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ABSTRACT
Nhat Linh Vu, Ph.D.

Concordia University, 2020

Part I: Some Fluctuation Results on Draw-down Times for Spectrally Negative
Lévy Processes

In this thesis, we first introduce and review some fluctuation theory of Lévy processes, espe-
cially for general spectrally negative Lévy processes and for spectrally negative Lévy taxed
processes. Then we consider a more realistic model by introducing draw-down time, which is
the first time a process falls below a predetermined draw-down level which is a function of the
running maximum. Particularly, we present the expressions for the classical two-sided exit
problems for these processes with draw-down times in terms of scale functions. We also find
the expressions for the discounted present values of tax payments with draw-down time in
place of ruin time. Finally, we obtain the expression of the occupation times for the general
spectrally negative Lévy processes to spend in draw-down interval killed on either exiting a
fix upper level or a draw-down lower level.

Part II: On Estimation of Entropy and Residual Entropy for Nonnegative
Random Variables

Entropy has become more and more essential in statistics and machine learning. A large
number of its applications can be found in data transmission, cryptography, signal processing,
network theory, bio-informatics, and so on. Therefore, the question of entropy estimation
comes naturally. Generally, if we consider the entropy of a random variable knowing that it
has survived up to time t, then it is defined as the residual entropy. In this thesis we focus on
entropy and residual entropy estimation for nonnegative random variable. We first present a
quick review on properties of popular existing estimators. Then we propose some candidates
for entropy and residual entropy estimator along with simulation study and comparison
among estimators.
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PART I: Some fluctuation results on
draw-down times for spectrally
negative Lévy processes

1 Introduction

Lévy processes have been applied widely in a lot of fields of science. Some examples can
be listed here such as for the study of turbulence, laser cooling and quantum field theory in
physics; for the study of networks, queues and dams in engineering; for continuous time-series
models and risk models in economics, for risk theory in actuarial mathematics, and of course,
in mathematical finance, for the stock price in the market and calculations of insurance
and re-insurance risk. Readers, who are interested in a deep comprehensive overview of
Lévy process applications, can find answers in Prabhu (1998), in Barndorff et al. (2001), in
Pistorius (2003), in Kyprianou et al. (2005), and in Kyprianou (2006).

Lévy processes are stochastic processes with independent and stationary increments. The
best known and most important examples are Poisson processes, Brownian motion, Cauchy
processes, and more general the stable processes. They are prototypes of Markov processes
(actually they form the class of space-time homogeneous Markov processes) and of semi-
martingales. Historically, the first researches go back to the late 20’s with the study of
infinitely divisible distributions, and their general structure had been gradually discovered
by de Finetti, Kolmogorov, Lévy, Khintchine and Itô. After the pioneer contribution of Hunt
in the mid-50’s, the developments of the theory of Markov processes and their connection
with abstract potential theories have had a considerable impact on Lévy processes. Many
important properties of sample paths of Lévy processes have been noted by Getoor (1961),
Rogozin (1972), and others. Further developments in this setting are made quite recently
by Bertoin (1996), Barndorff et al. (2001), Doney and Kyprianou (2006), Sato (2013) and
others.

In mathematical finance, back to the very beginning, people used Brownian motion to
model and describe the observed reality of financial markets. However, In the real world,
Brownian motion is not a good candidate for financial modeling because the actual asset price
processes have jumps or spikes, and risk managers have to take them into consideration. As a
result, risk managers seek for models that accurately fit return distributions for the estimation
of profit and loss distributions. Another similar situation in the risk-neutral world, traders
realized that the model of Black and Scholes (1973) cannot model the implied volatilities
which can be constant neither across strikes nor across maturities. Therefore, in order to
handle the risk of trades, traders need models that can capture the behavior of the implied
volatility smiles more accurately. Consequently, Lévy processes are becoming more and more
fashionable and one of the best choices in mathematical finance because Lévy processes can
provide the appropriate tools to adequately and consistently describe all these observations,
both in the real and risk-neutral world.

One of the most obvious and fundamental problems that can be stated for Lévy processes,
particularly in relation to their role as modeling tools, is the distributional characterization
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of the time at which a Lévy process first exits an interval together with its overshoot and
undershoot beyond the boundary of that interval. With the solution of one-sided and two-
sided exit problems on hand, researchers can develop lots of relative properties of Lévy
processes. The theory of Lévy processes forms the cornerstone of an enormous volume of
mathematical literature which supports a wide variety of applied and theoretical stochastic
models. As a family of stochastic processes, Lévy processes are now well understood and
the exit problems have been solved by many different approaches dating back to the 1960s.
Namely, Getoor (1961) and Rogozin (1972) are the foundation for other researchers to study
more on the exit problems of Lévy processes.

Nonetheless, the theory of Lévy processes is still a large field to study and it is very
challenging to characterize their properties without restricting ourselves into their sub-classes
and then explore them separately. Consequently, Lévy processes are categorized into different
classes such as stable processes, jump-diffusion processes, processes with one-sided jump and
so on. The latter processes have attracted many researchers, and many of their fluctuation
identities have been established explicitly or semi-explicitly due to their essential and obvious
characteristics. That is, they are allowed to have only one-sided jump, either positive or
negative jump but not both (for more details see Bertoin (1996), Avram et al. (2004), Chiu
and Yin (2005), Doney and Kyprianou (2006), and Baurdoux (2009)). Among the class one-
sided jump processes, spectrally negative Lévy processes (SNLPs) have been noticed recently
because of their special applications in risk theory for insurance (an introduction of spectrally
negative Lévy processes can be found in Kyprianou (2006)).

For the sake of expressing the solution of fluctuation identities associated with the one-
sided and two-sided exit problems for spectrally negative Lévy processes in a closed, nice and
simple form, researchers have literally introduced the so-called q-scale functions. Despite of
the convenient use of q-scale functions, their explicit form is not available for most of Lévy
processes as a result of the complexity of the Laplace exponent. So the numerical estimation
must be employed in these cases. However, for some spectrally negative Lévy processes, such
as the Brownian motion with or without drift, specially one-sided compound Poisson pro-
cesses, spectrally one-sided α-stable processes with α ∈ (0, 2), and jump-diffusion processes,
one can obtain the explicit form of the q-scale functions. Readers can refer to Kuznetsov et
al. (2013) for the detail on evaluating scale functions of spectrally negative Lévy processes.

Beside the solution to the exit problems, occupation time for stochastic processes is also
an important quantity that is used in many fields such as mathematical finance and risk
theory. In the former, the distribution of occupation times is the key for the pricing of a
certain class of average options (so-called α-quantile options), while in the latter, the Laplace
transform of the occupation time is associated with the bankruptcy probability. The idea was
first introduced in Gerber (1990) as follow. Some companies can have enough funds available
or ask for external funds to support short periods in which the surplus of the company falls
below zero, in the hope that it will recover soon in the future. Therefore, there is distinction
between ruin (negative surplus) and bankruptcy (going out of business). That is, the Omega
risk model assumes that the business still continue until bankruptcy occurs. The question
arises here is the duration that the recovery will take in order to decide whether or not to
continue the business. This is, indeed, related to the occupation time for the surplus process.

The study of occupation times has attracted researchers since the paper of Lévy (1939)
in which he derived the density of occupation time for standard Brownian motion. In the
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recent decade, the investigation on occupation times for Lévy processes has grown widely,
and many interesting results of occupation times have been derived. However, most of the
existing papers can be classified into two categories depending on the the assumptions of the
underlying process. The first group works with the occupation times for those Lévy processes
whose two-sided jumps follow exponential or hyper-exponential distribution only (see Cai et
al. (2010) and Wu and Zhou (2016)), whereas the second group focuses on the occupation
times for SNLPs whose the jumps are only one-sided but no restriction on their distribution
(see Laudriault et al. (2011) and Loeffen et al. (2014)).

Back to the very beginning of the theory of insurance risk, the classical Cramér-Lundberg
surplus process, introduced in Lundberg (1903), were used to model the insurance risk. And
then it was soon replaced by SNLPs which could capture the fluctuation of insurance risk
better. However, to make it more practical to investigate the influences of tax on quantita-
tive and qualitative behavior of the infinite time ruin probability, the model was modified to
spectrally negative Lévy taxed processes (SNLTPs). It is assumed that the tax is paid at a
fixed rate γ of the policy holders income (premium) whenever their risk process is at running
maximum (profitable time). For the past ten years, the SNLTPs have been used to defined
the so called risk process with tax in actuarial mathematics. The fluctuation identities for
SNLTPs can be found in Albrecher and Hipp (2007) and Albrecher at al. (2008).

More recently, the models have been modified to be more flexible by replacing the ruin
time by a varying draw-down time, which is a function of the running maximum. The draw-
down can be interpreted as the investor’s sustained loss between a peak (new maximum)
and subsequent valley (points in between two maxima). It has recently become more and
more considerably interesting in various areas of applied probability such as in queuing the-
ory, risk theory and mathematical finance. For example, in the fund management industry,
draw-down is used as the quoted indices; in mathematical finance, it is an indicator of risk
in performance measure like the Calmar ratio, the Sterling ratio, and the Burke ratio. For
further literature review on draw-down, readers are referred to Landriault et al. (2017).
Therefore, associating draw-down times to SNLPs, SNLTPs, and occupation times is our
main goal in this thesis.

Among different methodologies in dealing with stochastic processes, excursion theory has
been introduced and successfully used to derive many well-known results. Especially, it comes
to handy when we work on spectrally negative Lévy processes with draw-down times because
many explicit calculations can be carried out using the fundamental property of excursion
process, which is a Poisson point process. In particular, with the help of excursion theory, we
were able to obtain the expression of the classical two-sided exit problems in terms of scale
functions for SNLPs and SNLTPs with draw-down times. Also, we found the expressions for
the discounted present values of tax payments, and the solution to the occupation times of
a SNLP in a given draw-down interval.

This thesis is organized as follows. The introduction to Lévy processes along with their
well-known properties are given in the first part of Section 2. The second part of Section 2 is
devoted to a brief introduction of excursion theory which will play a central role in our main
results. The definition of spectrally negative Lévy taxed processes and some existing results
regarding to this process are given in the subsequent section. And the rest of the Section 2 is
reserved for occupation times along with their previous results. Section 3 contains our main
works and results involving drawn-down times regarding to exit problem of the SNLPs (in
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the first part), the SNLTPs (in the second part), and the occupation times (in the last part).
Finally in Section 4, we present some results that related to draw-down times together with
our interests and future works in joint distribution of a SNLP and the occupation times in a
given draw-down intervals.

This part of thesis is based on Avram et al. (2017) and Li et al. (2019).

2 Spectrally negative Lévy process and its fluctuation

theory

2.1 Lévy processes

2.1.1 Definitions and examples

In this section, we introduce some basic concepts of Lévy processes.

Definition 2.1. (Lévy process) A process X = {Xt : t ≥ 0}, defined on a probability space
(Ω,F ,P), is said to be one-dimensional Lévy process taking real value if it possesses the
following properties:
(i) The paths of X are P-almost surely right-continuous with left limit.
(ii) P(X0 = 0) = 1.
(iii) For 0 ≤ s ≤ t,Xt −Xs follows the same distribution as Xt−s.
(iv) For 0 ≤ s ≤ t,Xt −Xs is independent of {Xu : u ≤ s}.
From the definition above, it is difficult to see how rich the class of Lévy processes is. De
Finetti (1929) introduced the notion of infinitely divisible distributions and showed that they
have an intimate relationship with Lévy processes.

Definition 2.2. We say that a real-valued random variable, Θ, has an infinitely divisi-
ble distribution if, for each n = 1, 2, ..., there exists a sequence of i.i.d. random variables
Θ1,n, ..., Θn,n such that

Θ
d
= Θ1,n + ...+Θn,n,

where
d
= denotes equality in distribution.

Alternatively, we can express this relation in terms of probability laws. That is to say,
the law η of a real-valued random variable is infinitely divisible if, for each n = 1, 2, ...,
there exists another law ηn of a real-valued random variable such that η = η∗nn . (Here η∗nn
denotes the n-fold convolution of ηn.) So, one way to establish whether a given random
variable has an infinitely divisible distribution is via its characteristic exponent. Suppose
that Θ has characteristic exponent Ψ(u) := − logE(eiuΘ), defined for all u ∈ R. Then Θ
has an infinitely divisible distribution if, for all n ≥ 1, there exists a characteristic exponent
of a probability distribution, say Ψn, such that Ψ(u) = nΨn(u), for all u ∈ R. The full
extension to which we may characterize infinitely divisible distributions is described by the

4



characteristic exponent Ψ and an expression known as the Lévy Khintchine formula, which
can be found in Kyprianou (2006).

Theorem 2.1. (Lévy-Khintchine formula) A probability law, η, of a real-valued random
variable is infinitely divisible with characteristic exponent (Lévy exponent) Ψ∫

R

eiθxη(dx) = e−Ψ(θ), or Ψ(θ) := − logE(eiθX) for θ ∈ R,

if and only if there exists a triple (μ, σ,Π), where μ, σ ∈ R, and Π is a measure concentrated
on R\{0} satisfying

∫
R
(1 ∧ x2)Π(dx) < ∞, such that

Ψ(θ) = iμθ +
1

2
σ2θ2 +

∫
R

(1− eiθx + iθx1|x|<1)Π(dx), (2.1)

for every θ ∈ R. Moreover, the triple (μ, σ2,Π) is unique.

Note that the measure Π is called the Lévy (characteristic) measure. This Lévy measure
describes the size and the rate of jumps of the Lévy process. The condition

∫
R
(1∧x2)Π(dx) <

∞ in the theorem above ensures that the integral in the Lévy-Khintchine formula converges.
Roughly speaking, in a small period of time dt, a jump of size x will occur with probability
Π(dx)dt+ o(dt). In fact, the smaller the jump size results in the greater the intensity, and so
the discontinuities in the path of the Lévy process is predominantly made up of arbitrarily
small jumps. The converse of Theorem 2.1 which defines a Lévy process is given in the
following theorem.

Theorem 2.2. (Lévy-Khintchine formula for Lévy processes) Suppose that μ, σ ∈ R, and Π
is a measure concentrated on R\{0} such that

∫
R
(1∧x2)Π(dx) < ∞. From this triple, define

for each θ ∈ R,

Ψ(θ) = iμθ +
1

2
σ2θ2 +

∫
R

(1− eiθx + iθx1|x|<1)Π(dx).

Then there exists a probability space, (Ω,F ,P), on which a Lévy process is defined having the
characteristic exponent Ψ.

To clarify the concept of Lévy processes, we present here some examples of Lévy processes.

Compound Poisson processes

The first example of Lévy processes concerns processes whose paths are of bounded variation
over finite time horizons. The necessary and sufficient conditions for a SNLP X = (Xt)t≥0
to have paths of bounded variation are∫

(−1,0)
|x|Π(dx) < 0 and σ = 0.

In this case, X can be rewritten as

Xt = μt+ St, t ≥ 0,
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where {St : t ≥ 0} is a pure jump subordinator which we will define later. Let {Nt : t ≥ 0}
be a Poisson process such that, for each t > 0, Nt is a Poisson distribution with parameter
λt. Then a compound Poisson process Xt is defined as

Xt =
Nt∑
i=1

Yi,

where {Yi}i≥0 is a sequence of independent identical random variables with common law F .
Also, it is well-known that

E
[
eiθX1

]
= exp

{
− λ

∫
R

(eiθx − 1)F (dx)

}
=

[
exp

{
− λ

n

∫
R

(eiθx − 1)F (dx)

}]n
.

From the above expression, we see that the distribution of Xt is infinite divisible. So it is a
Lévy process. Also its characteristic exponent is given by Ψ(θ) = λ

∫
R
(eiθx − 1)F (dx), which

implies that μ = −λ
∫
0<|x|<1

xF (dx), σ = 0 and Π(dx) = λF (dx).

Linear Brownian Motion

Our second example of Lévy processes is processes with unbounded variation over finite time
horizons. A linear Brownian Motion is defined as

Xt := μt+ σBt, t ≥ 0, σ > 0,

where B = {Bt : t ≥ 0} is a standard Brownian motion. With some algebra, one can show
that

E
[
eiθX1

]
= e−

1
2
σ2θ2+iθμ =

[
e
− 1

2

(
σ√
n

)2

θ2+iθ μ
n

]n
,

which is of the form of an infinitely divisible distribution. So, it is a Lévy process with
characteristic exponent Ψ(θ) = 1

2
σ2θ2 − iθμ with μ = −μ, σ = σ and Π = 0.

Jump-diffusion processes

A jump-diffusion process Xt is just a sum of the compound Poisson process and an indepen-
dent linear Brownian motion. That is

Xt = μt+ σBt +
Nt∑
i=1

Yi.

A well-known application of this process is modeling the stock price introduced in Merton
(1976). That is, the stock price can be defined as St = S0e

Xt , where Xt is the jump-diffusion
process and Yi follows a Gaussian distribution. The processXt has the characteristic exponent

Ψ(θ) = −iθμ+
σ2θ2

2
− λ

∫
R

(eiθx − 1)F (dx).
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We observe that this is very close to (1). Indeed, by the Lévy-Itô Decomposition Theorem,
in general any Lévy process can be written as

Xt = μt+ σBt + Zt,

where μt is interpreted as the drift component, σBt is the diffusion component, and Zt is the
jump process with possibly infinitely many jumps over any finite time interval.

Stable processes

Stable processes are those processes with characteristic exponent of the form of stable dis-
tributions which is another example of infinitely divisible distributions. Y is called a stable
distribution if, for all n ≥ 1, it can be decomposed into

n1/αY + bn
d
= Y1 + · · ·+ Yn,

where Y1, ..., Yn are independent copies of Y and bn ∈ R and α ∈ (0, 2] is known as the
stability index. Note that for the case α = 2, it turns out to be a zero mean Gaussian
distribution. The Stable process X has a characteristic exponent of the form

Ψ(θ) =

{
c|θ|α(1− iβ tan πα

2
sgn θ

)
+ iθη for α ∈ (0, 1) ∪ (1, 2),

c|θ|(1 + iβ 2
π
sgn θ log |θ|)+ iθη for α = 1,

where β ∈ [−1, 1], η ∈ R, c > 0 and sgn θ = 1(θ>0) − 1(θ<0). This results in σ = 0,

Π(dx) =

{
c1x

−1−αdx for x ∈ (0,∞),

c2|x|−1−αdx for x ∈ (−∞, 0),

where c1, c2 ≥ 0, and the choice of a ∈ R is implicit.

Lévy processes with one-sided jumps

In general, it is very difficult to study the properties of the whole class of Lévy process due
to the complexity jump part. It could be either a positive jump or a negative jump and it
could happen infinite many times in a short interval. However, if we narrow our research to
only one-sided jump Lévy processes, then we can explore a lot of interesting properties of
this sub-class of Lévy processes.

Definition 2.3. Suppose that Π(−∞, 0) = 0, which implies that the corresponding Lévy
processes have no negative jumps. Also, suppose further that

∫
(0,∞)

(1∧x)Π(dx) < ∞, σ = 0,

and positive drift μ > 0, then the process is called subordinator.

A process X is called a spectrally positive Lévy process if Π(−∞, 0) = 0, X does not
have monotone paths, and it is not a pure negative linear drift. Lastly, if −X is spectrally
positive, then X is called a spectrally negative Lévy process. In this thesis, we only focus on
the spectrally negative Lévy processes (SNLPs).
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2.1.2 Some basic properties and facts about SNLPs

In order to facilitate the expression of results, we write

Px = P(·|X0 = x) and Ex = E(·|X0 = x).

And for the case of x = 0, we write P = P0 and E = E0, respectively.

Laplace exponent

Since a SNLP does not have positive jumps, its Laplace exponent exists and is defined as

E[eθXt ] = etψ(θ),

so

ψ(θ) = μθ +
1

2
σ2θ2 −

∫
(−∞,0)

(1− eθx + θx1(x>−1))Π(dx), (2.2)

given the triple (μ, σ,Π) for all θ ≥ 0. The function ψ : [0,∞) → R satisfies
(i) ψ(0) = 0.
(ii) lim

x→∞
ψ(x) = ∞.

(iii) ψ is infinitely differentiable and strictly convex on (0,∞).
(iv) ψ′(0+) = E[X1] ∈ [−∞,∞).
For each q ≥ 0, the right inverse of ψ is defined as

Φ(q) = sup{λ ≥ 0 : ψ(λ) = q}. (2.3)

Note that if the overall drift ψ′(0+) ≥ 0, then ψ is strictly increasing. So λ = 0 is the unique
solution to ψ(λ) = 0. If ψ′(0+) < 0, then the equation ψ(λ) = 0 has two solutions. One of
them is zero, and the other is greater than 0.

Creeping upwards

Given a fixed level a > 0, the first passage time above this level a is defined as τ+a := inf{t ≥
0 : Xt > a} with the convention that inf ∅ := ∞. Also, we define the first passage time below
level a as τ−a := inf{t ≥ 0 : Xt < a}. Due to the fact that the SNLP has no positive jumps,
it is shown by Corollary 3.13 in Kyprianou (2006) that

P
[
Xτ+a

= a|τ+a < ∞]
= 1. (2.4)

That is, SNLPs necessarily creep upwards. But if σ > 0, then the process can creep down-
wards.

Drifting and oscillating

Since ψ′(0+) = E[X1] is the overall drift of the process, the SNLP
(i) drifts to ∞ if and only if ψ′(0+) > 0,
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(ii) oscillates if and only if ψ′(0+) = 0,
(iii) drifts to −∞ if and only if ψ′(0+) < 0.

The Wiener-Hopf factorisation

For t > 0, define
X̄t = sup

s≤t
Xs and Xt = inf

s≤t
Xs.

By the duality Lemma in Kyprianou (2006), the pairs (X̄t, X̄t−Xt) and (Xt−Xt,−Xt) have
the same distribution in P. Then we have the following Wiener-Hopf factorization theorem
which plays an essential role in developing fluctuation identities of Lévy processes. For β ≥ 0,

E
[
e−βX̄ep

]
=

Φ(p)

Φ(p) + β
and E

[
eβXep

]
=

p

Φ(p)
× Φ(p)− β

p− ψ(β)
, (2.5)

where ep is an independent exponential distribution with parameter p. The first expression
implies that X̄ep follows an exponential distribution with parameter Φ(p).

q-Scale functions

It is surprising and interesting that most of the properties of SNLPs can be expressed in
terms of the so-called q-scale functions. For q ≥ 0, the q-scale function W (q) of a process X
is defined on [0,∞) as a continuous function with Laplace transform of the form

L[W (q)](λ) :=

∫ ∞

0

e−λyW (q)(y)dy =
1

ψ(λ)− q
, for λ > Φ(q). (2.6)

The function W (q) is unique, positive and strictly increasing for x ≥ 0. To extend the
domain of W (q) to the whole real line, we set W (q)(x) = 0 for x < 0. For simplicity, we write
W = W (0) whenever q = 0. Furthermore, we define another scale function Z(q) as

Z(q)(x) := 1 + q

∫ x

0

W (q)(y)dy. (2.7)

It is shown that for all SNLPs, q-scale functions exist for all q ≥ 0 (see Kuznetsov et al.
(2013)). This is a fundamental result because from here we can express the fluctuation
identities of general SNLPs in terms of scale functions. Moreover, the q-scale function W (q)

is continuous and almost everywhere differentiable. Indeed, for each q ≥ 0, the scale function
W (q) belongs to C1(0,∞) if and only if at least one of the following three criteria holds

(i) σ = 0.

(ii)
∫
(−1,0) |x|Π(dx) = ∞.

(iii) Π(dx) := Π(−∞,−x) is continuous.
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Let d := μ− ∫ 0

−1 zΠ(dz), then the initial values of W (q) and W ′(q) are

W (q)(0+) =

{
1/d if σ = 0 and

∫ 0

−1 zΠ(dz) < ∞,

0 otherwise,

and

W ′(q)(0+) =

⎧⎪⎨
⎪⎩
2/σ2 if σ > 0,

(Π(−∞, 0) + q)/d2 if σ = 0 and
∫ 0

−1 zΠ(dz) < ∞,

∞ otherwise.

Here we derive some explicit expressions of q-scale function taken from Biffis and Kyprianou
(2010) and Kuznetsov et al. (2013) (for a deep study on scale functions of SNLPs, readers
are referred to Chan et al. (2009) and Hubalek et al. (2010)).

� The first example is the linear Brownian motion with drift X which is of the form

Xt := μt+ σBt, where σ > 0, μ ∈ R.

Its Laplace exponent can be obtained directly from its corresponding characteristic
exponent.

ψ(θ) = −Ψ(−iθ) = μθ +
σ2θ2

2
for θ ∈ R.

Then the Laplace transform of the scale function W (q) for the linear Brownian motion
with drift X can be expressed as

L[W (q)](s) =
1

σ2s2

2
+ μs− q

=
2

σ2(s− s1)(s− s2)
,

where s1 =
−μ−

√
μ2+2σ2q

σ2 and s2 =
−μ+

√
μ2+2σ2q

σ2 . So, by partial fraction decomposition,
we can re-write the Laplace transform as

L[W (q)](s) =
1√

2qσ2 + μ2

[
1

s− s2
− 1

s− s1

]
.

Therefore, by inverse Laplace transform, we obtain the explicit expression of the q-scale
function W (q):

W (q)(x) =
1√

2qσ2 + μ2

[
e(
√

2qσ2+μ2−μ) x
σ2 − e−(

√
2qσ2+μ2+μ) x

σ2

]
.

� The second example is the compound Poisson processes with a positive drift and with
exponential jumps

Xt = μt−
Nt∑
i=1

Yi,

where μ > 0 and Y follows exponential distribution with parameter ρ and Nt is an

10



independent Poisson process with intensity λ > 0. The Laplace exponent of X can be
derived directly as

ψ(θ) = −Ψ(−iθ)

= μθ + λ

∫
(−∞,0)

(eθx − 1)F (dx)

= μθ + λ

∫ ∞

0

(e−θx − 1)ρe−ρxdx

= μθ − λθ

ρ+ θ
.

So after some algebra, the Laplace transform of L[W (q)](s) can be expressed as

ρ+ s

μs2 − (λ+ q + ρμ)s− ρq
=

ρ+ s

μ(s− s1)(s− s2)
=

1

μ(s2 − s1)

(
ρ+ s2
s− s2

− ρ+ s1
s− s1

)
,

where

s1 =
1

2μ

(
(λ+ q + ρμ)−

√
(λ+ q + ρμ)2 + 4μρq

)
,

s2 =
1

2μ

(
(λ+ q + ρμ) +

√
(λ+ q + ρμ)2 + 4μρq

)
.

As a result, by inverse Laplace transform, we obtain the explicit expression of q-scale
function for compound Poisson processes with a positive drift and exponential jumps

W (q)(x) =
1

μ(s2 − s1)

(
(ρ+ s2)e

s2x − (ρ+ s1)e
s1x

)
.

Note that, for the special case where q = 0, the expression of 0-scale function is sim-
plified into the form

W (x) =
ρ

λ− ρμ

(
λ

ρμ
e(

λ
ρ
−μ) ρ

μ
x − 1

)
.

� The third example is the α-stable process X, α ∈ (1, 2), which is defined in a way that
for each t > 0, Xt is equal in distribution to t1/αX1. It is interesting that the 0-scale
function for this process has a very simple form. That is

W (x) =
xα−1

Γ(α)
.

If the α-stable process plus a drift μt is considered, then its 0-scale function has a form

W (x) =
1

μ
(1− Eα−1,1(−cxα−1)),
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where
Eα−1,1(z) =

∑
k≥0

zk/Γ(1 + (α− 1)/k).

Exponential change of measure

Thanks to the fact that, for each c ≥ 0, {ecXt−ψ(c)t : t ≥ 0} is a positive martingale, we can
define the change of measure for each c ≥ 0,

dP(c)

dP

∣∣∣∣
Ft

= ecXt−ψ(c)t, (2.8)

where (Ft)t≥0 is the filtration generated by X. The change of measure plays an important
role in deriving some properties of SNLPs in such a way that it changes a SNLP X with non-
positive drift ψ′(0+) ≤ 0 into another SNLP X with a positive drift ψ′c(0+) > 0. Particularly
with an appropriate choice of c, given (X,P) is a SNLP, then by the change of measure from
P to P

(c), (X,P(c)) is also a spectrally negative Lévy process with Laplace exponent given by

ψc(θ) = ψ(θ + c)− ψ(c)

= θ

(
σ2c− μ+

∫
(−∞,0)

x(ecx − 1)1(x>−1)Π(dx)
)
+

1

2
σ2θ2

+

∫
(−∞,0)

(eθx − 1− θx1(x>−1))ecxΠ(dx),

for θ ≥ −c given the triple (μ, σ,Π) of X. By inspecting the above expression, we see that
the triple of the process X under the new measure becomes

μc = −
(
σ2c− μ+

∫
(−∞,0)

x(ecx − 1)1(x>−1)Π(dx)
)
,

σc = σ,

Πc(dx) = ecxΠ(dx).

Moreover, the q-scale function W
(q)
c and Z

(q)
c of X under P

(c) can be expressed in terms of
the q-scale function W (q) and Z(q) of X under P respectively as

W (q)
c (x) = e−cxW (q+ψ(c))(x) and Z(q)

c (x) = 1 + q

∫ x

0

W (q)
c (y)dy. (2.9)

The one-sided and two-sided exit problems

The solutions for the one-sided and two-sided exit problems are stated in the following the-
orem (Kyprianou 2006).
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Theorem 2.3. For any x ∈ R and q ≥ 0,

E
[
e−qτ

+
a 1(τ+a <∞)

]
= e−Φ(q)a, (2.10)

Ex

[
e−qτ

−
0 1(τ−0 <∞)

]
= Z(q)(x)− q

Φ(q)
W (q)(x), (2.11)

where we understand q/Φ(q) in the limiting sense for q = 0, so that

Px

[
τ−0 < ∞]

=

{
1− ψ′(0+)W (x) if ψ′(0+) ≥ 0,

1 if ψ′(0+) < 0.
(2.12)

Also, for any x ≤ a and q ≥ 0,

Ex

[
e−qτ

+
a 1(τ−0 >τ+a )

]
=

W (q)(x)

W (q)(a)
, (2.13)

Ex

[
e−qτ

−
0 1(τ−0 <τ+a )

]
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
, (2.14)

and for u, v ≥ 0 the joint Laplace transform of τ−0 and Xτ−0
is

Ex

[
e
−uτ−0 +vX

τ−0
]
= evx

(
Z(p)

v (x)−W (p)
v (x)p/Φv(p)

)
, (2.15)

where p = u − ψ(v), Φv(p) is the largest root of ψv(θ) = p, and W
(p)
v , Z

(p)
v are the q-scale

functions under the new measure P
v.

Resolvent measures

The q-potential measure, or known as the resolvent measure, is defined as

U (q)(a, x, dy) :=

∫ ∞

0

e−qtPx(Xt ∈ dy, τ > t)dt, (2.16)

where τ := τ+a ∧τ−0 . Also we denote U := U (0). If for each x ∈ [0, a], a density of U (q)(a, x, dy)
exists with respect to Lebesgue measure, then u(q)(a, x, dy) is called the potential density.
Potential measure have played an important role in derivation of fluctuation identities of
Lévy processes especially in SNLPs. Moreover, It is interesting for the case of SNLPs, in
which the potential density always exists and can be expressed in terms of scale functions.
The following theorem is taken from Kyprianou (2006).

Theorem 2.4. For q ≥ 0 and x, y ∈ [0, a], the density u(q)(a, x, y) of q-potential measure of
a SNLP killed on exiting [0, a] is given by

u(q) =
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y). (2.17)
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Reflected SNLPs

Figure 1: An example of sample path of SNLP Xt along with the reflected SNLP Yt.

We want to close this sub-section by a brief introduction to reflected SNLPs which take
essential part in excursion theory. For x ≥ 0, the process

Yt := (x ∨ X̄t)−Xt, t ≥ 0 (2.18)

is called the process reflected at its supremum. The following two theorems from Kyprianou
(2006) present the exit problem and the potential measure of the process Y respectively.

Theorem 2.5. Suppose for a fixed a > 0, we define the first passage time of the process Y
as σ+

a := inf{t > 0 : Yt > a}. Then, for x ∈ [0, a], θ ∈ R such that ψ(θ) < ∞, we have

Ex[e
−qσ+

a −θYσ+
a ] = e−θx

(
Z

(p)
θ (a− x)−W

(p)
θ (a− x)

pW
(p)
θ (a) + θZ

(p)
θ (a)

W
(p)′
θ (a) + θW

(p)
θ (a)

)
, (2.19)

where p := q − ψ(θ) and W (q)′(a) is the right derivative of W (q) at a.

Theorem 2.6. For a > 0,q ≥ 0, and x, y ∈ [0, a] the potential measure of the reflected
process Y , denoted by Ū (q), can be expressed as

Ū (q)(a, x, dy) =

(
W (q)(a− x)

W (q)(0)

W (q)′(a)

)
δ0(dy) +

(
W (q)(a− x)

W (q)′(y)
W (q)′(a)

−W (q)(y − x)

)
dy.

2.2 Excursion theory for SNLPs

Since most of our main results mainly rely on the excursion theory, we want to dedicate this
sub-section to briefly introduce this concept. In order to introduce the theory of excursion,
we need the notion of the Poisson random measure which plays a central role in the theory
of Lévy processes.
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2.2.1 Poisson random measure

First, we present the definition of random measure.

Definition 2.4 (Random measure). Let (Ω,F ,P) be a probability space and (E, E) be a
measurable space. Then M : Ω× E → R is a random measure if

(i) for every ω ∈ Ω, M(ω, ·) is a measure on E ,
(ii) for every A ∈ E, M(·, A) is measurable.

Then the Poisson random measure is defined as follow.

Definition 2.5 (Poisson random measure). Let (Ω,F ,P) be a probability space and (E, E , η)
be a measurable space. Then N : Ω× E → R is a Poisson random measure with intensity η
measure on E if

(i) for every A ∈ E with η(A) < ∞, N(·, A) follows the Poisson distribution with parameter
η(A),

(ii) for any disjoint sets A1, ..., An ∈ E , N(·, A1), ..., N(·, An) are independent,

(iii) for every ω ∈ Ω, N(ω, ·) is a measure on E .
The existence of the Poisson random measure for SNLPs is guaranteed by Theorem 2.4 in

Kyprianou (2006). Although there are many important properties regarding to the Poisson
measure, we present here the two most useful results which can be found in Kyprianou (2006).
The first one is the Exponential Formula.

Theorem 2.7. Let N be a Poisson random measure on (E, E , η) with intensity η, B ∈ E
and let f be a measurable function with

∫
B
|ef(x) − 1|η(dx) < ∞. Then

E

[
e
∫
B f(x)N(dx)

]
= exp

{∫
B

(ef(x) − 1)η(dx)

}
.

The second one is the Compensation Formula under Poisson random measure.

Theorem 2.8. Suppose φ : [0,∞) × R × Ω → [0,∞) is a random time-space function such
that

(i) function φ = φ(t, x)(ω) is measurable,

(ii) for each t ≥ 0, φ(t, x)[ω] is B(R×Ft)-measurable,

(iii) for each x ∈ R, with probability one, {φ(t, x) : t ≥ 0} is a left continuous process.

Then, for all t ≥ 0,

E

[ ∫
[0,t]

∫
R

φ(s, x)N(ds× dx)

]
= E

[ ∫ t

0

∫
R

φ(s, x)η(dx)ds

]
,

with the understanding that the right-hand side is infinite if and only if the left-hand side is.
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2.2.2 Local time and excursion processes

To illustrate how an excursion process is constructed, we consider a very simple case of SNLP
of bounded variation but not a compound Poisson process. With the assumption that the
SNLP X drifts to infinity, we are able to decompose the path of X in the following way.
First we initiate at T0 = 0 and H0 = 0. Then we define T1 := σ+

0 = inf{t > 0 : Yt > 0} and
H1 = YT1 if T1 < ∞, otherwise H1 := ∞, where Y = X̄ −X is the reflected process. Now we
construct the sequence of pairs of variables (Tn, Hn) as

Tn :=

{
inf{t > Tn−1 : Yt > Hn−1} if Tn−1 < ∞,

∞ if Tn−1 = ∞,
Hn :=

{
YTn if Tn < ∞,

∞ if Tn = ∞.

We can see that the sequence of pair (Tn, Hn) are simply the jump times and the consecutive
heights of the new maxima of Y (see Figure 6). By the strong Markov property and stationary
independent increments, an excursion of X from its maximum, defined as

εn := {Yt − YTn−1 : Tn−1 < t ≤ Tn}, (2.20)

is independent of FTn−1 and has the same law as {Yt : 0 < t ≤ σ+
0 }. Unfortunately, it

is known that a general Lévy process may have an infinite number of new maxima, which
results in infinite number of excursions, over any given finite interval of time. This requires
a quantity that can monitor and index these excursions, so the notion of local time at the
maximum is introduced. Here we assume neither X nor −X is a subordinator, and we refer
to the reflected process X̄ −X, which is a strong Markov process by Kyprianou (2006).

Definition 2.6. A continuous, non-decreasing, nonnegative, Ft-adapted process, L = {Lt :
t ≥ 0}, is called a local time at the maximum for X if the followings hold:

(i) The support of the Stieltjes measure dL is the closure of the (random) set of times
{t ≥ 0 : X̄t = Xt}.

(ii) For every F-stopping time T such that X̄T = XT on {T < ∞} almost surely, the shifted
process {LT+t − LT : t ≥ 0} is independent of FT on {T < ∞} and has the same law
as L under P.

Then the inverse local time process, L−1 := {L−1t : t ≤ 0}, is

L−1t :=

{
inf{s > 0 : Ls > t} if t < L∞,

∞ otherwise.

Particularly, the local time in the case of SNLPs has a special form.

Theorem 2.9. The point 0 is regular for (0,∞) and the continuous increasing process X̄t =
sup{Xs : 0 ≤ s ≤ t} is a local time at 0 for the reflected process X̄ −X.

For each moment of local time t > 0, the general decomposition of the path of Lévy
process is given in terms of its excursions and inverse local time from the maximum as the
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following.

εt =

{
{XL−1

t−+s −XL−1
t−

: 0 < s ≤ L−1t − L−1t−} if L−1t− < L−1t ,

∂ if L−1t− = L−1t ,

where ∂ is some “dummy” state. Before stating the fundamental result of excursion theory,
we need the following definition from Kyprianou (2006).

Definition 2.7. Let E be the space of excursions of X from its running maximum, that is,
the space of mappings which are right-continuous with left limits satisfying

ε : (0, ζ) → [0,∞) for some ζ ∈ (0,∞],

ε : {ζ} → [0,∞) if ζ < ∞,

where ζ = ζ(ε) is the excursion length or excursion lifetime. Write h = h(ε) for the terminal
value of the excursion, so that h(ε) = ε(ζ). Finally, let ε = − infs∈(0,ζ) ε(s) for the excursion
height.

Figure 2: An example of sample path of Xt along with the excursion processes εr(t). Here, Lt is the local time of the reflected
process Yt = X̄t −Xt at zero.

It turns out interestingly that ε is a Poisson point process, and ε̄ is also the Poisson point
process with characteristic measure (also called the excursion measure) ν. The theorem below
is taken from Kyprianou (2006).

Theorem 2.10. There exists a sigma-algebra Σ and σ-finite measure n such that (E ,Σ, n)
is a measure space and Σ is rich enough to contain sets of the form

{ε ∈ E : ζ(ε) ∈ A, ε ∈ B, h(ε) ∈ C},

where, for a given ε ∈ E, A, B, and C are Borel sets in [0,∞].

(i) If P(lim supt↑∞Xt = ∞) = 1, then {(t, εt) : t ≥ 0 and εt �= ∂} is a Poisson point process

on
(
[0,∞]× E ,B[0,∞)× Σ, dt× dn

)
with characteristic measure n.
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(ii) If P(lim supt↑∞Xt < ∞) = 1, then {(t, εt) : t ≤ L∞ and εt �= ∂} is a Poisson point

process on
(
[0,∞] × E ,B[0,∞) × Σ, dt × dn

)
with characteristic measure ν stopped at

the first arrival of an excursion in E∞ := {ε ∈ E : ζ(ε) = ∞}.
Moreover, by Bertoin (1996), the excursion height ε̄ is a Poisson point process with

characteristic measure ν. In order to study this characteristic measure ν, we recall the
well-known two-sided exit problem. For x, y > 0, we have

P[τ+y < τ−−x] =
W (x)

W (x+ y)
.

On the other hand, by excursion theory, the event {τ+y < τ−−x} coincides to the event {ε̄t ≤
x + t for all t ∈ [0, y]}. And since ε̄ is a Poisson point process with charateristic measure
ν, the event {ε̄t ≤ x + t for all t ∈ [0, y]} is equivalent to {N = 0}, where N is he Poisson
random variable counting the number of Poisson points{

(t, εt) ∈ R
2| t ∈ [0, y], εt > x+ t

}
.

Thus,

W (x)

W (x+ y)
= P[τ+y < τ−−x]

= P[N = 0]

= exp

{
−

∫ y

0

ν(x+ t,∞)dt

}

= exp

{
−

∫ ∞

x

ν(t,∞)dt+

∫ ∞

x+y

ν(t,∞)dt

}

which implies that

W (x) = exp

{
−

∫ ∞

x

ν(t,∞)dt

}
.

Finally, we want to close this sub-section with one of the most important results for the ex-
cursion theory, the compensation formula in the framework of excursion theory from Bertoin
(1996). Consider a real value Markov process M = (Mt, t ≥ 0) having right-continuous sam-
ple paths and with P(M0 = 0) = 1. We denote L = {t : Mt = 0} the zero set of M and its
closure as L. We call (g, d) as an excursion interval if Mt �= 0 for all t ∈ (g, d), g ∈ L and
d ∈ L ∪ {∞}. Intuitively, g, d, and l = d− g are the left-end point, right-end point, and the
length of the excursion interval. For every left-end point g < ∞ of an excursion interval, we
denote e = {Mg+t, 0 ≤ t < d− g} the excursion starting at time g. Then, the compensation
formula is stated in the following theorem.

Theorem 2.11. Consider a measurable function F : R+ × Ω × E → [0,∞) such that for
every e ∈ E, the process Ft(e) = F (t, ω, e) is left-continuous and adapted, then we have

E

[∑
g

Fg(eg)

]
= E

[ ∫ ∞

0

dL(s)

(∫
E
Fs(e)n(de)

)]
, (2.21)
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where the sum in the left-hand side is taken over all the left-end points of excursion intervals.

2.3 Spectrally negative Lévy taxed processes (SNLTP)

In this sub-section, we will take a quick review on SNLTPs. The idea of investigating how
tax influences the behavior of the fluctuation theory was first applied on the Lundberge’s
risk process by Albrecher and Hipp (2007). Recall that for an insurance conpany, the surplus
process is modeled by a classical Lundberg’s risk process which has the form

R0(t) = s+ ct−
Nt∑
i=1

Yi,

where s is the initial fund, {Yi}i≥1 is the claim sizes which followed independent and identical
distribution F of mean μ, Nt is an independent Poisson process with intensity λ, and the
premium intensity c > 0 has a positive safety loading: c > λμ. This process was later
replaced by a SNLP X which can capture the functuation of surplus processes better.

To distinguish from the general SNLPs X, we will denote the SNLTP by U throughout
this thesis. As mentioned in the introduction that it is more realistic for policy holders
paying tax whenever they make profits. For instance, the policy holders will pay an amount
of tax cγ(X̄), where the tax rate γ(X̄) is a function of X̄ which is the situation the company
is making profit, and c is the premium rate at profitable time; but do not pay anything
otherwise. Therefore, the premium income is reduced from c to (1 − γ(X̄))c at the time of
profit. We first review some results with a fixed tax rate.

2.3.1 Spectrally negative Lévy processes with fixed tax rate

Figure 3: An example of sample path of SNLP Xt along with the SNLTP Ut.

Definition 2.8. Let X be the underlying SNLP with differentiable scale functions. For a
fixed tax rate 0 < γ < 1, define a process Uγ = (Uγ(t))t≥0 by

Uγ(t) := X(t)− γ(X̄(t)−X(0)). (2.22)
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In terms of finance, Uγ can be interpreted as surplus processes of an insurance company.
Given a fixed tax rate γ, the company will pay out an amount γ(X̄t −X(0)) of taxes when-
ever they are in a profitable situation. That is the surpluses are at the running maximum.
Particularly, for the case of γ = 1, the amount the company pays out will be the dividends
for any capital above its initial value.

Albrecher et al. (2008) generalized the exit problems for SNLTPs as in the following
theorem.

Theorem 2.12. For any 0 < u < a and q ≥ 0, let τ+a,γ = inf{t > 0 : Uγ(t) > a} be the first
passage time and τ−0,γ = inf{t > 0 : Uγ(t) < 0} be the ruin time. If γ < 1, then

Eu

[
e−qτ

+
a,γ ; τ+a,γ < τ−0,γ

]
=

(
W (q)(u)

W (q)(a)

)1/(1−γ)
. (2.23)

One can easily verify that the result agrees with Theorem 2.3 above by setting γ = 0 to get
back to the usual SNLPs. Another interested quantity that we want to present here is the
discounted tax payments which is given in the following definition.

Definition 2.9. Given the force of interest δ ≥ 0, let D(t) = X̄(t)−X(0) and denote

Tγ,δ = γ

∫ τ−0,γ

0

e−δtdD(t) (2.24)

be the present value of all tax payments until the ruin time τ−0,γ. Then the discounted tax
payments vγ,δ(u) of a process is the discounted expectation of the present value of all dividends
paid until ruin time when a horizontal barrier is at level u. That is

vγ,δ(u) = Eu(Tγ,δ) = γEu

∫ τ−0,γ

0

e−δtdD(t).

The following theorem gives the expression for the discounted tax payments until ruin
time by Albrecher et al. (2008).

Theorem 2.13. If γ < 1 and δ > 0, then the expected discounted sum of tax payments until
ruin time is given by

vγ,δ(u) =
γ

1− γ

∫ ∞

u

(
W (q)(u)

W (q)(s)

)1/(1−γ)
ds. (2.25)

2.3.2 Spectrally negative Lévy processes with general tax rate

In this sub-section, we consider a more general case where the tax rate is allowed to vary in
a way that it is a function of running maximum X̄. This idea was proposed by Kyprianou
and Zhou (2009). The aggregate surplus process Uγ(X̄)

is defined as

Uγ(X̄)
(t) := X(t)−

∫ t

0

γ(X̄(s))dX̄(s), (2.26)
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where γ : [0,∞) → [0, 1) is a measurable function that satisfies
∫∞
0
(1 − γ(s))ds = ∞. We

observe that when γ is a constant in (0, 1), we get back the Definition 2.8. And in the case
γ = 0, we are back to a regular SNLP. Kyprianou and Zhou (2009) were able to obtain some
important results. The first one concerns about the two-sided exit problem.

Theorem 2.14. For any 0 < u < a and q ≥ 0, let τ+a,γ(X̄)
= inf{t > 0 : Uγ(X̄)

(t) > a} be

the first passage time and τ−0,γ(X̄)
= inf{t > 0 : Uγ(X̄)

(t) < 0} be the ruin time of the surplus

process Uγ(X̄)
. Then we have

Eu

[
e
−qτ+a,γ(X̄) ; τ+a,γ(X̄)

< τ−0,γ(X̄)

]
= exp

{
−

∫ a

u

W (q)′(y)
W (q)(y)(1− γ(γ̄−1(y)))

du

}
, (2.27)

where γ̄(s) := s− ∫ s

u
γ(y)dy for s ≥ u, and γ̄−1 is its inverse.

And the second result gives the expression of the net present value of tax paid until ruin.

Theorem 2.15. For any 0 < u < a, we have

Eu

[ ∫ τ−0,γ(X̄)

0

e−qsγ(X̄(s))ds

]
=

∫ ∞

u

exp

{
−

∫ t

u

W (q)′(γ̄(s))
W (q)(γ̄(s))

ds

}
γ(t)dt. (2.28)

2.4 Occupation times of spectrally negative Lévy processes

For the general SNLPs, the Laplace transforms and the joint Laplace transforms of oc-
cupation times have been developed with different degrees of complexity and by different
approaches. For instance,

� By under-estimating and over-estimating the occupation time by a union of disjoint
random time periods which can be solved directly with the help of solutions to the exit
problems, then taking an appropriate limit using Lebesgue’s dominated convergence
theorem twice, Laudriault et al. (2011) showed that the two bounds converge to the
desired occupation time.

� Later on, Loeffen et al. (2014) proposed a different method to obtain the joint Laplace
transform of the first passage time and the occupation time using that fact that any
SNLP X can be approximated by a sequence {Xn}n≥1 of SNLPs of bounded variation.
The result was first derived for the case of a SNLP of bounded variation and expressed
in a new extension form of scale functions which will be given in the sub-section below.
The case of unbounded variation then was generalized by the dominated convergence
theorem.
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� Meanwhile, motivated by a new approach concerning the values of the Lévy process ob-
served at independent Poisson arrival times, Li and Zhou (2014) presented the Laplace
transforms of pre-exit joint occupation times. Here, the authors studied the joint oc-
cupation times over interval (0, a) and (a, b) killed on exiting the interval [0, b]. Each
sub-interval can be identified as the arrival times of independent Poisson processes with
different rate avoiding the time duration when the SNLP occupies that sub-interval.
Then, by relying on the key identities initially obtain in Lemma 2.2 of Loeffen et al.
(2014), Li and Zhou (2014) were able to find the recursive relationship between oc-
cupation times at different position at time zero. As a result, the occupation time is
obtained by solving the recursive equations.

We begin with an introduction to new form of scale functions.

2.4.1 Extension of scale functions

In order to express the solutions to occupation times, we present some extensions of scale
functions. By taking Laplace transforms on both sides of (2.6), we obtain

(q − p)

∫ a

0

W (p)(a− y)W (q)(y)dy = W (q)(a)−W (p)(a),

(q − p)

∫ a

0

W (p)(a− y)Z(q)(y)dy = Z(q)(a)− Z(p)(a).

Then, using the properties above we can define these functions below in terms of q-scale
function W (q) and Z(q) as

W (p,q)
a (x) := W (p+q)(x)− q

∫ a

0

W (p+q)(x− y)W (p)(y)dy

= W (p)(x) + q

∫ x

a

W (p+q)(x− y)W (p)(y)dy, (2.29)

Z(p,q)
a (x) := Z(p+q)(x)− q

∫ a

0

W (p+q)(x− y)Z(p)(y)dy

= Z(p)(x) + q

∫ x

a

W (p+q)(x− y)Z(p)(y)dy. (2.30)

These two functions above were used to express the joint Laplace transforms of occupation
time for SNLPs in Loeffen et al. (2014) and Li and Zhou (2014).

Finally, the idea of scale functions is generalized to ω-scale functions suggested by Li and
Palmowski (2018) as follows. First, we let ω : R → R+ be a locally bounded nonnegative
measurable function, then the two families of functions: {W (ω)(x, y), x ∈ R, y ∈ R} and
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{Z(ω)(x, y), x ∈ R, y ∈ R}, are defined uniquely as the solutions to the following equations:

W (ω)(x, y) = W (x− y) +

∫ x

y

W (x− z)ω(z)W (ω)(z, y)dz, (2.31)

Z(ω)(x, y) = 1 +

∫ x

y

W (x− z)ω(z)Z(ω)(z, y)dz, (2.32)

respectively, where W (x) is a classical 0-scale function. For special case of a constant func-
tion ω(x) = q, it was shown in Li and Palmowski (2018) that (W (ω)(x, 0),Z(ω)(x, 0)) =
(W (q)(x), Z(q)(x)).

Moreover, for p, q ≥ 0 by taking

ω(x) = p+ q1(a,b)(x),

the two ω-scale functions have a form

W (ω)(x) = W (p,q)
a (x)− q

∫ x

b

W (p)(x− z)W (p,q)
a (z)dz, (2.33)

Z(ω)(x) = Z(p,q)
a (x)− q

∫ x

b

W (p)(x− z)Z(p,q)
a (z)dz. (2.34)

We are now ready to state some interesting results concerning about occupation times of
a general SNLP.

2.4.2 Previous results on occupation times of SNLPs

The very first result is the total occupation time of the negative half-line (−∞, 0) found by
Laudriault et al. (2011).

Theorem 2.16. If ψ′(0+) > 0, then for q ≥ 0

E

[
e−q

∫∞
0 1{Xt≤0}dt

]
= ψ′(0+)

φ(q)

q
, (2.35)

where φ(q)/q is to be understood in the limiting sense when q = 0. Or more generally for
x ≥ 0

Ex

[
e−q

∫∞
0 1{Xt≤0}dt

]
= ψ′(0+)φ(q)

∫ ∞

0

e−φ(q)zW (x+ z)dz. (2.36)

Also, they found the occupation time of (−∞, 0) until a negative level −b, b > 0, is
crossed for the first time.

Theorem 2.17. If ψ′(0+) ≥ 0, then for q ≥ 0

E

[
e−q

∫ τ−−b
0 1{Xt≤0}dt

]
=

ψ′(0+) + σ2

2

A
(q)
1 (b)

W (q)(b)
+
∫ 0−

−∞A
(q)
2 (x)

∫∞
0

Π(dx− y)dy

ψ′(0+) + σ2

2
W ′(q)(b)
W (q)(b)

+
∫ 0−
−∞A

(q)
3 (x)

∫∞
0

Π(dx− y)dy
, (2.37)
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where

A
(q)
1 (b) = Z(q)(b)W ′(q)(b)− q(W (q)(b))2,

A
(q)
2 (x) = Z(q)(x+ b)− Z(q)(b)

W (q)(x+ b)

W (q)(b)
,

A
(q)
3 (x) = 1− W (q)(x+ b)

W (q)(b)
.

In their paper, the main idea in the proof of the two theorems above is based on under-
estimating and over-estimating the occupation time. Later on in Loeffen et al. (2014), they
extended the result to the joint Laplace transforms of occupation time given a closed interval
[a, b] ⊂ [0,∞) with the ruin time τ−0 .

Theorem 2.18. For 0 ≤ a ≤ b ≤ c, p, q ≥ 0 and 0 ≤ x ≤ c,

Ex

[
e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xt)dt; τ−0 < τ+c

]
= Z(p,q)

a (x)−q

∫ x

b

W (p)(x−z)Z(p,q)
a (z)dz

−
(
W (p,q)

a (x)−q

∫ x

b

W (p)(x−z)W (p,q)
a (z)dz

) Z(p,q)
a (c)− q

∫ c

b
W (p)(c− z)Z(p,q)

a (z)dz

W (p,q)
a (c)− q

∫ c

b
W (p)(c− z)W (p,q)

a (z)dz
, (2.38)

and

Ex

[
e−pτ

+
c −q

∫ τ+c
0 1(a,b)(Xt)dt; τ+c < τ−0

]
=

W (p,q)
a (x)− q

∫ x

b
W (p)(x− z)W (p,q)

a (z)dz

W (p,q)
a (c)− q

∫ c

b
W (p)(c− z)W (p,q)

a (z)dz
. (2.39)

Meanwhile, Li and Zhou (2014) considered the Laplace transforms of joint occupation
times over disjoint intervals (0, a) and (a, b) before it first exits interval (0, b) for 0 < a < b. By
identifying this joint Laplace transform with the probability that two independent sequences
of Poisson arrival times, they derived the results in the theorem below.

Theorem 2.19. For any 0 < a < b, 0 ≤ x ≤ b, and p, q ≥ 0, we have

Ex

[
e−p

∫ τ+
b

0 1(0,a)(Xt)dt−q
∫ τ+

b
0 1(a,b)(Xt)dt; τ+b < τ−0

]
=

W (p,q)
a (x)

W (p,q)
a (b)

,

Ex

[
e−p

∫ τ−0
0 1(0,a)(Xt)dt−q

∫ τ−0
0 1(a,b)(Xt)dt; τ−0 < τ+b

]
= Z(p,q)

a (x)−Z(p,q)
a (b)

W (p,q)
a (x)

W (p,q)
a (b)

.

We end this sub-section by some results in Li and Palmowski (2018) concerning the ω-type
resolvent. The following theorem gives the expression of ω-type resolvent for SNLPs.
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Theorem 2.20. For x, y ∈ [0, c], we have

U (ω)(x, dy) : =

∫ ∞

0

Ex

[
exp

(
−

∫ t

0

ω(Xs)ds

)
; t < τ−0 ∧ τ+c , Xt ∈ dy

]
dt

=

(W (ω)(x, 0)

W (ω)(c, 0)
W (ω)(c, y)−W (ω)(x, y)

)
dy. (2.40)

The power of this type of ω-scale function is that, with an appropriate choice of ω, we
can obtain the various expressions involving the occupation time. For instance, by letting
ω(x) = p+ q1(a,b)(x), and (a, b) ⊂ [0, c], we get

U (ω)(x, dy) =

∫ ∞

0

Ex

[
exp

(
−

∫ t

0

(p+ q1(a,b)(Xs))ds

)
; t < τ−0 ∧ τ+c , Xt ∈ dy

]
dt

=

∫ ∞

0

e−ptEx

[
exp

(
− q

∫ t

0

(1(a,b)(Xs))ds

)
; t < τ−0 ∧ τ+c , Xt ∈ dy

]
dt. (2.41)

=

(W (ω)(x, 0)

W (ω)(c, 0)
W (ω)(c, y)−W (ω)(x, y)

)
dy.

where W (ω)(x, y) is the unique solution to the equations:

W (ω)(x, y) = W (x− y) +

∫ x

y

W (x− z)ω(z)W (ω)(z, y)dz.

The above expression is the resolvent of the occupation time on the interval (a, b) killed on
exiting the external interval [0, c]. Moreover, Li and Palmowski (2018) obtained the similar
result for the reflected process Y .

Theorem 2.21. For x, y ∈ [0, c], define Tc = inf{t ≥ 0 : Yt > c}, then we have

L(ω)(x, dy) : =

∫ ∞

0

Ex

[
exp

(
−

∫ t

0

ω(Ys)ds

)
; t < Tc, Yt ∈ dy

]
dt

=

(Z(ω)(x, 0)

Z(ω)(c, 0)
W (ω)(c, y)−W (ω)(x, y)

)
dy. (2.42)

where Z(ω)(x, y) is the unique solution to the equations:

Z(ω)(x, y) = 1 +

∫ x

y

W (x− z)ω(z)Z(ω)(z, y)dz,
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3 Fluctuation results related to draw-down times

As mention in the Introduction Section, draw-down time has recently become more and more
considerably interesting because of its practical application. For instance, in risk theory, sup-
pose the price process of an underlying security is modeled by a SNLP X, and we are consider
the decision to sell that stock. Obviously, it is ideal to sell a stock at the highest price or
just right before it starts to decline. However, it is not easy to sell a stock at this ideal time,
and it totally depends on luck. Instead, it would be reasonable to sell a stock either when it
hits a price target, says, thirty percents drop from the previous maximum. That means, the
stock will be sold at a draw-down time. As a result, studying the Laplace transform of the
draw-down time will help us to understand the fluctuation of the time to sell stocks. In the
above example, the draw-down function is ξ(x) = 0.7x and it is a measurable non-stochastic
function in R. One may consider the case of stochastic draw-down function. However, since
it is not very interesting, we only consider the case of no-stichastic draw-down function.

Our goal in this section is to generalize some results in the Section 2 with the associ-
ation of draw-down times. More specifically, we will solve the two-sided exit problems for
the general SNLP X and SNLTP U with draw-down times; the expression of discounted tax
payment of SNLTPs accumulated up to a draw-down time will be given; and lastly we will
generalize the occupation times of a general SNLP in a given draw-down interval.

Firstly, we start by introducing the notion of draw-down times of a general SNLP. Let
ξ be a measurable function on R, then we define the draw-down time with respect to the
draw-down function ξ as

τξ := inf{t ≥ 0 : X(t) < ξ(X̄t)} = inf{t > 0 : Yt > ξ̄(X̄t)},

where Yt := X̄t−Xt is the reflected process ofX at its running maximum, ξ̄(z) := z−ξ(z) > 0
and {ξ(X̄t), t ≥ 0} is the associated draw-down level process. Indeed, draw-down times can
be interpreted as the perceptual accumulated loss due to a sequence of drops in prices of an
investment.

3.1 General SNLPs with draw-down times

In this sub-section, we will work out the two-sided exit problems for the general SNLPs with
the draw-down time τξ in place of the ruin time τ−0 . In order to archive this, we rely mainly
on the excursion theory for Markov processes in which the compensation formula and the ex-
ponential formula for Poisson point processes are employed. Before stating our main results,
we want to present some notation regarding to the local time.

It is well-known that the reflected process Y is a Markov process with 0 being instanta-
neous whenever W (0) = 0, so we can define a local time process L of Y at 0 that is unique
up to a multiplicative factor ν. That is, for all t ≥ 0∫ t

0

1{s∈L}ds = νL(t), (3.1)
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where L := {t > 0, Yt = 0} is the zero set of Y and L is its closure. The inverse local time is
defined as

L−1t := inf{s > 0 : L(s) > t}, t ≥ 0.

Under the new time scale, the excursion process of Y away from zero, associated with L and
denoted by ε = {εr, r ≥ 0} takes values in the excursion space E with an additional isolated
point ∂. Where,

εr :=

{
{Yt, 0 ≤ t ≤ L−1r − L−1r−} if L−1r− < L−1r ,

∂ otherwise.

Since L differs from L by at most countable points, we can rewrite (3.1) as

∫ L−1
r

0

1{s∈L}ds = νr. (3.2)

We first consider the case for an SNLP X under P, then by shifting argument, we can
generalize our results to the case under Px. It is worthy to notice that under P, the running
maximum process X̄ meets all the requirements to be a local time, so it is the best choice to
let X̄ be the local time of Y at 0. The benefits of this setup is that we get L−1s = τ+s as a
subordinator with Laplace exponent Φ, and

ν = lim
s→∞

Φ(s)

s
= lim

s→∞
s

ψ(s)
= W (0).

We are now ready to state our first results concerning the two-sided exit problems of SNLP
X associated with the draw-down time τξ.

Theorem 3.1 (Part 1 of Proposition 3.1 in Li et al. (2019)). For any q > 0 and x < b, we
have

Ex

[
e−qτ

+
b ; τ+b < τξ

]
= exp

{
−

∫ b

x

W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy

}
. (3.3)

Theorem 3.2 (Part 2 of Proposition 3.1 in Li et al. (2019)). For any q > 0 and x < b, we
have

Ex

[
e−qτξ ; τξ < τ+b

]
=

∫ b

x

e
− ∫ z

x
W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy
(
W (q)′(ξ̄(z))
W (q)(ξ̄(z))

Z(q)(ξ̄(z))− qW (q)(ξ̄(z))

)
dz. (3.4)

Remark 3.1. If we fix the draw-down function ξ(z) = c for all c ≤ x ≤ b in both of the
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theorems above, then we recover the classical two-sided exit problems. Indeed

Ex

[
e−qτ

+
b ; τ+b < τ−c

]
= exp

{
−

∫ b

x

W (q)′(y − c)

W (q)(y − c)
dy

}

= exp

{
−

∫ b−c

x−c

W (q)′(y)
W (q)(y)

dy

}

= exp

{
−

∫ b−c

x−c

d

dy
ln(W (q)(y))dy

}

= exp

{
ln(W (q)(x− c))− ln(W (q)(b− c))

}

=
W (q)(x− c)

W (q)(b− c)
.

And since Z(q)′(x) = qW (q)(x), we have

Ex

[
e−qτ

−
c ; τ−c < τ+b

]
=

∫ b

x

e
− ∫ z

x
W (q)′(y−c)

W (q)(y−c)
dy
(
W (q)′(z − c)

W (q)(z − c)
Z(q)(z − c)− qW (q)(z − c)

)
dz

=

∫ b

x

W (q)(x− c)

W (q)(z − c)

(
W (q)′(z − c)

W (q)(z − c)
Z(q)(z − c)− Z(q)′(z − c)

)
dz

= W (q)(x− c)

∫ b−c

x−c

W (q)′(z)Z(q)(z)− Z(q)′(z)W (q)(z)

(W (q)(z))2
dz

= W (q)(x− c)

∫ b−c

x−c

d

dz

(
− Z(q)(z)

W (q)(z)

)
dz

= Z(q)(x− c)− W (q)(x− c)

W (q)(b− c)
Z(q)(b− c).

Remark 3.2. If we let q → 0 in the two theorems above, we obtain an important probability
concerning of the occurrence of first passage time and draw-down time.

Px

[
τ+b < τξ

]
= exp

{
−

∫ b

x

W ′(ξ̄(y))
W (ξ̄(y))

dy

}
. (3.5)

Moreover, by applying the change of measure on Theorem 3.2, we can obtain the joint
Laplace transform with additional SNLP X at the draw-down time. Thus, we have the
following corollary.

Corollary 3.1. For any p, q > 0 and x < b, by defining u := q − ψ(p) we have

Ex

[
e−qτξ+pX(τξ); τξ < τ+b

]
=

∫ b

x

e
px−∫ z

x

W
(u)′
p (ξ̄(y))

W
(u)
p (ξ̄(y))

dy
(
W

(u)′
p (ξ̄(z))

W
(u)
p (ξ̄(z))

Z(u)
p (ξ̄(z))− uW (u)

p (ξ̄(z))

)
dz.

(3.6)

where W
(u)
p (·) and Z

(u)
p (·) are scale functions under the new measure P

(p).
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Example of the linear draw-down function

Suppose we consider the linear draw-down function which defined as

ξ(t) = ξt− d

for some constant and ξ, d > 0. Then the draw-down time of SNLP X has the form

τd,ξ = inf{t ≥ 0 : X(t) + d < ξX̄(t)}.

As a result, we can work out the explicit expression of (3.3) and (3.4). For example

Ex

[
e−qτ

+
b ; τ+b < τd,ξ

]
= exp

{
−

∫ b

x

W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy

}

= exp

{
−

∫ b

x

W (q)′((1− ξ)y + d)

W (q)((1− ξ)y + d)
dy

}

= exp

{
− 1

1− ξ

∫ (1−ξ)b+d

(1−ξ)x+d

W (q)′(y)
W (q)(y)

dy

}

= exp

{
− 1

1− ξ

∫ (1−ξ)b+d

(1−ξ)x+d

d

dy
ln(W (q)(y))dy

}

= exp

{
− 1

1− ξ

[
ln(W (q)(y))

](1−ξ)b+d

(1−ξ)x+d

}

=

(
W (q)((1− ξ)x+ d)

W (q)((1− ξ)b+ d)

) 1
1−ξ

.

The rest of this sub-section will be devoted to the proof of the two theorems and the
corollary.

Proof of Theorem 3.1.

Recall that for a generic excursion ε ∈ E , we denote its lifetime by ζ = ζ(ε) and its excursion
height by ε̄. Also, we define its first passage time as

ρ+c = ρ+c (ε) := inf{s ∈ (0, ζ) : ε(s) > c}.

If τ+b < ∞ a.s., then under P we can rewrite the first passage time τ+b as

τ+b = L−1b =

∫ L−1
b

0

1{t∈L}dt+
∫ L−1

b

0

1{t/∈L}dt = νb+
∑
r∈[0,b]

ζ(εr). (3.7)

Where the first term after the last equation follows by (3.2) and the second term is the total
lifetime of all excursions occurring up to the first passage time τ+b . Similarly, the draw-
down time can be decomposed into the first passage time of the first excursion whose height
surpasses the draw-down level, plus all the previous time before this excursion. That is the
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draw-down time τξ can be rewritten as

τξ = L−1r− + ρ+
ξ̄(r)

(εr) : r ≥ 0 where X̄(τξ) = L(τξ) = r. (3.8)

Now, considering the event {τ+b < τξ}, which is the event that the SNLP X reaches the level
b before the draw-down level, we see that it is equivalent to the event that the excursion
height ε̄r is at most the draw-down depth ξ̄(r) for all local time r ∈ [0, b]. That is

{τ+b < τξ} = {ε̄r ≤ ξ̄(r) for all r ∈ [0, b]} =
⋂

r∈[0,b]
{ε̄r ≤ ξ̄(r)}. (3.9)

Therefore, from (3.7), (3.9), and with the help of the Exponential Formula, we have

E

[
e−qτ

+
b ; τ+b < τξ

]
= E

[
e−qνb−q

∑
r∈[0,b] ζ(εr); τ+b < τξ

]

= e−qνbE
[
e−q

∑
r∈[0,b] ζ(εr)

∏
r∈[0,b]

1{ε̄r≤ξ̄(r)}

]

= e−qνbE
[
exp

{
− q

∑
r∈[0,b]

(
ζ(εr) +∞ · 1{ε̄r≥ξ̄(r)}

)}]

= exp

{
−

∫ b

0

(
qν +

∫
E

(
1− e−qζ1{ε̄≤ξ̄(r)}

)
n(dε)

)
dr

}
,

with the understanding that e−∞ = 0 and ∞ · 0 = 0. Clearly, it is not possible to directly
integrate the integral with respect to excursion measure. However, if we fix the draw-down
function to a constant ξ ≡ c < 0, then we get back to the classical two-sided exit problems
whose solution is of the form

W (q)(−c)

W (q)(b− c)
= Ex

[
e−qτ

+
b ; τ+b < τ−c

]
= exp

{
−

∫ b

0

(
qν +

∫
E

(
1− e−qζ1{ε̄≤r−c}

)
n(dε)

)
dr

}
.

Then, by taking log and differentiating with respect to b on both sides of the equation above,
we obtain

qν +

∫
E

(
1− e−qζ1{ε̄≤b−c}

)
n(dε) =

W (q)′(b− c)

W (q)(b− c)
.

This implies that, for z > 0

qν +

∫
E

(
1− e−qζ1{ε̄≤z}

)
n(dε) =

W (q)′(z)
W (q)(z))

.

Therefore,

E

[
e−qτ

+
b ; τ+b < τξ

]
= exp

{
−

∫ b

0

W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy

}
.

To generalize this result to the case Px with x < b, we define a function ς(y) := ξ(y+ x)− x.

30



Then
ς̄(y) = y + x− ξ(y + x) = ξ̄(y + x).

Because X is spatially homogeneous, we have (X, X̄, τξ)
∣∣
Px

= (x+X, x+ X̄, τς)
∣∣
P
. Hence,

Ex

[
e−qτ

+
b ; τ+b < τξ

]
= E

[
e−qτ

+
b−x ; τ+b−x < τς

]

= exp

{
−

∫ b−x

0

W (q)′(ς̄(y))
W (q)(ς̄(y))

dy

}

= exp

{
−

∫ b

x

W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy

}
.

In summary, the idea in the proof of Theorem 3.1 above is as following. First, we try to
express the expectation in terms of excursion processes, excursion highs, and the excursion
lifetimes, then using the exponential formula (or the conpensation formula in later proofs)
we can associate the excursion measure into the expression. With the help of the previous
result on the fixed constant draw-down function, we are able to obtain the explicit form of
the associated excursion measure. Therefore, the results follow by plugging back into the
previous expression. Indeed, the key factor in the proof is to obtain the expression of the
associated excursion measure, and we will carry this approach throughout most of the proofs
in this section.

Proof of Theorem 3.2. We begin by considering the event {τξ < τ+b } which can be expressed
as

{τξ < τ+b } ≡
{ ⋃

r∈[0,b]

([⋂
s<r

{ε̄s ≤ ξ̄(s)}
]
{ε̄r > ξ̄(r)}

)}
.

Then, we have

E

[
e−qτξ ; τξ < τ+b

]
= E

[ ∑
r∈[0,b]

e
−q
(
L−1
r−+ρ+

ξ̄(r)
(εr)

)(∏
s<r

1{ε̄s≤ξ̄(s)}

)
1{ε̄r>ξ̄(r)}

]

= E

[ ∑
r∈[0,b]

(
e−qL

−1
r−

∏
s<r

1{ε̄s≤ξ̄(s)}

)
e
−qρ+

ξ̄(r)
(εr)1{ε̄r>ξ̄(r)}

]

= E

[ ∫ ∞

0

(
e−qt

∏
s<L(t)

1{ε̄s≤ξ̄(s)}

)(∫
E
e
−qρ+

ξ̄(L(t))
(ε)
1{ε̄>ξ̄(L(t))}n(dε)

)
dL(t)

]

= E

[ ∫ b

0

(
e−qL

−1
r−

∏
s<r

1{ε̄s≤ξ̄(s)}

)(∫
E
e
−qρ+

ξ̄(r)1{ε̄>ξ̄(r)}n(dε)
)
dr

]

=

∫ b

0

E

[
e−qL

−1
r−

∏
s<r

1{ε̄s≤ξ̄(s)}

]
× n

(
e
−qρ+

ξ̄(r) ; ε̄ > ξ̄(r)
)
dr
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=

∫ b

0

E

[
e−qL

−1
r ;L−1r < τξ

]
× n

(
e
−qρ+

ξ̄(r) ; ε̄ > ξ̄(r)
)
dr

=

∫ b

0

E

[
e−qτ

+
r ; τ+r < τξ

]
× n

(
e
−qρ+

ξ̄(r) ; ε̄ > ξ̄(r)
)
dr

=

∫ b

0

e
− ∫ r

0
W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy × n
(
e
−qρ+

ξ̄(r) ; ε̄ > ξ̄(r)
)
dr.

Where we applied the Compensation Formula in the fourth equation; the change of variable
r = L(t) is used in the fifth equation, and the seventh equation follows by the fact that
L−1r differs from L−1r− by at most countable points. Again, the only unknown quantity in

the equation above is the excursion measure n
(
e
−qρ+

ξ̄(r) : ε̄ > ξ̄(r)
)
which can be derived by

the same approach in the proof of Theorem 3.1. Particularly, considering the case where
ξ ≡ c < 0, we have

Z(q)(−c)− W (q)(−c)

W (q)(b− c)
Z(q)(b− c) = E

[
e−qτ

−
c ; τ−c < τ+b

]

=

∫ b

0

W (q)(−c)

W (q)(r − c)
× n

(
e−qρ

+
r−c : ε̄ > r − c

)
dr.

By differentiating with respect to b on both sides of the equation above, we get

n
(
e−qρ

+
z : ε̄ > z

)
=

W (q)′(z)
W (q)(z)

Z(q)(z)− qW (q)(z), for z > 0. (3.10)

As a result,

E

[
e−qτξ ; τξ < τ+b

]
=

∫ b

0

e
− ∫ z

0
W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy
(
W (q)′(ξ̄(z))
W (q)(ξ̄(z))

Z(q)(ξ̄(z))− qW (q)(ξ̄(z))

)
dz.

And by shifting argument, we again obtain

Ex

[
e−qτξ ; τξ < τ+b

]
=

∫ b

x

e
− ∫ z

x
W (q)′(ξ̄(y))
W (q)(ξ̄(y))

dy
(
W (q)′(ξ̄(z))
W (q)(ξ̄(z))

Z(q)(ξ̄(z))− qW (q)(ξ̄(z))

)
dz.

Proof of Corollary 3.1.

Recall that, for each c ≥ 0, we have the following exponential change of measure

dP(c)

dP

∣∣∣∣
Ft

= ecXt−ψ(c)t.

Let u := q−ψ(p) > 0, taking this change of measure on the expectation for the case X(0) = 0
we get
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E

[
e−qτξ+pX(τξ); τξ < τ+b

]
= E

(p)

[
e−uτξ ; τξ < τ+b

]

=

∫ b

0

e
− ∫ z

0

W
(u)′
p (ξ̄(y))

W
(u)
p (ξ̄(y))

dy
(
W

(u)′
p (ξ̄(z))

W
(u)
p (ξ̄(z))

Z(u)
p (ξ̄(z))− uW (u)

p (ξ̄(z))

)
dz.

To generalize this result to the case Px with x < b, similar to the proof of Theorem (3.1), we
define a function ς(y) := ξ(y + x)− x. Then

ς̄(y) = y + x− ξ(y + x) = ξ̄(y + x).

Because X is spatially homogeneous, we have (X, X̄, τξ)
∣∣
Px

= (x+X, x+ X̄, τς)
∣∣
P
. Hence,

Ex

[
e−qτξ+pX(τξ); τξ < τ+b

]
= epxE

[
e−qτς+pX(τς); τς < τ+b−x

]

=

∫ b−x

0

e
px−∫ z

0

W
(u)′
p (ς̄(y))

W
(u)
p (ς̄(y))

dy
(
W

(u)′
p (ς̄(z))

W
(u)
p (ς̄(z))

Z(u)
p (ς̄(z))− uW (u)

p (ς̄(z))

)
dz.

=

∫ b

x

e
px−∫ z

x

W
(u)′
p (ξ̄(y))

W
(u)
p (ξ̄(y))

dy
(
W

(u)′
p (ξ̄(z))

W
(u)
p (ξ̄(z))

Z(u)
p (ξ̄(z))− uW (u)

p (ξ̄(z))

)
dz.

3.2 SNLTPs with draw-down times

In this section, we extend the results (2.23) in Theorem 2.12 and (2.25) in Theorem 2.13 to a
more flexible and realistic situation where the ruin times is now replaced by the draw-down
times. For simplicity, we only consider ξ as a linear draw-down function ξ(t) = ξt − d for
some constants ξ and d satisfying d > 0 and (1− ξ)a+d > 0, where a > 0 is an upper bound
of the process. Thus, the draw-down time of SNLTPs has the form

τξ,γ = τd,ξ,γ := inf
{
t ≥ 0 : Uγ(t) + d < ξŪγ(t)

}
. (3.11)

The following theorem generalizes the exit problem for SNLTPs with draw-down times which
can be found in Avram et al. (2017).

Theorem 3.3 (Theorem 1.1 in Avram et al. (2017)). For any q ≥ 0, γ ∈ [0, 1), ξ < 1 and
0 < u ≤ a, we have

Eu

[
e−qτ

+
a,γ ; τ+a,γ < τξ,γ

]
=

(
W (q)((1− ξ)u+ d)

W (q)((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

. (3.12)
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Remark 3.3. By letting ξ = d = 0, we recover the solution (2.23) of the two-sided exit
problem for SNLTPs in Albrecher et al. (2008). And the well-known result (2.13) of the
two-sided exit problem for the general SNLPs can be recovered by letting γ = ξ = d = 0.

Remark 3.4. Similar to the power identities in Albrecher et al. (2007) and Albrecher et al.
(2014), we have a power relation between the results with and without taxes. Furthermore,
for the special case ξ = 1 we can obtain a generalization of Landriault et al. (2017). That is

Eu

[
e−qτ

+
a,γ ; τ+a,γ < τ1,γ

]
= exp

{
− (a− u)W ′(q)(d)

(1− γ)W (q)(d)

}
. (3.13)

And by letting d → ∞, we get

Eu

[
e−qτ

+
a,γ
]
= exp

{
− (a− u)

(1− γ)
Φ(q)

}
.

Remark 3.5. For ψ′(0+) > 0, letting q = 0 and a → ∞ we get

Pu[τξ,γ = ∞] =

(
ψ′(0+)W ((1− ξ)u+ d)

) 1
(1−ξ)(1−γ)

.

With the solution of two-sided exit problem for SNLTPs with draw-down times on hand,
we are ready to derive the expression of its discounted taxed payments. Recall that the
expected present value of all tax payments is defined as

vξ,γ,δ(u) = vd,ξ,γδ(u) := γEu(Tξ,γ,δ) = γEu

∫ τ+a,γ∧τξ,γ

0

e−δtd(X̄(t)− u).

Theorem 3.4 (Theorem 1.2 in Avram et al. (2017)). For any δ ≥ 0, γ ∈ [0, 1), ξ < 1 and
0 < u < a ≤ ∞, we have

Eu

∫ τ+a,γ∧τξ,γ

0

e−δtd(X̄(t)− u) =
1

1− γ

∫ a

u

(
W (δ)((1− ξ)u+ d)

W (δ)((1− ξ)s+ d)

) 1
(1−ξ)(1−γ)

ds, (3.14)

and

Eu

[ ∫ τ+a,γ

0

e−δtd(X̄(t)− u); τ+a,γ < τξ,γ

]
=

1

1− γ

∫ a

u

(
W (δ)((1− ξ)u+ d)W ((1− ξ)s+ d)

W (δ)((1− ξ)s+ d)W ((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

ds. (3.15)

Remark 3.6. To obtain the expression (2.25) of Theorem 3.2 in Albrecher et al. (2008), we
let a → ∞ and d = ξ = 0.
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Remark 3.7. For the special case ξ = 1, one can follow the proof of Theorem 3.4 given below
and the Remark 3.4 to get

Eu

∫ τ+a,γ∧τ1,γ

0

e−δtd(X̄(t)− u) =
1

1− γ

∫ a

u

exp

{
− (s− u)W ′(δ)(d)

(1− γ)W (δ)(d)

}
ds

=
W (δ)(d)

W ′(δ)(d)

(
1− exp

{
− (s− u)W ′(δ)(d)

(1− γ)W (δ)(d)

})
.

And

Eu

[ ∫ τ+a,γ∧τ1,γ

0

e−δtd(X̄(t)− u); τ+a,γ < τ1,γ

]
=

1

1− γ

∫ a

u

exp

{
− (s− u)W ′(δ)(d)

(1− γ)W (δ)(d)
− (a− s)W ′(d)

(1− γ)W (d)

}
ds.

Remark 3.8. In addition, when γ = 1, we also have

Eu

∫ τξ,1

0

e−δtd(X̄(t)− u) =
W (δ)((1− ξ)u+ d)

W ′(δ)((1− ξ)u+ d)
.

Proof of Theorem 3.3.

We can mimic an argument from Chapter VII.2 of Bertoin (1996). We first assume that
Xt → ∞ as t → ∞ and q = 0. Then X̄−X is a Markov process with local time X̄−X(0) at
0 by Theorem 2.9 above. Let ε be the excursion process of X̄−X away from 0, and h for the
excursion height process. Using the excursion theory, we can rewrite the event {τ+a,γ < τξ,γ}
in terms of the excursion height process as{

hs ≤ (1− ξ)(u+ (1− γ)s) + d, ∀s ∈
[
0,

a− u

1− γ

]}
.

This is due to the fact that if the process X starts the excursion at the level u + s for
0 ≤ s ≤ a−u

1−γ , which is the level u+ (1− γ)s for the taxed process Uγ, then to guarantee the

time τ+a,γ occurring before the time τξ,γ, the excursion height hs cannot exceed the sum

{u+ (1− γ)s}+ {d− ξ(u+ (1− γ)s)} = (1− ξ)(u+ (1− γ)s),

for 0 ≤ s ≤ a−u
1−γ (see figure 4 for the illustration). Thus, with the assumption X drifts to ∞

then by Theorem 2.10, h is a Poisson point process with characteristic measure ν such that

W ((1− ξ)(u+ (1− γ)s) + d) = e−
∫∞
(1−ξ)(u+(1−γ)s)+d ν(t,∞)dt,
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which implies that

ν((1− ξ)(u+ (1− γ)s) + d,∞) =
W ′((1− ξ)(u+ (1− γ)s) + d)

W ((1− ξ)(u+ (1− γ)s) + d)
.

Figure 4: Assume one of simple paths of the tax SNLP U(t) is given in the figure. At the beginning of an excursion at level
u+ s for process X(t) where 0 ≤ s ≤ a−u

1−γ
( this corresponds to the level u+ (1− γ)s for the taxed process U(t)), the process

U(t) starts at u within the two barriers: the fixed level a above and the varying level ξŪγ − d below. The event {τ+a,γ < τξ,γ}
is equivalent to the event {0 ≤ hs ≤ (1− ξ)(u+ (1− γ)s) + d}.

Now, let N be the Poisson random variable counting the number of Poisson points (s, hs)

#

{
(s, hs) ∈ R

2

∣∣∣∣ 0 ≤ s ≤ a− u

1− γ
, hs ≥ (1− ξ)(u+ (1− γ)s) + d

}
.

Then its parameter is of the form

∫ a−u
1−γ

0

ν((1− ξ)(u+ (1− γ)t) + d,∞)dt =

∫ a−u
1−γ

0

W ′((1− ξ)(u+ (1− γ)t) + d)

W ((1− ξ)(u+ (1− γ)t) + d)
dt.

Therefore, for 0 < u < a,

Pu{τ+a,γ < τξ,γ} = P

{
hs ≤ (1− ξ)(u+ (1− γ)s) + d, ∀s ∈

[
0,

a− u

1− γ

]}
= P{N = 0}

= exp

{
−

∫ a−u
1−γ

0

W ′((1− ξ)(u+ (1− γ)t) + d)

W ((1− ξ)(u+ (1− γ)t) + d)
dt

}

= exp

{
− 1

(1− ξ)(1− γ)

∫ (1−ξ)a+d

(1−ξ)u+d

W ′(t)
W (t)

dt

}

= exp

{
− 1

(1− ξ)(1− γ)

∫ (1−ξ)a+d

(1−ξ)u+d

d

dt
ln(W (t))dt

}

=

(
W ((1− ξ)u+ d)

W ((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

.
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In general, for q > 0 we consider a new measure P
Φ(q) with Radon-Nikodým derivative

martingale eΦ(q)(Xt−X0)−qt. X drifts to ∞ under PΦ(q) and WΦ(q)(u) = e−Φ(q)uW (q)(u). Also,
we observe that if process Ut reaches a new maximum, then Xt and X̄t also reach the same
new maximum at the same time. That is, at the time τ+a,γ, X(τ+a,γ) = X̄(τ+a,γ) for τ

+
a,γ < ∞.

Then
a = Uγ(τ

+
a,γ) = X(τ+a,γ)− γ

(
X̄(τ+a,γ)− u

)
,

which implies that

X(τ+a,γ)1(τ+a,γ<∞) =
a− γu

1− γ
1(τ+a,γ<∞).

Therefore, using the result above for the process X under the new measure we obtain

P
Φ(q)
u {τ+a,γ < τξ,γ} =

(
WΦ(q)((1− ξ)u+ d)

WΦ(q)((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

= eΦ(q)(a−u)
(
W (q)((1− ξ)u+ d)

W (q)((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

.

Moreover, using the change of measure, we can rewrite P
Φ(q)
u {τ+a,γ < τξ,γ} as

P
Φ(q)
u {τ+a,γ < τξ,γ} = Eu[e

Φ(q)(X(τ+a,γ)−u)−qτ+a,γ ; τ+a,γ < τξ,γ]

= eΦ(q)(a−u)
Eu[e

−qτ+a,γ ; τ+a,γ < τξ,γ].

Hence

Eu(e
−qτ+a,γ ; τ+a,γ < τξ,γ) =

(
W (q)((1− ξ)u+ d)

W (q)((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

.

The result follows for the case q = 0 by letting q → 0+.

Proof of Theorem 3.4.

The idea in this proof is to divide the interval [u, a] into sub-intervals of length h > 0, then
we condition on each iteration the arrival time of τ+x+h,γ and τξ,γ . The detail is as following.
Assume Uγ(0) = x > 0 and for h > 0, we have

x+ h = Uγ(τ
+
x+h,γ)

= X(τ+x+h,γ)− γ(X̄(τ+x+h,γ)− x)

= X̄(τ+x+h,γ)− γ(X̄(τ+x+h,γ)− x)

= (1− γ)X̄(τ+x+h,γ) + γx,

which gives

X̄(τ+x+h,γ)− x =
h

1− γ
.
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By conditioning on the arrival time between τ+x+h,γ and τξ,γ we get

Ex[Tξ,γ,δ] = Ex[Tξ,γ,δ; τ
+
x+h,γ > τξ,γ] + Ex[Tξ,γ,δ; τ

+
x+h,γ < τξ,γ]. (3.16)

For the first expectation in (3.16), we can bound it from above by

Ex[Tξ,γ,δ; τ
+
x+h,γ > τξ,γ]

= Ex

[ ∫ τ+x+h,γ∧τξ,γ

0

e−δtd(X̄(t)− x); τ+x+h,γ > τξ,γ

]

≤ Ex

[ ∫ τ+x+h,γ

0

e−δtd(X̄(t)− x); τ+x+h,γ > τξ,γ

]

= Ex

[
e−δt(X̄(t)− x)

∣∣τ+x+h,γ

0
; τ+x+h,γ > τξ,γ

]

+ Ex

[
δ

∫ τ+x+h,γ

0

e−δt(X̄(t)− x)dt; τ+x+h,γ > τξ,γ

]

≤ Ex

[
e−δτ

+
x+h,γ

h

1− γ
; τ+x+h,γ > τξ,γ

]

+ Ex

[
δh

1− γ

∫ τ+x+h,γ

0

e−δtdt; τ+x+h,γ > τξ,γ

]

=
h

1− γ
Ex

[
e−δτ

+
x+h,γ ; τ+x+h,γ > τξ,γ

]

+
h

1− γ
Ex

[(
1− e−δτ

+
x+h,γ

)
; τ+x+h,γ > τξ,γ

]

=
h

1− γ
Ex

[
e−δτ

+
x+h,γ ; τ+x+h,γ > τξ,γ

]

+
h

1− γ
Px

[
τ+x+h,γ > τξ,γ

]
− h

1− γ
Ex

[
e−δτ

+
x+h,γ ; τ+x+h,γ > τξ,γ

]

=
h

1− γ

(
1−

(
W ((1− ξ)x+ d)

W ((1− ξ)(x+ h) + d)

) 1
(1−ξ)(1−γ)

)

=
h

1− γ
− h

1− γ

(
W ((1− ξ)x+ d)

W ((1− ξ)(x+ h) + d)

) 1
(1−ξ)(1−γ)

=
h

1− γ
+ o(h),

where the second inequality follows by the fact that the integrand is positive and the condition
τ+x+h,γ > τξ,γ. In the third equality we apply the integral by parts. In the fourth inequality,
it follows by the maximal value of the integrand. And in the last equality we apply Theorem
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3.3. For the second expectation in (3.16), we can again bound it from above by

Ex[Tξ,γ,δ; τ
+
x+h,γ < τξ,γ]

= Ex

[ ∫ τ+x+h,γ

0

e−δtd(X̄(t)− x); τ+x+h,γ < τξ,γ

]

= Ex

[
e−δt(X̄(t)− x)

∣∣τ+x+h,γ

0
; τ+x+h,γ < τξ,γ

]

+ Ex

[
δ

∫ τ+x+h,γ

0

e−δt(X̄(t)− x)dt; τ+x+h,γ < τξ,γ

]

≤ h

1− γ
Ex

[
e−δτ

+
x+h,γ ; τ+x+h,γ < τξ,γ

]

+ Ex

[
δh

1− γ

∫ τ+x+h,γ

0

e−δtdt; τ+x+h,γ < τξ,γ

]

=
h

1− γ
Ex

[
e−δτ

+
x+h,γ ; τ+x+h,γ < τξ,γ

]

+
h

1− γ
Ex

[
1− e−δτ

+
x+h,γ ; τ+x+h,γ < τξ,γ

]

=
h

1− γ
Px

[
τ+x+h,γ < τξ,γ

]

=
h

1− γ

(
W ((1− ξ)x+ d)

W ((1− ξ)(x+ h) + d)

) 1
(1−ξ)(1−γ)

= o(h).

So, it follows that

Eu

[ ∫ τ+x+h,γ∧τξ,γ

τ+x,γ∧τξ,γ
e−δtd(X̄t − u)

]

= Eu

[
e−δτ

+
x,γ ; τ+x,γ < τξ,γ

]
Ex

[ ∫ τ+x+h,γ∧τξ,γ

0

e−δtd(X̄t − u)

]

=

(
W (δ)((1− ξ)u+ d)

W (δ)((1− ξ)x+ d)

) 1
(1−ξ)(1−γ)

Ex[Tξ,γ,δ]

=

(
W (δ)((1− ξ)u+ d)

W (δ)((1− ξ)x+ d)

) 1
(1−ξ)(1−γ)

(
h

1− γ
+ o(h)

)
.
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Therefore, by Riemann sum we obtain

Eu[Tξ,γ,δ] = lim
n→∞

n∑
i=1

Eu

[ ∫ τ+
u+i(a−u)/n,γ

∧τξ,γ

τ+
u+(i−1)(a−u)/n,γ

∧τξ,γ
e−δtd(X̄t − u)

]

= lim
n→∞

n∑
i=1

(
W (δ)((1− ξ)u+ d)

W (δ)((1− ξ)(u+ (i− 1)(a− u)/n) + d)

) 1
(1−ξ)(1−γ)

(
a− u

(1− γ)n
+ o

( 1
n

))

=
1

1− γ

∫ a

u

(
W (δ)((1− ξ)u+ d)

W (δ)((1− ξ)s+ d)

) 1
(1−ξ)(1−γ)

ds.

Similarly, for the second part of the theorem, we have

Eu

[ ∫ τ+x+h,γ

τ+x,γ

e−δtd(X̄(t)− u); τ+a,γ < τξ,γ

]

= Eu

[
e−δτ

+
x,γ ; τ+x,γ < τξ,γ

]
Ex

[ ∫ τ+x+h,γ

0

e−δtd(X̄(t)− x); τ+x+h,γ < τξ,γ

]
Px+h

{
τ+a,γ < τξ,γ

}

=

(
W (δ)((1− ξ)u+ d)

W (δ)((1− ξ)x+ d)

) 1
(1−ξ)(1−γ)

(
h

1− γ
+ o(h)

)(
W ((1− ξ)(x+ h) + d)

W ((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

.

Therefore,

Eu

[ ∫ τ+a,γ

0

e−δtd(X̄(t)− u); τ+a,γ < τξ,γ

]

= lim
n→∞

n∑
i=1

Eu

[ ∫ τ+
u+i(a−u)/n,γ

τ+
u+(i−1)(a−u)/n,γ

e−δtd(X̄t − u); τ+a,γ < τξ,γ

]

=
1

1− γ

∫ a

u

(
W (δ)((1− ξ)u+ d)W ((1− ξ)s+ d)

W (δ)((1− ξ)s+ d)W ((1− ξ)a+ d)

) 1
(1−ξ)(1−γ)

ds.
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3.3 Occupation times of general SNLPs in a draw-down interval.

In this sub-section, we will study the Laplace transform of the occupation time, which is
the total amount of time a SNLP X spends in an interval killed on exiting a pre-determined
interval. However, instead of considering the classical occupation times on a fixed interval,
we allow the interval varying over time. Particularly, we want to understand the law of
occupation time in a draw-down interval, killed on either exiting the upper barrier b or
another lower draw-down level (see Figure 5 for an illustration).

Figure 5: The occupation time of the SNLP X in the draw-down interval (shaded area): (ξ2X̄(t), ξ3X̄(t)). The sum of all red
intervals represents the occupation time without killing.

That is, suppose there are three ordered drawdown functions ξ1(·), ξ2(·) and ξ3(·) such that
ξ1(x) ≤ ξ2(x) ≤ ξ3(x) ≤ x for all x ≤ b, and also ξ̄i(x) := x − ξi(x) > 0. We are interested
in the joint Laplace transform of the forms

Ex

[
e−pτ

+
b −q

∫ τ+
b

0 1(ξ2(X̄t),ξ3(X̄t))
(Xt)dt, τ+b < τξ1

]
, (3.17)

and

Ex

[
e−pτξ1−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]
. (3.18)

Observe that with the condition ξi(x) < x for all x and i = 1, 2, 3, the occupation time
of the process X under a drawdown level ξi(X̄t) only happens during excursions at certain
time. Particularly, for each excursion εr with lifetime ζ(εr) where r = X̄t, the indicator
for the occupation time under the drawdown level ξi(r) is 1{εr(t)>ξ̄i(r)} for 0 ≤ t ≤ ζ(εr).
Therefore, under P, we can use excursion process to express the occupation time in (3.17) as

∫ τ+b

0

1(ξ2(X̄t),ξ3(X̄t))(Xt)dt =
∑
r∈[0,b]

∫ ζ(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt. (3.19)

On the other hand, to express the occupation time in (3.18), we recall the first passage time
of a genetic excursion process (introduced in Section (3.1)).

ρ+c = ρ+c (ε) := inf{s ∈ (0, ζ) : ε(s) > c}.
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Then, we can rewrite τξ1 as
τξ1 = L−1r− + ρ+

ξ̄1(r)
(εr),

where X̄(τξ) = L(τξ) = r. As a result, the occupation time in (3.18) can be expressed as

∫ τξ1

0

1(ξ2(X̄t),ξ3(X̄t))(Xt)dt =
∑

s∈[0,r)

∫ ζ(εs)

0

1{ξ̄3(s)<εs(t)<ξ̄2(s)}dt+
∫ ρ+

ξ̄1(r)
(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt.

(3.20)

Figure 6: The occupation time of the SNLP X is decomposed into excursion components.

Before stating our main results on the occupation times, we define two new scale functions
that will help putting our expressions in a compact and nested form

W
(p,q)
c (x, a) := W (p,q)

c (x)− q

∫ a

0

W (p,q)
c (x− z)W (p)(z)dz, (3.21)

and

Z
(p,q)
c (x, a) := Z(p,q)

c (x)− q

∫ a

0

Z(p,q)
c (x− z)W (p)(z)dz, (3.22)

where

W (p,q)
a (x) := W (p+q)(x)− q

∫ a

0

W (p+q)(x− y)W (p)(y)dy

= W (p)(x) + q

∫ x

a

W (p+q)(x− y)W (p)(y)dy,

and

Z(p,q)
a (x) := Z(p+q)(x)− q

∫ a

0

W (p+q)(x− y)Z(p)(y)dy

= Z(p)(x) + q

∫ x

a

W (p+q)(x− y)Z(p)(y)dy

are given in Section 2.3. Now we are ready for the following two theorems.

42



Theorem 3.5. For all x ≤ b and p, q ≥ 0, we have

Ex

[
e−pτ

+
b −q

∫ τ+
b

0 1(ξ2(X̄t),ξ3(X̄t))
(Xt)dt, τ+b < τξ1

]
= exp

{
−

∫ b

x

W
(p,q)′
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

dy

}
.

(3.23)

Theorem 3.6. For all x ≤ b and p, q ≥ 0, we have

Ex

[
e−pτξ1−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]
=

∫ b

x

exp

{
−

∫ z

x

W
(p,q)′
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

dy

}

×
(
W

(p,q)′
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

W
(p,q)
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

Z
(p,q)
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))− Z

(p,q)′
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

)
dz.

(3.24)

Remark 3.9. By letting ξ1 ≡ 0 ≤ ξ2 ≡ c ≤ ξ3 ≡ a ≤ b, we can recover the results in Loeffen
et al. (2014). We have

Ex

[
e−pτ

+
b −q

∫ τ+
b

0 1(c,a)(Xt)dt, τ+b < τ−0

]
= exp

{
−

∫ b

x

W
(p,q)′
c (y, y − a)

W
(p,q)
c (y, y − a)

dy

}

= exp

{
−

∫ b

x

d

dy
ln
{
W

(p,q)
c (y, y − a)}dy

}

=
W

(p,q)
c (x, x− a)

W
(p,q)
c (b, b− a)

,

and

Ex

[
e−pτ

−
0 −q

∫ τ−0
0 1(c,a)(Xt)dt; τ−0 < τ+b

]

=

∫ b

x

exp

{
−

∫ z

x

W
(p,q)′
c (y, y − a)

W
(p,q)
c (y, y − a)

dy

}(
W

(p,q)′
c (z, z − a)

W
(p,q)
c (z, z − a)

Z
(p,q)
c (z, z − a)− Z

(p,q)′
c (z, z − a)

)
dz

= W
(p,q)
c (x, x− a)

∫ b

x

(
W

(p,q)′
c (z, z − a)Z

(p,q)
c (z, z − a)− Z

(p,q)′
c (z, z − a)W

(p,q)
c (z, z − a)(

W
(p,q)
c (z, z − a)

)2
)
dz

= W
(p,q)
c (x, x− a)

∫ b

x

d

dz

(
− Z

(p,q)
c (z, z − a)

W
(p,q)
c (z, z − a)

)
dz

= Z
(p,q)
c (x, x− a)− W

(p,q)
c (x, x− a)

W
(p,q)
c (b, b− a)

Z
(p,q)
c (b, b− a).
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Remark 3.10. By letting q = 0 in Theorem 3.5 and Theorem 3.6 , we recover the solutions
of two-sided exit problems of Theorem 3.1 and 3.2. Particularly,

Ex

[
e−pτ

+
b , τ+b < τξ1

]
= exp

{
−

∫ b

x

W
(p,0)′
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W
(p,0)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

dy

}

= exp

{
−

∫ b

x

W (p,0)′
ξ2(y)−ξ1(y)(ξ̄1(y))

W (p,0)
ξ2(y)−ξ1(y)(ξ̄1(y))

dy

}

= exp

{
−

∫ b

x

W (p)′(ξ̄1(y))
W (p)(ξ̄1(y))

dy

}
,

where the second and third equation are followed by the definition of W
(p.q)
c (·, ·) and W

(p,q)
a (·)

respectively. Moreover,

Ex

[
e−pτξ1 , τξ1 < τ+b

]

=

∫ b

x

exp

{
−

∫ z

x

W
(p,0)′
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W
(p,0)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

dy

}

×
(
W

(p,0)′
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

W
(p,0)
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

Z
(p,0)
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))− Z

(p,0)′
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

)
dz

=

∫ b

x

exp

{
−

∫ z

x

W (p,0)′
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W (p,0)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

dy

}

×
(W (p,0)′

ξ2(z)−ξ1(z)(ξ̄1(z))

W (p,0)
ξ2(z)−ξ1(z)(ξ̄1(z))

Z(p,0)
ξ2(z)−ξ1(z)(ξ̄1(z))−Z(p,0)′

ξ2(z)−ξ1(z)(ξ̄1(z))
)
dz

=

∫ b

x

exp

{
−

∫ z

x

W (p)′(ξ̄1(y))
W (p)(ξ̄1(y))

dy

}(
W (p)′(ξ̄1(z))
W (p)(ξ̄1(z))

Z(p)(ξ̄1(z))− pW (p)(ξ̄1(z))

)
dz.

Proof of Theorem 3.5.

We first prove it under P. As mentioned at the beginning of Section 3.1 that under P, the
running maximum process X̄ is the local time of the reflected process Y at 0. Then its inverse
L−1s = τ+s is a subordinator with Laplace exponent Φ, and

ν = lim
s→∞

Φ(s)

s
= lim

s→∞
s

ψ(s)
= W (0).
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Also, the first passage time can be expressed as

τ+b = L−1b = νb+
∑
r∈[0,b]

ζ(εr),

where ζ = ζ(ε) is the lifetime of a generic excursion process. By the expression (3.19) and
with the help of exponential compensation formula, we have

E

[
e−pτ

+
b −q

∫ τ+
b

0 1(ξ2(X̄t),ξ3(X̄t))
(Xt)dt, τ+b < τξ1

]

= E

[
exp

{
− p

(
νb+

∑
r∈[0,b]

ζ(εr)
)− q

∑
r∈[0,b]

∫ ζ(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt
} ∏

r∈[0,b]
1{ε̄r≤ξ̄1(r)}

]

= e−pνbE
[
exp

{
−

∑
r∈[0,b]

(
pζ(εr) + q

∫ ζ(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt
)} ∏

r∈[0,b]
1{ε̄r≤ξ̄1(r)}

]

= e−pνbE
[
exp

{
−

∑
r∈[0,b]

(
pζ(εr) + q

∫ ζ(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt+∞ · 1{ε̄r>ξ̄1(r)}

)}]

= exp

{
−

∫ b

0

(
pν +

∫
E

(
1− exp

{
− pζ − q

∫ ζ

0

1{ξ̄3(r)<ε(t)<ξ̄2(r)}dt
}
1{ε̄≤ξ̄1(r)}

)
n(dε)

)
dr

}
.

Consider the case where ξ1 ≡ d ≤ ξ2 ≡ c ≤ ξ3 ≡ a ≤ 0 ≤ b. Recall that the results in Loeffen
et al. (2014) can be expressed in a nice form using W

(p,q)
c (x, a) and Z

(p,q)
c (x, a) as

Ex

[
e−pτ

+
b −q

∫ τ+
b

0 1(c,a)(Xt)dt; τ+b < τ−0

]
=

W
(p,q)
c (x, x− a)

W
(p,q)
c (b, b− a)

,

which means

E

[
e−pτ

+
b −q

∫ τ+
b

0 1(c,a)(Xt)dt; τ+b < τ−d

]
=

W
(p,q)
c−d (−d,−a)

W
(p,q)
c−d (b− d, b− a)

.

Therefore, putting everything together we get

W
(p,q)
c−d (−d,−a)

W
(p,q)
c−d (b− d, b− a)

= E

[
e−pτ

+
b −q

∫ τ+
b

0 1(c,a)(Xt)dt; τ+b < τ−d

]

= exp

{
−

∫ b

0

(
pν +

∫
E

(
1− exp

{
− pζ − q

∫ ζ

0

1{r−a<ε(t)<r−c}dt
}
1{ε̄≤r−d}

)
n(dε)

)
dr

}
.
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Taking log on both sides of the above equation we get

ln

[
W

(p,q)
c−d (b− d, b− a)

W
(p,q)
c−d (−d,−a)

]

=

∫ b

0

(
pν +

∫
E

(
1− exp

{
− pζ − q

∫ ζ

0

1{r−a<ε(t)<r−c}dt
}
1{ε̄≤r−d}

)
n(dε)

)
dr.

Differentiating on both side of the above equation with respect to b we obtain

pν +

∫
E

(
1− exp

{
− pζ − q

∫ ζ

0

1{b−a<ε(t)<b−c}dt
}
1{ε̄≤b−d}

)
n(dε) =

W
′(p,q)
c−d (b− d, b− a)

W
(p,q)
c−d (b− d, b− a)

.

Or in general, for y ≥ 0

pν+

∫
E

(
1−exp

{
−pζ−q

∫ ζ

0

1{ξ̄3(y)<ε(t)<ξ̄2(y)}dt
}
1{ε̄≤ξ̄1(y)}

)
n(dε) =

W
′(p,q)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

.

Hence, we obtain our desired result of Theorem 3.5 under P.

For the general case under Px where x < b, we consider functions ςi(y) := ξi(y + x) − x,
i = 1, 2, 3. Then ς̄i(y) = y + x− ξi(y + x) = ξ̄i(y + x). Because X is spatially homogeneous,
by a shifting argument, we have

Ex

[
e−pτ

+
b −q

∫ τ+
b

0 1(ξ2(X̄t),ξ3(X̄t))
(Xt)dt, τ+b < τξ1

]

= E

[
e−pτ

+
b−x−q

∫ τ+
b−x

0 1(ς2(X̄s),ς3(X̄s))
(Xs)ds, τ+b−x < τς1

]

= exp

{
−

∫ b−x

0

W
′(p,q)
ς2(y)−ς1(y)(ς̄1(y), ς̄3(y))

W
(p,q)
ς2(y)−ς1(y)(ς̄1(y), ς̄3(y))

dy

}

= exp

{
−

∫ b

x

W
′(p,q)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y)(ξ̄1(y), ξ̄3(y))

dy

}
.

Proof of Theorem 3.6.

Recall that the draw-down time τξ can be expressed as

τξ = L−1r− + ρ+
ξ̄(r)

(εr),

where X̄(τξ) = L(τξ) = r, and ρ+c = ρ+c (ε) := inf{s ∈ (0, ζ) : ε(s) > c} is the first passage
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time of a genetic excursion process. Also, the occupation time has the form

∫ τξ1

0

1(ξ2(X̄s),ξ3(X̄s))(Xs)ds =
∑

s∈[0,r)

∫ ζ(εs)

0

1{ξ̄3(s)<εs(t)<ξ̄2(s)}dt+
∫ ρ+

ξ̄1(r)
(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt.

Using the same approach as in the proof of Theorem 3.5, under P we have

E

[
e−pτξ1−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]

= E

[ ∑
r∈[0,b]

(
exp

{
− p(L−1r− + ρ+

ξ̄1(r)
(εr))− q

∑
s∈[0,r)

∫ ζ(εs)

0

1{ξ̄3(s)<εs(t)<ξ̄2(s)}dt

− q

∫ ρ+
ξ̄1(r)

(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt
}∏

s<r

1{ε̄s≤ξ̄1(s)}1{ε̄r>ξ̄1(r)}

)]

= E

[ ∑
r∈[0,b]

((
exp

{
− pL−1r− − q

∑
s∈[0,r)

∫ ζ(εs)

0

1{ξ̄3(s)<εs(t)<ξ̄2(s)}dt
}∏

s<r

1{ε̄s≤ξ̄1(s)}

)

×
(
exp

{
− pρ+

ξ̄1(r)
(εr)− q

∫ ρ+
ξ̄1(r)

(εr)

0

1{ξ̄3(r)<εr(t)<ξ̄2(r)}dt
}
1{ε̄r>ξ̄1(r)}

))]

= E

[ ∫ L−1
b

0

(
exp

{
− pt− q

∑
s∈[0,L(t))

∫ ζ(εs)

0

1{ξ̄3(s)<εs(t)<ξ̄2(s)}dt
} ∏

s<L(t)

1{ε̄s≤ξ̄1(s)}

×
∫
E
exp

{
− pρ+

ξ̄1(L(t))
− q

∫ ρ+
ξ̄1(L(t))

0

1{ξ̄3(L(t))<ε(t)<ξ̄2(L(t))}dt
}
1{ε̄>ξ̄1(L(t))}n(dε)

)
dL(t)

]

= E

[ ∫ b

0

(
exp

{
− pL−1r− − q

∑
s∈[0,r)

∫ ζ(εs)

0

1{ξ̄3(s)<εs(t)<ξ̄2(s)}dt
}∏

s<r

1{ε̄s≤ξ̄1(s)}

×
∫
E
exp

{
− pρ+

ξ̄1(r)
− q

∫ ρ+
ξ̄1(r)

0

1{ξ̄3(r)<ε(t)<ξ̄2(r)}dt
}
1{ε̄>ξ̄1(r)}n(dε)

)
dr

]

=

∫ b

0

E

[
e−pL

−1
r −q ∫ L−1

r
0 1(ξ2(Xt),ξ3(Xt))

(Xt)dt, L−1r < τξ1

]

× n

(
e
−pρ+

ξ̄1(r)
−q ∫

ρ+
ξ̄1(r)

0 1{ξ̄3(r)<ε(t)<ξ̄2(r)}dt1{ε̄>ξ̄1(r)}

)
dr

=

∫ b

0

E

[
e−pτ

+
r −q

∫ τ+r
0 1(ξ2(Xt),ξ3(Xt))

(Xt)dt, τ+r < τξ1

]

× n

(
e
−pρ+

ξ̄1(r)
−q ∫

ρ+
ξ̄1(r)

0 1{ξ̄3(r)<ε(t)<ξ̄2(r)}dt1{ε̄>ξ̄1(r)}

)
dr

=

∫ b

0

e
− ∫ r

0

W
′(p,q)
ξ2−ξ1

(ξ̄1(y),ξ̄3(y))

W
(p,q)
ξ2−ξ1

(ξ̄1(y),ξ̄3(y))
dy

n

(
e
−pρ+

ξ̄1(r)
−q ∫

ρ+
ξ̄1(r)

0 1{ξ̄3(r)<ε(t)<ξ̄2(r)}dt1{ε̄>ξ̄1(r)}

)
dr.
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In the third equation, we applied the compensation formula in excursion theory; the fourth
equation was obtained by the change of variable r = L(t); and we again use the fact the
L−1r �= L−1r− for at most countably many values of r in the fifth equation.

Now consider the case where ξ1 ≡ d ≤ ξ2 ≡ c ≤ ξ3 ≡ a ≤ 0 ≤ b. Recall that by Loeffen
et al. (2014) we have

Ex

[
e−pτ

−
0 −q

∫ τ−0
0 1(c,a)(Xt)dt; τ−0 < τ+b

]
= Z

(p,q)
c (x, x− a)− W

(p,q)
c (x, x− a)

W
(p,q)
c (b, b− a)

Z
(p,q)
c (b, b− a),

Or it can be modified as

E

[
e−pτ

−
d −q

∫ τ−
d

0 1(c,a)(Xt)dt; τ−d < τ+b

]
= Z

(p,q)
c−d (−d,−a)− W

(p,q)
c−d (−d,−a)

W
(p,q)
c−d (b− d, b− a)

Z
(p,q)
c−d (b− d, b− a).

Thus

Z
(p,q)
c−d (x− d, x− a)− W

(p,q)
c−d (x− d, x− a)

W
(p,q)
c−d (b− d, b− a)

Z
(p,q)
c−d (b− d, b− a)

= Ex

[
e−pτ

−
d −q

∫ τ−
d

0 1(c,a)(Xt)dt; τ−d < τ+b

]

=

∫ b

0

e
− ∫ r

0

W
(p,q)′
c−d

(y−d,y−a)

W
(p,q)
c−d

(y−d,y−a)
dy

n

(
e−pρ

+
r−d−q

∫ ρ+
ξ̄1(r)

0 1{r−a<ε(t)<r−c}dt1{ε̄>r−d}

)
dr.

Differentiating with respect to b on both sides of the equation above will result in

n

(
e−pρ

+
b−d−q

∫ ρ+
ξ̄1(b)

0 1{b−a<ε(t)<b−c}dt1{ε̄>b−d}

)

=

(
W

(p,q)′
c−d (b− d, b− a)

W
(p,q)
c−d (b− d, b− a)

Z
(p,q)
c−d (b− d, b− a)− Z

(p,q)′
c−d (b− d, b− a)

)
,

which implies that, for any z ≥ 0 we have

n

(
e
−pρ+

ξ̄1(z)
−q ∫

ρ+
ξ̄1(b)

0 1{ξ̄3(z)<ε(t)<ξ̄2(z)}dt1{ε̄>ξ̄1(z)}

)

=

(
W

(p,q)′
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

W
(p,q)
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

Z
(p,q)
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))− Z

(p,q)′
ξ2(z)−ξ1(z)(ξ̄1(z), ξ̄3(z))

)
.

As a result, Theorem 3.6 is proved for the case under P. For the case of X(0) = x, it
follows by the shifting argument.
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Indeed, we can add more terms into Theorem 3.6. That is, we can obtain the expression of
the joint Laplace transform

Ex

[
e−uτξ1+νX(τξ1 )−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]
.

But, first we need to introduce a new notation W (p,q)
a,c (x), which is just the (p,q)-scale function

under a new measure P
c. That is, for c, p, q ≥ 0, p+ q + ψ(c) ≥ 0, we have

W
(p,q)
a,c (x) = W (p+q)

c (x)− q

∫ a

0

W (p+q)
c (x− y)W (p)

c (y)dy

= e−cxW (p+q+ψ(c))(x)− q

∫ a

0

e−c(x−y)W (p+q+ψ(c))(x− y)e−cyW (p+ψ(c))(y)dy

= e−cxW (p+q+ψ(c))(x)− qe−cx
∫ a

0

W (p+q+ψ(c))(x− y)W (p+ψ(c))(y)dy

= e−cx
(
W (p+q+ψ(c))(x)− q

∫ a

0

W (p+q+ψ(c))(x− y)W (p+ψ(c))(y)dy

)
= e−cxW (p+ψ(c),q)

a (x).

Similarly,

Z
(p,q)
a,c (x) = Z(p+q)

c (x)− q

∫ a

0

W (p+q)
c (x− y)Z(p)

c (y)dy

= Z(p)
c (x) + q

∫ x

a

W (p+q)
c (x− y)Z(p)

c (y)dy.

Now, we are ready for the following corollary.

Corollary 3.2. For any u, ν, q ≥ 0 and p = u− ψ(ν), we have

Ex

[
e−uτξ1+νX(τξ1 )−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]

=

∫ b

x

exp

{
νx−

∫ z

x

W
(p,q)′
ξ2(y)−ξ1(y),ν(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y),ν(ξ̄1(y), ξ̄3(y))

dy

}

×
(
W

(p,q)′
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

W
(p,q)
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

Z
(p,q)
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))− Z

(p,q)′
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

)
dz.

(3.25)
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Proof. First we assume X(0) = 0, then by the change of measure, we have

E

[
e−uτξ1+νX(τξ1 )−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]

= E
(ν)

[
e−uτξ1+ψ(ν)τξ1−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]

= E
(ν)

[
e−pτξ1−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]

=

∫ b

0

exp

{
−

∫ z

0

W
(p,q)′
ξ2(y)−ξ1(y),ν(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y),ν(ξ̄1(y), ξ̄3(y))

dy

}

×
(
W

(p,q)′
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

W
(p,q)
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

Z
(p,q)
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))− Z

(p,q)′
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

)
dz.

To generalize this result to the case Px with x < b, similar to the proof of Theorem (3.1), we
define a function ς(y) := ξ(y + x)− x. Then

ς̄(y) = y + x− ξ(y + x) = ξ̄(y + x).

Because X is spatially homogeneous, we have (X, X̄, τξ)
∣∣
Px

= (x+X, x+ X̄, τς)
∣∣
P
. Hence,

Ex

[
e−uτξ1+νX(τξ1 )−q

∫ τξ1
0 1(ξ2(X̄t),ξ3(X̄t))

(Xt)dt, τξ1 < τ+b

]

= eνxE

[
e−uτς1+νX(τς1 )−q

∫ τς1
0 1(ς2(X̄t),ς3(X̄t))

(Xt)dt, τς1 < τ+b−x

]

=

∫ b−x

0

exp

{
νx−

∫ z

0

W
(p,q)′
ς2(y)−ς1(y),ν(ς̄1(y), ς̄3(y))

W
(p,q)
ς2(y)−ς1(y),ν(ς̄1(y), ς̄3(y))

dy

}

×
(
W

(p,q)′
ς2(z)−ς1(z),ν(ς̄1(z), ς̄3(z))

W
(p,q)
ς2(z)−ς1(z),ν(ς̄1(z), ς̄3(z))

Z
(p,q)
ς2(z)−ς1(z),ν(ς̄1(z), ς̄3(z))− Z

(p,q)′
ς2(z)−ς1(z),ν(ς̄1(z), ς̄3(z))

)
dz

=

∫ b

x

exp

{
νx−

∫ z

x

W
(p,q)′
ξ2(y)−ξ1(y),ν(ξ̄1(y), ξ̄3(y))

W
(p,q)
ξ2(y)−ξ1(y),ν(ξ̄1(y), ξ̄3(y))

dy

}

×
(
W

(p,q)′
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

W
(p,q)
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

Z
(p,q)
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))− Z

(p,q)′
ξ2(z)−ξ1(z),ν(ξ̄1(z), ξ̄3(z))

)
dz.

This completes the proof of Corollary 3.2.
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4 Other results related to draw-down time for SNLPs

and future works

4.1 Other results related to draw-down time

4.1.1 Draw-down Parisian ruin for SNLPs

In risk theory, we are interested in the first time the process has stays below zero for a con-
secutive period of time that is greater than a pre-determined duration of length r, and we
call this a Parisian ruin, denoted by κr. This concept was first initiated for option pricing
in mathematical finance, then it was soon studied under the framework of Brownian motion
and the Lundberg risk processes. Consequently, the Parisian ruin problem has been brought
to SNLPs. Recently, with the new development of draw-down time, it is practical to consider
the draw-down Parisian ruin for SNLPs. Wang and Zhou (2020) worked on this and found
the solution to the two-sided exit problems via excursion theory as well as the potential
measure for the process killed at the draw-down Parisian time.

For r > 0, the Parisian ruin time is defined by

κr := inf{t > r : t− gt > r} where gt := sup{0 < s < t : X(s) ≥ 0}. (4.1)

Given the draw-down function ξ, the draw-down Parisian ruin time is defined by

κξ
r := inf{t > r : t− gξt > r} where gξt := sup{0 < s < t : X(s) ≥ ξ(X̄(s))}. (4.2)

The following theorem in Wang and Zhou (2020) concerns about the two-sided exit problem
with the draw-down Parisian ruin time.

Theorem 4.1. For x ∈ (−∞, a) and q ≥ 0, we have

Ex

[
e−qτ

+
a , τ+a < κξ

r

]
= exp

{
−

∫ a

x

l
(q)′
r (ξ̄(z))

l
(q)
r (ξ̄(z))

dz

}
, (4.3)

where

l(q)r (x) :=

∫ ∞

0

W (q)(x+ z)
z

r
P(X(r) ∈ dz) (4.4)

can be viewed as a scale function associated to the Parisian ruin. We denote lr := l
(0)
r for

simplicity.

The potential measure for the process killed at the draw-down Parisian time is also derived
in Wang and Zhou (2020).

51



Theorem 4.2. For any q, λ ≥ 0, r > 0, a ≥ x and bounded differentiable function f, we have∫ ∞

0

e−q(t−r)Ex

(
f(X(t)); t < κξ

r ∧ τ+a
)
dt (4.5)

=

∫ a

x

exp

{
−

∫ w

x

l
(q)′
r (ξ̄(z))

l
(q)
r (ξ̄(z))

dz

}[
l
(q)′
r (ξ̄(w))

l
(q)
r (ξ̄(z))

(∫ r

0

eq(r−s)E
(
f(w +X(s))

)
ds

−
∫ ξ̄(w)

0

W (q)(ξ̄(w)− z)E
(
f(z + ξ(w) +X(r))

)
dz −

∫ r

0

E
(
f(ξ(w) +X(r − s))

)
l(q)s (ξ̄(w))ds

)

−
∫ r

0

eq(r−s)E
(
f ′(w +X(s))

)
ds+

∫ ξ̄(w)

0

W (q)′(ξ̄(w)− z)E
(
f(z + ξ(w) +X(r))

)
dz

+W (q)(0+)E
(
f(w +X(r))

)
+

∫ r

0

E
(
f(ξ(w) +X(r − s))

)
l(q)′s (ξ̄(w))ds

]
dw.

4.1.2 Draw-down reflected SNLPs

The reflected spectrally negative Lévy process has been well-known due to its wide range of
applications in queuing theory, the optimal stopping problems, the optimal control problem
and so on. To generalize these results, Wang and Zhou (2019) recently studied a new process
R that is obtained by reflecting the SNLP from consecutive draw-down levels. Intuitively,
for all the time before the first draw-down time of R, the process R agrees with the SNLP X.
Right after that time, it evolves according to the process X reflected at the draw-down level
until it reaches its previous height. The process keeps repeating the previous behavior for
the updated draw-down times and draw-down levels. Wang and Zhou (2019) have worked
out the Laplace transform of the upper exiting time for this process R.

Theorem 4.3. For q > 0 and x ≤ b, define the first passage time of b ∈ R for the process R
as κ+

b := inf{t ≥ 0 : R(t) > b}, then we have

Ex[e
−qκ+

b ] = exp

(
−

∫ b

x

qW (q)(ξ̄(z))

Z(q)(ξ̄(z))
dz

)
, (4.6)

where the draw-down function ξ(·) and ξ̄(·) are same in the previous sections.

Wang and Zhou (2019) also obtained an expression of the resolvent density for the process
R.

Theorem 4.4. For q > 0 and x, r ≤ b, the resolvent measure of R is absolutely continuous
with respect to the Lebesgue measure with density given by∫ ∞

0

e−qtPx[R(t) ∈ dr, t < κ+
b ]dt

=

∫ b

x

exp

(
−

∫ y

x

qW (q)(ξ̄(z))

Z(q)(ξ̄(z))
dz

)(
W (q)′(y − r)− qW (q)(ξ̄(y))

Z(q)(ξ̄(y))
W (q)(y − r)

)
1(ξ(y),y)(r)dydr

+W (q)(0) exp

(
−

∫ r

x

qW (q)(ξ̄(z))

Z(q)(ξ̄(z))
dz

)
1(x,b)(r)dr.
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The expression of the expectation of the total discounted capital injections and the
Laplace transform of the accumulated capital injections until time κ+

b are also given in Wang
and Zhou (2019).

4.2 Future work

We are interested in the following quantity∫ ∞

0

e−ptEx

[
e−q

∫ t
0 1(ξ2(X̄s),ξ3(X̄s))

(Xs)ds;Xt ∈ dy, t < τ+b ∧ τξ1

]
dt, (4.7)

where ξ1(x) ≤ ξ2(x) ≤ ξ3(x) ≤ x ≤ b for all x ∈ R. This quantity is just a general version of
(2.41) in Li and Palmowski (2018). That is

U (ω)(x, dy) =

∫ ∞

0

e−ptEx

[
exp

(
− q

∫ t

0

(1(a,b)(Xs))ds

)
; t < τ−0 ∧ τ+c , Xt ∈ dy

]
dt.

=

(W (ω)(x, 0)

W (ω)(c, 0)
W (ω)(c, y)−W (ω)(x, y)

)
dy.

In order to work out the expression (4.7) using the excursion theory, our idea is first try to
rewrite (4.7) in terms of excursion processes, then using the expression of U (ω)(x, dy) above,
we can obtain the expression of associated excursion measure. Therefore, we will be able to
use the same technique that we have used in the proofs in this thesis to obtain the expression
(4.7).
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advanced Lévy models. Wiley.

[21] Kyprianou, A.E. (2006). Fluctuations of Lévy processes with applications. Springer.
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Proefschrift.

[33] Prabhu, N.U. (1998). Stochastic storage processes. (2nd ed.). Springer.

[34] Rogozin, B.A. (1972). The distribution of the first hit for stable and asymptotically
stable walks on an interval. Theory of Probability and Its Applications, 17(2), 332–338.
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PART II: On estimation of entropy
and residual entropy for nonnegative
random variables

1 Introduction

Originally, the concept of entropy comes from a principle in a branch of physics called ther-
modynamics which deals with energy. A German physicist, Rudolph Clausius, used the
word “entropy” to describe the measurement of disorder. However, entropy theory started
to attract applied statisticians since a publication of a paper by Shannon in 1949, in which
entropy is used to measure the unpredictability of the state (or of its information content).
Suppose X is a discrete random variable with alphabet size K and associated cell probabili-
ties p1, p2, ..., pK where pi > 0 and

∑
i pi = 1. An entropy H of this discrete random variable

X is defined as

H = −
K∑
i=1

pi log pi. (1.1)

If X is a continuous random variable with probability density function (pdf) f(x), then the
entropy is defined as

Hf = −
∫ ∞

−∞
f(x) log f(x)dx. (1.2)

After the introduction to entropy by Shannon, many researchers have been studying this
quantity and it becomes a central place in statistical theory and applications (see Cover and
Thomas, 1991 Kapur, 1993 and Kapur and Kesavan, 1992). One of the well known appli-
cations of entropy in statistics is the test of normality for a random variable because of the
characterizing property that the normal distribution attains the maximum entropy among
all continuous distributions with a given variance [see Vacicek, 1976 and an adaptation to
testing exponentiality by Chaubey, Mudholkar and Smethurst, 1993].

Ebrahimi (1996) provided an interpretation of Hf as a measure of uncertainty associated
with f. In the context of life testing, X being the lifetime of a unit, knowing that the unit
has survived up to time t, a more appropriate measure for uncertainty in f is defined as

Hf (t) = −
∫ ∞

t

(
f(x)

R(t)

)(
log

f(x)

R(t)

)
dx, (1.3)

where R(t) = P(X > t) is the reliability or the survival function. Hf (t) is called residual
entropy of X given the event {X > t}. In this thesis, we focus on estimating Hf and more
generally Hf (t) when X is continuous and more specifically, when X is a nonnegative random
variable.

However, in practice the underlying pdf (or pmf for the discrete case) of a random variable
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is unknown, so the question of entropy estimation comes naturally. In recent decades, there
exists a huge number of researchers working on entropy estimation, and their proposals have
formed a collection of estimators which can be classified as follows.

(i) A naive approach is to discretize the support of the underlying density function into
m bins, then for each bin we compute the empirical measures, corresponding to pi =∫
Ai

f(x)dx. That is ifX1, X2, ..., Xn are independently and identically distributed (i.i.d.)

continuous random variables, then p̂i =
1
n

∑n
j=1 1Ai

(Xj), where {Ai}mi=1 are mutually
disjoint subsets of R such that ∪m

i=1Ai = support(X). Clearly, p̂i is the maximum
likelihood estimator (MLE) for pi. With this estimator p̂i, a “naive” or “plug-in” MLE
estimator of entropy is given as

ĤMLE
f = −

m∑
i=1

p̂i log p̂i. (1.4)

It has been shown that this MLE estimator of entropy results in heavy bias. Conse-
quently, the problem of bias correction and the choice of m have drawn the attention
of many researchers; see Paninski (2003) for a detailed account.

(ii) One straightforward approach for entropy estimation is to estimate the underlying
density function f(x) by some well-known density estimator f̂n(x), then plug it into
(1.2) to obtain the entropy estimator

ĤP lugin
f = −

∫ ∞

0

f̂n(x) log f̂n(x)dx. (1.5)

The fixed symmetric kernel density estimator f̂Fixed
n (x), which is already a well-known

and popular approach for estimating the pdf with an unbounded support, is an example
of density estimator which is defined as

f̂Fixed
n (x) =

1

nb

n∑
i=1

K

(
x−Xi

b

)
, (1.6)

whereK is a symmetric density function with mean zero and variance one, and b := b(n)
is the smoothing parameter, called the bandwidth. It is obvious that the performance
of this plugin entropy estimator totally depends on the density estimator f̂n. However,
when dealing with non-negative random variables, this f̂Fixed

n (·) is shown to produce a
heavy bias near the boundary. Consequently, it would result in a better estimator if
we replace f̂Fixed

n by some density estimators that is free of boundary effect.

(iii) Motivated by the representation of entropy as an expected value

Hf = −
∫ ∞

0

f(x) log f(x)dx = −E[log f(X)].
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By the strong law of large number we have − 1
n

∑n
i=1 log f(Xi)

a.s.→ Hf . Thus we obtain

a new entropy estimator if we replace f(·) by an appropriate density estimator f̂n(·),
as given by

ĤMeanlog
f = − 1

n

n∑
i=1

log f̂n(Xi). (1.7)

(iv) The entropy can be estimated by another approach, called “spacing”, which is initiated
by Vasicek (1975). By the change of variable p = F (x), the entropy (1.2) can be
expressed in the form

Hf = −
∫ ∞

−∞
f(x) log f(x)dx =

∫ 1

0

log

{
d

dp
F−1(p)

}
dp.

To estimate Hf , the distribution F is replaced by the empirical distribution Fn, and the
differential operator is replaced by the difference operator. As a result, the derivative
of F−1(p) is estimated by n

2m
(X(i+m) −X(i−m)) for (i− 1)/n < p ≤ i/n, i = m+1,m+

2, ..., n − m, where X(i)’s are the order statistics and m is a positive integer smaller
than n/2. When p ≤ m/n or p > (n −m)/n, one-sided differences are used. That is,
(X(i+m) −X(1)) and (X(n) −X(i−m)) are in place of (X(i+m) −X(i−m)) respectively. All
together this leads to the following estimator of entropy

ĤV asicek
f =

1

n

n∑
i=1

log

{
n

2m
(X(i+m) −X(i−m))

}
. (1.8)

Motivated by the idea of spacing, researchers have followed this direction and proposed
other versions of entropy estimator, which are claimed to have a better performance. We
will list some of them in the next section. One of the greatest weakness of this spacing
estimator is the choice of spacing parameter m, which does not have the optimal form.

(v) Lastly, different from all of the above estimators, Bouzebda et al. (2013) presented a
potentially estimator of entropy based on smooth estimator of quantile density function.
Their idea again starts with the expression of the entropy

Hf =

∫ 1

0

log

{
d

dp
F−1(p)

}
dp =

∫ 1

0

log

{
d

dp
Q(p)

}
dp =

∫ 1

0

log q(p)dp,

where Q(p) := inf{t : F (t) ≥ p} for 0 ≤ p ≤ 1 is the quantile function and q(p) :=
dQ(p)/dp = 1/f(Q(p)) is the quantile density function. Then a new entropy estimator
can be obtained by substituting q(·) by its appropriate estimator q̂n(·). That is

ĤQuantile
f =

∫ 1

0

log q̂n(p)dp. (1.9)

Bouzebda et al. (2013) were motivated by the work of Cheng and Parzen (1997), which
introduced a kernel type estimator q̂n(·) that has good asymptotic properties.
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On the other hand, for the residual entropy estimation, Belzunce et al. (2001) suggested that
we can rewrite (1.3) as

Hf (t) = log(R(t))− 1

R(t)

∫ ∞

t

f(x) log f(x)dx. (1.10)

Then the residual entropy can be estimated if we replace R(t) by an empirical or ker-
nel estimator R̂(t), and an estimator ĝn(x) = f̂n(x) log f̂n(x) in place of the functional
g(x) = f(x) log f(x).

The organization of this thesis is as follow. Section 2 will explore more detailed prop-
erties and behaviors of existing estimators introduced above. Our main results are in the
Section 3, in which we show our proposed estimators of entropy and residual entropy. Also,
we obtain some asymptotic properties of our estimators. The simulation study to show and
compare the performance between our proposals and the existing ones will be carried out in
the Section 4.

2 Properties of entropy and residual entropy estima-

tors

2.1 Estimation by direct use of density estimators

Obviously, this is one of the most straightforward approach in enstimating entropy. With
the density estimator on hand, the entropy and residual entropy can be estimated by

ĤP lugin
f = −

∫ ∞

0

f̂n(x) log f̂n(x)dx,

ĤMeanlog
f = − 1

n

n∑
i=1

log f̂n(Xi),

ĤP lugin
f = log R̂(t)− 1

R̂(t)

∫ ∞

t

f̂n(x) log f̂n(x)dx,

where R̂(t) =

∫ ∞

t

f̂n(x)dx.

When dealing with pdfs with bounded support, the fixed symmetric kernel density estimator
has been shown to have poor performance especially for those estimations near the bound-
aries, which is so-called the “boundary effect”, “boundary bias”, or the “spill-over effect”. To
overcome these issues, in literature, there are a huge number of papers concerning the estima-
tion of density function with bounded support (see, e.g., Müller (1991), Marron and Ruppert
(1994), Jones (1993), Jones and Foster (1996)). Namely, some of approaches are: fixed kernel
density estimator with boundary bias correction, varying asymmetric kernel density estima-
tor, transformation kernel density estimator, and so on. Roughly speaking, although there
exists many kernel density estimators for pdf with bounded support, so far none of them
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seems to dominate the others both in terms of precision (smallest mean integrated squared
error (MISE)) and performance (the rate of convergence).

2.1.1 Fixed symmetric kernel density estimators with bias correction

The first naive idea of fixing the boundary effect is to modify the standard kernel density
estimator in such a way that the resulting estimator will have less bias while keeping the
order of convergence. However, even though this method seems to work well in certain cases,
it does not produce an estimator with good properties. For instance, the new density esti-
mator may be negative, may not have the same support as the true underlying pdf, or may
not integrate to one. Some examples of this type are

� The reflection density estimator (Schuster, 1958)

f̂Ref
n (x) =

1

nb

n∑
i=1

[
K

(
x−Xi

b

)
+K

(
x+Xi

b

)]
, (2.1)

where K is any symmetric density function and b is the bandwidth. Note that the
bandwidth is a function of n but for simplification, we use b for b(n).

� The cut-and-normalized density estimator (Gasser and Müller ,1979)

f̂CN
n (x) =

1
nb

∑n
i=1 K

(
x−Xi

b

)
K0(p)

, (2.2)

where (−SK , SK) is the support of kernelK, p = x/b, andKj(p) =
∫ min{p,SK}
−SK

ujK(u)du.

� The bounded density estimator (Jones, 1993)

f̂Bound
n (x) = αxf̂

CN
n (x,K) + βxf̂

CN
n (x, L), (2.3)

where f̂CN
n (x,K) and f̂CN

n (x, L) are the cut-and-normalized density estimator with 2
different kernel K and kernel L, and

αx =
L1(p)K0(p)

L1(p)K0(p)−K1(p)L0(p)
βx =

−K1(p)L0(p)

L1(p)K0(p)−K1(p)L0(p)
.

� The Jones and Foster estimator (Jones and Foster, 1996)

f̂J&F
n (x) = f̂CN

n (x) exp

{
f̂Bound
n (x)

f̂CN
n (x)

− 1

}
. (2.4)
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2.1.2 Varying Asymmetric kernel density estimators

Another simple idea in fixing the boundary effect is to replace the symmetric kernel K by
an asymmetric kernel density with the shape parameter as a function of the point of esti-
mation x. Some properties of varying asymmetric kernel density estimators, which make
them one of the best candidates for density estimation, are nonnegative, same support as the
true underlying density function, and integrating to unity. The latter is an obvious property
because the asymmetric kernel itself is a density function. Below we give some examples of
potentially good asymmetric kernels along with their bias, variance, and mean squared error
(where available).

� The inverse Gaussian kernel estimator (Bouezmarni and Scaillet, 2005)

f̂ IG
n (x) =

1

n

n∑
i=1

KIG(x, b,Xi), (2.5)

where KIG(x, b, t) is the inverse Gaussian density with the mean x and the shape
parameter 1/b. That is

KIG(x, b, t) =
1√
2πbt3

exp

(
− 1

2bx

(
t

x
− 2 +

x

t

))
.

� The reciprocal inverse Gaussian kernel estimator (Bouezmarni and Scaillet, 2005)

f̂RIG
n (x) =

1

n

n∑
i=1

KRIG(x, b,Xi), (2.6)

where KRIG(x, b, t) is the reciprocal inverse Gaussian density

KRIG(x, b, t) =
1√
2πbt

exp

(
− x− b

2b

(
t

x− b
− 2 +

x− b

t

))
.

� The modified Gamma kernel estimator (Chen, 2000)

f̂Gam
n (x) =

1

n

n∑
i=1

KGam(x, b,Xi), (2.7)

where KGam(x, b, t) is the pdf of the Gamma distribution with the scale parameter b
and the shape parameter x/b+ 1.

KGam(x, b, t) =
tx/b exp(−t/b)

bx/b+1Γ(x/b+ 1)
.
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If b → 0 and nb → ∞ as n → ∞, its asymptotic bias and variance have the form

Bias
[
f̂Gam(x)

]
= bf ′(x) +

1

2
bxf ′′(x) + o(b),

V ar
[
f̂Gam(x)

] ≈
{

f(x)
nb

Cb(x) if x/b → κ,
f(x)

2n
√
πbx

if x/b → ∞,

where κ is a nonnegative constant, and Cb(x) = Γ(2κ+1)
21+2κΓ2(κ+1)

.

The following theorem from Bouezmarni and Scaillet (2005) shows the uniformly weak con-
sistency of these varying asymmetric kernel estimators mentioned above.

Theorem 2.1. Let f be a continuous and bounded probability density function on [0,∞) and
f̂b be one of the three varying asymmetric kernel density estimators mentioned above. For
any compact set I in [0,∞), if lim

n→∞
b = 0 and lim

n→∞
nb2a = ∞, where a = 1 for the Gamma

kernel and a = 5
2
for the IG and RIG kernels. Then,

sup
x∈I

|f̂b(x)− f(x)| P→ 0 as n → ∞.

For the case of unbounded density function at x = 0, in order to achieve the weak convergence
result, the kernel density must satisfy the condition that it will assign almost all weight to
the boundary points as b → 0. Bouezmarni and Scaillet (2005) also provided the convergence
of these estimators in this case.
Later on, Bouezmarni et al. (2011) obtained the asymptotic normality of f̂Gam

n (x) which is
given in the following theorem.

Theorem 2.2. Under assumptions that f(x) is twice continuous differentiable,
log2 n/(nb3/2) → 0, and nb5/2 = o(1), we have

n1/2b1/4
(
f̂Gam
n (x)− f(x)√
V ar[f̂Gam

n (x)]

)
D→ N (0, 1).

2.1.3 Data-transformed kernel density estimators

Beside the above ideas, one can easily find a solution for boundary effect problem by applying
the usual symmetric kernel density estimator on the transformed data. Let gλ(·) be a mono-
tonic increasing transformation function with the transformation parameter λ in such a way
that the transformed data are defined as Yi = gλ(Xi) for i = 1, ..., n. Then the transformed
kernel density estimator is given by

f̂λ(x) =
1

nb

n∑
i=1

g′λ(x)K
(
gλ(x)− gλ(Xi)

b

)
, (2.8)

where K(·) is a symmetric kernel density with mean zero. It is pointed in Koekemoer and
Swanepoel (2008) that the choice of K(·) is not crucial. Thus the standard normal density
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is chosen for the computation simplification reason. Here we only present the special case of
the function gλ(·) as the logarithmic function.

f̂LogTrans
n (x) =

1

nb

n∑
i=1

φ

(
log x− logXi

b

)
1

x

=
1

n

n∑
i=1

1

xb
√
2π

exp

{
− 1

2

(
log x− logXi

h

)2}

=
1

n

n∑
i=1

LN(x, logXi, b),

where φ(·) is the standard Gaussian density and LN(x, logXi, b) is the log-normal density
with medians Xi and variance (eb

2 − 1)eb
2
X2

i . That is the kernel density estimation based
on a log-transformed of data is identical to the log-normal kernel density estimation in the
original data. Moreover, its bias and variance are shown in Charpentier and Flachaire (2015)
to have the form

Bias[f̂LogTrans
n (x)] ≈ b2

2

(
f(x) + 3xf ′(x) + x2f ′′(x)

)
,

V ar[f̂LogTrans
n (x)] ≈ 1

nbx
f(x)

∫ ∞

∞
K2(u)du.

2.1.4 Other approaches for density estimation

To end this sub-section, we introduce a different approach proposed by Chaubey et al. (2012).
The idea is based on smoothing the empirical distribution function by the generalization of
Hille’s lemma.

f̂v,ε(x) =
1

n(x+ ε)2

n∑
i=1

Xiqv

(
Xi

x+ ε

)
, (2.9)

where qv(·) is any density with mean μn → x and variance v2n → 0. If we take gx,v(t) :=
1
x
qv(t/x), where qv(·) is the gamma density with shape α = 1/v2 and scale β = 1/α, then the

density estimator f̂v,ε(x) can be rewritten as

f̂v,ε(x) =
1

n

n∑
i=1

KGam
1/v2,(x+ε)v2(Xi) =

1

n

n∑
i=1

X
1/v2−1
i exp(−Xi/((x+ ε)v2))

b1/v2Γ(1/v2)
.

With this form, we can compare it with other varying asymmetric kernel density estimators
introduced above. By direct computation, one can obtain the bias and variance of this
estimator shown below

Bias[f̂v,ε(x)] = (xv2 + ε)f ′(x) + o(v2 + ε),

V ar[f̂v,ε(x)] =
I2(q)f(x)

nv(x+ ε)
+ o((vn)−1),
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where I2(q) = lim
v→0

v
∫∞
0
(qv(t))

2dt and v, ε are such that v2 → 0, nv → ∞ and ε → 0, as

n → ∞. The uniformly strong consistency and asymptotic normality of the density estimator
f̂v,ε(x) hold under certain conditions on the density qv(·) and the true underlying pdf f(x),
which are provided in Chaubey et al. (2012).

Theorem 2.3 (Uniformly strong consistency). If

(i) supx≥0
∫∞
0

∣∣ d
dx
(qv(t/(x+ ε)))

∣∣ dt = o

(
n

1
2

log logn

)
,

(ii) supu,v>0 uqv(u) < ∞,

(iii) f(·) is Lipschitz continuous on [0,∞),

then as n → ∞, we have supx≥0 |f̂v,ε(x)− f(x)| a.s.→ 0.

Theorem 2.4 (Asymptotic normality). Define q∗m, v(t) :=
(qv(t))m∫∞

0 (qv(u))mdu
, μm,v :=

∫∞
0

tq∗m,v(t)dt,

and σ2
m,v :=

∫∞
0
(t− μm,v)

2q∗m,v(t)dt, if

(i) f(·) is continuously differentiable on [0,∞),

(ii)
∫∞
0
(qv(t))

mdt = O(v−(m−1)) as v → 0, for 1 ≤ m ≤ 3, and I2(q) exists,

(iii) μm,v = 1 +O(v); σ2
m,v = O(v2); sup0<v<η

∫∞
0

t4+δq∗m,v(t)dt < ∞ for some δ, η > 0.

(iv) nv → ∞, nvε → ∞, nv5 → 0, nvε2 → 0 as n → ∞,

then

√
nv

(
f̂v,ε(x)− f(x)

)
D→ N

(
0, I2(q)

f(x)

x

)
for x > 0

√
nv

(
f̂v,ε(0)− f(0)

)
D→ N

(
0, I2(q)f(0)

)
.

2.2 Spacing entropy estimators

As mentioned in the Introduction section, entropy can be estimated by a well-known non-
parametric approach called ”spacing”. However, this approach has not been generalized to
the residual entropy estimation. In this sub-section, we introduce some common estimators
of entropy using spacing approach.
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� Vasicek’s estimator (Vasicek, 1976)

ĤV asicek
f =

1

n

n∑
i=1

log

{
n

2m
(X(i+m) −X(i−m))

}
. (2.10)

It will be easy to study the properties of ĤV asicek
f if we rewrite it as

ĤV asecek
f = − 1

n

n∑
i=1

log f(Xi) + Vm + Um,

where

Vm =
1

n

n∑
i=1

log

[
F (X(i+m))− F (X(i−m))

f(X(i))(X(i+m) −X(i−m))

]
,

Um =
1

n

n∑
i=1

log

[
n

2m
(F (X(i+m))− F (X(i−m))

]
.

The first term of the above expression is the minimum variance unbiased estimate of Hf

given the variance of − log f(Xi) is finite, and the values f(X1), f(X2),...,f(Xn). Vm is
the error estimation due to the estimation of derivative by finite differences, and Um is
the error estimation due to the estimation of increments of F by Fn. The behavior of
both Vm and Um are in opposite direction, so simultaneously minimizing them requires
m → ∞ and m/n → 0. Vasicek showed that Um converges to zero in probability as
n,m → ∞, so does ĤV asicek

f . Furthermore, it can be shown that under appropriate
conditions on m and n, the Vasicek’s estimator is also asymptotically normal.

� Ebrahimi’s estimator (Ebrahimi et al., 1992)

ĤEbrahimi
f =

1

n

n∑
i=1

log

{
n

cim
(X(i+m) −X(i−m))

}
, (2.11)

where

ci =

⎧⎪⎨
⎪⎩
1 + i−1

m
1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m,

1 + n−i
m

n−m+ 1 ≤ i ≤ n.

It was shown that ĤEbrahimi
f

P→ Hf as n,m → ∞, and m/n → 0. Also, its bias is
smaller than that of Vasicek’s.

� Van Es estimator (Van Es, 1992)

ĤV anEs
f = − 1

n−m

n−m∑
i=1

log

{
n+ 1

m
(X(i+m)−X(i))

}
+

n∑
k=m

1

k
+log(m)−log(n+1). (2.12)
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Van established, under certain conditions, the strong consistency and asymptotic nor-
mality of ĤV anEs

f .

� Correa’s estimator (Correa, 1995)

Motivation from the Vasicek’s estimator of entropy, Correa studied the behavior of this
estimator and suggested the estimation of entropy using local linear model based on
2m+ 1 points: F (X(j)) = a+ bX(j) j = m− i, ...,m+ i.

ĤCorrea
f = − 1

n

n∑
i=1

log

{∑i+m
j=i−m(X(j) − X̄(i))(j − i)

n
∑i+m

j=i−m(X(j) − X̄(i))2

}
, (2.13)

where X̄(i) :=
1

2m+1

∑i+m
j=i−m Xj. The resulting estimator of entropy is shown to attain

a smaller mean squared error compared to the Vasicek’s estimator.

� WG’s estimator (Wieczorkowski and Grzegorzewski, 1999)

By modifying the Vasicek’s estimator, Wieczorkowski and Grzegorzewski obtained a
new estimator of entropy whose bias is shown to be smaller than that of Vasicek’s.

ĤWG
f = ĤV asicek

f − log n+ log(2m)−
(
1− 2m

n

)
Ψ(2m) (2.14)

+Ψ(n+ 1)− 2

n

m∑
i=1

Ψ(i+m− 1),

where Ψ(k) =
∑k−1

i=1
1
i
− γ is the di-Gamma function defined on integer set, and

γ = 0.57721566... is the Euler’s constant.

� Noughabi’s estimator (Noughabi, 2010)

By combining both spacing and kernel methodology, Noughabi presented a new poten-
tial estimator of entropy. He followed exactly the initial steps in Vasicek (1975), but
he approximated the difference (F (X(i+m))−F (X(i−m)) by the first order of Taylor ex-
pansion to get back to estimator involving the density function f(x). Then by putting
the fixed kernel estimator f̂Fixed

n (x) in place of f(x), he obtained a new estimator for
entropy as below.

ĤNoughabi
f = − 1

n

n∑
i=1

log

{
f̂Fixed
n (X(i+m)) + f̂Fixed

n (X(i−m))

2

}
, (2.15)

where the bandwidth is fixed to b = 1.06sn−1/5 and s is the sample standard deviation.
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Similar to ĤV asicek
f , Noughabi showed that ĤNoughabi

f weakly converges to Hf using the
same proof. Also, he showed that the scale of the random variable X has no effect on
the accuracy of ĤNougahbi

f .

For the choice of spacing parameter m, Dudewicz and van de Meulen (1981) discussed about
the optimal choice of m, but in the the context of spacing entroy estimator for testing
uniformly. For a class of alternatives, one can consider the following choice of m:

m = �n/2− 1�, (2.16)

m = �√n+ 0.5�. (2.17)

These suggested choice of m above may be a working rule in providing the best power.
However, whether it will be the best in still unknown.

2.3 Estimation by direct use of quantile density estimators

Recall that, the entropy can be expressed in terms of quantile density function q(p) as

Hf =

∫ 1

0

log q(p)dp.

Therefore, one straightforward way to obtain the entropy and residual estimator is to
plugin directly the estimator of quantile density function. That is

ĤQuantile
f =

∫ 1

0

log q̂n(p)dp.

This approach was proposed by Bouzebda et al. (2013), in which the kernel-type quantile
density estimator q̂CP

n (p) suggested by Cheng and Parzen (1997) is in place. However, since
q̂CP
n (p) performs very poor at the boundaries, Bouzebda and co-authors had estimated Hf (ε)
instead, where

Hε,f = ε log q(ε) + ε log(q(1− ε)) +

∫ 1−ε

ε

log q(p)dp, ε ∈ (0, 0.5).

We observe that |Hf − Hε,f | = o(η(ε)) if η(ε) → 0 as ε → 0. Therefore, the estimator of
entropy given by Bouzebda et al. (2013) has the following form

ĤQuantile
ε,f = ε log q̂CP

n (ε) + ε log(q̂CP
n (1− ε)) +

∫ 1−ε

ε

log q̂CP
n (p)dp, (2.18)

q̂CP
n (p) :=

d

dp

∫ 1

0

Q̂n(x)Kn(p, x)dμn(x), (2.19)

where Q̂n(·) is the empirical quantile function, Kn(p, x) is the sequence density kernel func-
tions defined on (0, 1) × [0, 1], and μn(x) is a sequence of σ-finite measure on [0, 1]. The
asymptotic properties of ĤQuantile

ε,f had been studied thoroughly by Bouzebda et al. (2013)
which are based on the following assumptions of the true quantile density function:
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Q1 The quantile density function q(·) is twice differentiable in (0, 1).

Q2 There exists a constant γ > 0 such that supt∈(0,1){t(1− t)| d
dt
log q(t)|} ≤ γ.

Q3 Either q(0) < ∞ or q(t) is non-increasing in some interval (0, t∗), and either q(1) < ∞
or q(t) is non decreasing in some interval (t∗, 1), where 0 < t∗ < t∗ < 1.

Q4 E[log2(q(F (X)))] < ∞.

Also, for U(ε) = [ε, 1− ε], the sequence of kernel Kn(·, ·) needs to satisfy:

K1
∫ 1

0
Kn(p, x)dμn(x) = 1 for each n ≥ 1.

K2 There is a sequence δ = δn → 0 such that supp∈U(ε)

[
1− ∫ p+δ

p−δ Kn(p, x)dμn(x)

]
→ 0.

K3 For any function g(·) that is at least three times differentiable in (0, 1),∫ 1

0
g(x)Kn(p, x)dμn(x) is differentiable in p on U(ε), and

sup
p∈U(ε)

∣∣∣∣g(p)−
∫ 1

0

g(x)Kn(p, x)dμn(x)

∣∣∣∣ = O(n−α), α > 0;

sup
p∈U(ε)

∣∣∣∣g′(p)− 1

dp

∫ 1

0

g(x)Kn(p, x)dμn(x)

∣∣∣∣ = O(n−β), β > 0.

The following theorem in Bouzebda et al. (2013) shows the asymptotic consistency of
ĤQuantile

ε,f .

Theorem 2.5. If the sequence of random variable X1, ..., Xn with a quantile density function
q(·) fulfilling conditions Q1-Q3 and the kernel Kn(·, ·) satisfies K1-K3, then we have

|ĤQuantile
ε,f −Hf | = OP

(
n−1/2M(q) + n−β

)
,

where

M(q) = MqM̂(1)
√
δ log δ−1 +Mq′ +

√
M̂(q2)R′(1) + n−1/2Aγ(n)MqM̂(1),

M̂(g) = sup
p∈U(ε)

∫ m

i=0

|g(x)K(p, x)|dμ(x); R′(g) = sup
p∈U(ε)

∫
[0,1]\U(ε+δ)

|g(x)K(p, x)|dμ(x),

Mg = sup
p∈U(ε)

|g(p)|; Aγ(n) =

{
log n, max{q(0), q(1)} < ∞ or γ ≤ 2

(log log n)γ(log n)(1+ε)(γ−1), γ > 2
,

Also, the asymptotic normality of ĤQuantile
ε,f is derived in Bouzebda et al. (2013).

Theorem 2.6. If the conditions Q1-Q4 are satisfied and the kernel Kn(·, ·) satisfies K1-K3
with α > 0.5 and β > 0.5, then we have

√
n
(
ĤQuantile

ε,f −Hε,f

)− ψn(ε) = OP({2ε log ε−1}1/2) + oP(1),
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where

ψn(ε) :=

∫
U(ε)

(q′(x)/q(x))Bn(x)dx

is a centered Gaussian random variable with variance

V ar[ψn(ε)] = V ar[log(q(F (X)))] + o(η(ε) + Φ(ε)),

.

Φ(ε) = E

[
log2(q(F (X)))

]
−

{
ε log2 q(ε) + ε log2(q(1− ε)) +

∫ 1−ε

ε

log2 q(p)dp

}
.

3 New entropy and residual entropy estimators and

their asymptotic properties

3.1 Entropy estimators

3.1.1 Entropy estimators based on smooth Poisson histogram density estimation

In this subsection, we will propose entropy estimators based on the idea of (1.5), (1.7) and
(1.9). Also, we will discuss briefly about their asymptotic properties. Recall that the entropy
of a random variable can be estimated by the direct plugin approach

ĤP lugin
f = −

∫ ∞

0

f̂n(x) log f̂n(x)dx,

or by the sample mean of log f(X)

ĤMeanlog
f = −

n∑
i=1

log f̂n(Xi).

We observe that the performance of ĤP lugin
f and ĤMeanlog

f mainly depend on the density
estimator, so we would expect to obtain a good entropy estimator if the chosen density
estimator is well-performed, consistent, and well-behaved. In literature, regarding to non-
negative random variable, there are so many candidates for the density estimators with nice
asymptotic properties. Among these, we especially focus on the Poisson smooth histogram
density estimator. This density estimation is motivated by Hill’s Lemma in Feller (1966),
which states that

Lemma 3.1. If u(x) is a bounded, continuous function and pk,i is a family of lattice distri-
butions, then as k → ∞ ∑

i≥0
u(i/k)pk,i(x) → u(x)

uniformly in any finite interval.
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One can obtain a smooth histogram estimator of distribution function F (·) by substituting
of the empirical distribution Fn(·) in place of u(·).

F̃n(x) =
∑
i≥0

Fn(i/k)pk,i(x).

Consequently, taking derivative of F̃n(·) provides a vaid estimator of density f(·).

f̃n(x) =
∑
i≥0

Fn(i/k)
d

dx
(pk,i(x))

Among these choice of pk,i(·), we especially focus on the Poisson distribution which was
developed by Gawronski and Stadtmüller (1980, 1981) and studied more detail in Chaubey
and Sen (1996) and Chaubey et al. (2010) which first considered the estimator of survival
function

R̃n(x) =
∞∑
i=0

Rn

(
i

k

)
e−kx

(kx)i

i!
, (3.1)

where Rn(x) = 1−Fn(x) is the empirical survival function and k = k(n) can be viewed as the
smoothing parameter. It was shown in Chaubey and Sen (1996) that under the conditions
k → ∞, n−1k → 0, and f(x) is absolutely continuous with a bounded derivative f ′(·) a.e. on
R

+, then

||R̃n −Rn|| = sup
x∈R+

{R̃n(x)−Rn(x)} = O(n−3/4(log n)1+δ) a.s. as n → ∞, (3.2)

where δ > 0 is arbitrary. The estimator of density is obtained by taking the derivative of
R̃n(x).

f̂Pois
n (x) = − d

dx
R̃n(x) = k

∞∑
i=0

[
Fn

(
i+ 1

k

)
− Fn

(
i

k

)]
e−kx

(kx)i

i!
. (3.3)

The estimator f̂Pois
n (x) can be interpreted as a random weighted sum of Poisson mass func-

tions. We observe that the summation in (3.3) is up to a certain value of i because the
differences Fn((i+ 1)/k)− Fn(i/k) will vanish for all i ≥ kX(n) + 1.

The asymptotic properties of f̂Pois
n (x) have been studied and its weak convergence was proven

by Bouezmarni and Scaillet (2005) under the assumption of lim
n→∞

k = ∞ and lim
n→∞

nk−2 = ∞,

we have
sup
x∈I

|f̂Pois
n (x)− f(x)| P→ 0 as n → ∞

uniformly on a compact set I in R
+. Not only that, they also obtained the weak convergence

for the case of unbounded pdf f at x = 0. Later on, Chaubey et al. (2010) filled the gap
in the asymptotic theory of f̂Pois

n by proposing the asymptotic bias, asymptotic variance,
strong consistency and the asymptotic normality of the estimator. Particularly, under the
assumptions that k = cnh for some constant c and 0 < h < 1, and f ′(x) satisfies the Lipschitz
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condition of order α > 0, i.e. there exists a finite positive K such that

|f ′(s)− f ′(t)| ≤ K|s− t|α ∀s, t ∈ R
+,

then asymptotic bias and variance of f̂Pois(·) are given by

Bias
[
f̂Pois
n (x)

] ≈ f ′(x)
2cnh

, (3.4)

V ar
[
f̂Pois
n (x)

] ≈ E[X]

2

√
c

2πx3
f(x)nh/2−1. (3.5)

For the strong consistency of f̂Pois
n (x), if f(x) and f ′(x) is bounded and kn = O(nh) for some

h > 0, then
||f̂Pois

n − f || = sup
x∈R

{f̂Pois
n (x)− f(x)} a.s.→ 0. (3.6)

For the asymptotic normality of f̂Pois
n (x), if kn = O(n2/5), and f ′(x) satisfies the Lipschitz

order α condition, then for x in a compact set I ⊂ R
+,

n2/5(f̂Pois
n (x)− f(x))− 1

2δ2
f ′(x) D→ G, (3.7)

where G is the Gaussian process with covariance function γ2
xδxs, γ

2
x = E[X]

2
(2πx3)−1/2f(x)δ,

δxs = 0 for x �= s, δxs = 1 for x = s, and δ = lim
n→∞

(n−1/5k1/2
n ).

Similar to the problem of bandwidth selection in kernel density estimators, the choice of the
smoothing parameter k strongly affects the performance of the resulting density estimators.
In general, small value of k corresponds to over-smoothing, whereas large value of k corre-
sponds to under-smoothing. Here we list some suggestions for the choice of k (see Chaubey
and Sen 2009).

� A stochastic choice of k proposed by Chaubey and Sen (1996):

k(1) =
n

max(X1, ..., Xn)
. (3.8)

This choice sastifies the condition of k → ∞ if E[X] < ∞, but for the conpact support,
this choice will not satisfy n−1k → 0.

� Another choice suggested by Chaubey and Sen (1998):

k(2) =
n

X(n−rn+1) log log rn
, (3.9)

where X(i) is the ith order statistic of the random sample (X1, ..., Xn) and rn =
o(log log n).

� Deterministic choice of k given bey Gowronski and Stadtmüller (1981):

k(3) = �n2/5�+ 1. (3.10)
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This choice is due to the strong convergence of the density estimator f̂Pois
n (x).

� Two choices of cross validation methods, one is based on the likelihood and the other
is based on mean integrated squared error (MISE).

With these nice asymptotic properties of f̂Pois
n (·), we propose here two entropy estimators of

the form

ĤP lugin−Pois
f = −

∫ ∞

0

f̂Pois
n (x) log f̂Pois

n (x)dx, (3.11)

ĤMeanlog−Pois
f = −

n∑
i=1

log f̂Pois
n (Xi). (3.12)

The following theorem concerns of the asymptotic properties of ĤMeanlog−Pois
f .

Theorem 3.1. Assume the following conditions hold:

� E[(log f(X))2] < ∞,

� f ′(x) is bounded with
∫∞
0

f ′(x)dx < ∞, and satisfies Lipschitz order of α condition,

� f(x) is twice differentiable and
∫∞
0

f ′′(x)
f(x)

dx < ∞,

� kn = o(nh) for some h ∈ (0, 3/4),

then

ĤMeanlog−Pois
f = − 1

n

n∑
i=1

log f(Xi) + o(n−1/2) a.s. as n → ∞. (3.13)

Consequently, we get ∣∣∣ĤMeanlog−Pois
f −Hf

∣∣∣ a.s.→ 0, (3.14)

and √
n

(
ĤMeanlog−Pois

f −Hf

)
D→ N (0,Var[log f(X)]). (3.15)

Proof. Writing ĤMeanlog−Pois
f as an integral with respect to the empirical distribution function

Fn(x), we have

− 1

n

n∑
i=1

log f̂Pois
n (Xi) = −

∫ ∞

0

log f̂Pois
n (x)dFn(x)

= −
∫ ∞

0

log f(x)dFn(x)−
∫ ∞

0

(
log f̂Pois

n (x)− log f(x)

)
dFn(x)

= − 1

n

n∑
i=1

log f(Xi)− In,
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where

In :=

∫ ∞

0

(
log f̂Pois

n (x)− log f(x)

)
dFn(x).

On the other hand, we know that − 1
n

∑n
i=1 log f(Xi) is an unbiased, strongly consistent

estimator for Hf by the strong law of large numbers, and is root-n asymptotic normal by the
central limit theorem if E[log f(X)2] < ∞. That is∣∣∣∣∣− 1

n

n∑
i=1

log f(Xi)−Hf

∣∣∣∣∣ a.s.→ 0,

and
√
n

(
− 1

n

n∑
i=1

log f(Xi)−Hf

)
D→ N (0,Var[log f(X)]),

as n → ∞. Therefore, it is sufficient to prove that

In = o(n−1/2) a.s. as n → ∞.

In order to study the asymptotic behavior of In, we decompose it into two parts as,

In =

∫ ∞

0

(
log f̂Pois

n (x)− log f(x)

)
d(Fn(x)− F (x)) +

∫ ∞

0

(
log f̂Pois

n (x)− log f(x)

)
dF (x)

= In,1 + In,2, say.

� Analysis of In,2 :

Since the function log z is continuous and differentiable for all z > 0, we can apply the
Taylor expansion centering at a to get

log z = log a+
z − a

tz + (1− t)a
,

where t ∈ (0, 1). By letting z = f̂Pois
n (x) and a = f(x), we obtain

log f̂Pois
n (x)− log f(x) =

f̂Pois
n (x)− f(x)

tf̂Pois
n (x) + (1− t)f(x)

.

As ||f̂Pois
n (x)− f(x)|| a.s.→ 0 uniformly, it implies tf̂Pois

n (x) + (1− t)f(x)
a.s.→ f(x). Thus,

log f̂Pois
n (x)− log f(x)

a.s.→ f̂Pois
n (x)− f(x)

f(x)
.
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As a result, In,2 can be expressed as

In,2
a.s.→

∫ ∞

0

(
f̂Pois
n (x)− f(x)

f(x)

)
f(x)dx

=

∫ ∞

0

(
f̂Pois
n (x)− f(x)

)
dx

=

∫ ∞

0

f̂Pois
n (x)dx−

∫ ∞

0

f(x)dx

= 0,

that follows, since the Poisson smooth density estimator integrates to unity.

� Analysis of In,1 :

Using integration by part we have

In,1 =
(
Fn(x)− F (x)

)
log

(
f̂Pois
n (x)

f(x)

)∣∣∣∣∣
∞

0

−
∫ ∞

0

(
f̂ ′Pois
n (x)

f̂Pois
n (x)

− f ′(x)
f(x)

)(
Fn(x)− F (x)

)
dx.

It is well-known that by the law of the iterated logarithm, we have

||Fn − F ||∞ = O
(
n−1/2(log log n)1/2

)
a.s.

Meanwhile, Recall from Chaubey et al. (2010) that if f ′(x) satisfies the Lipschitz of
order α > 0, i.e. there exists a finite positive K such that

|f ′(s)− f ′(t)| ≤ K|s− t|α ∀s, t ∈ R
+,

then for fixed x ∈ R we have

f̂Pois
n (x)− f(x) =

1

2k
f ′(x) +O(k−1−α), (3.16)

which implies that

f̂Pois
n (x)

f(x)
= 1 +

1

2k

f ′(x)
f(x)

+O(k−k−α) = 1 +O(k−1). (3.17)

If we restrict k = o(nh) for 0 < h < 3/4, then for fixed x ∈ R we get

√
n

(
Fn(x)− F (x)

)
log

(
f̂Pois
n (x)

f(x)

)
= O

(
(log log n)1/2

)
log(1 + o(n−h)).
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By L’Hôpital’s rule, we get

lim
n→0

(log log n)1/2 log(1 + n−h) = lim
n→0

2h

(
log log n

)3/2
log n

nh

= lim
n→0

2
(
log log n

)3/2
+ 3

(
log log n

)1/2
nh

= lim
n→0

3
(
log log n

)1/2
+ 3

2

(
log log n

)−1/2
hnh log n

= 0.

Thus, we obtain

√
n

[ (
Fn(x)− F (x)

)
log

(
f̂Pois
n (x)

f(x)

)∣∣∣∣∣
∞

0

]
a.s.
= o(1),

which means that [ (
Fn(x)− F (x)

)
log

(
f̂Pois
n (x)

f(x)

)∣∣∣∣∣
∞

0

]
a.s.
= o(n−1/2).

On the other hand, since ||f̂Pois
n (x) − f(x)|| a.s.→ 0 uniformly, we can bound the second

term of In,1 as ∣∣∣∣∣
∫ ∞

0

(
f̂ ′Pois
n (x)

f̂Pois
n (x)

− f ′(x)
f(x)

)(
Fn(x)− F (x)

)
dx

∣∣∣∣∣
a.s.→

∣∣∣∣∣
∫ ∞

0

(
f̂ ′Pois
n (x)

f(x)
− f ′(x)

f(x)

)(
Fn(x)− F (x)

)
dx

∣∣∣∣∣
≤ ||Fn − F ||∞

∫ ∞

0

∣∣∣f̂ ′Pois
n (x)− f ′(x)

∣∣∣
f(x)

dx.

By differentiating on both sides of (3.16) and dividing by f(x), we get

f̂ ′Pois
n (x)− f ′(x)

f(x)
=

1

2k

f ′′(x)
f(x)

+O(k−1−α).

So, if k = o(nh) where 1/2 < h < 1 and
∫∞
0

f ′′(x)
f(x)

dx < ∞, then

∣∣∣∣∣
∫ ∞

0

(
f̂ ′Pois
n (x)

f̂Pois
n (x)

− f ′(x)
f(x)

)(
Fn(x)− F (x)

)
dx

∣∣∣∣∣ ≤ O
(
n−1/2(ln lnn)1/2

)
o(n−1/2

= o(n−1/2).
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Therefore, In,1 = o(n−1/2) a.s. Putting everything together, we get

ĤMeanlog−Pois
f = − 1

n

n∑
i=1

log f(Xi) + o(n−1/2) almost surely.

This completes the proof of the theorem.

Next we establish asymptotic properties of the plug-in estimator ĤP lugin−Pois
f .

Theorem 3.2. Assume the following conditions hold:

� E[(log f(X))2] < ∞,

� f(x) > 0 for all x ∈ (0,∞),

� f ′(x) is bounded with
∫∞
0

f ′(x)dx < ∞, and satisfies Lipschitz order of α condition,

�

∫∞
0

f ′′(x)
f(x)

dx < ∞,

� k = O(nh) for 1/2 < h < 3/4,

then

ĤP lugin−Pois
f = − 1

n

n∑
i=1

log f(Xi) + o(n−1/2) a.s. as n → ∞. (3.18)

Consequently, we get ∣∣∣ĤP lugin−Pois
f −Hf

∣∣∣ a.s.→ 0, (3.19)

and √
n

(
ĤP lugin−Pois

f −Hf

)
D→ N (0,Var[log f(X)]). (3.20)

Proof. We have

ĤP lugin−Pois
f = −

∫ ∞

0

(
f̂Pois
n (x)− f(x) + f(x)

)(
log f̂Pois

n − log f(x) + log f(x)

)
dx

= −
∫ ∞

0

(
f̂Pois
n (x)− f(x)

)(
log f̂Pois

n − log f(x)

)
dx

−
∫ ∞

0

(
f̂Pois
n (x)− f(x)

)
log f(x)dx

−
∫ ∞

0

f(x)

(
log f̂Pois

n − log f(x)

)
dx−

∫ ∞

0

f(x) log f(x)dx

= Un,1 − Un,2 − In,2 +Hf ,
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where

Un,1 := −
∫ ∞

0

(
f̂Pois
n (x)− f(x)

)(
log f̂Pois

n − log f(x)

)
dx, (3.21)

Un,2 := −
∫ ∞

0

(
f̂Pois
n (x)− f(x)

)
log f(x)dx, (3.22)

In,2 := −
∫ ∞

0

f(x)

(
log f̂Pois

n − log f(x)

)
dx. (3.23)

From the proof of the asymptotic properties of the meanlog entropy estimator ĤMeanlog−Pois
f ,

we already have
In,2

a.s.→ 0.

� Analysis of Un,1 :

Since under the assumptions in the theorem, ||f̂Pois
n (x)− f(x)|| a.s.→ 0 uniformly, we get

f̂Pois
n (x)/f(x)

a.s.→ 1 uniformly. Thus, by the dominant convergence theorem (DCT),
Un,1 becomes

Un,1 = −
∫ ∞

0

(
f̂Pois
n (x)− f(x)

)
log

(
f̂Pois
n (x)

f(x)

)
dx

a.s.→ 0.

� Analysis of Un,2 :

We can decompose Un,2 as following

Un,2 = −
∫ ∞

0

log f(x)d
(
F̃n(x)− F (x)

)
= −

∫ ∞

0

log f(x)d
(
R(x)− R̃n(x)

)
= −

∫ ∞

0

log f(x)d
(
R(x)−Rn(x)

)− ∫ ∞

0

log f(x)d
(
Rn(x)− R̃n(x)

)
= −

∫ ∞

0

log f(x)d
(
Fn(x)− F (x)

)− ∫ ∞

0

log f(x)d
(
Rn(x)− R̃n(x)

)
= −

∫ ∞

0

log f(x)dFn(x) +

∫ ∞

0

log f(x)dF (x)−
∫ ∞

0

log f(x)d
(
Rn(x)− R̃n(x)

)
= − 1

n

n∑
i=1

log f(Xi)−Hf −
∫ ∞

0

log f(x)d
(
Rn(x)− R̃n(x)

)

Recall that under the conditions k → ∞, n−1k → 0, and f(x) is absolutely continuous
with a bounded derivative f ′(·) a.e. on R

+, Chaubey and Sen (1996 see their Theorem
3.2) showed that
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||R̃n −Rn|| = sup
x∈R+

{R̃n(x)−Rn(x)} = O(n−3/4(log n)1+δ) a.s. as n → ∞, (3.24)

where δ > 0 is arbitrary. Therefore, for the second term in the last equation above,
under the assumptions in the theorem, we can use integration by part to obtain

∣∣∣∣
∫ ∞

0

log f(x)d
(
Rn(x)− R̃n(x)

)∣∣∣∣
=

∣∣∣∣[log f(x)(Rn(x)− R̃n(x)
)]∞

0
−

∫ ∞

0

f ′(x)
f(x)

(
Rn(x)− R̃n(x)

)
dx

∣∣∣∣
≤ lim

a→∞

∣∣∣∣ log f(a)(Rn(a)− R̃n(a)
)∣∣∣∣+ lim

b→∞

∣∣∣∣ log f(b)(Rn(b)− R̃n(b)
)∣∣∣∣

+

∣∣∣∣ sup
x∈R+

{R̃n(x)−Rn(x)}
∫ ∞

0

f ′(x)
f(x)

dx

∣∣∣∣
a.s.→ 0,

that follows from Equation (3.24). Therefore, putting back everything, we obtain

ĤP lugin−Pois
f = − 1

n

n∑
i=1

log f(Xi) + o(n−1/2) a.s. as n → ∞,

which completes the proof of Theorem 3.2.

Remark 2.1. The asymptotic results established here using the Poisson weight smoothing
estimator of the density function follows very closely to those established in Hall and Mor-
ton (1993), though under some stringent smoothness conditions. Such results may also be
established using alternative asymmetric kernel density estimators such as those proposed
in Chaubey et al. (2012), Chen (2000), Cheng and Parzen (1997) and others. However,
Poisson weights based entropy estimator, especially ĤMeanlog−Pois

f may be computationally
preferable over others. This is important as there may not exist an uniformly best estimator,
as demonstrated through numerical studies in the next section.

3.1.2 Entropy estimator based on quantile density estimator

As mentioned in the introduction that the entropy can be expressed in terms of quantile
density function as the following.

ĤQuantile
f =

∫ 1

0

q̂n(p)dp.
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Consequently, we consider a particular estimator of quantile density using an approach called
Bernstein polynomial approximation. First, we start with the Bernstein polynomial estimator
of a smooth quantile function proposed by Cheng (1995).

Q̃n(p) =
m∑
i=0

Q̂n

(
i

m

)
b(i,m, p) p ∈ [0, 1],

where Q̂n(·) is the empirical quantile function, b(i,m, p) = P[Y = i] where Y follows the
binomial(m, p), and m is a function of n such that m → ∞ as n → ∞. Then the estimator
of q(·) can be obtained by differentiating Q̃n(·).

q̃n(p) =
dQ̃n(p)

dp

=
d

dp

m∑
i=0

Q̂n

(
i

m

)
b(i,m, p)

=
m∑
i=0

Q̂n

(
i

m

)
b(i,m, p)

[
i−mp

p(1− p)

]
. (3.25)

Therefore, the entropy can be estimated by

ĤQuantile
f =

∫ 1

0

q̃n(p)dp. (3.26)

The advantage of using this quantile density estimator q̃n(·) not only results in a simple and
efficient estimator in terms of computation, but also resolves the boundary problem of the
general case of q̃CP

n (·). It is easy to see that this estimator q̃n(·) is free of the boundary
problem. For instance,

q̃n(0) = Q̂n

(
i

m

)
b(i,m, p)

[
i−mp

p(1− p)

]
1[i = 0] + Q̂n

(
i

m

)
b(i,m, p)

[
i−mp

p(1− p)

]
1[i = 1]

= m
(
Q̂n(1/m)− Q̂n(0)

)
→ dQ̂n(p)

dp

∣∣∣∣∣
p=0

= q̂n(0)
a.s.→ q(0) as m → ∞.

Similarly,

q̃n(1) = Q̂n

(
i

m

)
b(i,m, p)

[
i−mp

p(1− p)

]
1[i = m− 1] + Q̂n

(
i

m

)
b(i,m, p)

[
i−mp

p(1− p)

]
1[i = m]

= m
(
Q̂n(1)− Q̂n((m− 1)/m)

)
→ dQ̂n(p)

dp

∣∣∣∣∣
p=1

= q̂n(1)
a.s.→ q(1) as m → ∞.
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Furthermore, recall that the kernel-type quantile density estimator q̂CP
n (·), proposed by Cheng

and Parzen (1997), has the form

q̂CP
n (p) =

d

dp

∫ 1

0

Q̂n(x)Kn(p, x)dμn(x),

where Q̂n(·) is the empirical quantile function, Kn(p, x) is the sequence density kernel func-
tions defined on (0, 1)× [0, 1], and μn(x) is a sequence of σ-finite measure on [0, 1]. Then, we
see that q̃n(·) is the special case of the kernel-type quantile density estimator q̂CP

n (·) in the
way that

Km(p, x) =
Γ(m+ 1)

Γ(mx+ 1)Γ(m−mx+ 1)
pmx(1− p)m−mx,

dμm(x) =

{
1 x = i

m
i = 1, ...,m,

0 otherwise,

where m → ∞ as n → ∞. As a result, ĤQuantile
f inherits all the asymptotic properties from

ĤQuantile
ε,f introduced in the Section 2.3. That is, under certain conditions on the quantile

density functions,

|ĤQuantile
f −Hf | P→ 0,

√
n
(
ĤQuantile

f −Hf

) D→ N (
0, log(q(F (X)))

)
.

3.2 Residual entropy estimator

In this sub-section, we consider the residual entropy estimators, and we propose here three
candidates along with their asymptotic properties.
Motivated by the well-behavior of f̂Pois

n (·) and q̃n(·), we suggest a direct plugin residual
entropy estimator. That is, our proposed residual entropy estimators are of the form

ĤP lugin−Pois
f (t) = log(R̂Pois(t))− 1

R̂Pois(t)

∫ ∞

t

f̂Pois
n (x) log f̂Pois

n (x)dx, (3.27)

ĤQuantile
f (t) = log(R̂Pois(t)) +

1

R̂Pois(t)

∫ 1

0

log q̃n(p)dp, (3.28)

where R̂Pois(t) =
∫∞
t

f̂Pois
n (x)dx. The asymptotic consistency of ĤP lugin−Pois

f (t) is stated in
the following theorem.

Theorem 3.3. Assume the following conditions:

� f ′(x) is bounded, satisfies Lipschitz order of α condition,

�

∫∞
0

f ′(x) log f(x)dx < ∞,
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� kn = o(nh) for some 0 < h < 3/4,

then, ∣∣∣ĤP lugin−Pois
f (t)−Hf (t)

∣∣∣ a.s.→ 0. (3.29)

Proof. We have∣∣∣ĤP lugin−Pois
f (t)−Hf (t)

∣∣∣
≤

∣∣∣log R̂n(t)− logR(t)
∣∣∣+

∣∣∣∣∣ 1

R̂n(t)

∫ ∞

t

f̂n(x) log f̂n(x)dx− 1

R(t)

∫ ∞

t

f(x) log f(x)dx

∣∣∣∣∣
= T (1)

n (t) + T (2)
n (t).

� Analysis of T
(1)
n (t)

We first observe that

|R̂Pois(t)−R(t)| ≤
∫ ∞

t

∣∣∣f̂Pois
n (x)− f(x)

∣∣∣ dx.
Since ||f̂Pois

n (x)− f(x)|| a.s.→ 0 uniformly, by DCT we obtain

|R̂Pois(t)−R(t)| a.s.→ 0.

Then, for any α ∈ (0, 1) by Taylor expansion, we have

∣∣∣log R̂Pois(t)− logR(t)
∣∣∣ =

∣∣∣∣∣ R̂Pois(t)−R(t)

αR̂Pois(t) + (1− α)R(t)

∣∣∣∣∣ .
Since αR̂Pois(t) + (1− α)R(t)

a.s.→ R(t), we get T
(1)
n (t)

a.s.→ 0.

� Analysis of T
(2)
n (t)

Since |R̂(t) − R(t)| a.s.→ 0, we deduce that for sufficiently large n, T
(2)
n (t) has the same

limit as

T (2)
n (t) =

∣∣∣∣ 1

R(t)

∫ ∞

t

[
f̂Pois
n (x) log f̂Pois

n (x)− f(x) log f(x)

]
dx

∣∣∣∣
≤ 1

R(t)

∫ ∞

t

∣∣∣f̂Pois
n (x) log f̂Pois

n (x)− f(x) log f(x)
∣∣∣ dx.
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We have∫ ∞

t

∣∣∣f̂Pois
n (x) log f̂Pois

n (x)− f(x) log f(x)
∣∣∣ dx

≤
∫ ∞

t

∣∣∣(f̂Pois
n (x)− f(x)

)(
log f̂Pois

n (x)− log f(x)
)∣∣∣ dx

+

∫ ∞

t

∣∣∣(f̂Pois
n (x)− f(x)

)
log f(x)

∣∣∣ dx+

∫ ∞

t

∣∣∣f(x)( log f̂Pois
n (x)− log f(x)

)∣∣∣ dx
= T

(2)
n,1(t) + T

(2)
n,2(t) + T

(2)
n,3(t).

– For T
(2)
n,1(t), Since under the assumptions in the theorem, ||f̂Pois

n (x) − f(x)|| a.s.→ 0

uniformly, we get f̂Pois
n (x)/f(x)

a.s.→ 1 uniformly. Thus, by the dominant conver-

gence theorem (DCT), T
(2)
n,1(t) becomes∫ ∞

t

∣∣∣(f̂Pois
n (x)− f(x)

)(
log f̂Pois

n (x)− log f(x)
)∣∣∣ dx

=

∫ ∞

t

∣∣∣∣∣(f̂Pois
n (x)− f(x)

)
log

(
f̂Pois
n (x)

f(x)

)∣∣∣∣∣ dx
a.s.→ 0.

– For T
(2)
n,2(t), recall that if f

′(x) satisfies the Lipschitz of order α > 0, then for fixed
x ∈ R we have

f̂Pois
n (x)− f(x) =

1

2k
f ′(x) +O(k−1−α),

Thus, we get∫ ∞

t

∣∣∣(f̂Pois
n (x)− f(x)

)
log f(x)

∣∣∣ dx =
1

2k

∫ ∞

0

|f ′(x) log f(x)| dx+O(k−1−α) = o(1),

given that k = o(nh) and
∫∞
0

f ′(x) log f(x)dx < ∞. Therefore T
(2)
n,2(t)

a.s.→ 0.

– For T
(2)
n,3(t), again, since ||f̂Pois

n (x)−f(x)|| a.s.→ 0 uniformly and by Taylor expansion
and DCT, for t ∈ (0, 1) we get

∫ ∞

t

∣∣∣f(x)( log f̂Pois
n (x)− log f(x)

)∣∣∣ dx =

∫ ∞

t

∣∣∣∣∣
(

f̂Pois
n (x)− f(x)

tf̂Pois
n (x)− (1− t)f(x)

)
f(x)

∣∣∣∣∣ dx
a.s.→

∫ ∞

t

∣∣∣∣∣
(
f̂Pois
n (x)− f(x)

f(x)

)
f(x)

∣∣∣∣∣ dx
=

∫ ∞

t

∣∣∣f̂Pois
n (x)− f(x)

∣∣∣ dx
a.s.→ 0.
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Consequently, T
(2)
n (t)

a.s.→ 0. This completes the proof of the theorem.

4 Simulation study

4.1 Simulation study on entropy estimators

To study the performance of entropy and residual entropy estimators, we run simulations
for a wide range of densities which consists fifteen non-negative densities below. They are
categorized into three groups: monotone density, uni-modal density, and bimodal density.

1. Monotone density

– Standard Exponential(1) with true Hf = 1.

– Exponential(10) with true Hf = − log 10− 1 ≈ −1.3026.

– Pareto(2,1) with true Hf ≈ 0.8069.

– Log-Normal(0,2) with true Hf ≈ 2.1121.

– Weibull(0.5,0.5) with true Hf ≈ 0.4228.

2. Uni-modal density

– Gamma(2,2) with true Hf ≈ 0.8841.

– Gamma(7.5,1) with true Hf ≈ 2.3804.

– Log-Normal(0,0.5) with true Hf ≈ 0.7258.

– Maxwell(1) with true Hf ≈ 0.9962.

– Maxwell(20) with true Hf ≈ −0.5017.

– Weibull(2,2) with true Hf ≈ 1.2886.

3. Bimodal density

– Mix Gamma: (1/2)Gamma(0.5,0.5)+(1/2)Gamma(2,2) with true Hf ≈ 2.2757.

– Mix Lognorm: (1/2)Lognorm(0,0.5)+(1/2)Lognorm(0,2) with true Hf ≈ 1.6724.

– Mix Maxwell: (1/2)Maxwell(1)+(1/2)Maxwell(20) with true Hf ≈ 0.8014.

– Mix Weibull: (1/2)Weibull(0.5,0.5)+(1/2)Weibull(2,2) with true Hf ≈ 1.1330.

The graphs of densities for each group along with the corresponding function f(x) log f(x)
are given in the Figure 7, 8, 9, and 10. The densities in the monotone group are chosen
with different rates of decay, from the slowest standard Exp(1) to the fastest Exp(10). The
Pareto distribution is included here to show the effect of different support [1,∞) on entropy
estimation. On the contrary to the first group, the second group consists of well-behaved
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densities from highly concentrated Maxwell(20) to widely spread Gamma(7.5,1). Lastly, the
simulations are extended to the bimodal densities where each density is a mixture of the same
family density but with different parameters. Note that for some densities with high rate of
decay and small variance like Exp(10) or Maxwell(20), the integrand f(x) log f(x) produces
non-finite value for large value of x in R software due to the round-up. However, since the
contribution of the right tail of the integrand to the entropy is insignificant for sufficiently
large x, we obtain the approximately true value of entropy by cutting of the negligible right
tail of the integration. That is, instead of integrating over the entire support of f(x) log f(x),
we integrate up to a certain value at which the right tail is negligible.

Figure 7: Plots of density in the first group along with their f(x) log f(x) plots. The exp(1)-black solid line, exp(10)-green
dashed line, Pareto(2,1)-blue dotted line, Weibull(0.5,0.5)-red dotted dashed line, and logNormral(0,2)-orange long dashed line.

Figure 8: Plots of density in the third group along with their f(x) log f(x). The mixture Gamma-red solid line, mixture
logNormal-green dashed line, mixture Maxwell-blue dotted line, and mixture Weibull-black dotted dashed line.
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Figure 9: Plots of density in the second group. Gamma(7.5,1)-black solid line, Gamma(2,2)-black dashed line, Maxwell(1)-
green dotted line, Maxwell(20) blue dotted dashed line, logNormal(0,0.5)-red long dashed line, and Weibull(2,2)-orange mixed
dashed line.

Figure 10: Plots of f(x) log f(x) for density in the second group.

We run simulation experiments on different estimators which are classified into two groups,
namely, ‘spacing estimators’ and ‘non-spacing estimators’.

Spacing estimators

1. Vasicek’s estimator (Vasicek, 1976)

Ĥ1 =
1

n

n∑
i=1

log

{
n

2m
(X(i+m) −X(i−m))

}
. (4.1)

2. Ebrahimi’s estimator (Ebrahimi et al., 1992)

Ĥ2 =
1

n

n∑
i=1

log

{
n

cim
(X(i+m) −X(i−m))

}
, (4.2)
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where

ci =

⎧⎪⎨
⎪⎩
1 + i−1

m
1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m,

1 + n−i
m

n−m+ 1 ≤ i ≤ n.

3. Van Es estimator (Van Es, 1992)

Ĥ3 = − 1

n−m

n−m∑
i=1

log

{
n+ 1

m
(X(i+m) −X(i))

}
+

n∑
k=m

1

k
+ log

( m

n+ 1

)
. (4.3)

4. Correa’s estimator (Correa, 1995)

Ĥ4 = − 1

n

n−m∑
i=1

log

{∑i+m
j=i−m(X(j) − X̄(i))(j − i)

n
∑i+m

j=i−m(X(j) − X̄(i))

}
, (4.4)

where X̄(i) :=
1

2m+1

∑i+m
j=i−m X(j).

5. WG’s estimator (Wieczorkowski and Grzegorzewski, 1999)

Ĥ5 = Ĥ1 + log
(2m
n

)− n− 2m

n
Ψ(2m) + Ψ(n+ 1)− 2

n

m∑
i=1

Ψ(i+m− 1). (4.5)

where Ψ(k) =
∑k−1

i=1
1
i
− γ is the di-Gamma function defined on integer set,

and γ = 0.57721566... is the Euler’s constant.

6. Noughabi’s estimator (Noughabi, 2010)

Ĥ6 = − 1

n

n∑
i=1

log

{
f̂Fixed
n (X(i+m)) + f̂Fixed

n (X(i−m))

2

}
. (4.6)

where the bandwidth in f̂Fixed
n (x) is fixed to b = 1.06sn−1/5 and s is the sample standard

deviation.

7. Gama-spacing estimator:
Motivated by Noughabi’s estimator, we also want to test the performance of an entropy
estimator obtained by replacing f̂Fixed

n by f̂Gam
n

Ĥ6 = − 1

n

n∑
i=1

log

{
f̂Fixed
n (X(i+m)) + f̂Fixed

n (X(i−m))

2

}
. (4.7)

Non-spacing estimators

To see how our entropy estimators perform, we also run simulation on other direct plugin and
mean of log entropy estimators that use the fixed symmetric kernel density estimator f̂Fixed

n
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and the log transformed kernel density estimator f̂Logtrans
n . Thus, the non-spacing estimators

consist of

Plugin-Fixed : Ĥ8 = −
∫

f̂Fixed
n (x) log f̂Fixed

n (x)dx. (4.8)

Meanlog-Fixed : Ĥ9 = − 1

n

n∑
i=1

log f̂Fixed
n (Xi). (4.9)

Plugin-Gam : Ĥ10 = −
∫

f̂Gam
n (x) log f̂Gam

n (x)dx. (4.10)

Meanlog-Gam : Ĥ11 = − 1

n

n∑
i=1

log f̂Gam
n (Xi). (4.11)

Plugin-Logtrans : Ĥ12 = −
∫

f̂LogTrans
n (x) log f̂LogTrans

n (x)dx. (4.12)

Meanlog-Logtrans : Ĥ13 = − 1

n

n∑
i=1

log f̂LogTrans
n (Xi). (4.13)

Plugin-Pois : Ĥ14 = −
∫

f̂Pois
n (x) log f̂Pois

n (x)dx. (4.14)

Meanlog-Pois : Ĥ15 = − 1

n

n∑
i=1

log f̂Pois
n (Xi). (4.15)

Plugin-Quantile : Ĥ16 =

∫ 1

0

log q̃n(p)dp. (4.16)

The simulation study is organized as follows. For each density, three sample sizes: n = 10,
n = 50, and n = 100 are tested. While 500 replication data are generated for sample size 10
and 50, only 100 copies are used to obtain estimators for sample size 100 due to calculation
expense. Since the optimal choice for m in spacing estimators is still an opening problem, we
use the following heuristically deterministic formula for m = �√n+ 0.5�. However, to verify
the effect of the choice of m on the spacing estimator performance, we also run simulation
with different choices of m starting from 2 up to �n/2� for the sample size n = 50 (see
Figure 11 and 12). While the optimal bandwidth is chosen by biased cross validation in Ĥ8,
the rest kernel and smoothed histogram estimators are implemented with the unbiased cross
validation for the bandwidth selection. Lastly, the choice of m in the quantile density entropy
estimator Ĥ16 is fixed to m = n/ log n.
The simulation results for the entropy estimators performance comparison with different
sample size are given in the Table 1, 2, and 3 (for n = 10), Table 4, 5, and 6 (for n = 50),
and Table 7, 8, and 9 (for n = 100). To compare the performance between estimators,
for each density, we compute the point estimate and its mean squared error shown in the
parentheses. Each column in the table corresponds to one density with the associated true
entropy right below, and the bold symbol in that column indicates the best estimator with
the smallest mean squared error for the associated density. Moreover, the last column of each
table presents the average time consumption over the fifteen densities.
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Table 1: Simulation results for n = 10 and m = 3. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.

Table 2: Simulation results for n = 10 and m = 3. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.

Table 3: Simulation results for n = 10 and m = 3. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.
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Table 4: Simulation results for n = 50 and m = 7. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.

Table 5: Simulation results for n = 50 and m = 7. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.

Table 6: Simulation results for n = 50 and m = 7. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.
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Table 7: Simulation results for n = 100 and m = 10. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.

Table 8: Simulation results for n = 100 and m = 10. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.

Table 9: Simulation results for n = 100 and m = 10. True entropy is shown below density name. For each density, the point
estimate and mean squared error (in parentheses) are computed for each estimator. The bold symbol is the best estimator with
the smallest mean squared error.
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By observing the simulation results above, we have some important remarks.

Remark 4.1. There does not exist the uniquely best estimator in all cases.

When comparing entropy estimators, not only the smallest mean squared error is consid-
ered, but the computation expense is also an important key to determine the best estimator.
In general, if both criteria are considered, there exists no unique estimator that beats out all
other estimators.

Remark 4.2. Spacing entropy estimators always win the other group of entropy estimators
in terms of computation expense.

When speed is the only one in the consideration, the estimators in the spacing group
always dominate the other groups of estimators to stand in the first rank. This result does
not come to surprise because there is no parameter optimization in their definitions. Defi-
nitely, this could be the main reason why most of papers in literature only focus on spacing
estimators but a few in the other group. And if the density estimation or any density re-
lated approaches are employed, researchers try to simplify their estimator by using a simple
bandwidth selection. Noughabi’s estimator Ĥ6 is an example of such a case, where the fixed
bandwidth selection is used, and it stands on the second rank in the speed test. However, the
computation expense is improved significantly when the fixed kernel density is used due to its
simple and symmetric form. Therefore, our second and third entropy estimator candidates
(Ĥ8 and Ĥ9) do a good job when time consumption is taking into account to achieve the
third rank. Among all, the Poisson smoothed histogram entropy estimator Ĥ15 appears to
be the lowest one in the race of speed.

Remark 4.3. For spacing entropy estimator, the optimal m varies case by case, and there
exists no expression for the optimal m.

In order to study more the behavior of spacing estimators with different choices of m,
we provide the simulation results for the same density set but with various values of m in
the Figure 11 and 12 below. From the figures, we see that the effect of the choice of m on
the estimator’s performance is quite noticeable. Especially for those values of m that bigger
than �√n+0.5�, the MSEs start to disperse. Although the heuristically deterministic choice
of m = �√n + 0.5� = 7 does not attain the optimum, it could be used as an upper bound
for the selection of m. Nonetheless, the choice of m is still the biggest weakness in spacing
entropy estimators, and the issue seems to exist insolvably because there exists no relating
loss function of m like mean squared error to optimize. On the other hand, by assuming that
someone can define a loss function of m, then by solving the optimization problem to find
the optimal m, the spacing estimators will loose the strength of fast computation.
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Figure 11: Plots of Simulation result for n = 50 and different m within the spacing estimator group. The vertical line
m = �√n+ 0.5 is set to be the upper bound for the choice of m.
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Figure 12: Plots of Simulation result for n = 50 and different m within the spacing estimator group. The vertical line
m = �√n+ 0.5 is set to be the upper bound for the choice of m.

Remark 4.4. Among the estimators in the spacing group, The WG’s entropy estimator Ĥ5

seems to outperform the other members in most cases.

We see that in most cases, if we only consider those values m smaller than �√n+0.5�, the
WG’s estimator seems to produces the smallest mean squared error comparing to the others,
and it is quite robust to the choice of m. Even though in some cases where it is not the winner
such as logNormal(0,2), Weibull(0.5,0.5), and the mixture densities, the differences in mean
squared error between the WG’s estimator and the winner’s are very small and insignificant.
Therefore, it would be the best choice when an spacing entropy estimator is in concern.

Remark 4.5. Among our candidates for entropy estimators by means of kernel density es-
timator, the “plug-in” Fixed kernel entropy estimator Ĥ8 surprisingly performs better than
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other members in kernel density estimator group.

Figure 13: Density estimators comparison for mixture Gamma.

Figure 14: Density estimators comparison for Exp(1).

Figure 15: Density estimators comparison for Weibull(2,2).

As shown in Table 1-9 above, in most of cases, the estimator Ĥ8 (“plug-in” fixed kernel
density entropy estimator) and Ĥ15 (mean of log of Poisson density points) achieve the best
result among other candidates. This is an unanticipated result for Ĥ8 because it is very well-
known that the fixed kernel density estimator performs very poorly for nonnegative random
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variable due to “boundary effect” problem. This suggests that we need to have a deeper
inspection in these cases where Ĥ8 outperforms the others for instance the Exponential(1),
Weibull(2,2), and the mixture Gamma. Consequently, we present the graphs of the estimator
of the function g(x) = f(x) log f(x). These graphs below are produced for the case n = 10
using the mean of 500 samples of fixed kernel density entropy estimator, Gamma kernel
density entropy estimator, and Poisson smoothed histogram density entropy estimator. The
left panels are the density estimations along with the true density, while the right panels are
the estimations of the f(x) log f(x) function. These graphs show a very poor estimation of
the fixed kernel density estimator in the case of Exponential(1) and mixture Gamma, still its
entropy estimation produces the smallest mean squared error. This can be explained as by
accidentally the area under the estimated curve of f(x) log f(x) is very close to the true one.
On the other hand, by observing the estimation graphs for Weibull(2,2), we see that the fixed
kernel density estimator does a good job. This could be simply because the true density of
Weibull(2,2) is very similar to Normal(μ = 1.5, σ = 1). Therefore, we could conclude that
the fixed kernel entropy estimator Ĥ8 and Ĥ9 are not a good choice for entropy estimator for
nonnegative random variable.

Remark 4.6. The mean of log of Poisson density point Ĥ15 seems to be a potential candidate
for entropy estimator when the sample size is small.

To have an insight of the performance of Ĥ15 for small sample size, we run the simulation
for more choices of sample size n = 10, 20, 30, 40, and 50. These graphs below show the
performance comparison between the mean of log of Poisson density point Ĥ15, the “plug-
in” Poisson smoothed histogram density estimator Ĥ14, the “plug-in” fixed kernel density
estimator Ĥ8, the “plug-in” Gamma kernel density estimator Ĥ10, and the WG’s estimator
Ĥ5 with the optimal m (here we run all the possible choices of m from 2 to �√n + 0.5�,
then obtain the optimal m). We see that most of the times, the MSE of Ĥ15 is the smallest
comparing to that of others estimators. Even the best spacing entropy estimator WG with
the optimal m cannot beat Ĥ15, especially for the case of very small sample size like n = 10.
The only weakness of the estimator Ĥ15 is the computation expense. It would be ideal if
we could improve the speed of computation while maintain its performance. It is worth
notice that those computed optimal bandwidths by unbiased cross validation in our proposal
entropy estimator are only local but not global because there is no function in R can guarantee
the result is a global optimal. As a result, we could improve the estimator Ĥ15 by using a
deterministic bandwidth.
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Figure 16: Entropy estimation MSE comparison with different sample size n = 10, 20, 30, 40, and 50. Where diamond-black is
Ĥ15, square-red is Ĥ14, triangle-green is Ĥ8, circle-orange is Ĥ10, and asterisk-blue is Ĥ5.
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Remark 4.7. As the sample size increases, the quantile density entropy estimator Ĥ16 seems
to converge faster than all other candidates. As a result, for a large sample size, the quan-
tile density entropy estimator and the WG’s estimator could be the best choice for entropy
estimation.

We notice that for a small sample size like n = 10 (Table 1-3), the performance of the
quantile density entropy estimator Ĥ16 is quite poor among other estimators. That is the
differences in MSE between it and the best one are very significant. However, its rate of
convergence picks up very fast as the sample size increases like in n = 100 (Table 7-9). For
instance, it becomes the best estimators in some distributions such as Maxwell(20), mix-
Maxwell, or very close to the best one in most cases. Besides, it takes a small amount
of time to compute the estimator Ĥ16, which makes it become more favorable than other
non-spacing estimators in large sample cases. Similarly, by studying the graphs of entropy
estimation (Figure 16), we see that although the WG’s estimator with optimal m has a large
MSE when the sample size is very small (n = 10), its rate of convergence increases faster than
all that of other estimators when the sample size starts to increase (n = 20). Moreover, its
performance becomes better than most of the others when n = 50. Consequently, one would
pick the quantile density entropy estimator or the WG’s estimator for entropy estimation
when the sample size is sufficient large.

In conclusion, there is always a trade-off between the speed and the performance for
each estimator. It is obvious that any spacing estimator would do a good job and is the
best choice when dealing with large sample sizes (though the answer to the question what
value of m would be considered for a large sample size is still unknown) due to its fast rate
of convergence and fast computation. However, when sample size is small, the choice of
estimator for entropy becomes more difficult and requires careful studies. This is why the
density entropy estimators come to handy not only because they give a more precise result,
but also the computation expense is significantly improved for small sample size. Among
our candidates for entropy estimation presented above, only the the mean of log of Poisson
density points Ĥ15 is outstanding for a good potential entropy estimator. Particularly, if we
are able to improve the time spending on the bandwidth selection while keeping the same
performance, we will obtain a better entropy estimator among the existing ones. Indeed, we
have been testing some pre-deterministic bandwidths and it turns out that our “best” optimal
bandwidth must be of the order o(n2/5) as proposed by Gawronski and Stadtmüler (1981).
We have tried many bandwidths as a linear function of n2/5, some of them produce a huge
improvement of entropy estimation on certain distributions but become unstable on other
distributions. After running a number of bandwidth choices, we notice that the bandwidth
of the form k∗ = n2/5 + 1 is the best one because it consistently results in an improvement
for entropy estimation in most of distributions we use in this thesis. Figure 17 and 18 below
demonstrate this situation for n = 10 and n = 50, where we compare the performance of the
mean of log of Poisson entropy estimators using cross validation bandwidth Ĥ15 versus the
fixed bandwidth k∗ above. We see that in most cases, the estimator with fixed bandwidth
k∗ performs better than that of the cross validation bandwidth one, except for the case of
Exp(10), Maxwell(20), and LogNormal(0,2). Furthermore, with this pre-deterministic k∗, it
results in a significant improvement of calculation expense. In particular, it takes smaller
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amount of time to compute the estimator than computing the standard kernel base entropy
estimator Ĥ8.

Figure 17: Entropy estimation MSE comparison of mean of log of Poisson density with different bandwidths. Here sample size
is n = 10.

Figure 18: Entropy estimation MSE comparison of mean of log of Poisson density with different bandwidth. Here sample size
is n = 50

4.2 Simulation study on residual entropy estimators

In this section, we want to see the performance of our proposal estimators for residual entropy
function as well as comparing them with the ones suggested by Belzunce et al. (2001).
Particularly, we still use the same testing set of distributions in the previous section, and the
set of estimators are

ĤBelzunce1
f (t) = log R̂(t)− 1

R̂(t)

∫ ∞

t

f̂Fixed
n (x) log f̂Fixed

n (x)dx (4.17)

ĤBelzunce2
f (t) = log R̂(t)− 1

R̂(t)

n∑
i=1

RK

(
t−Xi

b

)
log f̂Fixed

i (Xi) (4.18)

ĤP lugin−Pois
f (t) = log R̂Pois(t)− 1

R̂Pois(t)

∫ ∞

t

f̂Pois
n (x) log f̂Pois

n (x)dx (4.19)

ĤQuantile
f (t) = log(R̂Pois(t))− 1

R̂Pois(t)

∫ 1

F̂ (t)

log q̃n(p)dp, (4.20)
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where RK is the survival function associated to the kernel function K (here we choose the
normal density for K); the estimated survival function R̂(t) is computed based on the inte-
gration of f̂Fixed

n (·); the smoothing parameter k in ĤP lugin−Pois
f (t) is set equal to n2/5 + 1;

and the parameter m in estimation of q̃n(·) is set equal to n/ log n.
The setup of simulation study is as following. We present here both performance comparison
by graphics and by mean integrated squared error (MISE). In order to produce the plots
of residual entropy estimators, for each distribution, we run 500 replications of the sample
size n = 50, then we compute the sample mean residual entropy estimator functions of these
500 replications. As mentioned in Belzunce et al (2001) that the behavior of residual en-
tropy function is smooth up to certain bound because R(t) → 0 very fast when t → ∞, it
is recommended to stop the estimation at the time t∗ = inf{t : R(t) ≤ 0.01}. Therefore,
the MISEs are just computed on the interval [0, t∗] (for Pareto(2,1) is [1, t∗]). Similarly, the
MISEs comparison between estimators are done based on 500 replications for sample size
n = 50 and n = 100 for each distribution, but only 100 replications for sample size n = 500.
The plots and tables below show the performance of our estimators and the ones in Belzunce
et al. (2001).

Figure 19: Plots of residual entropy estimators. The true function is in black solid line, ĤPlugin−Pois
f (t) in red dotted-dashed

line, ĤQuantile
f (t) in black long dashed line, ĤBelzunce1(t) in blue dashed line, and ĤBelzunce2

f (t) in green dotted line. There

are some plots without the green dotted line because the function is not in the range.
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Figure 20: Plots of residual entropy estimators. The true function is in black solid line, ĤPlugin−Pois
f (t) in red dotted-dashed

line, ĤQuantile
f (t) in black long dashed line, ĤBelzunce1(t) in blue dashed line, and ĤBelzunce2

f (t) in green dotted line. There

are some plots without the green dotted line because the function is not in the range.

101



Table 10: MISEs of three estimators on 500 replications with sample size n = 50. The MISEs are computed on the indicated
interval for each distribution.

Table 11: MISEs of three estimators on 500 replications with sample size n = 100. The MISEs are computed on the indicated
interval for each distribution.

Table 12: MISEs of three estimators on 100 replications with sample size n = 500. The MISEs are computed on the indicated
interval for each distribution.

To illustrate the rate of convergence of each estimators as the sample size increases, we also
show the following graphs which are MISEs as a function of sample size for each distribution.
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Figure 21: Residual entropy estimation MISE comparison with different sample size n = 50, 100 and 500. Where diamond-red

is ĤPlugin−Pois
f (t), square-blue is ĤBelzunce1

f (t), and triangle-black is ĤQuantile
f (t).
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Remark 4.8. ĤBelzunce2
f (t) performs very poor in most cases.

By the plot of residual entropy estimations from Figure 19-20 , we see that ĤBelzunce2
f (t)

is not as good as the others among all estimators. It is even out of the range in some
distributions. Therefore, we can remove it out of our consideration.

Remark 4.9. All estimators tend to diverge away from the true residual entropy over the
time in most cases.

We notice that most of estimators have a quite good startup as t is small. However, as
the time t increase, in which the true survival function tends to zero rapidly, the estimators
begin to diverge away from the true residual entropy. How large of the time t does this
phenomenon happens depends on the true distribution.

Remark 4.10. None of estimators outperforms the others in all cases. However, the ĤP lugin−Pois
f (t)

estimator seems to achieve a better estimation in most cases.

If we just focus on the performance comparison between estimators, we see that in most
cases, estimator ĤP lugin−Pois

f (t) captures the trend of the true function throughout the plots
and achieves better precision in terms of MISE shown in the Table 10-12. It is defeated by
ĤBelzunce1

f (t) only in Maxwell distributions which have the bell-normal shape. Although the

quantile density entropy estimator ĤQuantile
f (t) is the fastest one in terms of computation

expense, the time consumption differences between estimators are quite small. Therefore,
the ĤP lugin−Pois

f (t) is recommended in a small sample size.

Remark 4.11. The rate of convergence of the ĤQuantile
f (t) estimator seems to be faster than

other competitors.

Similar to the entropy estimation, in this residual entropy estimation, the ĤQuantile
f (t)

estimator still has the fastest rate of convergence in most cases as the sample size increases.
We admit that for a small sample size, ĤQuantile

f (t) does not show up to be a good estimator,
and it is not recommended. However, if the sample size is sufficiently large, it becomes one
of the best potential choices for residual entropy estimator not only because of its fast rate
of convergence, but also its speed in computation.
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