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Abstract

Multiple Model Bayesian Estimation for BLE-based Localization and RL-based Decision
Support of Autonomous Agents

Parvin Malekzadeh

With the rapid emergence of Internet of Things (IoT), we are more and more surrounded

by smart connected devices (agents) with integrated sensing, processing, and communication ca-

pabilities. In particular, IoT-based positioning has become of primary importance for providing

advanced Location-based Services (LBSs) in indoor environments. Several LBSs have been devel-

oped recently such as navigation assistance in hospitals, localization/tracking in smart buildings,

and providing assistive services via autonomous agents collectively act as an Internet of Robotic

Things (IoRT). The focus of the thesis is on the following two research topics when it comes to

autonomous agents providing LBSs in indoor environments: (i) Self-Localization, which is the

autonomous agent’s ability to obtain knowledge of its own location, and; (ii) Localized Decision

Support System, which refers to an autonomous agent’s ability to perform optimal actions towards

achieving pre-defined objectives. With regards to Item (i), the thesis develops innovative localization

solutions based on Bluetooth Low energy (BLE), referred to Bluetooth Smart. Given unavailability

of Global Positioning System (GPS) in indoor environments, BLE has attracted considerable atten-

tion due to its low cost, low energy consumption, and widespread availability in smart hand-held

devices. Because of multipath fading and fluctuations in the indoor environment, however, BLE-

based localization approaches fail to achieve high accuracies. To address these challenges, different

linear and non-linear Bayesian-based estimation frameworks are proposed in this thesis. Among

which, the thesis proposes a novel Multiple-Model and BLE-based tracking framework, referred to

as the STUPEFY. The proposed STUPEFY framework uses set-valued information and is designed

by coupling a non-linear Bayesian-based estimation model (Box Particle Filter) with fingerprinting-

based methodologies to improve the overall localization accuracy. With regards to the Item (ii),
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there has been an increasing surge of interest on development of advanced Reinforcement Learn-

ing (RL) systems. The objective is development of intelligent approaches to learn optimal control

policies directly from smart agents’ interactions with the environment. In this regard, Deep Neu-

ral Networks (DNNs) provide an attractive modeling mechanism to approximate the value function

using sample transitions. DNN-based solutions, however, suffer from high sensitivity to parameter

selection, are prone to overfitting, and are not very sample efficient. As a remedy to the aforemen-

tioned problems, the thesis proposes an innovative Multiple-Model Kalman Temporal Difference

(MM-KTD) framework, which adapts the parameters of the filter using the observed states and re-

wards. Moreover, an active learning method is proposed to enhance the sampling efficiency of the

overall system. The proposed MM-KTD framework can learn the optimal policy with significantly

reduced number of samples as compared to its DNN-based counterparts.
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Chapter 1

Thesis Introduction

Recent developments and advancements in signal and information processing, machine learn-

ing, communication systems, and networking technologies have resulted in the widespread emer-

gence of the promising paradigm of the Internet of Things (IoT) [1–5]. The IoT is a new and emerg-

ing paradigm rapidly gaining ground in different applications of significant engineering importance

particularly for development of smart buildings. The basic motivation behind the IoT concept is to

provide advanced residential and enterprise solutions through the latest technologies in an energy

efficient, secure, and reliable fashion without jeopardizing the service and comfort level. Of partic-

ular interest to this thesis is application of IoT-based technologies within the context of autonomous

agents performing pre-defined tasks in an indoor environment. An autonomous agent needs to main-

tain a model of its surrounding physical environment while localizing itself within that environment.

In brief, the focus of the thesis is on the following two research areas when it comes to autonomous

agents providing Location-Based Services (LBSs) in an indoor environment: (i) Self-Localization,

which is the autonomous agent’s ability to obtain knowledge of its own location, and; (ii) Decision

Support System, which refers to an autonomous agent’s ability to perform optimal actions towards

achieving pre-defined objectives.

The first area, i.e., indoor localization for providing LBSs, is of primary importance within the

IoT context. Localization of an autonomous agent, however, becomes particularly challenging in

Global Positioning System (GPS)-denied indoor environments. In the past, WiFi networks were

the main-stream technology used for indoor localization. However, due to the low cost and low
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energy consumption, Bluetooth Low Energy (BLE)-based localization has attracted a great surge

of recent interest as an efficient alternative [6–8]. In this context, the main localization approach is

to use the Received Signal Strength Indicator (RSSI) [9–12]. RSSI-based solutions, however, are

prone to multipath fading and drastic fluctuations in the indoor environment, necessitating the need

to resort to multitude of advanced signal processing solutions. In this regard, the focus of the thesis

is on development of advanced linear/nonilnear and Gaussian/non-Gaussian Bayesian frameworks

to improve the overall BLE-based localization performance.

For the second area (Item (ii) defined above), i.e., design of a localized decision support system

for an autonomous agent, the focus of the thesis is on Reinforcement Learning (RL)-based solutions.

Inspired by exceptional learning capabilities of human beings, RL systems have emerged aiming

to form optimal control policies merely by relying on the knowledge about the past interactions

of an autonomous agent with its environment. Different from most forms of machine learning

techniques, e.g., supervised learning, an RL system does not require availability of carefully labelled

data, which is typically difficult to acquire. On the contrary, to choose the best action possible

at each time step, a RL system rather relies on the reward (feedback) received from each move

(action) [13–16]. Given their phenomenal potentials, there has been an increasing surge of interest

on advancement of RL systems as the decision making component of an autonomous agent. In

this regard, Deep Reinforcement Learning (DRL) solutions provide an attractive mechanism to

guide agents’ decisions. DRL-based solutions, however, suffer from high sensitivity to parameters

selection, are prone to overfitting, and are not very sample efficient. To deal with these issues, the

thesis use principles from Bayesian-estimation techniques developed for indoor localization and

proposes a novel multiple-model RL framework that promotes superior sample efficiency.

1.1 Indoor Localization

Extensive amount of research work has been performed over the years leading to advancement

of several indoor positioning/localization systems. Such system can be classified based on the uti-

lized signal and measurement technologies [17]. Generally speaking, different indoor localization

systems can be categorized into the following groups based on the incorporated signal technologies:
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(1) Optical Systems.

(2) Ultrasound-based systems.

(3) Infrared (IR)-based systems.

(4) Radio Frequency (RF)-based systems, e.g., Wi-Fi, RFID, Zigbee, Bluetooth, UWB, and FM.

In recent years, numerous indoor localization systems have been developed based on the latter cate-

gory, i.e, the RF signals, because of their unique properties such as strong penetration power through

obstacles/walls. These technologies can be built with different methods such as Filtering, Latera-

tion, Dead Reckoning, Fingerprinting, and received signal strength. A reliable indoor localization

system should possess specific set of important features including:

• Having low cost for both the hardware and software installation.

• Being adaptive in different situations.

• Being portable.

• Being robust for implementation in dynamic environments.

It has been shown that BLE protocol can provide the aforementioned features effectively. The

most important feature of the BLE protocol is its widespread availability in smart phones, robotics

systems, and tablets making it an effective standard technology for development of IoT applications.

1.1.1 Bluetooth Low Energy

Bluetooth Low Energy is a wireless personal area network technology, which functions in 2.4

GHz frequency band, referred to as the Industrial, Scientific and medical (ISM). BLE provides same

communication range as the conventional Bluetooth protocol while significantly reduces the power

consumption. This low energy technology makes the BLE an efficient alternative to the classical

communication technologies for different sectors such as robotic systems, smart homes, health-care,

sport, and fitness.

One of the important differences between BLE and the classical Bluetooth standard is the radio

interface. The BLE utilizes 40 channels each one 2 MHz wide, instead of 79 channels with 1 MHz
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Figure 1.1: BLE frequency channels [18].

wide that is used in classical Bluetooth standard, which makes interoperability unlikely at physical

layers [18]. In BLE, also, broadcast channels are reduced to three to reduce the scanning time.

Fig 1.1 depicts the BLE frequency channels.

1.1.2 BLE-based Indoor Localization

The data package transmitted by BLE devices include Received Signal Strength Indicator (RSSI)

values. The RSSI values can be simply measured by installing an App without the need for any ad-

ditional hardware. The RSSI values are related to the distance (via pathloss model) between a

Bluetooth device and a BLE sensor (typically called a Beacon). By knowing location of BLE sen-

sors as reference nodes, the target’s location can be approximated via the pathloss model within an

indoor venue. Fig. 1.2 represents an illustrative example of a BLE-based indoor localization system.

1.2 Reinforcement Learning

Inspired by learning mechanisms of different animal species, Reinforcement Learning is emerged

as a type of machine learning approach to enable autonomous agents learn through interacting with

their environments [19]. Fig. 1.3 represents three different types of machine learning models. Un-

like the supervised learning techniques, RL does not require labelled data, instead, it relies on the

rewards and penalties received after taking an action. RL is also different from unsupervised learn-

ing in terms of the overall objective. The goal in unsupervised learning is to explore the similarities
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Figure 1.2: BLE-based indoor localization system.1

and diversities between data while the goal in a RL problem is to maximize the received rewards

during the learning process. Fig. 1.4 depicts the main setup of a RL problem. Some important

terminologies used commonly within the RL context are as follows:

• Environment: Physical world in which an autonomous agent operates, and which responds to

the agent’s actions.

• State, which shows the current situation of the agent within the environment.

• Reward: Feedback received from the environment, which measures the success or failure of

the agent’s actions.

• Policy: The strategy that maps the agent’s states to actions.

• Value: The expected future rewards received by taking an action in a particular state. The

value function relies on the policy by which the agent select its actions.

1.2.1 Reinforcement Learning Applications

In the past, applications of RL were limited due to unavailability of high computational re-

sources. Recent advances in the computational technologies, in particular, evolution of modern
1//www.libelium.com/development/waspmote/documentation/bluetooth-low-energy-networking-guide/.
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Figure 1.3: Types of machine learning.2

Figure 1.4: Reinforcement Learning illustration.

Graphics Processing Units (GPUs), have rapidly changed the landscape of RL applications. Nowa-

days, practical applications involving RL problems with large or continuous state spaces are being

tackled including but not limited to the following categories [20, 21]:

(1) Building AI for playing computer games such as Atari games, and Backgammon.

(2) Building AI for robotics and industrial automation.

(3) Learning optimal treatment policies in health care and RL-based agents for online stock trad-

ing.
2http://ginkgobilobahelp.info/?q=Machine+Learning+With+Big+Data++Coursera.
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1.2.2 Reinforcement Learning Algorithms

Within the RL context, an autonomous agent following an optimal policy, selects potential ac-

tions in such a way that its cumulative reward is maximized over time. In order to obtain the optimal

policy, an agent should decide (a trade off) between exploring new states by learning a new policy,

or exploiting immediate states based on the currently learnt policy. Since, the cumulative reward is

estimated by the value function, the optimal policy is the one that maximizes the value function for

a specific state. Solving the RL problem is, therefore, equivalent to learn a way of controlling the

system so as to maximize the total reward. Generally speaking, a desirable RL algorithm should

have the following key features:

(1) Allowing immediate exploiting, which enables online learning of the system.

(2) Dealing with large and continuous state spaces.

(3) Being sample-efficient, which means learning the optimal policy from as few actions as pos-

sible.

(4) Considering uncertainty of the system, which can be used as a useful factor for handling the

dilemma between exploration and exploitation.

It is worth mentioning that, all these features are seldom addressed together by state-of-the-art RL

algorithms.

1.3 Contributions

The main contributions [22–25] of my thesis research work are briefly outlined below:

(1) STUPEFY: BLE-based Set-Valued Box Particle [22]: A novel BLE-based tracking frame-

work, referred to as the STUPEFY, is proposed, which incorporates set-valued information

within box particle filtering context. More specifically, the proposed multiple-model STU-

PEFY framework consists of three integrated modules as briefly described below:

• Smoothing Module, which is developed based on Kalman filtering (KF) with the fol-

lowing two objectives: (i) To reduce the RSSI fluctuations, and; (ii) To construct a
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Gaussian Model (GM) of RSSI values to be used within the coordination module for

finding the predicted zone of the target. This is achieved via computation of the Bhat-

tacharyya Distance (BD) [26] between the Gaussian output of the KF and the learned

GMs of different zones.

• Coordination Module: In the coordination module, similar in nature to fingerprint-

ing approaches, the venue is divided into NFP number of zones (grid of points such as

square, hexagonal, or random grid), where Zone l, for (1 ≤ l ≤ NFP), is defined based

on its geometric coordinates. Each zone is referred to as a training point where several

observations (signal features) are collected for compensating the time-varying nature

(e.g., shadowing/ fading effects) of the associated propagation environment. Different

from existing fingerprinting techniques, in the offline phase of the coordination module,

we model the RSSI values associated with each zone as a multivariate Gaussian and

construct the smallest axes-aligned box containing the ellipsoid associated with each

zone to be used for creating set-valued measurements.

• Set-Valued Box Particle Filtering (SBPF) Approach (Micro-Localization Module):

The SBPF model is composed of two steps to micro-locate the target: (i) An approxi-

mation of the optimal proposal distribution in terms of a predicted box is used for gener-

ating predicted particles from a bivariate Gaussian distribution inscribed in the predicted

box (hence boxed particle filtering (PF)), and; (ii) In contrary to conventional PF-based

solutions that use point-valued RSSI measurements, the proposed SBPF computes the

probability that the measured RSSI from each active beacon belongs to the set identified

by the Coordination module (hence set-valued PF).

(2) Gaussian Mixture-based Indoor Localization via BLE Sensors: [23] A novel Gaussian

Mixture Model (GMM)-based probabilistic framework is proposed for assigning real-time ob-

served RSSI vectors to different fingerprinting zones using Bhattacharyya Coefficient/Distance

(BC/BD). The proposed BD-GMM framework consists of the following two data-driven

learning components:

• Offline Phase: First, raw RSSI values are collected from active BLE beacons across the
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venue, which are then smoothed via a KF. Different from existing fingerprinting tech-

niques, the RSSI values associated with each zone is then modeled with a multivariate

GMM.

• Online Phase: KF is applied on the observed measurements to: (i) First, reduce RSSI

fluctuations, and; (ii) Second, provide a GM of the online RSSI vector. This proba-

bilistic output is then compared in distribution with GMMs, learned for each zone, via

utilization of BD between Gaussians and GMMs. For estimating the user’s location,

two scenarios are proposed: (i) The BD distance between the output of the KF and the

trained GMM associated with all the zones are calculated and the one with minimum

distance is identified as the target’s zone, and; (ii) A weighted K-Nearest Neighbor (K-

NN) algorithm is applied for location estimation, where the weights are computed based

on the BD between the output of the KF and the GMM distributions of K nearest zones

to the identified one.

(3) Gaussian Sum Filtering Coupled with Wasserstein Distance for Non-Gaussian BLE-

based Localization [24]: In the context of linear state estimation, KF was used by assuming

that the state and observation noises have single Gaussian distributions. In the scenarios

where noises have non-Gaussian behaviour, KF cannot provide reliable results. A Gaussian

sum filter (GSF)-based algorithm is proposed to model the non-Gaussian RSSI measurement

noise as a GMM. The number of components in the GSF is then collapsed into a single

Gaussian term with a novel Wasserstein Distance (WD)-Based Gaussian Mixture Reduction

(GMR) algorithm. The proposed framework consists of the following two components:

• Offline Phase: After measuring the RSSI values, the values at each zone is modelled

with a multivariate GM distribution.

• Online Phase: The proposed novel GSF algorithm, which is an extension of our pre-

vious works on the RSSI smoothing, is applied on the real-time RSSI values. This is

achieved via incorporation of a WD-based clustering GMR for smoothing the RSSI val-

ues and modeling the non-Gaussian RSSI measurement noise as a GMM. Output mix-

tures are then compared in distribution with GMs, learned for each zone, via utilization
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of the BD.

(4) MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement Learn-

ing [25]: An innovative Multiple Model Kalman Temporal Difference (MM-KTD) frame-

work is proposed for the value function approximation to address the problems of Deep Neu-

ral Networks (DNN)-based value function approximation solutions including overfitting, high

sensitivity to parameter selection, and not being very sample efficient. The proposed MM-

KTD framework benefits from the following characteristics:

• Adoption of an Off-Policy Q-Learning: To improve the sample efficiency of the pro-

posed MM-KTD, the off-policy Q-learning is adopted to learn the optimal policy from

the behaviour policy.

• Adoption of an Innovative MMAE Scheme: To compensate for the lack of information

about the measurement noise covariance as the most important parameter of the filter,

an innovative Multiple Model Adaptive Estimation (MMAE) scheme is adopted within

the RL process. The MMAE structure updates the mean and covariance of Radial Basis

Functions (RBFs), which are used to approximate the value function, by exploiting the

restricted gradient descent method.

• Incorporation of Active Learning: Within the proposed MM-KTD framework, the es-

timated uncertainty of the value functions are exploited to form the behaviour policy

leading to more visits to less certain values, therefore, improving the overall learning

sample efficiency of the system.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides an overview of the literature on BLE-based indoor localization and RL-

based problems. In addition, this chapter provides the background required to follow devel-

opments presented in the reminder of the thesis.
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• Chapter 3 considers application of multiple-model (hybrid) solutions for BLE-based tracking.

In this regard, the chapter presents the proposed STUPEFY framework, which incorporates

set-valued information within box particle filtering context.

• Chapter 4 consists of two parts. First, the proposed probabilistic GMM of the RSSI values

together with BD-based K-NN approach are presented. Second, the proposed GSF-based

algorithm and the WD-based GMR technique are developed.

• Chapter 5 introduces the proposed MM-KTD framework, which adapts the parameters of the

filter using the observed states and rewards for RL problems with continuous state space.

• Chapter 6 concludes the thesis and explains some directions for future research works.
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Chapter 2

Literature Review and Background

Different techniques have been investigated and proposed for self-localization and RL-based

decision making of an autonomous agent as discussed in the previous chapter. The Bayesian state

estimation-based approach, which is the building block of this thesis, is a well known framework

for formulating and dealing with such problems. In this chapter, first, an overview of the recent

literature on both indoor localization and RL problems are presented. Then, a brief introduction is

included on the basic underlying principles of Bayesian family of solutions, i.e., the Kalman Filter

(KF) (for linear systems) and the Particle Filter (PF) (for non-linear systems).

2.1 Indoor Localization: Literature Review

Generally speaking, existing BLE-based estimation techniques can be classified into the follow-

ing main categories: (i) Fingerprinting (learning-based) techniques [17], where the indoor venue

is divided into several smaller zones to create a training database in an offline fashion. In the on-

line phase, the receiving RSSI signals are classified via different classification models. K-Nearest

Neighbors (K-NN) is one popular classification (matching) algorithms [6, 27–30]; (ii) Pedestrian

Dead-Recking (PDR), where the user’s movement history obtained from sensors embedded in a

hand-held device is used for localization purposes, and; (iii) Bayesian-based approaches via utiliza-

tion of linear (KF or its variants) or non-linear estimators (e.g., PF) [31]. Accuracy of fingerprinting

(Item (i)) is heavily dependent on the training database, therefore, RSSI fluctuations significantly
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decrease the achievable accuracy [32]; The PDR (Item (ii)) is dependent on the initial location

estimate, therefore, position error accumulates over time degrading the overall performance, and;

Fluctuation, unreliability, and instability of the RSSI measurements adversely affect computation of

the likelihoods in the Bayesian-based techniques (Item (iii)) [33–37]. It is, however, expected that a

hybrid model obtained by combining two or more models can overcome these shortcomings and im-

prove the localization accuracy. While single-model BLE-based tracking has been investigated from

different aspects, multi-model (hybrid) solutions [38–42] are still in their infancy. Bayesian state

estimation approaches have been widely explored in target tracking [43, 44] since KF appeared in

1960 [45]. Kalman filter is an estimator for linear state-space models with Gaussian additive noises,

however, in the systems with non-Gaussian behaviour, KF cannot provide reliable results [46].

Non-Gaussian behavior is a common phenomenon in most of real-valued systems. Gaussian mix-

ture (GM) models are used for modeling non-Gaussian densities. For such problems, Gaussian Sum

Filter (GSF) [46] are rich solutions to approximate the non-Gaussian noise with GMMs. While KF-

based algorithms approximate the state probability density function (PDF) with a single Gaussian,

GSF approximates the PDF with a weighted sum of Gaussian distributions. But, the number of GM

components tends to increase exponentially during the time resulting in introducing of significant

computational overhead. To tackle this challenge, at each step of GSF algorithm, GMs is approxi-

mates with lower number of Gaussian components by using the Gaussian mixture reduction (GMR)

algorithms [47]. Generally speaking, the GMR algorithms are classified [26] into two main cate-

gories: (i) Bottom-up approaches, where the desire GM starts with a single Gaussian function and

iteratively add more components to reach to the desired GMs model, and; (ii) Top-down approaches,

where the number of Gaussian mixtures are decreased gradually either by removing an unimportant

component or by using the clustering methods that merges the similar components. This reduction is

done locally or globally based on different information-probabilistic similarity measures such as the

Kullback–Leibler divergence (KLD) [48] or the BD. Then the similar components are replaced by a

single Gaussian component. However, both KLD and BD optimize the information gain achieved by

GMR, in many applications like machine learning and computer vision, the Geometric shape of the

GM is important. WD computes the geometric shape difference between two PDFs by minimizing

the cost of transferring one PDF to another [44].
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2.2 Reinforcement Learning: Literature Review

When an accurate model of the environment is available, methods such as dynamic program-

ming [19] may be used to find the optimal policy. An accurate model of the environment, however,

is rarely available in practice leading to the need to resort to model-based RL or model-free ap-

proaches. In the model-based RL approaches, the goal is to learn the model of the system using the

past transitions of the system and then apply a model-based control scheme (e.g., model predictive

controller [20]) to reach the desired goal [21]. While model-based RL approaches are proven to be

sample efficient, their performance, typically, degrades over time by the uncertainties and bias in the

constructed model of the environment. On the other hand, model-free approaches directly acquire

the optimal policy for the system, without developing a model of the system. Due to their superior

asymptotic performance, model-free approaches are commonly preferred over their model-based

counterparts especially when sampling the agent’s past trajectories is inexpensive.

A common practice in model-free RL schemes is to calculate the state (or alternatively state-

action) value function for each state. While this can be done with relative ease for a system with

limited number of states [49], it is impractical to find the value function for each state when the

number of states is large or the states are continuous (due to the curse of dimensionality [50]). In

such cases, which entail most realistic applications, the value function needs to be approximated.

In a large group of works, e.g., [51–55], artificial neural networks were employed to approximate

the value function over the entire state-space. Despite few successful trials, most early attempts of

such were not very successful due to the overfitting problem. However, this problem was overcome

in [56], where simple though efficient techniques were employed to avoid the overfitting problem.

This work was later extended to systems with continuous actions [57]. However, it was shown later

that such approaches are highly sensitive to parameter selection, therefore, required to be revised

further to be applicable to a larger variety of problems. Despite continuous attempts [58–61] to

overcome such problems, the training of the neural network has remained an open problem in the

field.

Another well-practiced approach to approximate the value function is to employ a set of weighted

local estimators and convert the approximation problem to a weight estimation problem. Various
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local estimator were proposed in the literature, among which Radial Basis Functions (RBFs) [62],

and Cerebellar Model Articulation Controllers (CMACs) [63] are most popular. It was shown that

RBFs are more suitable than CMACs in systems with continuous states, due to their continuous

nature [64]. More recently, Fourier basis was proposed as the local estimator function, however,

the performance of the system was shown to be comparable to those using RBFs [65]. Due to its

advantages, we exploit the RBFs for the value function approximation. The parameters of the RBFs

are usually computed based on the knowledge of the problem. However, it is possible to adapt these

parameters using the observed transitions to enhance the autonomy of the method. Cross entropy

and gradient descent methods were proposed by [66] for that matter. Stability of the latter was later

enhanced using a restrictive technique in [67], which is adopted in this work.

Once the structure of the value function is determined, a suitable algorithm has to be picked

to train the value function approximation. Various approaches were proposed in the literature

to gradually bring the value approximations close to their real values in all states. These meth-

ods were generally categorized as bootstrapping approaches (such as Fixed-Point Kalman Filter or

FPKF [68]), residual approaches (e.g., Gaussian Process Temporal Difference or GPTD [69]), and

projected fixed-point approaches (e.g., Least Square Temporal Difference or LSTD [70]). Among

these approaches, Kalman Temporal difference (KTD) [71,72] stands out as it provides not only the

Minimum Mean Square Error (MMSE) estimation of the value function (given the selected struc-

ture), but also their uncertainty in terms of their error covariance which could be exploited further

to reach higher sample efficiency [72]. It was also shown in [72] that GPTD is a special case of

KTD. However, like other Kalman-based schemes, KTD requires the parameters of the filter (such

as process and measurement noise covariances) to be known a priori, which is not the case in most

practical scenarios.

Filter parameter estimation is a well-studied problem for Kalman filters and has led to numerous

adaptive schemes in the literature. These methods may be roughly categorized as innovation-based

adaptive methods (e.g., [73] and multiple model adaptive schemes (e.g., [74]). The latter has the

advantage of fast adaptability when the mode of the system is changing. Most recently, the effective

methods in multiple model adaptive estimation (MMAE) was discussed in [75], where various av-

eraging and weighting schemes were proposed and compared to achieve superior results. Multiple
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model approaches were previously used in RL problems. A model-based multiple model approach

was introduced in [76] where the uncertainty of the system model was challenged using a set of

models for the system. Moreover, a model selection approach was proposed in [77] for a multiple

model KTD to overcome the filter parameter uncertainty problem, yet the models and the selection

scheme were naive and therefore was not suitable for more general tasks.

2.3 Bayesian Estimation: Formulation

Throughout the thesis, we use the following notation: Non-bold capital letterX denotes a scalar

variable; Lowercase bold letter x represents a vector, and; Capital bold letter X denotes a matrix.

Transpose of a matrix X is denoted XT . We consider an estimation problem where its states is

expresses as a vector of nx state variables:

x = [X1, X2, . . . , Xnx ]T . (2.1)

The transition of states over time and the measurements models are represented as follows

xk = f
(
xk−1

)
+wk (2.2)

and zk =


Z

(1)
k

...

Z
(Nb)
k

 =


h(1)(xk) + v

(1)
k

...

h(Nb)(xk) + v
(Nb)
k


︸ ︷︷ ︸

h(xk)+vk

, (2.3)

where zk ∈ RNb denotes a sensor measurement vector at iteration k; functions f(·) and h(·),

respectively, are the state and observation models; terms wk and vk represent uncertainties and are

assumed to be mutually uncorrelated and can have white Gaussian or non-Gaussian distributions.

In sequential Bayesian estimation, the current state variables of vector xk (e.g., 2-dimensional

location of a target within an area) at time step k only depends only on the previous values xk−1,
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i.e.,

P
(
xk|x0:k−1, z1: k−1

)
= P

(
xk|xk−1

)
, (2.4)

where P
(
xk|xk−1

)
is known as the state transition model of the estimation. Based on the Bayesian

conditional independence rule, the observation vector zk is conditionally independent of the prior

states variables given current state values xk, i.e.,

P
(
zk|x0:k

)
= P

(
zk|xk

)
. (2.5)

The final aim in a Bayesian framework is to estimate the conditional filtering density P (xk|z1:k, ),

i.e., the probability distribution of the state variables for all time instances k > 0 given the received

observations upto and including the current iteration. Using the Bayes’ rule, the filtering density

can be calculated as follows

P
(
xk|z1:k

)
=

Likelihood︷ ︸︸ ︷
P (zk|xk)

Predicted Density︷ ︸︸ ︷
P (xk|z1:k−1)

P (zk|z1:k−1)︸ ︷︷ ︸
Normalization

, (2.6)

where denominator P (zk|z1:k−1) is independent of the state variables and can be expressed as the

normalizing constant, i.e., P (zk|z1:k−1) = α and the term P (xk|z1:k−1) can be computed in terms

of the state transition model and the filtering density P (xk−1|zk−1) as follows

P
(
xk|z1: k−1

)
=

∫
P (xk|xk−1)× P (xk−1|z1: k−1)dxk−1. (2.7)

Eq. (2.6) is referred to as the measurement update step, and Eq. (2.7) is referred to as the prediction

step. The Bayesian state-estimation problems can be divided as:

1 Prediction Update: Given P (xk−1|z1: k−1) compute P (xk|z1: k−1).

2 Normalization Update: Compute the normalization factor P (zk|z1:k−1).

3 Measurement Update: Using the likelihood function P (zk|xk) to compute P (xk|z1:k).
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One method, referred to as the maximum a posteriori (MAP) estimator, obtains the state estimate

x̂k by determining the value of xk that maximizes P (xk|z1: k). When several sensors produce their

own measurements vector of the states z(l)
k for (1 ≤ l ≤ N ), the conditional probability P (z

(l)
k |xk)

then acts the role of a sensor model and can be used in the Bayesian state estimation algorithms.

The conditional independence of Bayes’ rule in the multi-sensor situation, results in the following

likelihood function

P
(
zk|xk

)
= P

(
z

(1)
k , . . . ,z

(N)
k |xk

)
=

N∏
l=1

P
(
z

(l)
k |xk

)
. (2.8)

By replacing Eq. (2.8) in Eq. (2.6), we have

P
(
xk|z

(1)
k , . . . ,z

(N)
k

)
= αP

(
xk|z1: k−1

) N∏
l=1

P
(
z

(l)
k |xk

)
, (2.9)

In the next section, we introduce the KF algorithm as a classical Bayesian estimator.

2.3.1 Kalman Filter

The Kalman filter is a Bayesian estimation algorithm, which estimates the unknown state vari-

ables when the system and observation dynamics are linear. In the prediction step, the KF estimates

the current state variables, along with their uncertainties without incorporation of the newly ob-

served measurement. Once the measurement, corrupted with some amount of random noise, is

observed , the predicted estimates are updated using a weighted average, with more weight being

given to estimates with higher certainty. Kalman filters are used to estimate states based on the

MMSE. The prediction model is as follows

xk = Fkxk−1 +wk, (2.10)

where Fk is the state transition matrix applied to the previous state vector, and wk is the process

noise vector that is assumed to be zero-mean Gaussian with the covarianceQk, i.e.,N (0,Qk). The
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transition model is paired with the linear measurement model as:

zk = Hkxk + vk (2.11)

where zk is the measurement vector, Hk is the measurement matrix, and vk is the measurement

noise vector that is assumed to be zero-mean Gaussian with the covarianceRk , i.e., vk = N (0,Rk).

The KF provides the optimal solution for these two models based on the following recursions

Prediction Step:

x̂k|k−1 = Fkx̂k−1|k−1 (2.12)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (2.13)

Update Step:

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
(2.14)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1 (2.15)

Pk|k = Pk|k−1 −KkH
T
k Pk|k−1. (2.16)

In the KF with its transition and measurement model and its statistical properties, the posterior

follows a Gaussian distribution, i.e.,

P (xk|Zk) ∼ N (x̂k|k,Pk|k). (2.17)

This section completes the introduction to the KF for the linear systems with Gaussian uncertainties.

Next, we review particle filtering for nonlinear/non-Gaussian estimation problems.

2.3.2 Particle Filter

The KF performs poor for nonlinear systems with non-Gaussian uncertainties. Alternatively,

one can utilize numerical Sequential Monte Carlo (SMC) solutions, also referred to as the particle

filters (PFs) [34,78], as approximates to the Bayesian estimators. A PF is a recursive, Bayesian state

estimator that uses a set of particles to approximate the non-Gaussian posterior distribution. The set
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of all particles is utilized to produce the final state estimate. PF is useful especially when the problem

includes highly nonlinear or complicated system models and/or non-Gaussian distributions. To

formulate the PF, we need to define transition model and measurement model, which are described

respectively as

xk = g(xk−1) +wk, (2.18)

and zk = h(xk) + vk, (2.19)

where both wk and vk are mutually independent sequences with known probability density func-

tions and g(.) and h(.) are known functions. Once the initial system parameters such as the number

of particles Np, the initial values of particles and the observations are specified, the particles X(i)
k

for (1 ≤ i ≤ Np) and their associated weights (W (i)
k ) at time index k can be obtained based on the

two main steps of the PF as:

Prediction Step: X(i)
k ∼ P

(
xk|x0:k−1, z1:k

)
. (2.20)

The next step is to update the weights as follows

Observation Update Step: W
(i)
k ∝W

(i)
k−1

P
(
zk|X

(i)
k

)
P
(
X(i)
k |X

(i)
k−1

)
P
(
xk|x0:k−1, z1:k

) , (2.21)

where the likelihood function P (zk|X
(i)
k ) is derived from the observation equation. The overall

filtering distribution of the state vector at iteration k − 1 can be expressed in terms of the particles

and their associated weights as

P (xk−1|z1:k−1) ≈
Np∑
i=1

W
(i)
k−1δ

(
xk−1 − X(i)

k−1

)
, (2.22)

where δ(·) denotes the Dirac delta function. This completes the introduction of the PF.
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2.4 Conclusion

In this chapter, an overview of the existing solutions proposed previously in the literature for

both BLE-based indoor localization and RL-based systems are presented. The basics of Bayesian

estimation approaches are also discussed together with a brief introduction to Kalman filtering and

Particle filtering as the required background material.
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Chapter 3

STUPEFY: BLE-based Set-Valued Box

Particle

With the rapid emergence of IoT, we are more and more surrounded by smart connected devices

with integrated sensing, processing, and communication capabilities. As stated previously, BLE,

referred to as Bluetooth Smart, is considered as the main-stream technology to perform identifi-

cation and localization/tracking in IoT applications. While single-model BLE-based tracking has

been investigated from different aspects, application of multi-model (hybrid) solutions are still in

their infancy. In this regard, the chapter proposes a novel BLE-based tracking framework, referred

to as the STUPEFY, which incorporates set-valued information within box particle filtering context.

More specifically, the proposed multiple-model STUPEFY framework consists of the following

three integrated modules:

(i) The Smoothing Module developed based on Kalman filtering to reduce the RSSI fluctuations

and facilitate comparison of Gaussian models of the RSSI values in distribution with the

learned ones;

(ii) A learning-based model (Cooperation Module) utilized in an intuitive fashion to provide/construct

a coarse estimate of the target’s location together with the smallest axes-aligned box contain-

ing the ellipsoid associated with each zone’s learned RSSI distribution, and;

(iii) A novel set-valued box particle filtering (SBPF) approach (Micro-Localization Module).
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The proposed STUPEFY framework is evaluated via proof-of-concept experiments based on real

BLE datasets and results illustrate its significant potentials in terms of the improving the overall

achievable tracking accuracy.

The rest of this chapter is organized as follows: Section 3.1 presents the proposed STUPEFY

framework. Simulation results are provided in Section 3.2. Finally, Section 3.3 concludes the

chapter.

3.1 The STUPEFY Framework

A 2-D indoor licalization/tracking problem is considered with a single user walking within the

surveillance region equipped with Nb > 1 number of BLE sensors. The following general non-

linear state-space model is considered

xk = f
(
xk−1

)
+wk (3.1)

and zk =


Z

(1)
k

...

Z
(Nb)
k

 =


h(1)(xk) + v

(1)
k

...

h(Nb)(xk) + v
(Nb)
k


︸ ︷︷ ︸

h(xk)+vk

, (3.2)

where zk ∈ RNb denotes the sensor’s measurement vector at iteration k; xk = [Xk, Yk]
T ∈ R2

denotes the state vector (2-D location of the target); functions f(·) and h(·), respectively, are the

state and observation models; terms wk and vk represent uncertainties and are assumed to be mu-

tually uncorrelated white Gaussian noises. The proposed STUPEFY framework consists of three

main sub-systems as shown in Fig. 3.1 and are covered in the following sub-sections.

3.1.1 Smoothing Module

The initial step of the proposed SBPF is KF-based smoothing [43, 79] with two objectives:

(i) To smooth fluctuations in the RSSI values, and;

(ii) To construct a Gaussian model of the RSSI values to be used within the coordination module
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Figure 3.1: Architecture of the proposed STUPEFY framework.

for finding the predicted zone of the target via BD [26].

In other words, Gaussian approximation of the smoothed RSSI values provided by the KF filter is

compared in distribution with the ones learned to model each fingerprinting zone. In this regard, the

RSSI values obtained from the jth active BLE beacon are given by

Z
(j)
k = −10N log(

D
(j)
k

D0
) + C0︸ ︷︷ ︸

h(j)(xk)

+ v
(j)
k , (3.3)

where D(j)
k =

√
(Xk −X

(j)
k )2 + (Yk − Y

(j)
k )2 with x(j)

k = [X
(j)
k , Y

(j)
k ]T denoting 2-D location

of the jth sensor; D0 is the reference distance; C0 is the average RSSI value at reference dis-

tance; N is the pathloss exponent, and; the overall observation vector is constructed as zk =

[Z
(1)
k , . . . Z

(j)
k , . . . Z

(Nb)
k ]T . To formulate the KF, we define an intermediate state vector yk ∈ RNb ,

which models the smoothed RSSIs based on the following state-model

yk = yk−1 + νk. (3.4)

27



The measured RSSI values zk are used as the input observation to the KF with the following obser-

vation model

zk = yk + uk. (3.5)

Terms νk and uk are zero-mean Gaussian uncertainties used in the smoothing model with their

second-order statistics (QRSSI and RRSSI) being learned through an initial calibration phase. The

output of the KF at each iteration is, therefore, denoted byN (ŷk|k,Σk|k), which represents a Gaus-

sian model of smoothed RSSI vector.

3.1.2 Coordination Module

In the coordination module, similar in nature to fingerprinting approaches [38–40], the venue is

divided intoNFP number of zones (grid of points such as square, hexagonal, or random grid), where

Zone l, for (1 ≤ l ≤ NFP), is defined based on its geometric coordinates. Each zone is referred

to as a training point where several observations (signal features) are collected for compensating

the time-varying nature (e.g., shadowing/fading effects) of the associated propagation environment.

The coordination module consists of the following two main phases:

(a) The Offline Phase

This is a data-driven learning approach that can be roughly decomposed into raw signal feature

collection (RSSI values collected from active BLE beacons), and fingerprint creation step, i.e.,

construction of a training database from smoothed (via Smoothing Module) RSSI values.

Different from existing fingerprinting techniques, in the offline phase of the coordination mod-

ule, we model the RSSI values associated with the lth-zone, for (1 ≤ l ≤ NFP), as a multivari-

ate Gaussian distribution p(Z(l)) ∼ N (µ(l),Σ(l)). Based on the learned statistics (i.e., µ(l) and

Σ(l)), the smallest axes-aligned box ξ(l) containing the ellipsoid associated with the lth-zone is con-

structed. Fig. 3.2 shows the ellipsoid for three BLE beacons (Nb = 3). The smallest axes-aligned

bounding box is completely determined by the boundary points, which are obtained by projecting
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Figure 3.2: Ellipsoid associated with the lth-zone for Nb = 3.

the ellipsoid on to different axes. An analytical smallest axes-aligned set is constructed by min-

imization along the jth coordinate axis as the solution of the following constrained optimization

problem

 minz eT (j)z

subject to (z − µ(l))T
(
Σ(l)

)−1
(z − µ(l)) ≤ η2,

(3.6)

where e(j) is a (Nb×1) vector with one non-zero element equal to 1 at the jth location, and Term η

is selected depending on the probability mass the designer chooses to be captured by the ellipsoid.

The problem in Eq. (3.6) is convex and admits the following closed-form solution

ξ(l)(j)min = µ(l)(j)− η
√

Σ(l)(j, j), (3.7)

where Σ(l)(j, j) denotes (j, j) scalar element of Σ(l). Solving the related maximization problem

yields the maximum along the jth coordinate axis, which will complete construction of the smallest

axes-aligned box ξ(l) for the lth coordination zone.
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Figure 3.3: An illustrative example showing the box PF approach.

(b) The Online Phase

The online phase consists of pattern matching and post-processing steps. In the online phase,

the RSSI vector of a real time user is measured, then compared to the pre-recorded training RSSI

vectors to identify the zone of user’s location.

Again and in contrary to existing solutions for pattern matching, we propose to measure (via

statistical distant measures) the distance between two probability distributions, i.e., p(Z(l)) =

N (µ(l),Σ(l)) and p(Zk) = N (ŷk|k,Σk|k). In particular, in this chapter, we use BD [26] between

the two distributions defined as follows

db(p(Zk), p(Z(l)))=− ln
( ∫

RNb

√
p(Zk)p(Z(l)) dz

)
. (3.8)

The distance between the measurement vector zk and all the NFP zones are computed and the one

with smallest distance, i.e., Ẑk = arg minl{db(Zk,Z(l))} is selected as the candidate zone. Finally,

geometric coordinate of the predicted zone where the target is located together with the learned

Gaussian model (p(Ẑ) = N (µ(l),Σ(l))) representing the RSSI values associated with the selected

zone Ẑk will be provided as the inputs to the SBPF module, which is described next.
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3.1.3 Micro-Localization Module

Once predicted zone of the user is estimated by the coordination module, the proposed SBPF

is implemented based on the following two steps to micro-locate the target. In what follows, we

assume that lth zone is predicted as the target’s zone by the coordination module, i.e., Ẑk = Z(l).

1. Prediction Step: To form predicted particles denoted by X(i)
k , the proposed SBPF uses a box ζ(l)

k

identified by coordinates of the predicted zone (Zone l), which is defined as

ζ
(l)
k ,

{
x : min

m
x

(l)
k � x � max

m
x

(l)
k

}
, (3.9)

where the minimum, maximum, and inequalities should be understood component-wise. More

specifically, in the prediction step Np particles are generated within the box (defined in Eq. (3.9))

associated with the predicted zone of the user (provided by the coordination module). In other

words, predicted particles are generated via the following proposal distribution

X(i)
k ∼p(xk ∈ ζ

(l)
k |zk−1) = p(min

m
x

(l)
k � xk� max

m
x

(l)
k |zk−1). (3.10)

Intuitively speaking, the proposal distribution defined in Eq. (3.10) can be considered as an approxi-

mation of the posterior distribution, which in turn becomes an attractive and intelligent choice for the

proposal distribution. In other words, the proposed SBPF uses an approximation p(xk ∈ ζ
(l)
k |zk−1)

of the optimal proposal distribution.

Boxed Particle Generation: The following three scenarios are introduced to generate boxed parti-

cles: (i) Np particles are generated with the ones falling within the identified box (Eq. (3.9)) par-

ticipating in the update step, i.e., reduced and varying number of particles used in the update steps;

(ii) Second, upsampling particles until Np falling within the predicted box, and; (iii) Np particles

generated from a bivariate Gaussian distribution inscribed in the predicted box (Fig. 3.3).

2. Update Step: In contrary to conventional PF-based [80–82] solutions developed for BLE-based

tracking, which form point-valued likelihood P (zk|X
(i)
k ) for each particle based on the RSSI val-

ues, the proposed SBPF computes the probability that the measured RSSI from each active beacon

belongs to the set ξ(l)
k (Eq. (3.7)) identified by the coordination module. In other words, instead of
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Algorithm 1 STUPEFY IMPLEMENTATION

Input: {Z(l)}NFP
l=1 , {X(i)

k−1,W
(i)
k−1}

Np

i=1, and zk.

Output: {X(i)
k ,W

(i)
k }

Ns
i=1, x̂k|k and Pk|k.

1: Offline Phase:
2: Construct training database:N (µ(l),Σ(l)),(1≤ l≤NFP).
3: Calculate ζ(l), ξ(l)(j)max and ξ(l)(j)min, via Eq. (3.7).
4: Online Phase (Smoothing and Coordination Modules):
5: Smooth zk and compute P (Zk) = N (ŷk|k,Σk|k).
6: Identify predicted zone Ẑk = arg minl{db(Zk,Z(l))}.
7: Online Phase (SBPF Module Prediction Step):
8: Boxed predicted particle generation via Eq. (3.10).
9: Online Phase (SBPF Module Update Step):

10: Compute set-valued likelihoods via Eq. (3.11).
11: Update particles’ wights via Eq. (3.12).

using point-valued measurements (Z(j)
k ), set-valued [35, 36] observations are used to update par-

ticles, i.e., W (i)
k ∝ p

(
zk ∈ ξ

(l)
k |X

(i)
k

)
. For instance, for the jth smoothed RSSI observation Z(j)

k ,

set-valued likelihood function is computed as follows

p
(
ξ(l)(j)min ≤ Z(j)

k ≤ ξ
(l)(j)max|xk

)
= p
(
ξ(l)(j)min ≤ h(j)(xk) + v

(j)
k ≤ ξ

(l)(j)max|xk
)

= Φ

ξ(l)(j)max − h(j)(xk)√
R

(j)
k

− Φ

ξ(l)(j)min − h(j)(xk)√
R

(j)
k

 , (3.11)

where Φ(·) is the cumulative Gaussian distribution with zero mean and variance 1. Finally, the

weight associated with each particle X(i)
k is updated as follows

W
(i)
k = W

(i)
k−1

p
(
zk ∈ ξ

(l)
k |X

(i)
k

)
p(X(i)

k |X
(i)
k−1)

p(xk ∈ ξ
(l)
k |zk−1)

. (3.12)

Algorithm 1 outlines the steps of the STUPEFY.

3.2 Experimental Results

The proposed STUPEFY localization framework is evaluated via a proof-of-concept experimen-

tal testbed, where RSSI measurements are collected in a (6.0m × 5.5m) low-noise meeting room

environment [10]. Three Gimbal Series 10 Beacons, developed by Qualcomm, were used as BLE
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(a) (b)

Figure 3.4: Experimental dataset [10]: (a) Fingerprinting data. (b) Test trajectory.

transmitters, which were placed 4m apart from one another in the shape of a triangle as shown in

Fig. 3.4(a). Fingerprinting points were taken with a 0.5m spacing between the centres, resulting in

49 zones. For testing, several random trajectories are created (one example is shown in Fig. 3.4(b))

based on 10 randomly selected test points for which test RSSI values are computed. First, similar al-

gorithm proposed in [40] is applied on the test data where particles are weighted by their probability

computed from the fingerprinting method. Second, proposed STUPEFY algorithm is applied on the

test data; in the coordination module K-NN classifier is applied ( K = 1,3,5,7,9). The three boxed

particle generation scenarios, described in Sub-section II-C, are then applied for varying number of

particles ranging from Np = 100 to Np = 1100. The mean square error (MSE) is calculated as a

measure of performance. As Table 3.1 shows, K-NN classifier with K=5, gives the best accuracy.

In comparison to conventional PF approach, the average performance improvements achieved via

the proposed STUPEFY framework based on Scenarios (ii) and (iii), are 58% and 83%, respectively.

To show the efficacy of the proposed STUPEFY framework, Fig. 3.5 illustrates the mean MSE re-

sults and their variations for K = 5 as a function of the number of particles, computed based on

100 randomly selected different target tracks. It can be observed that the accuracy achieved from

the proposed STUPEFY algorithm significantly outperforms its counterparts. Upper bounds on the

computation times associated with Schemes (i)-(iii) are 4, 25, and 12 seconds, respectively, which

are computed by averaging over 50 runs based on K = 5 and Np = 1000. We note that BLE
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Table 3.1: MSE comparison of proposed algorithms for various number of k with N = 500.
Algorithm K=1 K=3 K=5 K=7

K-NN Approach 123cm 123cm 73cm 134cm
Conventional PF 43.9cm 43cm 36cm 45.5cm
Boxed Particle, Scheme (i) 38.82 cm 38cm 36cm 36.5cm
Boxed Particle, Scheme (ii) 27 cm 25.49cm 15cm 15cm
Boxed Particle, Scheme (iii) 13.4cm 10.4cm 5.49cm 9cm

Figure 3.5: MSE computation for PF and STUPEFY (5-NN) as a function of the number of particles.

signals experience more interference in large environments, in presence of obstacles, and/or in non

line-of-sight (NLoS) scenarios resulting in higher fluctuations of the RSSI values. In our ongoing

research, we are focusing on adaption of mode-matched pathloss models to extend the proposed

STUPEFY to better coupe with environmental variations. As a final note, we note that increasing

the number of transmitters results in increased computational burden of the offline phase, however,

accuracy improvements is expected due to presence of more observations.

3.3 Conclusion

In this chapter, a multi-model BLE-based tracking framework is proposed, referred to as the

STUPEFY, which uses set-valued information within box particle filtering. In contrary to existing

BLE-based solutions, BD is used for finding a predicted zone by comparing real-time Gaussian
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models of the RSSI values; Smallest axes-aligned box containing the ellipsoid associated with each

zone is introduced and used for creating set-valued RSSI measurements, and; An approximation

of the optimal proposal distribution in terms of a predicted box is used for generating predicted

particles. The proposed STUPEFY is evaluated based on real BLE datasets and results illustrate

significant potentials in terms of improving overall BLE-based achievable tracking accuracy.
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Chapter 4

BLE-based Bayesian Estimation

Coupled with Distribution Matched

Algorithms

In the previous chapter, RSSI values are assumed to have normal statistical properties. The

main challenge is that multipath fading and drastic fluctuations in the indoor environment result in

complex Gaussian/non-Gaussian RSSI measurements, necessitating the need to smooth RSSIs for

development of BLE-based localization applications. In the first part of this chapter, we assume that

RSSI values can be modeled as Gaussian distributions. Then, to deal with the fact that RSSI-based

solutions are prone to drastic fluctuations, GMMs are trained to more accurately represent the un-

derlying distribution of the RSSI values. For assigning real-time observed RSSI vectors to different

zones, first a Kalman Filter is applied to smooth the RSSI vector and form its Gaussian model,

which is then compared in distribution with learned GMMs based on BD and via a weighted K-NN

approach. I the second part of the chapter, a Gaussian Sum Filter (GSF) approach is designed to

more realistically model the non-Gaussian nature of RSSIs. To maintain acceptable computational

load, the number of components in the GSF is collapsed into a single Gaussian term with a novel

WD-Based GMR algorithm. The simulation results based on real collected RSSI signals confirm

the success of the proposed WD-based GSF framework compared to its conventional counterparts.

36



The reminder of this chapter is organized as follows: Section 4.1 presents the proposed GMM-

based localization framework. Section 4.2 presents the proposed Non-Gaussian BLE-based indoor

localization framework, where Gaussian sum filtering is coupled with WD. Finally, Section 4.3

concludes the chapter.

4.1 Gaussian Mixture-based Indoor Localization via BLE Sensors

In this section, we propose a novel BD-GMM framework for assigning real-time observed RSSI

vectors to different fingerprinting zones using Bhattacharyya coefficient/distance [26]. More specif-

ically, after measuring the RSSI data, values associated with each location are modelled by a multi-

variate GMM distribution. In the online phase, KF is applied on the observed measurements to: (a)

First, reduce RSSI fluctuations, and; (b) Second, provide a Gaussian model of the online RSSI vec-

tor. This probabilistic output is then compared in distribution with GMMs, learned for each zone,

via utilization of BD between Gaussians and GMMs [26]. For estimating the user’s location, two

scenarios are proposed:

(i) The BD between the output of the KF and the trained GMM associated with all the zones are

calculated and the one with minimum distance is identified as the target’s zone, and;

(ii) A weighted K-NN algorithm is applied for location estimation, where the weights are com-

puted based on the BD between the output of the KF and the GMM distributions ofK nearest

zones to the identified one.

In what follows, first the problem at hand is formulated in Section 4.1.1 where the proposed GMM-

based localization framework is also presented. Data collection and experimental results together

with comparisons are then provided in Section 4.1.2.

4.1.1 GMM-based Indoor Localization via BLE Sensors

Generally speaking, for indoor localization with fingerprinting approach, the RSSI values re-

ceived from active BLE sensors across the surveillance venue are compared with the offline RSSI
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Algorithm 2 PROPOSED GMM-BASED ZONE DETECTION

Input: {RSSI(l)
n }NTrain

n=1 for (1 ≤ l ≤ NFP), and zk.
Output: Ẑk.

1: Offline Phase:
2: Construct training database {R(l)}NFP

l=1 based on Eq. (4.1).
3: Model each zone with Nc GMM, i.e.,

P (Z(l)) =
∑Nc

i=1 φi N (µ
(l)
i ,σ

(l)
i ).

4: Online Phase:
5: Smooth zk and compute P (ZKF

k ) = N (µk,σk).
6: First Estimation Scenario:
7: Compute d(ZKF

k ,Z(l)) via Eq. (4.3).
8: Identify the user’s zone via

Ẑk = arg min
l
{db(Zk,Z(l))}.

9: Second Estimation Scenario:
10: Find K nearest neighbors to zk between {RSSI(l)

n }NTrain
n=1 for (1 ≤ l ≤ NFP) based on

d(ZKF
k ,Z(l)).

11: Calculate weights, 1
d(ZKF

k ,Z(l))
, associated with the K selected neighbors.

12: Compute the weight of each zone W (l).
13: Select the zone as follows: Ẑk = arg max

l
{W (l)}.

values at each zone to identify the most similar zone to the unknown location and associate the cen-

tre of selected zone as the predicted location. Common approaches for finding the aforementioned

similarity is finding the minimum Euclidean distance between the average RSSI values computed

during the training phase with the test RSSI value. On the contrary, the proposed algorithm uses

probability distribution of RSSI values instead of their mean during the Offline and Online phases.

In other words, we develop a probabilistic BLE-based fingerprinting method, where during the Of-

fline phase the RSSIs associated with each zone is modelled by a multivariate GMM.

For the purpose of localizing the target, the venue is divided into NFP number of monitoring

zones (grid of zones such as square, hexagonal, or random grid), where Zone l denoted by Z(l),

for (1 ≤ l ≤ NFP), is defined based on its centre coordinates. We consider tracking a single target

within these zones identified in the surveillance region monitored with Nb number of BLE-enabled

sensors. Each zone is referred to as a training point where several RSSI values from all the active

Nb sensors are collected for compensating the time-varying nature (e.g., shadowing/fading effects)
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of the associated propagation environment. The proposed GMM-based localization framework con-

sists of the following two main phases:

(i) The Offline Phase, which is a data-driven learning approach that can be roughly decomposed

into collection of raw RSSI values from Nb active BLE beacons across the venue RSSI(l)
n =

[RSSI
(1,l)
n , . . . , RSSI

(Nb,l)
n ]T , for (1 ≤ n ≤ NTrain), and fingerprint creation step, i.e., construction

of the GMM training database based on RSSI values.

More specifically, during the Offline phase,NTrain number of training RSSI vectors are measured

from all Nb sensors collectively represented as follows

R(l) =


RSSI

(1,l)
1 , . . . , RSSI

(1,l)
NTrain

...
...

...

RSSI
(Nb,l)
1 , . . . , RSSI

(Nb,l)
NTrain

 , (4.1)

for (1 ≤ l ≤ NFP). Then these NTrain training RSSI vectors for Zone Z(l) collected in matrix R(l)

are each modeled with a GMM, denoted by P (Z(l)), consisting of Nc Gaussian components and

parameterized by θ(l)
i = {φ(l)

i ,µ
(l)
i ,σ

(l)
i }, i.e.,

P (Z(l)) =

Nc∑
i=1

φi N (µ
(l)
i ,σ

(l)
i ), (4.2)

where φ(l)
i is the ith component’s weight, µ(l)

i is its mean vector with its associated covariance matrix

denoted by Σ
(l)
i . The parameters in Eq. (4.2) are calculated in the Offline phase via the Expectation

Maximization (EM) algorithm. As stated previously, different from existing fingerprinting tech-

niques, in the Offline phase of the proposed framework, we model the RSSI values associated with

the lth-zone, for (1 ≤ l ≤ NFP), as a multivariate GMM P (Z(l)) given in Eq. (4.2).

(ii) The Online Phase, which consists of pattern matching and post-processing steps. In the testing

(Online) phase, the real time RSSI vector is measured, then a KF is applied for two reasons: (a) To

smooth fluctuations in the RSSI values, and; (b) To construct a Gaussian model of the RSSIs to be

used for finding the predicted zone of the target via the two estimation scenarios described below.

In other words, Gaussian approximation of the smoothed RSSIs provided by the KF is compared
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with GMM learned to model each fingerprinting zone.

To formulate the KF in this section, we define an intermediate state vector yk ∈ RNb , which

models the smoothed RSSIs based on a random walk model yk = yk−1 + vk as the state-model.

The measured RSSI values zk are used as the input observation to the KF with zk = yk +µk as the

observation model. Terms vk and µk are zero-mean Gaussian uncertainties used in the smoothing

model with their second-order statistics being learned through an initial calibration phase. The out-

put of the KF at each iteration is, therefore, denoted by P (ZKF
k ) = N (µk,σk), which represents a

Gaussian model of smoothed RSSI vector. Again and in contrary to existing solutions for pattern

matching, we propose to measure (via statistical distant measures) the distance between two prob-

ability distributions P (Zk) = N (µk,σk) and P (Z(l)) =
∑Nc

i=1 φi N (µ
(l)
i ,σ

(l)
i ). In particular, in

this section we use BD between two distributions as follows

d(ZKF
k ,Z(l)) = − ln (

∫
RNb

√
P (ZKF

k )P (Z(l)) dz). (4.3)

Based on the BD specified in Eq. (4.3), the following two estimation scenarios are considered:

S1. The first estimation scenario is applied by computing the BD between the measurement vector

zk and all the NFP GMM distributions and associating the one with smallest distance, i.e.,

Ẑk = arg min
l
{db(Zk,Z(l))}.

S2. In the second estimation scenario, firstK nearest neighbors to the observation zk are detected

from all the raw RSSI vectors available for training ({RSSI(l)
n }NTrain

n=1 for 1 ≤ l ≤ NFP).

This is done based on the corresponding BD between ZKF
k and distribution of the associated

zone Z(l). Then, total weight of each zone (W (l)) is computed with the sum of the weights

of neighbors belonging to Zone l, and the weight of each neighbor is computed as follow

1
d(ZKF

k ,Z(l))
. For location estimation, the zone with maximum weight is detected as the user’s

location, i.e., Ẑk = arg max
l
{W (l)}.

Algorithm 2 outlines the steps of the proposed GMM-based BLE fingerprinting. Next, we present

real experiments to evaluate performance of the proposed framework.
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Figure 4.1: Data Collection Setup.

4.1.2 Experimental Results

Two proposed GMM-based localization algorithms are applied on a real dataset consisting of

RSSI measurements collected in a (4.0m × 4.0m) room divided into 64 square zones with dimen-

sion (0.5m × 0.5m) as shown in Fig. 4.1. For fingerprinting, 1, 000 RSSI vectors were measured

in each zone while 4 BLE sensors were located in the corners of the venue with 4m distance from

each others. For evaluation of the proposed GMM-based approaches, a trajectory is created (as

shown in Fig. 4.2) based on 22 selected test points covering the area for which test RSSI values

are computed. We have 1, 000 offline measured RSSI vectors in each zone, which are modeled by

GMMs with 2, 4 or 8 components. Then KF is applied on the test RSSI vectors and a GMM with

2 components is associated to each vector of test data. For comparison purposes, two scenarios are

applied on the data based on the Euclidean distance between mean of a Gaussian distribution of the

current test data and the mean of single Gaussian distributions (not GMMs) of all 64 zones. The

best achieved zone classification accuracy for first scenario and second scenario (K = 5) are 14%

and 77%, respectively. On the other hand, the BD between different combination of trained models

(with different number of Gaussian components within the GMMs) and test data are computed for

both scenarios. Table 4.1 and 4.2 show the accuracy of the two scenarios with different combina-

tion of (Nc). It is observed that combination of BD with GMM method based on two Scenarios

provide a better accuracy (45%, 90%) compared to the Euclidean distance method (14% and 77%).
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Figure 4.2: Estimated target’s path.

Table 4.1: Accuracy of first scenario for various number of Nc.
Number of Components (Nc) GM 2-GMM 4-GMM 8-GMM

GM 40% 45% 30% 14%
2-GMM 36% 30% 25% 9%

Table 4.2: Accuracy of the first scenario with K = 5 for various number of Nc.
Number of Components (Nc) GM 2-GMM 4-GMM 8-GMM

GM 88% 90% 88% 43%
2-GMM 70% 70% 43% 20%

Based on these experiments, it is concluded that using 2 components within GMMs representing

fingerprinting zones and a single Gaussian model provided by the KF (representing the probabilis-

tic model of the real-time RSSI values) coupled with utilization of the BD and Scenario S2 provides

the best results of 90%. This high accuracy becomes even more intriguing considering the fact that

the considered zones are fairly close and relatively small number of RSSI values are collected per

each zone.
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4.2 Gaussian Sum Filtering Coupled with Wasserstein Distance for

Non-Gaussian BLE-based Localization

This section proposes a novel GMM-based probabilistic framework for assigning real-time observed

RSSI vectors to different fingerprinting zones using BD and Wasserstein distance (WD) [26]. More

specifically, after measuring the RSSI values, the values at each zone is modelled with multivariate

GM distribution. In the online phase, the proposed novel GSF algorithm is applied on the real-time

RSSI values via incorporation of a WD-based clustering GMR for smoothing the RSSI values and

simulating the non-Gaussian RSSI measurement noise as a GMMs distribution. These distributions

outputs are then compared in distribution with GMs, learned for each zone, via utilization of the

BD [26]. Two scenarios are used for user’s location estimation: (i) The BD between the output

of the GSF and the trained GM associated with all the zones are calculated and the one with the

minimum distance is identified as the target’s zone, and; (ii) A weightedK-NN algorithm is applied

for location estimation, where the weights are computed based on the BD between the output of the

GSF and the GMs distributions of K nearest zones to the identified one.

4.2.1 GMM-based Indoor Localization via BLE Sensors

During the offline phase, RSSI values are measured from the active BLE beacons across the

surveillance venue including all the zones. In the online phase, upon collection of the RSSI vector

at each measurement epoch, a similarity measure is used to compare the observed RSSI value with

the ones associated with the fingerprinting zones learned during the offline phase, and select one as

the predicted zone of the user. In this section, the probability distribution of RSSI values are used

during the online and offline phase to find this similarity. In other words, the RSSI values measured

at each zone during the offline phase is modeled by a multivariate GMs and the RSSI vector received

in the online phase is smoothed and modelled as a multivariate GMs by using the GSF based on the

WD reduction methodology.

We consider tracking a user in an environment monitored with Nb BLE-enabled sensors. For

fingerprinting, the venue is divided into NFP grid of squares, where zone l is denoted by Zl for

(1 ≤ l ≤ NFP). The center of each zone is referred to as a “training point”.
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The proposed GM-based localization framework consists of an offline phase and an online

phase. The former consists of the following two main steps:

Step 1. CollectingNTrain number of raw RSSI vectors fromNb number of active beacons across Zone

l, for (1 ≤ l ≤ NFP), and constructing the following zone-specific training RSSI matrix

Rl =


RSSI1

(1,l), . . . , RSSI1
(NTrain,l)

...
...

...

RSSINb

(1,l), . . . , RSSINb

(NTrain,l)

 , (4.4)

associated with Zone l, for (1 ≤ l ≤ NFP).

Step 2. Modelling the NTrain number of RSSI vectors in matrixRl with GM components, denoted by

P (Zl), consisting of Nc Gaussian components parameterized by

θ
(i)
l = {φ(i)

l ,µ
(i)
l ,σ

(i)
l }, i.e.,

P (Zl) =

Nc∑
i=1

φ(i) N (µ
(i)
l ,σ

(i)
l ), (4.5)

where φ(i)
l is the ith component’s weight,µ(i)

l is the mean vector with its associated covariance

matrix denoted by σ(i)
l .

It is worth mentioning that different from existing fingerprinting techniques, in the offline phase of

the proposed framework, we model the RSSI values associated with the lth-zone, for (1 ≤ l ≤ NFP),

as a multivariate GMM (P (Zl)) defined by Eq. (4.5). After completion of the offline phase, these

learned statistics are used for real-time indoor localization as is described in the following sub-

section.

The Online Phase

In the real-time implementation of the proposed algorithm at measurement epoch k > 1, first

RSSI vector zk =
[
Z

(1)
k . . . Z

(Nb)
k

]T
is constructed from measurements obtained from theNb active

beacons. Then, the GSF algorithm is applied on the observation vector zk for the following two

reasons:
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(i) Pre-processing, which consists of RSSI smoothing to compensate the fading effects on the

measured RSSI values, and;

(ii) Construction of the Real-time GMM, where the observed and smoothed RSSI vector corre-

sponding to the unknown location at iteration k is modeled with a GM.

The output of the GSF would then be utilized for pattern matching to find the user’s zone via

identifying the zone, which has the most similar distribution to that of the online measured RSSI

vector. Finally, the following statistical assumptions are incorporated to develop the GSF [46]:

• It is assumed that initial distribution P (x0|z0) is equal to the prior density P (x0).

• It is assumed that the process noise wk is an additive white Gaussian noise with known

covariance matricesQ > 0.

• The measurement noise is a non-Gaussian additive approximated by a mixture of mc mixing

components as

P (vk) =

mc∑
i=1

µ(i)N (v(i),R(i)) (4.6)

• It is assumed that measurement noise vk is stable over all steps.

To formulate the WD-GSF algorithm, we define the state vector xk = [yk,∆yk]
T , which consists

of RSSI value yk and its associated rate of change denoted by ∆yk. Term ∆yk is dependent on the

environment and shows how the RSSI values are fluctuating. The higher the noise in the environ-

ment, the higher will be the fluctuation. We consider the following dynamic model to represent the

evolution of the constructed state vector (xk = [yk,∆yk]
T ) over time

 yk

∆yk

 =

 1 ∆t

0 1


︸ ︷︷ ︸

Fk

 yk−1

∆yk−1

+

 wy
k

w∆y
k

 , (4.7)

andwk = N (0,Q), with its covariance matrixQ being learned during the offline phase, represents

the forcing term of the model, which is a design parameter. For WD-GSF implementation, we
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consider the following observation model

zk = [1 0]︸︷︷︸
Hk

 yk

∆yk

+ vk, (4.8)

which vk has the probability distribution in Eq. (4.6). The proposed WD-GSF approximates the

likelihood function p(zk|xk) with a GM as

P (zk|xk) ≈
mc∑
i=1

w
(i)
k N (ẑ

(i)
k|k−1,S

(i)
k ), (4.9)

where

ẑ
(i)
k|k−1 = Hkx̂k|k−1 + v(i), (4.10)

S
(i)
k = HkPk|k−1H

T
k +R

(i)
k , (4.11)

and

w
(i)
k =

exp{||ẑ(i)
k|k−1 − zk||

2

[S
(i)
k ]−1

}

πNx/2|S(i)
k |1/2 × ζk

µ(i), (4.12)

where

ζk =

mc∑
i=1

exp{||ẑ(i)
k|k−1 − zk||

2

[S
(i)
k ]−1

}

πNx/2|S(i)
k |1/2

µ(i). (4.13)

Based on the Bayesian theory, Eq. (4.9) results in a GMM of the posterior distribution p(xk|zk) as

P (xk|zk) ≈
mc∑
i=1

w
(i)
k p(xk|zk−1)N (ẑ

(i)
k|k−1,S

(i)
k ). (4.14)

Then, GMR reduction algorithm based on WD (Algorithm 3) is applied on Eq. (4.14) to collapse

the resulting GM into one single Gaussian distribution N (x̂k|k,Pk|k). In other words, WD-GSF is

applied based on the following steps
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Step 1. Prediction Step: Assuming that the posteriori distribution P (xk−1|zk−1) is collapsed

into one single Gaussian denoted by N (x̂k−1|k−1,Pk−1|k−1) via WD, the prediction step of the

WD-GSF for computing x̂k|k−1 is given by

Pk|k−1 = FkPk−1|k−1F
H
k +Qk (4.15)

x̂k|k−1 = Fkx̂k−1|k−1 (4.16)

Step 2. Filtering and Collapsing: In this step, WD-GSF simultaneously filters the mc components

identified in Eq. (4.9) and update the overall point estimation x̂k|k and its error covariance Pk|k by

collapsing the mc filtered components into one single Gaussian via Wasserstein-Based Clustering

GMR algorithm.

In other words, P (zk|xk) is a GM with mc components and P (i)(zk|xk) = N (ẑ
(i)
k|k−1,S

(i)
k ),

for (1 ≤ i ≤ mc), represents the ith Gaussian component of this GM model. The goal of WD-GSF

is to approximate P (zk|xk) with single Gaussian distribution Q(zk|xk) = N (ẑk|k−1,Sk). In

contrary to the common approach of using the KLD for GMR purposes, we consider WD-based as

the statistical measure. The WD is a symmetric and metric probabilistic similarity measure, which

minimizes the cost of transferring a PDF to another one by considering the difference between the

shapes of the underlying PDFs. The WD between the aforementioned two Gaussian components is

measured as follows [44]

Di = D2
W (P (i)

(
zk|xk), Q(zk|xk)

)
= tr

{
S

(i)
k + Sk − 2

(
(S

(i)
k )1/2Sk(S

(i)
k )1/2)1/2

}
+ ||ẑ(i)

k|k−1 + ẑk|k−1||22. (4.17)

To perform GMR on P (zk|xk) with mc components and reducing it to Q(zk|xk) with 1 < mc

components WD (Eq. (4.17)) is used by first constructing an initial candidate for Q(zk|xk). Then

the components of P (zk|xk) are associated with the closet components of Q(zk|xk) based on the

WD between the two components. The group of P (zk|xk) components that are assigned to the

same component of Q(zk|xk) is called a cluster. Finally, the associated component of Q(zk|xk) is

replaced with the center of its cluster and its weight becomes equal to sum of the cluster members’
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Algorithm 3 THE PROPOSED WD-GSF
Input: H(x),F (x), P (vk), zk,Qk, x̂k−1|k−1,Pk−1|k−1,Rl(1 ≤ l ≤ NFP).

Output: x̂k|k,Pk|k, Ẑk.
1: Prediction Step:
2: Pk|k−1 = FkPk−1|k−1F

H
k +Qk

3: x̂k|k−1 = Fkx̂k−1|k−1

4: for i = 1 : mc do
5: Compute ẑ(i)

k|k−1,S
(i)
k via Eq. (4.10) and Eq. (4.11) respectively.

6: Compute w(i)
k via Eq. (4.12) and Eq. (4.13).

7: end for
8: P (Zk) = P (zk|xk) ≈

∑mc
i=1w

(i)
k N (ẑ

(i)
k|k−1,S

(i)
k ).

9: Collapse P (zk|xk) into Q(zk|xk) = N (ẑk|k−1,Sk) with WD-based GMR.
10: Update Step:
11: Kk = Pk|k−1HkS

−1
k

12: Pk|k = [I −KkHk]Pk|k−1

13: x̂k|k = x̂k|k−1 +Kk(ẑk − ẑk|k−1)
14: Pattern Matching:
15: Construct P (Zl) =

∑Nc
i=1 φ

(i) N (µ
(i)
l ,σ

(i)
l ) for (1 ≤ l ≤ NFP).

16: First Scenario (S1):
17: Ẑk = arg min

l
{db(Zk,Zl)}.

18: Second Scenario (S2):
19: Ẑk is estimated with weighted K-NN algorithm.

weights.

After completion of the WD-based GMR component of the WD-GSF, the state vector is con-

structed as follows

Kk = Pk|k−1HkS
−1
k (4.18)

Pk|k = [I −KkHk]Pk|k−1 (4.19)

x̂k|k = x̂k|k−1 +Kk(ẑk − ẑk|k−1) (4.20)

After smoothing the RSSI values during the online phase (x̂k|k), for pattern matching, against the

excising solution, now we propose to measure (via statistical distant measures) the distance between

two probability distributions, i.e.,

P (Zl) =

Nc∑
i=1

φ(i) N (µ
(i)
l ,σ

(i)
l ),

and P (Zk) = P (zk|xk) =

mc∑
i=1

w
(i)
k N (ẑ

(i)
k|k−1,S

(i)
k ).
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Figure 4.3: Data measurement setup.

We use BD as follows

db(P (Zk), P (Zl))=− ln
( ∫

RNb

√
P (Zk)P (Zl) dz

)
. (4.21)

Based on the BD specified in Eq. (4.21), the WD-GSF can be implemented in terms of either of the

following two variants:

S1. The first estimation scenario is applied by computing the BD between the measurement vector

zk and all the NFP GM distributions and associating the one with smallest distance, i.e. Ẑk =

arg minl{db(Zk,Zl)}.

S2. In the second estimation scenario, firstK nearest neighbors to the observation zk, between all

fingerprinting zones are detected based on their corresponding BD. Then, weighted average

of the locations of the K selected neighbours, with weights computed as follows 1
d(Zk,Zl)

, is

considered as the user’s location

This complete description of the proposed WD-GSF framework, which is summarized in Algo-

rithm 3.
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(a) (b)

Figure 4.4: (a) RSSI smoothing resulting from conventional KF and GSF. (b) MSE comparison
between KF-based algorithm and WD-GSF algorithm.

4.2.2 Experimental Results

Two different variants of the proposed WD-GSF are applied and evaluated based on a real

dataset consisting of RSSI measurements collected in a (4.0m×4.0m) room divided into 64 square

zones with dimension (0.5m× 0.5m) as shown in Fig. 4.3. For fingerprinting, 1, 000 RSSI vectors

were measured at each zone while 4 BLE sensors were located in the corners of the venue with 4m

distance from each others.

Similar to our previous work presented in Section 4.1, for evaluation of the proposed GMM-

based approaches, a trajectory is created (as shown in Fig. 4.3) based on 22 selected test points

covering the area for which test RSSI values are computed. We have 1, 000 offline measured RSSI

vectors in each zone, which are modeled by one single Gaussian and GMMs with 2, and 4 compo-

nents for comparison purposes. During the online phase, the WD-GSF is applied on the test RSSI

vector 100runs to (i) Smooth the RSSI vector, and; (ii) Model the RSSI vector at each step with one

single Gaussian and a GM with 2 components. Fig. 4.4(a) illustrates the smoothed RSSI resulting

from WD-GSF and KF-based algorithm in Reference [23]. Two scenarios are applied on the data

based on the BD between Gaussian distribution of the current test data (resulting from WD-GSF

and KF model) and Gaussian distribution of all 64 zones. The BD between different combina-

tion of trained models (with different number of Gaussian components within the GMMs) and test

data are computed for both scenarios. Table 4.3 and 4.4 show the accuracy of the two scenarios
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Table 4.3: Accuracy comparison of first location estimation algorithms for various number of GMM com-
ponents.

# of Components (Nc) GM 2-GMM 4-GMM 8-GMM
GM 0.40 0.45 0.25 0.25
2-GMM 0.36 0.62 0.45 0.30

Table 4.4: Accuracy comparison of second location estimation algorithms with K = 5 for various number
of GMM components.

# of Components (Nc) GM 2-GMM 4-GMM 8-GMM
GM 0.88 0.90 0.88 0.74
2-GMM 0.74 0.95 0.80 0.62

with different combination of Nc and mc getting from the WD-GSF algorithm. The best achieved

zone classification accuracy for first scenario and second scenario (K = 5) are 62% and 95%,

respectively. Based on these experiments, it is concluded that using 2 components within GMMs

representing fingerprinting zones and 2 components of GMM provided by the WD-GSF (represent-

ing the probabilistic model of the real-time RSSI values) coupled with utilization of the BD and

Scenario S2 provides the better result (95%) compared to modelling the real-time RSSI values with

KF-based localization algorithm described in Section 4.1 (45% and 90%). Fig. 4.4(b) compares the

MSE in estimating the location resulting of two mentioned algorithm based on 100 runs.

4.3 Conclusion

To deal with the fact that RSSI-based solutions are prone to multipath fading and drastic fluctua-

tions in the indoor environment, this chapter proposed to jointly use Bayesian estimation approaches

coupled with distribution matching algorithms. Instead of using conventional solutions, distribution

matching is performed based on the BD and WD of the distribution of online and offline RSSI

values. The experimental results show that performances of the proposed BD-GMM and WD-GSF

frameworks are superior in terms of accuracy when compared to algorithms developed based on a

single Gaussian model, and Euclidean distance-based matching algorithm.
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Chapter 5

MM-KTD: Multiple Model Kalman

Temporal Differences for Reinforcement

Learning

The previous chapters focused on development of localization algorithms that can be used by an

autonomous agent (e.g., a rescue robot) to navigate through indoor environments. In this chapter, the

focus is on the decision process of that autonomous agent to achieve its pre-defined objective (e.g.,

reaching a person in need in that rescue mission) by performing sequential actions in an optimal or

near-optimal fashion. In this regard, RL is an attractive domain providing autonomous agents with

a set of tools to perform sophisticated and required behaviors. Conversely, the existing challenges

in autonomous agents provide both inspiration, impact, and validation for developments in the RL.

As described previously in Chapter 2, in model-free RL methods with continuous state-space,

typically, the value function of the states need to be approximated. In this regard, Deep Neu-

ral Networks (DNNs) algorithms provide an attractive modeling mechanism to approximate the

value function using sample transitions. DNN-based solutions, however, suffer from high sensitiv-

ity to parameter selection, are prone to overfitting, and are not very sample efficient. Kalman-based

methodologies, on the other hand, could be used as an efficient alternative. Such an approach, how-

ever, commonly requires a-priori information about the system (such as noise statistics) to perform
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efficiently. The main objective of this chapter is to address this issue. As a remedy to the aforemen-

tioned problems, this chapter proposes an innovative Multiple Model Kalman Temporal Difference

(MM-KTD) framework, which adapts the parameters of the filter using the observed states and re-

wards. Moreover, an active learning method is proposed to enhance the sampling efficiency of the

system. More specifically, the estimated uncertainty of the value functions are exploited to form

the behaviour policy leading to more visits to less certain values, therefore, improving the overall

learning sample efficiency. As a result, the proposed MM-KTD framework can learn the optimal

policy with significantly reduced number of samples as compared to its DNN-based counterparts. To

evaluate performance of the proposed MM-KTD framework, a comprehensive set of experiments

has been performed based on three RL benchmarks, namely, Inverted Pendulum; Mountain Car,

and; Lunar Lander. Experimental results show superiority of the proposed MM-KTD framework in

comparison to its state-of-the-art counterparts.

The remaining of this chapter is organized as follows: In Section 5.1, the basic techniques of RL

is briefly outlined. Section 5.2 presents the proposed MM-KTD framework. Experimental results

based on three RL benchmarks are presented in Section 5.3 illustrating effectiveness and superiority

of the proposed MM-KTD framework. Finally, Section 5.4 concludes the chapter.

5.1 Reinforcement Learning (RL): Formulation

In a typical RL scenario, one deals with an agent being placed in an unknown environment.

At each time, the agent is considered to be in a specific state within the available set of states

denoted by S, and can take an action from the action set A using specific policy that takes the

agent to another state. More specifically, at time step k, the agent at state sk ∈ S takes an action

ak ∈ A exploiting the policy πk, which takes the system to the state sk+1 ∈ S with the transition

probability of P (sk, ak, sk+1) ∈ Pa resulting in a reward rk ∈ R. The 5-tuple {S,A,Pa,R, γ},

for (0 ≤ γ ≤ 1) denoting the discount factor, defines the process known as the Markov Decision

Process (MDP), which defines the domain of work in RL. The agent starts at an initial state denoted

by s0 and continues to explore the states until it reaches a terminal state denoted by sT , where an

episode is completed.
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Generally speaking, the RL goal is to find a policy through a number of experimental episodes

that maximizes the expected sum of discounted rewards over the future states. In achieving so, it is

useful to define the state value function, Vπ(s) as

Vπ(s) = E

{
T∑
k=0

γkrk|s0 = s, ak = π(sk)

}
, (5.1)

where E{·} represents the expectation function. If the value function (and also the transition prob-

ability) is known for a policy, the policy may be improved by selecting a greedy action at each step

leading to the next state, which has the highest value (policy improvement) [83]. If the transition

probability is unknown, it is more useful to exploit the state-action value function defined as follows

Qπ(s, a) = E

{
T∑
k=0

γkrk|s0 = s, a0 = a, ak = π(sk)

}
. (5.2)

Using the state-action value function (Qπ(s, a)) defined in Eq. (5.2) has the advantage of direct

selection of the greedy action as compared to the state value function (Vπ(s)) defined in Eq. (5.1),

where the leading states have to be identified.

Following the Bellman update idea [84], sample transitions may be exploited to gradually update

the value functions. In other words, at each transition (from one state to the next by taking an

action), a one-step update may be performed, which is best known as a Temporal Difference (TD)

update [84]. If the current policy is used to select actions for such an update, the procedure is called

“on-policy learning”. For instance, in SARSA method [85, 86], which is an on-policy learning

method, the state-action value function is updated as follows

Qπ(sk, ak) = Qπ(sk, ak) + α
(
rk + γ Qπ(sk+1, ak+1)−Qπ(sk, ak)

)
, (5.3)

where α is the learning rate. On-policy samples are usually not very sample efficient, as the value

function is learned for the current policy and not based on the optimal one. Besides, exploring

new states is challenging in the on-policy methods as they follow a particular policy. On the other

hand, the “off-policy learning” methods, also referred to as behavior policies, allow for updating the

optimal policy using the information gained from other policies. In most cases, a stochastic (e.g.,
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random) policy is selected as the behaviour policy to ensure enough exploration of new states. One

of the most practiced off-policy methods is known as Q-learning [86–89], which updates the value

function using the Bellman optimality equation as follows

Qπ∗(sk, ak) = Qπ∗(sk, ak) + α
(
rk + γmax

a∈A
Qπ∗(sk+1, a)−Qπ∗(sk, ak)

)
, (5.4)

where π∗ represents the optimal policy. For the greedy policy, the state value function is related to

the state action value function as follows

Vπ∗(s) = max
a∈A

Qπ∗(sk, a). (5.5)

It is noteworthy to mention that action ak in Eq. (5.4) is selected based on the behaviour policy.

Once the system has converged, the optimal policy may be used as follows

ak = arg max
a∈A

Qπ∗(sk, a). (5.6)

When the number of states are finite and small, it is relatively easy to update the value function

by visiting every state of the system (e.g., using Q-Learning). When the states are continuous,

however, it is not viable to visit all the states, therefore, requiring to approximate the value func-

tion. Deep learning techniques provide powerful supervised learning solutions for such purposes by

approximating highly nonlinear functions using labelled data. However, neural networks (used in

deep learning) are notorious for problems such as over-fitting and brittleness to parameter tuning,

therefore, should be used with extra care.

Alternatively, the value function may be approximated using basis functions. In this approach,

the value function is estimated with a weighted sum of local basis functions, each of which is active

in a local region of the state-space. The value function is then formed as follows

Qπ(sk, ak) = φ(sk, ak)
Tθk, (5.7)

where φ(s, a) is a vector of basis functions (will be described later in Section 5.2.3) and θ is a
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weight vector. Various basis function may be used for such approximations, among which RBFs

are proven [64] to be one of the most suitable options and are therefore selected in this work for

value function approximation. This completes our background discussion on RL. Next, we present

the proposed MM-KTD framework.

5.2 MM-KTD: Multiple Model Kalman Temporal Difference

For RL tasks with continuous state-space, the sample transitions of the system and the gained

rewards are used as the data for the purpose of value function approximation and to estimate the

weights. To avoid overfitting problems, supervised learning methods such as deep learning require

this data to be stored and then used in batches (batch learning) for training of a system (e.g., neural

networks). Generally speaking, neural networks have considerably high memory requirements to

store the input data, weight parameters, and activations as an input propagates through the network.

In training, activation from a forward pass must be retained until they can be used to calculate

the error gradients in the backwards pass. As an example, the 50-layer ResNet network has 26

million weight parameters and computes 16 million activations in the forward pass. Measuring,

roughly, the memory requirement of the ResNet-50 training stage with a mini-batch of 32 requires

a, typically, high performance GPU and over 7.5 GB of local DRAM. In the contrary, sequential

data processing methods such as multiple-model filters [22, 26, 43, 90] can adapt the system with

the last measurement (assuming a one-step Markov property), without the need to store the whole

measurements for learning, which results in much less memory requirement. Using a Kalman-

based approach, the posteriori of the weights θk can be calculated recursively using the Bayes rule

as follows

P (θk|Yk) =
P (yk|θk,Yk−1)P (θk|Yk−1)

P (yk|Yk−1)
, (5.8)

where yk is the measurements vector of the system (i.e, transition information) at time step k and

Yk is the set of all measurements from time Step 1 to time Step k. Utilizing the probabilistic model

in Eq. (5.8), this chapter proposes a Kalman-based off-policy learning scheme, which is detailed

below.
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5.2.1 Kalman Temporal Difference Method

The optimal value function may be approximated from its one-step approximation using the TD

method shown in Eq. (5.4), i.e.,

Qπ∗(sk, ak) ≈ rk + γmax
a∈A

Qπ∗(sk+1, a). (5.9)

With a change in the order of the variables, the reward at time Step k may be considered as a noisy

measurement from the system as follows

rk = Qπ∗(sk, ak)− γmax
a∈A

Qπ∗(sk+1, a) + vk, (5.10)

where vk is assumed to be a zero-mean Gaussian noise with variance of R. In this chapter, the value

function is approximated as discussed in Eq. (5.7), rendering Eq. (5.10) to have the following form

rk = φ(sk, ak)
Tθk−γmax

a∈A
φ(sk+1, a)Tθk + vk

=
[
φ(sk, ak)

T−γmax
a∈A

φ(sk+1, a)T
]
θk + vk. (5.11)

Considering,

hk = φ(sk, ak)− γmax
a∈A

φ(sk+1, a), (5.12)

where max
a∈A

φ(sk+1, ak) is found from max
a∈A

φ(sk+1, ak)
Tθk, Eq. (5.11) defines the measurement of

the system (the reward) as a linear function of the weight function (i.e., θ), which is to be estimated.

Assuming the weight vector to be modelled by a linear dynamic system, i.e.,

θk+1 = Fθk +wk, (5.13)

where F is the transition matrix and wk is a zero-mean Gaussian noise with the covariance of Q,

the Kalman filtering formulation may be employed to estimate the weights in a MMSE sense. To

57



be more precise, the weights and their error covariance are first initialized, i.e.,

θ̂0 = θ(0) (5.14)

and Pθ,0 = Pθ(0). (5.15)

Then at each time step, first the weights and their error covariance are predicted as

θ̂k|k−1 = Fθk (5.16)

Pθ,k|k−1 = FPθ,kF
T , (5.17)

and then the estimations are updated using the observed reward from the transition from State sk to

the next state (sk+1) as follows

Kk = Pθ,k|k−1hk
(
hTkPθ,k|k−1hk +R

)−1 (5.18)

θ̂k = θ̂k|k−1 +Kk

(
rk − hTk θ̂k|k−1

)
(5.19)

Pθ,k =
(
I −Kkh

T
k

)
Pθ,k|k−1

(
I −Kkh

T
k

)T
+KkRK

T
k . (5.20)

The value function for each set of state and action is easily reconstructed through Eq. (5.7), and the

optimal policy would be to select the action with the highest state-action value function at each state

similar to Eq. (5.6).

When the parameters of the filter and system initial values (i.e., θ0, Pθ,0, F , hk, Q, and R)

are known a priori, the system will provide accurate estimations. However, these values are usually

not available and need to be approximated using the measurements obtained from the environment.

Among these, the measurement mapping function (hk) and the measurement noise variance (R)

are of most importance since they regulate the flow of information from new measurements. The

adaptation of these parameters is the topic of the following two subsections. Other filter parameters

may be selected as design parameters.
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As a final note, we would like to point out that the basic component of the constructed state-

space model is the measurement equation (Eq. (5.11)), which relates the reward to the basis func-

tions. In this chapter, following the formulation in Eq. (5.7) we are dealing with a linear combination

of the basis functions with unknown (to be estimated) weight vectors θk. This formulation results

in a linear measurement model of Eq. (5.11). An interesting direction for future work is to consider

nonlinear measurement model [72] for estimating the value function. With regards to the dynamics

of the weight vectors, at one hand, it is a common practice [22] to use the linear model of Eq. (5.13)

when an auxiliary and unknown dynamic is introduced for the variable of interest to be estimated.

Intuitively speaking, the dynamical model of Eq. (5.13) is introduced to make it possible to use

state-space based solutions such as Kalman-based filters or Particle filters. As its true nature is

unknown a-priori, the intuition is to consider it to be constant (hence having an identity type sate

model F ) with changes being controlled by the covariance of the state model noise (wk). An inter-

esting direction for further investigations is to learn dynamics of the introduced state model as well,

e.g., using a separate neural-based module, which is the focus of our ongoing research.

5.2.2 Multiple Model Adaptive Estimation

Kalman filter is a powerful tool for accurate estimation of hidden variables when the estimation

model is fully known. However, usually full knowledge about the filter parameters and initial values

is not available in practical scenarios, which lead to deterioration of the system performance. Adap-

tive estimation is a one powerful way to remedy such a problem. In this work, a multiple model

adaptation scheme [22, 26, 43, 90] is adopted due to simplicity and effectiveness of multiple-model

solutions. In such schemes, multiple candidates are considered for each of the uncertain parameters

and values and the estimations made based on each set of candidates is weighted exploiting the mea-

surement likelihood function. The number of candidates increases exponentially with the number

of uncertain parameters (curse of dimensionality), therefore, it is desirable to limit the adaptation

to some of the most important parameters. In a Kalman-based estimation framework, the measure-

ment noise variance (R) is one of the most important parameters and is, therefore, considered for

the adaptation in this section using the multiple model technique. After observing sk+1 and rk

by taking action ak, the measurement model (hk) is calculated. Then, different values (R(i)) for
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the measurement noise variance is considered in the proposed MM-KTD scheme and a bank of

mode-matched Kalman filters are implemented for adaptation of the observation noise covariance.

Eqs. (5.18)-(5.20) are, therefore, replaced with the following

K
(i)
k = Pθ,k|k−1hk

(
hTkPθ,k|k−1hk +R(i)

)−1 (5.21)

θ̂
(i)
k = θ̂k|k−1 +K

(i)
k

(
rk − hTk θ̂k|k−1

)
(5.22)

P
(i)
θ,k =

(
I −K(i)

k h
T
k

)
P T
θ,k|k−1

(
I −K(i)

k h
T
k

)
+K

(i)
k R(i)K

(i)T

k , (5.23)

where superscription i denotes the Kalman filter value for the ith filter which exploits R(i) as its

measurement noise covariance. The posteriori of each mode-matched filter is weighted based on its

associated and normalized weight, which are then added together to form the system’s posteriori,

i.e.,

P (θk|Yk) =
M∑
i=1

ω(i)P (θk|Yk, R(i)), (5.24)

where M is number of mode-matched filter within the MM-KTD framework and,

ω(i) = P (rk|θk|k−1, R
(i)) = c.e

−1
2

(
rk−hT

k θ̂k|k−1

)T(
hT
k Pθ,k|k−1hk+R(i)

)−1(
rk−hT

k θ̂k|k−1

)
, (5.25)

where w(i) is the normalized measurement likelihood for the ith filter and,

c =
1∑M

i=1w
(i)
, (5.26)

Using Eq. (5.24), the weight and its error covariance are then updated as follows

θ̂k =
M∑
i=1

ω(i)θ̂
(i)
k (5.27)

Pθ,k =
M∑
i=1

ω(i)
(
P

(i)
θ,k

+ (θ̂(i) − θ̂)(θ̂(i) − θ̂)T
)

(5.28)

As a final note, it is interesting to highlight the connections between the above multiple model frame

work of the proposed MM-KTD with other methods, in particular gating approach of Mixture of
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Experts (MoE) [91]. In a general setting, the goal of the weight update step in a multiple-model

framework is to find the conditional probability density function (PDF) corresponding to mode i,

denoted by mi for (1 ≤ i ≤M ), given all the observations up to the current time, i.e.,

p
(
m

(i)
k |Yk

)
=

p
(
yk|Yk−1,m

(i)
k

)
p
(
m

(i)
k |Yk−1

)∑M
j=1 p

(
yk|Yk−1,m

(j)
k

)
p
(
m

(j)
k |Yk−1

) , (5.29)

where the denominator is a normalizing factor to ensure that p(m(l)
k |Yk) is a proper PDF. Term

L(i)
k , p(yk|Yk−1,m

(i)
k ) in the nominator of Eq. (5.29) is the likelihood function of mode i, which

is proportional to the exponential term in Eq. (5.25). Therefore, the corresponding weight for the

filter matched to mode i, for (1 ≤ i ≤M ), can be simplified as

ω
(i)
k , p(m

(i)
k |Yk) =

ω
(i)
k−1L

(i)
k∑M

j=1 ω
(j)
k−1L

(j)
k

. (5.30)

On the contrary, the MoE, typically, uses the soft max adaptation for Gaussian gating to obtain the

associated weight, denoted here by ω(i,MoE)
k , for each model (expert). The weight is obtained by

multiplying the input (in our case, the estimated state vector θ̂(i)
k by model i, for (1 ≤ i ≤ M )) by

a trainable weight matrixWg and then applying the Softmax function as follows

ω
(i,MoE)
k =

exp
(
θ̂

(i)
k .Wg

)∑M
j=1 exp

(
θ̂

(j)
k .Wg

) . (5.31)

Comparing Eq. (5.31) with Eq. (5.30) reveals the potentials of the multiple model approach in

comparison to the MoE. This completes our discussion on multiple model adaptive estimation.

Next, we discuss the update process for computation of the basis functions.

5.2.3 Basis Function Update

Vector hk, defined in Eq. (5.12), is the measurement mapping function and is required to be

computed for accurate estimations within the context of Kalman-based filtering schemes. Such a

prior knowledge, however, is typically not available, therefore hk should be adapted to its correct

value. Since hk is formed by the basis functions, its adaptation necessitates the adaptation of the
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basis functions. The vector of basis functions shown in Eq. (5.7) is formed as follows,

φ(sk, ak) = [φ1,a1 , . . . φN,a1 , φ1,a2 , . . . φN,aD ]T , (5.32)

where N is the number of basis functions per action and D is the total number of actions (the

arguments of the basis functions are omitted for brevity). Each basis function φn,ad(sk, ak) is

selected as a RBF, is defined based on its mean vector µn,ad and covariance matrix Σn,ad as follows

φn,ad(sk, ak) = e
−1
2

(sk−µn,ad
)T Σ−1

n,ad
(sk−µn,ad

), (5.33)

where µn,ad and Σn,ad are the mean and covariance of this radial basis function.Due to the large

number of parameters associated with the measurement mapping function (i.e., 2 × N × D), it

is reasonable to adapt these parameters through a gradient descent-based adaptation scheme rather

than the multiple model method. For that purpose, the Restricted Gradient Descent (RGD) method

proposed in [67] is adopted in this work. Using RGD, first the gradient of the object function with

respect to the parameters of each basis function is calculated using partial derivations. The goal is

to minimize the objective function, which is defined as the difference between the estimated value

function and its one-step (TD) update, i.e.,

Sk =

(
Qπ∗(sk, ak)− rk − γmax

a∈A
Qπ∗(sk+1, a)

)2

. (5.34)

The gradient of the object function with respect to the parameters of the RBFs is calculated using

the chain rule,

∆µ = −∂Sk
∂µ

= − ∂Sk
∂Qπ∗

∂Qπ∗

∂φ

∂φ

∂µ
(5.35)

and ∆Σ = −∂Sk
∂Σ

= − ∂Sk
∂Qπ∗

∂Qπ∗

∂φ

∂φ

∂Σ
, (5.36)
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where the partial derivations are calculated using Eqs. (5.7), (5.33), and (5.34) as follows

∂Sk
∂Qπ∗

= 2S
1
2 (5.37)

∂Qπ∗

∂φ
= θTk (5.38)

∂φ

∂µ
= φΣ−1(sk − µ) (5.39)

∂φ

∂Σ
= φΣ−1(sk − µ)(sk − µ)TΣ−1. (5.40)

The mean and covariance of the RBFs are then adapted using the calculated partial derivative as

follows

µn,ad = µn,ad + λµ∆µ = µn,ad − 2λµS
1
2Qπ∗Σ

−1(sk − µn,ad), (5.41)

Σn,ad = Σn,ad + λΣ∆Σ = Σn,ad − 2λΣS
1
2Qπ∗Σ

−1
n,ad

(sk − µ)(sk − µ)TΣ−1
n,ad

, (5.42)

where λµ and λΣ are the adaptation rates. To make the system more stable, only one of the updates

shown in Eqs. (5.41) and (5.42) will be performed as discussed in [67]. To be more precise, when

the size of the covariance is decreasing (i.e., S
1
2Qπ∗ > 0), the covariances of the RBFs are up-

dated using Eq. (5.42), otherwise, their means are updated using Eqs. (5.41). Using this approach,

unlimited expansion of the RBF covariances is avoided.

5.2.4 Active Learning

In order to ensure enough exploration of the states in off-policy learning methods, the behaviour

policy is usually chosen to be a stochastic policy (e.g., a random policy). However, such a choice

commonly leads to sample inefficiency, which is already a big problem in model-free RL methods.

One advantage that the proposed MM-KTD learning framework offers over other optimization-

based techniques (e.g., gradient descent-based methods) is the calculation of the uncertainty for the

weights (Pθ), which is directly related to the uncertainty of the value function. This information

can then be used at each step to select the actions, which lead to most reduction in the uncertainty

of the weights. Using the information of the Kalman filter (information filter [43]), the information
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of the weights, which is denoted by the inverse of Pθ is updated as follows

P−1
θ,k = P−1

θ,k|k−1
+ hkR

−1hTk . (5.43)

Since only the second element (i.e., hkR−1hTk ) in the right hand side of Eq. (5.43) is affected by

the choice of the action (as it changes hk), the action is selected such that this term is maximized.

More specifically, the action is obtained by maximizing the information of the weights, i.e.,

ak = arg max
a

(
hk(sk, a)R−1hTk (sk, a)

)
= arg max

a

(
hk(sk, a)hTk (sk, a)

)
. (5.44)

The second equality in Eq. (5.44) is constructed as R is a scalar. The proposed behavior policy in

Eq. (5.44) is different from that of Reference [72], where a random policy was introduced, which

favored actions with less certainty of the value function. Even though favoring the actions that

reduce the uncertainty of the value function is a good idea, the random nature of such policies

make them less sample efficient than expected. The proposed MM-KTD framework is briefed in

Algorithm 4. It is worth further clarifying computation of Step 6 in Algorithm 4. For learning the

optimal policy, the control action ak is selected based on the behavioral policy, which leads to most

reduction in the uncertainty of the weights in Eq. (5.44). Once the system has been converged,

the resulted optimal policy will be used based on Eq. (5.6) to select the actions during the testing

phase. Because the state-space is continuous, we have approximated the value function of Eq. (5.6)

using RBFs. The value function is estimated with a weighted sum of RBFs (φ(sk, ak)) with the

weight vectors θk. For estimating the weights, the sample transition of the system, i.e., sk, ak and

the gained reward rk are used in a Kalman-based approach as in Eqs. (5.11), and (5.13). Therefore,

the control action in Step 6 will be found based on the proposed active learning behavioral policy

in Eqs. (5.12), and (5.44). Because the matrix
(
hk(sk, a)hTk (sk, a)

)
that generates the control

action cannot be maximized, we have maximized its trace
(
hTk (sk, a)hk(sk, a)

)
. Finally, we note

that the proposed MM-KTD algorithm is designed for systems with finite number of actions. It is

worth mentioning that having infinite number of actions per state is typical of continuous control

tasks [87, 92]. Extension of the proposed framework for application to infinite-dimensional [93]

action space is an interesting direction for future research work.
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Algorithm 4 THE PROPOSED MM-KTD FRAMEWORK

1: Learning Phase:
2: Set θ0,Pθ,0,F ,µn,id ,Σn,id for n = 1, 2, . . . , N and id = 1, 2, . . . , D
3: Repeat (for each episode):
4: Initialize sk
5: While sk 6= sT do:
6: ak = arg max

a

(
hk(sk, a)hTk (sk, a)

)
7: Take action ak , observe sk+1, rk
8: Calculate φ(s, a) via Eqs. (5.32) and (5.33)
9: hk(sk, ak)=φ(sk, ak)− γ arg max

a
φ(sk+1, a)

10: θ̂k|k−1 = F θ̂k
11: Pθ,k|k−1 = FPθ,k−1F

T +Q
12: for i = 1 : M do:
13: k

(i)
k = Pθ,k|k−1hk(h

T
kPθ,k|k−1hk +R(i))−1

14: θ̂
(i)
k = θ̂k|k−1 + k

(i)
k (rk − hTk θ̂k|k−1)

15: P
(i)
θ,k=(I−K(i)

k h
T
k )Pθ,k|k−1(I−K(i)

k h
T
k )T +K

(i)
k R(i)K

(i)
k

T

16: end for
17: Compute the value of c and w(i) by using

∑M
i=1w

(i) = 1 and Eq. (5.25)
18: θ̂k =

∑M
i=1w

(i)θ̂
(i)
k

19: Pθ,k =
∑M

i=1 ω
(i)
(
P

(i)
θ,k

+ (θ̂(i) − θ̂)(θ̂(i) − θ̂)T
)

20: RBFs Parameters Update:

21: Sk =

(
Qπ∗(sk, ak)− rk − γmax

a∈A
Qπ∗(sk+1, a)

)2

22: if S
1
2Qπ∗ > 0 then:

23: Update Σn,ad via Eq. (5.41)
24: else:
25: Update µn,ad via Eq. (5.42)
26: end if
27: end while
28: Testing Phase:
29: Repeat (for each trial episode):
30: While sk 6= sT do:
31: ak = arg max

a
φ(sk, a)Tθk

32: Take action ak, and observe sk+1, rk
33: End While

5.3 Experimental Results

In this section, performance of the proposed MM-KTD framework is evaluated. In order to

demonstrate the effectiveness and sample efficiency of the MM-KTD, which is a model-free and

multiple model RL scheme, three popular RL benchmarks, i.e., Inverted Pendulum, Mountain Car,
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Figure 5.1: The Inverted Pendulum platform.1

and Lunar Lander are considered, experimented and different comparisons are performed. For the

implementation of the proposed MM-KTD, a hardware with a 2.6 GHz Intel Core i7 processor

and 12GB RAM has been used. To have a fair comparison, we have used optimized parameters

for the NFQ method, and the KTD approach as specified in [51, 72], respectively. It is also worth

mentioning that one benefit of the proposed MM-KTD framework (which comes from its multiple-

model architecture) is its superior ability to deal with scenarios where enough information about the

underlying parameters is not fully available.

5.3.1 Inverted Pendulum

In the first experiment, the Inverted Pendulum platform is considered, which is shown in Fig. 5.1.

The weight of the base is 8 kg, while the weight of the pendulum is assumed to be 2 kg. The length

of the pendulum is 0.5 m. The pendulum is initially left at an angle (arbitrarily close to the upright

position) and then its base (object with mass of 8 kg) is moved to keep its balance. The base

may be moved to the left or right with a force of 50N, or not moved. The episode ends once the

pendulum is fallen behind a horizontal line. The goal is to prevent the pendulum from falling below

the horizontal line as long as possible. The state of the system is determined as the pendulum angle

from the upright position and its angular velocity (i.e., sk = [θ, θ̇]T ). At each time step, given the

state (sk) and the taken action (ak), the next state of the system is determined through the dynamics

of the system (which is not known to the agent). If the angle of the pendulum in the next state
1http://large.stanford.edu/courses/2007/ph210/lee2/.
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Figure 5.2: The average (lines) and 95% confidence interval (error bars) of the number of successful tri-
als over 50 trials of the proposed MM-KTD scheme as compared with other RL methods for the Inverted
Pendulum environment.

is beyond the horizontal line (i.e., |θ| > π/2), then a reward of −1 will be fed back to the agent.

Otherwise, the reward is kept as 0.

The proposed MM-KTD is employed in this problem using 9 RBFs and a bias parameter. Since

there are three possible actions (i.e., A = {−50, 0,+50}), the size of the feature vector is 30. The

mean and covariance of the RBFs are initialized as follows

µn,ad ∈ {−π/4, 0,+π/4} × {−0.5, 0,+0.5}, (5.45)

Σn,ad = I2, (5.46)

where I2 is the identity matrix of size (2 × 2). The vector of basis functions in Eq. (5.32) are,

therefore, given by

φ(sk, ak = +50) = [1, φ1,ad , . . . , φ9,ad , 0, . . . 0, 0, . . . , 0]T (5.47)

φ(sk, ak = −50) = [0, . . . , 0, 1, φ1,ad , . . . φ9,ad , 0, . . . , 0]T (5.48)

φ(sk, ak = 0) = [0, . . . , 0, 0, . . . , 0, 1, φ1,ad , . . . φ9,ad ]T , (5.49)

where the value of φn,ad for n ∈ {1, 2, . . . , 9} is calculated via Eq. (5.33). The initial values of λµ
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and λΣ are selected as 200 and 100, respectively by using trial and error to keep the system stable.

The time step is selected to be 10 milliseconds and the discount factor is selected as 0.95, (i.e., γ =

0.95). The process noise covariance is selected small (Qk = 10−3I30), and the transition matrix

is selected to be the identity matrix (F = I30). The measurement noise covariance candidates are

selected from the following set,

R(i) ∈ {0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}. (5.50)

The initial weights are selected to be zero, (i.e., θ0 = 030), while the initial error covariance is

chosen as Pθ,0 = 10I30. Each experiment is started from an angle randomly selected from a

normal distribution with mean zero and standard deviation of 0.1. The agent is first trained through

a set of episodes, then tested in 50 episodes to find if it can keep the pendulum in balance for at least

5 seconds (500 samples). Various number of episodes are used for training the system. To highlight

the effectiveness of the proposed MM-KTD, the achieved results are compared with that of KTD

method of [72], MM-KTD with no active learning (denoted by MM-KTD (P)), and Neural Fitted

Q (NFQ) learning method of [51], which performs the update session by considering an entire set

of transition experiences in an off-line fashion, instead of using an online approach for updating

the neural value function. More specifically, the NFQ scheme optimizes the sequence of the loss

function using Rprop algorithm, which is a supervised learning method for batch learning to update

the parameters of the Q-network. The available historical observations without performing any

exploration that is used in the NFQ leads to a substantially lower amount of training experience

required for learning optimal policies. In this approach, we just have a loop over trained steps. The

NFQ uses the current policy in order to get the target value, while the DQN uses the target network

to achieve the goal. As the nature of this chapter is to use the proposed algorithm to restrict the

number of learning episodes with reduced number of training data, which is critical for practical

application in real scenarios, we focused only on the algorithms with the least required learning

episodes.

Each testing scenario is repeated 10 times for a specific number of training episodes to minimize

the randomness of the achieved number of successful trials out of total 50 trials. For evaluation
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Table 5.1: The number (percentage) of successful trials of the proposed MM-KTD scheme as compared
with other RL methods for the Inverted Pendulum environment.

# Training Episodes KTD MM-KTD (P) MM-KTD NFQ

10
2.1/50
(4.2%)

12.3/50
(24.6%)

38.5/50
(77%)

1.9/50
(3.8%)

20
1/50
(2%)

17.4/50
(34.8%)

44/50
(88%)

1.5/50
(3%)

30
3.6/50
(7.2%)

17.6/50
(35.2%)

50/50
(100%)

21.6/50
(43.2%)

40
15/50
(30%)

20.7/50
(41.4%)

34/50
(68%)

15/50
(30%)

50
16.5/50
(33%)

22.0/50
(44%)

46.6/50
(93.2%)

23/50
(46%)

(a) (b) (c) (d)

Figure 5.3: The state value function of the greedy policy (Vπ∗(s)) after 10 episodes of training using: (a)
MM-KTD (b) MM-KTD (P) (c) NFQ, and (d) KTD.

purposes, we formed the average and 95% confidence interval of the number of successful trials out

the 10 repetitions. Fig. 5.2 shows the resulted mean (lines) and 95% confidence interval (error bars)

for different number of training episodes ranging from 10 to 50, which are also briefed in Table 5.1.

As it was expected, the proposed MM-KTD is the most sample efficient algorithm of all. In addition,

the proposed method offers the highest asymptotic performance in the performed experiments. This

superior performance comes as a result of adaptive estimation of the value function through active

Q-learning. It is expected that the performance of MM-KTD (P) and NFQ become better with more

training episodes and get closer to that of the proposed MM-KTD. However, original KTD cannot

reach that level of performance as it lacks accurate knowledge of the filter’s parameters.
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The state value function of the methods after 10 training episodes are depicted in Fig. 5.3, which

the x and y axis represent θ and θ̇ of the pendulum, respectively. It is worth mentioning that when

the state value function has the higher values around the vertical (origin) position of the Inverted

Pendulum (states close to θ = θ̇ = 0), it means that the selected actions, resulted from the behavioral

policy, have led to the states near the vertical position, which is the expected result i.e., the pendulum

is above the horizontal line. Therefore, based on the Fig. 5.3, the proposed active learning method

causes higher sample efficiency of MM-KTD scheme compared to the other schemes. Due to the

higher sample efficiency, MM-KTD can quickly concentrate higher values for states closer to the

origin. However, other practiced methods are still far from this stage, therefore, fail to perform in

an acceptable fashion with restricted amount of experience.

Finally, to evaluate stability of the utilized RBFs, we have conducted the following Monte-Carlo

(MC) study. In particular, we have fixed the number of RBFs to be 9 and their means as selected

in Eq. (5.45). Then, the proposed MM-KTD scheme has been performed on the Inverted Pendulum

task for 200 different trials. The entire process has been repeated 100 times (i.e., through a MC

simulation of 100 runs) using three different values of the widths (Σ) of the RBFs. The number of

steps to the goal was averaged over the 100 runs. Fig. 5.4 illustrates potential stability of the utilized

RBFs. As can be observed from Fig. 5.4, steady state performance can be achieved by using the

RBFs for the value function approximation.

5.3.2 Mountain Car

In the second experiment, the Mountain Car platform, is shown in Fig. 5.5, is chosen for the

evaluation. Mountain Car is a classic RL problem where the objective is to create an algorithm

which learns to climb a steep hill to reach the goal marked by a flag. The car’s engine is not

powerful enough to drive up the hill without a head start, therefore, the car must drive up the left hill

to obtain enough momentum to scale the steeper hill to the right and reach the goal. The state of the

system is the position of the car and its velocity (i.e. s = [x, ẋ]T ). The possible actions are restricted

within (A = {0, 1, 2}) which are “push left”, “no push”, and the “push right”, respectively. The

road ends at the position −1.2m, i.e., the position must be greater that −1.2m. The task is to reach

the top where the position must be larger or equal to 0.5m. There would be a −1 reward for each
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Figure 5.4: Stability analysis of the RBFs.

Figure 5.5: The Mountain Car environment.2

step where the car is unable to mount the hill to reach the goal and there is no penalty for climbing

the left hill acting as a wall when is reached. Each episode starts with a random position ranging

from −0.6m to −0.4m with no velocity.

Similar to the Inverted Pendulum experiment presented in Section 5.3.1, 9 RBFs and a bias

parameter are used for the proposed MM-KTD algorithm. Therefore, the size of the feature vector
2https://medium.com/@ts1829/solving-mountain-car-with-q-learning-b77bf71b1de2.
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Figure 5.6: The average (lines) and 95% confidence interval (error bars) of the number of successful trials
over 50 trials of the proposed MM-KTD scheme as compared with other RL methods for the Mountain Car
environment.

is 30. The mean and covariance of the RBFs are initialized as follows

µn,ad ∈ {−0.775,−0.35,+0.775} × {−0.035, 0,+0.035} (5.51)

Σn,ad = I2. (5.52)

The initial values of λµ and λΣ are selected as 100 and 80, respectively. The time step is selected to

be 50 milliseconds and the discount factor is chosen as 0.95. The process noise covariance is set to

Qk = 10−3I30, and the transition matrix is selected to be the identity matrix (F = I30). Candidate

values for R are selected from the same set was selected for the Inverted Pendulum environment.

The initial weights are selected to be zero (i.e., θ0 = 030), whereas the initial error covari-

ance is chosen as Pθ,0 = 10I30. The agent first is trained through different number of episodes,

then tested 10 times for 50 episodes to find if it can reach the flag during 200 samples of each

episode. Fig. 5.6 shows the results of KTD [72], MM-KTD, MM-KTD (P), and NFQ learning

method of [51]. As expected, the performance of KTD, MM-KTD (P) and NFQ improves with

increased training episodes. However, KTD, MM-KTD (P) and NFQ can’t provide that level of

performance is achieved by MM-KTD with the lowest number of training episodes in this experi-

ment (10). Based on the achieved results shown in Table 5.2, MM-KTD is the most sample efficient
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Figure 5.7: State space trajectory of the Mountain Car environment at episode number 50.

Table 5.2: The number (percentage) of successful trials of the proposed MM-KTD scheme as compared
with other RL methods for the Mountain Car environment.

# Training Episodes KTD MM-KTD (P) MM-KTD NFQ

10 1.5/50
(3%)

1.9/50
(3.8%)

18.0/50
(36%)

2.0/50
(4%)

20
1.2/50
(2.4%)

2.3/50
(4.6%)

20.3/50
(40.6%)

3.5/50
(7%)

30
2.6/50
(5.2%)

3.4/50
(6.8%)

22.2/50
(44.4%)

4.72/50
(9.44%)

40
9.2/50

(18.4%)
9/50

(18%)
16.6/50
(33.2%)

6/50
(12%)

50
12.3/50
(24.6%)

12.0/50
(24%)

18.0/50
(36%)

12.6/50
(25.2%)

approach of all tested algorithms. Fig. 5.7 depicts the trajectories of the system’s states (position,

velocity) for the Mountain Car environment at episode number 50. As can be observed from the

Fig. 5.7, the episode starts from zero velocity and a random position in the range [−0.6,−0.4], and

ends when the position reaches to 0.5m. Fig. 5.8 shows the optimal agent’s actions resulted from

applying the MM-KTD scheme over a combination of positions and velocities. Based on Fig. 5.8,

the agent moves left when its velocity is negative. Most of the times that the velocity is positive, the

agent moves to the right and sometimes does nothing.

73



Figure 5.8: Actions resulted from optimal policy of MM-KTD algorithm at the episode number 50 for
Mountain Car environment.

5.3.3 Lunar Lander

In the third experiment, we focus on the Lunar Lander environment, which is a more compli-

cated environment compared to the two previous ones. In the Lunar Lander environment, the goal

is for the RL agent to learn to land successfully on a landing pad located at coordinate (0, 0) in a

randomly generated surface on the moon as shown in Fig. 5.9. The state space of the system consists

of the agent’s position (x, y) in space, horizontal and vertical velocity (vx, vy), orientation in space

θ, and angular velocity θ̇. The agent has four possible actions, i.e., do nothing; firing the left engine,

firing the main engine, and; firing the right engine (A = {0, 1, 2, 3}). Reward for landing on the

pad is about 100 to 140 points, varying on the lander placement on the pad. If the lander moves

away from the landing pad it loses reward. Each episode terminates if the lander lands or crashes,

receiving additional +100 or -100 points, respectively. Each leg ground contact worth +10 points.

Firing the main engine results in a -0.3 point penalty for each frame. The problem is considered

solved if the agent receives +200 points over 100 iterations. The RBFs of order two are considered

for each state variable resulting in 64 RBFs for each action. Consequently, the size of the feature

vector φ(sk, ak) will be 256. Based on the useful range of each variable of state vector, the initial
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Figure 5.9: The Lunar Lander environment.3

mean and covariance of the RBFs are chosen as follows

µn,ad ∈ {−0.333,+0.333}6, (5.53)

Σn,ad = 2I6. (5.54)

The initial values of λµ and λΣ are both selected as 200 to keep the system stable. The discount

factor is selected as 0.99. The process noise covariance is set to Qk = 10−1I256. Candidate values

for R are selected from the same set as was used for the Inverted Pendulum environment. Like the

two previous environments, first, the agent is trained through different number of episodes changing

from 10 to 50, then tested 10 times for 50 trials to find if the agent can successfully land on the

landing pad over 100 steps. Fig. 5.10 depicts the results of applying the KTD [72], MM-KTD,

MM-KTD (P)), and NFQ learning [51] scheme. It can be observed that the proposed approach

outperforms its counterparts.
2https://towardsdatascience.com/solving-lunar-lander-openaigym-reinforcement-learning-785675066197.
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Figure 5.10: The average (lines) and 95% confidence interval (error bar) of the number of successful trials
over 50 trials of the proposed MM-KTD scheme as compared with other RL methods for the Lunar Lander
environment.

5.3.4 Parameters Selection

It is worth providing more details on different values assigned to the underlying parameters in the

three simulations. First, it is worth mentioning that one aspect of the proposed multiple-model type

framework is to address the issues of reducing dependence of RL performance on its parameter

values. For adaptation of the RBFs’ parameters, the initial centers of the RBFs are, typically, dis-

tributed evenly along each dimension of the state vector, leading to nd centers for d state variables

and a given order n. Initial variance of each state’s variable (σ2) is often set to 2
n−1 . For the Inverted

Pendulum and Mountain Car, the value of n = 3 is selected following the KTD approach of [72]

for having fair comparison. For the Lunar Lander, the value of n is selected to be 2. Furthermore,

the values for λµ and λΣ are selected in such a way to keep the system stable. In addition, based

on Fig. 5.4, it can be observed that RBFs are fairly stable against selection of their underlying pa-

rameters. The discount factor denoted by γ affects how much weight is given to the future rewards

in the value function. A discount factor γ = 0 will result in state/action values representing the
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Figure 5.11: Success rate during 50 training episodes for Inverted Pendulum environment.

immediate reward, while a higher discount factor will result in the values representing the cumula-

tive discounted future reward that an agent is expected to receive (behaving under a given policy).

Commonly (as is the case in the implemented environments), a large portion of the reward is earned

upon reaching the goal. To prioritize this final success, we expect an acceptable γ to be close 1. In

our manuscript, γ is set to the high values of 0.95 and 0.99.

The prior θ0 should be initialized to a value close to the expected optimal value based on histori-

cal data, or to a default value, e.g., the zero vector. The prior P0 quantifies the certainty that the user

have in the initialized prior θ0, the lower the less certainty. The process noise covariance is a design

parameter, the proposed MM-KTD algorithm allows, systematically, to use a set of different values

of process noise covariance (Q). We have conducted a sensitivity analysis experiment for the In-

verted Pendulum environment to evaluate sensitivity to this design parameter for the scenario where

only a single initial value can be assigned. Fig. 5.11 presents the agent’s success rate during the

training phase over 50 episodes based on three different assignments to Q. It can be observed that

different values of the process noise covariance affect the time which took the agent to complete the

training process. Finally and as stated previously, variable R, i.e., the measurement noise variance,

is one of the most important parameters to be identified. To select this parameter, our intuition in the
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proposed MM-KTD framework is to cover the potential range of the measurement noise variance

using M mode-matched filters. The parameter M is set a-priori denoting the number of candidates

R(i), for (1 ≤ i ≤ M ), for the observation noise variance. For example, in the experiments, we

have selected M to be equal to 11.

5.4 Conclusion

In this chapter, a Multiple-Model Kalman Filter-based Temporal Differences framework, re-

ferred to as the MM-KTD, was proposed, which deals with the problems of sample efficiency,

online learning, prior information and memory of other RL algorithms. The proposed MM-KTD al-

gorithm was evaluated based on three RL experiments. Based on the achieved results, the proposed

algorithm achieved the highest number of successful trials while its number of training episodes

for learning the best policy was considerably less in comparison to its counterparts. The need for

restricted number of learning episodes results in the reduced training data, which is critical for

practical applications in the real scenarios.
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Chapter 6

Summary and Future Research

Directions

This chapter concludes the thesis with a list of important contributions made in the dissertation

and some proposed directions for future work.

6.1 Summary of Thesis Contributions

The research works performed in this thesis are motivated by recent advancements and develop-

ments of autonomous agents in Internet of Robotic Things applications. Such applications require

the autonomous agents to be able to localize/navigate point-to-point within an indoor environments

and perform conditional tasks with minimum human intervention. Current commercial indoor local-

ization and agents decision support systems, typically, rely on BLE-based solutions and RL-based

approaches, respectively. The focus of the thesis is on addressing the identified drawbacks of ex-

isting solutions for BLE-based indoor localization and RL-based decision making problems in the

autonomous systems. In this regard, the thesis made a number of contributions [22–25] as briefly

outlined below:

(1) STUPEFY: BLE-based Set-Valued Box Particle [22]: A novel multiple-model STUPEFY

framework was proposed, which estimates the target’s coarse location via an intuitive learning

fashion using Gaussian distribution of the RSSI values of each zone. Then, a novel set-valued
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box particle filtering (SBPF) is used to micro-locate the target in the predicted zone achieved

from the learning process. More specifically, the proposed STUPEFY framework consists of

the following three components:

• Smoothing Module, which is developed based on the KF with the following two objec-

tives: (i) To reduce the RSSI fluctuations, and; (ii) To model the RSSI values associated

with each zone as a multivariate Gaussian and construct the smallest axes-aligned box

containing the ellipsoid associated with each zone to be used for creating set-valued

measurements.

• Coordination Module: In contrary to existing BLE-based pattern matching solutions,

output of the KF is utilized for finding the predicted zone of the target via BD. Intuitively

speaking, real-time Gaussian models of the RSSI values are compared in distribution

with the learned ones. An approximation of the optimal proposal distribution in terms

of a predicted box is used for generating predicted particles from a bivariate Gaussian

distribution inscribed in the predicted box (hence boxed PF).

• Micro-Localization Module: In contrary to the conventional PF-based solutions that use

point-valued RSSI measurements, the proposed SBPF computes the probability that the

measured RSSI from each active beacon belongs to the set identified by the Coordination

module (hence set-valued PF).

(2) Gaussian Mixture-based Indoor Localization via BLE Sensors [23]: To deal with the fact

that RSSI-based solutions are prone to drastic fluctuations, GMMs are trained to more accu-

rately represent the underlying distribution of RSSI values. For assigning real-time observed

RSSI vectors to different zones, first a KF is applied to smooth the RSSI vector and form its

Gaussian model, which is then compared in distribution with learned GMMs based on BD

and via a weighted K-NN approach. More specifically, the proposed framework, referred to

as BD-GMM, is composed of the following two data-driven components:

• Offline Phase: The RSSI values at all of the fingerprinting zones are measured, smoothed

via KF, and values associated with each location are modelled by a multivariate GMM

distribution.
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• Online Phase: This phase consists of pattern matching and post-processing steps. In

the online phase, the real time RSSI vector is measured, then a KF is applied for two

reasons: (i) To smooth fluctuations in the RSSI values, and; (ii) To construct a Gaussian

model of the RSSI values to be used for finding the predicted zone of the target via the

two estimation scenarios: (i) The BD distance between the output of the KF and the

trained GMM associated with all the zones are calculated and the one with minimum

distance is identified as the target’s zone, and; (ii) A weighted K-Nearest Neighbor (K-

NN) algorithm is applied for location estimation, where the weights are computed based

on the BD between the output of the KF and the GMM distributions of K nearest zones

to the identified one.

(3) Gaussian Sum Filtering Coupled with Wasserstein Distance for Non-Gaussian BLE-

based Localization [24]: The thesis proposed a novel GMM-based probabilistic framework

for assigning real-time observed RSSI vectors to different fingerprinting zones using BD and

WD. The proposed framework consists of two integrated modules as briefly described below:

• Offline Phase: The RSSI values are measured from the active BLE beacons across the

surveillance venue including all the zones. Then, the values at each zone is modeled

with a multivariate GM distribution.

• Online Phase: The proposed novel GSF algorithm, referred to as WD-GSF, is ap-

plied on the real-time RSSI values via incorporation of a WD-based clustering GMR

for smoothing the RSSI values and simulating the non-Gaussian RSSI measurement

noise as a GMM. These distributions outputs are then compared in distribution with

GMs, learned for each zone, via utilization of the BD. Two scenarios are used for user’s

location estimation: (i) The BD between the output of the GSF and the trained GM

associated with all the zones are calculated and the one with the minimum distance is

identified as the target’s zone, and; (ii) A weighted K-NN algorithm is applied for lo-

cation estimation, where the weights are computed based on the BD between the output

of the GSF and the GMs distributions of K nearest zones to the identified one.
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(4) MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement Learn-

ing [25]: In the thesis, an innovative Multiple Model Kalman Temporal Differences (MM-

KTD) framework is proposed for value function approximation using Multiple Model Adap-

tive Estimation (MMAE) of KTD to address the parameter uncertainty and overfitting prob-

lems of DNN-based approaches. The proposed MM-KTD framework benefits from the key

following characteristics:

• An Off-policy Q-learning Adaptation: To improve the sample efficiency of the proposed

MM-KTD, an off-policy Q-learning is adopted to learn the optimal policy from the behaviour

policy.

• MMAE-based Value Function Approximation: An innovative MMAE scheme is adopted

within the RL process, referred to as MM-KTD, to compensate for the lack of information

about the measurement noise covariance as the most important parameter of the filter, while

the mean and covariance of the RBFs are updated exploiting the restricted gradient descent.

• Incorporation of an Active Learning: The estimated uncertainty of the value functions are

exploited via an active learning approach to form the behaviour policy. This, in turn, leads to

more visits to less certain values, therefore, improving the overall learning sample efficiency.

6.2 Future Research

Below, potential future research directions are discussed to further improve the proposed con-

tributions made throughout this thesis:

(1) The proposed indoor localization frameworks have been evaluated based on real datasets

collected via 4 and 5 BLE devices in a 6m×5m room. It would be interesting, as a direction

for future works, to investigate performance of the proposed approaches in larger indoor

environments with more Bluetooth devices.

(2) As described previously in Chapter 2, model-based RL algorithms calculates a set of candi-

date actions from scratch whereas model-free algorithms make choices more efficient but in
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a less flexible way by storing pre-computed action values. There is an intermediate family of

RL algorithms referred to as Successor Representation (SR), which makes a trade-off between

efficiency and flexibility of the system. The proposed MM-KTD approach can be further im-

proved along extending the MM-KTD framework to apply on the SR algorithm families.

Extension of MM-KTD approach to the SR can be a direction for the future research.

(3) Another potential direction for future research is to explore possibility of using other BLE-

based indoor localization techniques such as Time of Flight (ToF) or Angle of Arrival (AoA).

This can be achieved by customizing the hardware and using new radio and directional an-

tennas or an antenna grid.

(4) Another subject would be to explore if a hybrid solution can be developed by utilization of

cheap BLE devices and other infrastructures or different signaling technologies (e.g., WiFi

and/or UWB) to help improve RF based localization.

(5) In this thesis, a linear and Gaussian class (KF) of Bayesian estimation techniques is used

within the RL context. It would be beneficial to apply other non-linear and non-Gaussian

groups of Bayesian estimation family such as the PF. It would be interesting to investigate

potentials of PF in the RL problems and evaluate its combination with other popular RL

algorithms such as DNN-based solutions.
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