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ABSTRACT

Geometric Inequalities and Bounded Mean Oscillation

Ryan Gibara, Ph.D.

Concordia University, 2020

In this thesis, we study the space of functions of bounded mean oscillation (BMO) on

shapes. We prove the boundedness of important nonlinear operators, such as maximal func-

tions and rearrangements, on this space and analyse how the bounds are affected by the

underlying geometry of the shapes.

We provide a general definition of BMO on a domain in Rn, where mean oscillation is

taken with respect to a basis of shapes, i.e. a collection of open sets covering the domain. We

prove many properties inherent to BMO that are valid for any choice of basis; in particular,

BMO is shown to be complete. Many shapewise inequalities, which hold for every shape in

a given basis, are proven with sharp constants. Moreover, a sharp norm inequality, which

holds for the BMO norm that involves taking a supremum over all shapes in a given basis,

is obtained for the truncation of a BMO function. When the shapes exhibit some product

structure, a product decomposition is obtained for BMO.

We consider the boundedness of maximal functions on BMO on shapes in Rn. We prove

that for bases of shapes with an engulfing property, the corresponding maximal function is

bounded from BMO to BLO, the collection of functions of bounded lower oscillation. When

the basis of shapes does not possess an engulfing property but exhibits a product structure

with respect to lower-dimensional shapes coming from bases that do possess an engulfing

property, we show that the corresponding maximal function is bounded from BMO to a

space we define and call rectangular BLO.

We obtain boundedness and continuity results for rearrangements on BMO. This allows

for an improvement of the known bound for the basis of cubes. We show, by example, that

the decreasing rearrangement is not continuous on BMO, but that it is both bounded and

continuous on VMO, the subspace of functions of vanishing mean oscillation. Boundedness

for the symmetric decreasing rearrangement is then established for the basis of balls in Rn.
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Chapter 1

Introduction

Introduced in [54] by John and Nirenberg, the space BMO of functions of bounded mean

oscillation is an important function space in harmonic analysis and PDEs. It has connections

to the theory of quasiconformal mappings, Muckenhoupt weights, and Hardy spaces. Most

importantly, it has found a role as a remedy for the failure of L∞ in many situations.

One such situation is the following. A well-known inequality in PDEs, the Gagliardo-

Nirenberg-Sobolev inequality implies the Sobolev embedding W 1,p(Rn) ⊂ Lp
∗
(Rn) for 1 ≤

p < n. Here, p∗ = np
n−p and W 1,p(Rn) is the Sobolev space of functions in Lp(Rn) having

weak first-order partial derivatives in Lp(Rn). From this embedding, one might expect that

W 1,n(Rn) ⊂ L∞(Rn), letting p→ n−. In dimension n > 1, however, this is false: there exist

unbounded functions in W 1,n(Rn). A correct statement is obtained, thanks to the Poincaré

inequality, by enlargening L∞(Rn) to BMO(Rn). This is but one of many important examples

where replacing L∞(Rn) by BMO(Rn) produces a correct statement.

With this said, we come to the definition of BMO(Rn). Consider a function f ∈ L1
loc(Rn).

For such functions, it makes sense to define its mean oscillation on a cube Q ⊂ Rn as

1

|Q|

∫
Q

|f − fQ|,

where |Q| denotes the Lebesgue measure of Q and fQ denotes the mean of f on Q. We say

that f is in BMO(Rn) if

‖f‖BMO := sup
Q
−
∫
Q

|f − fQ| <∞, (1.1)
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where the supremum is taken over all cubes Q. Here, a cube is understood to mean having

sides parallel to the axes.

As mentioned earlier, BMO(Rn) contains L∞(Rn) and, in fact, this inclusion is strict.

The quintessential example is given by f(x) = − log |x| ∈ BMO(Rn) \ L∞(Rn). There is,

however, a fundamental difference between BMO(Rn) and L∞(Rn) that is immediate from

the definition. This difference is that BMO(Rn) is defined with respect to a fixed, and special,

geometry on Rn, namely cubes.

An equivalent characterisation of BMO(Rn) is obtained by replacing the cubes in (1.1) by

Euclidean balls, an observation that has allowed the study of BMO to transcend Euclidean

space into metric measure spaces. The reason for this is that cubes and balls have a similar

geometry from the viewpoint of measure. After all, cubes can always be fit inside balls that

are not too much bigger and vice versa.

This is not the case, however, for strong BMO(Rn), which is defined by replacing the

cubes in (1.1) by rectangles (again, with sides parallel to the axes). As cubes are rectangles,

every cube can trivially be placed inside a rectangle of the same measure, namely itself. An

arbitrary rectangle, however, can be very thin in one direction, and so fitting it inside a cube

would necessitate one of much larger measure. From this perspective, cubes and rectangles

are somehow incompatible. A consequence of this is that strong BMO(Rn) is a strict subset

of BMO(Rn).

From here, many questions arise. How does the choice of geometry, in this case reflected by

the choice of the sets on which to measure mean oscillation, affect BMO? What properties

are intrinsic to BMO and which are consequences of our choice of geometry? How does

this choice affect the boundedness of various operators defined on BMO, especially if those

operators are intimately tied to geometry themselves? These questions are the topic of this

thesis.

In Chapter 2, these ideas are made more concrete. The space BMOS (Ω) is defined, where Ω

is a domain in Rn, as the space of functions with bounded mean oscillation on sets coming

from a fixed collection S , known as a basis of shapes. These shapes are taken to be open sets

of positive and finite measure, and are assumed to cover Ω. This point of view of studying
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BMO with respect to a basis of shapes is new, and it provides a framework for examining

the strongest results that can be obtained about functions in BMO while assuming only

the weakest geometric assumptions: if f has bounded mean oscillation with respect to some

basis, what can be said about f?

A first interesting phenomenon is that a large number of properties with which one clas-

sically associates BMO hold for any basis, showing a “geometry-free” side to BMO. These

properties are, then, somehow inherent to BMO itself and, in the classical case of cubes,

never had anything to do with the cubes, in the first place. An example is the completeness

of BMOS (Ω) in the sense of metric spaces (see Theorem 2.3.9).

Even if a certain inequality holds for all f ∈ BMOS (Ω) for any basis, it is possible

that this inequality involves a constant that may depend on the choice of S . Of interest is

determining the sharpest (that is, best) constant and to determine its dependence on S .

A distinction must be made between shapewise inequalities and norm inequalities. A

shapewise inequality is one that holds for each shape in the basis S , while norm inequalities

involve the BMO norm defined in (1.1). An example of the importance of this distinction is

the following simple open problem in the area of sharp constants in BMO.

Given a function f that is in L1(S) for every S ∈ S , it can easily be shown that |f |

satisfies
1

|S|

∫
S

∣∣|f | − |f |S∣∣ ≤ 2

|S|

∫
S

|f − fS|

for every S ∈ S . This is true for any basis S and an example can show that the 2 is sharp

in the sense that for every S ∈ S there is a function f for which the constant 2 cannot

be decreased (see Example 2.4.11). This shapewise inequality implies the following norm

inequality: ‖|f |‖BMOS
≤ 2‖f‖BMOS

for all f ∈ BMOS (Ω). This constant 2, however, is not

necessarily sharp! Known results due to Korenovskii are that the sharp constant is, in fact,

1 in one dimension when S is the basis of open intervals and in n dimensions when S is the

basis of rectangles (see Section 2.5). The problem is open, to my knowledge, for other bases.

A sharp norm inequality that is proven is the following. For f ∈ BMOS (Ω), define its

truncation at height k to be Tr(f, k) = min(max(f,−k), k). In Corollary 2.6.5, we prove that

‖Tr(f, k)‖BMOS
≤ ‖f‖BMOS

for any basis S . Truncations are a useful tool, as they allow

one to approximate the BMO norm of a function by the BMO norm of L∞ functions.
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A situation where the geometry of S plays a major role is in the product setting. When

the shapes exhibit some product structure, namely that the collection of shapes coincides

with the collection of Cartesian products of lower-dimensional shapes, we prove that this

product nature is passed along to BMOS (Ω) in the sense that BMOS (Ω) has a relationship

with spaces defined by uniform lower-dimensional mean oscillations (see Theorem 2.8.3).

In Chapter 3, geometric maximal operators are studied. These are important operators in

analysis, as their boundedness very often implies other results. A well-known example of

this phenomenon comes from the uncentred Hardy-Littlewood maximal function, Mf . For

f ∈ L1
loc(Rn), define

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f |, (1.2)

where the supremum is taken over all cubes Q containing the point x. The weak-type

(1, 1) boundedness of this operator (see Appendix II for more details) implies the Lebesgue

differentiation theorem, a fundamental result that will be used throughout this thesis.

The boundedness of M on BMO(Rn) was first considered by Bennett-DeVore-Sharpley in

[3]. They showed that if Mf 6≡ ∞, then Mf ∈ BMO(Rn) when f ∈ BMO(Rn). This result

was improved by Bennett in [2] by showing that if Mf 6≡ ∞, then Mf ∈ BLO(Rn) when

f ∈ BMO(Rn). The space BLO(Rn) of functions of bounded lower oscillation, introduced

by Coifman-Rochberg in [18], is defined by replacing the mean fQ in (1.1) by the essential

infimum of f on Q.

The generalisation to MS , the maximal function with respect to the basis S , is done

by replacing the cubes in (1.2) by shapes from S . This definition is not new; there is an

entire area of analysis devoted to the study of such maximal functions (see the monograph

[44]). Having developed a theory of BMO with respect to a basis S , a natural question is

the following: for what bases S is MS bounded from BMOS (Rn) to BMOS (Rn), whenever

MS f is finite almost everywhere?

A partial answer is provided by considering a class of bases. We define what it means for

a basis to be engulfing. This is most easily described for balls: given two intersecting balls

with one much larger than the other, the larger of the two balls can be dilated in such a

way as to engulf both balls without having to grow too much. This is in sharp contrast to
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the case of rectangles, where either of two intersecting rectangles that are long and narrow

in orthogonal directions would need to grow a lot, in terms of measure, to engulf the other.

In Theorem 3.3.2, the geometric property of being engulfing is exploited to show that for

such bases, MS is bounded from BMOS (Rn) to BLOS (Rn), where BLOS (Rn) is defined

analogously to BLO(Rn) by replacing cubes with shapes in S .

A product decomposition is shown for the class BLOS (Rn) when the shapes exhibit

some product structure (see Theorem 3.4.6). This is done much in the same way as the

corresponding result for BLOS (Rn). In this case, however, a sharp constant is obtained.

As both BMOS (Rn) and BLOS (Rn) inherit some product structure from the shapes in

S , perhaps MS inherits some boundedness properties when the shapes S are products of

lower-dimensional shapes that are engulfing. Only relying on this product structure and

the engulfing property of lower-dimensional shapes, we prove that MS is bounded from

BLOS (Rn) to a space we define, rectangular BLOS (see Theorem 3.6.1).

The model case of a basis S for which the boundedness on BMOS (Rn) is unknown is the

basis of rectangles. In this case, the maximal function MS is known as the strong maximal

function, and has been studied going back to the work of Jessen-Marcinkiewicz-Zygmund

([52]). This basis satisfies the hypotheses of Theorem 3.6.1, and so we have shown, in

particular, that the strong maximal function is bounded from strong BMO(Rn) to rectangular

BLO.

In Chapter 4, we consider equimeasurable rearrangement operators. Given a measurable

function f on Rn, one such rearrangement is its decreasing rearrangement, the unique de-

creasing function f ∗ on R+ = (0,∞) that is right-continuous and equimeasurable with |f |.

This rearrangement is important in areas such as interpolation theory, and there is interest in

studying function spaces that are invariant under equimeasurable rearrangements (see [4]).

The work of Bennett-DeVore-Sharpley in [3] implies that the decreasing rearrangement

f 7→ f ∗ is bounded from BMO(Rn) to BMO(R+) with ‖f ∗‖BMO ≤ 2n+5‖f‖BMO . We ask: for

what other bases S is the decreasing rearrangement bounded on BMO?

Our main result in this direction is Lemma 4.3.2, which determines a class of bases for

which the decreasing rearrangement is bounded from BMOS (Rn) to BMOS (R+), even in

5



the generality of a metric measure space. In particular, this is used to improve the Bennett-

DeVore-Sharpley bound from 2n+5 to 2
n+3

2 (see Theorem 4.3.10).

The decreasing rearrangement is a nonlinear operator. As such, we no longer have ac-

cess to the equivalence of boundedness and continuity that is familiar from working with

linear operators. It turns out that there is a simple example showing that the decreasing

rearrangement can fail to be continuous on BMO (see Theorem 4.4.1).

When looking for a subspace of BMO on which the decreasing rearrangement might be

continuous, a natural candidate is VMO, the space of functions of vanishing mean oscillation.

If Q0 is a cube in Rn, we say that a function f ∈ BMO(Q0) is in VMO(Q0) if

lim
t→0+

sup
δ(Q)≤t

Ω(f,Q) = 0,

where the supremum is taken over all cubes Q with diameter at most t. This function space,

introduced by Sarason ([77]), often plays the role of the continuous functions in BMO(Q0).

This candidate turns out to be a good choice: it is proven that the decreasing rearrange-

ment is bounded and continuous from VMO(Q0) to VMO(0, |Q0|) (see Theorems 4.4.6 and

4.4.9), assuming that we normalize functions to have mean zero.

Another important rearrangement is the symmetric decreasing rearrangement, which as-

sociates a measurable function f on Rn to a measurable function Sf on Rn that is radially

decreasing and symmetric in such a way that |f | and Sf are equimeasurable. This rearrange-

ment is important in the study of geometric functional analysis and PDEs. The symmetric

decreasing rearrangement may be defined by means of the formula Sf(x) = f ∗(ωn|x|n) for

x ∈ Rn, where ωn denotes the measure of the unit ball in Rn. As such, the symmetric

decreasing rearrangement is intimately connected to the decreasing rearrangement and one

may ask whether BMO-boundedness results for f ∗ can be transferred to Sf .

The theory of BMO on shapes provides the proper point of view to achieve this result.

By the definition of the symmetric decreasing rearrangement, mean oscillations of f ∗ on

intervals can be compared with mean oscillations of Sf on balls and annuli centred at the

origin. Such shapes, along with sectors thereof, are then comparable with general balls (in the

sense of Definition 2.2.2). As such, we obtain that the symmetric decreasing rearrangement

is bounded from BMOB(Rn) to BMOB(Rn) (see Theorem 4.5.1).

6



As this thesis is a compilation of three separate works, there is bound to be quite a bit of

repetition. I am sure that BMO will be defined at least three times more throughout this

text. Hopefully, all occurrences of a given definition will be the same in each instance. Even

worse, notation may vary from chapter to chapter, sometimes in a significant way. Hopefully,

everything is written in such a way that meanings remain clear. In general, the following

is maintained: BMOS (Rn), possibly with Rn replaced by some other domain of definition,

denotes the space of locally integrable functions on Rn of bounded mean oscillation with

respect to some fixed basis S ; and, BMO(Rn) is reserved for the classical case S = Q or

S = B.

At the end of the thesis, there is an appendix containing auxiliary results and some

additional details. Throughout the text, footnotes are used to signify a moment when the

reader may wish to visit the appendix, along with the specific location of the relevant material

therein.

7



Chapter 2

BMO on shapes and sharp constants

2.1 Introduction

First defined by John and Nirenberg in [54], the space BMO of functions of bounded mean

oscillation has served as the replacement for L∞ in situations where considering bounded

functions is too restrictive. BMO has proven to be important in areas such as harmonic

analysis, partly due to the duality with the Hardy space established by Fefferman in [32],

and partial differential equations, where its connection to elasticity motivated John to first

consider the mean oscillation of functions in [53]. Additionally, one may regard BMO as

a function space that is interesting to study in its own right. As such, there exist many

complete references to the classical theory and its connection to various areas; for instance,

see [37, 42, 56, 79].

The mean oscillation of a function f ∈ L1
loc(Rn) was initially defined over a cube Q with

sides parallel to the axes as

−
∫
Q

|f − fQ|, (2.1)

where fQ = −
∫
Q
f and −

∫
Q

= 1
|Q|

∫
Q

. A function f was then said to be in BMO if the quantity

(2.1) is bounded independently of Q. Equivalently, as will be shown, the same space can be

obtained by considering the mean oscillation with respect to balls; that is, replacing the cube

0First published in Contemporary Mathematics 748 (2020), published by the American Mathematical

Society. c© 2020 American Mathematical Society.
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Q by a ball B in (2.1). Using either characterization, BMO has since been defined in more

general settings such as on domains, manifolds, and metric measure spaces ([8, 19, 55]).

There has also been some attention given to the space defined by a mean oscillation

condition over rectangles with sides parallel to the axes, either in Rn or on a domain in

Rn, appearing in the literature under various names. For instance, in [60], the space is

called “anisotropic BMO” to highlight the contrast with cubes, while in papers such as

[22, 30, 31, 35], it goes by “little BMO” and is denoted by bmo. The notation bmo, however,

had already been used for the “local BMO” space of Goldberg ([40]), a space that has been

established as an independent topic of study (see, for instance, [11, 28, 87]). Yet another

name for the space defined by mean oscillations on rectangles - the one we prefer - is the name

“strong BMO”. This name has been used in at least one paper ([64]), and it is analogous

to the terminology of strong differentiation of the integral and the strong maximal function

([20, 44, 51, 52, 76]), as well as strong Muckenhoupt weights ([5, 68]).

In this paper we consider BMO on domains of Rn with respect to a geometry (what will

be called a basis of shapes) more general than cubes, balls, or rectangles. The purpose of

this is to provide a framework for examining the strongest results that can be obtained about

functions in BMO by assuming only the weakest assumptions. To illustrate this, we provide

the proofs of many basic properties of BMO functions that are known in the literature for

the specialised bases of cubes, balls, or rectangles but that hold with more general bases of

shapes. In some cases, the known proofs are elementary themselves and so our generalisation

serves to emphasize the extent to which they are elementary and to which these properties

are intrinsic to the definition of BMO. In other cases, the known results follow from deeper

theory and we are able to provide elementary proofs. We also prove many properties of BMO

functions that may be well known, and may even be referred to in the literature, but for which

we could not find a proof written down. An example of such a result is the completeness of

BMO, which is often deduced as a consequence of duality, or proven only for cubes in Rn.

We prove this result (Theorem 2.3.9) for a general basis of shapes on a domain.

The paper has two primary focuses, the first being constants in inequalities related to

BMO. Considerable attention will be given to their dependence on an integrability parameter

p, the basis of shapes used to define BMO, and the dimension of the ambient Euclidean space.
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References to known results concerning sharp constants are given and connections between

the sharp constants of various inequalities are established. We distinguish between shapewise

inequalities, that is, inequalities that hold on any given shape, and norm inequalities. We

provide some elementary proofs of several shapewise inequalities and obtain sharp constants

in the distinguished cases p = 1 and p = 2. An example of such a result is the bound on

truncations of a BMO function (Proposition 2.6.3). Although sharp shapewise inequalities

are available for estimating the mean oscillation of the absolute value of a function in BMO,

the constant 2 in the implied norm inequality - a statement of the boundedness of the map

f 7→ |f | - is not sharp. Rearrangements are a valuable tool that compensate for this, and we

survey some known deep results giving norm bounds for decreasing rearrangements.

A second focus of this paper is on the product nature that BMO spaces may inherit

from the shapes that define them. In the case where the shapes defining BMO have a

certain product structure, namely that the collection of shapes coincides with the collection of

Cartesian products of lower-dimensional shapes, a product structure is shown to be inherited

by BMO under a mild hypothesis related to the theory of differentiation (Theorem 2.8.3).

This is particularly applicable to the case of strong BMO. It is important to note that the

product nature studied here is different from that considered in the study of the space known

as product BMO (see [13, 14]).

Following the preliminaries, Section 2.3 presents the basic theory of BMO on shapes.

Section 2.4 concerns shapewise inequalities and the corresponding sharp constants. In Section

2.5, two rearrangement operators are defined and their boundedness on various function

spaces is examined, with emphasis on BMO. Section 2.6 discusses truncations of BMO

functions and the cases where sharp inequalities can be obtained without the need to appeal

to rearrangements. Section 2.7 gives a short survey of the John-Nirenberg inequality. Finally,

in Section 2.8 we state and prove the product decomposition of certain BMO spaces.

This introduction is not meant as a review of the literature since that is part of the content

of the paper, and references are given throughout the different sections. The bibliography

is by no means exhaustive, containing only a selection of the available literature, but it is

collected with the hope of providing the reader with some standard or important references

to the different topics touched upon here.
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2.2 Preliminaries

Consider Rn with the Euclidean topology and Lebesgue measure, denoted by | · |. By a

domain we mean an open and connected set.

Definition 2.2.1. We call a shape in Rn any open set S such that 0 < |S| <∞. For a given

domain Ω ⊂ Rn, we call a basis of shapes in Ω a collection S of shapes S such that S ⊂ Ω

for all S ∈ S and S forms a cover of Ω.

Common examples of bases are the collections of all Euclidean balls, B, all cubes with

sides parallel to the axes, Q, and all rectangles with sides parallel to the axes, R. In one

dimension, these three choices degenerate to the collection of all (finite) open intervals, I. A

variant of B is C, the basis of all balls centred around some central point (usually the origin).

Another commonly used collection is Qd, the collection of all dyadic cubes, but the open

dyadic cubes cannot cover Ω unless Ω itself is a dyadic cube, so the proofs of some of the

results below which rely on S being an open cover (e.g. Proposition 2.3.8 and Theorem 2.3.9)

may not apply.

One may speak about shapes that are balls with respect to a (quasi-)norm on Rn, such

as the p-“norms” ‖·‖p for 0 < p ≤ ∞ when n ≥ 2. The case p = 2 coincides with the basis B

and the case p =∞ coincides with the basis Q, but other values of p yield other interesting

shapes. On the other hand, R is not generated from a p-norm.

Further examples of interesting bases have been studied in relation to the theory of

differentiation of the integral, such as the collection of all rectangles with j of the sidelengths

being equal and the other n−j being arbitrary ([89]), as well as the basis of all rectangles with

sides parallel to the axes and sidelengths of the form
(
`1, `2, . . . , φ(`1, `2, . . . , `n−1)

)
, where φ

is a positive function that is monotone increasing in each variable separately ([21]).

Definition 2.2.2. Given two bases of shapes, S and S̃ , we say that S is comparable to

S̃ , written S E S̃ , if there exist lower and upper comparability constants c > 0 and C > 0,

depending only on n, such that for all S ∈ S there exist S1, S2 ∈ S̃ for which S1 ⊂ S ⊂ S2

and c|S2| ≤ |S| ≤ C|S1|. If S E S̃ and S̃ E S , then we say that S and S̃ are equivalent,

and write S ≈ S̃ .

11



An example of equivalent bases are B and Q: one finds that B E Q with c = ωn
2n

and

C = ωn

(√
n

2

)n
, and Q E B with c = 1

ωn

(
2√
n

)n
and C = 2n

ωn
, where ωn is the volume of the

unit ball in Rn, and so B ≈ Q. The bases of shapes given by the balls in the other p-norms

‖·‖p for 1 ≤ p ≤ ∞ are also equivalent to these.

If S ⊂ S̃ then S E S̃ with c = C = 1. In particular, Q ⊂ R and so Q E R, but

R 5 Q and so Q 6≈ R.

Unless otherwise specified, we maintain the convention that 1 ≤ p <∞. Moreover, many

of the results implicitly assume that the functions are real-valued, but others may hold also

for complex-valued functions. This should be understood from the context.

2.3 BMO spaces with respect to shapes

Consider a basis of shapes S . Given a shape S ∈ S , for a function f ∈ L1(S), denote by

fS its mean over S.

Definition 2.3.1. We say that a function satisfying f ∈ L1(S) for all shapes S ∈ S is in

the space BMOp
S (Ω) if there exists a constant K ≥ 0 such that(

−
∫
S

|f − fS|p
)1/p

≤ K, (2.2)

holds for all S ∈ S .

The quantity on the left-hand side of (2.2) is called the p-mean oscillation of f on S. For

f ∈ BMOp
S (Ω), we define ‖f‖BMOpS

as the infimum of all K for which (2.2) holds for all

S ∈ S . Note that the p-mean oscillation does not change if a constant is added to f ; as

such, it is sometimes useful to assume that a function has mean zero on a given shape.

In the case where p = 1, we will write BMO1
S (Ω) = BMOS (Ω). For the classical BMO

spaces we reserve the notation BMOp(Ω) without explicit reference to the underlying basis

of shapes (Q or B).

We mention a partial answer to how BMOp
S (Ω) relate for different values of p. This

question will be taken up again in a later section when some more machinery has been

developed.
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Proposition 2.3.2. For any basis of shapes, BMOp2

S (Ω) ⊂ BMOp1

S (Ω) with ‖f‖BMO
p1
S
≤

‖f‖BMO
p2
S

for 1 ≤ p1 ≤ p2 <∞. In particular, this implies that BMOp
S (Ω) ⊂ BMOS (Ω) for

all 1 ≤ p <∞.

Proof. This follows from Jensen’s inequality with p = p2

p1
≥ 1.

Next we show a lemma that implies, in particular, the local integrability of functions in

BMOp
S (Ω).

Lemma 2.3.3. For any basis of shapes, BMOp
S (Ω) ⊂ Lploc(Ω).

Proof. Fix a shape S ∈ S and a function f ∈ BMOp
S (Ω). By Minkowski’s inequality on

Lp(S, dx|S|), (
−
∫
S

|f |p
)1/p

≤
(
−
∫
S

|f − fS|p
)1/p

+ |fS|

and so (∫
S

|f |p
)1/p

≤ |S|1/p
(
‖f‖BMOpS

+ |fS|
)
.

As S covers all of Ω, for any compact set K ⊂ Ω there exists a collection {Si}Ni=1 ⊂ S

for some finite N such that K ⊂
⋃N
i=1 Si. Hence, using the previous calculation,(∫

K

|f |p
)1/p

≤
N∑
i=1

(∫
Si

|f |p
)1/p

≤
N∑
i=1

|Si|1/p
(
‖f‖BMOpS

+ |fSi |
)
<∞.

In spite of this, a function in BMOp
S (Ω) need not be locally bounded. If Ω contains the

origin or is unbounded, f(x) = log |x| is the standard example of a function in BMO(Ω) \

L∞(Ω). The reverse inclusion, however, does hold:

Proposition 2.3.4. For any basis of shapes, L∞(Ω) ⊂ BMOp
S (Ω) with

‖f‖BMOpS
≤

‖f‖L
∞ , 1 ≤ p ≤ 2;

2‖f‖L∞ , 2 < p <∞.

Proof. Fix f ∈ L∞(Ω) and a shape S ∈ S . For any 1 ≤ p < ∞, Minkowski’s and Jensen’s

inequalities give (
−
∫
S

|f − fS|p
)1/p

≤ 2

(
−
∫
S

|f |p
)1/p

≤ 2‖f‖∞.
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Restricting to 1 ≤ p ≤ 2, one may use Proposition 2.3.2 with p2 = 2 to arrive at(
−
∫
S

|f − fS|p
)1/p

≤
(
−
∫
S

|f − fS|2
)1/2

.

Making use of the Hilbert space structure on L2(S, dx|S|), observe that f − fS is orthogonal to

constants and so it follows that1

−
∫
S

|f − fS|2 = −
∫
S

|f |2 − |fS|2 ≤ −
∫
S

|f |2 ≤ ‖f‖2
∞.

A simple example shows that the constant 1 obtained for 1 ≤ p ≤ 2 is, in fact, sharp:

Example 2.3.5. Let S be a shape on Ω and consider a function f = χE −χEc , where E is a

measurable subset of S such that |E| = 1
2
|S| and Ec = S \E. Then fS = 0, |f−fS| = |f | ≡ 1

on S and so

−
∫
S

|f − fS|p = 1.

Thus, ‖f‖BMOpS
≥ 1 = ‖f‖L∞ .

There is no reason to believe that the constant 2 for 2 < p < ∞ is sharp, however, and

so we pose the following question:

Problem 2.3.6. What is the smallest constant c∞(p,S ) such that the inequality ‖f‖BMOpS
≤

c∞(p,S )‖f‖L∞ holds for all f ∈ BMOp
S (Ω)?

The solution to this problem was obtained by Leonchik in the case when Ω ⊂ R and

S = I.

Theorem 2.3.7 ([63, 60]).

c∞(p, I) = 2 sup
0<h<1

{h(1− h)p + hp(1− h)}1/p.

An analysis of this expression ([60]) shows that c∞(p, I) = 1 for 1 ≤ p ≤ 3, improving on

Proposition 2.3.4 for 2 < p ≤ 3. Moreover, c∞(p, I) is monotone in p with 1 < c∞(p, I) < 2

for p > 3 and c∞(p, I)→ 2 as p→∞.

1See Proposition 5.1.5 in Appendix I for more details.
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It is easy to see that ‖·‖BMOpS
defines a seminorm. It cannot be a norm, however, as a

function f that is almost everywhere equal to a constant will satisfy ‖f‖BMOpS
= 0. What

we can show is that the quantity ‖·‖BMOpS
defines a norm modulo constants.

In the classical case of BMO(Rn), the proof (see [42]) relies on the fact that B contains

C and so Rn may be written as the union of countably-many concentric shapes. When on

a domain that is also a shape, the proof is immediate. In our general setting, however, we

may not be in a situation where Ω is a shape or S contains a distinguished subcollection of

nested shapes that exhausts all of Ω; for an example, consider the case where Ω is a rectangle

that is not a cube with S = Q. As such, the proof must be adapted. We do so in a way

that relies on shapes being open sets that cover Ω, and on Ω being connected and Lindelöf.

Proposition 2.3.8. For any basis of shapes, ‖f‖BMOpS
= 0 if and only if f is almost every-

where equal to some constant.

Proof. One direction is immediate. For the other direction, fix f ∈ BMOp
S (Ω) such that

‖f‖BMOpS
= 0. It follows that f = fS almost everywhere on S for each S ∈ S .

Fix S0 ∈ S and let C0 = fS0 . Set

U =
⋃
{S ∈ S : fS = C0}.

Using the Lindelöf property of Ω, we may assume that U is defined by a countable union. It

follows that f = C0 almost everywhere on U since f = fS = C0 almost everywhere for each

S comprising U . The goal now is to show that Ω = U .

Now, let

V =
⋃
{S ∈ S : fS 6= C0}.

Since S covers Ω, we have Ω = U ∪V . Thus, in order to show that Ω = U , we need to show

that V is empty. To do this, we note that both U and V are open sets and so, since Ω is

connected, it suffices to show that U and V are disjoint.

Suppose that x ∈ U ∩ V . Then there is an S1 containing x which is in U and an S2

containing x which is in V . In particular, f = C0 almost everywhere on S1 and f 6= C0

almost everywhere on S2. However, this is impossible as S1 and S2 are open sets of positive

measure with non-empty intersection and so S1 ∩ S2 must have positive measure. Therefore,

U ∩ V = ∅ and the result follows.
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As Proposition 2.3.8 implies that BMOp
S (Ω)/C is a normed linear space, a natural ques-

tion is whether it is complete. For BMO(Rn)/C this is a corollary of Fefferman’s theorem

that identifies it as the dual of the real Hardy space ([32, 33]).

A proof that BMO(Rn)/C is a Banach space that does not pass through duality came a

few years later and is due to Neri ([70]). This is another example of a proof that relies on

the fact that B contains C (or, equivalently, that Q contains an analogue of C but for cubes).

The core idea, however, may be adapted to our more general setting. The proof below makes

use of the fact that shapes are open and that Ω is path connected since it is both open and

connected.

Theorem 2.3.9. For any basis of shapes, BMOp
S (Ω) is complete.

Proof. Let {fi} be Cauchy in BMOp
S (Ω). Then, for any shape S ∈ S , the sequence {fi −

(fi)S} is Cauchy in Lp(S). Since Lp(S) is complete, there exists a function fS ∈ Lp(S) such

that fi − (fi)S → fS in Lp(S). The function fS can be seen to have mean zero on S: since

fi − (fi)S converges to fS in L1(S), it follows that

−
∫
S

fS = lim
i→∞
−
∫
S

fi − (fi)S = 0. (2.3)

If we have two shapes S1, S2 ∈ S such that S1 ∩ S2 6= ∅, by the above there is a function

fS1 ∈ Lp(S1) such that fi − (fi)S1 → fS1 in Lp(S1) and a function fS2 ∈ Lp(S2) such that

fi − (fi)S2 → fS2 in Lp(S2). Since both of these hold in Lp(S1 ∩ S2), we have

(fi)S2 − (fi)S1 = [fi − (fi)S1 ]− [fi − (fi)S2 ]→ fS1 − fS2 in Lp(S1 ∩ S2).

This implies that the sequence Ci(S1, S2) = (fi)S2 − (fi)S1 converges as constants to a limit

that we denote by C(S1, S2), with

fS1 − fS2 ≡ C(S1, S2) on S1 ∩ S2.

From their definition, these constants are antisymmetric:

C(S1, S2) = −C(S2, S1).

Moreover, they possess an additive property that will be useful in later computations. By a

finite chain of shapes we mean a finite sequence {Sj}kj=1 ⊂ S such that Sj ∩ Sj+1 6= ∅ for all
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1 ≤ j ≤ k − 1. Furthermore, by a loop of shapes we mean a finite chain {Sj}kj=1 such that

S1 ∩ Sk 6= ∅. If {Sj}kj=1 is a loop of shapes, then

C(S1, Sk) =
k−1∑
j=1

C(Sj, Sj+1). (2.4)

To see this, consider the telescoping sum

(fi)Sk − (fi)S1 =
k−1∑
j=1

(fi)Sj+1
− (fi)Sj ,

for a fixed i. The formula (2.4) follows from this as each (fi)Sj+1
− (fi)Sj converges to

C(Sj, Sj+1) since Sj ∩ Sj+1 6= ∅ and (fi)Sk − (fi)S1 converges to C(S1, Sk) since S1 ∩ Sk 6= ∅.

Let us now fix a shape S0 ∈ S and consider another shape S ∈ S such that S0 ∩ S = ∅.

Since Ω is a path-connected set, for any pair of points (x, y) ∈ S0 × S there exists a path

γx,y : [0, 1] → Ω such that γx,y(0) = x and γx,y(1) = y. Since S covers Ω and the image

of γx,y is a compact set, we may cover γx,y by a finite number of shapes. From this we may

extract a finite chain connecting S to S0.

We now come to building the limit function f . If x ∈ S0, then set f(x) = fS0(x), where

fS0 is as defined earlier. If x /∈ S0, then there is some shape S containing x and, by the

preceding argument, a finite chain of shapes {Sj}kj=1 where Sk = S. In this case, set

f(x) = fSk(x) +
k−1∑
j=0

C(Sj, Sj+1). (2.5)

The first goal is to show that this is well defined. Let {S̃j}`j=1 be another finite chain

connecting some S̃` with x ∈ S̃` to S0 = S̃0. Then we need to show that

fSk(x) +
k−1∑
j=0

C(Sj, Sj+1) = f S̃`(x) +
`−1∑
j=0

C(S̃j, S̃j+1). (2.6)

First, we use the fact that x ∈ Sk ∩ S̃` to write fSk(x)− f S̃`(x) = C(Sk, S̃`). Then, from the

antisymmetry property of the constants, (2.6) is equivalent to

C(Sk, S̃`) = C(Sk, Sk−1) + · · ·+ C(S1, S0) + C(S0, S̃1) + · · ·+ C(S̃`−1, S̃`),

which follows from (2.4) as {Sk, Sk−1, . . . , S1, S0, S̃1, S̃2, . . . , S̃`} forms a loop.
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Finally, we show that fi → f in BMOp
S (Ω). Fixing a shape S ∈ S , choose a finite chain

{Sj}kj=1 such that Sk = S. By (2.5), on S we have that f = fS modulo constants, and so,

using (2.3) and the definition of fS,

−
∫
S

|(fi(x)− f(x))− (fi − f)S|p dx = −
∫
S

|(fi(x)− fS(x))− (fi − fS)S|p dx

= −
∫
S

|fi(x)− (fi)S − fS(x)|p dx

→ 0 as i→∞.

2.4 Shapewise inequalities on BMO

A “shapewise” inequality is an inequality that holds for each shape S in a given basis. In

this section, considerable attention will be given to highlighting those situations where the

constants in these inequalities are known to be sharp. A recurring theme is the following:

sharp results are mainly known for p = 1 and for p = 2 and, in fact, the situation for

p = 2 is usually simple. The examples given demonstrating sharpness are straightforward

generalisations of some of those found in [60].

For this section, we assume that S is an arbitrary basis of shapes and that f ∈ L1(S)

for every S ∈ S .

We begin by considering inequalities that provide equivalent characterizations of the space

BMOp
S (Ω). As with the classical BMO space, one can estimate the mean oscillation of a

function on a shape by a double integral that is often easier to use for calculations but that

comes at the loss of a constant.

Proposition 2.4.1. For any shape S ∈ S ,

1

2

(
−
∫
S

−
∫
S

|f(x)− f(y)|p dy dx
) 1

p

≤
(
−
∫
S

|f − fS|p
) 1

p

≤
(
−
∫
S

−
∫
S

|f(x)− f(y)|p dy dx
) 1

p

.

Proof. Fix a shape S ∈ S . By Jensen’s inequality we have that

−
∫
S

|f(x)− fS|p dx = −
∫
S

∣∣∣∣−∫
S

(
f(x)− f(y)

)
dy

∣∣∣∣p dx ≤ −∫
S

−
∫
S

|f(x)− f(y)|p dy dx
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and by Minkowski’s inequality on Lp(S × S, dxdy|S|2 ) we have that

(
−
∫
S

−
∫
S

|f(x)− f(y)|p dy dx
)1/p

=

(
−
∫
S

−
∫
S

∣∣(f(x)− fS
)
−
(
f(y)− fS

)∣∣p dy dx)1/p

≤ 2

(
−
∫
S

|f − fS|p
)1/p

.

When p = 1, the following examples show that the constants in this inequality are sharp.

Example 2.4.2. Let S be a shape in Ω and consider a function f = χE, where E is a

measurable subset of S such that |E| = 1
2
|S|. Then fS = 1

2
and so |f − fS| = 1

2
χS, yielding

−
∫
S

|f − fS| =
1

2
.

Writing Ec = S \ E, we have that |f(x)− f(y)| = 0 for (x, y) ∈ E × E or (x, y) ∈ Ec × Ec,

and that |f(x)− f(y)| = 1 for (x, y) ∈ Ec × E; hence,

−
∫
S

−
∫
S

|f(x)− f(y)| dy dx =
2

|S|2

∫
Ec

∫
E

|f(x)− f(y)| dy dx =
2|Ec||E|
|S|2

=
1

2
.

Therefore, the right-hand side constant 1 is sharp.

Example 2.4.3. Now consider a function f = χE1 − χE3 , where E1, E2, E3 are measurable

subsets of S such that S = E1 ∪E2 ∪E3 is a disjoint union (up to a set of measure zero) and

|E1| = |E3| = β|S| for some 0 < β < 1
2
. Then, fS = 0 and so

−
∫
S

|f − fS| = −
∫
S

|f | = 2β.

Since |f(x)− f(y)| = 0 for (x, y) ∈ Ej ×Ej, j = 1, 2, 3, |f(x)− f(y)| = 1 for (x, y) ∈ Ei×Ej
when |i− j| = 1, and |f(x)− f(y)| = 2 for (x, y) ∈ Ei × Ej when |i− j| = 2, we have that

−
∫
S

−
∫
S

|f(x)− f(y)| dy dx =
4β|S|(|S| − 2β|S|) + 4β2|S|2

|S|2
= 4β(1− 2β) + 4β2.

As
2β

4β(1− 2β) + 4β2
=

1

2− 2β
→ 1

2

as β → 0+, the left-hand side constant 1
2

is sharp.
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For other values of p, however, these examples tell us nothing about the sharpness of the

constants in Proposition 2.4.1. In fact, the constants are not sharp for p = 2. In the following

proposition, as in many to follow, the additional Hilbert space structure afforded to us yields

a sharp statement (in this case, an equality) for little work.

Proposition 2.4.4. For any shape S ∈ S ,(
−
∫
S

−
∫
S

|f(x)− f(y)|2 dy dx
)1/2

=
√

2

(
−
∫
S

|f − fS|2
)1/2

.

Proof. Observe that as elements of L2(S × S, dx dy|S|2 ), f(x) − fS is orthogonal to f(y) − fS.

Thus,

−
∫
S

−
∫
S

|f(x)− f(y)|2 dy dx = −
∫
S

−
∫
S

|f(x)− fS|2 dy dx+−
∫
S

−
∫
S

|f(y)− fS|2 dy dx

and so (
−
∫
S

−
∫
S

|f(x)− f(y)|2 dy dx
)1/2

=
√

2

(
−
∫
S

|f − fS|2
)1/2

.

In a different direction, it is sometimes easier to consider not the oscillation of a function

from its mean, but its oscillation from a different constant. Again, this can be done at the

loss of a constant.

Proposition 2.4.5. For any shape S ∈ S ,

inf
c

(
−
∫
S

|f − c|p
)1/p

≤
(
−
∫
S

|f − fS|p
)1/p

≤ 2 inf
c

(
−
∫
S

|f − c|p
)1/p

,

where the infimum is taken over all constants c.

Proof. The first inequality is trivial. To show the second inequality, fix a shape S ∈ S . By

Minkowski’s inequality on Lp(S, dx|S|) and Jensen’s inequality,

(
−
∫
S

|f − fS|p
)1/p

≤
(
−
∫
S

|f − c|p
)1/p

+ (|fS − c|p)1/p ≤ 2

(
−
∫
S

|f − c|p
)1/p

.

As with Proposition 2.4.1, simple examples show that the constants are sharp for p = 1.
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Example 2.4.6. Let S be a shape on Ω and consider the function f = χE − χEc as in

Example 2.3.5, with |E| = |S|/2, Ec = S \ E. Then

−
∫
S

|f − fS| = 1,

and for any constant c we have that

−
∫
S

|f − c| = |1− c||E|+ |1 + c||Ec|
|S|

=
|1− c|+ |1 + c|

2
≥ 1

with equality if c ∈ [−1, 1]. Thus

inf
c
−
∫
S

|f − c| = −
∫
S

|f − fS|,

showing the left-hand side constant 1 in Proposition 2.4.5 is sharp when p = 1.

Example 2.4.7. Consider, now, the function f = χE where E is a measurable subset of S

such that |E| = α|S| for some 0 < α < 1
2
. Then, fS = α and

−
∫
S

|f − fS| =
(1− α)α|S|
|S|

+
(|S| − α|S|)α

|S|
= 2α(1− α).

For any constant c, we have that

−
∫
S

|f − c| =
∣∣1− |c|∣∣|E|
|S|

+
|c|(|S| − |E|)

|S|
= α

∣∣1− |c|∣∣+ |c|(1− α).

The right-hand side is at least α(1 − |c|) + |c|(1 − α) = α + |c|(1 − 2α), which is at least α

with equality for c = 0, and so

inf
c
−
∫
S

|f − c| = α.

As α→ 0+,
2α(1− α)

α
→ 2,

showing the right-hand side constant 2 in Proposition 2.4.5 is sharp when p = 1.

When p = 1, it turns out that we know for which constant the infimum in Proposition

2.4.5 is achieved.

Proposition 2.4.8. Let f be real-valued. For any shape S ∈ S ,

inf
c
−
∫
S

|f − c| = −
∫
S

|f −m|,

where m is a median of f on S: that is, a (possibly non-unique) number such that |{x ∈ S :

f(x) > m}| ≤ 1
2
|S| and |{x ∈ S : f(x) < m}| ≤ 1

2
|S|.
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Note that the definition of a median makes sense for real-valued measurable functions.

A proof of this proposition can be found in the appendix of [24], along with the fact that

such functions always have a median on a measurable set of positive and finite measure (in

particular, on a shape). Also, note that from the definition of a median, it follows that

|{x ∈ S : f(x) ≥ m}| = |S| − |{x ∈ S : f(x) > m}| ≥ |S| − 1

2
|S| = 1

2
|S|

and, likewise,

|{x ∈ S : f(x) ≤ m}| ≥ 1

2
|S|.

Proof. Fix a shape S ∈ S and a median m of f on S. For any constant c,∫
S

|f(x)−m| dx =

∫
{x∈S:f(x)≥m}

(
f(x)−m

)
dx+

∫
{x∈S:f(x)<m}

(
m− f(x)

)
dx

=

∫
{x∈S:f(x)≥m}

(
f(x)− c

)
dx+ (c−m)|{x ∈ S : f(x) ≥ m}|

+

∫
{x∈S:f(x)<m}

(
c− f(x)

)
dx+ (m− c)|{x ∈ S : f(x) < m}|.

Assuming that m > c, we have that∫
{x∈S:f(x)≥m}

(
f(x)− c

)
dx ≤

∫
{x∈S:f(x)≥c}

(
f(x)− c

)
dx

and ∫
{x∈S:c≤f(x)<m}

(
c− f(x)

)
dx ≤ 0,

and so we can write∫
S

|f(x)−m| dx ≤
∫
{x∈S:f(x)≥c}

(
f(x)− c

)
dx+ (c−m)|{x ∈ S : f(x) ≥ m}|

+

∫
{x∈S:f(x)<c}

(
c− f(x)

)
dx+ (m− c)|{x ∈ S : f(x) < m}|

=

∫
S

|f(x)− c| dx

+ (m− c)
[
|{x ∈ S : f(x) < m}| − |{x ∈ S : f(x) ≥ m}|

]
≤
∫
S

|f(x)− c| dx+ (m− c)
[

1

2
|S| − 1

2
|S|
]

=

∫
S

|f(x)− c| dx.
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In the case where m < c, we may apply the previous calculation to −f and use the fact

that −m is a median of −f :∫
S

|f(x)−m| dx =

∫
S

| − f(x)− (−m)| dx ≤
∫
S

| − f(x)− (−c)| dx =

∫
S

|f(x)− c| dx.

For p = 2, we are able to do a few things at once. We are very simply able to obtain

an equality that automatically determines the sharp constants for Proposition 2.4.5 and the

constant c for which the infimum is achieved.

Proposition 2.4.9. For any shape S ∈ S ,

inf
c

(
−
∫
S

|f − c|2
)1/2

=

(
−
∫
S

|f − fS|2
)1/2

,

where the infimum is taken over all constants c.

Proof. Fix a shape S ∈ S and a constant c. As previously observed, f − fS is orthogonal to

any constant in the sense of L2(S, dx|S|); in particular, f − fS is orthogonal to fS − c. Thus,

−
∫
S

|f − c|2 = −
∫
S

|f − fS|2 +−
∫
S

|fS − c|2 ≥ −
∫
S

|f − fS|2

with the minimum achieved when c = fS.

The following proposition shows that the action of Hölder continuous maps preserves the

bound on the p-mean oscillation, up to a constant.

Proposition 2.4.10. Let F : R → R be α-Hölder continuous for 0 < α ≤ 1 with Hölder

coefficient L. Fix any shape S ∈ S and suppose f ∈ L1(S) is real-valued. Then, for

1 ≤ p <∞, (
−
∫
S

∣∣F ◦ f − (F ◦ f)S
∣∣p) 1

p

≤ 2L

(
−
∫
S

|f − fS|p
)α

p

. (2.7)

When p = 2, (
−
∫
S

∣∣F ◦ f − (F ◦ f)S
∣∣2) 1

2

≤ L

(
−
∫
S

|f − fS|2
)α

2

. (2.8)
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Proof. Fix a shape S ∈ S . By Proposition 2.4.5 and Jensen’s inequality, we have that

−
∫
S

∣∣F ◦ f − (F ◦ f)S
∣∣p ≤ 2p−

∫
S

∣∣F (f(x))− F (fS)
∣∣pdx

≤ 2Lp−
∫
S

|f(x)− fS|αp dx

≤ 2pLp
(
−
∫
S

|f − fS|p
)α

.

When p = 2, Proposition 2.4.9 shows that the factor of 2p in the first inequality can be

dropped.

As has been pointed out in [24], if one uses the equivalent norm defined by Proposition

2.4.5, the result of Proposition 2.4.10 holds with constant L for any p ≥ 1, since the factor

of 2 comes from (F ◦ f)S 6= F (fS).

The following example demonstrates that the constants are sharp when p = 1 and p = 2.

Example 2.4.11. Consider the function F (x) = |x|, so that α = 1 = L, and fix a shape S

in Ω. Taking the function f = χE1 − χE3 , as in Example 2.4.3, where S is a disjoint union

E1 ∪ E2 ∪ E3 and |E1| = |E3| = β|S| for some 0 < β < 1
2
, we have |f |S = 2β and so

−
∫
S

∣∣|f | − |f |S∣∣ = 4(1− 2β)β.

Since −
∫
S
|f − fS| = 2β and 4(1−2β)β

2β
→ 2 as β → 0+, the constant 2 is sharp for p = 1.

For p = 2, when f ≥ 0 we have F (f) = f and F (f)S = F (fS), so equality holds in (2.8).

While we have shown that the shapewise inequalities (2.7), for p = 1, and (2.8) are sharp

for F (x) = |x|, in the next section it will be shown that better constants can be obtained for

norm inequalities.

Now we address how the BMOp
S (Ω) spaces relate for different bases.

Proposition 2.4.12. For any shape S ∈ S , if S̃ is another shape (from possibly another

basis) such that S̃ ⊂ S and |S̃| ≥ c|S| for some constant c, then(
−
∫
S̃

|f − fS̃|
p

) 1
p

≤ 2c−1/p

(
−
∫
S

|f − fS|p
) 1

p

.
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Proof. From Proposition 2.4.5,

−
∫
S̃

|f − fS̃|
p ≤ 2p−

∫
S̃

|f − fS|p ≤ 2pc−1−
∫
S

|f − fS|p.

An immediate consequence of this is that BMOp
S (Ω) ⊂ BMOp

S̃
(Ω) if S̃ E S . More-

over, if S ≈ S̃ then BMOp
S (Ω) ∼= BMOp

S̃
(Ω). In particular, it follows that BMOp

B(Ω) ∼=

BMOp
Q(Ω). Since Q ⊂ R, it is automatic without passing through Proposition 2.4.12 that

BMOp
R(Ω) ⊂ BMOp(Ω) with ‖f‖BMOp ≤ ‖f‖BMOpR

. The reverse inclusion is false. The fol-

lowing example of a function in BMO(Ω) that is not in BMOR(Ω) is taken from [60], where

the calculations proving the claim can be found:

Example 2.4.13. Consider Ω = (0, 1)× (0, 1) ⊂ R2. The function

f =
∞∑
k=1

χ(0,2−k+1)×(0, 1
k)

belongs to BMO(Ω) \ BMOR(Ω).

2.5 Rearrangements and the absolute value

Consider two measure spaces (M,µ) and (N, ν) such that µ(M) = ν(N).

Definition 2.5.1. We say that measurable functions f : M → R and g : N → R are

equimeasurable if for all s ∈ R the quantities µf (s) = µ
(
{x ∈ M : f(x) > s}

)
and νg(s) =

ν
(
{y ∈ N : g(y) > s}

)
coincide.

It is important to note that this is not the standard definition of equimeasurability. Typ-

ically (see, for example, [4]) equimeasurability means µ|f |(s) = µ|g|(s) for all s ≥ 0; however,

for our purposes, it will be useful to distinguish between two functions being equimeasurable

and the absolute value of two functions being equimeasurable. That said, it is true that

Lemma 2.5.2. Let f and g be measurable functions such that µf (s) = νg(s) <∞ for all s.

Then, µ|f |(s) = ν|g|(s) for all s.
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Proof. Fix s ∈ R. Writing

{x ∈M : f(x) < −s} =
⋃
n∈N

{
x ∈M : f(x) ≤ −s− 1

n

}
,

we have that

µ
(
{x ∈M : f(x) < −s}

)
= lim

n→∞
µ(M)− µf

(
−s− 1

n

)
.

Here we use the convention that infinity minus a finite number is infinity and use the fact

that µf <∞. Since µf = νg, by assumption, it follows that

µ
(
{x ∈M : f(x) < −s}

)
= ν

(
{x ∈ N : g(x) < −s}

)
.

If s ≥ 0, then

µ
(
{x ∈M : |f(x)| > s}

)
= µ

(
{x ∈M : f(x) > s}

)
+ µ
(
{x ∈M : f(x) < −s}

)
= ν

(
{y ∈ N : g(y) > s}

)
+ ν
(
{y ∈ N : g(y) < −s}

)
= ν

(
{y ∈ N : |g(x)| > s}

)
.

If s < 0, then

µ
(
{x ∈M : |f(x)| > s}

)
= µ(M) = ν(N) = ν

(
{y ∈ N : |g(x)| > s}

)
.

A useful tool is the following lemma. It is a consequence of Cavalieri’s principle, also called

the layer cake representation, which provides a way of expressing the integral of ϕ(|f |) for a

suitable transformation ϕ in terms of a weighted integral of µ|f |. The simplest incarnation

of this principal states that for any measurable set A,∫
A

|f |p =

∫ ∞
0

pαp−1|{x ∈ A : |f(x)| > α}| dα,

where 0 < p < ∞. A more general statement can be found in [66], Theorem 1.13 and its

remarks.

Lemma 2.5.3. Let M ⊂ Rm, N ⊂ Rn be Lebesgue measurable sets of equal measure, and

f : M → R and g : N → R be measurable functions such that |f | and |g| are equimeasurable.

Then, for 0 < p <∞,∫
M

|f |p =

∫
N

|g|p and ess sup
M
|f | = ess sup

N
|g|.
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Furthermore, under the hypothesis of Lemma 2.5.2, for any constant c,∫
M

∣∣|f | − c∣∣ =

∫
N

∣∣|g| − c∣∣.
Moving back to the setting of this paper, for this section we assume that f is a measurable

function on Ω that satisfies the condition

|{x ∈ Ω : |f(x)| > s}| → 0 as s→∞. (2.9)

This guarantees that the rearrangements defined below are finite on their domains (see [81],

V.3).

Definition 2.5.4. Let IΩ = (0, |Ω|). The decreasing rearrangement of f is the function

f ∗(t) = inf{s ≥ 0 : |{x ∈ Ω : |f(x)| > s}| ≤ t}, t ∈ IΩ.

This rearrangement is studied in the theory of interpolation and rearrangement-invariant

function spaces. In particular, it can be used to define the Lorentz spaces, Lp,q, which are a

refinement of the scale of Lebesgue spaces and can be used to strengthen certain inequalities

such as those of Hardy-Littlewood-Sobolev and Hausdorff-Young. For standard references on

these topics, see [4] or [81].

A related rearrangement is the following.

Definition 2.5.5. The signed decreasing rearrangement of f is defined as

f ◦(t) = inf{s ∈ R : |{x ∈ Ω : f(x) > s}| ≤ t}, t ∈ IΩ.

Clearly, f ◦ coincides with f ∗ when f ≥ 0 and, more generally, |f |◦ = f ∗. Further

information on this rearrangement can be found in [17, 60].

Here we collect some of the basic properties of these rearrangements, the proofs for which

are adapted from [81].

Lemma 2.5.6. Let f : Ω→ R be measurable and satisfying (2.9). Then

a) its signed decreasing rearrangement f ◦ : IΩ → (−∞,∞) is decreasing and equimeasur-

able with f ;
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b) its decreasing rearrangement f ∗ : IΩ → [0,∞) is decreasing and equimeasurable with

|f |.

Proof. If t1 ≥ t2, it follows that

{s : |{x ∈ Ω : f(x) > s}| ≤ t2} ⊂ {s : |{x ∈ Ω : f(x) > s}| ≤ t1}.

Since this is equally true for |f | in place of f , it shows that both f ∗ and f ◦ are decreasing

functions.

Fix s. For t ∈ IΩ, f ◦(t) > s if and only if t < |{x ∈ Ω : f(x) > s}|, from where it follows

that

|{t ∈ IΩ : f ◦(t) > s}| = |{x ∈ Ω : f(x) > s}|.

Again, applying this to |f | in place of f yields the corresponding statement for f ∗.

One may ask how the rearrangement f ∗ behaves when additional conditions are imposed

on f . In particular, is the map f 7→ f ∗ a bounded operator on various function spaces?

A well-known result in this direction is that this map is an isometry on Lp, which follows

immediately from Lemmas 2.5.3 and 2.5.6.

Proposition 2.5.7. For all 1 ≤ p ≤ ∞, if f ∈ Lp(Ω) then f ∗ ∈ Lp(IΩ) with ‖f ∗‖Lp(IΩ) =

‖f‖Lp(Ω).

Another well-known result is the Pólya-Szegő inequality, which asserts that the Sobolev

norm decreases under the symmetric decreasing rearrangement ([10]), yet another kind of

rearrangement. From this one can deduce the following (see, for instance, [17]).

Theorem 2.5.8. If f ∈ W 1,p(Rn) then

nω1/n
n

(∫ ∞
0

∣∣∣∣ ddtf ∗(t)
∣∣∣∣p tp/n′ dt) 1

p

≤
(∫

Rn
|∇f |p

) 1
p

,

where n′ is the Hölder dual exponent of n and ωn denotes the volume of the unit ball in Rn.

Despite these positive results, there are some closely related spaces on which the operator

f 7→ f ∗ is not bounded. One such example is the John-Nirenberg space JNp(Ω). We say that
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f ∈ L1
loc(Ω) is in JNp(Ω) if there exists a constant K ≥ 0 such that

sup
∑
|Qi|

(
−
∫
Qi

|f − fQi |
)p
≤ Kp, (2.10)

where the supremum is taken over all collections of pairwise disjoint cubes Qi in Ω. We define

the quantity ‖f‖JNp as the smallest K for which (2.10) holds. One can show that this is a

norm on JNp(Ω) modulo constants. These spaces have been considered in the case where

Ω is a cube in [27, 54] and a general Euclidean domain in [49], and generalised to a metric

measure space in [1, 69].

While it is well known that Lp(Ω) ⊂ JNp(Ω) ⊂ Lp,∞(Ω), the strictness of these inclusions

has only recently been addressed ([1, 27]).

In the case where Ω = I, a (possibly unbounded) interval, the following is obtained:

Theorem 2.5.9 ([27]). Let f : I → R be a monotone function with f ∈ L1(I). Then there

exists c = c(p) > 0 such that

‖f‖JNp ≥ c‖f − C‖Lp

for some C ∈ R.

In other words, monotone functions are in JNp(I) if and only if they are also in Lp(I). In

[27], an explicit example of a function f ∈ JNp(I) \ Lp(I) is constructed when I is a finite

interval. This leads to the observation that the decreasing rearrangement is not bounded on

JNp(I).

Corollary 2.5.10. If I is a finite interval, there exists an f ∈ JNp(I) such that f ∗ /∈ JNp(II).

Proof. Since f /∈ Lp(I), it follows from Proposition 2.5.7 that f ∗ /∈ Lp(II). As f ∗ is monotone,

it follows from the previous theorem that f ∗ /∈ JNp(II).

We consider now the question of boundedness of rearrangements on BMOp
S (Ω) spaces.

Problem 2.5.11. Does there exist a constant c such that ‖f ∗‖BMOp(IΩ) ≤ c‖f‖BMOpS (Ω) holds

for all f ∈ BMOp
S (Ω)? If so, what is the smallest constant, written c∗(p,S ), for which this

holds?
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Problem 2.5.12. Does there exist a constant c such that ‖f ◦‖BMOp(IΩ) ≤ c‖f‖BMOpS (Ω) holds

for all f ∈ BMOp
S (Ω)? If so, what is the smallest constant, written c◦(p,S ), for which this

holds?

Clearly, if such constants exist, then they are at least equal to one. The work of Garsia-

Rodemich and Bennett-DeVore-Sharpley implies an answer to the first problem and that

c∗(1,Q) ≤ 2n+5 when Ω = Rn:

Theorem 2.5.13 ([3, 39]). If f ∈ BMO(Rn), then f ∗ ∈ BMO
(
(0,∞)

)
and

‖f ∗‖BMO ≤ 2n+5‖f‖BMO .

These results were obtained by a variant of the Calderón-Zygmund decomposition ([78]).

Riesz’ rising sun lemma, an analogous one-dimensional result that can often be used to obtain

better constants, was then used by Klemes to obtain the sharp estimate that for Ω = I, a

finite interval, c◦(1, I) = 1.

Theorem 2.5.14 ([57]). If f ∈ BMO(I), then f ◦ ∈ BMO(II) and

‖f ◦‖BMO ≤ ‖f‖BMO .

An elementary but key element of Klemes’ proof that can be generalised to our context

of general shapes is the following shapewise identity.

Lemma 2.5.15. For any shape S, if f ∈ L1(S) then

−
∫
S

|f − fS| =
2

|S|

∫
{f>fS}

(f − fS) =
2

|S|

∫
{f<fS}

(fS − f).

Proof. Write∫
S

|f(x)− fS| dx =

∫
{x∈S:f(x)>fS}

(f(x)− fS) dx+

∫
{x∈S:f(x)<fS}

(fS − f(x)) dx.

Since∫
{x∈S:f(x)>fS}

(f(x)− fS) dx+

∫
{x∈S:f(x)<fS}

(f(x)− fS) dx =

∫
S

(f(x)− fS) dx = 0,

it follows that ∫
{x∈S:f(x)>fS}

(f(x)− fS) dx =

∫
{x∈S:f(x)<fS}

(fS − f(x)) dx,

which gives the identity.

30



The next sharp result concerning rearrangements is due to Korenovskii, showing that for

Ω = I, a finite interval, c∗(1, I) = 1. The proof of this result makes direct use of Klemes’

theorem.

Theorem 2.5.16 ([58]). If f ∈ BMO(I), then f ∗ ∈ BMO(II) and

‖f ∗‖BMO ≤ ‖f‖BMO .

Important in Korenovskii’s transition from a sharp estimate for c◦(1,S ) to one for

c∗(1,S ) is the fact that |f |◦ = f ∗, bringing us to consider the boundedness of the absolute

value operator. Recall from Example 2.4.11 that F (x) = |x| gives us the sharp shapewise

inequality in Proposition 2.4.10 with p = 1, which implies that ‖|f |‖BMOS
≤ 2‖f‖BMOS

.

However, this need not be sharp as a norm inequality, and so it is natural to ask

Problem 2.5.17. What is the smallest constant c|·|(p,S ) such that for all f ∈ BMOp
S (Ω),

‖|f |‖BMOpS
≤ c|·|(p,S )‖f‖BMOpS

holds?

It is clear that c|·|(p,S ) ≥ 1 and Proposition 2.4.10 implies that c|·|(p,S ) ≤ 2. Applying

this estimate along with Klemes’ theorem yields the non-sharp bound c∗(1, I) ≤ 2.

In order for Korenovskii to obtain a sharp result for c∗(1, I), a more subtle argument was

needed that allowed him to conclude that c|·|(1, I) = 1 when Ω = I:

Theorem 2.5.18 ([58]). If f ∈ BMO(I), then ‖|f |‖BMO ≤ ‖f‖BMO .

The following is one of the essential parts of this argument. It demonstrates that the

behaviour of the absolute value operator is more easily analyzed for decreasing functions.

Theorem 2.5.19 ([58]). Let I be a finite interval and f ∈ L1(I) be a decreasing function.

Then,

−
∫
I

∣∣|f | − |f |I∣∣ ≤ sup
J⊂I
−
∫
J

|f − fJ |

where the supremum is taken over all subintervals J of I.

Further sharp results were obtained by Korenovskii in the case where Ω = R, a rectangle,

and S = R: it was shown that, similar to the one-dimensional case just discussed, c|·|(1,R) =

c◦(1,R) = c∗(1,R) = 1.
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Theorem 2.5.20 ([59]). If f ∈ BMOR(R), then |f | ∈ BMOR(R) and f ◦, f ∗ ∈ BMO(IR)

with

‖|f |‖BMOR
≤ ‖f‖BMOR

, ‖f ◦‖BMO ≤ ‖f‖BMOR
, ‖f ∗‖BMO ≤ ‖f‖BMOR

.

This demonstrates the paradigm that rectangles behave more similarly to one-dimensional

intervals than cubes do. In particular, the generalization of Klemes’ theorem to the higher-

dimensional case of rectangles (the result that c◦(1,R) = 1) employs a multidimensional

analogue of Riesz’ rising sun lemma using rectangles ([61]) when such a theorem could not

exist for arbitrary cubes.

Following the techniques of [58], general relationships can be found between the constants

c|·|(1,S ), c◦(1,S ), c∗(1,S ) for an arbitrary basis of shapes. First, we show that c|·|(1,S ) ≤

c◦(1,S ).

Proposition 2.5.21. For any collection of shapes S , if f ∈ BMOS (Ω) and ‖f ◦‖BMO(IΩ) ≤

c‖f‖BMOS (Ω), then ‖|f |‖BMOS (Ω) ≤ c‖f‖BMOS (Ω) for the same constant c.

Proof. Fix a shape S ∈ S and assume that f ∈ BMOS (Ω) is supported on S.

Since f is equimeasurable with f ◦ by Lemma 2.5.6, it follows from Lemma 2.5.2 that |f |

is equimeasurable with |f ◦| (recall that |S| <∞). Writing E = (0, |S|), by Lemma 2.5.3 we

have that |f ◦|E = |f |S and also, then, that∫ |S|
0

∣∣|f ◦| − |f ◦|E∣∣ =

∫ |S|
0

∣∣|f ◦| − |f |S∣∣ =

∫
S

∣∣|f | − |f |S∣∣.
Thus, by Theorem 2.5.19,

−
∫
S

∣∣|f | − |f |S∣∣ = −
∫

(0,|S|)

∣∣|f ◦| − |f ◦|E∣∣ ≤ sup
J⊂(0,|S|)

−
∫
J

|f ◦ − (f ◦)J |.

For all J ⊂ (0, |S|), we have that

−
∫
J

|f ◦ − (f ◦)J | ≤ ‖f ◦‖
BMO

(
(0,|S|)

) ≤ ‖f ◦‖BMO(IΩ) ≤ c‖f‖BMOS (Ω),

and, therefore,

−
∫
S

∣∣|f | − |f |S∣∣ ≤ c‖f‖BMOS (Ω).

Taking a supremum over all shapes S ∈ S yields the result.
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This result in turn allows us to prove the following relationship:

c∗(1,S ) ≤ c|·|(1,S )c◦(1,S ) ≤ c◦(1,S )2.

Proposition 2.5.22. For any collection of shapes S , if f ∈ BMOS (Ω) and ‖f ◦‖BMO(IΩ) ≤

c‖f‖BMOS (Ω), then ‖f ∗‖BMO(IΩ) ≤ c2‖f‖BMOS (Ω).

Proof. By Proposition 2.5.21, it follows that

‖|f |‖BMOS (Ω) ≤ c‖f‖BMOS (Ω).

Writing f ∗ = |f |◦, we have that

‖f ∗‖BMO(IΩ) = ‖|f |◦‖BMO(IΩ) ≤ c‖|f |‖BMOS (Ω) ≤ c2‖f‖BMOS (Ω).

From these results, we see that a sharp result of the form c◦(1,S ) = 1 would immediately

imply two more sharp results, c|·|(1,S ) = 1 and c∗(1,S ) = 1.

Although the dyadic cubes do not, in general, cover a domain, the space dyadic BMO

has been extensively studied in the literature (see [38] for an early work illustrating its

connection to martingales). In fact, many of the results in this section hold for that space;

as such, extending our notation to include S = Qd even though it does not form a basis, we

provide here a sample of the known sharp results.

Klemes’ theorem was extended to the higher-dimensional dyadic case by Nikolidakis, who

shows, for Ω = Q, that c◦(1,Qd) ≤ 2n:

Theorem 2.5.23 ([71]). If f ∈ BMOQd(Q), then f ◦ ∈ BMO(IQ) and

‖f ◦‖BMO ≤ 2n‖f‖BMOQd
.

As a corollary of Proposition 2.5.22 and Theorem 2.5.23 we have the following, which

shows that c∗(1,Qd) ≤ 2n+1, an improvement on Theorem 2.5.13.

Corollary 2.5.24. If f ∈ BMOQd(Q), then f ∗ ∈ BMO(IQ) and

‖f ∗‖BMO ≤ 2n+1‖f‖BMOQd
.
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The previous discussion emphasized the situation when p = 1. For p = 2, even more

powerful tools are available: using probabilistic methods, Stolyarov, Vasyunin and Zatitskiy

prove the following sharp result.

Theorem 2.5.25 ([84]). c∗(2,Qd) = 1+2n

21+n/2 .

2.6 Truncations

An immediate consequence of the bounds for the absolute value is the following result demon-

strating that BMO is a lattice.

Proposition 2.6.1. For any basis of shapes, if f1, f2 are real-valued functions in BMOp
S (Ω),

then max(f1, f2) and min(f1, f2) are in BMOp
S (Ω), with

‖max(f1, f2)‖BMOpS
≤

1 + c|·|(p,S )

2

(
‖f1‖BMOpS

+ ‖f2‖BMOpS

)
.

and

‖min(f1, f2)‖BMOpS
≤

1 + c|·|(p,S )

2

(
‖f1‖BMOpS

+ ‖f2‖BMOpS

)
.

Proof. This follows from writing

max(f1, f2) =
(f1 + f2) + |f1 − f2|

2
and min(f1, f2) =

(f1 + f2)− |f1 − f2|
2

and using the estimate for the absolute value:

‖|f1 − f2|‖BMOpS
≤ c|·|(p,S )(‖f1‖BMOpS

+ ‖f2‖BMOpS
).

In particular, applying Theorems 2.5.18 and 2.5.20, this yields the sharp constant 1 for

p = 1 when S = I or R.

We can also obtain the sharp constant 1 via a sharp shapewise inequality for the cases

p = 1 and p = 2, regardless of the basis. The proof of the case p = 2 in the following result

is given by Reimann and Rychener [73] for the basis S = Q.
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Proposition 2.6.2. Let p = 1 or p = 2. Let S be any basis of shapes and fix a shape

S ∈ S . If f1, f2 ∈ BMOp
S (Ω) and f = max(f1, f2) or f = min(f1, f2), we have

−
∫
S

|f − fS|p ≤ −
∫
S

|f1 − (f1)S|p +−
∫
S

|f2 − (f2)S|p. (2.11)

Consequently

‖max(f1, f2)‖BMOpS
≤ ‖f1‖BMOpS

+ ‖f2‖BMOpS

and

‖min(f1, f2)‖BMOpS
≤ ‖f1‖BMOpS

+ ‖f2‖BMOpS
.

Proof. First, for p = 1, fix a shape S ∈ S and let f = min(f1, f2). Note that fS ≤ (fi)S as

f ≤ fi on S for i = 1, 2. Let

E1 = {x ∈ S : f1(x) ≤ f2(x)} = {x ∈ S : f(x) = f1(x)}, E2 = S \ E1.

By Lemma 2.5.15,

−
∫
S

|f(x)− fS| dx =
2

|S|

∫
{x∈S:f(x)<fS}

(fS − f(x)) dx

=
2

|S|

2∑
i=1

∫
{x∈Ei:fi(x)<fS}

(fS − fi(x)) dx

≤ 2

|S|

2∑
i=1

∫
{x∈S:fi(x)<(fi)S}

((fi)S − fi(x)) dx

= −
∫
S

|f1 − (f1)S|+−
∫
S

|f2 − (f2)S|.

For f = max(f1, f2), the previous arguments follow in a similar way, except that we apply

Lemma 2.5.15 to write the mean oscillation in terms of an integral over the set {x ∈ S :

f(x) > fS}.

For p = 2, we include, for the benefit of the reader, the proof from [73], with cubes

replaced by shapes. Let f = max(f1, f2). We may assume without loss of generality that

(f1)S ≥ (f2)S. Consider the sets

S1 = {x ∈ S : f2(x) < f1(x)}, S2 = {x ∈ S : f2(x) ≥ f1(x) and f2(x) ≥ (f1)S}

and

S3 = S \ (S1 ∪ S2) = {x ∈ S : f1(x) ≤ f2(x) < (f1)S}.
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Then∫
S

|f − (f1)S|2 =

∫
S1

|f1(x)− (f1)S|2 dx+

∫
S2

|f2(x)− (f1)S|2 dx+

∫
S3

|f2(x)− (f1)S|2 dx

≤
∫
S1

|f1(x)− (f1)S|2 dx+

∫
S2

|f2(x)− (f2)S|2 dx+

∫
S3

|f1(x)− (f1)S|2 dx

≤
∫
S

|f1(x)− (f1)S|2 dx+

∫
S

|f2(x)− (f2)S|2 dx

Using Proposition 2.4.9 and dividing by |S| gives (2.11). Similarly, the result can be shown

for min(f1, f2).

For a real-valued measurable function f on Ω, define its truncation from above at level

k ∈ R by

fk = min(f, k)

and its truncation from below at level j ∈ R as

fj = max(f, j).

We use the preceding propositions to prove boundedness of the upper and lower trunca-

tions on BMOp
S (Ω).

Proposition 2.6.3. Let S be any basis of shapes and fix a shape S ∈ S . If f ∈ BMOp
S (Ω)

then for all k, j ∈ R,

max

(
−
∫
S

|fk(x)− (fk)S|p dx,−
∫
S

|fj(x)− (fj)S|p dx
)
≤ cp−

∫
S

|f(x)− fS|p dx (2.12)

where

c =

1, p = 1 or p = 2

min
(

2,
1+c|·|(p,S )

2

)
, otherwise.

Consequently

‖fk‖BMOpS
≤ c‖f‖BMOpS

and ‖fj‖BMOpS
≤ c‖f‖BMOpS

.

Proof. For the truncation from above, observing that |fk(x)− fk(y)| ≤ |f(x)− f(y)| almost

everywhere and for any k, Proposition 2.4.1 gives (2.12) with c = 2. On the other hand,

applying Proposition 2.6.1 to fk = min(f, k) and using the fact that constant functions have
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zero mean oscillation, we get the constant c =
1+c|·|(p,S )

2
. These calculations hold for any

p ≥ 1.

For p = 1 and p = 2, we are able to strengthen this by deriving the sharp shapewise

inequality, namely (2.12) with c = 1, from (2.11) in Proposition 2.6.2 and the fact that

constants have zero mean oscillation. Alternatively, for p = 2, fix a shape S ∈ S and

assume, without loss of generality, that fS = 0. Then, by Proposition 2.4.9,

−
∫
S

|f (k) − (f (k))S|2 ≤ −
∫
S

|f (k) − fS|2 = −
∫
S

|f (k)|2 ≤ −
∫
S

|f |2 = −
∫
S

|f − fS|2.

The calculations for the truncation from below are analogous or can be derived by writing

fj = −min(−f,−j).

For p = 1 and p = 2, this is clearly a sharp result: take any bounded function and either

k > sup f or j < inf f .

Also note that for p = 1, the sharp shapewise inequalities (2.11) and (2.12) give the sharp

shapewise inequality (2.7) (with constant 2) for the absolute value by writing

|f | = f+ + f− = max(f+, f−), f+ = f0, f− = −(f 0).

For a measurable function f on Ω, define its (full) truncation at level k as

Tr(f, k)(x) =


k, f(x) > k

f(x), −k ≤ f(x) ≤ k

−k, f(x) < −k.

Note that Tr(f, k) = (fk)−k = (f−k)
k and that Tr(f, k) ∈ L∞(Ω) for each k. Moreover,

Tr(f, k)→ f pointwise and in L1
loc(Ω) as k →∞ ([56]).

For a general function f ∈ BMO(Ω), it is not true that Tr(f, k)→ f in BMO(Ω), unless

Ω is bounded and f ∈ VMO(Ω), the space of functions of vanishing mean oscillation ([9]).

Nonetheless, as shown in Corollary 2.6.5 below, ‖Tr(f, k)‖BMO → ‖f‖BMO (as mentioned

without proof in [79, 80]), and in fact for any basis S .

Problem 2.6.4. Does there exist a constant c such that, for all k and for all f ∈ BMOp
S (Ω),

‖Tr(f, k)‖BMOpS
≤ c‖f‖BMOpS

, and if so, what is the smallest constant cT (p,S ) for which

this holds?
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If cT (p,S ) exists, then clearly cT (p,S ) ≥ 1. The results above provide a positive answer

to the first question and some information about cT (p,S ).

Corollary 2.6.5. For any choice of shapes, if f ∈ BMOp
S (Ω) then Tr(f, k) ∈ BMOp

S (Ω) for

all k and ‖Tr(f, k)‖BMOpS
≤ c‖f‖BMOpS

, where

c =


1, p = 1 or p = 2

min

(
2,
(

1+c|·|(p,S )

2

)2
)
, otherwise

.

Moreover, for p = 1 or p = 2, ‖Tr(f, k)‖BMOpS
→ ‖f‖BMOpS

as k →∞.

Proof. Writing Tr(f, k) = (fk)−k and applying inequality (2.12) in Proposition 2.6.3 gives us

the shapewise inequality

−
∫
S

|Tr(f, k)− (Tr(f, k))S|p ≤ c−
∫
S

|f − fS|p (2.13)

with constant c = 1 for p = 1 and p = 2, and c ≤
(

min
(

2,
1+c|·|(p,S )

2

))2

. We get c ≤ 2

(as opposed to 22) by applying Proposition 2.4.1 directly with the estimate |Tr(f, k)(x) −

Tr(f, k)(y)| ≤ |f(x)− f(y)|.

For the convergence of the norms in the case p = 1 and p = 2, we have that |Tr(f, k)| ≤

|f | ∈ L1(S) implies (Tr(f, k))S → fS, and since Tr(f, k) → f pointwise a.e. on S, we can

apply Fatou’s lemma and (2.13) with c = 1 to get

−
∫
S

|f − fS|p ≤ lim inf
k→∞

−
∫
S

|Tr(f, k)− (Tr(f, k))S|p

≤ lim sup
k→∞

−
∫
S

|Tr(f, k)− (Tr(f, k))S|p ≤ −
∫
S

|f − fS|p.

This result gives the sharp constant for p = 1, 2 and an upper bound for cT (p,S ). Of

course, the known upper bound c|·|(p,S ) ≤ 2 implies(
1 + c|·|(p,S )

2

)2

≤ 9

4

(which appears, for example, in Exercise 3.1.4 in [42]), but this is worse than the truncation

bound cT (p,S ) ≤ 2. On the other hand, if c|·|(p,S ) ≤ 2
√

2− 1, then the bound depends on

c|·|(p,S ). In particular, a result of c|·|(p,S ) = 1 would imply that cT (p,S ) = 1.
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2.7 The John-Nirenberg inequality

We now come to the most important inequality in the theory of BMO, originating in the

paper of John and Nirenberg [54].

Definition 2.7.1. Let X ⊂ Rn be a set of finite Lebesgue measure. We say that f ∈ L1(X)

satisfies the John-Nirenberg inequality on X if there exist constants c1, c2 > 0 such that

|{x ∈ X : |f(x)− fX | > α}| ≤ c1|X|e−c2α, α > 0. (2.14)

The following is sometimes referred to as the John-Nirenberg lemma.

Theorem 2.7.2 ([54]). If X = Q, a cube in Rn, then there exist constants c and C such

that for all f ∈ BMO(Q), (2.14) holds with c1 = c, c2 = C/‖f‖BMO.

More generally, given a basis of shapes S on a domain Ω ⊂ Rn, |Ω| < ∞, one can pose

the following problem.

Problem 2.7.3. Does f ∈ BMOp
S (Ω) imply that f satisfies the John-Nirenberg inequality

on Ω? That is, do there exist constants c, C > 0 such that

|{x ∈ Ω : |f(x)− fΩ| > α}| ≤ c|Ω| exp

(
− C

‖f‖BMOpS

α

)
, α > 0

holds for all f ∈ BMOp
S (Ω)? If so, what is the smallest constant cΩ,JN(p,S ) and the largest

constant CΩ,JN(p,S ) for which this inequality holds?

When n = 1, Ω = I, a finite interval, and S = I, the positive answer is a special case of

Theorem 2.7.2. Sharp constants are known for the cases p = 1 and p = 2. For p = 1, it is

shown in [65] that cI,JN(1, I) = 1
2
e4/e and in [58] that CI,JN(1, I) = 2/e. For p = 2, Bellman

function techniques are used in [86] to give cI,JN(2, I) = 4/e2 and CI,JN(2, I) = 1.

When n ≥ 2, Ω = R, a rectangle, and S = R, a positive answer is provided by a

less well-known result due to Korenovskii in [59], where he also shows the sharp constant

CR,JN(1,R) = 2/e.

Dimension-free bounds on these constants are also of interest. In [25], Cwikel, Sagher,

and Shvartsman conjecture a geometric condition on cubes and prove dimension-free bounds

for cΩ,JN(1,Q) and CΩ,JN(1,Q) conditional on this hypothesis being true.
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Rather than just looking at Ω, we can also consider whether the John-Nirenberg inequality

holds for all shapes S.

Definition 2.7.4. We say that a function f ∈ L1
loc(Ω) has the John-Nirenberg property with

respect to a basis S of shapes on Ω if there exist constants c1, c2 > 0 such that for all S ∈ S ,

(2.14) holds for X = S.

We can now formulate a modified problem.

Problem 2.7.5. For which bases S and p ∈ [1,∞) does f ∈ BMOp
S (Ω) imply that f has

the John-Nirenberg property with respect to S ? If this is the case, what is the smallest

constant c = cJN(p,S ) and the largest constant C = CJN(p,S ) for which (2.14) holds for all

f ∈ BMOS (Ω) and S ∈ S with c1 = c, c2 = C/‖f‖BMOpS
?

Since Theorem 2.7.2 holds for any cube Q in Rn with constants independent of Q, it

follows that for a domain Ω ⊂ Rn, any f ∈ BMO(Ω) has the John-Nirenberg property with

respect to Q, and equivalently B. Similarly, every f ∈ BMOR(Ω) has the John-Nirenberg

property with respect to R.

In the negative direction, f ∈ BMOp
C(Rn) does not necessarily have the John-Nirenberg

property with respect to C ([62, 67]). This space, known in the literature as CMO for central

mean oscillation or CBMO for central bounded mean oscillation, was originally defined with

the additional constraint that the balls have radius at least 1 ([15, 36]).

We now state the converse to Theorem 2.7.2, namely that the John-Nirenberg property

is sufficient for BMO, in more generality.

Theorem 2.7.6. If f ∈ L1
loc(Ω) and f has the John-Nirenberg property with respect to S ,

then f ∈ BMOp
S (Ω) for all p ∈ [1,∞), with

‖f‖BMOpS
≤ (c1pΓ(p))1/p

c2

.

Proof. Take S ∈ S . By Cavalieri’s principle and (2.14),

−
∫
S

|f − fS|p =
p

|S|

∫ ∞
0

αp−1|{x ∈ S : |f(x)− fS| > α}| dα

≤ pc1

∫ ∞
0

αp−1 exp (−c2α) dα

=
c1pΓ(p)

c2
p

,
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from where the result follows.

By Lemma 2.3.3, this theorem shows that every f with the John-Nirenberg property is

in Lploc(Ω).

A consequence of the John-Nirenberg lemma, Theorem 2.7.2, is that

BMOp1(Rn) ∼= BMOp2(Rn)

for all 1 ≤ p1, p2 <∞. This can be stated in more generality as a corollary of the preceding

theorem.

Corollary 2.7.7. If there exists p0 ∈ [1,∞) such that every f ∈ BMOp0

S (Ω) has the John-

Nirenberg property with respect to S , then

BMOp1

S (Ω) ∼= BMOp2

S (Ω), p0 ≤ p1, p2 <∞.

Proof. The hypothesis means that there are constants cJN(p0,S ), CJN(p0,S ) such that

if f ∈ BMOp0

S (Ω) then f satisfies (2.14) for all S ∈ S , with c1 = cJN(p0,S ), c2 =

CJN(p0,S )/‖f‖BMO
p0
S

.

From the preceding theorem, this implies that BMOp0

S (Ω) ⊂ BMOp
S (Ω) for all p ∈ [1,∞),

with

‖f‖BMOpS
≤ (cJN(p0,S )pΓ(p))1/p

CJN(p0,S )
‖f‖BMO

p0
S
.

Conversely, Proposition 2.3.2 gives us that BMOp
S (Ω) ⊂ BMOp0

S (Ω) whenever p0 ≤ p <

∞, with ‖f‖BMO
p0
S
≤ ‖f‖BMOpS

.

Thus all the spaces BMOp
S (Ω), p0 ≤ p <∞, are congruent to BMOp0

S (Ω).

The John-Nirenberg lemma gives the hypothesis of Corollary 2.7.7 for the bases Q and

B on Rn with p0 = 1. As pointed out, by results of [59] this also applies to the basis R,

showing that BMOp1

R (Ω) ∼= BMOp2

R (Ω) for all 1 ≤ p1, p2 <∞.

Problem 2.7.8. If the hypothesis of Corollary 2.7.7 is satisfied with p0 = 1, what is the small-

est constant c(p,S ) such that ‖f‖BMOpS
≤ c(p,S )‖f‖BMOS

holds for all f ∈ BMOp
S (Ω)?

The proof of Corollary 2.7.7 gives a well-known upper bound on c(p,S ):

c(p,S ) ≤
(
cJN(1,S )pΓ(p)

)1/p

CJN(1,S )
.
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2.8 Product decomposition

In this section, we assume that the domain Ω can be decomposed as

Ω = Ω1 × Ω2 × · · · × Ωk (2.15)

for 2 ≤ k ≤ n, where each Ωi is a domain in Rmi for 1 ≤ mi ≤ n− 1, having its own basis of

shapes Si.

We will require some compatibility between the basis S on all of Ω and these individual

bases.

Definition 2.8.1. We say that S satisfies the weak decomposition property with respect

to {Si}ki=1 if for every S ∈ S there exist Si ∈ Si for each i = 1, . . . , k such that S =

S1×S2× . . .×Sk. If, in addition, for every {Si}ki=1, Si ∈ Si, the set S1×S2× . . .×Sk ∈ S ,

then we say that the basis S satisfies the strong decomposition property with respect to

{Si}ki=1.

Using Ri to denote the basis of rectangles in Ωi (interpreted as Ii if mi = 1), note that

the basis R on Ω satisfies the strong decomposition property with respect to {Ri}ki=1 and for

any k. Meanwhile, the basis Q on Ω satisfies the weak decomposition property with respect

to {Ri}ki=1 for any k, but not the strong decomposition property.

We now turn to the study of the spaces BMOp
Si

(Ω), first defined using different notation

in the context of the bidisc T × T in [22]. For simplicity, we only define BMOp
S1

(Ω), as the

other BMOp
Si

(Ω) for i = 2, . . . , k are defined analogously. We write a point in Ω as (x, y),

where x ∈ Ω1 and y ∈ Ω̃ = Ω2 × · · · × Ωk. Writing fy(x) = f(x, y), functions in BMOp
S1

(Ω)

are those for which fy is in BMOp
S1

(Ω1), uniformly in y:

Definition 2.8.2. A function f ∈ L1
loc(Ω) is said to be in BMOp

S1
(Ω) if

‖f‖BMOpS1
(Ω) := sup

y∈Ω̃

‖fy‖BMOpS1
(Ω1) <∞,

where fy(x) = f(x, y).

Although this norm combines a supremum with a BMO norm, we are justified in calling

BMOp
S1

(Ω) a BMO space as it inherits many properties from BMOp
S (Ω). In particular, for
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each i = 1, 2, . . . , k, L∞(Ω) ⊂ BMOp
Si

(Ω) and BMOp1

Si
(Ω) ∼= BMOp2

Si
(Ω) for all 1 ≤ p1, p2 <∞

if the hypothesis of Corollary 2.7.7 is satisfied with p0 = 1 for Si on Ωi. Moreover, under

certain conditions, the spaces BMOp
Si

(Ω) can be quite directly related to BMOp
S (Ω), revealing

the product nature of BMOp
S (Ω). This depends on the decomposition property of the basis

S , as well as some differentiation properties of the Si.

Before stating the theorem, we briefly recall the main definitions related to the theory

of differentiation of the integral; see the survey [44] for a standard reference. For a basis of

shapes S , denote by S (x) the subcollection of shapes that contain x ∈ Ω. We say that S

is a differentiation basis if for each x ∈ Ω there exists a sequence of shapes {Sk} ⊂ S (x)

such that δ(Sk) → 0 as k → ∞. Here, δ(·) is the Euclidean diameter. For f ∈ L1
loc(Ω), we

define the upper derivative of
∫
f with respect to S at x ∈ Ω by

D(

∫
f, x) = sup

{
lim sup
k→∞

−
∫
Sk

f : {Sk} ⊂ S (x), δ(Sk)→ 0 as k →∞
}

and the lower derivative of
∫
f with respect to S at x ∈ Ω by

D(

∫
f, x) = inf

{
lim inf
k→∞

−
∫
Sk

f : {Sk} ⊂ S (x), δ(Sk)→ 0 as k →∞
}
.

We say, then, that a differentiation basis S differentiates L1
loc(Ω) if for every f ∈ L1

loc(Ω) and

for almost every x ∈ Ω, D(
∫
f, x) = D(

∫
f, x) = f(x). The classical Lebesgue differentiation

theorem is a statement that the basis B (equivalently, Q) differentiates L1
loc(Ω). It is known,

however, that the basis R does not differentiate L1
loc(Ω), but does differentiate the Orlicz

space L(logL)n−1(Ω) ([52]).

Theorem 2.8.3. Let Ω be a domain satisfying (2.15), S be a basis of shapes for Ω and Si

be a basis of shapes for Ωi, 1 ≤ i ≤ k.

a) Let f ∈
⋂k
i=1 BMOp

Si
(Ω). If S satisfies the weak decomposition property with respect

to {Si}ki=1, then f ∈ BMOp
S (Ω) with

‖f‖BMOpS(Ω) ≤
k∑
i=1

‖f‖BMOpSi
(Ω).

b) Let f ∈ BMOp
S (Ω). If S satisfies the strong decomposition property with respect to

{Si}ki=1 and each Si contains a differentiation basis that differentiates L1
loc(Ωi), then
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f ∈
⋂k
i=1 BMOp

Si
(Ω) with

max
i=1,...,k

{‖f‖BMOpSi
(Ω)} ≤ 2k−1‖f‖BMOpS(Ω).

When p = 2, the constant 2k−1 can be replaced by 1.

This theorem was first pointed out in [22] in the case of R in T×T. Here, we prove it in

the setting of more general shapes and domains, clarifying the role played by the theory of

differentiation and keeping track of constants.

Proof. We first present the proof in the case of k = 2. We write Ω = X × Y , denoting by

(x, y) an element in Ω with x ∈ X and y ∈ Y . The notations SX and SY will be used for the

basis in X and Y , respectively. Similarly, the measures dx and dy will be used for Lebesgue

measure on X and Y , respectively, while dA will be used for the Lebesgue measure on Ω.

To prove (a), assume that S satisfies the weak decomposition property with respect to

{SX ,SY } and let f ∈ BMOp
SX

(Ω) ∩ BMOp
SY

(Ω). Fixing a shape R ∈ S , write R = S × T

for S ∈ SX and T ∈ SY . Then, by Minkowski’s inequality,(
−
∫
R

|f(x, y)− fR|pdA
) 1

p

≤
(
−
∫
R

|f(x, y)− (fy)S|pdA
) 1

p

+

(
−
∫
T

|(fy)S − fR|pdy
) 1

p

.

For the first integral, we estimate

−
∫
R

|f(x, y)− (fy)S|p dA ≤ −
∫
T

‖fy‖pBMOpSX
(X)

dy ≤ ‖f‖p
BMOpSX

(Ω)
. (2.16)

For the second integral, Jensen’s inequality gives(
−
∫
T

|(fy)S − fR|p dy
)1/p

=

(
−
∫
T

∣∣∣∣−∫
S

fy(x) dx−−
∫
S

−
∫
T

f(x, y) dy dx

∣∣∣∣p dy)1/p

=

(
−
∫
T

∣∣∣∣−∫
S

(
f(x, y)− (fx)T

)
dx

∣∣∣∣p dy)1/p

≤
(
−
∫
R

|f(x, y)− (fx)T |p dA
)1/p

≤ ‖f‖BMOpSY
(Ω),

where the last inequality follows in the same way as (2.16). Therefore, we may conclude that

f ∈ BMOp
S (Ω) with ‖f‖BMOpS(Ω) ≤ ‖f‖BMOpSX

(Ω) + ‖f‖BMOpSY
(Ω).
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We now come to the proof of (b). To simplify the notation, we use Op(f, S) for the

p-mean oscillation of the function f on the shape S, i.e.

Op(f, S) := −
∫
S

|f − fS|p.

Assume that S satisfies the strong decomposition property with respect to {SX ,SY },

and that SX and SY each contain a differentiation basis that differentiates L1
loc(X) and

L1
loc(Y ), respectively.

Let f ∈ BMOp
S (Ω). Fix a shape S0 ∈ SX and consider the p-mean oscillation of fy on

S0, Op(fy, S0), as a function of y. For any T ∈ SY , writing R = S0 × T ∈ S , we have that

R ∈ S by the strong decomposition property of S , so f ∈ BMOp
S (Ω) implies f ∈ L1(R)

and therefore∫
T

Op(fy, S0) dy =
1

|S0|

∫
T

∫
S0

|fy(x)− (fy)S0 |p dx dy ≤
2p

|S0|

∫
R

|f(x, y)|p dx dy <∞.

By Lemma 2.3.3, this is enough to guarantee that Op(fy, S0) ∈ L1
loc(Y ).

Let ε > 0. Since SY contains a differentiation basis, for almost every y0 ∈ Y there exists

a shape T0 ∈ SY containing y0 such that∣∣∣∣−∫
T0

Op(fy, S0) dy −Op(fy0 , S0)

∣∣∣∣ < ε. (2.17)

Fix such an x0 and a T0 and let R0 = S0 × T0. Then the strong decomposition property

implies that R0 ∈ S , and by Proposition 2.4.5 applied to the mean oscillation of fy on S0,

we have

−
∫
T0

Op(fy, S0) dy = −
∫
T0

−
∫
S0

|fy(x)− (fy)S0 |p dx dy

≤ 2p−
∫
T0

−
∫
S0

|f(x, y)− fR0 |p dx dy

= 2p−
∫
R0

|f(x, y)− fR0 |p dA

≤ 2p‖f‖p
BMOpS (Ω)

.

Note that when p = 2, Proposition 2.4.9 implies that the factor of 2p can be dropped.

Combining this with (2.17), it follows that

Op(fy0 , S0) < ε+ 2p‖f‖p
BMOpS (Ω)

.
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Taking ε→ 0+, since S0 is arbitrary, this implies that fy0 ∈ BMOp
SX

(X) with

‖fy0‖BMOpSX
(X) ≤ 2‖f‖BMOpS (Ω). (2.18)

The fact that this is true for almost every y0 ∈ Y implies that ‖f‖BMOpSX
(Ω) ≤ 2‖f‖BMOpS (Ω).

Similarly, one can show that ‖f‖BMOpSY
(Ω) ≤ 2‖f‖BMOpS (Ω). Thus we have shown f ∈

BMOp
SX

(Ω) ∩ BMOp
SY

(Ω) with

max{‖f‖BMOpSX
(Ω), ‖f‖BMOpSY

(Ω)} ≤ 2‖f‖BMOpS (Ω).

Again, when p = 2 the factor of 2 disappears.

For k > 2, let us assume the result holds for k − 1. Write X = Ω1 × Ω2 × . . . × Ωk−1

and Y = Ωk. Set SY = Sk. By the weak decomposition property of S , we can define the

projection of the basis S onto X, namely

SX = {S1 × S2 × . . .× Sk−1 : Si ∈ Si, ∃Sk ∈ Sk,
k∏
i=1

Si ∈ S }, (2.19)

and this is a basis of shapes on X which by definition also has the weak decomposition

property. Moreover, S has the weak decomposition property with respect to SX and SY .

To prove part (a) for k factors, we first apply the result of part (a) proved above for

k = 2, followed by the definitions and part (a) applied again to X, since we are assuming it

is valid with k − 1 factors. This gives us the inclusion
⋂k
i=1 BMOp

Si
(Ω) ⊂ BMOp

S (Ω) with

the following estimates on the norms (we use the notation x̂i for the k − 2 tuple of variables

obtained from (x1, . . . , xk−1) by removing xi):

‖f‖BMOpS (Ω) ≤ ‖f‖BMOpSX
(Ω) + ‖f‖BMOpSY

(Ω)

= sup
y∈Y
‖fy‖BMOpSX

(X) + ‖f‖BMOpSY
(Ω)

≤ sup
y∈Y

k−1∑
i=1

‖fy‖BMOpSi
(X) + ‖f‖BMOpSY

(Ω)

= sup
y∈Y

k−1∑
i=1

sup
x̂i

‖(fy)x̂i‖BMOpSi
(Ωi) + ‖f‖BMOpSY

(Ω)

≤
k−1∑
i=1

sup
(x̂i,y)

‖f(x̂i,y)‖BMOpSi
(Ωi) + ‖f‖BMOpSY

(Ω)
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=
k−1∑
i=1

‖f‖BMOpSi
(Ω) + ‖f‖BMOpSk

(Ω)

=
k∑
i=1

‖f‖BMOpSi
(Ω).

To prove part (b) for k > 2, we have to be more careful. First note that if S has the

strong decomposition property, then so does SX defined by (2.19). We repeat the first part of

the proof of (b) for the case k = 2 above, with X = Ω1×Ω2× . . .×Ωk−1 and Y = Ωk, leading

up to the estimate (2.18) for the function fy0 for some y0 ∈ Y . Note that in this part we only

used the differentiation properties of Y , which hold by hypothesis in this case since Y = Ωk.

Now we repeat the process for the function fy0 instead of f , with X1 = Ω1×Ω2× . . .×Ωk−2

and Y1 = Ωk−1. This gives

‖(fy0)y1‖BMOpSX1
(X1) ≤ 2‖fy0‖BMOpSX

(X) ≤ 4‖f‖BMOpS (Ω) ∀y1 ∈ Ωk−1, y0 ∈ Ωk.

We continue until we get to Xk−1 = Ω1, for which SXk = S1, yielding the estimate

‖f(yk−2,...,y0)‖BMOpS1
(Ω1) ≤ . . . ≤ 2k−2‖fy0‖BMOpSX

(X) ≤ 2k−1‖f‖BMOpS (Ω)

for all k − 1-tuples y = (yk−2, . . . , y0) ∈ Ω̃ = Ω2 × . . . × Ωk. Taking the supremum over all

such y, we have, by Definition 2.8.2, that f ∈ BMOp
S1

(Ω) with

‖f‖BMOpS1
(Ω) = sup

y∈Ω̃

‖fy‖BMOpS1
(Ω1) ≤ 2k−1‖f‖BMOpS (Ω).

A similar process for i = 2, . . . k shows that f ∈ BMOp
Si

(Ω) with

‖f‖BMOpSi
(Ω) ≤ 2k−1‖f‖BMOpS (Ω).

As the factor of 2 appears in the proof for k = 2 only when p 6= 2, the same will happen

here.

Since Q satisfies the weak decomposition property, the claim of part (a) holds for BMO,

a fact pointed out in [79] without proof. Also, it is notable that there was no differentiation

assumption required for this direction.

In the proof of part (b), differentiation is key and the strong decomposition property

of the basis cannot be eliminated as there would be no guarantee that arbitrary S and T
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would yield a shape R in Ω. In fact, if the claim were true for bases with merely the weak

decomposition property, this would imply that BMO and BMOR are congruent, which is not

true (see Example 2.4.13).
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Chapter 3

Geometric Maximal Operators and

BMO on Product Basess

3.1 Introduction

The uncentred Hardy-Littlewood maximal function, Mf , of a function f ∈ L1
loc(Rn) is defined

as

Mf(x) = sup
Q3x
−
∫
Q

|f | = sup
Q3x

1

|Q|

∫
Q

|f |, (3.1)

where the supremum is taken over all cubes Q containing the point x and |Q| is the measure

of the cube. Note that, unless otherwise stated, cubes in this paper will mean cubes with

sides parallel to the axes. The well-known Hardy-Littlewood-Wiener theorem states that the

operator M is bounded from Lp(Rn) to Lp(Rn) for 1 < p ≤ ∞ and from L1(Rn) to L1,∞(Rn)

(see Stein [79]).

This maximal function is a classical object of study in real analysis due to its connection

with differentiation of the integral. When the cubes in (3.1) are replaced by rectangles

(the Cartesian product of intervals), we have the strong maximal function, Ms, which is also

bounded from Lp(Rn) to Lp(Rn) for 1 < p ≤ ∞ but is not bounded from L1(Rn) to L1,∞(Rn).

Its connection to what is known as strong differentiation of the integral is also quite classical

(see Jessen-Marcinkiewicz-Zygmund [52]).

0This is a post-peer-review, pre-copyedit version of an article that is to be appear in The Journal of

Geometric Analysis.
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When the cubes in (3.1) are replaced by more general sets taken from a basis S , we

obtain a geometric maximal operator, MS (we follow the nomenclature of [47]). Here the

subscript S emphasizes that the behaviour of this operator depends on the geometry of the

sets in S , which we call shapes. Such maximal operators have been extensively studied;

see, for instance, the monograph of de Guzmán ([44]). A key theme in this area is the

identification of the weakest assumptions needed on S to guarantee certain properties of

MS . For examples of the kind of research currently being done in this area, including its

connection to the theory of Ap weights, see [43, 46, 47, 68, 82, 83].

Introduced by John and Nirenberg in [54] for functions supported on a cube, the space

of functions of bounded mean oscillation, BMO(Rn), is the set of all f ∈ L1
loc(Rn) such that

sup
Q
−
∫
Q

|f − fQ| <∞, (3.2)

where fQ = −
∫
Q
f is the mean of f over the cube Q and the supremum is taken over all cubes

Q.

An important subset of BMO(Rn), introduced by Coifman and Rochberg in [18], is the

class of functions of bounded lower oscillation, BLO(Rn). The definition of this class is

obtained by replacing the mean fQ in (3.2) by ess inf
Q

f , the essential infimum of f on the

cube Q.

Just as cubes can be replaced by rectangles in the definition of the maximal function,

the same can be done with the definition of BMO(Rn) (and, likewise, with BLO(Rn)). The

resulting space, strong BMO, has appeared in the literature under different names (see [22,

30, 60]).

Pushing the analogy with maximal functions even further, one may replace the cubes in

(3.2) by more general shapes, coming from a basis S . This space, BMOS (Rn), was intro-

duced in previous work of two of the authors in [26]. In this work, a product characterisation

of BMOS (Rn) was shown when the shapes in S exhibit some product structure.

In the two-parameter setting of Rn×Rm, there is a related space, rectangular BMO, that

is larger than strong BMO. The unacquainted reader is invited to see [12, 14, 34, 35] for

surveys connecting rectangular BMO to the topic of the product Hardy space and its dual,

known as product BMO, which will not be considered in this paper.
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Considering shapes in a basis S that exhibit a product structure like what was investi-

gated in [26] naturally leads to a definition of rectangular BMO with respect to S . As will be

shown, this product structure can also be exploited to define a rectangular BLO space, which

can easily be defined in even a multiparameter setting. The relationship between rectangular

BLO and rectangular BMO will be shown to mirror, in some ways, the relationship between

BLO and BMO.

The boundedness of M on BMO(Rn) was first considered by Bennett-DeVore-Sharpley

([3]). They showed that if Mf 6≡ ∞, then Mf ∈ BMO(Rn) when f ∈ BMO(Rn). In [2],

Bennett refined this result, showing that if Mf 6≡ ∞, then M is bounded from BMO(Rn) to

BLO(Rn). In fact, he showed the stronger result with M defined by averages of f as opposed

to |f |. Further work in this direction can be found in [16, 23, 41, 64, 72, 75, 88].

As the geometric maximal operator MS generalises the Hardy-Littlewood maximal op-

erator M and the space BMOS (Rn) generalises BMO(Rn), it makes sense to consider the

following problem:

Open Problem. For what bases S is the geometric maximal operator MS bounded on

BMOS (Rn)?

Although the result of Bennett-DeVore-Sharpley implies that the basis of cubes is one

such basis, it is currently unknown whether this holds for the basis of rectangles.

This problem is the topic of the present paper. The first purpose of the paper is to

establish a class of bases for which MS is bounded on BMOS (Rn). A basis is said to be

engulfing if, roughly speaking, one of two intersecting shapes can be expanded to engulf the

other without having to grow too large. This class includes the basis of cubes but excludes

the basis of rectangles. It is shown, under an assumption on the basis S , that (see Theorem

3.3.2):

Theorem I (Engulfing bases). If S is an engulfing basis, then MS is bounded from BMOS (Rn)

to BLOS (Rn).

As an intermediary step to defining and studying rectangular BLO spaces, the product

nature of BLOS (Rn) is studied in more detail. When the shapes exhibit a certain product
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structure, it is shown that a product decomposition for BLOS (Rn) holds (see Theorem 3.4.6).

This is analogous to what was done for BMOS (Rn) in [26].

The third purpose of this paper is to address the situation when S does not possess an

engulfing property but is instead a product basis. By this we mean that the shapes in S

exhibit some product structure with respect to lower-dimensional shapes coming from bases

that do have engulfing. Purely using this product structure, the following theorem is shown

in Section 3.6, under certain assumptions on the basis S (see Theorem 3.6.1 for the exact

statement):

Theorem II (Product bases). If S is a strong product basis, then MS is bounded from

BMOS (Rn) to rectangular BLOS (Rn1 × Rn2 × · · · × Rnk), where n1 + n2 + . . .+ nk = n.

In particular, this theorem applies to the basis of rectangles, and so it follows that the

strong maximal operator Ms takes functions from strong BMO to rectangular BLO.

3.2 Preliminaries

Consider Rn with the Euclidean topology and Lebesgue measure. We call a shape in Rn any

open set S such that 0 < |S| < ∞. By a basis of shapes we mean a collection S of shapes

S that forms a cover of Rn. Unless otherwise stated, 1 ≤ p <∞.

Common examples of bases are the collections of all Euclidean balls, B, all cubes, Q, and

all rectangles, R. In one dimension, these three choices degenerate to the collection of all

(finite) open intervals, I. Other examples of bases are the collection of all ellipses and balls

coming from p-norms on Rn.

Fix a basis of shapes S . We assume here and throughout the paper that f is a measurable

function satisfying f ∈ L1(S) for all shapes S ∈ S . This implies that f is locally integrable.

Definition 3.2.1. The maximal function of f with respect to the basis S is defined as

MS f(x) = sup
S3S3x

−
∫
S

|f |.

Since shapes are open, it follows that MS f is lower semicontinuous, hence measurable1.

1See Section II.1 in the appendix for the proof of this and a basic discussion of the Hardy-Littlewood

maximal function.
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One shows this in much the same way as one shows the lower semicontinuity of the Hardy-

Littlewood maximal function.

An important feature of a basis is the question of the boundedness of the corresponding

maximal operator on Lp for 1 < p <∞. Indeed, there exist bases for which no such p exists:

the basis of all rectangles, not necessarily having sides parallel to the coordinate axes ([29]).

In [26], the space of functions of bounded mean oscillation with respect to a general basis

S was introduced:

Definition 3.2.2. We say that f belongs to BMOp
S (Rn) if

‖f‖BMOpS
:= sup

S∈S

(
−
∫
S

|f − fS|p
)1/p

<∞.

The notation BMOS (Rn) will be reserved for the case where p = 1. By Jensen’s inequality,

BMOp
S (Rn) ⊂ BMOS (Rn) for any 1 < p < ∞ with ‖f‖BMOS

≤ ‖f‖BMOpS
. If the opposite

inclusion holds, that is BMOS (Rn) ⊂ BMOp
S (Rn) for some 1 < p < ∞ with ‖f‖BMOpS

≤

c‖f‖BMOS
for some constant c > 0, then we write BMOp

S (Rn) ∼= BMOS (Rn). This holds,

in fact for all 1 < p <∞, if the John-Nirenberg inequality is valid for every f ∈ BMOS (Rn)

with uniform constants (see [26]). This is the case for the basis Q, for instance, as well as

the basis R ([60]).

There do exist bases that fail to satisfy BMOS (Rn) ⊂ BMOp
S (Rn) for any p. An example

is the basis Qc of cubes centred at the origin with sides parallel to the axes ([67]).

Note that the maximal function of an f in BMOS (Rn) need not be finite almost every-

where. For example, MQf ≡ ∞ if f(z) = − log |z| ∈ BMOQ(Rn).

Many familiar BMO properties were shown in [26] to hold at this level of generality,

even when working with functions defined on a domain in Rn. In particular, BMOp
S is

a Banach space modulo constants. Moreover, BMOp
S is a lattice: if f, g ∈ BMOp

S , then

h ∈ BMOp
S , where h is either max(f, g) or min(f, g). This follows readily from writing

max(f, g) = 1
2
(f + g + |f − g|) and min(f, g) = 1

2
(f + g − |f − g|), because the operator

f 7→ |f | is bounded on BMOp
S and BMOp

S is a linear space.

An important subset of BMO that often arises is the class of functions of bounded lower

oscillation. Analogously to what was done in [26] for BMO, we define this set with respect

to a general basis:
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Definition 3.2.3. We say that f belongs to BLOS (Rn) if

‖f‖BLOS
:= sup

S∈S
−
∫
S

[f − ess inf
S

f ] <∞.

Note that BLOS (Rn) ⊂ BMOS (Rn) because, for any shape S ∈ S ,

−
∫
S

|f − fS| ≤ 2−
∫
S

|f − α|

holds for any constant α and so, in particular, for α = ess inf
S

f . Moreover, the inclusion can

be strict: the function f(z) = log |z| is an element of BMOQ(Rn) \BLOQ(Rn). The function

f(z) = − log |z|, however, is in BLOQ(Rn). This example shows that, in general, BLOS (Rn)

fails to be a linear space.

As such, the approach used above to argue that BMOS (Rn) is a lattice is not immediately

applicable to BLOS (Rn). The following establishes that BLOS (Rn) is an upper semilattice;

that is, max(f, g) ∈ BLOS (Rn) whenever f, g ∈ BLOS (Rn).

Proposition 3.2.4. For any basis S , BLOS (Rn) is an upper semilattice with

‖max(f, g)‖BLOS
≤ ‖f‖BLOS

+ ‖g‖BLOS
.

Proof. Let f, g ∈ BLOS (Rn) and fix a shape S ∈ S . Writing h = max(f, g) and considering

the set E = {z ∈ S : f(z) ≥ g(z)}, we have that∫
S

[h− ess inf
S

h] =

∫
E

[f − ess inf
S

h] +

∫
S\E

[g − ess inf
S

h]

≤
∫
E

[f − ess inf
S

f ] +

∫
S\E

[g − ess inf
S

g]

≤
∫
S

[f − ess inf
S

f ] +

∫
S

[g − ess inf
S

g]

≤ |S|
[
‖f‖BLOS

+ ‖g‖BLOS

]
.

Dividing by |S| and taking a supremum over S ∈ S yields the result.

3.3 Engulfing bases

In this section, we provide a generalisation of Bennett’s theorem that the maximal function

is bounded from BMO to BLO. What is essentially the same proof as that of Bennett holds

for a class of bases. The key property is that S is an engulfing basis.
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Definition 3.3.1. We say that S is an engulfing basis if there exist constants cd, ce > 1,

that may depend on the dimension n, such that to each S ∈ S we can associate a shape

S̃ ∈ S satisfying the following:

(i) S̃ ⊃ S with |S̃| ≤ cd|S|;

(ii) if T ∈ S is such that S ∩ T 6= ∅ and S̃c ∩ T 6= ∅, where S̃c denotes the complement of

S̃, then there exists a T ∈ S such that T ⊃ S̃ ∪ T with |T | ≤ ce|T |.

Note that the choice of engulfing shape T depends on S, T , and the choice of shape S̃ to

associate to S.

An example of an engulfing basis is the family of open balls in Rn with respect to a

p-metric, 1 ≤ p ≤ ∞. The bases B and Q are special cases, with p = 2 and p = ∞,

respectively.

More generally, the basis of open balls in any doubling metric measure space is an engulfing

basis. Denote by B(z, r) a ball with centre z and radius r > 0. Every ball B1 = B(z, r) has

a natural double B̃1 = B(z, 2r) satisfying B̃1 ⊃ B1 and |B̃1| ≤ cd|B1| for some cd > 1. In Rn,

we have cd = 2n. Furthermore, if B2 = B(w,R) satisfies B1 ∩B2 6= ∅ and B̃c
1 ∩B2 6= ∅, then

R > r/2 and there is a ball B2 centred at a point in B1 ∩ B2 of radius max(2R, 3r) ≤ 6r.

This ball satisfies B2 ⊃ B̃1 ∪ B2 and |B2| ≤ ce|B2| for some ce > 1. In Rn, we have ce = 6n.

An example of a basis which does not satisfy an engulfing property is R. No matter what

choice of R̃ is made that satisfies (i), there is no ce for which condition (ii) holds. To see

this, consider the case n = 2, as well as the intersecting rectangles R1 = (0, w)× (0, H) and

R2 = (0,W ) × (0, h) for H > h and W > w. Any engulfing rectangle R2 would have to

contain (0,W )× (0, H). Thus,

|R2|
|R2|

≥ HW

hW
=
H

h
→∞

as either H → ∞ or h → 0+, and so there can be no ce < ∞ satisfying condition (ii)

uniformly for all rectangles.

Now we come to the statement of the theorem.
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Theorem 3.3.2. Let S be an engulfing basis such that there exists a p ∈ (1,∞) for which

MS is bounded on Lp(Rn) with norm Ap. If f ∈ BMOp
S (Rn), then

−
∫
S

MS f ≤ c‖f‖BMOpS
+ ess inf

S
MS f (3.3)

for all S ∈ S , where c is a constant depending on p, n, cd, ce, and Ap. Assuming the right-

hand side of (3.3) is finite for every shape S ∈ S , it follows that MS f is finite almost

everywhere and MS f ∈ BLOS (Rn) with

‖MS f‖BLOS
≤ c‖f‖BMOpS

.

Moreover, if BMOp
S (Rn) ∼= BMOS (Rn), then ‖MS f‖BLOS

≤ C‖f‖BMOS
holds for all

f ∈ BMOS (Rn) for which MS f is finite almost everywhere.

Remark 3.3.3. This theorem contains not only that of Bennett, but also the corresponding

result of Guzmán-Partida ([45]) for the basis Qc. This is an engulfing basis and the bound-

edness of MQc on Lp follows from the fact that Qc ⊂ Q and the boundedness of MQ on

Lp.

Proof. Fix f ∈ BMOp
S (Rn) and S ∈ S . Write f = g + h, where g = (f − fS̃)χS̃ and

h = fS̃χS̃ + fχS̃c . Then, by the boundedness of MS on Lp(Rn),

−
∫
S

MS g ≤
1

|S|1/p
‖MS g‖Lp ≤

Ap
|S|1/p

‖g‖Lp ≤ Apc
1/p
d

(
−
∫
S̃

|f − fS̃|
p

)1/p

.

Thus,

−
∫
S

MS g ≤ Apc
1/p
d ‖f‖BMOpS

. (3.4)

Fix a point z0 ∈ S and a shape T ∈ S such that T 3 z0. If T ⊂ S̃, then

−
∫
T

|h| = |fS̃| ≤ −
∫
S̃

|f | ≤MS f(z)

for every z ∈ S̃. In particular, this is true for every z ∈ S, and so

−
∫
T

|h| ≤ ess inf
S

MS f. (3.5)
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If T ∩ S̃c 6= ∅, then by the engulfing property there exists a shape T containing T and S̃ such

that |T | ≤ ce|T |. Hence,

−
∫
T

|h− fT | ≤ ce−
∫
T

|h− fT | =
ce

|T |

[
|S̃||fS̃ − fT |+

∫
T∩S̃c
|f − fT |

]
≤ ce

|T |

[∫
S̃

|f − fT |+
∫
T∩S̃c
|f − fT |

]
= ce−

∫
T

|f − fT | ≤ ce

(
−
∫
T

|f − fT |p
)1/p

≤ ce‖f‖BMOpS
.

Thus,

−
∫
T

|h| ≤ −
∫
T

|h− fT |+−
∫
T

|f | ≤ ce‖f‖BMOpS
+MS f(z)

for every z ∈ T . In particular, this is true for every z ∈ S, and so

−
∫
T

|h| ≤ ce‖f‖BMOpS
+ ess inf

S
MS f. (3.6)

Combining (3.5) and (3.6), we have the pointwise bound

MS h(z0) ≤ ce‖f‖BMOpS
+ ess inf

S
MS f. (3.7)

Therefore, combining (3.4) and (3.7), we arrive at

−
∫
S

MS f ≤ −
∫
S

MS g +−
∫
S

MS h ≤ c‖f‖BMOpS
+ ess inf

S
MS f.

3.4 Product structure

In this section, we follow Section 8 of [26]. Write Rn = Rn1 × Rn2 × . . . × Rnk , where

n1 + n2 + . . . + nk = n and 2 ≤ k ≤ n. Let S be a basis of shapes in Rn and, for each

1 ≤ i ≤ k, let Si be a basis of shapes in Rni . For z ∈ Rn, write ẑi when the ith component

(coming from Rni) has been deleted and define fẑi to be the function on Rni obtained from

f by fixing the other components equal to ẑi.

We can define a BMO space on Rn that measures uniform “lower-dimensional” bounded

mean oscillation with respect to Si in the following way.
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Definition 3.4.1. A function f ∈ L1
loc(Rn) is said to be in BMOp

Si
(Rn) if fẑi ∈ BMOp

Si
(Rni)

uniformly in ẑi; i.e.

‖f‖BMOpSi
(Rn) := sup

ẑi

‖fẑi‖BMOpSi
(Rni ) <∞.

It turns out that under certain conditions on the relationship between the bases {Si}ki=1

and the overall basis S , there is a relationship between BMOSi
(Rn) and BMOS (Rn). We

present the theorem, after a definition, below.

Definition 3.4.2. Let S be a basis of shapes in Rn and Si be a basis of shapes for Rni ,

1 ≤ i ≤ k, where n1 + n2 + . . .+ nk = n.

1. We say that S satisfies the weak decomposition property with respect to {Si}ki=1 if

for every S ∈ S , there exist Si ∈ Si, 1 ≤ i ≤ k, such that S = S1 × S2 × . . .× Sk.

2. If, in addition, for every {Si}ki=1, Si ∈ Si, the set S1 × S2 × . . .× Sk ∈ S , then we say

that the basis S satisfies the strong decomposition property with respect to {Si}ki=1.

Starting with bases Si in Rni , 1 ≤ i ≤ k, the Cartesian product S1 ×S2 × . . .×Sk is a

basis of shapes in Rn with the strong decomposition property with respect to {Si}ki=1.

When Si = Ri, where Ri denotes the basis of rectangles in Rni , the Cartesian product

above coincides with the basis R in Rn. As such, R satisfies the strong decomposition

property with respect to {Ri}ki=1. In particular, when k = n and so ni = 1 for every

1 ≤ i ≤ n, R satisfies the strong decomposition property with respect to {Ii}ni=1.

The basis Q does not satisfy the strong decomposition property, however, with respect

to {Qi}ki=1 for any 2 ≤ k ≤ n, where Qi denotes the basis of cubes in Rni , as the product

of arbitrary cubes (or intervals) may not necessarily be a cube. Nevertheless, Q does satisfy

the weak decomposition property with respect to {Qi}ki=1.

Theorem 3.4.3 ([26]). Let S be a basis of shapes in Rn and Si be a basis of shapes for

Rni, 1 ≤ i ≤ k, where n1 + n2 + . . .+ nk = n.

a) Let f ∈
⋂k
i=1 BMOp

Si
(Rn). If S satisfies the weak decomposition property with respect

to {Si}ki=1, then f ∈ BMOp
S (Rn) with

‖f‖BMOpS(Rn) ≤
k∑
i=1

‖f‖BMOpSi
(Rn).

58



b) Let f ∈ BMOp
S (Rn). If S satisfies the strong decomposition property with respect to

{Si}ki=1 and each Si contains a differentiation basis that differentiates L1
loc(Rni), then

f ∈
⋂k
i=1 BMOp

Si
(Rn) with

max
1≤i≤k

{‖f‖BMOpSi
(Rn)} ≤ 2k−1‖f‖BMOpS(Rn).

When p = 2, the constant 2k−1 can be replaced by 1.

Remark 3.4.4. The condition that a basis S contains a differentiation basis that differentiates

L1
loc(Rn) implies that for any f ∈ L1

loc(Rn) and ε > 0, for almost every z there exists a shape

S ∈ S such that S 3 z and ∣∣∣∣−∫
S

f − f(z)

∣∣∣∣ < ε.

The bases of B and Q are examples of differentiation bases that differentiate L1
loc(Rn). The

basis R does not differentiate L1
loc(Rn), but it contains Q and so R also satisfies the assump-

tions of this theorem.

Just as there are “lower-dimensional” BMO spaces, one may define “lower-dimensional”

BLO spaces in an analogous manner.

Definition 3.4.5. A function f ∈ L1
loc(Rn) is said to be in BLOSi

(Rn) if

‖f‖BLOSi
(Rn) := sup

ẑi

‖fẑi‖BLOSi
(Rni ) <∞.

It turns out that a BLO-version of Theorem 3.4.3 is true. The proof follows the same lines

as that of Theorem 3.4.3 given in [26], but we include it here to illustrate how the nature of

BLO allows us to attain a better constant in part (b).

Theorem 3.4.6. Let S be a basis of shapes in Rn and Si be a basis of shapes for Rni,

1 ≤ i ≤ k, where n1 + n2 + . . .+ nk = n.

a) Let f ∈
⋂k
i=1 BLOSi

(Rn). If S satisfies the weak decomposition property with respect

to {Si}ki=1, then f ∈ BLOS (Rn) with

‖f‖BLOS(Rn) ≤
k∑
i=1

‖f‖BLOSi
(Rn).
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b) Let f ∈ BLOS (Rn). If S satisfies the strong decomposition property with respect to

{Si}ki=1 and each Si contains a differentiation basis that differentiates L1
loc(Rni), then

f ∈
⋂k
i=1 BLOSi

(Rn) with

max
1≤i≤k

{‖f‖BLOSi
(Rn)} ≤ ‖f‖BLOS(Rn).

Proof. We begin by proving the case k = 2, where Rn = Rn1 × Rn2 for n1 + n2 = n. Write

Sx for the basis in Rn1 and x for points in Rn1 ; write Sy for the basis in Rn2 and y for points

in Rn2 .

To prove (a), assume that S satisfies the weak decomposition property with respect to

{Sx,Sy} and let f ∈ BLOSx
(Rn) ∩ BLOSy

(Rn). Fixing a shape S ∈ S , write S = S1 × S2

where S1 ∈ Sx and S2 ∈ Sy. Then,

−
∫
S2

−
∫
S1

[f(x, y)− ess inf
S

f ] dx dy = −
∫
S2

−
∫
S1

[f(x, y)− ess inf
S1

fy] dx dy+−
∫
S2

[ess inf
S1

fy− ess inf
S

f ] dy.

For the first integral, we estimate

−
∫
S2

−
∫
S1

[f(x, y)− ess inf
S1

fy] dx dy ≤ −
∫
S2

‖fy‖BLOSx
(Rn1 ) dy ≤ ‖f‖BLOSx

(Rn).

For the second integral, fixing ε > 0, the set E of (x, y) ∈ S1×S2 with ess inf
S

f > f(x, y)− ε

has positive measure. Moreover, the set F of (x, y) ∈ S1×S2 such that f(x, y) ≥ ess inf
S1

fy and

f(x, y) ≥ ess inf
S2

fx has full measure, and so |E∩F | > 0. Then, taking a point (x0, y0) ∈ E∩F ,

−
∫
S2

[ess inf
S1

fy − ess inf
S

f ] dy ≤ −
∫
S2

[fy(x0)− f(x0, y0) + ε] dy

= −
∫
S2

[fx0(y)− f(x0, y0)] dy + ε

≤ −
∫
S2

[fx0(y)− ess inf
S2

fx0 ] dy + ε

≤ ‖fx0‖BLOSy
(Rn2 ) + ε ≤ ‖f‖BLOSy

(Rn) + ε.

Therefore, letting ε→ 0+, we conclude that f ∈ BLOS (Rn) with

‖f‖BLOS (Rn) ≤ ‖f‖BLOSx
(Rn) + ‖f‖BLOSy

(Rn).

We now come to the proof of (b). Assume that S satisfies the strong decomposition

property with respect to {Sx,Sy}, and that Sx and Sy each contain a differentiation basis
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that differentiates L1
loc(Rn1) and L1

loc(Rn2), respectively. Let f ∈ BLOS (Rn) and fix a shape

S1 ∈ Sx. Consider

g(y) = −
∫
S1

[fy(x)− ess inf
S1

fy] dx

as a function of y. For any S2 ∈ Sy, writing S = S1 × S2, we have ess inf
S1

fy ≥ ess inf
S

f for

almost every y, and so∫
S2

g(y) dy ≤ |S2|−
∫
S

[f − ess inf
S

f ] ≤ |S2|‖f‖BLOS (Rn),

implying that g ∈ L1
loc(Rn2). Let ε > 0. Since Sy contains a differentiation basis, for almost

every y0 ∈ Rn2 there exists a shape S2 ∈ Sy containing y0 such that∣∣∣∣−∫
S2

g(y) dy − g(y0)

∣∣∣∣ < ε.

Fix such a y0 and an S2, and write S = S1 × S2. We have that

−
∫
S1

[fy0(x)− ess inf
S1

fy0 ] dx = g(y0) ≤ ε+−
∫
S2

g(y) dy ≤ ε+ ‖f‖BLOS (Rn).

Taking ε→ 0+, since S1 is arbitrary this implies that fy0 ∈ BLOSx
(Rn1) with

‖fy0‖BLOSx
(Rn1 ) ≤ ‖f‖BLOS (Rn).

The fact that this is true for almost every y0 implies that ‖f‖BLOSx
(Rn) ≤ ‖f‖BLOS (Rn). Sim-

ilarly, one can show that ‖f‖BLOSy
(Rn) ≤ ‖f‖BLOS (Rn). Thus we have that f ∈ BLOSx

(Rn)∩

BLOSy
(Rn) with

max{‖f‖BLOSx
(Rn), ‖f‖BLOSy

(Rn)} ≤ ‖f‖BLOS (Rn).

To prove part (a) for k > 2 factors, we assume it holds for k − 1 factors. Write X =

Rn1 × Rn2 × . . . × Rnk−1 , Y = Rnk , and set SY = Sk. Write x for the elements of Rn1 ×

Rn2 × . . .×Rnk−1 and y for the elements of Rnk . Denote by x̂i the result of deleting xi from

x ∈ Rn1 × Rn2 × . . .× Rnk−1 .

Assume that S has the weak decomposition property with respect to {Si}k−1
i=1 . As such,

we can define the projection of the basis S onto X, namely

SX = {S1 × S2 × . . .× Sk−1 : Si ∈ Si, ∃Sk ∈ Sk,

k∏
i=1

Si ∈ S }. (3.8)
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This is a basis of shapes on X which, by definition, has the weak decomposition property

with respect to {Si}k−1
i=1 . Moreover, S has the weak decomposition property with respect to

{SX ,SY }. Beginning by applying the proven case of k = 2, we have

‖f‖BLOS (Rn) ≤ ‖f‖BLOSX
(Rn) + ‖f‖BLOSY

(Rn).

Then, we apply the case of k − 1 factors to X to yield

‖f‖BLOSX
(Rn) = sup

y∈Y
‖fy‖BLOSX

(X) ≤ sup
y∈Y

k−1∑
i=1

‖fy‖BLOSi
(X) = sup

y∈Y

k−1∑
i=1

sup
x̂i

‖(fy)x̂i‖BLOSi
(Rni )

≤
k−1∑
i=1

sup
(x̂i,y)

‖f(x̂i,y)‖BLOSi
(Rni ) =

k−1∑
i=1

‖f‖BLOSi
(Rn).

Therefore,

‖f‖BLOS (Rn) ≤
k−1∑
i=1

‖f‖BLOSi
(Rn) + ‖f‖BLOSk

(Rn) =
k∑
i=1

‖f‖BLOSi
(Rn).

To prove part (b) for k > 2 factors, first note that if S has the strong decomposition

property, then so does SX defined by (3.8). We repeat the first part of the proof of (b) for

the case k = 2 above to reach

‖fy0‖BLOSX
(X) ≤ ‖f‖BLOS (Rn)

for some y0 ∈ Rnk . Now we repeat the process for the function fy0 instead of f , with

X1 = Rn1 × Rn2 × . . .× Rnk−2 and Y1 = Rnk−1 . This gives

‖(fy0)y1‖BLOSX1
(X1) ≤ ‖fy0‖BLOSX

(X) ≤ ‖f‖BLOS (Rn) ∀y1 ∈ Rnk−1 , y0 ∈ Rnk .

We continue until we get to Xk−1 = Rn1 , for which SXk = S1, yielding the estimate

‖f(yk−2,...,y0)‖BLOS1
(Rn1 ) ≤ . . . ≤ ‖fy0‖BLOSX

(X) ≤ ‖f‖BLOS (Rn)

for all (k − 1)-tuples y = (yk−2, . . . , y0) ∈ Rn2 × . . . × Rnk . Taking the supremum over all

such y, we have that f ∈ BLOS1
(Rn) with

‖f‖BLOS1
(Rn) = sup

y
‖fy‖BLOS1

(Rn1 ) ≤ ‖f‖BLOS (Rn).

A similar process for i = 2, . . . , k shows that f ∈ BLOSi
(Rn) with

‖f‖BLOSi
(Rn) ≤ ‖f‖BLOS (Rn).
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3.5 Rectangular bounded mean oscillation

Let S be a basis of shapes in Rn and denote by Sx,Sy bases of shapes in Rn1 and Rn2 ,

respectively, where n1 + n2 = n. Additionally, we maintain the convention that S has the

strong decomposition property with respect to {Sx,Sy}. Writing x for the coordinates in

Rn1 and y for those in Rn2 , denote by fx the function obtained from f by fixing x. Similarly,

fy is the function obtained from f by fixing y.

We begin by defining the rectangular BMO space at this level of generality.

Definition 3.5.1. We say that f is in BMOrec,S (Rn1 × Rn2) if

‖f‖BMOrec,S
:= sup

S1∈Sx,S2∈Sy

−
∫
S1

−
∫
S2

|f(x, y)− (fx)S2 − (fy)S1 + fS| dy dx <∞, (3.9)

where S = S1 × S2.

In the literature, the classical rectangular BMO space corresponds to Sx = Qx and

Sy = Qy, and so S is the subfamily of R that can be written as the product of two cubes.

In dimension two, this is the same as R.

Proposition 3.5.2. If f ∈ BMOSx
(Rn)∪BMOSy

(Rn), then f ∈ BMOrec,S (Rn1 ×Rn2) with

‖f‖BMOrec,S
≤ 2 min(‖f‖BMOSx

, ‖f‖BMOSy
).

Proof. We have

−
∫
S1

−
∫
S2

|f(x, y)− (fy)S1 | dy dx ≤ sup
y∈S2

−
∫
S1

|fy(x)− (fy)S1 | dx = ‖f‖BMOSx

and

−
∫
S1

−
∫
S2

|(fx)S2 − fS| dy dx = −
∫
S1

|(fx)S2 − fS| dx = −
∫
S1

∣∣∣∣−∫
S2

fx(y) dy −−
∫
S2

(fy)S1 dy

∣∣∣∣ dx
≤ −
∫
S2

−
∫
S1

|fy(x)− (fy)S1 | dx dy

≤ −
∫
S2

‖fy‖BMOSx
≤ ‖f‖BMOSx

.

Thus, writing

|f(x, y)− (fx)S2 − (fy)S1 + fS| ≤ |f(x, y)− (fy)S1 |+ |(fx)S2 − fS|,
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it follows that

−
∫
S1

−
∫
S2

|f(x, y)− (fx)S2 − (fy)S1 + fS| dy dx ≤ 2‖f‖BMOSx
.

Similarly, one shows that ‖f‖BMOrec,S
≤ 2‖f‖BMOSy

.

Proposition 3.5.3. If f ∈ BMOS (Rn), then f ∈ BMOrec,S (Rn1 × Rn2) with

‖f‖BMOrec,S
≤ 3‖f‖BMOS

.

Proof. We have

−
∫
S1

−
∫
S2

|f(x, y)− fS| dy dx ≤ ‖f‖BMOS
,

−
∫
S1

−
∫
S2

|(fx)S2−fS| dy dx = −
∫
S1

∣∣∣∣−∫
S2

fx(y) dy − fS
∣∣∣∣ dx ≤ −∫

S1

−
∫
S2

|f(x, y)−fS| dy dx ≤ ‖f‖BMOS
,

and, similarly,

−
∫
S1

−
∫
S2

|(fy)S1 − fS| dy dx ≤ ‖f‖BMOS
.

Thus, writing

f(x, y)− (fx)S2 − (fy)S1 + fS = [f(x, y)− fS]− [(fx)S2 − fS]− [(fy)S1 − fS],

it follows that

−
∫
S1

−
∫
S2

|f(x, y)− (fx)S2 − (fy)S1 + fS| dy dx ≤ 3‖f‖BMOS
.

Remark 3.5.4. In the case where Sx,Sy each contain a differentiation basis that differentiates

L1
loc(Rn1) and L1

loc(Rn2), respectively, another proof is possible using Theorem 3.4.3 and

Proposition 3.5.2. We identify BMOS (Rn) with BMOSx
(Rn) ∩ BMOSy

(Rn), so that

BMOS (Rn) ⊂ BMOSx
(Rn) ∪ BMOSy

(Rn) ⊂ BMOrec,S (Rn1 × Rn2),

with ‖f‖BMOrec,S
≤ 4‖f‖BMOS

.

Unlike BMOS (Rn), it turns out that BMOrec,S (Rn1 × Rn2) may not be a lattice. As

BMOrec,S (Rn1 × Rn2) is a linear space, this property is equivalent to being closed under

taking absolute values.
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Example 3.5.5. Consider f(x, y) = x−y. We have that f(x, y)− (fx)S2− (fy)S1 +fS equals

(x− y)−
(
x−−

∫
S2

y dy

)
−
(
−
∫
S1

x dx− y
)

+

(
−
∫
S1

x dx−−
∫
S2

y dy

)
= 0,

and so it follows that f ∈ BMOrec,S (R× R) for any basis S .

For the function h(x, y) = |f(x, y)| = |x − y|, however, a computation shows that if

S1 = S2 = IL = [0, L] for L > 0, then

−
∫
IL

−
∫
IL

|h(x, y)− (hx)IL − (hy)IL + hIL×IL | dx dy =
2

L2

∫ L

0

∫ y

0

∣∣∣∣2y − x2 + y2

L
− 2L

3

∣∣∣∣ dx dy
by symmetry of the integrand with respect to the line y = x. As the integral of the expression

inside the absolute value is zero on IL × IL, it follows that

2

L2

∫ L

0

∫ y

0

∣∣∣∣2y − x2 + y2

L
− 2L

3

∣∣∣∣ dx dy =
4

L2

∫∫
R

[
2y − x2 + y2

L
− 2L

3

]
dx dy,

where R is the region defined by the conditions 0 ≤ x ≤ y, 0 ≤ y ≤ L, 2y ≥ x2+y2

L
+ 2L

3
. This

region corresponds to the intersection of the disc x2 +(y−L)2 ≤ L2

3
and the upper triangle of

the square IL× IL. Converting to polar coordinates relative to this region, one can compute∫∫
R

[
2y − x2 + y2

L
− 2L

3

]
dx dy =

1

L

∫∫
R

[
L2

3
− x2 − (y − L)2

]
dx dy

=
1

L

∫ L√
3

0

∫ π/2

0

(
L2

3
− r2

)
r dθ dr =

πL3

72
.

Therefore,

−
∫
IL

−
∫
IL

|h(x, y)− (hx)IL − (hy)IL + hIL×IL | dx dy =
4

L2
× πL3

72
=
πL

18
→∞ asL→∞,

showing that h 6∈ BMOrec,R(R× R).

Just as we defined rectangular BMO, there is a possible analogous definition of rectangular

BLO, defined by having bounded averages of the form

−
∫
S1

−
∫
S2

|f(x, y)− ess inf
S2

fx − ess inf
S1

fy + ess inf
S

f | dy dx.

This definition, however, has a few deficiencies. For one, without the absolute values, the

integrand is not necessarily non-negative, which is something one would expect from any

class labelled as BLO. Another property of BLO that fails with this definition is being an

upper semilattice, as exhibited by the following example.
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Example 3.5.6. If f(x, y) = x and g(x, y) = y, then, for any shapes S1, S2,

f(x, y)− ess inf
S2

fx − ess inf
S1

fy + ess inf
S

f = x− x− ess inf
S1

x+ ess inf
S1

x = 0

for almost every x ∈ S1 and

g(x, y)− ess inf
S2

gx − ess inf
S1

gy + ess inf
S

g = y − ess inf
S2

y − y + ess inf
S2

y = 0

for almost every y ∈ S2.

Considering the function h(x, y) = max(x, y), however, and S1 = S2 = IL = [0, L] for

L > 0. We have that

−
∫
IL

−
∫
IL

|h(x, y)− ess inf
IL

hx − ess inf
IL

hy + ess inf
IL×IL

h| dy dx

equals

1

L2

∫ L

0

∫ L

0

|max(x, y)− x− y| dy dx =
1

L2

∫ L

0

∫ L

0

min(x, y) dy dx =
1

L2
× L3

3
=
L

3
,

which tends to ∞ as L→∞.

These deficiencies are rectified if the essential infimum of f over S1 × S2 is replaced by

the minimum of the essential infima of fx over S2 and fy over S1:

−
∫
S1

−
∫
S2

|f(x, y)− ess inf
S2

fx − ess inf
S1

fy + min{ess inf
S2

fx, ess inf
Sy

fx}| dy dx.

The identity max(a, b) + min(a, b) = a+ b gives us that this is equal to

−
∫
S1

−
∫
S2

[f(x, y)−max{ess inf
S2

fx, ess inf
S1

fy}] dy dx,

where the integrand is now clearly non-negative almost everywhere. Boundedness of these

averages is the definition we choose for rectangular BLO.

An additional benefit to this definition is that it can be defined at a higher level of

generality. As in Section 3.4, we decompose Rn = Rn1 × Rn2 × . . .× Rnk for 2 ≤ k ≤ n and

let Si be a basis for Rni for each 1 ≤ i ≤ k. We continue to assume that S has a strong

decomposition property, but now with respect to {Si}ki=1. Recall that ẑi denotes the result

of deleting the ith component from z ∈ Rn and that fẑi denotes the function on Rni obtained

from f by fixing the other components equal to ẑi.
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Definition 3.5.7. We say that f is in BLOrec,S (Rn1 × Rn2 × . . .× Rnk) if

‖f‖BLOrec,S
:= sup

S∈S
−
∫
S

[f(z)− max
1≤i≤k

{ess inf
Si

fẑi}] dz <∞, (3.10)

where S = S1 × S2 × . . .× Sk.

Proposition 3.5.8. BLOrec,S (Rn1 × Rn2 × . . .× Rnk) is an upper semilattice with

‖max(f, g)‖BLOrec,S
≤ ‖f‖BLOrec,S

+ ‖g‖BLOrec,S
.

Proof. The proof is the same as that of Proposition 3.2.4.

The following generalisation of Example 3.5.6 illustrates Proposition 3.5.8.

Example 3.5.9. If f is a function of some variable zi1 alone, that is f(z) = F (zi1) for some

function F , and g is a function of zi2 alone, that is g(z) = G(zi2) for some function G, then,

for any shape S,

f(z)− max
1≤i≤k

{ess inf
Si

fẑi} = F (zi1)−max(F (zi1), ess inf
Si1

F ) = 0

for almost every zi1 ∈ Si1 and

g(z)− max
1≤i≤k

{ess inf
Si

gẑi} = G(zi2)−max(G(zi2), ess inf
Si2

G) = 0

for almost every zi2 ∈ Si2 . Therefore, ‖f‖BLOrec,S
= ‖g‖BLOrec,S

= 0.

Meanwhile, if h(z) = max(f(z), g(z)) = max(F (zi1), G(zi2)), then for any shape S,

h(z)− max
1≤i≤k

{ess inf
Si

hẑi} = max(F (zi1), G(zi2))−max(F (zi1), G(zi2)) = 0,

and so ‖h‖BLOrec,S
= 0.

This example shows that taking functions of one variable and the maximum of two such

functions yields examples of zero elements of rectangular BLO. Other sources of examples

come from the following two propositions.

Proposition 3.5.10. If f ∈
⋃k
i=1 BLOSi

(Rn), then f ∈ BLOrec,S (Rn1 × Rn2 × . . . × Rnk)

with

‖f‖BLOrec,S
≤ min

1≤i≤k
{‖f‖BLOSi

}.
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Proof. Write

−
∫
S

[f(z)− max
1≤i≤k

{ess inf
Si

fẑi}] dz ≤ −
∫
S

[f(z)− ess inf
Si

fẑi ] dz

≤ −
∫
Ŝi

‖fẑi‖BLOSi
dz ≤ ‖f‖BLOSi

for each 1 ≤ i ≤ k, where Ŝi is the result of deleting Si from S. From this it follows that

BLOSi
(Rn) ⊂ BLOrec,S (Rn1 × Rn2 × . . .× Rnk) for 1 ≤ i ≤ k.

Proposition 3.5.11. If f ∈ BLOS (Rn), then f ∈ BLOrec,S (Rn1 × Rn2 × · · · × Rnk) with

‖f‖BLOrec,S
≤ ‖f‖BLOS

.

Proof. This follows from the fact that

ess inf
S

f ≤ max
1≤i≤k

{ess inf
Si

fẑi}

holds almost everywhere. Therefore,

−
∫
S

[f(z)− max
1≤i≤k

{ess inf
Si

fẑi}] dz ≤ −
∫
S

[f(z)− ess inf
S

f ] dz ≤ ‖f‖BLOS
.

Remark 3.5.12. In the case where each Si contains a differentiation basis that differentiates

L1
loc(Rni), another proof is possible using Theorem 3.4.6 and Proposition 3.5.10, by analogy

with Remark 3.5.4.

One way of generating a function in BLOS (Rn) is demonstrated in the following example.

This allows us to exhibit a function in BLOrec,S with non-zero norm.

Example 3.5.13. Let g(x) ∈ BLO(R) and then consider f(x, y) = g(x − y). Writing

Ix for the basis of intervals in the x-direction and analogously for Iy, we have that f ∈

BLOIx(R
2) ∩ BLOIy(R

2). From Theorem 3.4.6, it follows that f ∈ BLOR(R2). One can

check that ‖f‖BLOR
≤ ‖g‖BLO .

In particular, f(x, y) = − log |x− y| is in BLOR(R2) and has non-zero norm. Regarding

R2 as R×R and taking the rectangle [0, 1]× [1, 2], one can compute ‖f‖BLOrec,R
≥ 2 log 2−1.
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3.6 Strong product bases

Write Rn = Rn1 × Rn2 × . . .× Rnk for 2 ≤ k ≤ n where n1 + n2 + . . .+ nk = n. For z ∈ Rn,

denote by zi ∈ Rni its ith coordinate, according to this decomposition.

Let S be a basis for Rn and Si be a basis for Rni for each 1 ≤ i ≤ k. Assume that S has

the strong decomposition property with respect to {Si}ki=1, that each Si is an engulfing basis

with constants cid and cie, and that each Si contains a differentiation basis that differentiates

L1
loc(Rni). We will call such a basis a strong product basis.

Theorem 3.6.1. Let S be a strong product basis such that there exists a p ∈ (1,∞) for

which MS is bounded on Lp(Rn) with norm Ap. If f ∈ BMOp
S (Rn), then

−
∫
S

MS f(z) dz ≤ c ‖f‖BMOpS
+−
∫
S

max
1≤i≤k

{
ess inf

Si
(MS f)ẑi

}
dz, (3.11)

for all S ∈ S , where c is a constant depending on p, n, k, Ap, {cid}ki=1, {cie}ki=1. Assuming

that the right-hand side of (3.11) is finite for every shape S ∈ S , it follows that MS f is

finite almost everywhere and MS f ∈ BLOrec,S (Rn1 × Rn2 × · · · × Rnk) with

‖MS f‖BLOrec,S
≤ c ‖f‖BMOpS

.

Moreover, if BMOp
S (Rn) ∼= BMOS (Rn), then ‖MS f‖BLOrec,S

≤ C ‖f‖BMOS
holds for all

f ∈ BMOS (Rn) for which MS f is finite almost everywhere.

Proof. Fix f ∈ BMOp
S (Rn) and S ∈ S . We write S = S1 × S2 × . . . × Sk, where Si ∈ Si.

Here we are using the weak decomposition property of S . As each Si is an engulfing basis,

each Si has associated to it a shape S̃i ∈ Si as in Definition 3.3.1, and so we write S̃ for

the shape in S formed by S̃1 × S̃2 × . . . × S̃k. Here we are using the strong decomposition

property of S .

For I ⊂ {1, 2, . . . , k}, we denote by Ic the set {1, 2, . . . , k} \ I. For a fixed shape S ∈ S

and I ⊂ {1, 2, . . . , k}, consider the family of shapes

FI(S) = {T ∈ S : T ∩ S 6= ∅ and Ti ∩ S̃ci 6= ∅ ⇔ i ∈ I}. (3.12)

This is the family of shapes that intersect S and “stick out” of S̃ in the directions corre-

sponding to I. The notation indicating dependence on S may be suppressed when it has

been fixed and there is little possibility of confusion.
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Let x denote the I-coordinates of z, that is those coordinates {zi ∈ Rni : i ∈ I}, and y

denote the Ic-coordinates of z, that is {zi ∈ Rni : i ∈ Ic}. When |I| = 1, in which case y is

all coordinates except zi ∈ Rni for some 1 ≤ i ≤ k, we write y = ẑi as in previous sections.

Consider the basis SI in X =
∏

i∈I Rni defined by

SI =
∏
i∈I

Si.

For f ∈ L1
loc(Rn), define

‖f‖BMOpSI
(Rn) = sup

y
‖fy‖BMOpSI

(X).

Applying Theorem 3.4.3 to SI and then to S which has the strong decomposition prop-

erty with respect to {Si}ki=1, we have

‖f‖BMOpSI
(Rn) ≤ sup

y

∑
i∈I

‖fy‖BMOpSi
(X) ≤

∑
i∈I

‖f‖BMOpSi
(Rn) ≤ ck‖f‖BMOpS(Rn), (3.13)

where ck = 2k−1k.

Writing

MIf(z) = sup

{
−
∫
T

|f | : T ∈ FI(S) andT 3 z
}
,

we have that

MS f(z) = max
I⊂{1,2,...,k}

MIf(z)

for z ∈ S. As such, we consider each MIf separately.

Case I = ∅ or Ic = ∅: Here FI consists of those shapes that do not leave S̃ in any direction

when I = ∅, and those shapes that leave S̃ in every direction when Ic = ∅. These two cases

are treated together as the proof proceeds as in the proof of Theorem 3.3.2.

Write f = gI+hI , where gI = (f−fS̃)χS̃ and hI = fS̃χS̃+fχS̃c . Then, by the boundedness

of MS on Lp(Rn),

−
∫
S

MS gI ≤
1

|S|1/p
‖MS gI‖Lp ≤

Ap
|S|1/p

‖gI‖Lp ≤ Apc
1/p
d

(
−
∫
S̃

|f − fS̃|
p

)1/p

,

where cd = c1
d × c2

d × · · · × ckd. Thus,

−
∫
S

MIgI ≤ −
∫
S

MS gI ≤ Apc
1/p
d ‖f‖BMOpS

. (3.14)
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Fix a point z0 ∈ S and, for the moment, a shape T ∈ FI such that T 3 z0. When I = ∅,

this implies that T ⊂ S̃ and so

−
∫
T

|hI | ≤ −
∫
S̃

|f | ≤MS f(z)

for every z ∈ S̃. In particular, this is true for every z ∈ S and so

−
∫
T

|hI | ≤ ess inf
S

MS f.

Hence, we have the pointwise bound

MIhI(z0) ≤ ess inf
S

MS f. (3.15)

When Ic = ∅, for each 1 ≤ i ≤ k there is a shape T i ∈ Si containing Ti and S̃i such that

|T i| ≤ cie|Ti|. We then create the shape T = T 1 × T 2 × . . . × T k. This satisfies T ⊃ T ∪ S̃

and |T | ≤ ce|T |, where ce = c1
e × c2

e × . . .× cke , and so

−
∫
T

|hI − fT | ≤ ce−
∫
T

|hI − fT | =
ce

|T |

[
|S̃||fS̃ − fT |+

∫
T∩S̃c
|f − fT |

]
≤ ce

|T |

[∫
S̃

|f − fT |+
∫
T∩S̃c
|f − fT |

]
= ce−

∫
T

|f − fT | ≤ ce

(
−
∫
T

|f − fT |p
)1/p

≤ ce‖f‖BMOpS
.

Hence,

−
∫
T

|hI | ≤ −
∫
T

|hI − fT |+−
∫
T

|f | ≤ ce‖f‖BMOpS
+MS f(z)

for every z ∈ T , in particular for every z ∈ S, and so

−
∫
T

|hI | ≤ ce‖f‖BMOpS
+ ess inf

S
MS f.

Thus, we have the pointwise bound

MIhI(z0) ≤ ce‖f‖BMOpS
+ ess inf

S
MS f. (3.16)

Case I 6= ∅, Ic 6= ∅: Here the shapes in FI leave S̃ only in those directions corresponding

to I. Write SI for
∏

i∈I Si and S̃I for
∏

i∈I S̃i.

Write f = gI + hI , where gI = (f − (fy)S̃I )χS̃ and hI = (fy)S̃IχS̃ + fχS̃c . Then, by the

boundedness of MS on Lp(Rn),

−
∫
S

MS gI ≤
1

|S|1/p
‖MS gI‖Lp ≤

Ap
|S|1/p

‖gI‖Lp = Apc
1/p
d

(
−
∫
S̃

|f − (fy)S̃I |
p

)1/p

,
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where cd = c1
d × c2

d × · · · × ckd. As(
−
∫
S̃

|f − (fy)S̃I |
p

)1/p

=

(
−
∫
S̃Ic

(
−
∫
S̃I

|fy(x)− (fy)S̃I |
p dx

)
dy

)1/p

≤ ‖f‖BMOpSI
(Rn),

we have

−
∫
S

MIgI ≤ −
∫
S

MS gI ≤ Apc
1/p
d ‖f‖BMOpSI

≤ Apc
1/p
d ck‖f‖BMOpS (Rn), (3.17)

where the last inequality follows from (3.13).

Fix a point z0 ∈ S and, for the moment, a shape T ∈ FI such that T 3 z0. For each i ∈ I,

there is a shape T i ∈ Si containing Ti and S̃i such that |T i| ≤ cie|Ti|. We then create the

shape T I =
∏

i∈I T i. This satisfies T I ⊃ TI ∪ S̃I and |T I | ≤ cIe|TI |, where cIe =
∏

i∈I c
i
e. For

i /∈ I, write T i = Ti and recall that Ti ⊂ S̃i. Then, we form the shape T = T 1×T 2×· · ·×T k.

Fixing y ∈ TIc ⊂ S̃Ic , we proceed as in the proof of Theorem 3.3.2, but work only with

the directions in I:

−
∫
TI

|(hI)y(x)− (fy)T I | dx ≤ cIe−
∫
T I

|(hI)y(x)− (fy)T I | dx

=
cIe
|T I |

[∫
S̃I

|(fy)S̃I − (fy)T I | dx+

∫
T I∩S̃cI

|fy(x)− (fy)T I | dx

]

≤ cIe
|T I |

[∫
S̃I

|fy(x)− (fy)T I | dx+

∫
T I∩S̃cI

|fy(x)− (fy)T I | dx

]

= cIe−
∫
T I

|fy(x)− (fy)T I | dx ≤ cIe

(
−
∫
T I

|fy(x)− (fy)T I |
p dx

)1/p

≤ cIe‖f‖BMOpSI
(Rn) ≤ cIeck‖f‖BMOpS (Rn)

by (3.13). Thus,

−
∫
TI

|(hI)y(x)| dx ≤ −
∫
TI

|(hI)y(x)− (fy)T I | dx+−
∫
T I

|fy(x)| dx ≤ cIeck‖f‖BMOpS
+−
∫
T I

|fy(x)| dx.

From here, integrating over y ∈ TIc , we have that

−
∫
T

|hI | ≤ cIeck‖f‖BMOpS
+−
∫
T

|f | ≤ cIeck‖f‖BMOpS
+MS f(z)

for any z ∈ T . This is true, in particular, if the Ic coordinates of z are equal to y0, where y0

denotes the Ic-coordinates of z0, and x ∈ SI . Thus,

MIhI(z0) ≤ cIeck‖f‖BMOpS
+ ess inf

SI
(MS f)y0 . (3.18)
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Combining (3.14) and (3.17) yields

−
∫
S

max
I
MIgI ≤

∑
I

−
∫
S

MIgI ≤ 2Apc
1/p
d ‖f‖BMOpS

+
∑

I 6=∅,Ic 6=∅

Apc
1/p
d ck‖f‖BMOpS

≤ c ‖f‖BMOpS
.

(3.19)

We combine (3.15), (3.16), and (3.18) to yield

−
∫
S

max
I
MIhI ≤ c ‖f‖BMOpS

+−
∫
S

max

{
ess inf

S
MS f, max

I 6=∅,Ic 6=∅
{ess inf

SI
(MS f)y}

}
.

Since the infimum can only grow as we fix more variables, the inequality

max

{
ess inf

S
MS f, max

I 6=∅,Ic 6=∅
{ess inf

SI
(MS f)y}

}
≤ max

1≤i≤k
{ess inf

Si
(MS f)ẑi},

holds almost everywhere in S, and so

−
∫
S

max
I
MIhI(z) dz ≤ c ‖f‖BMOpS

+−
∫
S

max
1≤i≤k

{ess inf
Si

(MS f)ẑi} dz. (3.20)

Therefore, (3.19) and (3.20) imply that

−
∫
S

MS f(z) dz = −
∫
S

max
I
MIf(z) dz ≤ −

∫
S

max
I
MI(gI(z) + hI(z)) dz

≤ −
∫
S

max
I
MIgI(z) dz +−

∫
S

max
I
MIhI(z) dz

≤ c ‖f‖BMOpS
+−
∫
S

max
1≤i≤k

{ess inf
Si

(MS f)ẑi} dz.

We end by giving two examples of bases that satisfy the conditions of Theorem 3.6.1.

Example 3.6.2. The first example, which is in many ways the model case and the motivation

for studying this problem, is R. When k = n, and so ni = 1 for every 1 ≤ i ≤ n, the basis

R has the strong decomposition property with respect to {Ii}ni=1, where Ii is the basis of

all intervals in R. Each basis Ii is both a differentiation basis that differentiates L1
loc(R)

and an engulfing basis (one can take cd = 2 and ce = 4). Moreover, the strong maximal

function, Ms, is well known to be bounded on Lp(Rn) for all 1 < p < ∞ ([52]). The

anisotropic version of the John-Nirenberg inequality due to Korenovskii ([59, 60]) implies

that BMOp
R(Rn) ∼= BMOR(Rn) for all 1 < p < ∞. Therefore, Ms maps BMOR(Rn) to

BLOrec,R(R× R× · · · × R).
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Example 3.6.3. A second example is when k = 2. Denote by Bn−1 the basis of all Euclidean

balls in Rn−1 and by I the basis of intervals in R. The differentiation and engulfing properties

of these bases are known. In Rn = Rn−1 × R, define a cylinder to be the product of a

ball B ∈ Bn−1 and an interval I ∈ I. The basis of all such cylinders C has the strong

decomposition property with respect to {Bn−1, I}.

By comparing (in the sense of Definition 2.2 in [26]) these shapes to a family of rectangles,

the Lp(Rn) boundedness of MC for any 1 < p < ∞ follows from that of Ms. Moreover, it

can be shown along the lines of the work of Korenovskii [59, 60] that the John-Nirenberg

inequality holds for C, and so BMOp
C(Rn) ∼= BMOC(Rn) holds for all 1 < p <∞. Therefore,

MC maps BMOC(Rn) to BLOrec,C(Rn−1 × R).
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Chapter 4

Rearrangement inequalities on spaces

defined by mean oscillation

4.1 Introduction

Given a measurable function f on Rn, its decreasing rearrangement is the unique decreasing

function f ∗ on R+ = (0,∞) that is right-continuous and equimeasurable with |f |. The

concept of the decreasing rearrangement of a function is an important tool in interpolation

theory and the study of function spaces. In particular, there is interest in function spaces

that are invariant under equimeasurable rearrangements (see [4]). The Lebesgue spaces Lp,

1 ≤ p ≤ ∞, are one such example as the norms that define inclusion in these spaces depend

only on the distribution of a function.

In 1961, John and Nirenberg introduced the space BMO of locally integrable functions

of bounded mean oscillation on cubes ([54]). This space has proven useful as a replacement

for L∞ in contexts such as singular integral operators and Sobolev embedding theorems. It

is easy to see, however, that BMO is not invariant under equimeasurable rearrangements1.

As such, it is an interesting question to ask whether the decreasing rearrangement of a BMO

function is in BMO. Throughout this paper, cubes will always be taken to have sides parallel

to the axes. In one dimension, cubes are intervals.

In this direction, the work of Bennett-DeVore-Sharpley in [3] implies that the decreasing

1See Section III.1 in the appendix.
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rearrangement operator f 7→ f ∗ is bounded from BMO(Rn) to BMO(R+) with ‖f ∗‖BMO ≤

2n+5‖f‖BMO . Moreover, if one is willing to assume that fQ0 = 0 (see Property (O1) in the

preliminaries), then f 7→ f ∗ is bounded from BMO(Q0) to BMO(0, |Q0|) with ‖f ∗‖BMO ≤

2n+5‖f‖BMO for any cube Q0 ⊂ Rn.

When n = 1, the work of Klemes [57] along with subsequent steps taken by Korenovskii

[58] shows that f 7→ f ∗ is bounded from BMO(I0) to BMO(0, |I0|) with the sharp inequality

‖f ∗‖BMO ≤ ‖f‖BMO for any interval I0 ⊂ R.

Later work of Korenovskii ([59]) generalises this to BMOR, the anisotropic BMO space

(also called the strong BMO space, see [26]) of locally integrable functions of bounded mean

oscillation on rectangles. As with cubes, rectangles will always have sides parallel to the

axes. Korenovskii shows that f 7→ f ∗ is bounded from BMOR(R0) to BMO(0, |R0|) with the

sharp inequality ‖f ∗‖BMO ≤ ‖f‖BMOR
for any rectangle R0 ⊂ Rn.

In [26], Dafni and Gibara introduced the space BMOS of locally integrable functions of

bounded mean oscillation, replacing cubes by shapes S coming from a fixed basis S . Section

4.2 presents the relevant definitions. In view of the known results on the boundedness of the

decreasing rearrangement on BMO with respect to intervals, cubes, or rectangles, it makes

sense to ask

Question 1. For what bases S is the decreasing rearrangement bounded on BMO?

This question is partially addressed in Section 4.3. A general theorem, inspired by the

proof of Klemes ([57]), shows boundedness for a number of examples. In particular, under

some assumptions, we are able to obtain a result for balls in a metric measure space. We are

also able to obtain a dimension-free bound for a special family of rectangles with bounded

eccentricity and use this to obtain the following improvement for the case of cubes (see

Theorem 4.3.10):

Theorem III. The decreasing rearrangement is bounded from BMO(Rn) to BMO(R+) with

‖f ∗‖BMO ≤ 2
n+3

2 ‖f‖BMO .

By its very nature, the decreasing rearrangement operator f 7→ f ∗ is non-local and

nonlinear. This lack of linearity means that boundedness on a function space does not imply

continuity. This leads to the following natural question.
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Question 2. Is the decreasing rearrangement continuous on BMO? If not, what is a de-

scription of the subset on which it is?

In Section 4.4, an example is given showing that the decreasing rearrangement can fail

to be continuous on BMO. Considerations are then turned to the important subspace of

functions of vanishing mean oscillation, VMO. It is shown that (see Theorems 4.4.6 and

4.4.9)

Theorem IV. The decreasing rearrangement is bounded from VMO(Q0) to VMO(0, |Q0|),

where Q0 is Rn or a finite cube. Moreover, it is continuous when Q0 is finite, for functions

that are normalized to have mean zero.

Another important rearrangement is the symmetric decreasing rearrangement, which as-

sociated a measurable function f on Rn to a measurable function Sf on Rn that is radially

decreasing in such a way that |f | and Sf are equimeasurable. This rearrangement is im-

portant in the study of PDEs and many geometric problems (see [10]). We may define the

symmetric decreasing rearrangement by means of the formula Sf(x) = f ∗(ωn|x|n) for x ∈ Rn,

where ωn denotes the measure of the unit ball in Rn.

Given the immediate connection between the decreasing and the symmetric decreasing

rearrangements, one may ask whether BMO-boundedness results for f ∗ can be transferred

to Sf .

Question 3. Is the symmetric decreasing rearrangement bounded on BMO?

This question is answered in the affirmative in Section 4.5. By passing through shapes on

which the mean oscillation of f ∗ and Sf can be directly compared (and, in fact, are found to

coincide), one is able to obtain the following (see Theorem 4.5.1), where by BMOB it means

the locally integrable functions of bounded mean oscillation on Euclidean balls.

Theorem V. The symmetric decreasing rearrangement is bounded from BMOB(Rn) to BMOB(Rn)

with

‖Sf‖BMOB
≤ 2

n+3
2 ωnn

n/2‖f‖BMOB
.
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4.2 Preliminaries

4.2.1 Rearrangements

Let (M,µ) be a positive measure space and consider a measurable function f : M → R.

For α ≥ 0, write Eα = {x ∈ M : |f(x)| > α}. The distribution function of f is defined as

µf (α) = µ(Eα). Note that µf : [0,∞)→ [0,∞] is decreasing and right-continuous.

We say that a measurable function f is rearrangeable 2 if µf satisfies µf (α) → 0 as

α→∞. For such functions,

Definition 4.2.1. The decreasing rearrangement of f is the function f ∗ : R+ → R+ defined

by

f ∗(s) = inf{α ≥ 0 : µf (α) ≤ s}.

The condition that f is rearrangeable guarantees that the set {α ≥ 0 : µf (α) ≤ s} is

non-empty for s > 0 and so f ∗ is finite on its domain. The set {α ≥ 0 : µf (α) = 0},

however, can be empty. If f is bounded, then f ∗ tends to ‖f‖L∞ as s→ 0+; otherwise, f ∗ is

unbounded at the origin. As is the case with the distribution function, f ∗ is decreasing and

right-continuous.

If µ(M) <∞, it follows from the definition that f ∗(s) = 0 for all s ≥ µ(M), and so f ∗ is

supported on (0, µ(M)). Thus we write M∗ = (0, µ(M)) and have f ∗ : M∗ → R+.

The following standard properties of the decreasing rearrangement will be used through-

out this paper.3 The notation | · | will be used throughout this chapter to denote Lebesgue

measure.

Property (R1) The functions f ∗ and |f | are equimeasurable; that is, for all α ≥ 0, µf (α) =

mf∗(α), where mf∗(α) = |{s ∈M∗ : f ∗(s) > α}|.

Property (R2) For any α ≥ 0 such that µf (α) <∞ and β > α,

µ({x ∈M : α < |f(x)| < β}) = |{s ∈M∗ : α < f ∗(s) < β}|.
2See Section III.2 in the appendix.
3See Proposition 5.3.10-5.3.13 in Appendix III.
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Property (R3) The decreasing rearrangement f 7→ f ∗ is an isometry from Lp(M) to

Lp(M∗) for all 1 ≤ p ≤ ∞. Furthermore, it is non-expansive, thus continuous.

Property (R4) (Elementary Hardy-Littlewood inequality) For any measurable set A ⊂M ,∫
A

|f | ≤
∫
A∗
f ∗,

where A∗ = (0, µ(A)).

The reader is invited to see [81] for more details on the decreasing rearrangement.

4.2.2 Bounded mean oscillation

Let Q0 be an open (not necessarily finite) cube in Rn. In particular, Q0 may be R+. A shape

is taken to mean an open set S ⊂ Rn such that 0 < |S| <∞. A basis of shapes in Q0, then,

is a collection S of shapes S ⊂ Q0 forming a cover of Q0.

Common examples of bases are the collections of all Euclidean balls, B, all cubes with

sides parallel to the axes, Q, and all rectangles with sides parallel to the axes, R. In one

dimension, these three choices degenerate to the collection of all (finite) open intervals, I.

For a shape S ⊂ Q0 and a real-valued function on Q0 that is integrable on a shape S, its

mean oscillation is defined as

Ω(f, S) =
1

|S|

∫
S

|f − fS| = −
∫
S

|f − fS|,

where fS is the mean of f on S.

Some properties of mean oscillations are the following (see [26] for the proofs of all but

(O4)):

Property (O1) For any constant α and shape S, Ω(f + α, S) = Ω(f, S).

Property (O2) For any shape S, Ω(|f |, S) ≤ 2Ω(f, S).

Property (O3) For any shape S,

Ω(f, S) =
2

|S|

∫
S

(f − fS)+ =
2

|S|

∫
S

(fS − f)+,

where y+ = max(y, 0).
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Property (O4) 4 For any shape S, if S̃ is another shape such that S̃ ⊂ S and |S| ≤ c|S̃|

for some constant c, then

Ω(f, S̃) ≤ cΩ(f, S).

Property (O5) For any shape S,

inf
α
−
∫
S

|f − α| = −
∫
S

|f −m|,

where the infimum is taken over all constants α and m is a median of f on S (that

is, a (possibly non-unique) number such that |{x ∈ S : f(x) > m}| ≤ 1
2
|S| and

|{x ∈ S : f(x) < m}| ≤ 1
2
|S|).

Property (O6) For any shape S,

Ω(f̃ , S) ≤ Ω(f, S),

where f̃ is a truncation; i.e. f̃ = min(max(f, α), β) for some −∞ ≤ α < β ≤ ∞.

Definition 4.2.2. We say that a function satisfying f ∈ L1(S) for all S ∈ S is in BMOS (Q0)

if

‖f‖BMOS
= sup Ω(f, S) <∞, (4.1)

where the supremum is taken over all shapes S ∈ S .

The notation BMO(Q0) will be reserved for the case S = Q. Note that because of

Property (O1), elements of BMOS (Q0) can be considered modulo constants.

We collect here some properties of BMO functions that will prove to be useful in subse-

quent sections.

Property (B1) 5 If |Q0| < ∞ and f ∈ BMO(Q0), then f − fQ0 ∈ L1(Q0) with ‖f −

fQ0‖L1(Q0) ≤ |Q0|‖f‖BMO(Q0).

Property (B2) When Q0 = R+ and f is monotone decreasing,

‖f‖BMO = sup
t>0

Ω(f, (0, t)).

4See Proposition 5.3.14 in Appendix III.
5See Proposition 5.3.15 in Appendix III.
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Introduced by Coifman-Rochberg ([18]), BLO(Q0) is the class of f ∈ L1
loc(Q0) such that

sup
Q
−
∫
Q

[f − ess inf
Q

f ] <∞,

where the supremum is taken over all cubes Q ⊂ Q0. It is a strict subset of BMO(Q0) and

it can easily be shown that it is not closed under multiplication by a negative scalar. For

non-increasing functions, however, being in BMO(R+) is equivalent to being in BLO(R+).

As such, any statement about f ∗ ∈ BMO(R+) can be interpreted in the stronger sense that

f ∗ ∈ BLO(R+).

For a reference on BMO functions, see [60].

4.2.3 Vanishing mean oscillation

An important subspace of BMO(Q0) is the space of functions of vanishing mean oscillation,

VMO(Q0), originally defined by Sarason in [77]. Let δ(·) denote the Euclidean diameter.

Definition 4.2.3. We say that a function f ∈ BMO(Q0) is in VMO(Q0) if

lim
t→0+

sup
δ(Q)≤t

Ω(f,Q) = 0, (4.2)

where the supremum is taken over all cubes Q with diameter at most t.

Notice that by the geometry of cubes, having vanishing diameter is equivalent to having

vanishing measure. As such, the supremum in Definition 4.2.3 could be taken over all cubes

Q with measure at most t.

The space VMO(Q0) often plays the role of the continuous functions in BMO(Q0). In

fact, VMO(Q0) is the closure of Cu(Q0) ∩ BMO(Q0) in the BMO(Q0) norm, where Cu(Q0)

is the space of uniformly continuous functions on Q0. For VMO(Rn), there is another char-

acterisation as the subset of BMO(Rn) on which translations are continuous with respect to

the BMO(Q0) norm.

In the case when Q0 is unbounded, note that there is also a strictly smaller VMO space,

sometimes denoted VMO(Q0) and other times denoted CMO(Q0) (see [7, 85]).

When considering a more general basis than Q, a naive generalisation of VMO that will

suit our purposes is the space of functions that have vanishing mean oscillation with respect

to measure:
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Definition 4.2.4. We say that a function f ∈ BMOS (Q0) is in VMOS (Q0) if

lim
t→0+

sup
|S|≤t

Ω(f, S) = 0, (4.3)

where the supremum is taken over all shapes S of measure at most t.

Again, the notation VMO(Q0) will be reserved for the case S = Q.

This differs from the classical definition of VMO in an important way. It usually involves

a modulus of continuity that looks at vanishing diameter. Of course, for bases such as Q and

B, vanishing diameter is the same as vanishing measure. For general bases, however, this

is not true: vanishing diameter is strictly stronger than vanishing measure. Consider R, in

which a sequence of rectangles can all have the same diameter but have measure tending to

zero.

Even worse, there are bases for which the condition (4.3) holds vacuously for any f ∈

BMOS (Q0) because there are no shapes of arbitrarily small measure. An example would be

the basis of cubes with sidelength bounded below by some constant.

One way to guarantee that Definition 4.2.4 is non-trivial is by assuming that S is a

differentiation basis; that is, for each x ∈ Rn there exists a sequence of shapes {Sk} ⊂ S

each containing x such that δ(Sk)→ 0 as k →∞.

4.3 Boundedness of the decreasing rearrangement

In this section, we present a general theorem claiming the boundedness of the decreasing

rearrangement on BMO under assumptions on the basis S . Let (X, ρ, µ) be a metric measure

space. That is, (X, ρ) is a metric space endowed with a non-trivial Borel measure µ. Note that

the definitions in the previous section carry over in this context. Also, Properties (O1)-(O6)

remain true.

In this section, we restrict our attention to µ(X) =∞ and rearrangeable f ∈ BMOS (X).

It follows that f ∗ is supported on R+. By Property (B2), to show that f ∗ ∈ BMO(R+), it

suffices to consider the mean oscillation of f ∗ on intervals of the form (0, t) for t > 0.

Note that if f is not rearrangeable, defining f ∗ might lead to f ∗ ≡ ∞ for a function

f ∈ BMOS (X). An example is f(x) = − log |x|, a prototypical function in BMO(Rn).
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Lemma 4.3.1. Let 0 ≤ f ∈ L∞(X) and c∗ ≥ 1. For any t > 0, set αt = (f ∗)(0,t) and assume

that there exists a countable collection of pairwise-disjoint shapes {Si} such that

(i) for all i,

−
∫
Si

f > αt;

(ii) for all i, there exists a shape S̃i ⊃ Si for which µ(S̃i) ≤ c∗µ(Si) and

−
∫
S̃i

f ≤ αt;

(iii) and, f ≤ αt µ-almost everywhere on X \
⋃
S̃i.

Then,

Ω(f ∗, (0, t)) ≤ c∗ sup
i

Ω(f, S̃i).

Note that the collection {Si} will, in general, depend on t.

Proof. Fix a t > 0. By the hypothesis of the theorem, we can find a countable collection of

pairwise-disjoint shapes {Si} for which conditions (i), (ii), and (iii) hold. Denote by E the

union
⋃
Si and by En the finite union

⋃n
i=1 S̃i.

By Property (R4) and (i),

−
∫ µ(En)

0

f ∗ ≥ −
∫
En

f =
1

µ(En)

∑
i

µ(Si)−
∫
Si

f >
1

µ(En)

(∑
i

µ(Si)

)
αt = αt =

1

t

∫ t

0

f ∗.

From the monotonicity of f ∗ it follows that

t ≥ µ(En) =
n∑
i

µ(Si). (4.4)

As this holds for all n, µ(E) ≤ t.

Denoting by Ẽ the set
⋃
S̃i, we find that∫ t

0

|f ∗ − αt| = 2

∫ t

0

(f ∗ − αt)+ = 2

∫
Ẽ

(f − αt)+.

Here we use Properties (R1) and (O3), and (iii). Hence, by (ii),

2

∫
Ẽ

(f − αt)+ ≤ 2
∑
i

∫
S̃i

(f − αt)+ ≤ 2
∑
i

∫
S̃i

(f − fS̃i)+

=
∑
i

µ(S̃i)−
∫
S̃i

|f − fS̃i | ≤ c∗
∑
i

µ(Si)Ω(f, S̃i) ≤ c∗

(∑
i

µ(Si)

)
sup
i

Ω(f, S̃i).
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Combining this with (4.4), we reach

Ω(f ∗, (0, t)) =
1

t

∫ t

0

|f ∗ − αt| ≤ c∗ sup
i

Ω(f, S̃i).

Proposition 4.3.2. Assume that µ(X) =∞ and that S satisfies the hypotheses of Lemma

4.3.1 for every bounded function. If 0 ≤ f ∈ BMOS (X) is rearrangeable, then f ∗ ∈

BMO(R+) with ‖f ∗‖BMO ≤ c+‖f‖BMO.

Proof. Consider the truncations fk := max{min{f, k} − k} for k ≥ 1 of f and fix t > 0. As

f ∗ is decreasing, f ∗(t/2) is a median of f ∗ on (0, t). If k > f ∗(t/2), then f ∗(t/2) is also a

median of (fk)
∗ on (0, t).

The truncations fk are bounded and so we may apply the result of Lemma 4.3.1 to each

of them. Combining this with Properties (05) and (O6), it follows that

−
∫ t

0

|(fk)∗ − f ∗(t/2)| ≤ Ω((fk)
∗, (0, t)) ≤ c∗‖fk‖BMO ≤ c∗‖f‖BMO

for each k > f ∗(t/2). As (fk)
∗ converges monotonically to f ∗, the monotone convergence

theorem implies that

−
∫ t

0

|f ∗ − f ∗(t/2)| <∞,

demonstrating that f ∗ ∈ L1
loc(R+).

Therefore, another application of the monotone convergence theorem implies that

Ω(f ∗, (0, t)) = lim
k→∞

Ω((fk)
∗, (0, t)) ≤ c∗‖f‖BMO .

By Property (B2), f ∗ ∈ BMO(R+) with ‖f ∗‖BMO ≤ c+‖f‖BMO .

Note that this proposition holds for non-negative functions. To remove this restriction and

to obtain the boundedness of the decreasing rearrangement for rearrangeable f ∈ BMOS (X)

that attain negative values, we compose the rearrangement with the absolute value. Since

|f |∗ = f ∗, we have ‖f ∗‖BMO = ‖|f |∗‖BMO . Then, denoting by c|·|(S ) the smallest constant

such that ‖|f |‖BMOS
≤ c|·|(S )‖f‖BMOS

for all f ∈ BMOS (see Property (O2)), we have the

following corollary.
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Corollary 4.3.3. Let f ∈ BMOS (X) be rearrangeable. Then, under the hypothesis of Propo-

sition 4.3.2, f ∗ ∈ BMO(R+) with ‖f ∗‖BMO ≤ c|·|(S )c∗‖f‖BMOS
.

In the following subsections, we will consider some examples of settings in which the

hypothesis of the theorem holds. We will show that the hypothesis holds by constructing the

families {Si} and {S̃i} for which the Conditions (i), (ii), and (iii) hold.

4.3.1 Families of balls in metric spaces

Consider a metric measure space (X, ρ, µ) where µ is a non-trivial Borel regular measure. By

a ball we will specifically mean that it has positive and finite radius. Furthermore, for each

ball we will assume that it comes with a prescribed centre and radius.

When dealing with balls in a metric space, we have the following general form of the

Vitali covering lemma (also called the basic covering theorem).

Lemma 4.3.4 ([48]). For every family F of balls in X of uniformly bounded radii, there

exists a pairwise-disjoint subfamily G such that⋃
B∈F

B ⊂
⋃
B∈G

5B. (4.5)

We make the following assumptions on the metric measure space (X, ρ, µ): (D) that µ is

doubling, (I) that |X| =∞, (C) that the function r 7→ |B(x, r)| is continuous for all x ∈ X,

and (U) that every family F of balls in X of uniformly bounded measure has uniformly

bounded radii (and so the Vitali covering lemma applies for such families).

For a ball B = B(x, r), we write λB = B(x, λr) for λ > 0. Recall that a doubling measure

is one for which there exists a constant cd ≥ 1 such that 0 < µ(2B) ≤ cdµ(B) < ∞ holds

for all balls. A consequence of this doubling condition is that for any λ ≥ 1 there exists a

constant cλ such that µ(λB) ≤ cλµ(B). With this notation, cd = c2.

Note that the Lebesgue differentiation theorem holds in the setting of a doubling metric

measure space ([48]). A further consequence of doubling (see, for instance, [50]) is that any

disjoint collection of balls is necessarily countable. Thus, the collection G from the Vitali

covering lemma can be assumed to be countable.
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The condition (D) implied, in particular, if the measure µ is lower Ahlfors Q-regular for

some Q > 0: cAr
Q ≤ µ

(
B(x, r)

)
for some cA > 0 and for all x ∈ X, 0 < r < diam (X).

Consider the basis of all balls in X, denoted by B. Fix 0 ≤ f ∈ L∞(X) and t > 0.

Consider Eαt = {x ∈ X : f(x) > αt}. By the Lebesgue differentiation theorem, for almost

every x ∈ Eαt there exists an r0(x) > 0 such that

−
∫
B(x,r)

f > αt for all r ≤ r0(x).

By Property (R4), if r is a radius such that |B(x, r)| = t, then

−
∫
B(x,r)

f ≤ αt. (4.6)

Let r1(x) be the smallest such r. Then,

−
∫
B(x,r)

f > αt for any r < r1(x). (4.7)

This is true, in particular, for r = r(x) = r1(x)
5

< r1(x).

Consider the family F = {B(x, r(x))}. By monotonicity of measure, each ball in F has

measure at most t, and so the family has uniformly bounded radii, by assumption. Applying

the Vitali covering lemma, we obtain a countable pairwise-disjoint subfamily G for which

(4.5) holds. This is the {Si} of Proposition 4.3.2.

Condition (i) holds by (4.7) with r = r(x) < r1(x). The role of {S̃i} will be played by

5G = {5B : B ∈ G}. Condition (ii) holds by (4.6) with r = 5r(x) = r1(x) as

µ(B(x, 5r(x))) ≤ c5µ(B(x, r(x))).

Condition (iii) is true since, by (4.5),⋃
B∈G

5B ⊃
⋃
B∈F

B ⊃ Eαt

holds µ almost everywhere.

Therefore, applying Proposition 4.3.2, yields

Theorem 4.3.5. Let X satisfy conditions (D), (I), (C), and (U). If f ∈ BMOB(X), then

f ∗ ∈ BMO(R+) with

‖f ∗‖BMO ≤ c5 c|·|(B)‖f‖BMOB
.
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Remark 4.3.6. The constant 5 in the Vitali covering lemma can be decreased to 3 + ε for

ε > 0 (see, for instance, [6]). Using this refinement, the constant in the previous theorem

can be brought down (taking a limit as ε→ 0+) to c3c|·|(B).

Remark 4.3.7. Note that one can take cλ = cdλ
log2 cd , but this may not be optimal.

4.3.2 Families of rectangles in Euclidean space

Consider, now, Rn with the Euclidean metric and Lebesgue measure. We will consider bases

comprised of rectangles in Rn. It is interesting to consider restrictions on the sidelengths of

the rectangles forming the basis has an effect on the boundedness.

On one side of the spectrum, if we impose the restriction that all sidelengths be the same,

we have the basis of all cubes, Q. Fixing t > 0, we start by dividing Rn into a mesh of

cubes of measure t. By Property (R4), the average of f on each such cube is at least αt.

As such, we may apply the (local) Calderón-Zygmund lemma6 to each of these cubes. Each

application yields a countable collection of cubes satisfying (i) of Lemma 4.3.2. Hence, the

union of these collections also satisfies (i) and f ≤ αt almost everywhere on the complement.

Moreover, by construction, each such cube Q is contained inside a parent cube Q′ such that

fQ′ ≤ αt and satisfying |Q′| = 2n|Q|, where the constant 2n comes from the fact that Q is

obtained from Q′ by bisecting each of the n sides of Q′. Then, by continuity of the integral,

there is a cube Q ⊂ Q̃ ⊂ Q′ such that fQ̃ = αt. Thus, the collection of Q̃s satisfies (ii).

Last, since f ≤ αt almost everywhere outside the collection of Qs, it is also true outside the

collection of Q̃s.

Therefore, Lemma 4.3.2 implies

Theorem 4.3.8. If f ∈ BMO(Rn), then f ∗ ∈ BMO(R+) with

‖f ∗‖BMO ≤ 2nc|·|(Q)‖f‖BMO .

The basis R, where all the sidelengths are arbitrary, represents the other side of the spec-

trum. In [61], Korenovskii-Lerner-Stokolos were able to obtain a multidimensional analogue

of Riesz’ rising sun lemma. This implies, by the work of Korenovskii ([59]) that for any

6See Proposition 5.3.16 in Appendix III for a proof.
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rectangle R0 ⊂ Rn if f ∈ BMOR(R0), then f ∗ ∈ BMO(R∗0) with

‖f ∗‖BMO ≤ ‖f‖BMOR
.

This represents the extreme case of Lemma 4.3.2, where one has a single countable family that

is both pairwise disjoint and on which the averages of f can be made equal to a prescribed

value. This is, of course, a sharp result. Simple examples show that an analogue of the rising

sun lemma cannot exist for cubes. This shows a benefit of using rectangles over cubes.

The unfortunate limitation of this result is that arbitrary rectangles can have arbitrary

eccentricity, and so we cannot deduce from this result any information about the boundedness

of the decreasing rearrangement on BMO(Rn).

A compromise between the rigidity of cubes and the absolute freedom of arbitrary rect-

angles are families of rectangles of bounded eccentricity. Sharpness of the constants is lost,

but these rectangles are still comparable to cubes, and so information about these bases can

be transferred (see Property (O4)) to the basis of cubes.

By selecting a family of rectangles that is closed under properly chosen bisections, we

are able to find an example of a basis for which the constant obtained in Lemma 4.3.2 is

independent of the dimension. Consider the basis

D = {R = I1 × I2 × · · · × In : ∃ a > 0 s.t. `(Ij) = a2j/n for each j = 1, . . . , n},

where the intervals need not be ordered by increasing length. By bisecting the longest side

of such a rectangle, we obtain two congruent rectangles in D (in particular, with sidelengths

a
21/n2j/n). This property, along with the fact that the Lebesgue differentiation holds for D as

these rectangles have bounded eccentricity, allows one to repeat the proof of the Calderón-

Zygmund lemma but with a constant of 27.

Theorem 4.3.9. If f ∈ BMOD(Rn), then f ∗ ∈ BMO(R+) with

‖f ∗‖BMO ≤ 2c|·|(D)‖f‖BMOD
.

As mentioned previously, the fact that the rectangles in D have bounded eccentricity

allows us to improve on Corollary 4.3.8 for the basis Q. Every R ∈ D can be fit inside a cube

7See Proposition 5.3.17 and the preceding discussion in Appendix III.
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Q with
|Q|
|R|

= 2
n−1

2 ,

and so it follows from the previous theorem and Property (O4) that

Theorem 4.3.10. If f ∈ BMO(Rn), then f ∗ ∈ BMO(R+) with

‖f ∗‖BMO ≤ 2
n+1

2 min(c|·|(D), c|·|(Q))‖f‖BMO .

In particular, as min(c|·|(D), c|·|(Q)) ≤ 2 (see Property (O2)),

‖f ∗‖BMO ≤ 2
n+3

2 ‖f‖BMO .

4.4 Continuity of the decreasing rearrangement

In this section, we consider the question of continuity of the decreasing rearrangement on

spaces defined by mean oscillation. Recall, as explained in the introduction, that rearrange-

ments are fundamentally nonlinear, and so boundedness does not imply continuity.

Our first aim of this section is to show that in spite of the boundedness of the decreasing

rearrangement on BMO, it can fail to be continuous. The furnished counter-example is writ-

ten for BMO(0, 1), but simple modifications allow the argument to carry over for BMO(Q0)

for various Q0.

One can wonder about the subset of BMO on which the decreasing rearrangement is

continuous. A natural subspace to consider is VMO as it very often plays the role of the

continuous functions within BMO.

Then, we show that under some assumptions on S , boundedness of the decreasing

rearrangement from BMOS (Q0) to BMO(Q∗0) implies boundedness from VMOS (Q0) to

VMO(Q∗0). An example is provided, however, that shows that a function in BMO(Q0) \

VMO(Q0) can still have a rearrangement in VMO(Q∗0).

Last, we build upon this by using an analogue of the Arzelà-Ascoli Theorem for VMO

due to Brezis-Nirenberg to show continuity of the decreasing rearrangement from VMO(Q0)

to VMO(Q∗0) in the case where Q0 is bounded.
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4.4.1 Discontinuity on BMO

Theorem 4.4.1. The decreasing rearrangement is not continuous on BMO(0, 1). That is,

there exists a sequence {fk} ⊂ BMO(0, 1) and a function f ∈ BMO(0, 1) such that fk → f

in BMO(0, 1) but f ∗k 6→ f ∗ in BMO(0, 1). As a consequence, no inequality of the form

‖f ∗ − g∗‖BMO ≤ C‖f − g‖BMO

can hold for all f, g ∈ BMO(0, 1) for any constant C.

Proof. For k ≥ 1, define fk as the function

fk(x) =

1, 0 ≤ x < 1/2

1
k

√
− log |3− 4x|, 1/2 ≤ x ≤ 1

.

and f as the function

f(x) =

1, 0 ≤ x < 1/2

0, 1/2 ≤ x ≤ 1

.

We have

fk(x)− f(x) =

0, 0 ≤ x < 1/2

1
k

√
− log |3− 4x|, 1/2 ≤ x ≤ 1

and ‖fk − f‖BMO = 1
k
‖f1 − f‖BMO , showing that fk → f in BMO.

Since f is monotone and right-continuous, it follows that f ∗ = f . The rearrangement of

fk is given by

f ∗k (s) =


1
k

√
− log(2s), 0 ≤ s < 1

2ek2

1, 1

2ek2 ≤ s < 1

2ek2 + 1
2

1
k

√
− log (2s− 1), 1

2ek2 + 1
2
≤ s ≤ 1

.

We have

f ∗k (s)− f ∗(s) =



1
k

√
− log(2s)− 1, 0 ≤ s < 1

2ek2

0, 1

2ek2 ≤ s < 1
2

1, 1
2
≤ s < 1

2ek
2 + 1

2

1
k

√
− log (2s− 1), 1

2ek
+ 1

2
≤ s ≤ 1

.
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Note that f ∗k −f ∗ has a jump discontinuity of height one at s = 1
2

and so, taking any interval

in (0, 1) of the form
(

1
2
− δ, 1

2
+ δ
)

for δ < min
(

1

2ek2 ,
1
2
− 1

2ek2

)
, we find

‖f ∗k − f ∗‖BMO ≥ 1/2

for all k.

Remark 4.4.2. Alternatively, one could have reasoned that {f ∗k} cannot converge to f ∗ in

BMO(0, 1) as follows. Each f ∗k is in VMO(0, 1) and so, by Property (V2), its limit, if it

exists, must be in VMO(0, 1). However, f ∗ /∈ VMO(0, 1) as it has a jump discontinuity.

This example can easily be modified to show that the decreasing rearrangement is not

continuous from BMO(Q0) to BMO(Q∗0) for other Q0 than (0, 1). In particular, setting

gk(x, y) = fk(x) and g(x, y) = f(x) for y ∈ (0, 1)n−1 provides a counter-example when

Q0 = (0, 1)n. Extending fk and f , or gk and g by zero yields counter-examples for Q0 = R

and Q0 = Rn, respectively.

4.4.2 Boundedness on VMO

Before demonstrating the boundedness of the decreasing rearrangement on VMO, we need

two technical lemmas.

Lemma 4.4.3. Let 0 ≤ f ∈ L1
loc(Q0) and S be a differentiation basis. Assume that for

every t > 0 and every measurable A ⊂ Q0 such that |A| > 0 and |Ac| > 0 there exists a shape

S̃ ∈ S with |S̃| < t such that

|A ∩ S̃|
|S̃|

=
1

2
=
|Ac ∩ S̃|
|S̃|

.

If f ∗ has a jump discontinuity of height `, then

inf
η
−
∫
S̃

|f − η| = −
∫
S̃

|f −mS̃(f)| ≥ `

2
, (4.8)

where the infimum is taken over all constants η and mS̃(f) is a median of f on S̃.

Remark 4.4.4. The existence of a basis satisfying the assumption of this lemma is known in

many familiar contexts, such as B, Q, and R, due to the Lebesgue density theorem8.

8See Lemma 5.3.18 in Appendix III for the proof that B satisfies the assumptions of this lemma.
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Proof. Fix t > 0 and assume that f ∗ has a jump discontinuity at s0 ∈ X∗. Recalling that f ∗

is right-continuous, write

α = lim
s→s+0

f ∗(s), β = lim
s→s−0

f ∗(s), γ =
α + β

2
.

Then ` = β − α.

The set Eγ = {x ∈ X : f(x) > γ} is measurable and satisfies, by equimeasurability of f

and f ∗, |Eγ| = s0 > 0 and |Ec
γ| = |X| − s0 > 0.

By assumption, we can find a shape S̃ with |S̃| < t such that

|Eγ ∩ S̃|
|S̃|

=
1

2
=
|Ec

γ ∩ S̃|
|S̃|

.

In other words, γ is a median of f on S̃. Hence, for any constant c,

−
∫
S̃

|f − γ| = 1

2

(
1

|Eγ ∩ S̃|

∫
Eγ∩S̃

(f − γ) +
1

|Ec
γ ∩ S̃|

∫
Ecγ∩S̃

(γ − f)

)
. (4.9)

We proceed by estimating each integral separately.

First, by Property (R2) along with the fact that f ∗ has a jump at s0,

0 = |{s ∈ X∗ : α < f ∗(s) < β}| = |{x ∈ X : α < f(x) < β}|.

Writing Fβ = {x ∈ X : f(x) ≥ β}, it follows that |Eγ \ Fβ| = 0 and so

1

|Eγ ∩ S̃|

∫
Eγ∩S̃

(f − γ) =
1

|Fβ ∩ S̃|

∫
Fβ∩S̃

(f − γ) ≥ β − γ =
β − α

2
. (4.10)

Similarly, |Ec
α \ Ec

γ| = 0 and so

1

|Ec
γ ∩ S̃|

∫
Ecγ∩S̃

(γ − f) =
1

|Ec
α ∩ S̃|

∫
Ecα∩S̃

(γ − f) ≥ γ − α =
β − α

2
. (4.11)

Combining (4.9), (4.10), (4.11), we find that

−
∫
S̃

|f − γ| ≥ 1

2

(
β − α

2
+
β − α

2

)
=
β − α

2
=
`

2
.

This demonstrates the inequality in (4.8). The equality is Property (O5).

Lemma 4.4.5. Let I0 be a interval with left-endpoint at the origin. If g ∈ L1
loc(I0)\VMO(I0)

is monotone and has no jump discontinuities, then there exists an ε > 0 and a sequence of

intervals {Ik = (ak, bk)} such that ak, bk → 0 as k →∞ but Ω(g, Ik) ≥ ε for all k.
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Proof. Take a monotone g ∈ L1
loc(I0) \ VMO(I0) having no jump discontinuities. Since

g /∈ VMO(I0) there exists an ε > 0 and a sequence of intervals {Ik} such that |Ik| → 0 as

k → ∞ but Ω(g, Ik) ≥ ε for all k. Denoting by ak the left-endpoint of the interval Ik, it

suffices to show that ak → 0 as k →∞.

Assume, by way of contradiction, that ak 6→ 0. Then there exists a subsequence {akm}

and an ε′ > 0 such that |akm | ≥ ε′ for all km. This means that Ikm ⊂ I0 \ [0, ε′). On

I0 \ [0, ε′), however, g is uniformly continuous and so one can take km sufficiently large so

that |g(x)− g(y)| < ε
2

for x, y ∈ Ikm . Then, we have

ε ≤ Ω(g, Ikm) ≤ −
∫
Ikm

−
∫
Ikm

|g(x)− g(y)| dxdy < ε

2
.

We write, for a function h, Tr(h, α) = max(h, α) − α. This is a vertical shift of a

truncation from below, and so, by Properties (O1) and (O6), we have that for any shape S,

Ω(Tr(h, α), S) ≤ Ω(h, S).

Theorem 4.4.6. Let S be such that the assumptions of Lemma 4.4.3 hold and f ∗ ∈

BMO(Q∗0) whenever f ∈ BMOS (Q0) with ‖f ∗‖BMO ≤ c‖f‖BMOS
. Then, f ∗ ∈ VMO(Q∗0)

whenever f ∈ VMOS (Q0).

Proof. Take f ∈ VMOS (Q0). By Property (O2), |f | ∈ VMOS (Q0) and so it follows from

Lemma 4.4.3 that f ∗ has no jump discontinuities (recall that |f |∗ = f ∗).

By way of contradiction, assume that f ∗ ∈ BMO(Q∗0) \ VMO(Q∗0). Then, f ∗ satisfies

the conditions of g in Lemma 4.4.5 and so there exists an ε > 0 and a sequence of intervals

{Ik = (ak, bk)} such that ak, bk → 0 as k →∞ but Ω(f ∗, Ik) ≥ ε for all k.

Writing αk = f ∗(bk), consider the intervals

Ĩk = {s ∈ Q∗0 : αk < f ∗(s)}

and the functions Tr(f ∗, k) = Tr(f ∗, αk). Three facts must be pointed out as they will be

used in what follows. First, note that |Ĩk| → 0 as k →∞. Second, note that Tr(f ∗, k) = f ∗

modulo constants on both Ik and on Ĩk. Finally, note that Tr(f ∗, k) = (Tr(|f |, k))∗.
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Thus, by the boundedness of f 7→ f ∗ from BMOS (Q0) to BMO(Q∗0),

‖Tr(|f |, k)‖BMOS
≥
‖(Tr(|f |, k))∗‖BMO

c
=
‖Tr(f ∗, k)‖BMO

c

≥ Ω(Tr(f ∗, k), Ik)

c
=

Ω(f ∗, Ik)

c

≥ ε

c

and so there exists a shape Sk such that Ω(Tr(|f |, k), Sk) ≥ ε
4c

.

The fact that f ∈ VMOS (Q0) implies the existence of a δ > 0 for which Ω(f, S) < ε
8c

if

|S| ≤ δ. The goal is to show that |Sk| ≤ δ for sufficiently large k. Then, we would have, for

such k, that Ω(f, Sk) <
ε
8c

while, at the same time,

Ω(f, Sk) ≥
Ω(|f |, Sk)

2
≥ Ω(Tr(|f |, k), Sk)

2
≥ ε

8c

by Properties (O2) and (O6). This is a contradiction, implying the desired result.

If |Sk| ≤ |Ĩk|, then we have immediately that |Sk| → 0 as k →∞ since this is true of |Ĩk|.

If |Sk| > |Ĩk|, then we have that Tr(f ∗, k) = 0 on (|Ĩk|, |Sk|) and so, by Property (R4),

ε

4c
≤ Ω(Tr(|f |, k), Sk) ≤

2

|Sk|

∫
Sk

Tr(|f |, k)

≤ 2

|Sk|

∫ |Sk|
0

Tr(f ∗, k) =
2

|Sk|

∫ |Ĩk|
0

Tr(f ∗, k)

Hence,

|Sk| ≤
8c

ε

∫ |Ĩk|
0

Tr(f ∗, k). (4.12)

The functions gk = Tr(f ∗, k)χ(0,|Ĩk|) satisfy gk ≤ f ∗χ(0,|Ĩ1|) ∈ L
1((0, |Ĩ1|)) pointwise almost

everywhere as well as gk → 0 as k → ∞ pointwise almost everywhere. By Lebesgue’s

dominated convergence theorem,∫
Ĩ1

gk =

∫ |Ĩk|
0

Tr(f ∗, k)→ 0

as k →∞. Therefore, by (4.12) the same must hold for |Sk| and the proof is finished.

Remark 4.4.7. A function f ∈ BMOS (Q0) \ VMOS (Q0) may have a rearrangement in

VMOS (Q∗0). An example is provided by f1 in the proof of Theorem 4.4.1. The function

f1 is not in VMO((0, 1)) as it has a jump discontinuity at x = 1/2, while f ∗1 ∈ VMO(0, 1).
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4.4.3 Continuity on VMO

In this section, we show that when Q0 is bounded, the decreasing rearrangement is continuous

from VMO(Q0) to VMO(Q∗0).

For such Q0, the following result of Brezis and Nirenberg provides us with an analogue

of the Arzelà-Ascoli Theorem for VMO(Q0). This result is a crucial tool in the proof of

continuity for the rearrangement on VMO.

Theorem 4.4.8 (Brezis-Nirenberg [8]). A set F ⊂ VMO(Q0) is relatively compact if and

only if

lim
t→0+

sup
|Q|≤t

Ω(f,Q) = 0

uniformly in f ∈ F .

Theorem 4.4.9. Let Q0 be a finite cube. Then, the decreasing rearrangement is continuous

from VMO(Q0) to VMO(Q∗0). That is, if {fk} ⊂ VMO(Q0) have mean zero and converge to

f in BMO(Q0), then {f ∗k} ⊂ VMO(Q0) converge to f ∗ in BMO(Q0).

Note that since VMO is closed in BMO, it follows that f ∈ VMO(Q0) and f ∗ ∈ VMO(Q∗0).

Proof. Let us consider the application of Theorem 4.4.8 to a sequence {fk} ⊂ VMO(Q0) that

converges to f ∈ VMO(Q0) in BMO(Q0). This means that, as a set, {fk} ⊂ VMO(Q0) is

relatively compact, and so

lim
t→0+

sup
|Q|≤t

Ω(fk, Q) = 0 (4.13)

uniformly in k.

By Theorem 4.4.6, f ∗ ∈ VMO(Q∗0) and f ∗k ∈ VMO(Q∗0) for each k. It follows that

lim
t→0+

sup
|I|≤t

Ω(f ∗k , I) = 0 (4.14)

for each k. This limit is not a priori uniform in k. However, assume for the moment that it is.

Then, applying Theorem 4.4.8 in the other direction, we find that the set {f ∗k} ⊂ VMO(Q∗0)

is relatively compact and so contains a subsequence {f ∗km} converging in BMO(Q∗0) to some

function g ∈ VMO(Q∗0).

As each fk has mean zero and fk → f in BMO(Q0), we have that fk → f in L1(Q0)

by Property (B1). By the continuity of the decreasing rearrangement on L1(Q0) (Property
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(R3)), we have that f ∗k → f ∗ in L1(Q∗0). But by Property (B1), again, {f ∗km} also converges

to g in L1(Q∗0). By uniqueness of limits in L1, it must be that g = f ∗ almost everywhere.

Applying the arguments in the above paragraph to any subsequence {fkj} instead of {fk}

yields a subsequence of {f ∗kj} that converges to f ∗. This means that every subsequence of

{f ∗k} has a further subsequence converging to f ∗, implying that {f ∗k} converges to f ∗.

Of course, this argument has a flaw: the assumption of uniform convergence in (4.14).

To rectify this, we assume, by way of contradiction, that the convergence is not uniform in

k. Then there exists an ε > 0, a subsequence which we will relabel as {fk}, and intervals

{Ik = (ak, bk)} such that |Ik| → 0 as k →∞ but Ω(f ∗k , Ik) ≥ ε for all k.

As in the proof of Lemma 4.4.5, we want to show that ak, bk → 0 as k →∞. As f ∗k and

f ∗ are monotone functions in VMO(Q∗0), they are uniformly continuous on [a, |Q0|) for any

a > 0. Thus, on [a, |Q0|), {f ∗k} is a sequence of monotone functions converging pointwise

almost everywhere to the uniformly continuous limit f ∗. This allows us to conclude that the

convergence is, in fact, uniform and that the sequence is equicontinuous9. That is, we can

find δ > 0 such that if |I| < δ for I ⊂ [a, |Q0|), then Ω(f ∗k , I) < ε for all k. Hence, ak < a for

k sufficiently large. As this is true for any a > 0, it follows that both ak, bk → 0 as k →∞.

The rest of the proof follows the same lines as that of Theorem 4.4.6 with S = Q. We

write αk = f ∗k (bk), and consider the intervals

Ĩk = {s ∈ Q∗0 : αk < f ∗k (s)}

and the functions Tr(f ∗k , k) = Tr(f ∗k , αk). As before, |Ĩk| → 0 as k → ∞, Tr(f ∗k , k) = f ∗k

modulo constants on both Ik and Ĩk, and Tr(f ∗k , k) = (Tr(|fk|, k))∗.

By the boundedness of f 7→ f ∗ from BMO(Q0) to BMO(Q∗0),

‖Tr(|fk|, k)‖BMO ≥
Ω(f ∗k , Ik)

c
≥ ε

c

and so there exists a cube Qk such that Ω(Tr(|fk|, k), Qk) ≥ ε
4c

.

From the uniformity of (4.13) there exists a δ > 0 for which Ω(fk, Q) < ε
4c

for all k if

|Q| ≤ δ. If we can show that |Qk| ≤ δ for sufficiently large k, then we would have, for such

k, that Ω(fk, Qk) <
ε
4c

while, at the same time, Ω(fk, Qk) ≥ ε
4c

. This contradiction implies

the desired result.
9See Proposition 5.3.19 in Appendix III.

96



If |Qk| ≤ |Ĩk|, then we have immediately that |Qk| → 0 as k → ∞ since this is true for

|Ĩk|. If |Qk| > |Ĩk|, then we have that Tr(f ∗k , k) = 0 on (|Ĩk|, |Qk|) and so, by Property (R4),

ε

4c
≤ Ω(Tr(|fk|, k), Qk) ≤

2

|Qk|

∫ Ĩk

0

Tr(f ∗k , k).

Hence,

|Qk| ≤
8c

ε

∫ Ĩk

0

Tr(f ∗k , k). (4.15)

Since {f ∗k} is convergent in L1(Q∗0), it follows that it is uniformly integrable10. Setting gk =

Tr(f ∗k , k)χ(0,|Ĩk|), the sequence {gk} is also uniformly integrable as gk ≤ f ∗k pointwise almost

everywhere. Moreover, gk → 0 pointwise almost everywhere, thus the Vitali convergence

theorem (see [74]) implies that ∫
Q∗0

gk =

∫ Ĩk

0

Tr(f ∗k , k)→ 0

as k →∞. Therefore, by (4.15), |Qk| → 0 as k →∞.

Note that the finiteness of |Q0| was used crucially in two spots: the application of Theorem

4.4.8 and the application of the Vitali convergence theorem.

4.5 Boundedness of the symmetric decreasing rearrange-

ment

Now we turn out attention to the symmetric decreasing rearrangement. Recall that it may

be defined by means of the formula Sf(x) = f ∗(ωn|x|n) for x ∈ Rn, where ωn denotes the

measure of the unit ball in Rn.

In this section, we will consider the question of boundedness of the operator f 7→ Sf on

BMO. Due to the radial symmetry of Sf , it is most natural to consider BMO to be with

respect to the basis B of all Euclidean balls. Of course, by the comparability of balls and

cubes in Rn, this is the same space as BMO with respect to the basis Q.

Our main theorem of the section is

10See Section III.5 of the appendix for the definition and relevant facts.

97



Theorem 4.5.1. If f ∈ BMOB(Rn) then Sf ∈ BMOB(Rn) with

‖Sf‖BMOB
≤ 2

n+3
2 ωnn

n/2‖f‖BMOB
.

To this end, we will proceed in four steps. The first step is to compare BMOA and

BMOB. Here, A denotes the basis of all balls and all annuli centred at the origin, along with

all sectors thereof, where sectors are taken to mean the intersection with a cone with vertex

at the origin.

Lemma 4.5.2. If f ∈ BMOA(Rn) then f ∈ BMOB(Rn) with ‖f‖BMOB
≤ 2n‖f‖BMOA

.

Proof. For each ball B ∈ B the goal is to find an A ∈ A such that B ⊂ A and |A| ≤ 2n|B|.

Then, by Property (B5),

−
∫
B

|f − fB| ≤ 2n−
∫
A

|f − fA|,

from where the result follows.

To this end, fix a ball B of radius r > 0 and centre x. There are four cases: x = 0,

|x| = r, |x| < r, |x| > r.

When x = 0, one can choose A = B and then the ratio |A|/|B| = 1. When |x| = r, B fits

inside a half-circle A of radius 2r centred at the origin. In this case,

|A|
|B|

=
1
2
ωn(2r)n

ωnrn
= 2n−1.

When |x| < r, B fits inside the ball A of radius |x|+ r centred at the origin. One calculates

|A|
|B|

=
ωn(|x|+ r)n

ωnrn
≤ ωn(2r)n

ωnrn
= 2n.

For the case |x| > r, we present the proof in dimension n = 2. The ball B fits inside a sector

A of aperture 2 arcsin(r/|x|) of the annulus with inner radius |x| − r and outer radius |x|+ r

centred at the origin. Thus,

|A| = π((|x|+ r)2 − (|x| − r)2)
2 arcsin(r/|x|)

2π
= 4|x|r arcsin(r/|x|)

and so
|A|
|B|

=
4|x| arcsin(r/|x|)

πr
≤ 2.
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The next lemma shows that for radial functions on Rn, being in BMOA(Rn) is the same

as having radial profile in BMO(R).

Lemma 4.5.3. Let f ∈ BMO(R) and define g(x) = f(ωn|x|n). Then g ∈ BMOA(Rn) with

‖g‖BMOA
= ‖f‖BMO.

Proof. Any shape A ∈ A can be described by a radius r ∈ (r1, r2), where 0 ≤ r1 < r2 < ∞,

and a region S ⊂ Sn−1. Then, denoting by σ(·) the (n − 1)–dimensional Lebesgue surface

measure, we can compute

|A| = ωn(rn2 − rn1 )× σ(S)

σ(Sn−1)
=

(rn2 − rn1 )σ(S)

n
.

Changing to polar coordinates, we compute the average of Sf on A as follows:

−
∫
A

g(x) dx =
n

(rn2 − rn1 )σ(S)

∫
S

∫ r2

r1

f(ωnr
n)rn−1 drdσ

=
n

(rn2 − rn1 )

∫ r2

r1

f(ωnr
n)rn−1 dr.

Setting ρ = ωnr
n, we have

n

(rn2 − rn1 )

∫ r2

r1

f(ωnr
n)rn−1 dr =

1

ωn(rn2 − rn1 )

∫ ωnrn2

ωnrn1

f(ρ) dρ,

which is just the average of f on the interval (ωnr
n
1 , ωnr

n
2 ). Similarly, one can show that

Ω(g, A) = Ω
(
f, (ωnr

n
1 , ωnr

n
2 )
)
, whence it follows that ‖g‖BMOA

≤ ‖f‖BMO .

Conversely, for any interval I = (a, b) ⊂ [0,∞), we may identify I with an annulus A of

inner radius (a/ωn)1/n and outer radius (b/ωn)1/n, and so the previous calculations show that

Ω(f, I) = Ω(g, A). Hence, ‖f‖BMO ≤ ‖g‖BMOA
.

Applying this meeting to the pair f ∗ and Sf which satisfy Sf(x) = f ∗(ωn|x|n) yields

‖Sf‖BMOA
= ‖f ∗‖BMO , thus providing a relationship between the behaviours of the two

rearrangements with respect to mean oscillation.

The third step is to relate cubes to balls.

Lemma 4.5.4. If f ∈ BMOB(Rn) then f ∈ BMO(Rn) with ‖f‖BMO ≤ ωn

(√
n

2

)n
‖f‖BMOB

.
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Proof. For each cube Q ∈ Q there is a B ∈ B such that Q ⊂ B and |B| ≤ ωn

(√
n

2

)n
|Q|.

Hence, by Property (B5),

−
∫
Q

|f − fQ| ≤ ωn

(√
n

2

)n
−
∫
B

|f − fB|,

from where the result follows.

Now we can piece together these three lemmas, along with Corollary 4.3.10, to prove the

main theorem of the section.

Proof of Theorem 4.5.1. Let f ∈ BMOB(Rn). Then,

‖Sf‖BMOB
≤ 2n‖Sf‖BMOA

= 2n‖f ∗‖BMO ≤ 2n × 2
n+3

2 ‖f‖BMO

≤ 2n × 2
n+3

2 × ωn
(√

n

2

)n
‖f‖BMOB

= 2
n+3

2 ωnn
n/2‖f‖BMOB

.

Therefore, Sf ∈ BMOB(Rn).
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Chapter 5

Appendices

The goal of this appendix is to supplement the chapters of this thesis. In some instances,

additional details or examples are given; in other instances, proofs are given of results that

are mentioned within the text.

Appendix I: BMO on shapes and sharp constants

I.1 In this paper, there are three instances of the Hilbert space structure of an L2 space

being used, which could use some further explanation. One such instance is the following, a

part of Proposition 2.3.4.

Proposition 5.1.5. For any basis S , L∞(Ω) ⊂ BMO2
S (Ω) with

‖f‖BMO2
S
≤ ‖f‖L∞ .

Proof. Fix f ∈ L∞(Ω) and a shape S ∈ S , and consider the Hilbert space L2(S, dx|S|).

Denoting by 〈·, ·〉 the inner product on this L2 space, we see that for any constant c,

〈f − fS, c〉 = −
∫
S

(f − fS)c = c(fS − fS) = 0

Denoting by ‖ · ‖L2 the norm on L2(S, dx|S|), this orthogonality, along with the Pythagorean

inequality, implies that

‖f‖2
L2 = ‖(f − fS) + fS‖2

L2 = ‖f − fS‖2
L2 + ‖fS‖2

L2
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and so

‖f − fS‖2
L2 = ‖f‖2

L2 − ‖fS‖2
L2 .

Writing out what this norm is, we have that

−
∫
S

|f − fS|2 = −
∫
S

|f |2 −−
∫
S

|fS|2 = −
∫
S

|f |2 − |fS|2.

Since |fS|2 ≥ 0, it follows that

−
∫
S

|f − fS|2 ≤ −
∫
S

|f |2 ≤ −
∫
S

‖f‖2
L∞ = ‖f‖L∞ .

Appendix II: Boundedness for maximal functions and

BMO on shapes in the product setting

II.1 We mention some of the basic results related to maximal functions. The notation

{f > α} and its variants will be used in what follows as shorthand for {x ∈ Rn : f(x) > α}.

Proposition 5.2.6. Let S be a basis of shapes in Rn and f ∈ L1(S) for every S ∈ S .

Then, the maximal function MS f is lower semicontinuous, hence measurable.

Proof. Fix α > 0 and consider the set E = {MS f > α}. If x ∈ E, then MS f(x) > α and so

there exists a shape S ∈ S containing x such that

−
∫
S

|f | > α.

This implies that for any y ∈ S, MS f(y) > α. Since S is open, there is a ball Bx ⊂ S

containing x, and so MS f(y) > α for every y ∈ Bx. Therefore, Bx ⊂ E. Since this is true

for every x ∈ E, it follows that E is open. Hence, MS f is lower semicontinuous and so

measurable.

Recall that the distribution of a measurable function f on Rn is defined as µf (α) = {|f | >

α} for α > 0.
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Let 1 ≤ p < ∞. A measurable function f is said to be in the weak Lebesgue space,

Lpw(Rn), if there exists a constant C ≥ 0 such that µf (α) ≤ Cp

αp
for all α > 0. We set

‖f‖Lpw = sup
α>0

αµf (α)1/p.

An operator T is said to be strong-type (p, p) if it is bounded from Lp(Rn) to Lp(Rn) and

is said to be weak-type (p, p) if it is bounded from Lp(Rn) to Lpw(Rn). From Chebyshev’s

inequality, it follows that a strong-type (p, p) operator is weak-type (p, p) with the same

bound. This is easy enough to prove by hand: Let T be an operator that is strong-type (p, p)

with ‖Tf‖
Lp
≤ c ‖f‖Lp for all f ∈ Lp(Rn). Then, for f ∈ Lp(Rn) and α > 0,

αpµTf (α) =

∫
Rn
αpχ{|Tf |>α} dx <

∫
Rn
|Tf |pχ{|Tf |>α} dx ≤

∫
Rn
|Tf |p dx,

showing that Tf ∈ Lpw(Rn) with ‖Tf‖Lpw ≤ ‖Tf‖Lp ≤ c ‖f‖Lp .

The following Hardy-Littlewood-Wiener theorem is the classical boundedness result in

the area of maximal functions. Its proof can be found in many texts, including [78], and is

also given here.

Theorem 5.2.7. The Hardy-Littlewood maximal function MQ is weak-type (1, 1) and strong-

type (p, p) for all 1 < p ≤ ∞.

Note that MQ is measurable for f ∈ L1
loc(Rn) by the previous proposition. Also, we need

to know that Lp(Rn) ⊂ L1
loc(Rn) for all 1 ≤ p ≤ ∞. This is trivially true for p = 1 and holds

for 1 < p ≤ ∞ by an application of Hölder’s inequality: for any compact K ⊂ Rn,∫
K

|f | =
∫
Rn
|fχK | ≤ ‖f‖Lp‖χK‖Lq = |K|1/q‖f‖Lp ,

where 1 ≤ q <∞ is such that 1
p

+ 1
q

= 1.

Since Q ≈ B (see Definition 2.2.2 and the following paragraph), it follows that MQ ≈MB

pointwise almost everywhere. Hence, MQ is strong/weak-type (p, p) if and only if MB is. As

such, the proof is provided for MB. In fact, the proof is actually provided for the restricted

maximal function MBR , R > 0, where BR is the basis of all balls of radius at most R. Then,

noticing that the bounds are independent of R > 0, we can send R→∞.
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Proof. Fix α > 0 and f ∈ L1(Rn). For each x ∈ {MBRf > α}, there exists a ball B 3 x such

that

−
∫
B

|f | > α.

From here it follows that

|B| ≤ 1

α

∫
B

|f |

Consider the collection F of these balls. By assumption they all have radius at most R and

they form a cover of {MBRf > α}. By the Vitali covering lemma (see Lemma 4.3.4), there

is a countable pairwise-disjoint subcollection G for which

|{MBRf > α}| ≤
∑
B∈G

|5B| ≤ 5n
∑
B∈G

|B| ≤ 5n
∑
B∈G

1

α

∫
B

|f | ≤ 5n

α

∫
Rn
|f |.

This shows that MBR is weak-type (1, 1). Note that countability of the subcollection G follows

either since Rn is separable, hence Lindelöf, or since Lebesgue measure is doubling.

To show that MBR is strong-type (∞,∞) is very easy: for f ∈ L∞(Rn),

MBR(x) = sup
B3x
−
∫
B

|f | ≤ ‖f‖L∞

for almost every x ∈ Rn, and so ‖MBR‖L∞ ≤ ‖f‖L∞ .

To show the strong-type (p, p) result for 1 < p <∞, there are two options. On one hand,

this is exactly what comes from an application of the Marcinkiewicz interpolation theorem

since we already know that MBR is weak-type (1, 1) and strong-type (∞,∞).

On the other hand, one can prove the result directly by, in essence, proving the special

case of the Marcinkiewicz interpolation theorem mentioned above. To that end, fix α > 0

and write f ∈ Lp(Rn) as f = f1 + f2, where f1 = fχ{|f |≤α/2} and f2 = fχ{|f |>α/2}. Clearly,

f1 ∈ L∞(Rn) since it is bounded above by α/2 almost everywhere. As p > 1, it follows that

2|f(x)|
α

≤
(

2|f(x)|
α

)p
if |f(x)| > α/2, and so

|f(x)| ≤ 2p−1α1−p|f(x)|p

almost everywhere. Thus,∫
Rn
|f2| =

∫
Rn
|f |χ{|f |>α/2} ≤ 2p−1α1−p‖f‖pLp , (5.1)
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showing that f2 ∈ L1(Rn). Also, sublinearity of the maximal function implies that MBRf ≤

MBRf1 +MBRf2 ≤ α
2

+MBRf2, and so

{MBRf > α} ⊂ {MBRf2 > α/2}. (5.2)

This, along with Cavalieri’s principle, the weak-type (1, 1) estimate applied to f2, and

Fubini’s theorem imply∫
Rn
|MBRf |p = p

∫ ∞
0

αp−1|{MBRf > α}| dα

≤ p

∫ ∞
0

αp−1|{MBRf2 > α/2}| dα

≤ 2 · 5np
∫ ∞

0

αp−2

(∫
Rn
|f2|
)
dα

= 2 · 5np
∫ ∞

0

αp−2

(∫
Rn
|f |χ{|f |>α/2}

)
dα

= 2 · 5np
∫
Rn
|f(x)|

(∫ 2|f(x)|

0

αp−2 dα

)
dx

=
2p5np

p− 1

∫
Rn
|f |p.

A consequence of this theorem is that MQf is finite almost everywhere for f ∈ Lp(Rn).

This should be compared with the case of f ∈ BMO(Rn), where MQf may be identically in-

finite (for instance, if f(z) = − log |z|), even though BMO(Rn) ⊂
⋂

1≤p<∞ L
p
loc(Rn). This last

statement follows from combining Lemma 2.3.3 with the fact that BMO(Rn) ∼= BMOp(Rn)

for all 1 < p <∞ (see Corollary 2.7.7).

The fact that MQ is weak-type (1, 1) does not preclude it from being strong-type (1, 1).

What does preclude this is the following interesting fact: If f ∈ L1(Rn) is not zero almost

everywhere, then MQ /∈ L1(Rn). In other words, except for the zero element of L1(Rn), the

Hardy-Littlewood maximal function maps L1(Rn) to outside of L1(Rn). To see this, again

switching to the basis B, take r large enough so that

α =

∫
B(0,r)

|f | > 0.
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Then, for |x| > r, the ball B(x, r+ |x|) contains B(0, r), and so monotonicity of the integral

gives

MBf(x) ≥ −
∫
B(x,r+|x|)

|f | ≥ 1

|B(x, r + |x|)|

∫
B(0,r)

|f | = α

ωn(r + |x|)n
,

where ωn is the volume of the n-dimensional unit ball. The right-hand side is a non-integrable

function of x, and so MBf(x) cannot be integrable.

II.2 Throughout the paper, it is used, vaguely put, that given a measurable function f

supported on a set of finite measure in Rn, the essential infimum of restrictions of f to

lower-dimensional cross-sections grows with the dimension of the cross-section. The simplest

manifestation of this fact is the following.

Proposition 5.2.8. Let S1, S2 be measurable subsets of positive and finite measure in R and

f be a measurable real-valued function such that ess infS f > −∞, where S = S1×S2. Then,

min{ess inf
S2

fx, ess inf
S1

fy} ≥ ess inf
S

f

almost everywhere, where fx(y) = fy(x) = f(x, y).

Proof. First, recall that the Lebesgue σ-algebra on R2 contains the family formed by the

product of two sets in the Lebesgue σ-algebra on R. As such, the measurability of S1 and

S2 implies the measurability of S. Moreover, the Lebesgue measure on R2 coincides with the

product measure of two copies of Lebesgue measure on R, and so |S| = |S1||S2|.

By the definition of essential infimum, {(x, y) ∈ S : f(x, y) < ess infS f} has measure

zero. By Fubini’s theorem (Lebesgue measure is σ-finite), for almost every y ∈ S2, the set

{x ∈ S1 : fy(x) < ess infS f} is measurable and has measure zero. By the definition of

essential infimum, again, this implies that for almost every y ∈ S2, ess infS1 fy ≥ ess infS f .

Hence,

|{(x, y) ∈ S : ess inf
S1

fy ≥ ess inf
S

f}| = |S1||{y ∈ S2 : ess inf
S1

fy ≥ ess inf
S

f}| = |S1||S2| = |S|.

Applying the previous argument in the other direction, we find that for almost every

x ∈ S1, ess infS2 fx ≥ ess infS f and

|{(x, y) ∈ S : ess inf
S2

fx ≥ ess inf
S

f}| = |S|.
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Therefore, the set

{(x, y) ∈ S : min{ess inf
S2

fx, ess inf
S1

fy} ≥ ess inf
S

f}

is the intersection of two sets of full measure and so, has full measure itself. The result follows

from this.

Appendix III: Rearrangement inequalities on spaces de-

fined by mean oscillation

III.1 In the introduction, it is mentioned that BMO is not rearrangement invariant. A

specific example is the following. Let f be the function given by f(x) = − log(2x)χ(0,1/2)

which is in BMO(0, 1). Then the function g defined by g(x) = − log(2x− 1)χ(1/2,1) is just a

translate of f , thus equimeasurable with f . This function fails to be in BMO(0, 1).

III.2 Note that the definition of a function being rearrangeable is not uniform across the

literature. Some authors choose only to define the decreasing rearrangement for measurable

functions that vanish at infinity. That is, measurable functions for which µf (α) <∞ for all

α > 0.

First, we show that notion is stronger than that of being rearrangeable as defined in the

text.

Proposition 5.3.9. If f be a measurable real-valued function that vanishes at infinity, then

it is rearrangeable.

Proof. Since µf (α) is decreasing and bounded below by zero, its limit as α → ∞ exists.

Consider the sequence {αn} where αn = n. Then, the sets En = {|f | > n} satisfy En+1 ⊂ En,

µ(En) = µf (n), and
⋂
nEn = ∅. Since µ(En) < ∞ for all n by assumption, continuity of µ

from above implies that

lim
α→∞

µf (α) = lim
n→∞

µf (n) = lim
n→∞

µ(En) = µ

(⋂
n

En

)
= µ(∅) = 0.
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This shows that assuming that f vanishes at infinity is stronger than the assumption that

µf vanishes at infinity. For 1 ≤ p <∞, every function f ∈ Lp(Rn) vanishes at infinity. This

follow immediately from the fact that Lp(Rn) ⊂ Lpw(Rn). On the other hand, every function

in L∞ is rearrangeable, but does not necessarily vanish at infinity.

III.3 The preliminaries section contains some unproven assertions that are simple enough

to prove, so some are included here.

First, note that the distribution µf : [0,∞) → [0,∞] of a measurable function f is

decreasing since, by monotonicity of measure,

α ≤ β ⇒ {x ∈M : |f(x)| > β} ⊂ {x ∈M : |f(x)| > α} ⇒ µf (β) ≤ µf (α).

This implies, then, that the decreasing rearrangement is decreasing:

s1 ≤ s2 ⇒ {α ≥ 0 : µf (α) ≤ s1} ⊂ {α ≥ 0 : µf (α) ≤ s2} ⇒ f ∗(s1) ≥ f ∗(s2).

Similarly, one shows that if |f | ≤ |g|, then f ∗ ≤ g∗.

Proposition 5.3.10 (Property (R1)). For all α ≥ 0, µf (α) = mf∗(α).

Proof. Fix α ≥ 0 and write E∗α = {s ∈M∗ : f ∗(s) > α}. Then,

s ∈ E∗α ⇔ f ∗(s) > α⇔ inf{β ≥ 0 : µf (β) ≤ s} > α⇔ µf (α) > s,

since µf is decreasing and right-continuous.

Thus, E∗α = {s ∈ X∗ : µf (α) > s} = [0, µf (α)) and so mf∗(α) = |[0, µf (α))| = µf (α).

Proposition 5.3.11 (Property (R2)). For any α ≥ 0 such that µf (α) <∞ and β > α,

µ({x ∈M : α < |f(x)| < β}) = |{s ∈M∗ : α < f ∗(s) < β}|.

Proof. As the distribution is decreasing and right-continuous, we have that

µ({x ∈M : |f(x)| ≥ β}) = lim
η→β−

µf (η).

Defining µf (β
−) to be this quantity, it is finite since µf is decreasing. Thus,

µ({x ∈M : α < |f(x)| < β}) = µf (α)− µf (β−).
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By equimeasurability, µf (α) = mf∗(α). Also,

µf (β
−) = lim

η→β−
µf (η) = lim

η→β−
mf∗(η) = mf∗(β

−),

keeping the notation consistent. Hence,

µf (α)− µf (β−) = mf∗(α)−mf∗(β
−) = |{s ∈M∗ : α < f ∗(s) < β}|.

Proposition 5.3.12 (Property (R3)). The decreasing rearrangement is an isometry from

Lp(M) to Lp(M∗) for all 1 ≤ p <∞. Furthermore, it is non-expansive, thus continuous.

Proof. That it is an isometry follows immediately from Cavalieri’s principle and equimeasur-

ability: ∫
M

|f |p =

∫ ∞
0

pαp−1µf (α) dα =

∫ ∞
0

pαp−1µf∗(α) dα =

∫
M∗

(f ∗)p.

To show that the decreasing rearrangement is non-expansive, first note that it suffices to

show this for f, g ≥ 0 almost everywhere as

‖f ∗ − g∗‖Lp(M∗) = ‖|f |∗ − |g|∗‖Lp(M∗) ≤ ‖|f | − |g|‖Lp(M) ≤ ‖f − g‖Lp(M)

by the reverse triangle inequality.

Take 0 ≤ f, g ∈ Lp(M). As f ≤ max(f, g) and g ≤ max(f, g) almost everywhere, it

follows that f ∗ ≤ max(f, g)∗ and g∗ ≤ max(f, g)∗, and so max(f ∗, g∗) ≤ max(f, g)∗. Then,

by equimeasurability,∫
M

|f − g|p =

∫
M

[2 max(f, g)− (f + g)]p =

∫
M∗

[2 max(f, g)∗ − (f ∗ + g∗)]p

≥
∫
M∗

[2 max(f ∗, g∗)− (f ∗ + g∗)]p =

∫
M∗
|f ∗ − g∗|p.

Proposition 5.3.13 (Property (R4)). For any measurable set A ⊂M ,∫
A

|f | ≤
∫
A∗
f ∗,

where A∗ = (0, µ(A)).
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Proof. We consider (|f |χA)∗. Since |f |χA ≤ |f |, we have that µ|f |χA ≤ µf and so (|f |χA)∗ ≤

f ∗.

If µ(A) =∞, then µ(M) =∞ and so A∗ = M∗ = (0,∞). Hence, the previous proposition

with p = 1 gives ∫
A

|f | =
∫
M

|f |χA =

∫ ∞
0

(|f |χA)∗ ≤
∫ ∞

0

f ∗.

If µ(A) < ∞, then µ|f |χA ≤ |A| implies that (|f |χA)∗(t) = 0 for all t ≥ |A|. Therefore,

(|f |χA)∗ ≤ f ∗χA∗ . Using this and the previous proposition with p = 1,∫
A

|f | =
∫
M

|f |χA =

∫
M∗

(|f |χA)∗ ≤
∫
M∗
f ∗χA∗ =

∫
A∗
f ∗.

Note that the following is an improvement (by a factor of 2) of Proposition 2.4.12.

Proposition 5.3.14 (Property (O4)). For any shape S, if S̃ is another shape such that

S̃ ⊂ S and µ(S) ≤ cµ(S̃) for some constant c, then

Ω(f, S̃) ≤ cΩ(f, S).

Proof. If fS ≤ fS̃, then by Property (O3), or Lemma 2.5.15,

−
∫
S̃

|f − fS̃| = 2−
∫
S̃

(f − fS̃)+ ≤ 2c−
∫
S

(f − fS)+ = c−
∫
S

|f − fS|.

Likewise, if fS ≥ fS̃, then

−
∫
S̃

|f − fS̃| = 2−
∫
S̃

(fS̃ − f)+ ≤ 2c−
∫
S

(fS − f)+ = c−
∫
S

|f − fS|.

Proposition 5.3.15 (Property (B1)). If Q0 is a cube in Rn of finite measure and f ∈

BMO(Q0), then f − fQ0 ∈ L1(Q0) with ‖f − fQ0‖L1(Q0) ≤ |Q0|‖f‖BMO(Q0).

Proof. This follows from Property (O1) and the fact that f − fQ0 has mean zero:∫
Q0

|f − fQ0 | = |Q0|Ω(f − fQ0 , Q0) = |Q0|Ω(f,Q0) ≤ |Q0|‖f‖BMO(Q0).
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III.4 The key to the proof of the boundedness of the decreasing rearrangement from

BMO(Rn) to BMO(R+) with constant 2n is the Calderón-Zygmund lemma. This is a funda-

mental result in harmonic analysis.

Theorem 5.3.16 (Local Calderón-Zygmund lemma ([78])). Let 0 ≤ f ∈ L1(Q0) and α ≥

fQ0. Then there exists a countable collection of pairwise-disjoint subcubes {Qi} of Q0 such

that

α < −
∫
Qi

f ≤ 2nα

for each i and f ≤ α almost everywhere on Q0 \
⋃
Qi.

Proof. Bisect Q0 along each of its n sides and denote by Q′ one of the resulting subcubes.

Then, one of two situations is possible: either fQ′ > α, in which case it is placed into the

desired collection; or, fQ′ ≤ α, in which case we do not. For these latter cubes, we repeat

the process. As a result, we obtain a countable collection of pairwise disjoint cubes {Qi} for

which fQi > α holds for each i.

By construction, for each i, there is a cube Q′i ⊃ Qi satisfying fQ′i ≤ α. Furthermore,

Qi was obtained by bisecting each side of Q′i, so |Q′i| = 2n|Qi|. Hence,

−
∫
Qi

f ≤ 2n−
∫
Q′i

f ≤ 2nα.

By Lebesgue’s differentiation theorem, for almost every x ∈ Q0 we have that

f(x) = lim
Q
−
∫
Q

f

for every sequence of cubes Q 3 x such that δ(Q) → 0. The construction yields for each

x ∈ Q0 \
⋃
Qi precisely such a sequence of cubes with the further property that for each

cube, fQ ≤ α. Therefore, f(x) ≤ α almost everywhere on Q0 \
⋃
Qi.

In the text, it is claimed that the same process as above can be used within the context of

the basis D. With the proof written out, it becomes clear why. Whereas Q has the property

that each cube can be bisected along each side to yield 2n congruent subcubes, the basis D

has the property that each rectangle can be bisected along its longest side to yield precisely

2 congruent subrectangles that are still in D.

Also, the rectangles in D have bounded eccentricity due to the relationship between the

sidelengths, guaranteeing that the Lebesgue differentiation theorem holds for these rectangles.
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Theorem 5.3.17 (Local Calderón-Zygmund lemma for D). Let 0 ≤ f ∈ L1(R0), where R0 ∈

D, and α ≥ fR0. Then there exists a countable collection of pairwise disjoint subrectangles

{Ri} ⊂ D of R0 such that

α < −
∫
Ri

f ≤ 2α

for each i and f ≤ α almost everywhere on R0 \
⋃
Ri.

III.5 In Remark 4.4.4, it is mentioned that many familiar bases satisfy the assumptions of

the lemma. We give here a proof for B, but the same steps work for other bases, including Q

and R. Note that a key part of the proof is the Lebesgue density theorem. It is well-known

that it holds for the bases Q and B, but it also holds for R (see [44]).

Lemma 5.3.18. Let A be a measurable subset of Rn such that |A| > 0 and |Ac| > 0. Then,

for all t > 0 there exists a ball B̃ with |B̃| < t such that

|A ∩ B̃|
|B̃|

=
1

2
=
|Ac ∩ B̃|
|B̃|

.

Proof. Note, first, that measurability of A implies measurability of Ac and that, for any ball

B, |A ∩ B|+ |Ac ∩B| = |B|.

Fix t > 0 and 1
2
< η < 1. By the Lebesgue density theorem, there exist y ∈ A, z ∈ Ac,

and r < t/2 such that

|A ∩ B(y, r)|
|B(y, r)|

> η and
|Ac ∩ B(z, r)|
|B(z, r)|

> η.

This implies that

|A ∩ B(y, r)|
|B(y, r)|

> η and
|A ∩ B(z, r)|
|B(z, r)|

< 1− η.

Then, the function

f(x) =
|A ∩ B(x, r)|
|B(x, r)|

is continuous and so there exists an x̃ for which

|A ∩ B(x̃, r)|
|B(x̃, r)|

=
1

2
=
|Ac ∩ B(x̃, r)|
|B(x̃, r)|

.
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III.6 In the proof of Theorem 4.4.9, the following fact is used without proof.

Proposition 5.3.19. If {fk} is a sequence of monotone functions on [a, b] converging point-

wise almost everywhere to a uniformly continuous limit f , then the convergence is uniform.

Proof. Fix ε > 0. By the uniform continuous of f , we may select a partition a = x0 <

x1 < · · · < xN = b of [a, b] such that |f(y) − f(z)| < ε/2 for all y, z ∈ [xi, xi+1] for each

i = 0, . . . , N − 1.

We impose the additional specification that the partition points are chosen such that

{fk(xi)} converges to f(xi) for each i = 0, . . . , N . That is, there exist Ki such that if k ≥ Ki,

then |fk(xi)− f(xi)| < ε/2. Write K = maxiKi.

Fix x ∈ [a, b] and select i such that x ∈ [xi, xi+1]. For k ≥ K, the previous two estimates

gives us that

f(x)− ε < f(xi)−
ε

2
< fk(xi) ≤ fk(x) ≤ fk(xi+1) < f(xi+1) +

ε

2
< f(x) + ε

if fk is monotone increasing, and the opposite inequality if fk is monotone decreasing.

In either case, we find that |fk(x)− f(x)| < ε for all k ≥ K and for all x ∈ [a, b].

III.7 At the very end of the proof of Theorem 4.4.9, the concept of uniform integrability is

needed. We recall here those aspects of the theory that were used in the text. Let M be a

measurable subset of Rn with the induced Lebesgue measure.

Definition 5.3.20. We say that a family F of measurable functions on M is uniformly

integrable if for all ε > 0 there exists a δ > 0 such that if A ⊂M is measurable and |A| < δ,

then ∫
A

|f | < ε

for all f ∈ F .

Note that this condition is always true if F is a singleton comprised of one integrable

function.

Proposition 5.3.21. Let {fk} and {gk} be two uniformly integrable sequences on M . Then,

their sum {fk + gk} is also uniformly integrable on M .
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Proof. Fix ε > 0. By uniform integrability of {fk} there exists a δ1 such that

|A| < δ1 ⇒
∫
A

|fk| <
ε

2

for all k. By uniform integrability of {gk} there exists a δ2 such that

|A| < δ2 ⇒
∫
A

|gk| <
ε

2

for all k. Hence, if δ < min(δ1, δ2), then

|A| < δ ⇒
∫
A

|fk + gk| ≤
∫
A

|fk|+
∫
A

|gk| < ε

for all k.

Proposition 5.3.22. If {fk} is a convergent sequence in L1(M), then {fk} is uniformly

integrable.

Proof. Fix ε > 0. For each k, we have fk− f ∈ L1(M) and so there exists a δk > 0 for which∫
A

|fk − f | < ε

whenever |A| < δk. Select K such that ‖fk − f‖L1 < ε for k ≥ K and then set δ = min
1≤i≤K

δi.

If |A| < δ, then if k ≥ K it follows that∫
A

|fk − f | ≤ ‖fk − f‖L1 < ε

and if k < K it follows that |A| < δk and so∫
A

|fk − f | < ε.

Therefore, {fk − f} is uniformly integrable. By Proposition 5.3.21, it follows that {fk} =

{(fk − f) + f}.is uniformly integrable.

Proposition 5.3.23. If {fk} is a uniformly integrable sequence on M and {gk} is another

sequence of integrable functions on M such that |gk| ≤ |fk| for all k, then {gk} is also

uniformly integrable.
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Proof. Fix ε > 0. Then, by uniform integrability of {fk}, there is a δ > 0 such that |A| < δ

implies ∫
A

|gk| ≤
∫
A

|fk| < ε

for all k, showing that {gk} is uniformly integrable.

Theorem 5.3.24 (Vitali convergence theorem [74]). Let E be of finite measure. Suppose

the sequence of functions {fk} is uniformly integrable over E. If fk → f pointwise almost

everywhere on E, then f is integrable over E and

lim
k→∞

∫
E

fk =

∫
E

f.
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Chapter 6

List of function spaces

• Lp: the Lebesgue space of p-integrable functions.

• Lploc: the space of locally p-integrable functions.

• W 1,p: the Sobolev space of Lp functions with distributional first-order partial derivatives

in Lp.

• JNp: the John-Nirenberg space.

• BMOS : the space of functions of bounded mean oscillation with respect to a basis of

shapes S .

• BMOrec,S : the rectangular BMO space with respect to a basis of shapes S .

• BLOS : the class of functions of bounded lower oscillation with respect to a basis of

shapes S .

• BLOrec,S : the rectangular BLO space with respect to a basis of shapes S .

• VMOS : the space of functions of vanishing mean oscillation with respect to a basis of

shapes S .
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