahead Window Size
	Supervisor Validity of LLP with Buffering
	Choosing Buffer Size

	Thesis Objectives

	Development of Discrete Event Control Kit for Embedded Systems
	Structures and Data Types for DECK Procedure
	DECK Procedures
	Automaton I/O Functions
	Time Complexity Comparison

	Experimental Setup and Supervisory Design Setup
	System Hardware
	Remote Station
	Ground Station

	Untimed DES Model and Supervisor Design
	Components
	Interactions
	Specifications
	Supervisor Synthesis

	Calculation of Sequence Duration using Timed DES
	Modeling of Solar Tracker as Timed DES
	Modeling Time Bounds of Events
	Selection of Tick Size
	TDES Model of Plant Under Supervision

	Analysis of TDES under Supervision

	Control Implementation and Analysis
	Communication Link
	Execution of Controller
	Regular LLP
	LLP with Buffering
	Computation Time Analysis of LLP
	Computation Time per Event
	Selection of Buffer Size for LLP

	Conclusion
	Summary
	Future Work

	Appendix TTCT File Templates
	Appendix Full Sweep Spec Model
	Appendix Communication Packets
	Bibliography

