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ABSTRACT

Density of integral points on varieties:
Mordell orbifold conjecture and special varieties

Marta Benozzo

The objective of this thesis is to understand F.Campana’s conjectures about density
of integral points on varieties defined over a number field. In the case of curves this is
solved by Siegel and Faltings’ theorems: the degree of the canonical divisor of a curve
determines whether it has finitely or infinitely many rational points (possibly after a finite
extension of the base field). In higher dimension, varieties can be neither potentially
dense (the set of rational points becomes dense after at most a finite extension of the
base field), nor mordellic (rational points are always finitely many in an open dense
subset). The conjectures studied in the thesis address the problems of characterizing
potential density and mordellicity of a variety and of constructing a (unique) fibration
which splits each variety in its mordellic part, the base of the fibration, and potentially
dense part, the fibers. To deal with this problem, F.Campana introduces the notion of
orbifold pair: to each variety, one can attach an orbifold divisor, which allows keeping
track of multiple fibers of fibrations. Using this tool, he was able to construct a fibration,
the core map, which has (orbifold) special general fiber, conjectured to be the potentially
dense varieties, and base of (orbifold) general type, conjectured to be the mordellic ones.
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I wandered lonely as a cloud
I wandered lonely as a cloud

That floats on high o’er vales and hills,
When all at once I saw a crowd,

A host, of golden daffodils;
Beside the lake, beneath the trees,

Fluttering and dancing in the breeze.

Continuous as the stars that shine
And twinkle on the milky way,

They stretched in never-ending line
Along the margin of a bay:

Ten thousand saw I at a glance,
Tossing their heads in sprightly dance.

The waves beside them danced; but they
Out-did the sparkling waves in glee:

A poet could not but be gay,
In such a jocund company:

I gazed—and gazed—but little thought
What wealth the show to me had brought:

For oft, when on my couch I lie
In vacant or in pensive mood,

They flash upon that inward eye
Which is the bliss of solitude;

And then my heart with pleasure fills,
And dances with the daffodils.

∼ William Wordsworth



Introduction

A problem that arises in Diophantine geometry is whether rational and integral points
on a variety defined over a number field are dense or not. In particular, the goal would
be to find geometric conditions that can characterize potential density (i.e. the closed
rational points become Zariski dense after at most a finite extension of the base field)
and mordellicity (i.e. there exists an open subset of the variety that contains only finitely
many rational points, even after finite extensions of the base field).
Integral points can be interpreted as points that do not become points at infinity of
the variety reduced modulo every prime of the ring of integers. This concept can be
generalized introducing the notion of an orbifold pair, a variety together with a simple
normal crossing divisor in the form ∆ =

∑s
j=1(1− 1/mj)Dj , where Dj are prime (Weil)

divisors. This is not completely new, it generalizes log-pairs that arise naturally in arith-
metic geometry and play an important role in the minimal model program and in the
study of moduli spaces of higher dimensional varieties.
The integral points of the orbifold pair are then the ones that, modulo all but finitely
many primes, if they belong to any of the divisors Dj ’s, their intersection number with
them is "higher than mj", in a sense that is made precise in the first chapter. In partic-
ular, if all multiplicities are infinite, these are the integral points on the quasi-projective
variety complement of the support of the divisor ∆; on the other hand, if ∆ is the zero
divisor, we are considering exactly the rational points. According to Campana, the prob-
lem of potential density of rational and integral points cannot be solved without taking
into account also the "intermediate" cases.

The density problem was first formulated by Mordell in the case of projective curves
(1922) and solved by Siegel (1929) in the affine case. Later, Faltings proved the projective
case (1983). They understood that the geometrical invariant that characterizes density
is the genus of a curve, or, equivalently, the degree of its canonical divisor: curves are
potentially dense if and only if the degree of the canonical divisor is non-positive and
they are mordellic elsewhere (see theorems 1.2.1 and 1.2.2).
In the orbifold case, the problem is still open, but there are many results towards the
proof. Also in this case, it is conjectured that positivity of the degree of the canonical
divisor of the orbifold pair (defined as the canonical divisor of the curve plus the divisor
∆) characterizes potential density as above. In particular, this is proven in the "classical
version" 1.4 by reducing to Faltings theorem by means of suitable ramified covers. To
finish the proof of the "general version" it is possible, using the previous results, to reduce
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2 INTRODUCTION

the situation to the study of just a few orbifold pairs. In this cases it is even possible to
show that abc conjecture implies the result [4, section 3.6].

Thanks to the birational classification of surfaces made by the Italian school in the
19th century, also in the case of surfaces a lot of progress has been made. The situation
about rational points is almost understood and, as for integral and orbifold integral
points, there are many results and examples that agree with the conjectures made for
higher dimensional varieties. Anyway, the work is not completed yet, in many cases it
is still open how to solve the conjectures.

In higher dimension the problem is pretty much open. The guiding ideas to approach
it come from the fact that we expect that density properties are preserved by birational
morphisms, Chevalley–Weil theorem 1.3.2 that says that they are preserved also by étale
covers and Bombieri, Lang and Vojta’s conjectures that say that varieties of general type
are mordellic.
Also in the higher dimensional case, the canonical divisor plays a central role. Indeed,
it is conjectured that the Kodaira dimension of a variety can characterize density prop-
erties. Thus, tools from birational geometry come into play.
Harris and Tschinkel recently introduced the notion of weakly special varieties, varieties
X such that, if X ′ → X is an étale cover, then X ′ does not admit any dominant map
towards a variety of general type. They conjecture that these are exactly the potentially
dense varieties. Campana was able to construct a map that divides the weakly special
part of a variety and the part of general type: the weak core map. It is a fibration from
the variety X to a variety of general type, the weak core, with the property that the
fibers are weakly special.
The main flaw of this approach is that the weak core is not preserved under étale covers.
However, this problem can be solved by taking into account possible multiple fibers of
fibrations and this is possible by considering orbifold pairs and "orbifold morphisms".
This is also the main reason why we need to introduce orbifolds in the discussion.
The subsequent modification of the notion of weakly special varieties is the notion of
special varieties (and special orbifold pairs), conjectured by Campana to be the poten-
tially dense ones. The weak core map is modified into the core map, a fibration with
special fibers and base of (orbifold) general type. It turns out, according to Campana’s
point of view, that there are three building blocks that can be distinguished using the
invariant given by the Kodaira dimension:

• varieties (and orbifold pairs) X of (orbifold) general type, i.e. whose Kodaira
dimension κ(X) = dimX;

• varieties (and orbifold pairs) with 0 Kodaira dimension;

• rationally connected varieties (and orbifold pairs) characterized by the fact that
they do not admit any fibration towards a variety with positive Kodaira dimension.

Special varieties are conjectured to be towers of fibrations over a point with general
fibers of one of the last two types.
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Now, we come to the structure of the thesis.
In the first chapter, we present the definitions of orbifold pairs and orbifold integral

points.
Then, we discuss the known results for curves and surfaces. In particular, we study a
proof of Siegel’s theorem and of the classical version of Mordell orbifold conjecture.
This latter can be reduced to the study of some particular cases and the main idea to deal
with them is to construct suitable orbifold étale covers from curves for which we already
know density properties using Faltings’ theorem. With a modification of Chevalley–Weil
theorem for the orbifold case, we are then able to transfer the density result to our initial
orbifold pair. Various techniques are used to construct these maps, including Riemann
existence theorem and origami covers.
Siegel’s theorem is studied using the approach of Corvaja and Zannier (2002) that re-
duced it to an application of subspace theorem 1.3.1.
The advantage of this approach is that it can be generalized to surfaces, but introduc-
ing some more hypotheses involving numerical conditions. This is discussed in the last
section of this chapter 1.5, after recalling some general numerical properties. The last
section contains also the birational classification of surfaces with the known results on
rational points for each class.

To be able to study the higher dimensional case, we need some tools that are devel-
oped in the second chapter. In particular, in the first section we discuss some classical
results about invertible sheaves, linear systems, how they can define maps to a projec-
tive space and when these maps are embeddings (ampleness properties). Besides, we see
some useful formulas involving the canonical sheaf.
This first section allows us to have the right background to understand the definition of
the Iitaka and the Kodaira dimensions, notions discussed in the second section. If L is
a line bundle on a variety X, the Iitaka dimension κ(X,L) is an invariant that gives the
dimension of the image of our variety X under the rational morphism defined by mL for
big m, it gives the asymptotic behavior of these maps. The Kodaira dimension is the
same quantity, with L = ωX , the canonical sheaf.
An important property of these dimensions is the easy additivity property, which states
that, if p : X → Z is a fibration and L is an invertible sheaf on X, then κ(X,L) ≤
κ(Xz, L|Xz) + dimZ, where Xz is the general fiber of p. This theorem is studied in the
third section.
The last two sections of the chapter are devoted to the construction of two important
fibrations: the Iitaka–Moishezon fibration and the maximal rationally connected (MRC)
quotient. The first one, given a line bundle L on a variety X, is birationally equivalent
to all maps defined by mL for m big enough and sufficiently divisible. Furthermore, its
general fibers have 0 Iitaka dimension.
On the other hand, the latter one is a fibration such that the very general fibers cor-
respond to rationally connected components and the base is not uniruled. These maps
are particularly important in our discussion because the weak core map (and the core
map with suitable orbifold modifications) can be obtained by applying them alternately
a finite number of times.
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In the last chapter we see the constructions of the weak core and the core maps and
their relation to conjectures about density properties.
The first section contains some technical results of Chow space theory and the construc-
tion of the C-quotient, where C is a class of varieties with a given property. This map is
a fibration with base belonging to the class and general fiber that does not admit any
fibration towards a variety in the class C.
This construction is then applied to varieties of general type to construct the weak core
map, in the next section. Here, we present the notion of weakly special variety and an
example that shows the necessity of taking into account multiple fibers and, therefore,
pass to an orbifold point of view.
The third section develops the technical tools needed to deal with orbifolds. In particu-
lar, it is introduced the notion of orbifold base of a fibration, with which we keep track
of multiple fibers, and we restate some definitions and results in the orbifold case.
At last, we are able to construct the core map, prove that the core is preserved under
étale covers and state the main conjecture presented in the thesis, formulated by Cam-
pana in [4], which says that the core map splits every variety in its mordellic (the base
of orbifold general type) and potentially dense part (the special fibers).



Notations

k number field
Ok ring of integers of k
Ok,p local ring at p, prime of Ok
S finite set of places of k
Ok,S localization of Ok at S
Fp residue field at a prime p
OX structure sheaf of a scheme X
OX,P stalk of OX at the point P
X(k) = {Spec(k)→ X} set of closed k-points of a scheme X
K̄ algebraic closure of a field K
≡n congruence modulo n
disc(k/Q) discriminant of the number field k
kp completion of k at a prime p
RI localization of a ring at the ideal I
π1(X) fundamental group of X
H0(X,L) global sections of the sheaf L on X
h0(X,L) dimension of the space of global sections of an OX -module L as a vector space
over the field of definition of X
H i(X,L) ith cohomology group associated with the sheaf L on X
hi(X,L) dimension of the space H i(X,L) of an OX -module L as a vector space over the
field of definition of X
V (I) zero locus of the ideal I
KX canonical divisor of X
ωX canonical bundle on X
mP maximal ideal of the local ring FP for a sheaf F on a scheme X and a point P ∈ X
X (Zariski) closure of X

A variety in the whole thesis will refer to a separated irreducible and reduced alge-
braic noetherian scheme of finite type over a field k.

A property true for m � 0 means that there exists m0 > 0 such that the property
holds for all m ≥ m0

5



6 NOTATIONS

Given an irreducible variety X, we say that a property holds at a general point if
it holds for all points in the complement of a Zariski closed subset (proper subset). A
property holds at a very general point if it is satisfied off the union of countably many
closed subvarieties (proper subvarieties).



Chapter 1

Orbifold integral points: curves
and surfaces

In this chapter we discuss the notion of orbifold integral points over a number field, a
generalization of integral and rational points. We, then, take a look at the situation
on curves and surfaces. A classical result by Faltings relates the density of these points
to the genus of the curve, in the general case the degree of the canonical divisor plus
the orbifold divisor is conjectured to determine their behaviour. This result is known
in the quasi-projective case thanks to Siegel’s theorem and is completely proven in the
"classical" setting. As for surfaces, thanks to their classification, much is known in the
projective case. For the quasi-projective case there is a generalization of Siegel’s theorem,
which, however, does not characterize completely potential density and mordellicity as
for curves. For the general orbifold case there are conjectures that agree with those that
will be stated later for higher dimensional varieties, proven in many examples.
In the first section we discuss the definition of an orbifold pair, which is a variety to-
gether with a particular Q-divisor, and the notion of orbifold integral points. To define
these points we impose a condition on their intersection with the orbifold divisor modulo
primes. We allow only "big enough" intersections.
The second section is devoted to the study of density of integral points on curves, here
we present the known results and the orbifold Mordell conjecture.
Then, we present a proof of Siegel’s theorem following the approach of Corvaja and
Zannier, using subspace theorem 1.3.1.
The fourth section deals with the proof of the "classical" form of Mordell orbifold con-
jecture. The idea is to construct covers ramified in the support of the orbifold divisor
and to study the relation between the rational points of the domain (for which we can
use Faltings’ theorem) and the orbifold integral points of the base of these covers.
The proof we saw for Siegel’s theorem can be applied also to the case of surfaces, but
adding some more numerical conditions. In the fifth section, after presenting the known
results on rational and integral points on surfaces, we study some numerical properties
and the adapted proof in this situation.

7



8 CHAPTER 1. ORBIFOLD INTEGRAL POINTS: CURVES AND SURFACES

1.1 Orbifold integral points

This first sections is devoted to the definition of orbifold integral points. First, we need
to be able to talk about "reduction modulo primes" of varieties and points over a num-
ber field, so we introduce the notion of models. Then, we discuss the notions of orbifold
pair and orbifold integral points. We conclude this section with some easy examples of
orbifold integral points of the projective line.

We start with a couple of examples to motivate the definitions.

Example 1.1.1. • Let k ⊆ C be a number field, and Ok its ring of integers.
Consider the projective line P1(C) = {[x0 : x1] |x0, x1 ∈ C}, then the rational
points over k are P1(k) = {[x0 : x1] |x0, x1 ∈ k}, while the integral points are
P1(Ok) = {[x0 : x1] |x0, x1 ∈ Ok}. In this case the integral and the rational points
actually coincide as for every x ∈ k we can find n ∈ Z such that nx ∈ Ok, so if
[x0 : x1] ∈ P1(k), then there exists n ∈ Z for which [x0 : x1] = [nx0 : nx1] ∈ P1(Ok).

• Instead, if we remove one point and we consider the affine line: A1(C) = {x ∈ C},
then the rational points over k are A1(k) = {x ∈ k} and the integral points are
A1(Ok) = {x ∈ Ok} and these two sets do not coincide. How can we recognize
integral points between rational ones? If k = Q, so Ok = Z, after embedding the
affine line in the projective line, we can write every rational point as

[
1 : ab

]
= [b : a],

a, b ∈ Z, gcd(a, b) = 1 and a point is integral if and only if there are no primes
dividing b or, in other words, if and only if [b : a] 6≡p [0 : 1] =∞, which is the point
we remove from the projective line to obtain the affine line, for every prime p.

For the discussion on general varieties we need a notion of reduction modulo a prime,
so we need to introduce the concept of models.

Definition 1.1.2. Let X be a (quasi-)projective variety over a number field k with ring
of integers Ok. A model of X over k is a variety X with a dominant, flat morphism
of finite type

X → Spec(Ok)

such that the fiber over the generic point η, Xη is isomorphic to X.
Let p ∈ Spec(Ok) be a non-archimedean prime, and denote by Fp its residue field. Define
then the reduction modulo p of X as the fiber

Xp := X ×Ok Spec(Fp).

Now we have the right setting to define the reduction modulo primes of points. To
do it we need to be able to lift rational points to points over Spec(Ok) and to do it, we
will use the valuatative criterion of properness.

Theorem 1.1.3. Valuatative criterion of properness [H, ch.II, theorem 4.7]
Let f : X → Y be a morphism of finite type, with X noetherian. Then, f is proper if
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and only if, for any field K, any valuation ring R with quotient field K and any pair of
morphisms Spec(K)→ X, Spec(R)→ Y forming a commutative diagram:

Spec(K) //

��

X

f

��

;;

∃!

Spec(R) // Y

there exists a unique morphism Spec(R)→ X making the whole diagram commutative.

Let X be a (quasi-)projective variety with a proper model f : X → Spec(Ok) (for
example, if X is projective over Spec(Ok), then the model is proper). If P ∈ X(k) is a
rational point of X over k, then it is identified with a k-morphism P : Spec(k)→ X. We
can apply the valuatative criterion of properness 1.1.3 to obtain a point: P̃ : Spec(Ok)→
X . In fact, for every prime p ∈ Spec(Ok), let Ok,p be the local ring at p and consider
the commutative diagram:

Spec(k) P //

��

X ∼= Xη �
� // X

f

��

77

∃!Pp

Spec(Ok,p) // Spec(Ok)

By the valuatative criterion of properness, we obtain a unique point Pp for every prime.
Then, define

P̃ : Spec(Ok)→ X ; p 7→ Pp(Spec(Ok,p)), (0) 7→ P

Definition 1.1.4. With the notations above, the reduction modulo p of a rational
point P is the image of Pp in the fiber Xp, i.e. it is Pp(Spec(Ok,p)) ×Ok Spec(Fp). By
abuse of notation we denote it by Pp.

Example 1.1.5. If k is a number field with ring of integers Ok, X ⊆ Pnk is a projective
variety, P = [p0 : ... : pn] ∈ X(k), then we claim that we can find coordinates for this
point such that all pi ∈ Ok and for every prime p of Ok, there exists an index ĩ such
that pĩ /∈ p, so the reduction modulo p of P is just the point [p0 mod p... : pn mod p]
which is a well-defined point of PnFp

. Indeed, we can first multiply each pi by an integer
so that all pi lie in Ok, then we can factorize each ideal (pi) =

∏
p p

epi . Note that in these
factorizations we are using only finitely many primes p of Ok. Let q be one of those,
without loss of generality we can assume eq0 ≤ eqi ∀i = 0, ..., n. As the class group of a
number field is finite, there exists f ′ such that qf ′ = (a) is principal, define f := f ′ − eq0
and take an element α ∈ qf . Then, [p0 : ... : pn] = [αp0 : ... : αpn] and αpi ∈ qf

′ ∀i, so
αpi = aπi, ∃πi ∈ Ok. So, P = [π0 : ... : πn] and π0 /∈ q. We can apply this process to all
the finitely many primes involved in the factorization to obtain the claim.
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Now, we can define what an integral point is: a point that can be reduced modulo
almost every prime. Later, we define another notion of integral points, the orbifold
integral points. The idea of this latter definition is to remove some codimension one
subvarieties from a projective variety X, but allowing "sufficiently high intersection" of
points with these subvarieties modulo a finite set of primes.

Definition 1.1.6. Let X be a projective variety over a number field k with ring of
integers Ok, S a finite set of non-archimedean places of k. Let f : X → Spec(Ok,S) be
a proper model of X over Spec(Ok,S), where Ok,S is the localization of Ok at S. The
S-integral points of X are morphisms P : Spec(Ok,S)→ X , which are sections of f .

Definition 1.1.7. An orbifold pair consists of an irreducible, normal, projective va-
riety X over a number field k together with an effective Q-divisor, ∆ =

∑d
j=0 cjDj ,

where:
• Dj are irreducible, distinct prime (Weil) divisors on X,
• cj = 1− 1

mj
∈ (0, 1], for mj ∈ Z>1 (with the convention mj =∞ if cj = 1).

The support of the divisor, supp(∆) is the union of the prime divisors Dj .

Definition 1.1.8. A Weil divisor D =
∑d
j=0Dj on a variety X is said to be of simple

normal crossing (SNC) if Dj are smooth subvarieties for all j and, for every point P
of X, a local equation for D is x1 · ... · xr, for independent local parameters xi ∈ OX,P ,
the stalk of the structure sheaf at the point P , with r ≤ dimX.
An orbifold pair (X,∆) is smooth if X is smooth and the divisor corresponding to
supp(∆) is of simple normal crossing.

Definition 1.1.9. Let (X,∆) be an orbifold pair and let KX be the canonical bundle
on X. The divisor KX + ∆ is called the canonical bundle of the pair.

To define orbifold-integral points we need to be able to reduce also the divisor in
the orbifold pair modulo primes, so we need to introduce the notion of model for the
orbifold pair.

Definition 1.1.10. Let (X,∆) be an orbifold pair over a number field k with ring of
integers Ok. A model of the pair is a proper model X → Spec(Ok) of X, together
with a model D → Spec(Ok) of the divisor D corresponding to supp(∆) such that D is
a Cartier divisor of X .

Arithmetic intersection numbers
To define what an orbifold integral point is, we need to "control" the intersection of a
point with the orbifold divisor ∆ modulo primes.
Let (X,∆ =

∑
j(1− 1

mj
)Dj) be a smooth orbifold pair and let (X ,D)→ Spec(Ok) be a

model of the pair. Let S ⊆ Spec(Ok) be a finite set of primes containing all the finitely
many primes p for which the fiber (Xp,∆p) is not smooth. Instead of working with Ok,
we work with Ok,S .
Let P ∈ X(k) be a closed k-point of X, assume that, for every j, P /∈ Dj . Let gj be a
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local equation in an open subset containing P defining the component Dj corresponding
to Dj in D. As P /∈ Dj , gj(P ) 6= 0, so the reduction of gj(P ) modulo primes does not
vanish for all but finitely many primes.

Definition 1.1.11. Let p ∈ Spec(Ok) be a finite prime. The arithmetic intersection
number, (P,Dj)p is the largest integer t such that gj(P ) ∈ pt.

Remark.
(i) The quantity gj(P ) ∈ Ok,S and (P,Dj)p ≥ 1 only for the finitely many primes dividing
gj(P ).
(ii) The number (P,Dj)p is independent of the choice of the local equation. Indeed, if hj
is another equation for the subvariety, then hj = gjγj , with γj ∈ O∗X , invertible around
the point P , so γj(P ) ∈ O∗k,S is a unit modulo primes not in S.

Definition 1.1.12. Let (X,∆) be a smooth orbifold pair over a number field k, S a
finite set of places containing the ones over which (X,∆) has "bad reduction". A point
P ∈ X(k) is called (S,∆)-integral (resp. classically (S,∆)-integral) if:
(i) for every j, P /∈ Dj ;
(ii) for every p /∈ S s.t. (P,Dj)p ≥ 1, then (P,Dj)p ≥ mj (resp. mj |(P,Dj)p).
We denote the set of such points (X,∆)(S, k) (resp.(X,∆)∗(S, k)).

Remark. Note that, when ∆ = 0, these points are exactly the rational points of the
projective variety X, whereas when ∆ is a Z-divisor (all mj = ∞) these points are the
integral points for the quasi-projective variety X r supp(∆). The other cases vary from
the projective to the quasi-projective variety.

Example 1.1.13. Some examples on P1

• Let ∆ = (0) + (∞). If ab ∈ P1(Q), with gcd(a, b) = 1, then the point a
b corresponds

to the section [b : a] ∈ P1
Z and the reduction modulo a prime p is [b mod (p) :

a mod (p)] ∈ P1
Fp . The points (0) and (∞) correspond respectively to the sections

[1 : 0] and [0 : 1]. So,(
a

b
, (0)

)
p
≥ 1 ⇔ p|a;(

a

b
, (∞)

)
p
≥ 1 ⇔ p|b.

⇒ (P1,∆)(Q) = {a
b
|there is no prime p such that p|a or p|b} = {±1}

• Let ∆ = (0) + (∞) and S = {p1, ..., ps} a finite set of primes. In this setting we do
not ask any condition for the primes in S, so:

(P1,∆)(Q, S) = {a
b
|∀p /∈ S, p 6 |a or p 6 |b} = set of units of Z[S−1].
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• Let ∆ = (0) + (1) + (∞) and S = {p1, ..., ps} a finite set of primes. Then, to the
two conditions above, we are adding also:

[b : a] 6≡p [1 : 1]⇔ a 6≡p b ∀p /∈ S
⇔ ∀p /∈ S, p 6 |a− b⇔ c := a− b ∈ set of units of Z[S−1].

So the set (P1,∆)(Q, S) corresponds to the solutions of the S-unit equation a =
b+ c.

• Let ∆ =
(
1− 1

s

)
(0)+

(
1− 1

r

)
(1)+

(
1− 1

q

)
(∞), q, r, s ≥ 2. In this case, whenever

an intersection number is strictly positive, then it has to be ≥ q, r, s. So, (P1,∆)(Q)
corresponds to the solutions of the unit equation a = b+c, where a is an s-powerful
integer, b is a q-powerful integer and c is an r-powerful integer (an integer x is called
k-powerful if, for every prime p with p|x, in fact pk|x).

Definition 1.1.14. An orbifold pair (X,∆) is said to be potentially dense if there
exists k′/k, a finite extension and S′ a finite set of primes such that (X,∆)(S′, k′) is
Zariski dense in X. Conversely, it is said to be mordellic if there exists an open dense
subset U ⊆ X such that (X ∩ U,∆)(S′, k′) is finite for every finite extension k′/k and
every finite set of primes S′.

Example 1.1.15. These definitions are not exclusive, there can be varieties that are
neither mordellic, nor potentially dense. For example, if X = F × C, with F a curve of
genus ≤ 1 and C a curve of genus ≥ 2. Indeed, consider the second projection, p, C is
mordellic and F is potentially dense (we will see this in the next section in theorem 1.2.1),
thus k-rational points of X are concentrated in the finitely many fibers of p over the
rational points of C and these fibers are potentially dense.

1.2 Orbifold integral points on curves

In this section we state what is known so far about finiteness of orbifold integral points
on curves and the orbifold Mordell conjecture for curves. We discuss some of the proofs
in the next sections. When the divisor ∆ = 0 the behavior of rational points on a curve
is completely determined by the genus and so by the degree of the canonical divisor of
the curve (Faltings’ theorem). In the case where the orbifold divisor ∆ coincides with
its support (quasi-projective case) the degree of the canonical divisor plus the degree of
∆ determines if the orbifold pair is mordellic or potentially dense (Siegel’s theorem). It
is proven that also for the classical (S,∆)-integral points this is the right invariant to
look at and it is conjectured that the same conclusion holds in the non-classical setting
as well.

Theorem 1.2.1. Let C be a connected, smooth, projective curve over a number field k,
denote by g its genus and by KC its canonical divisor. Then:
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• if g = 0 (deg(KC)= −2 < 0), there exists a quadratic extension k′/k such that
C(k′) 6= ∅. Then, C over k′ is isomorphic to P1

k′, so it has infinitely many rational
points;

• if g = 1 (deg(KC)= 0), after at most a finite extension of the base field k′/k, C(k′)
is an elliptic curve with infinitely many rational points;

• if g ≥ 2 (deg(KC)> 0), then C(k′) is finite for every finite extension k′/k of the
base field. (Faltings’ theorem)

Theorem 1.2.2. Let C be a connected, smooth, projective curve over a number field k
and D =

∑s
j=0 Pj a smooth divisor on it, where Pj are distinct points on C. Denote by

KC its canonical divisor. Also, consider S to be a finite set of places of k. Then:

• if deg(KC +D) ≤ 0, after at most a finite extension of the base field k′/k, the set
of (S,D)-integral points is infinite;

• if deg(KC + D)> 0, then the set of (S,D)-integral points is finite for every finite
extension k′/k of the base field. (Siegel’s theorem)

Remark. The first part of this theorem is straight forward. Indeed, deg(D) > 0 and
deg(KC +D) ≤ 0 if and only if C ′ := C \D is one of the followings:

• C ′ is the affine line (projective line minus one point);

• C ′ is the formal multiplicative group Gm (projective line minus two points, so
isomorphic to a plane affine curve with equation xy = 1).

In both cases the S-integral points are clearly Zariski dense (possibly after a finite
extension of the base field).

The general case is still a conjecture: orbifold Mordell conjecture for curves.

Conjecture 1.2.3. Let (C,∆) be a curve orbifold pair over a number field k, denote by
KC the canonical divisor. Let S be a finite set of places of k. Then (C,∆)(k′, S′) (resp.
(C,∆)∗(k′, S′)) is finite for every finite extension k′/k and S′ finite set of places of k′ if
and only if deg(KC + ∆) > 0.

Remark. Results we have so far.

• The conjecture for classical integral point is completely solved and we will talk
about it in section 1.4.

• Note that (C,∆)∗(k, S) ⊆ (C,∆)(k, S), so, if deg(KC + ∆) ≤ 0, then (C,∆)∗(k, S)
is infinite and so must be (C,∆)(k, S).

• Moreover, if the genus of C is ≥ 2, then (C,∆)(k, S) ⊆ (C, 0)(k, S) and the latter
is finite by Faltings’ theorem and consequently the former is finite as well.
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• If ∆,∆′ are two orbifold divisor such that ∆′ > ∆ (which means that ∆′ − ∆ is
effective), then (C,∆′)(k, S) ⊆ (C,∆)(k, S), hence if the second is finite, so is the
first.

• By these remarks we have reduced to study only some "minimal" cases with
deg(KC + ∆) > 0:

(i) if the curve has genus 1, so the degree of the canonical divisor is 0, then the
minimal case is with ∆ =

(
1− 1

m

)
(a) for a closed point a of the curve.

(ii) if the curve has genus 0 the canonical divisor has degree −2, so the degree of ∆
has to be strictly bigger than 2. Call s the number of points in the support of
∆, so ∆ =

∑s
j=1

(
1− 1

mj

)
(aj) for closed points aj . Then

∑s
j=1

(
1− 1

mj

)
> 2,

which implies
∑s
j=1

(
1
mj

)
< s− 2.

So the minimal cases for a curve with genus 0 are:

s = 3 (m1,m2,m3) ∈ {(2, 3, 7), (2, 4, 5), (3, 3, 4)};
s = 4 (m1,m2,m3,m4) = (2, 2, 2, 3)
s = 5 (m1,m2,m3,m4,m5) = (2, 2, 2, 2, 2)

1.3 Siegel’s theorem
We do not discuss in this thesis the proof of Faltings’ theorem, but we see the one of
Siegel’s theorem, using the approach of P. Corvaja and U. Zannier, based on the subspace
theorem.

Let k be a number field, for every valuation ν, on Ank , we can define a norm. If
P = (x1, ..., xn) ∈ Ank , denote by | · |ν the corresponding norm on k and let:

‖P‖ν := max
i=1,...,n

{|xi|ν}

Look at Ank as a subset of Pnk and define, for the points in Pnk \Ank , the points at infinity,
‖P‖ν :=∞. We need to define also another element, the height of a point:

H(P ) :=
∏
ν

‖P‖ν ,

where the product is taken over all the valuations on k.

Theorem 1.3.1. Subspace theorem [7, Subspace theorem], equivalent to [S, theorem 1F]
Let S be a finite set of non-archimedean places of k, T the union of S and the set of the
arcimedean ones and N ≥ 2 an integer. Consider, for all ν ∈ T , N linearly independent
linear forms in N variables with coefficients in kν , the completion of k with respect to
ν: Lν,1(X1, ..., XN ), ..., Lν,N (X1, ..., XN ). Then, the solutions (x1, ..., xN ) ∈ ONk,S to the
inequality ∏

ν∈T

N∏
i=1
|Lν,i(x1, ..., xN )|ν < H(x1, ..., xn)−ε



1.3. SIEGEL’S THEOREM 15

lie in the union of finitely many proper linear subspaces of Ank .

We need also another classical result, Chevalley–Weil theorem, which is true also for
higher dimensional varieties.

Theorem 1.3.2. Chevalley–Weil
Let f : X → Y be a finite étale covering of normal projective varieties defined over a
number field k. Then, there exists an integer T > 0 such that for all P ∈ Y (k), there
exists P ′ ∈ X(k′) such that f(P ′) = P and the relative discriminant of k′/k divides T .
In particular, applying Hemite–Minkowski theorem 1.4.3, we find k′/k finite extension
such that Y (k) ⊆ f(X(k′)).

Theorem 1.3.3. Siegel
Let C ⊆ Ank be an affine curve over a number field k and C̃ ⊆ Pnk its projective closure.
Let d be the number of points at infinity of the curve, i.e. d := #C̃ \Ank and let D be the
divisor which is the sum of the points at infinity of the curve. If deg(KC)+d > 0, then
the set of (S,D)-integral points is finite for every finite extension k′/k of the base field
and finite set of places S.

Remark. This version is actually equivalent to the one stated in theorem 1.2.2. Indeed,
for every curve C and every divisor which is a sum of points, D =

∑d
i=1 Pi, we can find

an embedding in a projective space PN , with N � 0, such that the points at infinity of
the curve are exactly P1, ..., Pd.

Proof. First of all, note that we can suppose that the curve is smooth. Indeed, if not,
we can prove the result for its normalization and conclude for the curve itself.

Step 1 We can reduce to prove that the number of (S,D)-integral points is finite whenever
d ≥ 3. Indeed, if d = 1 or 2, then, for deg(KC)+d to be > 0, the genus of the curve
must be positive. For any smooth curve with positive genus g there are unramified
covers of any degree; they can be constructed with standard techniques of covering
spaces as the first homology group of the complex Riemann surface associated with
the curve is a free abelian group of rank 2g. Choose one of those with degree ≥ 3:
f : C̃ ′ → C̃ and set D′ := f−1(D), the support of D′ contains more than 3 points,
thus, applying the remark above, we get the result for the curve C̃ ′ with the divisor
D′. Using Chevalley–Weil theorem 1.3.2, we can conclude the same also for the
original curve as there exists k′/k finite extension such that the (S,D)-integral
points of C̃ over k are contained in the image of the ones of C̃ ′ over k′.

Step 2 The statement we are left to prove now is therefore the following.
Let C ⊆ Ank be a smooth affine curve over a number field k with C̃ ⊆ Pnk its
projective closure, smooth as well. Denote by D the divisor corresponding to the
points at infinity. If the support of D has degree at least three, then the set of
(S,D)-integral points is finite for every finite extension k′/k of the base field and
finite set of places S.
Let us suppose that the conclusion of the theorem was not true, i.e. there exists
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an infinite sequence of distinct (S,D)-integral points {P1, P2, ...}. Let S′ be the
union of S and the set of archimedean places, for every ν ∈ S′, consider kν , the
completion of k with respect to ν. The points Pi can be considered inside C̃(kν),
after a base change of C̃ and this latter curve is compact with respect to the
norm induced by ν on the projective space Pnk . Hence we can extract a converging
subsequence. As S′ is a finite set, passing to subsequences, we can suppose that
(Pi)i∈N converges for all ν ∈ S′; call Rν the ν-adic limits.
Let S∗ := {ν ∈ S′|Rν ∈ Supp(D)}, note that this set is not empty. Indeed, if it
was, then, up to finitely many points, ‖Pi‖ν would be bounded for all ν ∈ S′ and
this would imply that the height of Pi was bounded as well, as the coordinates
of these points are in Ok,S . This leads to a contradiction because there are only
finitely many points with bounded height.
If F is an O

C̃
-module associated with a divisor E (for the correspondence, see

theorem 2.1.2), denote by h0(C̃,F ) = h0(C̃, E) the dimension over k of the set
of global sections of F , denoted by H0(C̃,F ) = H0(C̃, E). By Riemann–Roch
teorem [H, ch.IV, theorem 1.3], for N � 0, h0(C̃,K

C̃
−ND) = 0 and h0(C̃,ND) =

Nd + 1 − g := M + 1, where g is the genus of the curve. Let VN := H0(C̃,ND)
and B = {f0, ..., fM} a basis of it over k. After multiplying by a suitable nonzero
constant, we may assume that fj(Pi) ∈ Ok,S ∀i, j.
For every ν ∈ S∗, consider a filtration VN = Wν,1 ⊇Wν,2 ⊇ ... defined as:

Wν,j := {f ∈ VN |ordRνf ≥ j −N − 1} = H0(C̃,ND −NRν + (j −N − 1)Rν)

where ordRνf is the order of vanishing at Rν of the function f .
As we supposed that the degree of D is ≥ 3, ND−NRν+(j−N−1)Rν is effective.
Applying Riemann–Roch theorem again, for N � 0, we get h0(C̃,ND − NRν +
(j−N − 1)Rν) = j−N − 1 +Nd−N + 1− g, whence dim (Wν,j/Wν,j+1) ≤ 1 and
dimWν,j ≥M − j + 1.
For every ν ∈ S∗, choose a basis Bν of VN that contains a basis of each Wν,j (note
that, after a finite number of steps, Wν,j = 0). Each element of this new basis
can be expressed as a linear combination Lν,j(f0, ..., fM ) of elements in B with
coefficients in the algebraic closure of k. Moreover,

ordRνLν,j ≥ j −N − 1

Let tν be a local parameter at Rν , then Lν,j(f0, ..., fM ) = tj−N−1
ν F , where F is a

regular function. Since {Pi}i∈N tends to Rν , in the ν-adic norm F (Pi) is eventually
bounded and

|Lν,j(f0(Pi), ..., fM (Pi))|ν ≤ α|tν(Pi)|j−N−1
ν

for a constant α. Furthermore:

ordRν
M+1∏
j=1

Lν,j(f0, ..., fM ) ≥
M∑
j=0

(−N+j) = M

2 ((d−2)N+O(1)) > (d−2)N
2

2 +O(N)
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and this quantity is strictly positive.
For all ν ∈ S′ \ S∗, let Lν,j := fj−1.
Let x := (f0(Pi), ..., fM (Pi)). If ν ∈ S′ \ S∗, ‖x‖ν is uniformly bounded for all
but finitely many Pi’s as the sequence has a finite limit. Also if ν 6∈ S′, ‖x‖ν
is uniformly bounded since the Pi’s are (S,D)-integral points. Therefore, we can
conclude that:

∏
ν∈S′

M+1∏
j=1
|Lν,j(x)|ν ≤ β

∏
ν∈S∗

|Lν,j(x)|ν ≤ γ
∏
ν∈S∗

|tν(Pi)|(d−2)N2+O(N)
ν

for some constants β and γ. As the order of fj at each Rν is at least −N , we can
bound in a similar way the height of x:

H(x) ≤ δ
∏
ν∈S∗

max |fj(Pi)|ν ≤ ε
∏
ν∈S∗

|tν(Pi)|−N

for some constants δ and ε. From these last two inequalities, we conclude that:

∏
ν∈S′

M+1∏
j=1
|Lν,j(x)|ν ≤ ζH(x)(2−d)(N/2)+O(1)

for a constant ζ. As H(x) goes to infinity with i (as otherwise there would be
only finitely many points in the sequence), we can choose µ such that, for all but
finitely many Pi’s, ∏

ν∈S′

M+1∏
j=1
|Lν,j(x)|ν ≤ H(x)−µ.

Hence, we can apply the subspace theorem 1.3.1 which tells us that the solution
points of the inequality lie in finitely many hyperplanes. In particular, there ex-
ists an hyperplane that contains infinitely many of the points (f0(Pi), ..., fM (Pi)).
However, the functions fj are linearly independent, thus this situation cannot hap-
pen.

qed

1.4 Classical orbifold Mordell conjecture

1.4.1 Tools

The next goal is to see the proof of the calssical version of Mordell orbifold conjecture.
The strategy is to reduce to use the finiteness results we already have by means of
suitable ramified covers π : C ′ → C. The first part of this section gives the relation
between rational points on C ′ and orbifold-integral points on C.

Before starting the discussion, we recall some results from number theory which are
used later.
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Theorem 1.4.1. Purity of branch loci [N, theorem 41.1]
Let (R,m) be a regular local ring and (P, n) a normal local ring which dominates R and
which is a ring of quotients of a finite separable integral extension of R. If every height
one prime in P is unramified over R, then P is unramified over R.

Proposition 1.4.2. Let l/k be a finite extension of number fields, then a prime p of
k is ramified in l if and only if it divides the relative discriminant of the extension.
Moreover, the biggest power e of the prime dividing the relative discriminant is bounded
by a function which depends only on the degree [l : k] of the extension (not on the field
l and neither on the chosen prime p).

Theorem 1.4.3. Hermite-Minkowski
For every N ∈ N, there are only finitely many number fields k/Q such that |disc(k/Q)| ≤
N .

Definition 1.4.4. Let π : C → C ′ be a surjective (hence finite) regular map over a
number field k of smooth projective curves with a "good model" over Spec(Ok,S), with
S a finite set of non-archimedean places of k. Let ∆ =

∑
j

(
1− 1

mj

)
Pj be an orbifold

smooth divisor on C. We say π is classically orbifold étale over ∆ if it is unramified
outside supp(∆) and if, for every j and every a ∈ π−1(Pj), the ramification order at a
is ea = mj .

Remark. Asking that π is classically orbifold étale over ∆ is equivalent to asking π∗(KC+
∆) = KC′ , where KC and KC′ are the canonical divisors of the two curves (Riemann–
Hurwitz’ formula).

Definition 1.4.5. Given a ramified cover π : C ′ → C, we can define the group of deck
transformations associated with it, deck(π) = {f : C ′ → C ′|π(f(a)) = π(a) ∀a ∈ C ′}.
A cover π is said to be Galois if its group of deck transformations acts transitively on
the fibers, #deck(π) = deg(π) and the image of the fundamental group of C ′ under the
map induced by π, is a normal subgroup of the fundamental group of C.

Consider a smooth orbifold pair (C,∆ =
∑
j

(
1− 1

mj

)
Pj) and a Galois, classically

orbifold étale cover over ∆, π : C ′ → C with a model over Spec(Ok,S) for S a finite
set of non-archimedean places of k. This cover induces a finite Galois 1 extension on
the function fields of the two curves with Galois group G: π∗ : k(C) → k(C ′). So
k(C ′) ' k(C)[x]

(p(x)) , there exists a polynomial p(x) ∈ k(C)[x]. Take a rational closed point
of C, a ∈ C(k) \ supp(∆) and consider the specialization of the field extension at a.
Choosing coordinates we can have a more explicit description of the situation. Locally
in an affine open subset around a, k(C) can be described as Quot(k[y1,...,yn]

I(C) ), where I(C)
is the ideal associated with the curve in this affine and p(x) = p(y1, ..., yn, x). With these

1the group of deck transformations corresponds to this Galois group, so, as the former acts transitively
on the fibers by definition, the second acts transitively on the roots of the polynomial defining the
extension, whence the fact that the extension is Galois.
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coordinates, a = (a1, ..., an) and the specialization at a of the extension can be described
as:

k(C)|a '
k[y1, ..., yn]

(I(C), y1 − a1, ..., yn − an) ' k → k(C ′)|a '
k[x]

(p(a1, ..., an, x)) ' l1 ⊕ ...⊕ lt

for some t ∈ N and some fields li’s, which correspond to the irreducible factors pi’s of
p(a1, ..., an, x) =

∏t
i=1 pi(a1, ..., an, x). Let la be the compositum of all li’s. Note that

there exists a bound D for the degree of the extension [la : k] which does not depend
on the particular point chosen (for instance we may take D = dd, where d =deg(p(x))).
Moreover, each field li is Galois over k as in k(C ′)|a there must be all the roots of
p(a1, ..., an, x) because k(C ′) is the splitting field of p(x), so each li must contain all the
roots of its corresponding irreducible factor pi. Hence, la is Galois over k.
Remark. The map π induces an inclusion also of Ok[C] (resp. k[C]) in Ok[C ′] (resp.
k[C ′]). Besides, Ok[C] (resp. k[C]) is locally defined as Ok[y1,...,yn]

I(C) (resp. k[y1,...,yn]
I(C) ),

where we can assume that I(C) admits a set of generators of polynomials with coefficients
in Ok, and Ok[C ′] (resp. k[C ′]) denotes the integral closure of Ok[C] (resp. k[C]) in
k(C ′).

Definition 1.4.6. A model of the cover π over Spec(Ok,S) is called a good model if
the primes of Ok (viewed as primes in Ok[C]) which ramify in Ok[C ′] are contained in
Sbad, the set of primes dividing the order of G and the primes where two points in the
support of ∆ meet.

Proposition 1.4.7. In the above setting, suppose also that π admits a good model. If
a ∈ C(k) \ supp(∆), then:

(i) the finite primes of k which ramify in la are contained in the set S̃ = Sbad ∪ Sa,
where Sbad is the set of primes dividing the order of G and the primes where two
points in the support of ∆ meet and Sa is the set of primes p such that (a, Pj)p > 1
for a point Pj in the support of ∆;

(ii) if for every p ∈ Sa, (a, Pj)p ≡mj 0, then la is unramified at p.

Proof. (i) Let p /∈ S and denote by Op the local ring of integers of kp, the completion
of k with respect to p. Let ξ be a generator of the maximal ideal of Op and ta a
uniformizer at a for the curve C with the scalars extended to kp. Consider (ta) as
an ideal of Op[ta]. The map π defines a finite extension of the field kp(ta).
In coordinates, keeping the notations used above, this extension is defined by the
image of the polynomial p(y1, ..., yn, x) in k(ta)[x] by the map sending yi to its
image in the local ring (identified with k(ta)). Denote this resulting polynomial as
p(ta, x). The extension defined by π corresponds to the extension k(ta)[x]

(p(ta,x)) =
∏
i Li,

for some fields Li. By switching the affine patch we are choosing, if necessary, we
can assume that orda(yi) ≥ 0, so that we can consider also the extension defined
by π on the rings of integers. Denote by Op[C ′] the integral closure of Op[ta]
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in k(ta)[x]
(p(ta,x)) . Choose a prime ideal A in Op[C ′] containing ta, note that this choice

corresponds to the choice of an irreducible factor pi(ta, x) of p(ta, x). Remark that:

Op[C ′]A
AOp[C ′]A

'
(
k(ta)[x]
pi(ta, x) |specialized at a

)
q

' (li)q

where q is a place above p 2. Let m = (ξ, ta) be the maximal ideal of Op[ta] and n a
maximal ideal inOp[C ′] over m and containing A . The height one primes contained
in m are only (ξ) and (ta) and we claim that they are both unramified in Op[C ′].
Indeed, the only finite Galois extensions of kp(ta) are of the form lq(t1/ea ), where e
corresponds to the ramification of π at a. But by hypothesis (a, Pj)p = 0 for every
j, so e = 1, hence (ta) is unramified. On the other hand, (ξ) is unramified because
lq is unramified over kp as p /∈ Sbad. Thus, we are in the situation of theorem of
purity of branch loci 1.4.1, so, applying this result we conclude that m is unramified
in Op[C ′], which is equivalent to saying that its maximal ideal is generated by ξ and
ta. So, specializing at a, we get that

(
Op[C ′]|specialized at a

)
n

= (li)q has maximal
ideal generated by ξ, i.e. p is unramified in li and this is true for all i, so it holds
also for the compositum la.

(ii) Let j be the index such that (a, Pj)p > 0 for a prime p /∈ Sbad and let tj be a
uniformizer for Pj ∈ C/k. The map π induces a finite field extension:

k(tj)→
k(tj)[x]
pi(tj , x) = Li

where pi(tj , x) is an irreducible factor of p(tj , x), polynomial defined as in the
previous part.
Let A be a place of k(tj) containing both p and tj and Ā a place of Li above it.
Complete the fields with respect to these two ideals to get an inclusion of Puiseux
series:

kp((tj)) ↪→ lq((t
1/mj
j ))

where lq is an unramified extension of kp as p /∈ Sbad. The induced extension has
this form, assuming that all mj

th roots of unity are in kp because all finite Galois
extensions of the Puiseux series field are in this form and locally the map π can
be described as tj 7→ t

mj
j . As we are considering a point a for which (a, Pj)p > 0,

it makes sense to evaluate Puiseux series at a (they converge). So, specializing at
a we get that:

(li)p = lq((tj(a)1/mj )).

But, by assumption, (a, Pj)p = mje for a positive integer e, thus the valuation of
tj(a)1/mj at q is an integer, i.e. the valuation of (li)p is contained in Z, which in
turn implies that the extension is unramified.

qed
2The irreducible factors of p(a, x) correspond to the irreducible factors of p(ta, x) by Hensel’s lemma.
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Remark. This theorem cannot be used for the non-classical conjecture as the proof of it
requires the divisibility of the arithmetic intersection numbers by the multiplicities mj .

The next result allows us to compare orbifold-integral points on C and rational
points on C ′, when we have a "good" cover. It is an orbifold version of Chevalley–Weil
theorem 1.3.2 for curves.

Theorem 1.4.8. Let π : C ′ → C be a classically orbifold étale cover over ∆ =∑
j

(
1− 1

mj

)
Pj with a good model over Spec(Ok,S). Then:

(1)
π(C ′(k) \ {ramification points}) ⊆ (C,∆)∗(k, S);

(2) there exists k′/k, finite extension, such that

π(C ′(k′)) ⊇ (C,∆)∗(k, S).

Proof. (1) Let a = π(b) ∈ C(k) for a non-ramification point b ∈ C ′(k). If there exist
j and p /∈ S such that (a, Pj)p ≥ 1, then by hypothesis we know that the cover
induces a map πp, over the residue field Fp, which is ramified at Pj with order
mj . But a ≡p Pj , so if we call tpj and tpb the uniformizers of C and C ′ over Fp at
respectively a ≡ Pj and b, then the map induced on the local rings looks like:

Op,a → O′p,b; tpj 7→ t
pmj
b

i.e. π∗p(tpj) = t
pmj
b . Choose tj and tb lifts of tpj and t

p
b over Ok,S with ordPj (tj) = 1,

so the equation defining Pj locally looks like tj = 0. Then, π∗(tj) ≡p t
mj
b , so

tj(a) = tj(π(b)) ≡p tb(b)mj . By assumption, tj(a) ≡p 0 ≡p t
mj
b , hence, as p is

prime, tb ∈ p. Let e be the largest integer such that tb ∈ pe, than mje is the largest
integer such that tj(a) ∈ pmje, which means (a, Pj)p = emj , so a ∈ (C,∆)∗(k, S).

(2) Let a ∈ (C,∆)∗(k, S), by enlarging S if necessary, we can assume Sbad ⊆ S. For
every j and p /∈ S, by definition of classically integral points, either (a, Pj)p = 0
or mj |(a, Pj)p. So, by proposition 1.4.7, p is unramified in la. Moreover, we
know there is a bound D for the degree of la over k which is independent of a:
[la : k] ≤ D. So, by proposition 1.4.2, the relative discriminant of [la : k] is
bounded by a product of primes in S, raised to a bounded power, which in turns
imply that the discriminant of la over k is bounded. Then, by Hermite-Minkowski’s
theorem 1.4.3, we can conclude that there are only finitely many possibilities for
these fields la. Let k′ be the compositum of all of them, this is the finite extension
of k we were looking for.

qed

In the second part of this section we discuss Riemann existence theorem, which is
used to produce classically orbifold étale covers in some of the cases we will deal with
in the next section. This theorem has two versions, one algebraic and one analytic and
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the tool we will use is actually the theorem that allows to switch from the algebraic to
the analytic version. By the sake of completeness, we state all the results here, but we
prove only the theorem which is needed in the discussion to follow.

Consider the function field of P1
C, namely C(x), and let L be a finite Galois extension

of it with Galois group G. Let p ∈ P1(C) be a closed point and

θp : C(x)→ C((t)); x 7→ t+ p

(so that t can be considered a uniformizer at p). All Galois extensions of C((t)) are
of the form C((t1/e)) with Galois group generated by the element ωe : t1/e 7→ t1/eζe
(ζe a primitive eth root of unity). The map θp extends (uniquely up to conjugation)
to ψp : L → C((t1/e)). Define gp to be the restriction of ωe to L with respect to the
map ψp, so gp ∈ G, it has order e and is unique up to conjugation (the conjugation
corresponds to the choice of an ideal above (t)). So, the extension L together with the
point p determines a conjugacy class of G, namely Cp, whose elements have all order e.
This number e is called the ramification index of L at p and the point p is said to
be ramified when e > 1.

Definition 1.4.9. A ramification type is an equivalence class of triples (G,P, {Cp}p∈P ),
where G is a finite group, P is a finite set of closed points of P1(C) and Cp are conjugacy
classes inside G. Two such triples (G,P, {Cp}p∈P ) and (G′, P ′, {C ′p}p∈P ′) are equivalent
if P = P ′ and there exists an isomorphism of groups G→ G′ mapping each Cp to C ′p.

Theorem 1.4.10. Riemann existence theorem- algebraic [16, theorem 1.2]
Let (G,P, {Cp}p∈P ) be a ramification type with P = {p1, ..., pr}. Then, there exists a
finite Galois extension L/C(x) with that ramification type if and only if there exists a
set of generators of G, {g1, ..., gr} with gi ∈ Cpi for each i and g1 · ... · gr = 1.

Remark. Under some other assumptions on the ramification type it can be shown that
such extension is unique. For more details see [16].

Theorem 1.4.11. Riemann existence theorem- analytic [16, theorem 2.1]
Let Y be a compact Riemann surface, p1, ..., ps distinct points on it and c1, ..., cs ∈ C.
Then, there exists g ∈ M(Y ) (the field of meromorphic functions on Y ) with g(pi) = ci
for all i.

The connection between the two versions of the theorem is to be found in the theory
of covers.
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X

P1
C \ P

If π : X → P1
C is a Galois cover of Riemann sur-

faces, then we can extend it to the compactification of the surfaces and we get a ramified
cover π̄ : X̄ → P1

C. Let’s take a closer look at what happens. Consider a point pi ∈ P , a
"neighborhood" of it in P1

C \ P is a punctured disk D. Let E be a connected component
of π−1(D), then π|E : E → D is a homeomorphism (after possibly restricting D), so E
is itself a punctured disk and π|E has to be of the form z 7→ ze for an integer number e
(all the homeomorphisms of the punctured disk can be put in this form). Thus, π|E has
degree e and its group of deck transformations is generated by the map ωe : z 7→ ζez
(where ζe is an eth root of unity). Note that the choice of another connected component
of π−1(D) corresponds to a conjugation of this element ωe by a deck transformation of
π. Hence, pi defines a conjugacy class of G, call it Cpi . When we consider the compact-
ification of π it is clear that pi becomes a ramified point with ramification index e. If
e = 1, take the point pi away from the set P .

Definition 1.4.12. In the setting above, we say that (G = deck(π), P, {Cp}p∈P ) is the
ramification type of f .

Theorem 1.4.13. Let (G,P = {p1, ..., pr}, {Cp}p∈P ) be a ramification type. Then, there
exists a finite Galois covering space from a Riemann surface X, π : X → P1

C \ P , with
that ramification type if and only if there exists a set of generators of G, {g1, ..., gr} with
gi ∈ Cpi for each i and g1 · ... · gr = 1.

Proof. If π : X → P1
C \ P is a Galois cover, define G = deck(π) = π1(P1

C\P )
π1(X) . In partic-

ular G is a quotient of π1(P1
C \ P ), which is generated by loops γi around pi such that∏

i γi = 1. Denote by gi the image of γi inside deck(π), then, using the notations above,
gi|E is a generator of deck(π|E). In particular, it belongs to Cpi and it has order e. As
G is a quotient of π1(P1

C \ P ), these elements gi generate G and they have the required
properties.
Conversely, we have to construct a cover of Riemann surfaces with the prescribed rami-
fication type. We can do it using a quotient of the universal cover of P1

C \P , but we will
construct it in another way. Without loss of generality, we may assume that pr =∞. As
a set, define X := P1

C ×G and as map of sets, define π to be the projection in the first
component. Now, we need to give X a structure of Riemann surface. Let gi ∈ Cpi , define
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"neighborhoods" of the missing point pi such that the sheet corresponding to an element
g ∈ G is close to the sheet corresponding to ggi and do it in a way such that the loop
around pi, when lifted to X, goes from the sheet corresponding to g to the one corre-

sponding to ggi.

gg2
i

ggi

g g

ggi

gg2
i X

P1
C \ P

The fundamental group of the complex plane without r − 1 points is the free group
Fr−1 on r − 1 generators γ1, ..., γr−1. Since G is generated by g1, ..., gr−1, it can be
presented as a quotient of Fr−1 by a normal subgroup, so it corresponds to a Galois
covering space. Then gr = (g1 · ... · gr−1)−1 corresponds to the loop going around ∞,
γr = (γ1·...·γr−1)−1. So, the Galois cover we constructed has the desired properties. qed

1.4.2 Proof

For proving the "classical" version of the conjecture 1.2.3, we can reduce to deal with
only some particular cases. Here we prove the conjecture for each case using the tools
developed in the previous discussion.

Remark. Let ∆ =
∑
j

(
1− 1

mj

)
Pj and ∆′ =

∑
i

(
1− 1

ni

)
Pi be two smooth orbifold

divisors on a curve C, then we say that ∆|∆′ if supp(∆) is contained in supp(∆′) and,
whenever Pj = Pi, then mj |ni. Note that, when we are in such situation we have that
(C,∆)∗(k, S) ⊆ (C,∆′)∗(k, S).

Let g be the genus of the curve and call s = #supp(∆).

? If g ≥ 2, then by Faltings’ theorem (C, 0)∗(k, S) is finite and it contains (C,∆)∗(k, S),
which is then finite as well.

Case deg(KC + ∆)= 0

? If ∆ = 0, then g = 1 and we already have the result.

? If ∆ > 0, then g = 0 so the degree of ∆ must be exactly 2. Then deg(∆)=
s−

∑
j( 1
mj

) and s ≥ 3.

Case 1 s = 3, deg(∆)= s−
∑
j( 1
mj

), so
∑
j

1
mj

= 1.

Case 2 s = 4, the only possibility is to have all mj = 2.

? s > 4,
∑
j

1
mj
≤ 1

2s < s− 2, so this case cannot happen.
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Case deg(KC + ∆)< 0
The genus can only be 0, so deg(∆)< 2 and, as

∑
j

1
mj
≤ 1

2s, we deduce s ≤ 3.

Case 3 s = 3 with
∑
j=1,2,3

1
mj

> 1

Case 4 s = 2

? s = 1, ∆ =
(
1− 1

m

)
(a) for a point a of the curve, consider ∆′ =

(
1− 1

m

)
(a) +(

1− 1
m

)
(b) with b a point of the curve distinct from a, then ∆|∆′, so by the re-

mark above, we reduce this case to Case 4.

Case deg(KC + ∆)> 0

Case 5 If g = 1 and s = 1, ∆ =
(
1− 1

m

)
(a), for a point a of the curve. Let p be a prime

divisor of m (the case m = ∞ is already solved by Siegel’s theorem) and define
∆′ =

(
1− 1

p

)
(a), so that ∆′|∆. So it is enough to prove the case with prime

multiplicity.

? If g = 1 and s > 1, consider ∆′ constructed taking one of the points in ∆ with
exactly the same multiplicity. Then ∆′|∆, so we have reduced this case to the
previous one.

? If g = 0, so deg(∆)> 2, then s > 2. If s > 3, consider ∆′ constructed using three
of the points in supp(∆) with their multiplicities so that ∆′|∆. So we see it is
enough to prove the statement for s = 3.

Case 6 g = 0, s = 3,
∑
j=1,2,3

(
1− 1

mj

)
< 1.

For each case 1,...,6, we construct classically orbifold étale covers so that, applying
theorems 1.4.8 and 1.2.1 we will get the finiteness result as stated in the theorem 1.2.3.
In most of the cases we work over the complex numbers to produce such covers and then
we find covers over k in this way.

Step 1: The curve C is defined over a number field k, choose an embedding i : k ↪→ C,
with an extension of scalars using this embedding (C ×Spec(k) Spec(C)) we can see
C as a curve over C and so as a compact Riemann surface.

Step 2: Find a ramified cover with the desired properties of Riemann surfaces, π : C ′ → C.

Step 3: As the Riemann surfaces involved are compact, the cover we found can be realized
as an algebraic cover of algebraic varieties over the complex numbers.

Step 4: From the theory of algebraic covers, every algebraic cover over the complex num-
bers can be realized as a cover over Q̄, so we can see π as a ramified cover over
Q̄.
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Step 5: Choosing appropriate coordinates, we can express C, C ′ and π using a finite num-
ber of polynomials with coefficients in Q̄. Adding all of these coefficients to k, we
obtain a finite extension k′/k and the morphism π can be defined over k′.

Case 1/ Case 6 For these cases we construct the cover using Riemann existence the-
orem 1.4.13. Indeed, consider P1 \{0, 1,∞}, its fundamental group is generated by three
loops γ0, γ1, γ∞ around the missing points. π1(P1 \{0, 1,∞}) = 〈γ0, γ1, γ∞|γ0γ1γ∞ = 1〉.
Let p, q, r be the multiplicities "mj" associated with 0, 1,∞ respectively. Let Γp,q,r
be the quotient of π1(P1 \ {0, 1,∞}) generated by three elements g0, g1, g∞ such that
gp0 = 1 = gq1 = gr∞ = g0g1g∞.

Lemma 1.4.14. [9, lemma 2.1] In the notations above, Γp,q,r is infinite and non abelian
if and only if 1

p + 1
q + 1

r ≤ 1. Moreover, in this case, there exists a normal subgroup
H ≤ Γp,q,r, with [Γp,q,r : H] <∞ and the orders of the classes corresponding to g0, g1, g∞
in Γp,q,r/H are respectively p, q, r.

Using the above result from group theory, we can apply theorem 1.4.13 to the group
G := Γp,q,r/H to get a cover π : C ′ → C ramified only at 0, 1,∞ with orders p, q, r.
Furthermore, using Riemann–Hurwitz’ formula, we can compute the genus of the curve
C ′:

2g(C ′)− 2 = d(0− 2) + ε0(p− 1) + ε1(q − 1) + ε∞(r − 1)

where ε0,1,∞ are the number of points over 0, 1,∞ and d is the degree of the cover. Note
that, since the cover is Galois, ε0 = d

p , ε1 = d
q , ε∞ = d

r , so that:

2g(C ′) = 2− 2d+ 3d− d
(1
p

+ 1
q

+ 1
r

)
.

• Case 1: g(C ′) = 1 and π(C ′(k′) \ {ramification points}) ⊆ (P1,∆)∗(S, k′) for a
finite extension k′ of k by part 1 of theorem 1.4.8 and the former set is infinite by
theorem 1.2.1, so the latter is infinite as well.

• Case 6: g(C ′) ≥ 2 and (P1,∆)∗(S, k) ⊆ π(C ′(k′)) for a finite extension k′ of k by
part 2 of theorem 1.4.8 and the latter is finite by Faltings’ theorem 1.2.1 and then
so is the former.

Example 1.4.15. Let’s see some explicit examples of these covers for case 1.
1. Let (p, q, r) = (3, 2, 6) and consider C ′ = E the elliptic curve defined by the equation
y2z = x3 − z3. Define the map:

π : E → P1; (x, y) 7→ x3.

This map has degree 6, is unramified outside 0, 1,∞ and the ramification can be com-
puted as follows:

• over 0 we get the equations x3 = 0, y2 = −1, so we have two points with ramifica-
tion order 3;
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• over 1 we get the equations x3 = 1, y2 = 0, so we have three points with ramification
order 2;

• around ∞ we can rewrite the map as [x : y : z] 7→ [x3 : z3] = [y2z + z3 : z3] =
[y2 + z2 : z2]. Thus, over ∞ we get the equations z2 = 0, x3 = 0, so we have one
point with ramification order 6.

2. Let (p, q, r) = (4, 2, 4) and consider C ′ = E the elliptic curve defined by the equation
y2z = x3 − xz2. Define:

π : E → P1; (x, y) 7→ x2.

Then, deg(π) = 6 and with similar computations as in the previous example we get that
the map is ramified only over 0, 1,∞ with the prescribed ramification orders.

Case 2 Let C ′ = E be an elliptic curve with equation y2 = x(x− 1)(x− λ), λ ∈ k,
such that the points of two-torsion (E[2]) are contained in E(k). Consider the projection
map from the point at infinity:

π : E → C; (x, y) 7→ x.

This map has degree 2 and is ramified only over 0, 1, λ,∞ with ramification order 2.
Indeed, π−1(0, 1, λ,∞) consists of the points of order 2 (and the unity of E, the point
at infinity), the vertical line passing through these points is tangent to the curve and it
meets E only at the given point and at infinity. So, this is the cover we were looking
for. Thus, by theorem 1.4.8 part 1, π(E(k) \ E[2]) ⊆ (P1,∆)∗(k, S) and the first set is
infinite (possibly after a finite extension of the base field) by theorem 1.2.1, whence the
result.

Case 3 In order to simplify the notations, call p, q, r the three multiplicities of the
points in the orbifold divisor ∆. The condition 1

p + 1
q + 1

r > 1, implies that (p, q, r) ∈
{(2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5)}.

• Case (2, 2, r). Use the cover:

π : P1 → P1; t 7→ tr + t−r

2

which has degree 2r and is ramified over ±1 with ramification order 2 and over ∞
with ramification order r.

• Cases (2, 3, n). Consider the congruence subgroup Γ(n) = {A ∈ SL2(Z)|A ≡n
12} E SL2(Z) and the modular curve associated with it: X(n) = H∗/Γ(n). We
can realize these covers as the natural maps of the modular curves X(n) to X(1).
From a discussion in [D-S], we can compute all the numbers we need. First of
all the genus of these curves, for n = 3, 4, 5 (and 1) is always 0. X(n) does not
have elliptic points for our choices of n, so the ramification orders over the two
elliptic points of X(1), i and ρ are respectively 2 and 3. We have then more
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ramification points only over the cusps and the ramification order at the cusps of
X(n) is [SL2(Z)∞ : ±Γ(n)∞] = n (index of the stabilizers of ∞).
For the cases n = 3, 4 explicit equations of these covers can be:

π(2,3,3) : P1 → P1; t 7→ (t3 + 8)3t3

64(t3 − 1)3

and
π(2,3,4) : P1 → P1; t 7→ −28t(t3 − 1)(t3 + 8)3

(t6 − 20t3 − 8)4 .

In all these cases we have: π(P1 \ {ramification points}) ⊆ (P1,∆)∗(k, S), so, by theo-
rem 1.4.8 part 1 and the fact that the first set is infinite, we get the conclusion.

Case 4 Without loss of generality we can assume that the support of ∆ consists of
the two points 0,∞. If ∆ =

(
1− 1

m

)
(0) +

(
1− 1

m

)
(∞) we can simply use the cover:

π : P1 → P; t 7→ tm

which is ramified only over 0 and ∞ with ramification order m. Otherwise, if ∆ =(
1− 1

m

)
(0) +

(
1− 1

n

)
(∞), define ∆′ =

(
1− 1

mn

)
(0) +

(
1− 1

mn

)
(∞), then ∆|∆′ and

the multiplicities of the two points in ∆′ are the same, as in the previous case. So,
π(P1 \ {0,∞}) ⊆ (P1,∆′)∗(k, S) ⊆ (P1,∆)∗(k, S) and, from the fact that the first set is
infinite, we get that also the last one is infinite.

Case 5 When p is an odd prime, we can use the theory of "origamis". Let’s start
with an example to understand the idea.

Example 1.4.16. Consider p = 5. Since g = 1, C is an elliptic curve and, on the
complex numbers, it can be represented as a quotient C/Λ, for Λ = τZ + Z, with τ
a complex number with positive imaginary part. Graphically, we can represent it as
a parallelogram with the opposite edges identified (for simplicity represented with a
rectangle).

a

a

b b

Construct C ′ glueing together p copies of this rectangle as in the following picture
and define π in the obvious way, as the identity in each rectangle:

f

f

d

d

a

a

e e
c c
b b

π

a’

a’
b’ b’

From the picture it is clear that π has order 5
and is ramified only at the point corresponding to all the vertices (which are identified)
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with order 5. To compute the genus of the curve C ′, we can use Euler’s formula: 2 −
2g(C ′) = F −E + V (where F is the number of faces, E the number of edges and V the
number of vertices). In our case we have then g(C ′) = 1

2(−5 + 10− 1 + 2) = 3.

The general situation is exactly the same, considering a similar picture with p rect-
angles in the shape of a stair. The cover π : C ′ → C so constructed has degree p and
is ramified only in one point with order p. Moreover, the genus of the curve C ′ can be
computed as before: F = p, E = 2p, V = 1, so g(C ′) = 1

2(−p+2p−1+2) = 1
2(p+1) ≥ 2.

Remark. Actually, there are explicit equations for the curve C ′ and the morphism π for
every degree. See [14, theorem 3].

Whereas, if p = 2, we cannot do this construction. We will construct the ramified
cover in two steps.

Step 1 Construct f : C(2) → C a double unramified cover of C. In the picture a represen-

tation of a possible cover.
f

Step 2 Construct a cover of C(2) ramified with order 2 over two points a1, a2. We do it with
a construction similar to the one we used for Riemann existence theorem. Consider
the fundamental group π1(C(2)\{a1, a2}) =

〈
α, β, γ1, γ2|αβα−1β−1 = γ1γ2

〉
, where

γi are loops around ai and α, β are the usual loops that generate the fundamental
group of an elliptic curve. Consider the homomorphism of groups:

ϕ : π1(C(2) \ {a1, a2})→ S2 = {1, σ} α, β 7→ 1, γi 7→ σ.

This induces an unramified cover of Riemann surfaces: r : C̃ ′ → C(2), which,

following the construction in theorem 1.4.13, looks like: C(2)

C ′

Then, compactifying domain and codomain, we obtain a morphism ρ : C ′ → C(2)

with ramification of order 2 over the two points a1, a2. Moreover, with Riemann–
Hurwitz’ formula, we can compute the genus of the curve C ′:

2g(C ′)− 2 = 2(2− 2) + 2(2− 1)⇒ g(C ′) = 2.

Finally, compose ρ ◦ f = π choosing a1 and a2 over the same point α in C. So, π is
a map of compact Riemann surfaces of degree 4 and ramified only over α with order 2.
This is the map we were looking for.

In all the cases discussed above, we have found a classically étale orbifold cover of the
elliptic curve C from a curve C ′ with genus ≥ 2. So, applying part 2 of the theorem 1.4.8,
we get that the orbifold integral points are finitely many:

(C,∆)∗(S, k) ⊆ π(C ′(k′)) which is finite by Faltings’ theorem 1.2.1.
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This concludes the proof of the classical version of the conjecture for curves. qed

1.5 Rational and integral points on surfaces

In the last sections of this chapter, we discuss some known results about surfaces. The
Italian school at the end of the 19th century classified surfaces birationally, thus, we can
study rational and integral points on surfaces looking at each case. Density of rational
points is well-understood in most cases; on the other hand, the behavior of integral
points is still an open problem. In the next sections we see an analogue of Siegel’s
theorem 1.2.2, which, however, does not characterize completely mordellicity.

We start by presenting the classification, every (complex) algebraic surface is bira-
tional to a surface in one (or more, they are not exclusive) of the following classes.

• Rational surfaces: these are birationally isomorphic to the plane. Clearly, they
are potentially dense.

• Ruled surfaces: they are birationally isomorphic to a product C × P1, where C
is a curve. They are potentially dense if and only if C is so, otherwise they are
neither potentially dense, nor mordellic.

• Elliptic surfaces: they admit a dominant map f towards a curve, whose general
fiber has genus one. They can be potentially dense, for example if f admits a
section with infinite order (with respect to the group law of the fibers).

• Abelian surfaces: surfaces that are also abelian varieties. They admit closed
algebraic points which generate a dense subgroup, therefore they are potentially
dense.

• K3 surfaces: they are (smooth projective) surfaces which are simply connected
and whose canonical bundle is trivial. It is conjectured that they are potentially
dense, but it is proven only in some cases, with additional information.

• Kummer, bielliptic (or hyperelliptic) surfaces: they are quotients of abelian
surfaces. They are potentially dense since they are dominated by abelian surfaces.

• Surfaces of general type: their canonical divisor is big. According to Bombieri–
Lang–Vojta’s conjecture they are mordellic.

Remark. What is proven for surfaces agrees with some conjectures we will present in the
next chapters for higher dimensional varieties, which use the Kodaira dimension (defined
later).
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1.5.1 Numerical properties

The goal now is to generalize Siegel’s theorem to the case of surfaces, with the same
approach used for curves, applying the subspace theorem 1.3.1. However, we need to
be careful, the divisors now are sums of curves and the dimensions of the analogue of
the spaces in the filtration Wν,j depend on the curve and also on j, there is no uniform
upper bound. To be able to apply the subspace theorem, we need to add some more
conditions on the type of divisor we are removing from the surface. These are numerical
conditions, so we start by presenting the tools we need to understand them. In particular,
here we discuss general intersection numbers, numerical equivalence and some numerical
properties on surfaces.

In algebraic geometry a tool to control intersections is the Hilbert polynomial. The
idea to define general intersection numbers is to extend the notion of Hilbert polynomial
for a sum of divisors.

Definition 1.5.1. Recall that, for a proper scheme X over a field k and a coherent sheaf
F on it, we can define the Euler characteristic of F as the integer:

χ(X,F ) :=
∑
i≥0

(−1)idimkH
i(X,F ).

Theorem 1.5.2. [D, theorem 1.5] Let D1, ..., Dr be Cartier divisors on a proper scheme
X over a field k and let F be a coherent sheaf on X. The function

(m1, ...,mr) 7→ χ(X,F (m1D1 + ...+mrDr))

takes the same values on Zr as a polynomial with rational coefficients of degree at most
the dimension of the support of F .

Definition 1.5.3. Let D1, ..., Dr be Cartier divisors on a proper scheme X over a field k
with r ≥ dim(X). The coefficient ofm1 ·...·mr in the polynomial χ(X,m1D1+...+mrDr)
is called the intersection number of the divisors and is denoted by D1 · ... ·Dr.
If Y is a subscheme of X of dimension at most s, we set

D1 · ... ·Ds · Y := D1|Y · ... ·Ds|Y .

Proposition 1.5.4. [D, proposition 1.8] Let D1, ..., Dn be Cartier divisors on a proper
scheme X of dimension n such that Dn is effective with associated subscheme Y . Then:

D1 · ... ·Dn = D1 · ... ·Dn−1 · Y.

Proposition 1.5.5. [H, ch.V, exercise 1.1] Let D,D′ be divisors on a surface X, then

D ·D′ = χ(X,−D −D′)− χ(X,−D)− χ(X,−D′) + χ(X,OX).

Proposition 1.5.6. If D is a divisor on a surface X and C ⊆ X is a curve, things are
simple:

D · C = deg(D|C).
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Remark. If the divisor and the curve are in sufficiently general positions, from this result
we can see that their intersection number is exactly the number of intersection points
with the muliplicities coming from the coefficients in D.

Proof. We can assume that the curve is normal, otherwise we can change the surface
birationally such that the curve becomes so. We assume this implicitly whenever it is
needed, from now to the end of the chapter. Consider the exact sequence

0→ OX(−C)→ OX → OC → 0

and the twisted sequence

0→ OX(−C −D)→ OX(−D)→ OC(−D|C)→ 0.

From them we get the equalities χ(X,−C)− χ(X,OX) + χ(C,OC) = 0 and χ(X,−C −
D) − χ(X,D) + χ(C,D|C) = 0. Then, putting together these two equations and the
formula from proposition 1.5.5 with D′ = C, we get:

D · C = −χ(C,−D|C) + χ(C,OC) = deg(D|C)

where the last equality comes from Riemann–Roch theorem [H, ch.IV, theorem 1.3]. qed

Also ampleness (see the first section 2.1.1 in the next chapter for the definition) can
be characterized in numerical terms, at least on surfaces.

Theorem 1.5.7. Nakai–Moishezon criterion [H, ch.V, theorem 1.10]
A divisor D on a surface X is ample if and only if D2 > 0 and D · C > 0 for all
irreducible curves C in X.

Lemma 1.5.8. Let D be an ample divisor on a nonsingular projective surface X over
a field k, then for positive integers N , we have:

h0(ND) = N2D2

2 +O(N).

Proof. Let K be the canonical divisor of X, then Riemann–Roch theorem for surfaces
([H, ch.V, theorem 1.6]) gives:

h0(X,ND) = 1
2(ND)2 − 1

2(ND ·K) + χ(X,OX) + h1(X,ND)− h0(K −ND).

For N large enough, K −ND < 0, so h0(K −ND) vanishes. Moreover, as D is ample
and OX is coherent, for N � 0, h1(X,ND) = h1(X,OX ⊗ OX(ND)) = 0 ([H, ch.III,
proposition 5.3]). The term χ(X,OX) is a constant and ND ·K is linear in N . Thus,
we have the claim. qed

Lemma 1.5.9. Let D be a divisor and C a curve on a smooth projective surface X over
a field k, then:

h0(X,D)− h0(X,D − C) ≤ max{0, 1 +D · C}.
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Proof. The exact sequence

0→ OX(−C +D)→ OX(D)→ OC(D|C)→ 0

gives a long exact sequence in cohomology, from which we get an injection of vector
space

0→ H0(X,D)/H0(D − C)→ H0(C,D|C).

From this we get:

h0(X,D)− h0(X,D − C) ≤ dimH0(C,D|C).

Now, if D is not effective, then dimH0(C,D|C) = 0. Otherwise, if D is effective, note
that H0(C,KC −D) ⊆ H0(C,KC), where the inclusion is given by multiplication by an
element of H0(C,D) 6= 0. Thus, applying Riemann–Roch theorem, we get:

h0(C,D|C) = D · C + 1− g + h0(C,KC −D)
≤ D · C + 1− g + h0(C,KC) = D · C + 1

where g denotes the genus of C. qed

Lemma 1.5.10. Let D be an ample effective divisor on a smooth projective surface X
over a field k, C an irreducible component of D. For positive integers N, j we have that
either H0(X,ND − jC) = {0}, or

0 ≤ h0(ND − jC)− h0(ND − (j + 1)C) ≤ N(D · C)− jC2 + 1.

Proof. Suppose that (ND− jC) ·C ≥ 0, in this case we can apply lemma 1.5.9 with the
divisor ND − jC to get the result.
Otherwise, if (ND − jC) ·C < 0, we claim that OX(ND − jC) has no regular sections.
Indeed, if it had, there would be an effective divisor E linearly equivalent toND−jC (see
proposition 2.1.5), thus E ·C = (ND−jC) ·C < 0. However, we can write E = E′+rC,
where E′ ≥ 0 does not contain C in its support and r ≥ 0, then E · C = E′ · C + rC2.
As E′ does not contain C, E′ · C ≥ 0 is the number of intersection points of the curve
with the divisor. Besides, D2 > 0 as well as D · C > 0 because D is ample (by Nakai–
Moishezon criterion 1.5.7), so, to have (ND−jC)·C < 0, C2 must be positive. Therefore,
E · C = E′ · C + rC2 > 0, contradiction. qed

Lemma 1.5.11. Let D be an ample divisor, C an effective curve on a smooth projective
surface X over a field k. Then

D2C2 ≤ (D · C)2.

Proof. As D is ample, by Nakai–Moishezon criterion 1.5.7, D2 > 0, D · C > 0. Hence
the inequality is non-trivial only when C2 > 0. In this case, suppose the conclusion of
the theorem did not hold. Consider the intersection form on the subgroup generated
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by D and C inside Pic(X), we claim that it would be positive definite. Indeed, the
discriminant of the inequality

(xD + yC)2 = x2D2 + 2xyD · C + y2C2 > 0

would be negative, which gives the claim. However, by Hodge index theorem [H, ch.V,
theorem 1.9 and remark 1.9.1] this form cannot be positive definite, whence a contra-
diction and the conclusion of the proof. qed

1.5.2 An analogue of Siegel’s theorem for surfaces

Now, we have the technical tools we need to state and prove the result that generalizes
Siegel’s theorem (approached using the subspace theorem 1.3.1) to surfaces.

During the proof we use two lemmas, which we state here.

Lemma 1.5.12. Let x1, ..., xh, U1, ..., Uh ≥ 0 and R ≤ h be integers such that
∑R
j=1 Uj ≤

d. Suppose further that for each j, 0 ≤ xj ≤ Uj and
∑h
j=1 xj = d. Then:

h∑
j=1

jxj ≥
R∑
j=1

jUj .

Proof. We can do the following computations:
R∑
j=1

jUj + (R+ 1)d−
h∑
j=1

jxj =
R∑
j=1

jUj +
h∑
j=1

(R+ 1− j)xj

≤
R∑
j=1

jUj +
R∑
j=1

(R+ 1− j)xj ≤
R∑
j=1

jUj +
R∑
j=1

(R+ 1− j)Uj = (R+ 1)
R∑
j=1

Uj .

Whence
∑h
j=1 jxj ≥

∑R
j=1 jUj + (R + 1)(d −

∑R
j=1 Uj) and the result follows since the

last parenthesis is ≥ 0 by assumption. qed

Lemma 1.5.13. Let V be a vector space of finite dimension d over a field k. Let
V = W1 ⊃ W2 ⊃ ... ⊃ Wh and V = W ∗1 ⊃ W ∗2 ⊃ ... ⊃ W ∗h∗ be two filtrations on V .
Then, there exists a basis ψ1, ..., ψd of V which contains a basis of each Wj and each
W ∗j .

Proof. We proceed by induction on d. If d = 1 the statement is obvious. Then, we can
suppose (by possibly refining the first filtration), that W2 is an hyperplane in V . Let
W ′i := W ∗i ∩W2. By the inductive hypothesis there exists a basis ψ1, ..., ψd−1 of W2
containing basis of both W2, ...,Wh and W ′1, ...,W ′h∗ . If all the W ∗i = W ′i for i ≥ 2, then
we can just complete the set {ψ1, ..., ψd−1} to any basis of V .
Otherwise, let l be the minimum index such that W ∗l 6⊆ W2 and let ψd ∈ W ∗l \W2. For
sure {ψ1, ..., ψd} contains a basis for each Wi. Now, let i ∈ {1, ..., h∗}, if i > l, W ∗i = W ′i ,
so the basis we have constructed contains a basis of Wi. On the other hand, if i ≤ l, the
constructed basis contains ψd ∈ W ∗l ⊂ W ∗i and it contains a basis for W ′i , which is an
hyperplane in W ∗i , thus it contains a basis of W ∗i . qed
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Theorem 1.5.14. Let X̃ be a smooth projective surface over a number field k and let
X ⊆ X̃ be an affine open subset. Assume that X̃ \X = D1 ∪ ... ∪Dr, r ≥ 2, where the
Di’s are distinct irreducible divisors such that:

(i) no three of them share a common point;

(ii) there exists positive integers p1, ..., pr such that D := p1D1 + ... + prDr is ample
and the following holds. Let ξi, for i = 1, ..., r be the minimal positive solution of
the equation D2

i ξ
2− 2(D ·Di)ξ+D2 = 0 (this solution always exists), we have the

inequality
2D2ξi > (D ·Di)ξ2

i + 3D2pi.

Then there exists a curve on X containing all the (S,∆ := D1 + ...+Dr)-integral points,
where S is a finite set of non-archimedean places of k.

Proof. By enlarging k, if necessary, we may assume all the Di’s are defined over k. Let
S′ be the union of S and the archimedean places of k.

Step 1 We reduce to prove the following.
For every infinite sequence of (S,∆)-integral points on X, there exists a curve
defined over k, containing an infinite subsequence.
Indeed, assume this holds and enumerate all curves on X defined over k: C1, C2, ....
Remark that X has at most countably many curves on it. In fact, given N, d ∈ N,
there are countably many polynomials with degree smaller than d and coefficients
in k smaller than N . Thus, there are at most countably many polynomials that
define curves on X.
If the conclusion of the theorem was not true, then for every curve, there existed
an (S,∆)-integral point outside that curve. Thus, we can construct a sequence of
(S,∆)-integral points by taking P1 6∈ C1, P2 6∈ C1∪C2, and so on (Pn 6∈ C1∪...∪Cn).
From this sequence we cannot extract any infinite subsequence contained in a single
curve. Contradiction.

Step 2 To prove the above claim, we want to follow the steps done for Siegel’s theorem,
reducing to the subspace theorem 1.3.1, but this time we have to be more careful.
Let {Pi}i∈N be an infinite sequence of distinct (S,∆)-integral points, by possibly
passing to a subsequence, we may assume that it converges for all ν ∈ S′. Call
the ν-adic limit Rν ∈ X̃(kν). Three different situations can happen (and no others
because of assumption (i)).

Case A The point Rν 6∈ Supp(D).
Case B There exists an index i such that Rν ∈ Supp(Di), but for all j 6= i, Rν 6∈

Supp(Dj). In this case denote by Dν := Di and pν := pi.
Case C The point Rν belongs exactly to two components Di and Dj . Denote Dν :=

Di, D∗ν := Dj and pν := pi, p∗ν := pj .
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The goal of this step is to prove the inequality that allows us to apply the subspace
theorem 1.3.1. More precisely, fix N � 0 and let VN := H0(X̃,ND) (where X̃ is
considered over k). Note that each function is regular in the affine X, in particular,
it can be expressed as a polynomial in the affine coordinates. Let f1, ..., fM be a
basis of VN (for N � 0, M ≥ 2). By multiplying all fj ’s by a suitable constant, we
may assume that all fj(Pi) ∈ Ok,S . In each of the cases above, for every ν ∈ S′ we
want to construct linear functions in the fj ’s, Lν,j which are linearly independent
and such that for an infinite subsequence of {Pi}i∈N, there exists µν > 0 and a
constant αν independent of i such that:

M∏
j=1
|Lν,j(Pi)|ν ≤ αν(max

j
|fj(Pi)|ν)−µν .

Case A Set Lν,j := fj . Since the limit Rν is finite, these functions are bounded on
the sequence. Therefore:

M∏
j=1
|Lν,j(Pi)|ν =

M∏
j=1
|fj(Pi)|ν

maxj |fj(Pi)|ν
maxj |fj(Pi)|ν

≤ αν(max
j
|fj(Pi)|ν)−1.

Case B Choose a local equation tν at Rν for the divisor Dν . Define a filtration of
VN = W1 ⊇W2 ⊇ ... with

Wj := {f ∈ VN |ordDνf ≥ j − 1−Npν}, j ≥ 1.

Choose a basis of VN containing a basis of the filtration, call these elements
Lν,j and note that they can be written as linear combinations of the fj ’s. In
particular, in this new basis, there are dim(Wj/Wj+1) elements with ordDν =
j − 1−Npν , whence:

M∑
j=1

ordDνLν,j =
M∑
j=1

(j − 1−Npν) dim(Wj/Wj+1).

We want to apply lemma 1.5.12, so we need to set xj , Uj , h,R and we need
to check the conditions in the statement. Let xj := dim(Wj/Wj+1) and let
h be the maximum index such that Wj 6= 0, note that

∑h
j=1 xj = dimVN =

M = N2D2

2 +O(N), where the last equality comes from lemma 1.5.8. Define
Uj := 1 +N(D ·Dν)− jD2

ν . By lemma 1.5.10, 0 ≤ xj ≤ Uj .
Let ξ be the minimal positive solution to the equation:

D2
νξ

2 − 2(D ·Dν)ξ +D2 = 0 (?)

(so ξ = ξi in the statement). By lemma 1.5.11, the solutions of this equation
are real. Call ζ the other solution, then ζ + ξ = 2D·Dν

D2
ν

and ζξ = D2

D2
ν
. As D

is ample by assumption, using Nakai–Moishezon criterion 1.5.7, we see that



1.5. RATIONAL AND INTEGRAL POINTS ON SURFACES 37

D2 > 0 and D · Dν > 0, therefore at least one of the two roots must be
positive. If D2

ν < 0, then, it is clear that ξD2
ν ≤ D ·Dν . If, instead, D2

ν ≥ 0,
then ξ and ζ are positive as both the sum and the product of the two roots
are positive and, as ξ is the smallest root, from ζ+ξ = 2D·Dν

D2
ν

, we deduce that
ξD2

ν ≤ D ·Dν . Choose 0 < λ < ξ such that:

λ2D ·Dν

2 − λ3D
2
ν

3 −
D2pν

2 > 0.

This is possible by continuity, because ξ satisfies the same inequality. Indeed,
by condition (ii), 2D2ξ > D · Dνξ

2 + 3D2pν , putting together this with (?)
multipled by 2ξ, gives the result. Moreover, since λ < ξ and ξ is the minimal
positive solution that satisfies (?),

D2
νλ

2 −D ·Dνλ+ D2

2 > 0.

Now, set R := bλNc. Let us verify the conditions to apply lemma 1.5.12:

R∑
j=1

Uj = RN(D ·Dν) + R2D
2
ν

2 +O(R+N)

≤ N2(D ·Dνλ−
D2
νλ

2

2 ) +O(N)

< N2D
2

2 +O(N) = M =
h∑
j=1

xj .

Note that, for j ≤ R, Uj > 0, as 0 ≤ D · Dν − ξD2
ν < D · Dν − λD2

ν . This,
in turn, implies R ≤ h, otherwise, if not,

∑R
j=1 Uj > M , contradiction. Thus,

lemma 1.5.12 yields:

h∑
j=1

jxj ≥
R∑
j=1

Uj

=
R∑
j=1

j(1 +N(D ·Dν)− jD2
ν)

= R(R+ 1)
2 (1 +N(D ·Dν))− R(R+ 1)(2R+ 1)

6 D2
ν

= N3
(
λ2D ·Dν

2 − λ3D2
ν

3 +O( 1
N

)
)
.
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Hence:

M∑
j=1

ordDνLν,j =
h∑
j=1

(j − 1−Npν)xj

≥
h∑
j=1

jxj − (Npν + 1)M

≥ N3
(
λ2D ·Dν

2 − λ3D2
ν

3 − D2pv
2 +O( 1

N
)
)
> 0 for N � 0

We can write each Lν,j = t
ordDνLν,j
ν Fj , where Fj has non-negative order at Dν ,

so |Fj(Pi)|ν are bounded for i� 0. Hence, there exists a positive constant β
such that

M∏
j=1
|Lν,j(Pi)|ν ≤ β|tν(Pi)|

∑M

j=1 ordDνLν,j
ν .

In the same way, there exists a constant γ such that, for i� 0,

max
j
|fj(Pi)|ν ≤ γ|tν(Pi)|−Npνν .

Putting together the last two estimates, we finally get the claim, using that∑M
j=1 ordDνLν,j > 0.

Case C Consider two filtrations on VN :

Wj := {f ∈ VN |ordDνf ≥ j − 1−Npν}
W ∗j = {f ∈ VN |ordD∗νf ≥ j − 1−Np∗ν}.

Using lemma 1.5.13, we can construct a basis for VN that contains a basis for
eachWj ,W

∗
j . The elements of this basis can be written as linear combinations

Lν,j of the fj ’s. As X̃ is smooth, the local ring at Rν is an UFD of dimension
2, thus, if we choose tν and t∗ν local equations for Dν and D∗ν , they generate
the local ring and they are coprime. Therefore, Lν,j = t

ordDνLν,j
ν t

∗ordD∗νLν,j
ν Fj ,

where Fj is regular at Rν , so it is bounded on all but finitely many of the
Pi’s. Using the same calculations as in case B, we get the claim.

As the constant function 1 ∈ VN , maxj |fj(Pi)|ν > 0. Define µ := minµ∈S′ µν , so
that

M∏
j=1
|Lν,j(Pi)|ν ≤ αν(max

j
|fj(Pi)|ν)−µ ∀ν ∈ S′.

Step 3 Now, we want to apply the subspace theorem 1.3.1. Let xi := [f1(Pi) : ... : fM (Pi)],
we may assume that the height H(xi) goes to infinity. Indeed, if not, it would be
bounded for i � 0 and the points xi would lie in a finite set. This would imply
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that the function f1/f2 is constant = c on an infinite subsequence, which means
that an infinite subsequence lies in the curve defined by the equation f1− cf2 = 0,
so the claim is true in this case.
But, if H(xi) goes to infinity, for all, but finitely many i’s, H(xi)−

µ
2
∏
ν∈S′ αν ≤ 1.

Therefore ∏
ν∈S′

M∏
j=1
|Lν,j(Pi)|ν ≤ H(xi)−

µ
2 ,

which is what we need to apply the subspace theorem 1.3.1. We finally get a
non-trivial relation

∑
j ajfj(Pi) = 0 on an infinite subsequence of {Pi}i∈N. As the

functions fj are linearly independent, this relation defines the desired curve.

qed

Corollary 1.5.15. Let X̃ be a smooth projective surface and X ⊆ X̃ an affine open
subset such that X̃ \ X = D1 ∪ ... ∪ Dr, where the Di are distinct irreducible divisors
such that no three of them share a common point. Assume, moreover, that r ≥ 4 and
that there exists positive integers p1, ..., pr, c such that pipj(Di ·Dj) = c for all pairs i, j.
Then, there exists a curve on X containing all the (S,∆ := D1 + ...+Dr)-integral points.

Remark. This corollary tells us that, if we remove more than 4 curves from a surface,
this is "most likely" mordellic, this can be seen as an analogue of what Siegel’s theorem
says. It is believed that taking out a divisor of sufficiently large degree from a projective
variety produces a variety of general type, which is conjectured to be mordellic (we
discuss in the next chapters this conjecture).

Proof. We have to check that, with the pi’s in the statement, the assumptions of theo-
rem 1.5.14 are satisfied. Note that

D ·Di =
r∑
j=1

pjDj ·Di = cr

pi
; D2 =

∑
i,j

pipjDi ·Dj = r2c; D2
i = c

p2
i

.

Thus, ξi = rpi and the inequality becomes 2r3cpi > r3cpi + 3r2cpi, which is equivalent
to r ≥ 4. qed



Chapter 2

Kodaira dimension

In higher dimension there are varieties which are neither potentially dense nor mordellic.
The objective would be to identify the conditions under which an orbifold pair has one of
these two properties and, for general varieties, to construct the core map. This fibration
conjecturally separates the mordellic part (base of the fibration) and the potentially
dense part (the fibers of the fibration) of a variety.

The invariant which will play the role of the genus for higher dimensional varieties
is the Kodaira dimension. Its definition and some of its properties are discussed in the
second section.
The first part of the chapter, instead, gives some preliminary results about the two
main objects that appear in the definition of the Kodaira dimension: linear systems and
canonical sheaves.

The third section deals with a property of the Kodaira dimension which relates
the dimension of two varieties in a fibration and the dimension of the fibers: the easy
additivity property. This will be used later to study the core map.
In the last two sections we present two fibrations, the Iitaka fibration and the MRC
quotient. The main property of the first one is that its base has dimension equal to the
Iitaka dimension of the variety and its fibers have zero Kodaira dimension. The second
one, instead, is characterized by the fact that its base has positive Kodaira dimension
and its fibers are rationally connected. The core map will turn out to be a composition
of appropriate orbifold modifications of these two maps.

2.1 Preliminaries

2.1.1 Divisors and embeddings

In this first part of the section we discuss how divisors can give rational maps to the
projective space and ampleness properties, which are related to divisors that give im-
mersions.

Let L and M be locally free sheaves of rank 1 (i.e. invertible sheaves) on a ringed
space X, then it is easy to see that:

40
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• L⊗OX M is a locally free sheaf of rank 1;

• L−1 := L∗ = HomOX (L,OX) is an invertible sheaf and L⊗ L∗ ' OX .

Definition 2.1.1. From the comment above, we see that the set of invertible sheaves
on a ringed space X has a group structure, with identity given by OX . This group is
called the Picard group of X and it is denoted by Pic(X).
Denote by CaCl(X) the free abelian group on the set of Cartier divisors on X, with
operation given by the sum of divisors and the identity given by the 0 divisor.

The next theorem compares the two groups we just defined. In particular, for smooth
varieties they coincide.

Let X be a scheme and let K be its sheaf of total quotient rings of OX (i.e.
the sheafification of the presheaf U 7→ S(U)−1OX(U), where S(U) is the set of sections
of OX(U) which are not zero divisors in each local ring OX,P , for all P ∈ U). Let
D = {(Ui, fi)|i ∈ I} be a Cartier divisor on X, where {Ui|i ∈ I} is a cover of X such
that D is represented by the functions fi ∈ K(Ui) in each Ui. Define the sheaf OX(D)
to be the sub-OX -module of K generated by f−1

i on each Ui. Since in Ui ∩ Uj , fi
fj

is
invertible, f−1

i and f−1
j define the same sheaf in the intersection, thus we get a well

defined OX -module.

Theorem 2.1.2. If X is an integral scheme (e.g. if X is smooth), there is an isomor-
phism of groups CaCl(X) → Pic(X) which associates every divisor D to an invertible
sheaf denoted by OX(D).

Proof. First of all, note that (keeping the notations above), on each Ui, the map OUi →
OX(D)|Ui defined by 1 7→ f−1

i is an isomorphism by construction. So, OX(D) is a locally
free sheaf of rank 1. Moreover, D can be uniquely recovered from OX(D) together with
its embedding in K, by taking on each Ui the inverse fi of a local generator of the sheaf.
As OX(D) is an invertible subsheaf of K, this gives a unique well defined Cartier divisor
on X.
The map D → OX(D) is a group morphism as, if D1 is locally defined by f and D2 by g,
thenOX(D1−D2) is locally generated by f−1g, soOX(D1−D2) = OX(D1)·OX(D2)−1 as
subsheaves of K and this product is isomorphic to the tensor productOX(D1)⊗OX(D2)∗.
Now, we show that D1 ∼ D2 if and only if OX(D1) ' OX(D2), so that the map
D 7→ OX(D) descends to a map CaCl(X)→ Pic(X). As we have already seen that the
map is a group morphism, it is enough to show that a principal divisor is associated with
the structure sheaf. But this is clear as, if D is principal, it is defined by a meromorphic
global section f ∈ K∗ and 1 7→ f−1 gives a global isomorphism OX → OX(D).
Up to now, we never used the fact that X is an integral scheme. In fact, this property is
used only to show that this association is surjective (injectivity already proven). If L is
an invertible sheaf together with an embedding in K, then we know how to construct a
divisor D whose associated sheaf is L. Thus, it is enough to prove that every invertible
sheaf can be embedded as a subsheaf of K. It is a general fact that, if X is an integral
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scheme, the sheaf K is the constant sheaf K, with K the function field of X. Consider
the sheaf L ⊗OX K. On any open set U where L is isomorphic to OX , L ⊗ K ' K, so
it is a constant sheaf on U . But X is irreducible and these opens U cover X, so L⊗K
must be a constant sheaf on all of X. Thus, L ⊗ K is isomorphic to the constant sheaf
K and the natural map L→ L⊗K ' K gives the desired embedding. qed

Remark. From now on we often freely pass from a divisor to the line bundle associated
with it.

The goal now is to understand how divisors can give maps of a variety inside a
projective space. In particular, we will study the notions of ampleness and of linear
systems.

Definition 2.1.3. Let X be a scheme over Y and L an invertible sheaf on it.
An immersion is a morphism i : X → Z that gives an isomorphism with an open
subscheme of a closed subscheme of Z. Then, L is said to be very ample relative to
Y (we will often omit Y when it is clear from the context) if there is an immersion
i : X → PNY for some N such that i∗O(1) ' L.
A sheaf is said to be generated by global sections if there exists a subset {s0, ..., sr} ⊆
H0(X,F ) such that, for each point of X, the images of si in the stalks for i = 0, ..., r
generate the stalks. If X is a Noetherian scheme, then L is said to be ample if, for every
coherent sheaf F on X, there is an integer n0 > 0 such that, for all m ≥ n0, F ⊗ L⊗m
is generated by global sections.

Theorem 2.1.4. Let L be an invertible sheaf on a noetherian scheme of finite type over
a ring A, then the followings are equivalent:

(i) L is ample;

(ii) L⊗m is ample ∀m > 0;

(iii) L⊗m is ample for some m > 0;

(iv) L⊗m is very ample for some m > 0.

Proof.

(i) ⇒ (ii) Immediate from the definition.

(ii) ⇒ (iii) Trivial.

(iii) ⇒ (i) Assume L⊗m is ample. Let F be a coherent sheaf on X, then there exists n0 such
that for all n ≥ n0, F ⊗ L⊗mn is generated by global sections. But also F ⊗ L is
coherent, so there exists n1 such that for all n ≥ n1, F ⊗L⊗(1+mn) is generated by
global sections. Repeat this process for the sheaves F ⊗L⊗i, with i = 0, ...,m− 1.
Then take N = maxi=0,...,m−1 ni. Then, for all n ≥ N , F ⊗ L⊗n is generated by
global sections, hence L is ample.
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(iv) ⇒ (iii) L⊗m is very ample for some m, so there is an immersion i : X → PnA such that
L⊗m ' i∗O(1). Let X be the closure of i(X), it is a projective scheme. Then, a
result by Serre ([H, ch.II, theorem 5.17]) tells us that OX(1) is ample on X. But
any coherent sheaf F on X extends to a coherent sheaf Fon X. If F ⊗OX(1)⊗n
is generated by global sections, then also F ⊗O⊗nX is. Hence, L⊗m is ample on X.

(i) ⇒ (iv) First of all we want to show that, for every P ∈ X, there exists an n > 0 and
s ∈ H0(X,L⊗n) such that P ∈ Xs and Xs is affine (Xs =

{
Q ∈ X|sQ /∈ mQL

⊗n
Q

}
).

Indeed, let U be an affine open neighborhood of P such that L|U is free, let Y :=
X \ U and IY the sheaf of ideals defining Y . In particular, IY is coherent on X.
Thus, for some n > 0, IY ⊗ L⊗n is generated by global sections. In particular,
there exists s ∈ H0(X, IY ⊗ L⊗n) such that sP /∈ mP (IY ⊗ L⊗n)P . The sheaf
IY ⊗ L⊗n is a subsheaf of L⊗n, so we can think of s as a global section of L⊗n.
P ∈ Xs and Xs ⊆ U . But L|U is trivial, so s|U = f ∈ H0(U,OU ) and Xs = Uf is
affine.
Since X is compact, from the cover {Xs} we can extract a finite subcover, say
Xs1 , ..., Xsk . By replacing each si with a suitable power, we can assume all si ∈ L⊗n
for the same n (taking powers does not change Xsi). The sheaf L⊗n is also ample
and to show L⊗m is very ample for some m, we may replace L with L⊗n.
For each i = 1, ..., k, let Bi = H0(Xsi ,OXsi ), since X is of finite type, these are
finitely generated A-algebras. Call {bij |j = 1, ..., ri} a set of generators. By [H,
lemma 5.14], for each i, j there is an integer n > 0 such that sni bi,j extends to a
global section ci,j ∈ H0(X,L⊗n). Take n large enough to work for all i, j.
Define a morphism

ϕ : X → PNA ; x 7→ [sn1 (x) : ... : snk(x) : c1,1(x) : ... : ck,rk(x)]

The sections sni generate L⊗n as Xsi cover X, so this is indeed a morphism. Let
{xi, xi,j} be the corresponding coordinates on PNA and let Ui be the open subset
where xi 6= 0. Then ϕ−1(Ui) = Xi and the map of affine rings

A[xi, xi,j ]→ Bi

is surjective. Thus Xi is mapped onto a closed subscheme of Ui and ϕ gives an
immersion of X in a closed subscheme of

⋃
i=1,...,k Ui ⊆ PNA . Hence, L⊗n is very

ample.

qed

If X is a smooth projective variety, then the groups of Cartier and Weil divisor
coincide and they are isomorphic to the Picard group of the variety. Another useful fact
is that, if D is a divisor and L = OX(D) is the corresponding element in Pic(X), the
global sections of L describe exactly all the effective divisors which are linearly equivalent
to D. Indeed, to each global section s, we can associate its divisor of zeros with the
following construction. Let {U} be a cover of X such that L|U ' OX|U for each U and
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call ϕU the isomorphisms. The collection
{

(U,ϕU (s|U ))
}

gives a well-defined effective
Cartier divisor on X.

Proposition 2.1.5. Let X be a smooth projective variety over an algebraically closed
field k. Let D0 be a divisor on X and let L = OX(D0) be the corresponding invertible
sheaf. Then:

(i) for each nonzero section s ∈ H0(X,L), the divisor of zeros is an effective divisor
linearly equivalent to D0;

(ii) every effective divisor linearly equivalent to D0 is of the form (s) for a global section
s ∈ H0(X,L);

(iii) two global sections s, s′ ∈ H0(X,L) define the same divisor if and only if there
exists a scalar λ ∈ k∗ such that s′ = λs.

Proof. (i) Identify L with a subsheaf of K. Then, s corresponds to a meromorphic
function f in the function field of X. If D0 is locally defined by fi then L is locally
generated by f−1

i , so a local isomorphism of L with OX is given by multiplication
by fi. Then, D is locally defined as (fif). So, D = D0 + (f), whence D ∼ D0.

(ii) Let D ∼ D0, D > 0. Then, there exists f in the function field of X such that
D = (f) +D0; f gives a global section of L.

(iii) Using the same construction as before we get f and f ′ meromorphic functions on
X associated with s and s′. In particular, as (s) = (s′),

(
f
f ′

)
= 0. This means

that f
f ′ ∈ H

0(X,O∗X) = k∗ as X is a projective variety over an algebraically closed
field. So, s′ = λs for a nonzero scalar λ.

qed

Definition 2.1.6. The set of all effective divisors which are linearly equivalent to a given
divisor D0, by the correspondence described above in proposition 2.1.5, is in bijection
with H0(X,OX(D0))/k∗, so it has a structure of a projective space (closed points of a
projective space). This set is called the complete linear system associated with D0
and is denoted by |D0| or |OX(D0)|.
A linear system d is a subset of a complete linear system, which corresponds to a linear
subspace for the projective structure. The dimension of d is its dimension as a linear
projective variety.

Definition 2.1.7. Let d be a linear system on a projective variety X, let F be the
maximum divisor such that, for all D ∈ d, D ≥ F . F is called the fixed divisor of d.
(We say D ≥ D′ if D −D′ is effective.)
A point P ∈ X is called a base point of d if P ∈ Supp(D) for all D ∈ d. (Supp(D) is
the union of all prime divisors of D.) The set of all base points is called the base locus
of the linear system and is denoted by Bs(d). A linear system is called base-point-free
if its base locus is empty.
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Proposition 2.1.8. Let d be a linear system on a variety X corresponding to a subspace
V of the global sections of a line bundle L. Then P is a base point of d if and only if
sP ∈ mPLP for all s ∈ V . In particular, d is base-point-free if and only if L is generated
by the global sections in V .

Proof. The first claim comes directly from the definition of base point noting that a
point belongs to the support of a divisor D if and only if it is a zero of the global section
defining D.
For the second claim: if V generates L, then, for every point P there exists a global
section s ∈ V such that sP /∈ mPLP . But then, the divisor corresponding to s does not
have P in its support. Viceversa, if L was not globally generated by V , there exists P
such that all global sections in V belong to mPLP , but this means that P is a base point
of d. qed

Remark. Each linear system d, with corresponding linear subspace of global sections V
with basis {s0, ..., sN}, determines a rational map from the variety X to the projective
space P(V ):

Φd : X 99K P(V ); x 7→ [s0(x) : ... : sN (x)].

Note that Φd is well-defined outside the base locus of d. Moreover, if F is the fixed
divisor of d, then the rational map induced by d− F is still Φd.

Remark. Let d be a linear system and f a subsystem of it on a projective variety X. Let
V be the vector space associated with d and W the subspace determined by f. Note that
there is an inclusion of the base loci: Bs(d) ⊆ Bs(f), so both Φd and Φf are well-defined
on X \Bs(f). (Note that, if f is base-point-free, also d is.) The map Φf can be seen as the
composition of Φd and the projection on the appropriate components of the projective
space target of Φd. But this projection, on the closure of the image of X, Y , is finite (as
Y is projective, see [G, lemma 4.1.5 and remark 4.1.6]).

Remark. A very ample divisor L on a variety X is characterized by the fact that there
exists an immersion i : X → Pn such that L ' i∗O(1). This is equivalent to saying that
there exists a subset of global sections {s0, ..., sn} that generates L and such that the
corresponding linear system gives an immersion.
In particular, if L is ample, a power of it is very ample, say L⊗m, so the linear system
|L⊗m| gives an immersion of X in a projective space.

2.1.2 Canonical sheaf

Here we see the properties of a particular divisor of smooth varieties: the canonical
divisor. It is defined as the largest exterior power of the sheaf of differentials and it
carries a lot of information about the variety. For example we saw that for curves the
sign of its degree determines whether C is potentially dense or not. In higher dimension,
conjecturally, positivity of the canonical bundle again governs potential density of a
variety.
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Definition 2.1.9. LetX be a smooth variety over a field k. Then its sheaf of differentials
ΩX/k (or simply ΩX) is a locally free sheaf of rank n equal to the dimension of X ([H,
ch.II, theorem 8.15]). Its nth exterior power is a locally free sheaf of rank 1 and it is
called canonical sheaf of X and denoted by ωX . The corresponding divisor is called
the canonical divisor of X and is denoted by KX .

Example 2.1.10. Let k be a field and X = Pnk . We want to compute ωX . There is an
exact sequence ([H, ch.II, theorem 8.13]):

0→ ΩX → OX(−1)n+1 → OX → 0.

Then, taking the largest exterior power, we get that ωX = OX(−n− 1)

Next, we study how to compute the canonical sheaf of a subvariety.

Definition 2.1.11. Let Y be a smooth subvariety of a smooth variety X over a field
k. Let I be the ideal subsheaf of OX defining Y . The locally free sheaf I/I2 is called
the conormal sheaf of Y in X and its dual NX/Y = HomOY (I/I2,OY ) is called the
normal sheaf of Y in X. It is locally free of rank r = codimX(Y ), the codimension of
Y in X.

Proposition 2.1.12. Adjunction formula
Let Y be a smooth subvariety of codimension r in a smooth variety X over a field k.
Then:

ωY ' ωX ⊗ ΛrNY/X .

In the case r = 1, consider Y as a divisor and call L its corresponding invertible sheaf.
Then:

ωY ' ωX ⊗ L⊗OY .

Proof. Let I be the ideal sheaf defining Y . Then, there is an exact sequence of sheaves
on Y ([H, ch.II, theorem 8.17]):

0→ I/I2 → ΩX ⊗OY → ΩY → 0.

Take the largest exterior powers to get ωX ⊗ OY ' ωY ⊗ Λr(I/I2). Tensor the above
equality with ΛrNY/X , which is the dual of Λr(I/I2):

ωX ⊗ ΛrNY/X ' ωY ⊗ Λr(I/I2)⊗ ΛrNY/X ' ωY .

In the case where r = 1, note that, by construction, L−1 ' I. Thus, I/I2 ' L−1 ⊗OY
and so its dual NY/X ' L ⊗ OY . The above result applied to this situation gives the
formula. qed

Example 2.1.13. Let Hd be an hypersurface of degree d in Pnk , for a field k. Then, Hd is
defined as the zero locus of a homogeneous polynomial of degree d, namely p(x0, ..., xn).
The function f = p

xd0
defines a linear equivalence between Hd and the divisor dH (where
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H is the zero locus of x0). Thus, the sheaf associated with Hd is exactly OX(Hd) =
OX(d). From the adjunction formula above 2.1.12 and the example 2.1.10, we can then
compute

ωHd = ωPn
k
⊗OX(Hd)⊗OHd = OHd(d− n− 1).

Proposition 2.1.14. [SP, lemma 29.31.9 and 29.32.16] Let f : X → Y and g : Y → Z
be morphisms of schemes. Then, there is an exact sequence of sheaves on X:

f∗ΩY/X → ΩX/Z → ΩX/Y → 0.

Moreover, if f is smooth, the sequence is exact also on the left.

2.2 Iitaka and Kodaira dimension
In dimension one, the genus of a curve (g = h0(C,KC)) carries a lot of information
about the curve itself. This notion in higher dimensions is more complicated and is
generalized using the asymptotic behavior of linear systems associated with the sheaves
K⊗mX . Actually, we can study this behavior for general line bundles (Iitaka dimension)
and then specialize the definition to the canonical bundle.

Given a projective variety X and a line bundle L, let

N(X,L) := {m ∈ N|H0(X,L⊗m) 6= 0}.

Note that, if m ∈ N(X,L), then all its multiples are in the set, as if s ∈ H0(X,L⊗m) is
a nonzero section, then s⊗ ...⊗ s (c times) belongs to H0(X,L⊗mc) and it is a nonzero
section. Define the exponent of L to be e = gcd (m ∈ N(X,L)). All large enough
multiples of the exponent are in fact in N(X,L). Indeed, let m ∈ N(X,L), then m = eµ
for an integer µ and all multiples of m are in N(X,L). But for every prime p dividing
µ, there must exist mp ∈ N(X,L) such that mp = eµp and gcd(µp, p) = 1. All multiples
of mp belong to N(X,L). But then gcd(µ, {µp| p|µ}) = 1, so every large enough integer
can be written as a combination with natural coefficients of µ and the µp’s. But this
implies that all large enough multiples of e belong to N(X,L).

Definition 2.2.1. Let X be a projective variety and L a line bundle on it. Consider
ν : X̂ → X its normalization with the line bundle ν∗L. For each m ∈ N(X̂, ν∗L),
consider the rational map defined by the linear system |ν∗L⊗m| and call Ym the closure
of its image.

Φm := Φ|ν∗L⊗m| : X̂ 99K Ym ⊆ P(H0(X̂, ν∗L⊗m))

The Iitaka dimension of (X,L) is

κ(X,L) = max
m∈N(X̂,ν∗L)

{dimYm}.

If N(X̂, ν∗L) is empty, define κ(X,L) to be −∞.
In particular, κ(X,L) = −∞ or 0 ≤ κ(X,L) ≤ dimX.
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Definition 2.2.2. If X is smooth, let KX be its canonical divisor, then the Kodaira
dimension of X is κ(X) := κ(X,KX). If X is not smooth, its Kodaira dimension is
defined as the Kodaira dimension of a desingularization of it.

Remark. In the definitions above we need to consider the normalization of the variety
(or a desingularization) to have a birational invariant. If we do not take it into account
we may get a different result which is not preserved by birational equivalence (see [L1,
examples 2.1.6 and 2.1.8]).

Example 2.2.3.

• If L correponds to a divisor −D, with D effective, then H0(X,−mD) is empty for
all m, so κ(X,L) = −∞.

• κ(X,L) = 0 if and only if h0(X,L⊗m) ≤ 1, for all m ∈ N(X,L) and there exists
an m such that equality holds. Indeed, if h0(X,L⊗m) = 1, the induced map has
image of dimension zero, a point.

• If h0(X,L⊗m) ≤ 1 and L is torsion in Pic(X), then κ(X,L) = 0. Indeed, L⊗m =
OX for some m and OX(X) = k, the base field of X, as X is a projective variety.

• κ(X,L) = dimX if and only if for some m ∈ N(X,L), L⊗m is big, which means
that L⊗m = A + E for an ample divisor A and an effective divisor E. This is a
consequence of the following lemma:

Lemma 2.2.4. [L1, corollary 2.2.7] Let D be a divisor on X. Then, D is big if
and only if there exists m such that Φ|mD| is birational onto its image.

• If X is a curve, denote by g its genus. Then, we have κ(X) = −∞ if g = 0,
κ(X) = 0 if g = 1 and κ(X) = 1 if g ≥ 2.

Next, we see that the Kodaira dimension is preserved by fibrations. Before that, we
need to study some general results about fibrations.

Definition 2.2.5. A (regular) map f : X → Y between projective reduced and irre-
ducible varieties is called a fibration if it is surjective with connected fibers.

Theorem 2.2.6. Stein factorization [H, ch.III, corollary 11.5]
Let f : X → Z be a projective morphism of noetherian schemes. Then f = g ◦ f ′, where
f ′ : X → Y is a projective morphism with connected fibers and g : Y → Z is a finite
morphism.

Lemma 2.2.7. Let f : X → Y be a surjective morphism between projective normal
varieties over an algebraically closed field k, then the followings are equivalent:

(a) f is a fibration;

(b) the finite part in the Stein factorization of f is trivial;
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(c) f∗OX = OY ;

(d) if k(Y ) ⊆ k(X) is the field extension induced by f on the function fields, k(Y ) is
algebraically closed in k(X).

Proof.

(a) ⇔ (b) This comes directly from the definitions.

(a) ⇐ (c) See [H, ch.III, corollary 11.3].

(b) ⇒ (c) This comes directly from the construction of the Stein factorization, see [H, ch.III,
corollary 11.5].

(a) ⇒ (d) If k(Y ) was not algebraically closed in k(X), then there is a non-trivial finite
extension of k(Y ) inside k(X), which corresponds to a factorization of f as X u−→
Y ′

v−→ Y , where v is finite of degree ≥ 2, so its fibers are not connected.

(d) ⇒ (b) If k(Y ) is algebraically closed in k(X), then the finite part of the Stein factorization
must be trivial.

qed

Proposition 2.2.8. [B, theorem 7.1] Let f : X → Y be a fibration from an irreducible
non-singular algebraic variety X such that the induced field extension k(Y ) ⊆ k(X) is
separable. Then, the general fiber of f is geometrically integral. (Recall that geometri-
cally integral means that it is integral for all extensions of the base field. Recall also
that a variety is integral if and only if it is irreducible and reduced.)

Proposition 2.2.9. If p : X → Y is a fibration, then κ(X, p∗L) = κ(Y, L) for any line
bundle L on Y .

Proof. Generally, H0(X, p∗L) = H0(Y, p∗p∗L). But, by lemma 2.2.7, p∗OX = OY , so
p∗p
∗L = p∗OX ⊗ L = L, so:

H0(X, p∗L) = H0(Y,L).

Without loss of generality, we can assume X and Y are smooth. Let Φ|L⊗m| : Y 99K PNk
be the rational map defined by the linear system |L⊗m|, then Φ|L⊗m| ◦ p is the map
defined by the linear system |p∗L⊗m|, by the equality proven above. Viceversa, the
map defined by the linear system |p∗L⊗m| factorizes through p and Φ|L⊗m|, again by the
equality proven above. qed

Lemma 2.2.10. If f : X → Y is a fibration between projective irreducible varieties,
then the induced morphism on the Picard groups is injective.
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Proof. If B is a line bundle on Y such that f∗B ' OX , thenH0(Y,B) = H0(X, f∗B) 6= 0
by the previous proposition 2.2.9. Similarly, H0(Y,B−1) = H0(X, f∗B−1) 6= 0. Let
0 6= s ∈ H0(Y,B) and 0 6= σ ∈ H0(Y,B−1), then s ⊗ σ ∈ H0(Y,B ⊗ B−1). Thus s ⊗ σ
is a constant. Moreover, it is non-zero since the fact that both s and σ are non-zero
implies that there exists an open subset of X where they both do not vanish anywhere.
Hence, s ⊗ σ is a constant which does not vanish anywhere, whence we deduce that s
and σ do not vanish anywhere. Therefore they are constants and B = OY . qed

Lemma 2.2.11. [D, lemma 1.15] Let X,Y, Y ′ be three varieties related by two proper
morphisms f : X → Y , f ′ : X → Y ′ such that f∗OX ' OY (i.e. it is a fibration) and
such that f ′ contracts the fibers of f . Then, f ′ factors through f .

The following propositions give the first properties of the Kodaira dimension of a
variety.

Proposition 2.2.12. Let X be a smooth projective variety, then κ(X) is preserved by
birational maps.

Proof. Let ϕ : X 99K Y and ψ : Y 99K X be two birational maps inverse to each other.
Let V be the largest subset of X where ϕ is well-defined. Then, from 2.1.14 there is an
induced map ϕ∗ΩY → ΩV . They are locally free sheaves of the same rank, dimX, so
we get an induced map on the canonical bundles ϕ∗ωY → ωV , which gives a map on
the global sections. As ϕ is birational, there is an open subset U ⊆ V such that ϕ(U) is
open in Y . Thus, ωV |U ' ωX′|ϕ(U) via ϕ. As a nonzero global section cannot vanish on
a dense open subset, the map of vector spaces ϕ∗ : H0(X ′, ωX′) → H0(V, ωV ) must be
injective.
Now, we want to compareH0(V, ωV ) andH0(X,ωX). We claim that, as a consequence of
the valuatative criterion of properness 1.1.3, X \V has codimension at least 2. Indeed, if
H is a point of codimension 1 in X then OX,H is a discrete valuation ring (as X smooth).
Consider the diagram below, where η are the generic points.

Xη
ϕ //

��

Y

f

��

77

∃!H̃
Spec(OX,H) // Spec(k)

By the valuatative criterion of properness for Y we get a unique H̃ compatible with ϕ,
but this means we can extend ϕ in a neighborhood of H, because OX,H is a direct limit,
thus every function defined on it is defined in a neighborhood of the point H. So, H ∈ V
by definition of V .
We claim that the natural restriction H0(X,ωX) → H0(V, ωV ) is bijective. For any U
affine and small enough, ωX|U ' OU , so H0(U, ωU ) → H0(U ∩ V, ωU∩V ) is bijective as
U \U ∩ V has codimension at least 2 in U . So the height one primes in U coincide with
the height one primes in U ∩V . The result is then a consequence of the fact that, if A is
an integrally closed noetherian domain, then A =

⋂
pAp, where the intersection is taken
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over all height one prime ideals. As these opens U cover X, we have the claim.
We proved we have an inclusion ϕ∗ : H0(X ′, ωX′) → H0(V, ωV ) ' H0(X,ωX); using ψ
we get the reverse inclusion, whence the result. qed

Definition 2.2.13. Let f : X → Y be a morphism of varieties, then f is called finite
étale cover if it is smooth of relative dimension 0. i.e.

(a) f is flat;

(b) if X ′ ⊆ X and Y ′ ⊆ Y are irreducible components such that f(X ′) ⊆ Y ′, then
dimX ′ = dimY ′;

(c) for each point x ∈ X (closed or not), dimk(x)(ΩX/Y ⊗ k(x)) = 0.

Proposition 2.2.14. Let X be a smooth projective variety, then κ(X) is preserved by
finite étale covers.

Proof. Let f : X → Y be a finite étale cover with X and Y smooth. Then, as stated in
2.1.14, we have an exact sequence:

f∗ΩY/k → ΩX/k → ΩX/Y → 0.

But, as f is finite étale, ΩX/Y = 0, so f∗ΩY/k → ΩX/k is surjective. But dimX =
dimY := n and the local rank of f∗ΩY/k and ΩX/k is exactly n (by smoothness). Since
the induced local map is a morphism of k-vector spaces, it must be injective as well.
Hence, f∗ΩY/k ' ΩX/k, so f∗ωY ' ωX . Therefore, we can apply proposition 2.2.9 to get
κ(X) = κ(Y ). qed

Proposition 2.2.15. Additivity for products
Let Y and Z be smooth projective varieties, X := Y × Z, then κ(X) = κ(Y ) + κ(Z).

Proof. Denote by p1 and p2 the two projections from X. Locally, in some affine subsets,
we can describe Y and Z respectively as Spec

(
k[y1,...,yr]
I(Y )

)
and Spec

(
k[z1,...,zs]
I(Z)

)
for some

r, s and some ideals I(Y ) and I(Z). Then in the corresponding affine in X, the product
variety is described as

Spec
(
k[y1, ..., yr]
I(Y ) ⊗ k[z1, ..., zs]

I(Z)

)
' Spec

(
k[y1, ..., yr, z1, ..., zs]

I(Y ), I(Z)

)
where in the last equality I(Y ) and I(Z) are extended to ideals in k[y1, ..., yr, z1, ..., zs].
So,

ΩX ' 〈dy1, ..., dz1, ..., dzs|differentials of polynomials in I(Y ), I(Z) = 0〉 ' p∗1ΩY ⊕p∗2ΩZ

Then, taking exterior powers, we get ωX = p∗1ωY ⊗ p∗2ωZ . So, if {si|i = 0, ..., d} is a set
of generators for the global sections of ω⊗mY and {tj |j = 0, ..., d′} is a set of generators
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for ω⊗mZ , then the set {σij = (si ◦ p1)⊗ (tj ◦ p2)} generates the global sections of ω⊗mX .
Then, the map defined by ω⊗mX can be described as

x 7→ [s0(p1(x))t0(p2(x)) : ... : sd(p1(x))td′(p2(x))].

Without loss of generality, we may assume s0, t0 6= 0, so that we can recover each si
and tj as σi0

t0
and σ0j

s0
. Moreover, note that if we know all si and tj , we have completely

determined also all σij . So the map

f : [σ00(x) : ... : σdd′(x)] 7→ ([σ10(x) : ... : σd0(x)], [σ01(x) : ... : σ0d′(x)])

is an isomorphism. Furthermore, composing f with the two projections, we get exactly
the two maps defined by p∗1ω⊗mY and p∗2ω⊗mZ , which factor through Y and Z. Thus, the
dimension of the image of Φ|ω⊗mX | is exactly dim imΦ|ω⊗mY | + dim imΦ|ω⊗mZ |. But, for m
big enough, these dimensions stabilize to the Kodaira dimensions of the varieties (we
will see it later, proposition 2.4.4), whence the claim. qed

Example 2.2.16. Hypersurfaces in Pnk
Let Hd be an hypersurface of Pnk , then by the example 2.1.13, we know that ωHd =
OHd(d− n− 1). So:

• if d < n+ 1, there are no global sections and κ(Hd) = −∞;

• if d = n+ 1, the only global sections are the constants and κ(Hd) = 0;

• if d > n + 1, the canonical divisor is ample, so a power of it gives an immersion,
thus κ(Hd) = n− 1.

In the next example (but also later), we will use two embeddings that we wish to
recall: the Veronese and the Segre embeddings. Let M1, ...,MN be all the monomials of
degree d in x0, ..., xn, the dth Veronese embedding of Pnk is defined as:

vd : Pnk → PNk ; [x0 : ... : xn] 7→ [M1 : ... : MN ].

Let zi,j := xiyj , the Segre embedding of the product Pnk × Pmk is defined as:

Pnk × Pmk → PNk ; ([x0 : ... : xn], [y0 : ... : ym]) 7→ [z0,0 : z0,1 : ... : zn,m].

Example 2.2.17. Hypersurfaces in Pn−jk × Pjk
Let H := Hd,d′ be an hypersurface of bidegree (d, d′) in Pn−jk × Pjk. Choose a co-
ordinate system for the two projective spaces and call x0, ..., xn−j and y0, ..., yj the
coordinate functions on the two spaces respectively. Then, H is defined by a poly-
nomial p(x0, ..., y0, ..., yj) bihomogeneous of degree d in x and d′ in y. The function
f = p

xd0y
d′
0

gives a linear equivalence between H and dH1 + d′H2, where H1 = V (x0)

and H2 = V (y0) as it descends to a meromorphic function f = pxd
′−d

0
xd
′

0 y
d′
0

or f = pyd−d
′

0
xd0y

d
0

on the Segre embedding of Pn−jk × Pjk. Consider the two projections p1 and p2 and
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call J1 and J2 two hypersufaces of degree 1 in Pn−jk and Pjk respectively. Then ωH1 =
p∗1OJ1(d−n− j−1) = OH1(d−n− j−1) and ωH2 = p∗2OJ2(d′− j−1) = OH2(d′− j−1).
Thus, ωH = OPn−j

k
×Pj

k
(d−n− j−1, d′− j−1)|H . Let a = d−n− j−1 and b = d′− j−1,

so that OPn−j
k
×Pj

k
(d− n− j − 1, d′ − j − 1) = OPn−j

k
×Pj

k
(aH1 + bH2).

• If d < n+ j + 1 or d′ < j + 1, then there are no global sections, so κ(H) = −∞.

• If d > n + j + 1 and d′ > j + 1, then we can apply to Pn−jk × Pjk first the two
Veronese embeddings of degree a and b, (va, vb) and then the Segre embedding s.
So, OPn−j

k
×Pj

k
(aH1 + bH2) = (s(va, vb))∗OPN

k
(1) for an N , so it is ample. Thus, a

power of it gives an immersion and κ(H) = n− 1.

• If d = n+j+1 and d′ > j+1, consider the maps Φm determined by |OPn−j
k
×Pj

k
(0, b)|

and its powers. In the first component it is always constant, while it gives an
immersion in the second component. We can compute the Kodaira dimension
of H over an algebraic closure of the field of definition, so we may assume k is
algebraically closed. For every [y0 : ... : yj ], by Nullstellensatz, there exists a point
[x0 : ... : xn−j ] such that p(x0, ..., y0, ..., yj) = 0. So the image of Φm|H coincides
with the image of Φm. Thus, κ(H) = j.

• If d > n+ j + 1 and d′ = j + 1, with the same steps, we find κ(H) = n− j.

2.3 Easy additivity

In this section we see a result which relates the Iitaka dimension of a variety to the
Iitaka dimension of fibers in a fibration. One of the two inequalities is still a conjecture
in many cases.

For the next theorem, we need to construct a projective space associated with a
coherent sheaf. This is not done in the category of schemes, but in the category of
analytic spaces. We only sketch its construction here, for more details, see [U, examples
2.8 and 2.9]. Let Sets be the category of sets and An(X) the category of analytic spaces
over a complex space X (varieties over a number field can be interpreted as so with a
base field extension). Let F be a coherent sheaf on X, define a contravariant functor:

PF : An(X)→ Sets

(f : Y → X) 7→ set of invertible sheaves on Y which are quotients of f∗F .

This functor is representable, call P(F ) → X its representative in An(X), it is called
the projective fiber space associated with F . If F ' ON+1

X is a free sheaf of rank
N+1, then P(F ) is simply X×PN → X, the first projection. If F is locally free of rank
N + 1, then the projective fiber space is constructed locally using the first projection as
above.
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Theorem 2.3.1. Easy additivity
Let p : X → Z be a fibration and L ∈ Pic(X). Then, for a general fiber Xz of p, the
following formula holds:

κ(X,L) ≤ κ(Xz, L|Xz) + dimZ

Proof. Let Fm = p∗L
⊗m. There exists Um an open dense subset of Z such that Fm|Um is

locally free and for every u ∈ Um, Xu := p−1(u) is a non-singular fiber (see [U, corollary
1.8] for details). If W ⊆ Um is an open subset such that Fm|W ' O

q+1
Z|W , let {ϕ̃0, ..., ϕ̃q}

be a set of local generators so that L⊗m|p−1(W ) is locally generated by {ϕ0, ..., ϕq}, with
ϕ̃i ◦ p = ϕi. Define locally:

h(m) : p−1(W )→W × Pq; x 7→ (p(x), [ϕ0(x) : ... : ϕq(x)]);
g(m) : W × Pq →W ; (z, y) 7→ z.

This maps can be glued together (in the category of analytic spaces) to obtain:

X
h(m)
//

p
##

P(Fm)

g(m)

��
Z

where P(Fm) is the projective fiber space associated with Fm. By Grauert’s proper map-
ping theorem, for every y ∈ Z, there exists Uy open dense subset of Z and ψ0, ..., ψr ∈
H0(p−1(Uy), L⊗m) such that for every z ∈ Uy, if we callXz the fiber above z,H0(Xz, L

⊗m
|Xz )

is generated by ψ0, ..., ψr. Thus,

h
(m)
|Xy = Φ|L⊗m|,|Xy : Xy 99K P(Fm)y; x 7→ (y, [ψ0(x) : ... : ψq(x)]).

But, also, there exists an open dense subset U ⊆ U (m) such that dimCH
0(Xy, L

⊗m
|Xy ) is

constant for all y ∈ U . Then,

dim h(m)(X) = dimZ + dim Φ|L⊗m|Xy |
(Xy) ≤ dimZ + κ(Xy, L|Xy)

for all y ∈ U , since Φ|L⊗m|,|Xy(Xy) = P(Fm)y, the fiber of g(m) over y. Next, we want to
define locally a map h : P(Fm)→ Pq. If H0(X,L⊗m) is generated by {ϕ0, ..., ϕN}, then
H0(Z, p∗L⊗m) is generated by {ϕ̃0, ..., ϕ̃N}, where ϕi = ϕ̃i ◦ p. Define h locally as:

h : W × Pq → PN ; (u, y) 7→ [ϕ̃0(u) : ... : ϕ̃N (u)],

so that h ◦ h(m) = Φ|L⊗m|. Then,

dim Φ|L⊗m|(X) = dim h ◦ h(m)(X) ≤ dim h(m)(X) ≤ dimZ + κ(Xy, L|Xy)

for every y ∈ U . Taking m � 0 gives the result (for m � 0 the dimension stabilizes to
the Kodaira dimension, we will see this in proposition 2.4.4 below). qed
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Theorem 2.3.2. [15]
In the above setting, taking L to be the canonical bundle, if Z is of general type (i.e.
κ(Z) = dimZ), then equality holds:

κ(X) = κ(Xz) + dimZ.

Conjecture 2.3.3. Cn,m1 conjecture
In the above setting, it is conjectured that:

κ(X) ≥ κ(Xz) + κ(Z).

2.4 Iitaka–Moishezon fibration
For m big enough the maps Φ|L⊗m| stabilize and they are all birationally equivalent to
a fixed well-defined fibration, the Iitaka–Moishezon fibration (called also Iitaka fi-
bration). We start proving this result for base-point-free linear systems, then we prove
the general case.

Before starting the discussion, we need some preliminary results about normalization
of varieties and resolutions.

Definition 2.4.1. [H, ch.I, exercise 3.17]
Let X be a variety, then there exists a normal variety X̃ → X such that, for every
f : Y → X dominant with Y normal, there exists a unique f̃ : Y → X̃ making the
following diagram commutative:

Y
f //

f̃ ��

XOO

X̃

Such X̃ is called the normalization of X.

Remark. X̃ is constructed affine locally glueing together the spectrum of the normal
closure of the coordinate rings.

Lemma 2.4.2. Let f : X → Y be a fibration with X normal, then also Y is normal.

Proof. Let ν : Ỹ → Y be a normalization of Y , then, by the universal property of the
normalization, f factors through ν, but ν is a finite map, so this forces ν to be an
isomorphism. qed

Theorem 2.4.3. Hironaka’s theorem [12, ch.0.5, question E and main theorem II]
Let f : X 99K Y be a rational map. Then f can be resolved into a regular map by a
sequence of blow-ups with smooth centers: π : X(m) → ...→ X(0) = X such that f ◦ π is
regular. In particular, we can choose X(m) to be normal.

1The name Cn,m comes from "contractions", which is another way to call fibrations, from a variety
of dimension n to one of dimension m.
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A first result on the asymptotic behavior of Iitaka dimension says that this dimension
is actually achieved by all sufficiently large m ∈ N(X,L).

Proposition 2.4.4. Let X be a normal projective variety and L a line bundle on it, if
κ(X,L) = κ, then dim Φ|L⊗m|(X) = κ for all sufficiently large m ∈ N(X,L).

Proof. Denote by Φk = Φ|L⊗k|. If k = −∞, the statement is obvious, so let us assume
k ≥ 0. Let e be the exponent of L, possibly by replacing L with L⊗e, we may assume
e = 1. There exists p0 > 0 such that H0(X,L⊗p) 6= 0 for every p ≥ p0. Fix k such that
dim Φk(X) = κ. Multiplying by a non-zero section in H0(X,L⊗p), for every p ≥ p0, we
have an embedding: H0(X,L⊗k) ⊆ H0(X,L⊗k+p). Let {s0, ..., sr} be a set of generators
for H0(X,L⊗k) and complete it to a set of generators for H0(X,L⊗k+p), {s0, ..., st}.
Then, calling νp the projection on the first r + 1 components, we have a factorization:

Φk : X
Φk+p− → Pt νk−→ Pr; x 7→ [s0(x) : ... : st(x)] 7→ [s0(x) : ... : sr(x)].

Therefore dim Φk+p(X) ≥ Φk(X) = κ, so, by maximality of κ, we conclude that
dim Φk+p(X) = κ. qed

Now, we want to study the asymptotic behavior of Φ|L⊗m| for base-point-free line
bundles.

If L is a line bundle on X, we defined the set N(X,L) = {m ∈ N|H0(X,L⊗m) 6= 0}.
In the same way we can define M(X,L) = {m ∈ N(X,L)|L⊗m is globally generated}.
Note that, if L⊗m and L⊗n are both globally generated, then also their product L⊗m+n

is. Thus, we can define f = gcd (m ∈M(X,L)) the free exponent of L and, as we did
for the exponent, we can see that every large enough multiple of f is in fact in M(X,L).

Remark. Ifm ∈M(X,L), then the linear system |L⊗m| is base-point-free (see proposition
2.1.5), so the morphism Φ|L⊗m| is regular (well-defined everywhere).

Definition 2.4.5. A line bundle L on a projective variety is called semiample if L⊗m
is globally generated for some m > 0 (i.e. if M(X,L) 6= ∅).

Let X be a normal projective variety and L a line bundle on it. Recall that we denote
Φm = Φ|L⊗m| and Ym the closure of the image of X under Φm.

Remark. Letm > 0 be an integer such that L⊗m is globally generated, then SkH0(X,L⊗m)
determines a base-point-free sublinear system of |L⊗km| and it corresponds to the Veronese
embedding of Ym. Indeed, ifH0(X,L⊗m) is generated by the set {s0, ..., sr}, SkH0(X,L⊗m)
is generated by all the monomials in si of degree k, which are exactly the monomials defin-
ing the kth Veronese embedding of Pr. Therefore, Φkm factorizes through the Veronese
embedding of Ym, i.e. Φm = νk ◦Φkm, with νk a finite morphism (since it corresponds to
a rational projection between projective spaces as seen in the preliminary results about
linear systems and subsystems).
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Lemma 2.4.6. Let X be a normal projective variety and L a semiample line bundle
on it. Fix any m ∈ M(X,L). With the notations above, for sufficiently large k, the
composition

X
Φkm−→ Ykm

νk−→ Ym

gives the Stein factorization of Φm (i.e. Φkm is a fibration). In particular, Ykm and Φkm

are independent from k for k large enough.

Proof. Let X ψ−→ V
µ−→ Ym be the Stein factorization of Φm. Let Am be the ample line

bundle on Ym which pulls back to L⊗m on X. The sheaf B := µ∗Am is an ample line
bundle as µ is finite (see [L1, proposition 1.2.13]). Therefore, for k � 0, B⊗k is very
ample on V , hence Φ|B⊗k| is a birational map with the image. But ψ∗B⊗k = L⊗km,
so that H0(X,L⊗km) = H0(V,B⊗k) by proposition 2.2.9, hence V is birational to the
image of Φkm. But this means that Ykm = V and Φkm = ψ for k � 0. qed

This above is the key lemma to understand the asymptotic behavior of the maps Φm

for base-point-free line bundles.

Theorem 2.4.7. Let X be a normal projective variety and L a semiample line bundle on
it. Then, there is a fibration Φ : X → Y such that, for all large enough m ∈ M(X,L),
Ym = Y and Φm = Φ. Moreover, there is an ample line bundle A on Y such that
Φ∗A = L⊗f , where f is the free exponent of L (this fact basically means that L⊗f is
trivial on the fibers).

Proof. Let f be the free exponent of L, by replacing L with L⊗f , we may assume f = 1,
so every big enough power of L is globally generated. Take m1 and m2 two relatively
prime integers. By lemma 2.4.6 above, for k � 0, Ykm1 and Ykm2 are independent from
k. Choose k and k′ big enough and such that p := km1 and q = k′m2 are relatively
prime, so ∀h > 0, Yp = Yhp and Yq = Yhq. Then, Yp = Ypq = Yq and Φp = Φpq = Φq.
Define Φ := Φpq and Y := Ypq.
Now we prove that this is the map which gives the statement of the theorem. From the
proof of lemma 2.4.6 above, we see that Y carries two ample line bundles Ap, Aq such
that Φ∗Ap = L⊗p and Φ∗Aq = L⊗q. But, as p, q are relatively prime, there exist r, s ∈ Z
such that 1 = pr+ qs. Then, if A := A⊗rp ⊗A⊗sq (taking a negative power means taking
the corresponding positive power of the dual sheaf), Φ∗A = L. Moreover, since Φ∗ is
injective on the Picard groups (see lemma 2.2.10), Ap = A⊗p and Aq = A⊗q and, in
particular, A is ample.
For the last step, fix c, d ≥ 1 two integers. The product ScH0(Y,Ap) ⊗ SdH0(Y,Aq)
determines a base-point-free linear subseries of H0(Y,A⊗(cp+dq)) = H0(X,L⊗(cp+dq)).
Then, as in the remark preceding the lemma, using the product of two Veronese embed-
dings, Φ factors through Φcp+dq and a finite map. But Φ is a fibration, so the finite map
must be trivial. Furthermore, any large enough m can be written in the form cp + dq,
so, Φm = Φcp+dq = Φ and this concludes the proof. qed

Now we are ready to define the Iitaka–Moishezon fibration of a variety for a general
line bundle L.
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Theorem 2.4.8. Let X be a normal projective variety and L a line bundle on it such
that κ(X,L) > 0 (the case κ(X,L) = 0 being trivial). Then, for all k ∈ N(X,L)
large enough, the maps Φk : X 99K Yk are all birationally equivalent to a fixed fibration
Φ∞ : X∞ → Y∞ of normal varieties and the restriction of L to a very general fiber
of Φ∞ has Iitaka dimension 0. More precisely, for large k, there exists a commutative
diagram:

X oo
u∞

Φk
��

X∞

Φ∞
��

Yk oo νk Y∞

where the horizontal maps are birational and u∞ is a morphism. We have dimY∞ =
κ(X,L) and, if we denote by L∞ = u∗∞L and F ⊆ X∞ a very general fiber of Φ∞, then
κ(F,L∞|F ) = 0.

Remark. Note that, by proposition 2.2.8, the fibers of a fibration are irreducible, so it
makes sense to compute their Kodaira dimension.

Proof. The proof is divided in three steps.

Step 1 The idea of the first step is to reduce the problem to the case in which the sheaf
is globally generated in order to use the previous result.
Letm ∈ N(X,L) an integer such that dimYm = κ(X,L). Claim: Φkm : X 99K Ykm
are all birationally equivalent to a fixed fibration of normal varieties

ψm : X(m) → Y(m)

for k � 0.
Let um : X(m) → X be a resolution of the indeterminacy locus of Φm with X(m)
normal, this map exists by theorem 2.4.3. Let |u∗mL⊗m| = |Mm| + Fm be the
decomposition of this linear system into its fixed part, Fm and its base-point-free
part, |Mm|, and let ψm := Φ|Mm| : Xm 99K Ym be the rational map defined by
Mm. Note that, by construction, this map factors exactly as Φm ◦ um. Using
the base-point-free subseries |M⊗km |, define also rational maps ψkm : X(m) → Y ′km.
Clearly, Ym is birational to its kth Veronese embedding, and, as we pointed out
in the remark preceding the previous theorem, the linear system corresponding
to Sk|Mm| gives the Veronese (re-)embedding of Ym. But it is also a base-point-
free subsystem of |M⊗km |, so there is a finite map λk (see the remark on sublinear
systems in the preliminary results) making the diagram commutative:

X(m) ψm

Φ
Sk|Mm|//

ψkm ""

YmOO

λk

Y ′km
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This is exactly the setting we had for the previous theorem 2.4.7, hence we can
use that result to say that the maps ψkm, for k � 0, stabilize to a fixed fibration
ψ(m) : X(m) → Y(m). Furthermore, |M⊗km | is a subsystem of |u∗mL⊗km| and um
is birational, so we can actually consider it as a subsystem of |L⊗km|. Thus, in
the same way as before, we get a finite map µk, making the following diagram
commutative:

X(m) ' X
Φkm

%%
ψ(m)

��
Y(m) oo µk

Ykm

But ψ(m) is a fibration, so the finite map µk must be trivial, it has to be birational,
which means that Φkm is birationally equivalent to ψ(m).

Step 2 The next step is the construction of a common model for the ψ(m). By replacing
L with L⊗e, we can assume that the exponent of L, e, is 1. Fix p, q � 0 relatively
prime integers such that dimYp = dimYq = κ(X,L) (this can be done as the
dimensions stabilize by proposition 2.4.4). Now, choose m � 0 such that ψ(p) :
X(p) → Y(p) is given by the linear system |M⊗p(m−1)

p | and ψ(q) : X(q) → Y(q) by
|M⊗q(m−1)

q |. Choose a common model for X(p) and X(q), for example construct X∞
blowing up X both in the centers used to construct X(p) and in the centers used
to construct X(q) and take a resolution of the result.

X(p)<<
vp up

!!
X∞

vq ""

X==

uq

X(q)

Let u∞ := up ◦ vp = uq ◦ vq. On X∞, define the base-point-free line bundle
Mp,q := v∗pM

⊗p(m−1)
p ⊗ v∗qM⊗q

(m−1)
q . Let Y ′∞ be the closure of Φ|Mp,q |(X∞) and Y∞

its normalization. Call Φ∞ : X∞ → Y∞ the corresponding morphism.
Note that Y(p) = Y ′

p(m−1)p
and Y(q) = Y ′

q(m−1)q
, where the left hand sides are the

closure of the images of the maps ψkp with k = p(m−1) and ψhq with h = q(m−1) in
the notations of the previous step. All the sheaves involved are globally generated,
so the monomials in Mp,q correspond to the ones used in the Segre (re-)embedding
of Y(p) × Y(q), thus Y∞ can be identified with a subvariety of this product and
we have the two projection maps onto the two factors. In particular, dimY∞ ≥
dimY(p) = κ(X,L).
Moreover, |Mp,q| is a linear subsystem of |L⊗(p+q)|, so there exists a finite map ϕ :
Yp+q → Y∞ such that Φ|Mp,q | = ϕ ◦ Φp+q. This implies that dimY∞ = dim Yp+q ≤
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κ(X,L), so dimY∞ = κ(X,L).
Consider the commutative diagram (same process also with q instead of p):

X(p) oo
vp

ψ(p)
��

X∞

Φ∞
��

Y(p) oo wp Y∞

The map ψ(p) ◦ vp = wp ◦ Φ∞ is surjective, so, in particular wp is surjective and
is a finite map since dimY(p) = dim Y∞. But ψ(p) ◦ vp = wp ◦ Φ∞ is a fibration
and the varieties involved are normal, so wp must be an isomorphism and Φ∞ is a
fibration.
Before the conclusion a comment on this step that will be used later. Let ε : Y∞ ↪→
Y(p) × Y(q) and H a hyperplane divisor in Y(p) × Y(q). Note that, by construction,
Ap,q = ε∗H is a very ample divisor in Y∞ such that Φ∗∞Ap,q = Mp,q.
To conclude, fix two integers c, d ≥ 1. Then, multiplication by a non-zero global
section of u∗pM

⊗(c−1)p(m−1)
p ⊗ u∗qM

⊗(d−1)q(m−1)
q gives an inclusion:

H0(X∞,Mp,q) ⊆ H0(X∞, u∗pM⊗cp
(m−1)

p ⊗u∗qM⊗dq
(m−1)

q ) ⊆ H0(X∞, u∗∞L⊗(cpm+dqm)),

where the last inclusion comes just from the fact that the second system is a
subsystem of the third one. So, as usual, we have a finite map µ making the
following diagram commutative:

X∞
u∞ //

Φ∞
��

X

Φcpm+dqm

��
Y∞ oo µ Ycpm+dqm

As Φ∞ is a fibration, µ has to be birational. Each k � 0 can be written as
cpm + dqm since p and q are coprime, thus a rational inverse of µ as above gives
the desired diagram in the statement.

Step 3 In this last step we compute the Kodaira dimension of the fibers of Φ∞.
Let L∞ := u∗∞L and F a fiber of Φ∞. As X∞ is birational to X, we can also think
of F inside X via u∞. Note, then, that the image of F under Φm|F has obviously
non-negative dimension, so κ(F,L∞|F ) ≥ 0. To conclude the proof it is enough to
prove the opposite inequality. For k � 0, we have the diagram:

X∞
Φ∞ //

u∞
��

Y∞

νk
��

X
Φk
// Yk
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For each k � 0, let Uk be the complement of the indeterminacy locus of νk and
U :=

⋂
k�0 Uk. Moreover, let Vk be the complement of the indeterminacy locus of

Φk and V :=
⋂
k�0 Vk. The fibers for which we can have the conclusion are those

Fy := Φ−1
∞ (y) such that y ∈ U and u∞(Fy) ⊆ V . Since we are imposing countably

many open conditions, we say that the property holds for a very general point y.
Denote F := Fy Observe that Φk(u∞(F )) = νk(y) is a point, so

ρk : H0(X∞, L⊗k∞ )→ H0(F,L⊗k∞|F )

has rank 1 as each global section is constant on F . Our objective is to prove that
ρk is also surjective. Let B be a very ample line bundle on Y∞, then Φ∗∞B is ample
on X∞. From the second step, we know there exists A := Ap,q ample and globally
generated line bundle on Y∞ such that Φ∗∞A = Mp,q on X∞. Thus, A⊗m′ ⊗ B−1

has a non-zero section for all m′ � 0. But M⊗m′p,q is a subsheaf of L⊗m
′(pm+qm)

∞ , so
also L⊗m

′(pm+qm)
∞ ⊗B−1 has a non-zero global section, call it s. Now fix k > 0 and

take any r > 0. The diagram

H0(X∞, L⊗k∞ ⊗ Φ∗∞B⊗r)
� � ·sr//

βk,r
��

H0(X∞, L⊗k+rm′
∞ ⊗ Φ∗∞B⊗r ⊗ Φ∗∞B⊗−r)

ρk+rm′

��

H0(F, (L⊗k∞ ⊗ Φ∗∞B⊗r)|F ) �
� ·sr|F // H0(F,L⊗k+rm′

∞|F )

is commutative, where βk,r is the natural restriction. But:

H0(X∞, L⊗k∞ ⊗ Φ∗∞B⊗r) = H0(Y∞,Φ∞,∗L⊗k∞ ⊗B⊗r)
βk,r−−→

H0(F, (L⊗k∞ ⊗ Φ∗∞B⊗r)|F ) = (Φ∞,∗L⊗k∞ ⊗B⊗r)⊗ C(y)

For r � 0, as B is ample, Φ∞,∗L⊗k∞ ⊗B⊗r is globally generated and the restriction
map sends each section to its image in the stalk, so it is surjective. As the rank of
ρk+rm′ is 1, chasing the diagram, we see that also βk,r has rank 1. But, if s is a
global section of B⊗r, then Φ∗∞|F (s) is constant as Φ∞(F ) = y, constant. Therefore
we finally conclude that dimH0(F,L⊗k∞|F ) = 1, which implies that κ(F,L∞|F ) = 0.

qed

Definition 2.4.9. In the setting of the above theorem, the fibration Φ∞ is called the
Iitaka–Moishezon fibration of X,L. It is unique up to birational equivalence.

2.5 The maximal rationally connected quotient
The goal of this section is to understand the construction of the maximal rationally
connected (MRC) quotient. This is the "maximal" fibration such that its fibers are
rationally connected and its base has non-negative Kodaira dimension, which is conjec-
turally equivalent to not being uniruled.
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Definition 2.5.1. A rational curve on a variety X is the image of a regular non-
constant map: P1 → X.
An n-dimensional variety is called rational if it is birationally equivalent to Pn. It is
called unirational if it is dominated by (i.e. there exists a dominant rational map from)
a rational variety.
A variety X is said to be uniruled if it is covered by rational curves.
A variety is called rationally connected if for any pair of general points there is a
rational curve on X containing both.

It turns out that X is uniruled if and only if there exists a dominant rational map
P1 × T 99K X for a (n − 1)-dimensional variety T (where n is the dimension of X).
Therefore, if X is uniruled, κ(X) ≤ κ(P1 × T ) = −∞. The converse is a conjecture in
birational geometry, known up to dimension 3.

Conjecture 2.5.2. Uniruledness conjecture
A variety X is uniruled if and only if κ(X) = −∞.

Proposition 2.5.3. [K, theorem 3.10.3] Let X be a smooth variety. Then X is rationally
connected if and only if it is chain rationally connected, i.e. for every pair of general
points there exists a chain of rational curves on X containing both.

Rational varieties are potentially dense, as an open subset is isomorphic to an open
subset of the projective space. F. Campana conjectures that rationally connected va-
rieties are potentially dense as well. In the remaining of the section we see how to
"separate" the rationally connected part of a variety. This is done with the construction
of the MRC quotient. To be able to prove its existence, we need to first introduce some
results on constructible sets and a sketch of the construction of the Hilbert space of a
variety.

Definition 2.5.4. A constructible set is a finite union of locally closed subsets.

Lemma 2.5.5. [H, ch.II, exercise 3.19] Let f : X → Y be a morphism of finite presen-
tation of noetherian schemes, then the image of a constructible set is constructible.

Lemma 2.5.6. [D, lemma 5.1] Let V be a subset of a noetherian topological space X.
If

V = V1 ∪ ... ∪ Vr

is an irredundant decomposition into irreducible components, then:

V = (V ∩ V1) ∪ ... ∪ (V ∩ Vr)

is also an irredundant decomposition into irreducible components. Furthermore, V ∩ Vi =
Vi for every i.

Lemma 2.5.7. [D, lemma 5.3] Let p : X → Y be a flat morphism and W a constructible
subset of Y . Then:
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(a) p−1(W ) = p−1(W );

(b) any irreducible component of p−1(W ) dominates an irreducible component of W ;

(c) if W is irreducible and p has irreducible fibers, then p−1(W ) is irreducible.

Lemma 2.5.8. [D, 5.5] Let p : X → Y be a morphism whose closed fibers are connected.
If X is normal and Y irreducible, a general fiber of p is irreducible.

Lemma 2.5.9. [D, 5.4] Let p : X → Y be a morphism with Y reduced. Then, there
exists an open dense subset U ⊆ Y such that p : p−1(U)→ U is flat.

The Hilbert scheme of a variety X is a scheme which parametrizes subschemes of
X. For the construction of the MRC quotient we will use a subscheme of the Hilbert
scheme parametrizing curves with rational components. Here we sketch the construction
of these object, for a more complete presentation see [H-M, ch.I, sections A and B].

Fix X a projective scheme and P a polynomial. Define a functor HP,X : Schemes→
Sets which sends a scheme B to the set of proper flat families of subschemes of X,
X → B where the Hilbert polynomial of X is P and such they satisfy a commutative
diagram:

X i //

ϕ
##

X ×B p1 //

p2
��

X

B

It can be shown that this functor is representable. The projective scheme representing
it is called the Hilbert scheme of X with polynomial P , denoted by HilP (X). So, for
every scheme B, HP,X(B) = Hom(B,HilP (X)). This means that every family ϕ : X → B
of subschemes, corresponds uniquely to a morphism ϕ̃ : B → HilP (X). We can think at
a point ϕ̃(b) as the subscheme of X corresponding to the fiber of ϕ over a point b ∈ B.

If we consider the scheme B = HilP (X), in Hom(B,HilP (X)) there is the identity.
The family corresponding to the identity, ψ : HP → HilP (X), is called universal family
because it satisfies the following universal property: for every family ϕ : X → B, there
is a unique h making the diagram below commutative.

X h //

ϕ

��

HP
ψ
��

B
ϕ̃

// HilP (X)

The union of all these schemes is calledHilbert scheme of X and is denoted by Hil(X).
Later we will need a subscheme of the Hilbert scheme, namely: Ratd(X), the pro-

jective scheme obtained as the union of all components of HilP (X) whose general points
correspond to (reduced connected) curves of degree ≤ d with rational components. (The
bound on the degree is needed to have a fixed Hilbert polynomial.) In the same way as
before we can define the universal family Cd associated with this subscheme.
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The maximal rationally connected quotient is constructed as a quotient by algebraic
relations of Ratd(X). Let T, C be reduced quasi-projective schemes and X a projective
variety such that there are two maps:

C F //

π
��

X

T

We define an equivalence relation using these maps. We say that two points x1, x2 ∈ X
are equivalent if there exists {t1, ..., tm} ⊆ T finite such that both x1 and x2 belong to a
connected component (the same) of F (Ct1)∪ ...∪F (Ctm). If this happens we say that x1
and x2 are connected by a chain of lenght m. Denote by [x]C the equivalence class of x.

Proposition 2.5.10. In the notations above, suppose that π is flat with irreducible
fibers and F is flat. Then, there exists an open dense subset X ′ ⊆ X, a variety Y and
a morphism τ : X ′ → Y such that:

(1) τ(x1) = τ(x2) if and only if the closures of the two equivalence classes coincide,
i.e. [x1]C = [x2]C;

(2) let x ∈ X ′, then the general point of τ−1(τ(x)) can be connected to x by a chain in
C of length dimX − dimY .

Proof. Let x ∈ X and let Vm(x) be the set of points in X that can be joined by a C-chain
of length m. Let δ(x) = limm→∞ dimVm(x). As Vm(x) are increasing and bounded by
dimX, this limit exists.

Step 1 The goal of this first step is to prove that, if m ≥ δ(x), then Vm(x) = Vm+1(x).
First of all we check if Vm(x) is a constructible set. Note that x, x′ ∈ X are joined
by a C-chain of length 1 if and only if π(F−1(x))∩π(F−1(x′)) 6= ∅. Indeed, if there
exists t ∈ T such that x, x′ ∈ F (Ct), then t ∈ π(F−1(x))∩π(F−1(x′)). On the other
hand, if t ∈ π(F−1(x)) ∩ π(F−1(x′)), this means that F−1(x), F−1(x′) ∩ Ct 6= ∅,
thus x, x′ ∈ F (Ct). By definition, Vm+1(x) is the set of points which can be reached
with a C-chain of length 1 from a point in Vm(x). Therefore, y ∈ Vm+1(x) if and
only if there exists x′ ∈ Vm(x) such that πF−1(y)∩πF−1(x′) 6= ∅, i.e. if and only if
y ∈ Fπ−1πF−1(x′). So, Vm+1(x) = Fπ−1πF−1(Vm(x)). The claim follows with an
induction argument: V0(x) = {x} is constructible and, by lemma 2.5.5, if Vm(x) is
constructible, so is Vm+1(x).

Now, let Vm(x) =
⋃
i V

i
m and F−1(V i

m) =
⋃
jW

i,j
m be irredundant decompositions

into irreducible components. The map F is flat and all the sets involved are
constructible, so we can apply lemma 2.5.7 to get:

F−1(V i
m) =

⋃
j

W i,j
m ; F (W i,j

m ) = V i
m.
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By hypothesis we also have that π is flat with irreducible fibers, thus, as W i,j
m are

irreducible, also π(W i,j
m ) are and, using lemma 2.5.7 again, π−1π(W i,j

m ) := W̃ i,j
m are

irreducible as well. By our discussion and using lemma 2.5.6

Vm+1(x) =
⋃
i

Fπ−1πF−1(V i
m(x)) =

⋃
i,j

F (W̃ i,j
m ).

Note that F (W̃ i,j
m ) ⊆ V i

m. If, for all j, F (W̃ i,j
m ) = V i

m we say that the component
V i
m is stable, we call it unstable otherwise. Note that Vm = Vm+1 if and only if all

components V i
m are stable. Let m ≥ δ(x), if Vm+1(x) has an unstable component,

then this is of the form F (W̃ i,j
m ), so also V i

m must be unstable, otherwise F (W̃ i,j
m ) =

V i
m is stable. Going on in this way, we can construct a chain of (closed) irreducible

components which are unstable: F (W̃ i,j
m ) ) V i

m ) ... ) V0(x) = {x}. This implies
that the dimension of F (W̃ i,j

m ) is ≥ m+1 > δ(x). Contradiction. Thus, ∀m ≥ δ(x),
Vm(x) = Vm+1(x).

Step 2 In this step we prove that, if n = dimX (in particular, n ≥ δ(x) for every x ∈ X),
then there exists X ′ ⊆ X open dense such that, given x, x′ ∈ X ′, x′ ∈ Vn(x) if and
only if Vn(x) = Vn(x′).
Let V =

⋃
x∈X{x} × Vn(x) ⊆ X ×X. In a similar way as we did in the first step,

it can be proven that V is constructible. Let V be its closure in X ×X and q be
the first projection. By lemma 2.5.9, there exists X ′ ⊆ X open dense such that
q−1(X ′)→ X ′ is flat with reduced fibers. Then, by lemma 2.5.7,

q−1(x) = q−1(x) = {x} × Vn(x).

Thus Vn(x) is dense in q−1(x) for all x ∈ X ′.
Let x′ ∈ Vn(x), if y ∈ Vn(x′), then y ∈ V2n(x). By the first step: Vn(x′) ⊆ V2n(x) =
Vn(x) and, by symmetry of the reasoning, Vn(x′) = Vn(x).
Let p be the second projection from V ; then Vn(x) = pq−1(Vn(x) ∩X ′).
Hence, by lemma 2.5.7, q−1(Vn(x)∩X ′) is dense in q−1(Vn(x)∩X ′), so pq−1(Vn(x)∩
X ′) = Vn(x).
If x′ ∈ Vn(x) ∩ X ′, then q−1(x′) = {x′} × Vn(x′) and p({x′} × Vn(x′)) = Vn(x),
whence Vn(x) = Vn(x′).

Step 3 Construction of Y and τ .
Consider the fiber product V ×X X ′ using q : V → X and call ϕ : V ×X X ′ → X ′.
ϕ induces a map on the Hilbert scheme ϕ̃ : X ′ → Hil(X) which sends a point x
to the point in the Hilbert scheme corresponding to its fiber under ϕ, Vn(x). The
variety X ′ is irreducible and so ϕ̃(X ′) is irreducible as well and constructible by
lemma 2.5.5. Let Y ⊆ im(ϕ̃) dense open. We can factor:

ϕ̃|ϕ̃−1(Y ) → Y → Hil(X).

Shrink X ′ to ϕ̃−1(Y ) and let τ := ϕ̃|ϕ̃−1(Y ). This is the morphism we are looking
for.
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Indeed: τ(x1) = τ(x2) if and only if Vn(x1) = Vn(x2). Since q is flat, its fibers have
constant dimension dimX − dimY . Moreover, x′ belongs to τ−1(x) if and only if
Vn(x) = Vn(x′) and this happens if and only if x′ ∈ Vn(x). Thus, the dimension
of a general fiber of τ is exactly the dimension of Vn(x), which is dimX − dimY .
Hence, δ(x) = dimX − dimY := δ for all x ∈ X ′, which means that the general
point of τ−1τ(x) can be joined to x by a C-chain of length δ.

qed

Actually, we need a stronger result.

Proposition 2.5.11. [D, theorem 5.9] Let T, C defining an algebraic relation on X as
above, with F, π proper. Then, there exists an open dense subset X ′ ⊆ X and a morphism
ρ : X ′ → Y such that each fiber of ρ is a C-equivalence class.

Now we are ready to construct the MRC quotient.

Theorem 2.5.12. Let X be a smooth variety. Then X has an MRC quotient, i.e. there
exists a rational map

rX : X → R(X)

such that:

(a) rX is defined and proper on a dense subset X ′ ⊆ X;

(b) the fibers of rX|X′ are rationally connected;

(c) if Z is a normal variety and ψ : X 99K Z is a rational map satisfying the first two
properties, then there exists a unique π : Z 99K R(X) such that rX = π ◦ ψ.

Moreover, very general fibers of the MRC quotient are rationally connected components.

Remark. In the setting of the theorem above, it was recently proven that R(X) is not
uniruled ([13, corollary 9.3]).

Proof. Let Cm be the universal family of Ratm(X). Consider the relation given by the
natural maps:

Cm
Fm //

πm
��

X

Ratm(X)

The maps Fm and πm are proper, so we can apply proposition 2.5.11. Therefore, for
every m, we get a dense open subset X ′m ⊆ X and a morphism ρm : X ′m → Zm whose
fibers are Cm-equivalence classes, which means they are rationally chain connected by
rational curves of degree at most m.
Note that the sequence dimZm is non-increasing as classes get larger with m, so it even-
tually stabilizes at dimZm0 . Thus, if m ≥ m0, the general fibers of ρm have dimension
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dimX ′m− dimZm = dimX − dimZm0 . Let Z ′m be a dense open subset where this holds
and let X ′′m := ρ−1

m0(Z ′m0)∩ρ−1
m (Z ′m). Note that x, x′ ∈ X ′′m are Cm0-equivalent if and only

if they are Cm-equivalent. Moreover, as classes increase in m, X ′′m is a union of fibers of
ρm0 .
Let X ′ := X ′m0 , X

′′ :=
⋂
m≥m0 X

′′
m, R(X) := Zm0 , rX := ρm0 .

Then, using the fact that smooth varieties are chain rationally connected if and only if
they are rationally connected (proposition 2.5.3), we see that rX|X′ is regular proper and
its fibers are rationally connected. In fact, the fibers of rX|X′′ (so very general fibers) are
rationally connected components because two points in X ′′ belong to the same rationally
connected component if and only if there is a chain of some length of rational curves
connecting them, but this is true if and only if they are Cm0-equivalent, i.e. if and only
if they belong to the same fiber of rX .
To conclude we are left to check that the universal property holds.
Let Z be a normal variety and ψ : X 99K Z a rational map satisfying properties (a) and
(b). Let X1 be the open dense subset where it is regular.
If x ∈ X1 is a very general point, then the fibers of ψ are rationally chain connected, so
all points in ψ−1(ψ(x)) are Cm-equivalent to x for a suitable m. We can take m ≥ m0.
But this means that ψ−1(ψ(x)) ⊆ r−1

X (x), in other words, rX contracts the fibers of ψ.
But ψ is proper over a neighborhood of x, therefore there exists Z0 ⊆ Z open neighbor-
hood of ψ(x) such that ρ is well defined on ψ−1(Z0) and ψ∗Oψ−1(Z0) ' OZ0 . Then, we
can apply lemma 2.2.11 to get the factorization we are looking for. qed

A slight modification of the notion of Kodaira dimension gives an invariant to detect
rationally connected varieties.

Definition 2.5.13. A rational fibration f : X 99K Y is a dominant rational map with
irreducible general fibers. Note that, if the map is regular and X and Y are normal, this
is equivalent to asking that the fibers are connected.

Definition 2.5.14. Let X be any projective variety. Define:

κ+(X) = max{κ(Y )| ∃ a (dominant) rational fibration f : X 99K Y }.

Proposition 2.5.15. Assuming the uniruledness conjecture 2.5.2, X is rationally con-
nected if and only if κ+(X) = −∞.
Moreover, the MRC quotient is the unique fibration g : X → Z such that:

(1) κ+(Xz) = −∞ for the general fiber Xz of g;

(2) κ(Z) ≥ 0.

Proof. If X is rationally connected, it is in particular uniruled. Moreover, if f : X 99K Y
is dominant, then Y is uniruled as well, so κ(Y ) = −∞. Conversely, if κ+(X) = −∞,
it means that for any rational fibration f : X 99K Y , κ(Y ) = −∞. In particular, we
can apply this to the MRC quotient. If X is not rationally connected, R(X) has non-
negative Kodaira dimension as it is not uniruled (use the uniruledness conjecture 2.5.2),
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contradiction. To prove the second part of the theorem it is enough to spell out the
properties of the MRC quotient using the first part of this theorem. The uniqueness of
a fibration will follow from a reinterpretation of the MRC quotient in the next chapter,
see proposition 3.1.14. qed



Chapter 3

The core map

The goal of this chapter is the construction of the core map. This fibration conjecturally
splits any orbifold pair in its antithetic parts: the base of general type is conjectured to
be mordellic, while the special fibers are conjectured to be potentially dense.
In the first section we see some preliminary results from Chow space theory, we will
discuss only the ideas, not going into details. In particular, we see what the Chow
scheme of a variety is and we see how to construct quotients using it, given a covering
family of the variety. Then, we study particular quotients, the C-quotients, where C is
a "stable" class of varieties having a fixed property. We will apply this construction to
reinterpret the MRC quotient and generalize it to the orbifold context and to construct
both the weak core map and the core map.
In the second section we study the weak core map, which has very similar properties
to the core map. But the main problem with this fibration is that it is not preserved
by finite étale covers, while we expect potential density and mordellicity to be invariant
under them.
For this reason, we need to introduce in our discussion orbifold pairs, they will be used
to keep track of multiple fibers. The third section is devoted to discuss the tools we need
to be able to use them in our construction.
Finally, in the last section we present the core map and we state some conjectures that
use the decomposition it gives. They study the arithmetic properties of the fibers and
the base of the core map.

3.1 Decompositions

3.1.1 Some Chow space theory

In this section we present some results on Chow space theory that will be used in the
remaining of the chapter. The tools we need are a generalization of what we used for the
construction of the MRC quotient. In particular, we discuss without details what is the
Chow space associated with a variety, the notions of covering families, Zariski regularity
and some decomposition theorems. At the end of the section we see a first application
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of these results: a reinterpretation of the MRC quotient. This kind of reasoning will be
used later also to construct the weak core and the core maps.

Definition 3.1.1. Let X be a complex variety. A d-cycle of X is a finite linear com-
bination with integer coefficients of compact irreducible analytic subsets of X of pure
dimension d. The support of a cycle is the union of all its finitely many components
with non-zero coefficient. The set of all d-cycles is denoted by Cd(X) and the union of
all Cd(X) is denoted by Chow(X) and is called the Chow scheme of X.

Thus, any point of the Chow scheme of a variety X parametrizes a cycle. There is an
obvious inclusion of the Hilbert scheme inside the Chow scheme which sends each point
of the Hilbert scheme, which represents a subvariety of X, to the cycle corresponding
simply to that subvariety. By abuse of notation we often refer to a subvariety of X as
its corresponding cycle or its point in the Chow scheme.
Remark. The Chow space can be defined also in a way similar to the one we used for the
Hilbert scheme. We can define a functor F dX which sends a complex space S to the set
of "analytic families" of compact d-dimensional cycles parametrized by S. This functor
turns out to be representable by a complex space, Cd(X). Then, the Chow scheme
Chow(X) can be defined as the union of these spaces for all d ≥ 0.

Definition 3.1.2. A subset S ⊆ Chow(X) is called a covering family of X if:

1. S is at most a countable union of compact irreducible subvarieties Si ⊆ Chow(X);

2. for all i, if s ∈ Si is a general point, then the cycle associated with s, Zs, is
irreducible and reduced;

3. X is the union of the supports of all the cycles parametrized by S.

Definition 3.1.3. To each subset S ⊆ Chow(X), we can associate its incidence graph,
which is defined as:

GS := {(s, x)|s ∈ S, x ∈ Supp(Zs)} ⊆ S ×X

where Zs is the cycle associated with s. Note that, if S is a covering family, the second
projection from GS to X is surjective.

Proposition 3.1.4. [6, theorem 1.7, result originally due to D.Barlet] Let G ⊆ S ×X
be an irreducible compact analytic subset such that the restriction of the first projection
p on G is surjective. Then, there exists a unique meromorphic map f : S 99K Chow(X)
sending a general s ∈ S to the reduced cycle of X with support p−1(s). If, moreover, the
fibers of p have all the same dimension and S is normal, then f is holomorphic.

Definition 3.1.5. Let S ⊆ Chow(X) be a covering family. For s1, ..., sn ∈ S, we say
that their corresponding cycles Zs1 , ..., Zsn form an n-chain if the union of their support
is connected. Two points of X are said to be S-equivalent if there exists an n-chain
containing both in its support, for some natural number n. This notion defines an
equivalence relation on X.
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There is a result very similar to the one we already have for the MRC quotient, but
for a general covering family S.

Theorem 3.1.6. [6, theorem 1.1] Let X be a compact connected normal complex space
and S ⊆ Chow(X) be a covering family for X. Then, there exists a meromorphic
fibration qS : X 99K XS such that its general fiber is an equivalence class for the relation
defined by S. This map is called S-quotient of X.

To be able to state the decomposition results we need, we have to introduce other
two technical notions: Zariski regularity and stability of a class of varieties. These are
needed because in the following we want to restrict our attention to particular classes of
varieties and we consider families with general members in that class.

Definition 3.1.7. Let S be a complex space and C ⊆ S a subset. Then, C is said to
be Zariski regular or Z-regular in S if, for every Zariski closed subset T ⊆ S, C ∩ T
either contains the general points of T , or is contained in a countable union of Zariski
closed proper subsets of T .

Remark. Actually this is a very typical situation and counterexamples seem to be un-
natural in algebraic or analytic geometry. In particular, this property is always satisfied
by the classes we consider (see [5] for a more precise discussion). In the remaining of the
chapter we implicitly assume that Z-regularity holds and we omit to mention it.

Lemma 3.1.8. [6, proposition 2.4] Let C ⊆ S be Z-regular inside a complex space. Then
there exists a countable family of Zariski closed irreducible subsets Si ⊆ S such that:

1. Ci := C ∩ Si contains the general point of Si;

2. C is the union of Ci’s.

The sets Si’s are called components of C

Proposition 3.1.9. Let X be a normal complex space which admits a meromorphic map
with meromorphic inverse to a compact Kähler manifold1 and let C ⊆ Chow(X) be Z-
regular. Denote by T the family of components of C (if it is not a covering family for X,
add the cycles corresponding to the points of X). Let qT : X 99K XT be the T -quotient
of X and let t ∈ C be a point such that the corresponding cycle Zt meets some general
fiber of qT , then Zt is contained in that fiber. The map qT is called the C-reduction of
X.

Proof. This is immediate from the fact that the fibers of qT are equivalence classes for
the relation induced by T . However, note that T -chains are in general different from
C-chains. qed

1A Kähler manifold is a manifold with a complex structure, a riemannian structure and also a
symplectic structure. All complex projective smooth varieties are examples of compact Kähler manifolds.
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Proposition 3.1.10. [6, theorem 2.7] Let f : X → Y be an holomorphic fibration
between complex spaces with X normal and meromorphic to a compact Kähler manifold.
Let C ⊆ Chow(X) be Z-regular. Let Cf ⊆ C be the set of all t’s such that the cycle Zt is
contained in some fiber of f . Then:

• Cf is also Z-regular;

• f factorizes through the Cf quotient qCf : X 99K XCf . More precisely, there exists
hCf : XCf 99K Y such that f = hCf ◦ qCf ;

• for y ∈ Y general, the restriction of qCf to Xy is the Cy-reduction of Xy, where
Cy := Cf ∩ C(Xy).

The map qCf is called the C-reduction of f .

3.1.2 The C-quotient

We have now all the ingredients to present the construction of the C-quotient, where C
is a class with a stability property. It decomposes a variety in its part belonging to C,
the base, and in its part which has the "opposite" property of the varieties in C. This
construction will be used to reinterpret the MRC quotient and to construct both the
weak core map and the core map using the classes of not uniruled varieties, general type
varieties and general type orbifold pairs respectively.

Let C be a class of projective varieties2 with a given property, stable by birational
equivalence, and denote by C⊥ the class of all projective varieties which do not admit
any rational fibration to a variety Z ∈ C with dimZ > 0. The class C⊥ is called the
kernel of C.

Definition 3.1.11. We say that C is stable if it satisfies the following two properties3.

(E1) If f : X → Z is a (regular) fibration with general fiber in C and Z ∈ C, then X ∈ C.

(E2) For a variety X, denote by C(X) ⊆ Chow(X) the class of subvarieties of X con-
tained in C. For any covering family T of irreducible components of C(X), the
general fiber of the T -quotient, qT : X 99K XT , is in C(X).

Remark. In the paper [5], the author defines a class to be stable if it satisfies the following
ones.

(E1’) If V ⊆ X is a subvariety and f : V 99K W is a fibration with general fiber Vw in
C(X), and if there exists a subvariety W ′ ⊆ V such that the point representing the
cycle W ′ is in C(X) and f(W ′) = W , then the cycle V is in C(X) as well.

(E2’) For any covering family T of irreducible components of C(X), the general fiber of
the T -quotient, qT : X 99K XT , is in C(X).

2The results and conjectures in this chapter can be extended also to compact complex manifolds
which are bimeromorphic to some compact Kähler manifold.

3E stands for extension.
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On the other hand, in the paper [4], the listed properties are more intuitive:

(E1*) If f : X → Z is a (regular) fibration with general fiber in C and Z ∈ C, then X ∈ C.

(E2*) Let X ∈ C, and let T ⊆ Chow(X) be a covering family for X, then its general
member is in C.

Anyway, for the purpose of our discussion, we thought it is more convenient to keep
(E1*) and (E2’).

Theorem 3.1.12. Let C be a stable class. Then, for any complex projective variety X,
there exists a unique fibration γX : X → CX such that:

1) its general fiber belongs to C⊥;

2) CX ∈ C.

If X is defined over a number field k, then so is γX .
γX is called the C-splitting of X and is functorial. More precisely, any rational fibration
f : X 99K Z induces a unique rational fibration γf : CX 99K CZ such that γZ◦f = γf ◦γX .

Proof. Sketch. This theorem is proven by induction on n = dimX. If dimX = 0, the
statement is immediate as, by convention, X ∈ C ∩ C⊥.
Let g : X → Z be a fibration with Z ∈ C and d := dimZ maximal among the varieties
Z that have such a fibration. If dimZ = 0, then X ∈ C⊥ by definition of C⊥. Otherwise,
0 ≤ n − d < n, so we can apply the induction hypothesis on the general fiber. Let
γz : Xz → Yz be the C-quotient of the general fiber Xz. By proposition 3.1.10 there
exist a fibration γX/Z : X → Y and a map h : Y → Z such that g = h ◦ γX/Z and the
restrictions on the general fibers are exactly the already constructed maps γz : Xz → Yz
by their uniqueness. Note that, by construction, Yz ∈ C for the general fiber and
Z ∈ C, so by property (E1), Y ∈ C. But dimY ≥ dimZ, so, by maximality of dimZ,
dimY = dimZ and the map h is finite. Since g is a fibration, it cannot factorize
through a finite map, thus h has to be an isomorphism. Therefore g = γX/Z , Yz = {z},
γz : Xz → {z}, hence Xz ∈ C⊥ and the general fibers of g are exactly Xz ∈ C⊥. Thus, g
enjoys the two properties.
Now we prove uniqueness4. Let j : X → Y be a second fibration for which the two
properties hold. Let y ∈ Y general, let Xy := j−1(y) and Zy := g(Xy) ⊆ Z. Consider

G := {(y, z)|y ∈ Y, z ∈ Zy} ⊆ Y × Z.

Then, by proposition 3.1.4, there exists a covering family of Z parametrized by Y . As
Z ∈ C, by property (E2*), the general Zy ∈ C. By the properties of j, Xy ∈ C⊥, thus
it does not admit any fibration towards an element in C. Hence, Zy must be a point.
Therefore, by lemma 2.2.11, there exists a map h : Y → Z, y 7→ Zy, such that h◦ j = g.
Thus, dimY ≥ dimZ. By maximality of dimZ, dimY = dimZ and h is a finite map.

4For this part, we follow the proof in the paper [4], so we use property (E2*) instead of (E2).
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As g is a fibration we conclude that h is an isomorphism.
We are left to prove functoriality. Let f : X 99K Z be a rational fibration, let γX : X →
CX be the C-quotient of X and γZ : Z → CZ the C-quotient of Z. Let y ∈ CX , denote
by Xy the fiber of γX over y and by CZ,y := γZ ◦ f(Xy). Consider the covering family
defined using proposition 3.1.4 by the set:

G := {(y, c)|y ∈ CX , c ∈ CZ,y} ⊆ CX × CZ,y.

The general fiber Xy ∈ C⊥. But, by property (E2*), since CZ ∈ C, CZ,y ∈ C. Thus, CZ,y
is a point. Therefore, by lemma 2.2.11, we conclude the existence of a map factorizing
γZ ◦ f through γX .
If X is defined over a number field k, we can do the exact same construction using the
class C restricted to varieties defined over k. Call γkX the quotient constructed with this
class. By uniqueness of the C-quotient, the map γX must coincide with γkX and so it
must be defined over k. qed

As a first application of this construction, we see another (quicker) way to construct
the MRC quotient, assuming Cn,m and uniruledness conjectures (2.3.3 and 2.5.2 respec-
tively).

Let C = K≥0 be the class of projective varieties with non-negative Kodaira dimension.

Lemma 3.1.13. The class K≥0 is stable.

Proof. (E1) If f : X → Z, with κ(Z), κ(Xz) ≥ 0 for a general fiber, by Cn,m conjec-
ture 2.3.3:

κ(X) ≥ κ(Xz) + κ(Z) ≥ 0.

(E2) Let T ⊆ Chow(X) be a covering family of X, with κ(X) ≥ 0. Then, consider the
T -quotient of X, qT : X 99K XT , by easy additivity theorem 2.3.1, for the general
fiber Xt:

0 ≤ κ(X) ≤ κ(Xt) + dimXT ,

which implies that κ(Xt) ≥ 0, i.e. Xt ∈ K≥0.
qed

Proposition 3.1.14. For any X, there exists a unique fibration ρX : X → R(X) such
that:

(1) κ+(Xz) = −∞ for the general fiber Xz;

(2) κ(R(X)) ≥ 0.

Proof. Note that (K≥0)⊥ is the class of varieties X with κ+(X) = −∞ by definition.
To conclude, apply theorem 3.1.12 to the class of varieties with non-negative Kodaira
dimension. qed



3.2. THE WEAK CORE MAP 75

Remark. To conclude that this map we have found is actually the MRC quotient, we need
to use the uniruledness conjecture 2.5.2 because a priori we cannot say that all varieties
X with κ+(X) = −∞ are rationally connected. Anyway, assuming that conjecture, ρX
coincides with the MRC quotient. With this construction we have also another property
that we did not find before: functoriality.

3.2 The weak core map

In this section we present the weak core map of a variety X. It is a fibration X → Z with
Z of general type and weakly special fibers, conjectured to be mordellic and potentially
dense respectively. We will see, however, that this map is not preserved by étale covers
and this leads to the definition of the core map.

Definition 3.2.1. A (complex) variety X is called weakly special if, for any finite
étale cover u : X ′ → X, there is no rational dominant map f : X ′ 99K Z, with Z of
general type and dimZ > 0.

Remark. In [11, conjecture 1.2], it is conjectured that a variety is weakly special if and
only if it is potentially dense. However, F. Campana conjectures that a slightly different
property, namely specialness (see section 3.4 below), is the right characterization of
potential density.

Let C := Kmax be the class of varieties of general type. The weak core map is
constructed as the C-quotient using this class.

Lemma 3.2.2. The class Kmax is stable.

Proof. (E1) Let f : X → Z be a fibration with Z of general type and general fibers Xz

of general type. Then, by theorem 2.3.2:

κ(X) = κ(Xz) + dimZ = dimXz + dimZ = dimX.

Thus, X is of general type.

(E2) Let T ⊆ Chow(X) be a covering family of X, with κ(X) = dimX. Then, consider
the T -quotient of X, qT : X 99K XT , by easy additivity theorem 2.3.1, for the
general fiber Xt:

dimX = κ(X) ≤ κ(Xt) + dimXT ,

which implies that κ(Xt) ≥ dimX − dimXT = dimXt, i.e. Xt ∈ Kmax.
qed

Definition 3.2.3. The Kmax-quotient of a variety X is called the weak core map of
X.
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Now we want to give another description of the weak core, it corresponds to a com-
position of MRC quotients and Iitaka fibrations, the so called (J ◦ r)n-decomposition.
Let X be a projective variety and let r : X → RX be its MRC quotient. Assuming the
uniruledness conjecture 2.5.2, κ(RX) ≥ 0, thus the Iitaka fibration of RX , J : RX → Y is
well defined for every X. Iterate this process again and again taking the MRC quotient
of Y and then the Iitaka fibration of the quotient, RY .

Lemma 3.2.4. The process described above stabilizes in a finite number of steps, less
or equal than n := dimX. In particular, the resulting composition (J ◦ r)n : X → Xn

is a fibration over a variety Xn of general type with fibers that are towers of fibrations
with fibers alternately rationally connected or with 0 Kodaira dimension.

Proof. Note that, if κ(Y ) 6= −∞, then the MRC quotient is the identity. Instead, J is the
identity when Y is of general type. Define inductively the ith iterate (J ◦ r)i : X → Xi.
Then, dimXi−1 ≥ dimXi, the sequence of dimensions is decreasing and dimXi−1 =
dimXi if and only if Xi−1 is of general type. Thus, the process stabilizes when Xi is
of general type (from that point on, all the maps are the identity) and this happens in
at most n = dimX steps. The second sentence in the statement of the lemma is then
immediate. qed

The claim is that this composition actually coincides with the weak core map. To be
able to prove that, we need to study the fibers of the (J ◦ r)n-decomposition. We start
with a preliminary result.

Proposition 3.2.5. [5, proposition 2.15] Let f : X 99K Y and h : V 99K Z be rational
fibrations. Assume that f is of general type and assume there is a dominant rational
map g : V 99K X. Let γz : Vz 99K Yz := (f ◦ g)(Vz) be the restriction of g to the general
fiber of h. If Yz has positive dimension, then the fibration part of the Stein factorization
is of general type.

Theorem 3.2.6. Let f : X → Y be a fibration with general fiber in (Kmax)⊥ and either
κ(Y ) = 0 or κ+(Y ) = −∞. Then X ∈ (Kmax)⊥.

Proof. If X was not in (Kmax)⊥, then there existed a fibration of general type g : X → Z.
Apply proposition 3.2.5 to the diagram:

X
id //

f
��

X

g

��
Y Z

Consider the restriction of g to the general fiber of f , gy : Xy → Zy := g(Xy). If
dimZy > 0, the fibration part of the Stein factorization is of general type. But Xy ∈
(Kmax)⊥, thus this cannot happen. Therefore Zy is a point. Applying 2.2.11, we get a
map h : Y → Z such that h ◦ f = g.
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Consider the case when κ(Y ) = 0 and apply theorem 2.3.2 to get, for the general fiber
Yz:

0 = κ(Y ) = κ(Yz) + dimZ ≥ dimZ > 0.

Contradiction. Therefore, X ∈ (Kmax)⊥. On the other hand, if κ+(Y ) = −∞, by
definition such h cannot exist. Thus, also in this case we get a contradiction, whence
X ∈ (Kmax)⊥. qed

Corollary 3.2.7. Let f : X 99K Y be a fibration with general fiber in (Kmax)⊥ and X
normal variety. Let r be the MRC quotient of Y and J its Iitaka fibration. Then r ◦ f
and J ◦ f have general fibers in (Kmax)⊥. In particular, by induction, we get that the
decomposition (J ◦ r)n of any normal variety has general fiber in (Kmax)⊥.

Proof. Firstly, let r : Y → Z be the MRC quotient of Y . Note that the general fiber of
r ◦ f , Xz, fibers over the general fiber of r, Yz: Xz

fz−→ Yz → {z}. As κ+(Yz) = −∞ and
the general fiber of fz belongs to (Kmax)⊥, theorem 3.2.6 gives the result. Secondly, do
the same reasoning with J to conclude. qed

Proposition 3.2.8. Let cX : X → CX be the weak core map constructed as the Kmax-
quotient. Assume the uniruledness conjecture 2.5.2, so that the map (J ◦ r)n is well
defined. Then cX = (J ◦ r)n. Moreover, we have an explicit description of (Kmax)⊥: it
consists of varieties which are towers over a point of fibrations with fibers either with
κ = 0 or with κ+ = −∞.

Proof. Both maps have bases in Kmax and general fibers in (Kmax)⊥ by corollary 3.2.7.
Therefore, by uniqueness of the weak core, this two maps must coincide. Now, let
X ∈ (Kmax)⊥ and let cX : X → CX be its weak core. The variety CX is a point. As
cX = (J ◦ r)n, X is the unique fiber of (J ◦ r)n, in particular, it has the described
property. qed

Remark. Note that, by the properties of C-quotients, the weak core map is functorial:
any fibration f : X → Z induces a rational fibration cf : CX 99K CZ . This did not follow
immediately from the definition of the (J ◦ r)n map because J is not functorial.

Example 3.2.9.

• Let Hd ⊆ Pn+1
k be an hypersurface of degree d. If d > n + 2, it is of general

type, so computing the (J ◦ r)n-decomposition we see that the weak core map
corresponds to the identity. Conversely, if d = n + 2, the weak core map sends
everything to a point (the Iitaka fibration does so). The remaining case, d < n+2,
has Kodaira dimension κ(Hd) = −∞, but −KHd is ample, so these hypersurfaces
are Fano varieties. By a result of Campana–Kollàr–Miyaoka–Mori, these varieties
are rationally connected, so the MRC quotient sends everything to a point and it
coincides with the weak core map.
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• Let Hdd′ ⊆ Pn+1−j
k ×Pjk be an hypersurface of bidegree d, d′. Let us study the weak

core map by computing the (J ◦r)n-decomposition. If d > n+2− j and d′ > j+1,
then it is of general type and so the weak core map is the identity. In the case
when d = n+ 2− j and d′ > j + 1 (or analogously d > n+ 2− j and d′ = j + 1),
the first MRC quotient is the identity and then the Iitaka fibration corresponds
to the second projection onto Pjk, which is rationally connected. Thus, the next
MRC quotient sends everything to a point. The resulting weak core map sends
everything to a point. When d = n+ 2− j and d′ = j + 1, the Kodaira dimension
is 0, the first MRC quotient is the identity and the Iitaka fibration is onto a point,
thus the weak core map is onto a point again. If d < n+ 2− j and d′ < j+ 1, then
−KHdd′ is ample, so the hypersurface is Fano, thus rationally connected. Thus the
MRC quotient is onto a point and it coincides with the weak core map. In the
remaining cases (d < n+ 2− j and d′ ≥ j+ 1 or viceversa), the Kodaira dimension
is −∞, but the computation of the MRC quotient is not so straight-forward.

The weak core map thus decomposes every variety into "pieces" which are either of
general type or rationally connected or with 0 Kodaira dimension. General type varieties
are conjectured to be mordellic, while rationally connected varieties and varieties with
0 Kodaira dimension are conjectured to be potentially dense. Anyway, there is one
problem with this map: it is not preserved by étale covers, while we expect potential
density to be preserved by étale covers because of Chevalley-Weil theorem 1.3.2. The
example below shows this flaw. F. Campana corrected this by introducing orbifold bases
of fibrations to take into account possible multiple fibers and constructing the core map,
which can be thought of as an orbifold version of the weak core.

Example 3.2.10. This example shows that the weak core map is not preserved by étale
covers, but it also shows an idea of the solution discussed in the next sections: taking
into account multiple fibers and therefore working with orbifold pairs.
Let C be an hyperelliptic curve of genus g ≥ 2. So, we can describe an affine patch of
C as y2 = f(x) for a polynomial f(x) of degree ≥ 3. On C we can consider a particular
map, called hyperelliptic involution, defined on an affine patch as:

τ : C → C; (x, y) 7→ (x,−y).

Let h : C → P1 := C/ 〈τ〉 be the double cover induced by τ , note that it is ramified over
the 2g + 2 points images of the hyperelliptic points on C (in the affine patch, they are
the point such that y = 0). Let E be an elliptic curve, Q ∈ E a point of order 2 and t
the translation by Q, so that t has order 2. Let S′ = E × C and i = t× τ . Note that i
is fixed-point free, so the natural map:

u : S′ → S := (E × C)/i

is an unramified double cover.
Since κ(E) = 0 and κ(C) = 1, it follows that κ(S′) = 1. The Iitaka fibration of S′ must
send E to a point and C to a curve birational to C. Thus it coincides with the projection
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onto C: J ′ : S′ → C. Since C is of general type, the weak core map coincides with J ′
and C ′S = C.
On the other hand, the Iitaka fibration of S is J : S → P1 := C/ 〈τ〉. Indeed u is
étale, so ΩS′/S = 0 and ΩS′ = u∗ΩS by proposition 2.1.14, whence, taking exterior
powers, ω′S = u∗ωS . As H0(S′, ω′S) = 〈x〉, x is a generator also of H0(S, ωS). Then,
the MRC quotient of P1 is a point, which is of general type by definition. So, the weak
core map sends S to a point and CS is a point, differently from CS′ . The induced map
cu : CS′ → CS does not preserve the dimension.
Let us compute the multiple fibers of J . The map J is ramified with order two over the
hyperelliptic points of C. The idea is that, over a general point, the fiber consists of
two distinct copies of the curve E/ 〈t〉, one associated with the point (x, y) ∈ C and one
with the point (x,−y) ∈ C. But when (x, y) = (x,−y). i.e. y = 0, the fiber consists of
only one copy of E/ 〈t〉, which has to be of multiplicity 2. Thus, the "orbifold base" of
J is the orbifold pair (P1,∆), where ∆ =

∑
i=1,...,2g+2

(
1− 1

2

)
(pi) with pi the images of

the hyperelliptic points. Note that, by Riemann-Hurwitz’ formula, h∗(KP1 + ∆) = KC ,
whence κ(P1,KP1 + ∆) = κ(C,KC) = 1, the orbifold base is of general type.

3.3 Orbifold case
In this section we develop the necessary tools to extend the constructions we made to
the orbifold case. In particular, we need to define the orbifold base of a fibration, which
encodes multiple fibers, the Kodaira dimension of an orbifold pair and what birational
equivalence means in the orbifold context. We then reformulate Cn,m conjecture in this
setting.

Let f : X → Y be a morphism of varieties over k. Let y ∈ Y be a point (not
necessarily closed) and let Iy be the ideal describing y in an affine patch. Call Jy = f∗Iy
the ideal on X describing the fiber over y. The radical of Jy is the intersection of finitely
many prime ideals, call them Pi for i = 1, ..., d. Let Fi be the irreducible component
of the fiber in this affine patch corresponding to Pi. The largest integer mi such that
Jy ⊆ Pmii is called the multiplicity of Fi.
Let f : X 99K Y be a (rational) fibration with X and Y smooth projective varieties. Let
E ⊆ Y be an irreducible divisor and let f∗(E) =

∑
h thFh + R be its scheme-theoretic

inverse image in X, where in R we collect all components of the fiber whose image in Y
has codimension at least 2 and th are the multiplicities of the (finitely many) irreducible
components Fh. Let mf (E) := infh{th}, this is called the multiplicity5 of the generic
fiber of f over E.

Definition 3.3.1. In the situation above, the orbifold pair (Y,∆f ), where

∆f =
∑
E

(
1− 1

mf (E)

)
E

5Classically, this multiplicity is defined with the gcd, but for our purposes it is more appropriate to
consider the "inf" multiplicity.
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is called the orbifold base of f .

Remark. The generic fiber of f is smooth if, affine locally, X = Spec(B), Y = Spec(A),
where A,B are rings and f induces an extension:

B = A[t1, ..., tn]
(f1(t1, ..., tn), ..., fm(t1, ..., tn))

such that the rank of the jacobian defined by fi’s is maximal. But having a jacobian
with maximal rank is an open condition. Thus, if the generic fiber is smooth, the map
is smooth in an open dense subset.
In a fibration the generic fiber is smooth, so the set of prime divisors E such that
mf (E) > 0 is finite.

As the Iitaka dimension associated with a divisor D deals with the asymptotic be-
havior of mD for m � 0, it makes sense to evaluate it also for a Q-divisor. In fact, if
D is a Q-divisor, there exists n ∈ Z such that nD is a Z-divisor. To compute the Iitaka
dimension of D we can consider, then, only sufficiently large multiples of nD.

Definition 3.3.2. Let f : X 99K Y be a rational fibration. Define the Kodaira di-
mension of the fibration as:

κ(Y, f) = inf̄
f
{κ(Y ,KY + ∆f̄ )}

where f̄ : X → Y ranges through all fibrations birationally equivalent to f and (Y ,∆f )
are their orbifold bases.

Remark. If we consider only the "naive" Kodaira dimension of a fibration as the Kodaira
dimension of its orbifold base, we do not have birational invariance because we do not
have an orbifold version of proposition 2.2.12, which holds only for the usual cotangent
bundle.

We want to find an "easier" description of the Kodaira dimension of a fibration. The
main problem comes from dealing with divisors whose image has codimension ≥ 2. It
turns out that, if we can "get rid" of them (notion of neat model), we can compute
the Kodaira dimension directly using the orbifold base of the fibration. Another way to
compute it, is using the saturation of the sheaf f∗KY in Ωp

X (definition 3.3.5), where
p = dimY .

Definition 3.3.3. Let f : X → Y be a regular fibration. A prime Weil divisor D on
X is said f-exceptional if codimY f(D) ≥ 2. The map f is called neat if it is regular,
X,Y are smooth and there exists a birational regular map u : X → X ′ with X ′ smooth
such that every f -exceptional divisor of X is also u-exceptional.

Proposition 3.3.4. [5, lemma 1.3] Let f0 : X0 99K Y0 be a rational fibration and
X ′ smooth birational to X0. Then, there exists a neat model f : X → Y birationally
equivalent to f0 and a birational regular map u : X → X ′ such that every f -exceptional
divisor is also u-exceptional.
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Definition 3.3.5. Let F ′ be a subsheaf of a sheaf F , F ′ is said to be saturated in F
if the cokernel of the inclusion morphism, F/F ′, is torsion free. If it is not saturated,
the minimal saturated subsheaf of F containing F ′ is called the saturation of F ′ in
F .
Let f : X 99K Y be a rational fibration with X smooth and Y reduced. Define Ff on
X as the saturation of the pull-back of the canonical sheaf on Y , f∗KY , in Ωp

X , where
p = dimY .

Remark. Ff is a birational invariant, it is preserved by birational modifications of f .
The idea is that we are not working with the "usual" canonical sheaf, but with a

"logarithmic version" of it. If ∆f =
∑r
i=1

(
1− 1

mi

)
Di is SNC, then we can assume that

Di are locally the zero locus of the coordinate functions yi (r ≤ p = dim Y ). We define
locally Ωp

Y (log ∆) as the invertible sheaf on Y generated by the differential form

dy1

y
(1− 1

m1
)

1

∧ dy2

y
(1− 1

m2
)

2

∧ ... ∧ dyr

y
(1− 1

mr
)

r

∧ dyr+1 ∧ ... ∧ dyp.

Let us consider a simple case to get an idea of what is going on. Let X be a surface and
Y a curve. If F = f−1(P ) is an irreducible fiber of multiplicity m > 1, locally around
P we can describe f with the map (x, y) 7→ xm = u. Thus, f∗KY = f∗du = mxm−1dx

locally; while f∗(KY + (1 − 1
m)(P )) = f∗

(
du

u1− 1
m

)
= mdx which describes indeed the

saturation of f∗KY .

Proposition 3.3.6. [5, proposition 1.25] Let f : X 99K Y be a rational fibration, with
X smooth projective connected variety. Then:

(a) κ(Y, f) = κ(Y,KY + ∆f ) if Y is smooth and f is neat;

(b) κ(Y, f) = κ(X,Ff ).

Remark. This result tells us that ∆f encodes the difference between f∗KY and its sat-
uration, in fact, if f is a neat model, by proposition 2.2.9:

κ(X,Ff )− κ(X, f∗KY ) = κ(Y,KY + ∆f )− κ(Y,KY ).

This is not true for the "classical" notion of orbifold base using the "gcd-multiplicity"
and this is the main reason for the introduction of the "inf-multiplicity".

Now we want to go a bit further with the discussion considering the case where the
domain is an orbifold pair.

Definition 3.3.7. Let (X,∆) be an orbifold pair, its Kodaira dimension is defined as
the Iitaka dimension of the line bundle KX +∆ (or, better, of a suitable multiple of it so
that it becomes a Z-divisor). (Recall that in the first chapter we defined the canonical
bundle of an orbifold pair to be exactly KX + ∆.)
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Definition 3.3.8. Let (X ′,∆′) and (X,∆) be two orbifold divisors. A birational regular
map v : X ′ → X is said to induce a birational map v : (X ′,∆′) → (X,∆) if it is
terminal with respect to the orbifold structure. More precisely, if KX′+ ∆′ = v∗(KX +
∆) +

∑
j∈J ajEj , where aj ≥ 0 and {Ej |j ∈ J} is the collection of v-exceptional divisors

on X ′.

Remark. With this definition, the Kodaira dimension of an orbifold pair is a birational
invariant.

Definition 3.3.9. An orbifold étale cover between two orbifold pairs is a generically
finite map between them which is terminal with respect to the orbifold structure (so
it can be ramified, but the orbifold divisors "control" the ramification). More precisely,
f : (X,∆) → (Y,H) is an orbifold étale cover if it is generically finite and KX + ∆ =
f∗(KY +H)+

∑
j∈J ajEj , where aj ≥ 0 and {Ej |j ∈ J} is the collection of f -exceptional

divisors on X.

Next, we want to define the orbifold base of a fibration when the domain is itself an
orbifold pair.
Let (X,∆) be an orbifold pair, with ∆ =

∑
i

(
1− 1

mi

)
Di. Let f : (X,∆) → Y be a

fibration (in the usual sense as a fibration X → Y ). For any irreducible divisor D ⊆ X,
define first its intersection multiplicity with ∆:

m(D,∆) =
{
mi if there exists i such that D = Di

1 elsewhere
.

Now, for any E ⊆ Y irreducible divisor, compute:

f∗E =
∑
j∈J

njEj +R

where {Ej |j ∈ J} is the collection of irreducible components of f∗E mapped surjec-
tively to E by f , nj is their scheme-theoretic multiplicity in the pull-back and R is
f -exceptional. Define finally the multiplicity of f along E as:

mf,∆(E) := inf
j∈J
{njm(Ej ,∆)}

Definition 3.3.10. Let f : X → Y be a fibration with Y smooth and let ∆ be an
orbifold structure on X. The orbifold base of the induced fibration f : (X,∆)→ Y is
the divisor

∆f,∆ :=
∑
E⊆Y

(
1− 1

mf,∆(E)

)
E.

Remark. Let f : X → Y and g : Y → Z be two fibrations with X,Y, Z smooth. Let
H = ∆f , then it is not true that ∆g,H = ∆g◦f,∆. We can only say that

∆g,H ≥ ∆g◦f,∆,
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where we say that a divisor A is bigger than a divisor B, A ≥ B, if the difference A−B
is an effective divisor.
Indeed, let us compute the multiplicity of the irreducible divisors appearing in both
sides. Let D ⊆ Z be a prime divisor, then:

mg,H(D) = inf
i∈I
{mim(H,Di)}

where g∗D =
∑
i∈I miDi +R. Whereas:

mg◦f,∆(D) = inf
k∈K
{nk}

where (g ◦ f)∗(D) =
∑
k∈K Dk + R′. But f∗Di =

∑
k∈Ki m̃i,kDk + Ri, so nk = m̃i,kmi

and infk∈Ki nk = mim(H,Di). To conclude, note that
⋃
i∈I Ki ⊆ K, but K may contain

another subset J , parametrizing irreducible components of (g◦f)∗(D) which are mapped
surjectively to D, but are f -exceptional. Thus:

mg◦f,∆(D) = inf{ inf
k∈
⋃
i
∈IKi
{nk}, inf

k∈J
{nk}} = inf{inf

i∈I
{mim(H,Di)}, inf

k∈J
{nk}} ≤ mg,H(D).

Definition 3.3.11. As before, we can define the Kodaira dimension of a fibration f :
(X,∆)→ Y as

κ((X,∆), f) := inf̄
f
{κ(Y ,KY + ∆f̄ ,∆)}

where f̄ : (X,∆)→ Y ranges over all fibrations birationally equivalent to f with domains
orbifold birationally equivalent.

There is an analogous way to compute directly the Kodaira dimension of a fibration
using the saturation, but this time inside the "log differentials". In fact, κ((X,∆), f)
can be computed as the Iitaka dimension on X of the line bundle Ff,∆ defined as the
saturation of f∗KY in Ωp

X(log ∆).
Finally, we restate "easy additivity" results/ conjectures in an orbifold version.

Definition 3.3.12. Let f : X → Y be a fibration with X and Y smooth, f is called
prepared if the lucus Y ′ ⊆ Y of points y with smooth fiber Xy has a complement
contained in a normal crossing divisor D such that f−1(D) is also a normal crossing
divisor. (It is possible to show that any fibration has an equivalent prepared model.)

Definition 3.3.13. Let f : (X,∆) → Y be a morphism, f is called high if there
exists a birational regular u0 : X → X0 with X0 smooth, such that κ(X,KX + ∆) =
κ(X0,KX0 + (u0)∗(∆)) and such that every g-exceptional divisor is also u0-exceptional.

Conjecture 3.3.14. Corb
n,m

Let f : (X,∆) → Y be a (regular) fibration between smooth varieties. Assume that f is
prepared and high, then, for the general fiber (Xy,∆y := ∆|Xy):

κ(X,KX + ∆) ≥ κ(Xy,KXy + ∆y) + κ(Y,KY + ∆f,∆).
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Theorem 3.3.15. [4, theorem 7.10, result due to E. Viehweg adapted in this context
by F. Campana] Let f : (X,∆) → Y be a (regular) fibration between smooth varieties.
Assume that f is prepared and high and of general type, i.e. κ(Y,KY + ∆f,∆) = dimY .
Then, for a general fiber Xy,

κ(X,KX + ∆) = κ(Xy,KXy + ∆y) + dim Y

3.4 The core map

In this section we see the construction of the core map, which is quite similar to the
construction of the weak core, but it takes into account multiple fibers with the help
of the introduction of orbifolds in the discussion. This map is invariant by finite étale
orbifold covers and conjecturally divides the potentially dense and the mordellic part of
a variety.

It is conjectured that the potentially dense variety are exactly the special varieties,
so we start by discussing this notion.

Definition 3.4.1. A variety X is called special if κ(X,L) < p, for any line bundle
L ⊆ Ωp

X (the pth alternating powers of the sheaf of differentials) and any p > 0.

Example 3.4.2. Note that κ(X,L) ≤ n := dimX, so it is enough to check the property
for p ≤ n.

(1) If X is a curve, the only possible line bundle is L = KX . Thus, a curve is special
if and only if it is not of general type. In other words, it is special if it is either
rational or elliptic.

(2) If X is rationally connected, it can be proven that h0(X,Ω⊗mX ) = 0, for all m > 0.
Therefore X is special.

(3) If X is of general type, it is not special. In fact, taking L = Ωn
X = KX , gives

κ(X,L) = n.

(4) If there exists a rational fibration f : X 99K Y , where Y is of general type of
dimension p, then X is not special. Indeed, by proposition 2.1.14, f∗ΩY ⊆ ΩX

and these sheaves are locally free. Thus, taking exterior powers is exact and we
get L := f∗KY ⊆ Ωp

X . Then, κ(X,L) = κ(Y,KY ) = p by proposition 2.2.9.

(5) Let Y be a variety of general type with dimY = k and Z a variety of positive
dimension, with κ(Z) = 0. Consider X := Y × Z, then, L := KY ⊆ Ωk

X , as
ΩX = ΩY ⊕ ΩZ and κ(X,L) = k, which shows that X is not special, but has
Kodaira dimension κ(X) = k ∈ {1, ..., n − 1}. There can be found also examples
of special varieties X with dimX = n and κ(X) = k ∈ {1, ..., n − 1}. We can
therefore conclude that the Kodaira dimension does not characterize specialness
directly.
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Theorem 3.4.3. [4, theorem 7.4], result originally from [3] Let L ⊆ Ωp
X be a line bundle.

Then:

(i) κ(X,L) ≤ p;

(ii) If κ(X,L) = p, there exists a fibration f : X 99K Z such that f∗(KZ) = L on a
non-empty Zariski open subset of X.

Corollary 3.4.4. If κ(X) = 0, then X is special.

Proof. If it was not true, by the previous theorem 3.4.3, there existed a fibration f :
X 99K Z such that f∗(KZ) = L ⊆ Ωp

X and κ(X,L) = p = dimZ. Thus, Z is of general
type and we can apply theorem 2.3.2 to get, for a general fiber Xz:

0 = κ(X) = κ(Xz) + dimZ ≥ dimZ > 0.

Contradiction. (We must have κ(Xz) ≥ 0, otherwise also κ(X) should be −∞ by the
same formula.) qed

Corollary 3.4.5. A variety X is special if and only if, for any fibration f : X 99K Z,
the orbifold base of any of its neat models is not of general type.

Proof. If X is special, then, for any neat model of the fibration, by proposition 3.3.6
κ(Z,KZ + ∆f ) = κ(X,L) < p, where L is the saturation of f∗KZ in Ωp

X (p = dimZ).
Thus, the orbifold base is not of general type.
Conversely, if f was not special, there existed L ⊆ Ωp

X such that κ(X,L) ≥ p. By
theorem 3.4.3, κ(X,L) = p and there existed a fibration f : X 99K Z such that L = f∗KZ

generally. Thus, the orbifold base of f is of general type. Contradiction. qed

Finally, we have all the ingredients we need to construct the core map. It is con-
structed using an orbifold modification of theorem 3.1.12. The stable class C now is a
class of smooth orbifold pairs and its kernel is defined as the class C⊥ of smooth orbifold
pairs admitting no rational fibration such that a neat model of it has orbifold base in C.
Theorem 3.1.12 holds also in this context with the same proof.

Lemma 3.4.6. The class C := Kmax
orb of orbifold pairs of general type is stable.

Proof. This proof is done exactly like the one for lemma 3.2.2, using the orbifold version
of easy additivity when the base is of general type 3.3.15 and easy additivity theo-
rem 2.3.1 for the orbifold canonical bundle. qed

Definition 3.4.7. Applying the orbifold version of theorem 3.1.12 to the class C, we
obtain a unique fibration cX : X → CX called the core of X, such that:

• its general fibers are special (consequence of corollary 3.4.5);

• its orbifold base (CX ,∆CX ) is of general type;
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• any dominant map g : Y 99K X induces a map on the cores cg : CY → CX such
that cX ◦ g = cg ◦ cY ;

• if X is defined over a number field k, so is its core by uniqueness.

We prove now that the core map is preserved by finite étale covers. However, before
that, we need a technical result.

Proposition 3.4.8. [5, theorem 1.8] Let f : X → Y and f ′ : X ′ → Y ′ be two fibrations
and let u : X ′ → X and v : Y ′ → Y be two maps such that f ◦ u = v ◦ f ′. Assume that
u and v are generally finite and surjective, then κ(Y ′, f ′) ≥ κ(Y, f). If, moreover, u is
étale and X,X ′ are smooth, then κ(Y ′, f ′) = κ(Y, f).

Proposition 3.4.9. If u : X ′ → X is finite étale, cu : CX′ → CX is generally finite
(ramified, but orbifold étale). In particular, if X is special, so is X ′.

Proof. Consider the Galois closure of u, namely u′ : X ′′ → X ′ → X. If we can prove
that the statement is true for u′, then it must be true also for u because, by uniqueness,
the map cu′ factors through cu. We can therefore assume that u is Galois. Let G =
deck(u). The group G acts on X ′, so each element g ∈ G induces a (dominant) map
g : X ′ → X ′, which induces a map at the level of the core: cg : CX′ → CX′ . As u◦g = u,
cX ◦ u ◦ g = cX ◦ u = cu ◦ cX′ = cu ◦ cg ◦ cX′ by commutativity of the diagram with the
core maps.
Let h : CX′ → CX′/G be the quotient map induced by this action. Given x ∈ X,
u−1(x) = {gx0|g ∈ G} for a fixed x0 since u is Galois, so G acts transitively. By
commutativity, cX′(gx0) = cgcX′(x0), thus h(cX′gx0) is constant for all g ∈ G. We can
then define a map c′X : X → CX′/G. The fibers of this map are special. Indeed, if
y ∈ CX′/G, h−1(y) = {gy|g ∈ G} and Yg = c−1

X′ (gy) are special. The map u sends
"locally isomorphically" each of these Yg to the same subvariety of X, which is then
special and is the fiber over y of c′X .
During the proof of theorem 3.1.12, we saw that, when we are in this situation, we can
construct v : CX′/G 99K CX and cX = v ◦ c′X . By proposition 3.4.8, as cX′ is of general
type, also c′X is so and it has special fibers. Therefore, applying proposition 3.2.5 in the
same way we used it in theorem 3.2.6, there exists w : CX → CX′/G. Thus cX = v◦w◦cX
and c′X = w◦v◦c′X , but cX and c′X are dominant, hence v and w are inverse to each other.
We can therefore conclude that, birationally, CX coincides with CX′/G and h = cu is
finite as the group G is so.
Now, let X be special, then CX has dimension 0 and, as cu is generically finite, CX′ has
also dimension 0. Therefore X ′ is special as well. qed

A consequence of this proposition is that special varieties are, in particular, weakly
special.

Corollary 3.4.10. If X is special, it is weakly special.

Proof. Let X be special and assume, by contradiction, that it was not weakly special.
Then, it existed a finite étale cover u′ : X ′ → X and a dominant rational map f ′ : X ′ 99K
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Y ′ with Y ′ positive dimensional of general type.
As in the previous proof, we can reduce to the Galois case. Indeed, consider u : X ′′ →
X ′ → X the Galois closure of u′. Composing X ′′ → X ′ and f ′ we obtain a dominant
rational map of X ′′ towards a positive dimensional variety of general type, call this map
f ′ again by abuse of notation. We can, therefore, work with u, which is Galois, instead
of u′.
Let G := deck(u) be the group of deck transformations. First, assume f ′ is G-equivariant
(i.e. if there exist x1, x2 ∈ X ′′ such that f ′(x1) = f ′(x2), then f ′(gx1) = f ′(gx2) for
all g ∈ G). Then, the action of G on X ′′ induces an action on Y ′. There are natural
maps v : Y ′ → Y ′/G and f : X → Y ′/G, towards the quotient by this action such that
f ◦u = v◦f ′. As u is étale and v is generally finite, by proposition 3.4.8, we can conclude
that f ′ is of general type as well. Contradiction.
On the other hand, if f ′ is not G-equivariant, we substitute it with f ′′, a G-equivariant
map that we will construct below and we apply the same reasoning to that.

Enumerate the elements in G = {g1, ..., gN} and consider the finite family (fi :=
f ′ ◦ gi)gi∈G with the ordering fi : X ′′ → Yi ≥ fj : X ′′ → Yj if there exists a meromorphic
fibration h : Yi 99K Yj such that h ◦ fi = fj . The map f ′′ will be the least upper bound
of this family with respect to this order. It can be constructed as the fibration part of
the Stein factorization of the map:

f1 × f2 × ...× fN : X ′′ → Y ′ × ...× Y ′.

Let Y ′′ := f ′′(X ′). We can show that f ′′ is of general type. Proceeding by induction, it
is enough to prove the claim for N = 2. Note that the two projections from Y ′′ to Y ′
are both surjective and finite and their bases are of general type. Thus we can apply
theorem 2.3.2 to one of the projections to get, for the general fiber Y ′′y :

κ(Y ′′, f ′′) = κ(Y ′′y ) + dim Y ′ = dimY ′′.

Whence f ′′ is of general type. We claim that f ′′ is G-equivariant. Indeed, if f ′′(x1) =
f ′′(x2), then, by construction, gix1 = gix2 for all i. Therefore, (f1×f2× ...×fN )(gx1) =
(f1 × f2 × ...× fN )(gx2), which gives the result. qed

Next, we want to interpret the core map as an orbifold version of the (J ◦ r)n-
decomposition.
Let (X,∆) be an orbifold pair, define j as the Iitaka fibration associated with (a big
enough power of) the Q-line bundle KX + ∆ if κ(X,KX + ∆) ≥ 0. Thus, j : (X,∆)→
(Y,∆j,∆) is a fibration with dimY = κ(X,KX + ∆) and κ(Xy,KXy + ∆|Xy) = 0 for the
general fiber Xy of j.
Then, we need an analogue of the MRC quotient and we construct it using a C-decomposition
in the orbifold version.

Definition 3.4.11. Let (X,∆) be an orbifold pair. Define

κ+(X,KX + ∆) := max
f
{κ(Z,∆f,∆)}

where f : (X,∆) 99K Z is a neat model of a fibration from the orbifold pair.
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F. Campana conjectures an orbifold analogue of uniruledness conjecture, to under-
stand it, we need to suitably modify the notions of rational curve and rational connect-
edness.

Definition 3.4.12. A curve in an orbifold pair (X,∆ =
∑(

1− 1
mj

)
Dj) is a regular

orbifold morphism h : C → (X,∆) from a curve C. More precisely, it is a regular
morphism such that:

(i) h(C) is not contained in the support of the orbifold divisor ∆;

(ii) for any a ∈ C and any j such that h(a) ∈ Dj , so h∗(Dj) = ta,j(a) + ..., then we
ask that ta,j ≥ mj (or, for the "classical version", we ask divisibility by mj).

Definition 3.4.13. Let (X,∆) be a smooth orbifold pair, with X complex projective.
Then (X,∆) is κ-rationally connected if any two general points of X are contained
in an orbifold rational curve h : P1 → (X,∆).

Conjecture 3.4.14. Let (X,∆) be a smooth orbifold pair with X complex projective.
Then (X,∆) is κ-rationally connected if and only if κ+(X,KX + ∆) = −∞.

Remark. This conjecture is an orbifold version of proposition 2.5.15, which relies on the
uniruledness conjecture.

To construct the orbifold version of the MRC quotient, consider the class C = K≥0
orb

of orbifold pairs with positive orbifold Kodaira dimension.

Lemma 3.4.15. The class K≥0
orb is stable.

Proof. This proof goes in the exact same way as the proof of lemma 3.1.13, using the
orbifold version of Cn,m conjecture, 3.3.14, and theorem easy additivity 2.3.1 for the
orbifold canonical bundle. qed

Proposition 3.4.16. Any smooth orbifold pair (X,∆) admits a unique fibration r :
(X,∆)→ (R,∆r,∆) such that:

(i) κ+(Xr,KXr +∆|Xr) = −∞ for the general fiber Xr (thus, the fibers are conjectured
to be rationally connected);

(ii) κ(R,KR + ∆r,∆) ≥ 0.

The map r is called the κ-rational quotient of (X,∆) and is the analogous of the
previous MRC quotient.

Proof. Note that (K≥0
orb)⊥ coincides with the class of orbifold pairs with κ+ = −∞ by

definition. To get the result, apply the orbifold version of theorem 3.1.12 to the class
K≥0

orb. qed
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We now want to describe the core map as a composition of subsequent κ-rational
quotients and Iitaka fibrations, as we already did for the weak core map.

Let X be a normal variety, consider its κ-rational quotient r : X → RX . Then, using
orbifold uniruledness conjecture 3.4.14, we get that the orbifold Kodaira dimension of
RX is non-negative. The Iitaka fibration for the orbifold canonical bundle is, thus, well-
defined. Repeat this process until the maps stabilize to the identity. With the same
reasoning as in the non-orbifold situation, it can be seen that this process stops when
the resulting base is of general type, after at most n := dimX steps. The resulting map
is called the (j ◦ r)n-decomposition.

With the next results, we will prove that the fibers of this decomposition are special,
which, by corollary 3.4.5, are exactly the elements in the class (Kmax

orb )⊥.

Theorem 3.4.17. Let f : X → Y be a fibration with general special fiber. Assume that
either κ(Y,KY + ∆f ) = 0 or κ+(Y,KY + ∆f ) = −∞, then X is special.

Proof. This proof is done in the exact same way as the one for theorem 3.2.6, considering
suitable "good models" of the involved fibrations to compute their Kodaira dimension
and using the orbifold version of easy additivity with base of general type 3.3.15. qed

Corollary 3.4.18. Let f : X 99K Y be a fibration with special general fiber and X a
normal variety. Let r be the MRC quotient of Y and j its orbifold Iitaka fibration. Then
r ◦ f and j ◦ f have special general fibers. In particular, by induction, we get that the
decomposition (j ◦ r)n of any normal variety has special general fiber.

Proof. The proof goes exactly as its twin in the non-orbifold case, using "good models"
for the involved fibrations. qed

Theorem 3.4.19. Let cX : X → CX be the core map of a smooth connected projective
variety of dimension n. Then, assuming Corb

n,m conjecture 3.3.14 and the orbifold unir-
uledness conjecture 3.4.14, cX = (j ◦ r)n, where j is the Iitaka fibration relative to the
orbifold canonical bundle and r is the κ-rational quotient defined above. In particular,
a variety X is special if and only if it is a tower of fibrations over a point with orbifold
fibers having either κ+ = −∞ or κ = 0.

Proof. The composition (j ◦ r)n has special fibers by corollary 3.4.18, therefore it must
coincide with the core map by uniqueness of a map with base of orbifold general type
and fibers in the kernel of the class Kmax

orb . Besides, X is special if and only if its core
map is onto a point, thus the decomposition of the core as (j ◦ r)n gives the result. qed

Now, we come to the main conjecture formulated by F. Campana. It says that the
core map splits any orbifold pair in its mordellic part (the base of the core) and in its
potentially dense part (the fibers). We formulate it for varieties, but its possible solution
should consider orbifold pairs.

Conjecture 3.4.20. Let X be a variety defined over a number field k and let cX :
X → CX be its core map. Then, there exists a complex projective subvariety W ( CX
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such that, for any finite extension k′/k, cX(X(k′)) ∩ U is finite, where U := CX \W .
Moreover, there exists k′ such that, for any k′′ ⊇ k′, X(k′′) is Zariski dense in each fiber
of cX lying over cX(X(k′′)) ∩ U .

Conjecture 3.4.21. Let (X,∆) be a smooth projective orbifold pair over a number field
k.

• If (X,∆) is of general type, then there exists a Zariski closed subset W ( X such
that, for any pair k′, S′, where k′/k is a finite extension and S′ is a finite set
of non-archimedean places of k′, the set of (S′,∆)-integral points, (X,∆)(S′, k′),
contained in X \W is finite.

• If κ(X,∆) = 0 or κ+(X,∆) = −∞, then there exists k′, S′, finite extension of k
and finite set of non-archimedean places of k′ respectively, such that the (S′,∆)-
integral points are Zariski dense in X.

Remark. The first part of the above conjecture is a generalization of Lang’s and Vojta’s
conjectures in the orbifold context.
Remark. Consider two more properties: the orbifold birational invariance of potential
density and mordellicity and the fact that, if the fibers and the base of a fibration are
potentially dense, so is the domain. These two together with the second part of the
conjecture above 3.4.21 and the characterization of specialness in corollary 3.4.19, would
imply that the class of special orbifold pairs consists exactly of the potentially dense
ones.

Example 3.4.22. We see now an example that shows that we cannot remove the hy-
pothesis of simple normal crossing on the divisors we are considering.
Consider the projective plane from which we remove the divisor D defined by the equa-
tions XY + Z2 = Y Z and ZX = 0, it is not of simple normal crossing as, around the
point [0 : 1 : 0] we need at least 3 > dimP2 linear parameters to define the divisor. In
the usual affine Z 6= 0, the integral points on the complement of the two lines correspond
to pairs (x, y) with x an S-unit and y ∈ Ok,S . The condition that the conic imposes is
that v := xy − y + 1 must be an S-unit. This can be rewritten as:

v − 1
x− 1 ∈ Ok,S

with x, v S-units. The solutions of this problem are Zariski dense in the plane. For
instance, there exists infinitely many pairs (m,n) such that

3m − 1
2n − 1 ∈ Z.

It is, in fact, sufficient to take an odd number n, so that 2n − 1 and 3 are coprime (2n
is congruent to −1 modulo 3 for odd n) and set m to be the order of 3 modulo 2n − 1.
However, the pair (P2, D) is of general type as the degree of the divisor KP2 + D is
1 > 0, thus KP2 +D is very ample. The conjectures we saw, then, would imply that this
orbifold pair is mordellic.



3.4. THE CORE MAP 91

We end this chapter with another conjectural interpretation of special varieties: they
generalize the notion of rationally connected varieties, substituting rational curves with
entire curves.

Definition 3.4.23. An entire curve in a complex projective varietyX is a non-constant
holomorphic map h : C→ X. Note that this is a generalization of the notion of rational
curves since here we consider holomorphic maps, among which there are the algebraic
maps.

Conjecture 3.4.24. A complex smooth projective variety X is special if and only if any
two points of X are joined by a chain of entire curves. This is in turn equivalent to the
apparently stronger property: any two points of X are contained in an entire curve.

Conjecture 3.4.25. Let cX be the core map of a smooth projective complex variety X.
Then, there exists a complex projective subvariety W ( X such that any entire curve
h : C→ X has image either contained in c−1

X (W ), or in some fiber of cX . Moreover, X
is special if and only if it contains a dense entire curve.

Proposition 3.4.26. Assuming the conjectures above 3.4.21 and 3.4.25, the followings
are equivalent:

(i) there is an entire curve h : C→ X;

(ii) X(k′) is infinite for some finite extension k′/k.

Proof. Assume X(k′) is infinite. Let Z be the Zariski closure of X(k′), then Z is positive
dimensional and Z(k′) is dense in Z. Thus, by conjecture 3.4.21, Z is special. Apply
then conjecture 3.4.25 to get the result.
Conversely, assume there is a dense entire curve h : C → X. Let Z be the Zariski
closure of h(C) and Z ′ → Z a resolution of singularities. Then h lifts to a Zariski dense
entire curve in Z ′. First, we assume that Z, and so Z ′, is defined over k. Thus, Z ′ is
special by conjecture 3.4.25 and, by conjecture 3.4.21, there exists k′/k finite extension
such that Z ′(k′) is Zariski dense in Z ′. Therefore Z(k′) is infinite and so is X(k′). In
the general case, let Y be a resolution of the smallest subset of X defined over k and
containing Z. If Y was not special, let cY : Y → C be its core map (which is defined
over k). Then, c ◦ h(C) is contained in a strict algebraic subset W ( C defined over k,
thus h(C) ⊆ c−1

Y (W ) ( Y which contradicts minimality of Y . Therefore Y is special and
by conjecture 3.4.21 there is a finite extension k′/k such that Y (k′) is infinite, whence
the conclusion. qed

Remark. In the proof it is hidden also another equivalent property: X contains a special
subvariety.
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