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Abstract

Financial Risk Management in Electricity Markets

Maedeh Mehranfar

This research studies a decision problem to allocate an electricity trading firm’s budget to

its trading strategies using a risk management framework. The considered problem consists

of maximizing a firm’s profit while controlling two risk measures: the variance of the portfolio

and the conditional value at risk. The dependence structure of the returns associated

with di�erent trading strategies is modelled using vine copulas and it is assumed that the

marginal distribution of the returns originates from the Johnson family of distributions. The

studied problem is formulated as a stochastic integer quadratic program and solved it with

a commercial optimization software. The proposed mathematical program is assessed on the

firm’s portfolio and the obtained results are discussed.
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Chapter 1

Introduction

After Tomas Edison invented the light bulb in 1879, he founded the first electrical power plant

in the United States. The next step for him was to find and build an electrical distribution

system as there was no infrastructure to deliver electricity at that time. Therefore, the very

first model of electricity distribution was a "vertically-integrated " model where all the power

plants, transmission, and distribution lines belonged to the one company which in term,

delivered the electricity directly to the end customer.

Shortly afterwards, other electricity companies started working with the same model and

they all had their unique customers. As a result, if a company encountered any problems in

their plants or the transmission lines, it would result in a blackout for its customers.

The problem was solved when the businessmen lobbied and argued that the publicly-

regulated monopolies would lower prices and make the power grid safer and more reliable.

They eliminated the competition so that each utility company had the authority to operate

within a specific geographical region.

The "vertically-integrated" markets, also known as "traditionally-regulated" markets still

exist in di�erent parts of the United States.

As time passed and people were more in need of electricity, the existing electricity market

model was no longer adequate. As a result, a federal committee known as the Federal Energy

Regulatory Commission (FERC) was formed to supervise and regulate the transmission and

sale of electricity in the states and federal borders. Subsequently, the generator companies,
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transmission line owners, and utilities formed non-profit private organizations referred to

as Independent System Operators (ISOs) to share the transmission responsibilities. They

obtained the FERC’s approval to regulate independently. The goal of the ISOs is to ensure

reliability by controlling the power dispatch, transmission and distribution of electricity

(Barron, 2019). Figure 1.1 shows the di�erent ISOs and their operation region in North

America.

Figure 1.1: The ISOs in North America (Barron, 2019)

Nowadays each ISO has its own electricity market. Di�erent individuals and companies

can participate in di�erent electricity markets. One of the most important aspects of the

companies that participate in electricity markets is financial risk management. One of the

definitions of financial risk is the possibility of losing money on an investment or business

venture (Chen, 2020). This definition is also applied to electricity markets. The electricity

market participants are always concerned about their profits and losses (P&L) similar to

participants in other markets. However, the challenge of electricity is that it cannot be

stored. This feature of electricity makes its market more volatile than other markets. The

electricity market participants are more exposed to risk as volatility makes risk heavier. In

a risk management framework, one of the classic problems is selecting a portfolio such that
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the net exposure to risk is minimized for a suitable level of profitability.

There are several securities and derivatives in electricity markets that market participants

can use in order to avoid risk exposure. A few instances of these instruments are forward

contracts, future contracts and di�erent options among others. Forward contracts allow the

holder to buy or sell a specific amount of electricity at a predetermined price and time in

the future as stated in their contract. Future contracts are similar to the forward contracts

except that electricity is not physically traded. Options also operate in a similar manner as

in other markets.

An optimal selection of physical and financial approaches using these securities and

derivatives can be made in order to create a portfolio with controlled risk. The physical

trading approaches are techniques in which the electricity is actually traded such as forward

contracts. The financial approaches are the ones that the trade is settled financially, but the

electricity will not be traded physically. Using a diverse set of trading approaches can help

market participants to hedge against the risk of a single approach.

Some studies provide solutions for the portfolio selection problem in electricity markets.

Kaye et al. (1990) studies forward contracts as a risk management instrument for market

participants. The authors use a simulation model to analyse the e�ectiveness of forward

contracts in hedging against spot price fluctuations. Collins (2002) argue the e�ect of

future contracts in electricity markets and how their special features can be used to avoid

risk. Vehviläinen and Keppo (2003) formulate the portfolio selection problem as a static

optimization problem. The proposed model can cover a wide range of instruments in

electricity markets, unlike the classic Markowitz (1952) portfolio optimization model which is

not easily adaptable in practice. Their optimization model maximizes the profit of an agent,

while controlling the risk taken. A Monte Carlo simulation is used to transform the problem

to a deterministic non-linear optimization problem. The risk measure used is value at risk,

which is the worst possible loss at a given confidence level over a specific time horizon (Jorion,

1996). Liu and Wu (2007) address the problem of portfolio selection from the perspective of

a generator company (Genco). The authors optimize a Genco’s portfolio in a manner that

the profit is maximized while considering the related risk factors. They use modern portfolio

theory for their portfolio optimization approach. Modern portfolio theory, also called the
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Markowitz portfolio theory, attempts to maximize the expected return of portfolio while

simultaneously minimizing the risk (Mangram, 2013). In Liu and Wu’s method, decision-

makers’ risk aversion, and the correlation of di�erent revenues are considered. Furthermore,

the risks associated with physical approaches, such as price risk and delivery risk (due to the

transmission constraints) are reflected in their model. The portfolio optimization model is

formulated as a quadratic programming problem which is then solved in two steps. In the

first step, a single risk free asset and a fixed number of risky assets are optimally selected,

afterwards, the budget is optimally allocated to the selected assets. Denton et al. (2003)

also addresses the issue from a generator/producer perspective. They discuss the market

price based commitment unit to evaluate the risk. Eichhorn et al. (2004) use a mixed-integer

stochastic program to address the issue. They assume that the observed spot prices and the

load data are the realizations of a specific bivariate random variable. Also, they model the

joint distribution of the stochastic process by a time series model. In addition, they use a

scenario generation method using Monte Carlo simulation from the time series model. The

considered risk measure corresponds to the conditional value at risk (CVaR).

Several studies in the literature discuss portfolio optimizations problem from di�erent

perspectives and approaches while using di�erent risk measures. In this thesis, a portfolio

optimization problem of relevance to an undisclosed electricity trading firm is studied. The

firm seeks to allocate a limited budget to four trading strategies. The objective is to maximize

their profits, while simultaneously controlling two risk measures: the variance and CVaR of

the portfolio.

The main contributions of this thesis are the following. First, a new portfolio optimization

model is introduced to represent a complex real-world problem arising in the North-American

electricity market. Second, the model is formulated as a stochastic integer quadratic program

where the marginal distribution of the trading strategies’ returns originates from a family

of Johnson distributions. The means of the marginal distributions are used as coe�cients

in the objective function. In order to estimate the variance of the portfolio, the sample

covariance matrix is used. To estimate the CVaR, several scenarios are generated from

the joint distribution of the trading strategies’ P&Ls. The joint distribution is modelled

using vine copulas. The scenarios are di�erent possible P&Ls for di�erent trading strategies
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in the electricity trading firm’s portfolio in a given planning horizon. The third and final

contribution is to analyse the results of computational experiments performed using real

data. The relative performance of the portfolios obtained with the proposed formulation

with respect to the portfolios used by the firm is assessed.

The structure of this thesis is as follows. In Chapter 2, the preliminaries needed for

this study, from the details about how one specific ISO operates to the mathematical tools

utilized in this research, are provided. Chapter 3 describes in detail the formal definition

of the considered problem and its formulation. In Chapter 4 the methods used to solve the

problem are explained. Finally, Chapter 5 gives a conclusion of this study and provides some

future research directions.
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Chapter 2

Preliminaries

In this chapter, a succinct overview of the theoretical, methodological, and practical concepts

used during this thesis is provided. The first section introduces the New York Independent

System Operators (NYISO). All the other ISOs operate in a similar way. The following

sections explain the mathematical tools used in this study in order to formulate the problem of

maximizing the profit of the partnering electricity trading company while controlling the risk.

The second section introduces the Johnson family of distributions. Afterwards, conditional

value at risk is defined. Furthermore, copulas are introduced and in the final section, details

about modern portfolio theory are provided.

2.1 New York Independent System Operator (NYISO)

The New York Independent System Operator or NYISO is responsible for managing the

electricity market in the New York state. NYISO works with power generation companies,

transmission owners, and other utilities to manage electricity through the New York power

grid, and meet the customers’ demand in order to sustain the reliability of the whole system.

NYISO consists of eleven pricing zones and four interfaces. The interfaces are for

importing/exporting electricity from/to the other ISO. These di�erent zones and interfaces

are listed in Table 2.1 .

Multiple di�erent entities participate in the electricity market. They include all

organizations that participate in producing, transmitting, selling, and/or purchasing for

6



Zone A West
Zone B Genesee
Zone C Central
Zone D North
Zone E Mohawk Valley
Zone F Capital
Zone G Hudson Valley
Zone H Millwood
Zone I Dunwoodie
Zone J New York City
Zone K Long Island
Interface IESO
Interface PJM
Interface Hydro-Quebec
Interface ISO-NE

Table 2.1: List of the pricing zones and interfaces in NYISO (NYISO, 2020b)

resale capacity, energy, and ancillary services in the wholesale market (NYISO, 2020a).

NYISO’s main mission is to administer the power grid in New York State to maintain the

reliability and safety of the system. Market participants can submit their bids and asks (also

known as bids and o�ers) to NYISO on a day-ahead basis or on a real-time basis which is

explained later in this study. Furthermore, NYISO receives all the bids and asks and uses an

algorithm called security-constrained unit commitment to plan the day-ahead market. In the

day-ahead planning process, several generators are selected to be dispatched at every hour

of the next day. After the dispatch scheduling is done, the electricity prices are calculated.

The system of pricing in NYISO referred to as locational based marginal pricing (LBMP).

As Dupuis et al. (2017) defines

"LBMP is essentially the cost to serve the next incremental megawatt (MW)

of load at a specific location on the grid, and it is determined by the NYISO

following bids and o�ers. Congestion and transmission losses lead to unequal

LBMP at di�erent locations."

The formula to calculate the LBMP is as follows (NYISO, 2020a)

LBMP = Marginal Cost of Energy ≠ Congestion + Losses.
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The marginal cost of energy is the price of electricity o�ered by a generator which is going to

be dispatched if another megawatt (MW) is needed on the grid. When the most economical

generator is not able to dispatch due to transmission constraints, dispatch will happen from

another generator with a higher price. The di�erence between this higher price and the most

economical price (initial price) is called congestion. Losses refer to the price of the wasted

electrical energy during the transmission. All of these three components together determine

the price of electricity at the pricing locations in NYISO.

The pricing locations in NYISO are zones. This system of pricing in NYISO is called

zonal pricing, meaning that the price of the electricity is constant all over the zone. There is

also another system of pricing referred to as nodal pricing where there are di�erent nodes in

each zone and each node has a di�erent price.

2.1.1 Electricty Market in NYISO

The NYISO electricity market is a two settlement market. Firstly, there is a spot market,

which is the real-time market which is going to be explained later in this section. Secondly,

there is a forward market, which is the day-ahead market. The day-ahead energy market lets

market participants commit to buy or sell wholesale electricity one day before the operating

day, to help avoid price volatility. The day-ahead market is only a financial market.

NYISO receives all the bids and o�ers after the day-ahead market closes at 5 am the

day before the operating day. Afterwards, it solves a co-optimization model simultaneously

for every hour of the next operating day to clear supply o�ers, and demand bids for

each hour of the operating day to yield day-ahead schedules. Furthermore, it e�ciently

allocates transmission capacity to day-ahead schedules by resolving transmission congestion.

In addition, NYISO sets the prices for the day-ahead market and releases the information at

9:00 A.M., the day before the operating day.

When the operating day arrives, the market participants are able to trade electricity in

real-time. The real-time market is a physical market where market participants buy and sell

energy physically. Although the ISO has scheduled everything for the operating day, there

are cases where the demand might change. For example, the weather conditions might di�er

from the forecast. In general, a drop or increase in temperature, unforeseen storms, etc.
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are the reasons explaining the di�erence between the predicted demand and the real-time

demand in electricity markets.

The electricity price in the day-ahead market is hourly while it changes every 5 minutes

in the real-time market. Furthermore, the hourly price in the real-time market is calculated

as the average of the 5 minutes prices.

Generally, there are two major participants in the electricity market: physical traders and

virtual traders. They can both submit bids and o�ers in the market, and the ISO considers

both of them in the determination of prices. Of course, when it comes to scheduling the

dispatch of the electricity, only physical demand and supply are considered. Moreover, virtual

transactions only happen in the day-ahead market. Virtual traders can buy or sell a specific

amount of electricity (determined by the trader) virtually in the day-ahead market at the

day-ahead price, and the exact amount should be sold back or repurchased in the real-time

market at the real-time price since electricity cannot be stored.

The ISO can distinguish between the physical and the financial (virtual) bids and o�ers.

The allocation of the transmission capacity is only based on physical bids and o�ers. Also,

when the demand deviates from what was scheduled the day before, throughout the operating

day, the ISO commits unscheduled resources at least-cost to meet the energy requirements.

Usually, when demand is lower than the scheduled demand, the real-time prices are

less than the day-ahead prices. Furthermore, when the demand is higher than what was

scheduled, the real-time prices will be higher than the day-ahead prices since the more

expensive generators get dispatched. However, this is not always the case; sometimes higher

real-time prices are observed because of the outage of a generator or damage to electric

transmission lines.

One of the main di�erences between the electricity markets and markets with other

commodities is that electricity cannot be stored or is simply too expensive to store. Therefore,

there needs to be a continuous balance between supply and demand in real-time. However,

this usually does not happen in practice. This deviation from the day-ahead schedule causes

a non-zero spread between the day-ahead and the real-time prices. The market is said to be

e�cient when the spread is zero.

Figure 2.1 shows the graphical representation of the day-ahead and real-time prices for
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(a) Day-ahead prices (b) Real-time prices

Figure 2.1: A graphical representation of the day-ahead and real-time prices in NYISO.
(NYISO, 2020b)

the zones in NYISO. The day ahead prices are the ones that scheduled the day before.

In virtual bidding, the bids are settled hourly before the day-ahead market closes the day

before the operating day. Virtual bidders can set a maximum and a minimum for the price

such that if the price is not in that interval, they will not trade. Furthermore, they have

specified the trade volume and have decided if they are going to buy or sell that energy at

the day-ahead price or not.

2.2 Johnson SU distribution

The family of Johnson distributions was introduced by Johnson (1949) which contains four

distributions: normal, lognormal, Johnson SB, and Johnson SU distribution. Johnson SB

models the bounded distributions and Johnson SU models the unbounded distributions. One

of the features of this family of distributions is that by using the elementary functions, they

can be transformed into a normal distribution. Furthermore, this transformation is invertible.

Moreover, Johnson SU and Johnson SB distributions have four parameters, and this fact

makes them cover a broad range of distribution shapes.
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The Probability Distribution Function (pdf) of this family of Johnson distribution is

f(x) = ”

⁄
Ô

2fi
gÕ

A
x ≠ ›

⁄

B

e
≠ 1

2

1
“+”g( x≠›

⁄ )
22

where g(y) = ln( y
1≠y ), gÕ(y) = 1

y(1≠y) for the SB family and g(y) = ln(y +
Ô

y2 + 1), gÕ(y) =
1Ô

y2+1
for the SU family. For the SB family the support of x is [›, › + ⁄] and for the SU

family the support of x is (≠Œ, +Œ) (George and Ramachandran, 2011). This family of

distributions are defined on (≠Œ, +Œ).

The distribution used in this study is the Johnson SU distribution. It has two shape

parameters, “ and ” > 0, a scale parameter ⁄ > 0 and a location parameter ›. The pdf of

this distribution is as follows

f(x) = ”

⁄

Ú
2fi(1 +

1
x≠›

⁄

22
)
e

≠ 1
2

1
“+”sinh≠1

1
x≠›

⁄

222

.

The mean of the distribution is given by

› ≠ ⁄ exp ”2

2 sinh
3

“

”

4
.

The use of this distribution is explained in detail in the next chapter. Figure 2.2 shows

the probability density function of the Johnson SU distribution with di�erent values for “

and ”. For all the curves in this figure, ◊ = 0 and ‡ = 1.

2.3 Conditional Value At Risk

Value at risk (VaR) and conditional value at risk (CVaR) are two popular risk measures.

VaR is the maximum loss at a given confidence level in a determined time horizon while

CVaR, also known as expected shortfall or mean excess loss, is, under some assumptions, the

conditional expectation of the losses that exceed VaR.

Let x = (x1, · · · , xn) be a real vector containing the number of units allocated to all

components of a portfolio and f(x, y) is the associated random loss function to the portfolio
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Figure 2.2: The probability density function of Johnson SU distribution with di�erent values
for “ and ” (Wicklin, 2020)

x, where y is the realization of the random events (such as the P&L of the electricity trading

firm for di�erent trading strategies). Assume that Y is absolutely continuous and p(y) is the

probability density function of the random vector Y .

The cumulative distribution function (cdf) of the loss associated with portfolio x can be

defined by

�(x, “) :=
⁄

f(x,y)<“
p(y)dy.

With this definition, the V aR– of portfolio x is defined as follows

V aR–(x) := min{“ œ R : �(x, “) Ø –}.

As a result, the CV aR– of portfolio x at given confidence level – is

CV aR–(x) := 1
1 ≠ –

⁄

f(x,y)ØV aR–(x)
f(x, y)p(y)dy.

Figure 2.3 shows a graphical representation of VaR and CVaR.

It can be shown that CV aR–(x) is always greater than or equal to V aR–(x). So, V aR–

is a lower bound for CV aR–.

In the case of having a discrete probability distribution for random events y, the expected

12



Figure 2.3: The graphical representation of VaR and CVaR (Sarykalin et al., 2008)

shortfall can be defined as

CV aR–(x) = 1
1 ≠ –

ÿ

j:f(x,yj)ØV aR–(x)
pjf(x, yj)

Where pj is the probability of the event yj.

The reason for using CVaR instead of VaR as a risk measure is the undesirable features

of VaR. The absence of subadditivity and convexity made the VaR a hard to use tool in

mathematics and specially in optimization (Artzner et al., 1999). Furthermore, CVaR has

the VaR function in its definition. As a result, an auxiliary function is proposed to be used

instead of CVaR as the following

F–(x, “) := “ + 1
1 ≠ –

⁄

f(x,y)Ø“
(f(x, y) ≠ “)p(y)dy

This function has the following properties (Cornuejols and Tütüncü, 2006):

1. F–(x, “) is a convex function of “
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2. V aR–(x) is a minimizer over “ of F–(x, “)

3. The minimum value over “ of the function F–(x, “) is CV aR–(x)

As a consequence, instead of minimizing the CV aR–(x) over x, F–(x, “) can be optimized

over x and “ with no need to calculate V aR explicitly.

Furthermore, an approximation of this function can be made with discretizing. Instead of

a random event, there are a number of scenarios that are di�erent possible realizations of the

random event. For, k = 1, · · · , K, let yk be the scenarios (possible values) for the random

variable y and pk be the probability of scenario k. In this case, the above function can be

approximated as

F̃–(x, “) := “ + 1
1 ≠ –

Kÿ

k=1
pk(f(x, yk) ≠ “)+.

2.4 Copulas

The material explained in this section is mostly from Schmidt (2007). To model the

dependence structure between random variables, several tools in mathematics can be used.

One of the tools which has been developed for a long time but has triggered extensive recent

interest are copulas. Basically, a copula is a multivariate distribution function with uniform

marginals. The first appearance of the name "copula" was in Sklar (1959). The root of the

name "copula" is the Latin word copular, meaning to connect or to join. A d-dimensional

copula C : [0, 1]d :æ [0, 1] is a cumulative distribution function with uniform marginals

(Schmidt, 2007). Copulas are mostly famous for modelling the dependence structure and the

marginals separately. The following proposition is the reason that copulas can do the magic.

In this proposition, F Ω(y) is defined as F Ω(y) := inf{x : F (x) Ø y}, the generalized

inverse of F .

Proposition 2.4.1. If U ≥ U [0, 1] and F is a cumulative distribution function, then

P (F Ω(U) Æ x) = F (x).

On the contrary, if the real-valued random variable Y has a distribution function F and F is
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continuous, then

F (Y ) ≥ U [0, 1]

.

As a result of this proposition, the copula does not depend on the marginal distributions

of its random variables and it can be determined separately. Therefore, if the marginal

distribution of one or more random variables changes but the dependence structure remains

the same, the copula would be the same as well.

Sklar (1959) proved that all multivariate cumulative distributions can be written in terms

of copulas in the Sklar representation theorem. Also, it indicates that the copula can be

determined uniquely if the marginals are continuous.

Theorem 2.4.2. Consider a d-dimensional cdf F with marginals F1, . . . , Fd. There exists a

copula C, such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

for all xi in [≠Œ, +Œ], i = 1, . . . , d. If Fi is continuous for all i = 1, . . . , d then C is unique;

otherwise C is uniquely determined only on Ran F1 ◊ . . .◊Ran Fd, where Ran Fi denotes the

range of the cdf Fi.

On the other hand, consider a copula C and univariate cdfs F1, . . . , Fd. Then F as defined

above is a multivariate cdf with marginals F1, ..., Fd.

Moreover, if F is absolutely continuous and F1, · · · , Fd are strictly increasing continuous,

we have:

f(x1, · · · , xd) =
Ë dŸ

k=1
fk(xk)

È
◊ c(F1(x1), · · · , Fd(xd))

where f and fk represent respectively the joint density underlying distribution F and

marginal densities of each of its components, and c is the associated copula.

Furthermore, Hoe�ding and Frechet stated that a copula always has a certain upper

bound and lower bound. The following theorem is what Hoe�ding and Frechet came up with

independently for the bounds of a copula.

Theorem 2.4.3. (Frechet-Hoe�ding bounds) Consider a copula C(u) = C(u1, . . . , ud).
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Then

max
Ó dÿ

i=1
ui + 1 ≠ d, 0

Ô
Æ C(u) Æ min{u1, . . . , ud}

.

In the next section, some of the most important families of copulas and the ones that

are used in this research are introduced. Some of them are derived from other multivariate

distributions such as multivariate normal distribution and some are defined explicitly.

2.4.1 Perfect Dependence and Independence

In the case of no dependence between the random variables u1, . . . , ud, their copula is the

independence copula defined as

�(u) =
dŸ

i=1
ui.

Also, the copula that models the perfect positive dependence between random variables

is the comonotononicity copula or Frechet-Hoe�ding upper bound which is given by

M(u) = min{u1, . . . , ud}.

In addition, there is countermonotonicity copula or Frechet- Hoe�ding lower bound which

can only be obtained in the two-dimensional case. The countermonotonicity copula is defined

as

W (u1, u2) = max{u1, u2 ≠ 1, 0}.

2.4.2 Gaussian Copula and T-Copula

There are some families of copulas that are derived from multivariate distributions. The first

copula that is introduced in this section is the Gaussian copula, which is part of a larger

family of copulas called the Ellipitical family of copulas. There is no closed-form expression

for the Gaussian copula but using the Sklar’s representation theorem, the two-dimensional

Gaussian copula can be represented by

CGa
fl (u1, u2) = ��

1
�≠1(u1), �≠1(u2)

2
.
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In this representation, � is the correlation matrix with 1 on the diagonal and fl otherwise.

� is the standard normal distribution and �� is the bivariate normal distribution with mean

equal to zero and correlation matrix �. The above representation can also be written as

CGa
fl (u1, u2) =

⁄ �≠1(u1)

≠Œ

⁄ �≠1(u2)

≠Œ

1
2fi

Ô
1 ≠ fl2 exp

1
≠ s2

1 ≠ 2fls1s2 + s2
2

2(1 ≠ fl2)
2
ds1ds2.

Here, for fl = 0 the Gaussian copula becomes the independence copula, for fl = 1, it

becomes the comonotonicity copula and for fl = ≠1, it becomes the countermonotonicity

copula.

A t-copula (or student t-copula) represents the copula of a multivariate t-distribution

whose marginal distributions in the latter are student-t. The representation of a d-

dimensional t-copula is given by

Ct
‹,�(u1, u2) = t‹,�

1
t≠1
‹ (u1), . . . , t≠1

‹ (ud)
2

where � is the correlation matrix, t‹ is the cumulative distribution of a univariate t-student

distribution with ‹ degree of freedom and t‹,� is multivariate cumulative distribution with

correlation matrix � and ‹ degree of freedom.

Figure 2.4 demonstrates the density of a Gaussian copula and a t-copula.

Figure 2.4: The graphical representation of a density associated to the Gaussian copula (left)
and a t-copula (right). The correlation coe�cient for both of the copulas is fl = 0.3 and the
degree of freedom for the t-copula equals to 2 (Schmidt, 2007)
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2.4.3 Archimedean Copulas

This family of copulas are defined explicitly and they are not derived from any multivariate

distributions. The Archimedean copulas have closed from for their density functions. In this

section only two-dimensional Archimedean copulas are introduced, unless otherwise stated,

for the sake of simplicity. The form of a two-dimensional Archimedean copula is given by

C◊(u1, u2) = „≠1[„(u1; ◊) + „(u2; ◊); ◊], (u1, u2) œ [0, 1]2, ◊ œ �

where „ : [0, 1]◊� æ R+ is the generator function of the copula which is a strictly decreasing

convex function with dependence parameter ◊. „≠1 represents the inverse function of „.

Di�erent generator functions leads to di�erent copulas in this family.

The Gumbel copula Gumbel (1960) is defined as

CGu
◊ (u1, u2) = exp[≠

1
(≠ln(u1)◊ + ≠ln(u2)◊)

2 1
◊ ], ◊ œ [1, Œ)

by using „Gu(u) = ≠ln(u)◊ as the generator function. If ◊ = 1 the independence copula can

be obtained and when ◊ æ Œ the Gumbel copula becomes the comonotonicity copula.

If the generator function „Cl(u) = 1
◊ (u≠◊ ≠ 1) is used, the Clayton copula Clayton (1978)

would be obtained. The closed form for the Clayton copula is

CCl
◊ (u1, u2) =

1
max{u≠◊

1 + u≠◊
2 , 0}

2≠ 1
◊ , ◊ œ [≠1, Œ)\{0}.

Here, the results from setting ◊ = 0 and ◊ æ Œ are the same as in the Gumbel copula.

Furthermore, for ◊ = ≠1 the Clayton copula becomes the countermonotonicity copula.

The generator function „F r(u1, u2) = ln(e≠◊ ≠ 1) ≠ ln(e≠◊u ≠ 1) gives the Frank copula

Frank (1979) defined as follows

CF r
◊ (u) = ≠1

◊
ln

1
1 + (e≠◊u1 ≠ 1)(e≠◊u2 ≠ 1)

e≠◊ ≠ 1
2
, ◊ œ R\{0}.

Frank copula reaches both the upper and lower Frechet bounds as ◊ æ Œ and ◊ æ ≠Œ,

respectively. Also, it becomes the independence copula as ◊ æ 0.
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Joe copula Joe (1993) is another copula in the Archimedean family of copulas. The

generator function for joe copulas is „Jo(u) = ≠ln[1 ≠ (1 ≠ u)◊]. Joe copula has the following

copula form

CJo
◊ (u1, u2) = 1 ≠ [(1 ≠ u1)◊ + (1 ≠ u2)◊ ≠ (1 ≠ u1)◊(1 ≠ u2)◊] 1

◊ , ◊ œ [1, Œ).

Joe copula becomes the comonotonicity copula when ◊ æ Œ.

Figure 2.5 is the graphical representation of the copulas which are introduced above.

Figure 2.5: Densities of Frank copula (upper left), Clayton copula (upper right), Gumbel
copula (lower left) and Joe Copula (lower right ). For all the copulas ◊ = 3
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Some important families of copulas have been introduced in two dimensions. Fitting

a two-dimensional copula to data is usually an easy task but modelling the dependence

in higher dimensions is a challenge. The dependence structure of a random vector in

practice is usually not as symmetric in tails as for the Gaussian copula and t-copula.

Furthermore, the Archimedean copulas which usually have one or two parameters apply

a strong dependence structure which might not be representative of empirical observations

in practice. Vine copulas overcome this issue by using bivariate copulas as building blocks

of a higher dimensional copula. In the next section, the vine copulas are explained in detail.

2.5 Vine Copulas

Pair copula constructions (PCCs) were introduced by Aas et al. (2009). Vines are graphical

representations of PCCs. For illustrative purposes, a three dimensional PCC is going to be

introduced which will make explanations for higher dimension cases more straightforward.

Let X = (X1, X2, X3)Õ ≥ F and suppose that all required densities exist. It holds that

f(x1, x2, x3) = f1(x1)f(x2|x1)f(x3|x1, x2).

The following result can be obtained by using the Sklar’s theorem

f(x2|x1) =f(x1, x2)
f1(x1)

= c1,2(F1(x1), F2(x2))f1(x1)f2(x2)
f1(x1)

=c1,2(F1(x1), F2(x2))f2(x2)

and

f(x3|x1, x2) =f(x2, x3|x1)
f(x2|x1)

= c2,3|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1)
f(x2|x1)

=c2,3|1(F (x2|x1), F (x3|x1))f(x3|x1)

=c2,3|1(F (x2|x1), F (x3|x1))c1,3(F1(x1), F3(x3))f3(x3)
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with

F (x|‹) =
ˆCx,‹j |‹≠j (F (x|‹≠j), F (‹j|‹≠j))

ˆF (‹j|‹≠j)
.

Here Cx‹j |‹≠j is a bivariate copula and ‹≠j is a vector of components of x where the jth

component ‹j is removed.

The above three equations can be combined and give a joint density with three dimensions

using only two-dimensional copulas

f(x1, x2, x3) =f1(x1)f2(x2)f3(x3)c1,2(F1(x1), F2(x2))

◊ c1,3(F1(x1), F3(x3))c2,3|1(F (x2|x1), F (x3|x1)).

All the two-dimensional copulas in the above equation can be independently determined and

as a result PCCs can model a broad range of dependence structures in di�erent number of

dimensions.

There is an assumption that is usually used in the literature for simplifying purposes

which is the pair copula C2,3|1 only depends on x1 through the arguments F (x2|x1) and

F (x3|x1). This assumption is looked into by Stoeber et al. (2013) and Ha� et al. (2010).

As mentioned before, vine copulas represent the PCCs graphically. Kurowicka and Cooke

(2006) define a regular vine (R-vine) on d variables as a sequence of linked trees (connected

acyclic graphs) T1, · · · , Td≠1 with nodes Ni and edges Ei for i = 1, · · · , d ≠ 1, where T1

has nodes N1 = 1, · · · , d and edges E1, and for i = 2, · · · , d tree Ti has nodes Ni = Ei≠1.

Moreover, the proximity condition requires that two edges in tree Ti are joined in tree Ti+1

only if they share a common node in tree Ti .

Bedford et al. (2001) and Kurowicka and Cooke (2006) showed that two nodes, called

the conditioned nodes and a set of conditioning nodes can uniquely describe the edges in an

R-vine tree. This means that the edges are denoted by e = j(e), k(e)|D(e) where D(e) is the

conditioning set. Figure 2.6 is an example of a seven dimensional R-vine tree.

A two dimensional copula density cj(e),k(e)|D(e) can be associated to each edge e =

j(e), k(e)|D(e) in Ei to construct the multivariate copula linked with trees T1, . . . , Td≠1.

According to Kurowicka and Cooke (2006) and R-vine copula density can be uniquely
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Figure 2.6: An example of a seven dimensional R-vine tree (Dissmann et al., 2013)

described by

c(F1(x1), · · · , Fd(xd)) =
d≠1Ÿ

i=1

Ÿ

eœEi

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

where xD(e) denotes a subset of the elements of x = (x1, · · · , xd)Õ indicated by the indices

contained in D(e) (Brechmann and Czado, 2013).

2.6 Modern Portfolio Theory

Markowitz is the founder of modern portfolio theory. He modelled the portfolio optimization

as the selection of assets to optimize mean and the variance of the portfolio (Markowitz, 1952).

In his approach, the variance can be constant and the expected profit can be maximized, or

the expected profit can be constant and the variance of the portfolio can be minimized.

The details of the modern portfolio theory, also known as the mean-variance optimization

(MVO), is explained according to Chapter 8 of Cornuejols and Tütüncü (2006). First, some

notations are explained.

Let S1, . . . , Sn be n Ø 2 assets with random returns, µi and ‡i be the expected value and

standard deviation of the return of the asset Si and flij be the correlation coe�cient of the

return of the assets Si and Sj for i ”= j. Then µ can be defined as the random vector of
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the expected values of the assets, given by µ = [µ1, . . . , µn]T . Also, � = (‡ij) denotes the

n ◊ n covariance matrix given ‡ii = ‡2
i and ‡ij = flij‡i‡j for all i ”= j. The fraction of the

total budget invested in asset Si is shown by xi and x = (x1, . . . , xn) denotes the associated

portfolio for the assets S1, . . . , Sn.

With the above notation, the expected return of the portfolio x can be written as

E[x] = µ1x1 + . . . , µnxn = µT x

Furthermore, the variance of the portfolio x is given by

V ar(x) =
ÿ

i,j

flij‡i‡jxixj = xT �x

with flii © 1. The variance is always a non-negative value and as a result xT �x Ø 0. This

result shows that the covariance matrix � is a positive semi-definite matrix. In addition, it is

assumed that there is no redundant asset in the portfolio, which means that the covariance

matrix is a definite positive matrix.

Furthermore, the set of feasible portfolios is assumed to be the set X := {x|Ax = b, Cx Ø

d}. Here, A is an m ◊ n matrix, b is an m-dimensional vector, C is a p ◊ n matrix and d is

a d-dimensional vector. This set is the set of constraints on the portfolio. One of the most

common constraints is
nÿ

i=1
xi = 1

which implies x can be understood as weights. This constraint alongside the sign constraint

x Ø 0 (which means no short-sale is allowed), forces the optimization problem to allocate

positive fractions of the total fund to di�erent assets. A similar constraint is given by

nÿ

i=1
xi = B

where B is the total budget or total fund of the portfolio.

Solving the mean-variance optimization problem results in building an e�cient frontier.

To define the e�cient frontier, one needs to know the definition of an e�cient portfolio. An
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e�cient portfolio is a portfolio with maximum return in the set of portfolios with the same

variance or has the minimum variance in the set of portfolios with equal returns. The set of

e�cient portfolios builds an e�cient frontier. Figure 2.7 illustrates an e�cient frontier. It

can be seen that as the profit increases, the variance of the portfolio increases as well. All

the feasible portfolios below the curve are not e�cient. As explained before, � is a definite

Figure 2.7: An example of an e�cient frontier

positive matrix and as a result, the variance is a convex function of x. Consequently, there

exists a unique feasible portfolio that has minimum variance.

Cornuejols and Tütüncü (2006) formulated the Markowitz’ mean-variance optimization

(MVO) in three equivalent ways. In the first mathematical formulation, the problem is trying

to minimize the variance of the portfolio while there is a lower bound for the return of the
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portfolio. This formulation is a quadratic convex programming problem and is given by

max 1
2xT �x

s.t. µT x Ø R (1)

Ax = b (2)

Cx Ø d. (3)

Constraint (1) sets a lower bound, R, for the expected return of the portfolio. To obtain

the e�cient frontier, one can set di�erent values for R, ranging between the expected return

of a portfolio with the minimum variance and the expected return of a portfolio with the

maximum expected return. The constant coe�cient 1
2 , does not a�ect the optimal solution

and it is only added for the sake of simplicity in the optimality conditions.

The second equivalent formulation for MVO is given by

max µT x

s.t. xT �x Æ ‡2 (4)

Ax = b (5)

Cx Ø d. (6)

This formulation is attempting to maximize the expected return of the portfolio where the

variance of the portfolio is not more than ‡2 which is an upper bound for the variance of the

portfolio.

The other form of this formulation can be written as

max µT x ≠ ”

2xT �x

s.t. Ax = b (7)

Cx Ø d. (8)

Here the variance of the portfolio is added to the objective function as a penalty term with

a constant coe�cient ” which acts as a risk-aversion constant. This objective function is
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called a risk-adjusted return function. It is equivalent because of Lagrange multiplier based

solutions to the original problem.
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Chapter 3

Portfolio Allocation Model

This chapter explains the process of the formulation of the optimization problem. The main

goal of this study is to allocate the budget of the electricity trading firm to di�erent trading

strategies such that the risk measures, the variance of the portfolio, and CVaR stay lower

than the associated upper bound.

The P&L of the firm in a period is an unknown value. This time horizon can be a day,

a week, a month, etc. Each firm is trying to maximize its P&L in a certain period and this

period can be determined by the firm itself. As in the mean-variance optimization problem,

the expected P&L of the firm’s portfolio is going to be maximized in this research.

Furthermore, one of the main concerns that firms have is how much will they be exposed

to risk when they try to maximize their P&L. Therefore, when the expected P&L is

being optimized, at the same time the risk should be controlled. Commonly in portfolio

optimization in the literature, only one risk measure is considered in the problem. However,

in this study, two risk measures are considered and they represent the partnering firm’s

risk limits. To the best of the author’s knowledge, using two risk measures in the same

optimization problem has never been done in electricity markets. In the next section, more

technical details about the problem are going to be provided.
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3.1 Formulation

In order to formulate the proposed optimization problem, a selection of notations is explained

first.

Let each trading strategy be denoted by s and the set of trading strategies be denoted by

S. Furthermore, since trading strategies are sometimes applied in multiple zones, i denotes

the zone in which the strategy is applied. In addition, let P denote the total profit of the

firm’s portfolio in a determined period. Psi denotes the P&L of the trading strategy s in

zone i per MWh and all of these notations are in the determined period that the firm has

chosen. Let Is denotes the set of the zones in trading strategy s. With this notation, Is for

the trading strategies which only apply to a single zone has only one element. Now, µsi can

be defined as the expected return of Psi, which can be written as E[Psi] = µsi. Let µ be the

vector of µsi’s.

Also, let x be the portfolio of the firm which is a vector of xsi’s where xsi denotes the

allocated budget to the trading strategy s in zone i. Then, one can define the expected P&L

of the firm’s portfolio as follows

E[P ] =
ÿ

sœS

ÿ

iœIs

E[xsiPsi] (9)

=
ÿ

sœS

ÿ

iœIs

xsiE[Psi] (10)

=
ÿ

sœS

ÿ

iœIs

xsiµsi (11)

=µT x (12)

The value that is trying to be maximized in this research is E[P ] = µT x since the actual

value of P is unknown in advanced. This linear combination is the objective function of the

optimization problem formulated in this study. The goal is to find x such that the objective

function is maximized under some certain constraints. The constraints are divided into four

categories of constraints. A first budget constraint is added because the allocated budget to

di�erent trading strategies cannot be more than the total budget of the firm.

There is a limit based on market credit on the number of megawatt-hours (MWh) that
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can be traded. To become a market participant and in order to be able to trade a minimum

volume, the ISO will ask for depositing a minimum amount into a collateral account. If the

market participants want to trade more, they need to deposit more money into the collateral

account, and the market will let them trade a specific volume based on the amount of money

in the account. In this research, the budget is the number of MWhs that the firm can trade

in the market.

The risk constraints are added because the problem entails maximizing the P&L while

controlling the risk. The sign constraints are added because short positions are not allowed

and only a positive number of MWhs can be traded. However, in the sign constraint, in

addition to the lower bound zero for decision variables, an upper bound is set for each

decision variable. The upper bound exists because in each trading strategy the number of

MWhs cannot exceed a certain amount according to the firm’s risk tolerance. Finally, the

integrality constraints are added because only an integer number of MWhs can be traded.

To summarize it all, one can write the following formulation

max E[P ]

s.t. Budget Constraint

Risk Constraints

Sign Constraints

Integrality Constraints

Now, each category of constraints is going to be explained one by one and replaced in

the formulation. In its mathematical formulation, the budget constraint can be written as
q

sœS
q

iœIs
xsi Æ B where B denotes the total available budget of the firm in the determined
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period. Therefore, the formulation becomes

max E[P ]

s.t.
ÿ

sœS

ÿ

iœIs

xsi Æ B (13)

Risk Constraints (14)

Sign Constraints (15)

Integrality Constraints (16)

One of the risk constraints that is requested by the firm is that no more than 35% of the

total budget, B, can be assigned to a single trading strategy. Mathematically, it is given by
q

iœIs
xsi Æ 0.35B, ’s œ S. The other risk constraints are for setting an upper bound for the

variance and the CVaR of the portfolio. Let m1 and m2 be the upper bound for the variance

of the portfolio and the CVaR of the portfolio, respectively. Then the formulation can be

written as follows

max E[P ]

s.t.
ÿ

sœS

ÿ

iœIs

xsi Æ B (17)

ÿ

iœIs

xsi Æ 0.35B ’s œ S (18)

V ar(x) Æ m1 (19)

CV aR(x) Æ m2 (20)

Sign Constraints (21)

Integrality Constraints (22)

For the calculation of V ar(x), the covariance matrix of the trading strategies is needed. Let �

denote the covariance matrix. Then the variance of the portfolio is given by V ar(x) = xT �x.

To calculate CVaR, the approximation method with a scenario generation approach

introduced in Chapter 2 is used. Recall that an auxiliary function is used to be optimized
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instead of CVaR which is given by

F–(x, “) := “ + 1
1 ≠ –

⁄

f(x,y)Ø“
(f(x, y) ≠ “)p(y)d(y)

and an approximation of this function can be made by discretizing as follows

F̃–(x, “) := “ + 1
1 ≠ –

Kÿ

k=1
pk(f(x, yk) ≠ “)+

where K is the number of scenarios, yk’s are the possible values for the random variable y

in di�erent scenarios and pk is the probability of scenario k. In order to use this function in

the formulation, it is transformed into three linear constraints by using auxiliary variables,

÷k. These auxiliary variables are needed to be optimized as well as the original decision

variables. Then this function can be added as three linear constraints to the formulation as

follows (Cornuejols and Tütüncü, 2006)

“ + 1
1 ≠ –

Kÿ

k=1
pk÷k Æ m2 (23)

÷k Ø f(x, yk) ≠ “ ’k œ {1, · · · , K} (24)

÷k Ø 0 ’k œ {1, · · · , K} (25)

In this study, the loss function is considered to be ≠ q
sœS

q
iœIs

µsixsi. The negative values

of this function mean gain and the positive values are losses. With this loss function constraint

(28) becomes ÷k Ø ≠(q
sœS

q
iœIs

Psikxsi + “), ’k œ {1, · · · , K} where Psik is the realization

of µsi in scenario k. In addition, the sign constraints is given by 0 Æ xsi Æ usi, ’s œ S, i œ Is

where usi denotes the upper bound for xsi. The integrality constraints can be written as

xsi œ Z, ’s œ S, i œ Is. The following optimization model wraps up the formulation:

max
ÿ

sœS

ÿ

iœIs

µsixsi

s.t.
ÿ

sœS

ÿ

iœIs

xsi Æ B (26)

ÿ

iœIs

xsi Æ 0.35B ’s œ S (27)
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xT �x Æ m1 (28)

“ + 1
1 ≠ –

Kÿ

k=1
pk÷k Æ m2 (29)

÷k Ø ≠(
ÿ

sœS

ÿ

iœIs

Psikxsi + “) ’k œ {1, · · · , K} (30)

÷k Ø 0 ’k œ {1, · · · , K} (31)

0 Æ xsi Æ usi ’s œ S, i œ Is (32)

xsi œ Z ’s œ S, i œ Is (33)

32



Chapter 4

Solution and Results

In this chapter, the steps taken to solve the optimization model are explained. The solution

to the problem is assessed on the data provided by the partnering electricity trading firm

and the results are discussed. First, the details about the trading strategies of the electricity

trading firm are provided.

The firm with which this collaboration is done is a market participant in one of the ISO’s

in North America. As explained earlier, ISO’s have similar characteristics to each other. In

order to keep the operations of the firm confidential, the exact ISO in which they operate will

not be mentioned. There are both physical and financial approaches in the firm’s portfolio.

Moreover, each trading strategy has its own unique characteristics which are explained in

Appendix A.

This research is trying to allocate the limited number of MWhs to four main trading

strategies of an electricity trading firm. Recall that each strategy can be implemented in

multiple locations. The reason for selecting this portfolio for this study is that it reflects a

real-life portfolio. Two of the trading strategies have a physical approach and two of them

are virtual trading strategies.

In order to keep the operations of the firm confidential, the trading strategies are called

A, B, C, and D. The assumption here is that these four strategies are already selected and

this study is more of a budget allocation project rather than a portfolio selection. Portfolio

selection can be done in future research.
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The limited budget of the firm should be allocated to the four trading strategies. Trading

strategy C is applied to two zones, trading strategy D is applied to seven zones and di�erent

budgets should be allocated to di�erent zones in these trading strategies. The reason that

trading strategies C and D are considered as two di�erent trading strategies is based on the

firm’s decisions.

The main question that this research is attempting to answer is that how many MWhs

should be traded in each of these four trading strategies and how many should be traded in

each zone of each trading strategy in order to have the maximum profit with a controlled

risk in a determined time horizon. The determined time horizon can be a day, a week, or any

number of days which means that the trade volume would be di�erent on the determined

time horizon for each trading strategy.

There are two risk measures considered in this problem: the portfolio variance and the

conditional value at risk (CVaR). The firm wants to maximize its future profit which is

unknown in advance. Also, the portfolio variance and CVaR are unknown variables. All the

available information at the time of the formulating the problem is the historical P&L of the

firm.

4.1 Data

There are di�erent amounts of data available for each trading strategy. The data used in

this research has been retrieved from the partnering firm’s database. The data for trading

strategies A and B is available since "2017-04-13" and "2016-10-04", respectively. The data

points are daily and for each day, the sum of the hourly P&L and the sum of the hourly

trade volumes are obtainable. For trading strategies C and D, the available data is since

"2012-01-01" and the data points are the hourly P&L in $/MWh. Moreover, there are no

missing points in the data for any of the four trading strategies.

As mentioned above the data points for two of the trading strategies are daily and for the

other two, the data points are hourly. Therefore, the data needs to be transformed for all

four of the strategies to the same kind. In order to do this for all of the trading strategies,

trading strategies A and B’s P&L data are divided by the sum of the daily trade volume. As
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a result, the new data points are the daily average of P&L per MWh. Furthermore, in the

data for trading strategies C and D, the sum of the hourly P&L in each day is divided by 24,

so that the data points are the daily average of P & L per MWh. For example, if the data

point is 10$ on a day, such as "2012-01-01" for trading strategy D, it means that on the first

day of January in 2012, the firm made 10$/MWh at each hour of the day on average.

4.2 Solving the Optimization Problem

In order to solve the optimization problem, there are various aspects that are needed to be

introduced and discussed. First, it needs to be identified which parameters of the model

are known and given and which parameters need to be estimated. The second aspect is the

procedure of the parameter estimation for the unknown parameters. The next aspects are

the assumptions made to solve the problem. Another aspect is the procedure for the scenario

generation in the calculation of CVaR and the final aspect is handling the quadratic term in

the constraints.

The known parameters of the problem are the total available budget B, the upper bounds

for the risk measure m1 and m2, the number of scenarios K, and the confidence level of CVaR

–. Recall that the scenarios are the possible values for the P&L of di�erent trading strategies

in the determined time horizon. All of these values are given at the time that the optimization

problem is needed to be solved. As mentioned before, this problem can be solved for the next

day, next week, etc. The unknown parameters of the problem are the µ vector, pk, µsik’s and

�.

A few assumptions were made before the start of the parameter estimation procedure and

solving the problem. The next section provides a list of these assumptions.

4.2.1 Assumptions

The several assumptions that were made in this study are as follows

1. The distribution of the data for each trading strategy and each zone in the future would

be the same as historical data.
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2. The dependence structure of the data would not change in the future.

3. The sample data of each trading strategy is independent and identically distributed

(i.i.d.) across periods.

4. The probability distribution of the scenarios is uniform and as a result, each scenario

has the same probability which can be written as pk = 1
K

4.2.2 Estimating the Parameters of the Optimization Problem

The selected period length for this research is one month and the optimization problem is

solved at the beginning of each month in order to find the number of MWhs for each trading

strategy on the selected month.

All the numbers provided in this section are for "July". The final results for the other

months are provided in Appendix B.

To estimate µsi’s, Johnson SU distribution is fitted to the collected data from all years

from July for each trading strategy s and each zone i. The parameters of the distribution are

estimated by applying the maximum likelihood estimation method. Afterwards, the mean

of the distribution is taken as the expected P&L or µsi. The goodness-of-fit of the fitted

distribution is tested using the Kolmogorov Smirnov test which tests the goodness-of-fit of

the distribution by measuring the maximum distance between the empirical cdf and model

distribution cdf. The fitted distribution to di�erent trading strategies and the p-values are

provided in the Table 4.1.

The fitted distribution to all the trading strategies is Johnson SU but the parameters of the

distribution for each trading strategy are di�erent. The mean of the distribution for di�erent

trading strategies are provided in Table 4.2. The values for the mean of the distribution

in Table 4.2 are the objective coe�cients of the optimization problem (values for µsi). The

di�erence between the mean of the fitted distribution and the average of the realized P&L

for trading strategy C and the first two zones of trading strategy D is very small. However,

for the other trading strategies this di�erence is high. The reason of the disparity between

estimated and realized mean is found by investigating the available data. There are big

negative spreads for zones 3 to 7 in trading strategy D in July 2019. The negative spreads
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Trading Strategy Zone Fitted distribution p-value
A - Johnson SU 0.20
B - Johnson SU 0.83
C 1 Johnson SU 0.83
C 2 Johnson SU 0.82
D 1 Johnson SU 0.68
D 2 Johnson SU 0.94
D 3 Johnson SU 0.83
D 4 Johnson SU 0.69
D 5 Johnson SU 0.94
D 6 Johnson SU 0.94
D 7 Johnson SU 0.13

Table 4.1: The fitted distribution to di�erent trading strategies and p-values of the goodness
of fit test

Trading Strategy Zone Mean of the distribution The average of the realized P&L
A - -1.62 0.97
B - -0.50 -2.72
C 1 2.37 2.40
C 2 1.65 1.85
D 1 2.22 2.59
D 2 2.62 2.13
D 3 28.50 0.78
D 4 8.48 0.74
D 5 5.38 0.03
D 6 36.33 -0.69
D 7 1.49 -5.53

Table 4.2: The mean of the fitted distribution to di�erent trading strategies

caused by an increase in the temperature of these zones in 2019 which has not happened

before, in 2017 and 2018. These natural phenomena’s cannot be foreseen. However, factors

such as global warming provide some guidelines for the foreseeable future. Multiple other

unpredictable events have happened in the past that prove that certain circumstances cannot

be considered in algorithms, such as whole power plants losing complete functionality due to

malfunctions.

Furthermore, the � matrix is estimated by the sample covariance between the average

hourly P&Ls. The covariance matrix is given in Table 4.3. The correlation matrix is provided

in Appendix C.
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A B C/1 C/2 D/1 D/2 D/3 D/4 D/5 D/6 D/7
A 38.56 15.32 -7.92 -31.74 -19.25 -2.69 -3.85 -3.27 -3.16 -2.42 19.54
B 15.32 91.85 19.82 45.30 -2.80 25.32 21.70 21.50 21.45 24.82 59.18

C/1 -7.92 19.82 42.36 39.68 41.40 42.59 43.38 43.46 42.42 41.98 68.82
C/2 -31.74 45.30 39.68 170.14 40.17 43.75 41.71 42.21 39.49 42.66 51.38
D/1 -19.25 -2.80 41.40 40.17 134.09 36.47 34.59 34.43 32.61 18.96 42.53
D/2 -2.69 25.32 42.59 43.75 36.47 50.38 48.03 47.49 47.00 45.80 80.44
D/3 -3.85 21.70 43.38 41.71 34.59 48.03 49.41 49.64 48.80 50.01 78.03
D/4 -3.27 21.50 43.46 42.21 34.43 47.49 49.64 50.57 49.30 51.12 75.28
D/5 -3.16 21.45 42.42 39.49 32.61 47.00 48.80 49.30 49.06 50.86 76.00
D/6 -2.42 24.82 41.98 42.66 18.96 45.80 50.01 51.12 50.86 65.32 80.17
D/7 19.54 59.18 68.82 51.38 42.53 80.44 78.03 75.28 76.00 80.17 210.88

Table 4.3: The sample covariance matrix between the average hourly P&L

In order to generate the scenarios, di�erent families of bivariate copulas are fitted to

a di�erent selection of two trading strategies. The pair of copulas are selected by looking

at the empirical copula and choosing the right family of copulas. The parameters of the

fitted bivariate copula to each pair of trading strategies are estimated using the maximum

likelihood estimation method. Then, for each pair of trading strategies, the best copula is

selected based on the Akaike Information Criteria (AIC) which is calculated for all available

bivariate copula families. The AIC of a bivariate copula family c with parameter vector ◊ is

given by (Schepsmeier et al., 2015)

AIC := ≠2
Nÿ

i=1
ln (c(ui,1, ui,2; ◊)) + 2k.

Afterwards, a goodness-of-fit test is done. This test is looked into by Huang and Prokhorov

(2014) and it uses the information matrix equality of White (1982). This test does not involve

kernel weighting, bandwidth selection, or any other strategic choices and it avoids parametric

specification of marginal distributions. Furthermore, the test is asymptotically pivotal with a

standard distribution and it is easy to complete when compared to other alternatives (Huang

and Prokhorov, 2014) .

The families selected in this procedure for the bivariate copulas are Independent copula,

Gaussian, t-student, Frank, Clayton, Gumbel, and Joe. These chosen families build the Tree

1. In the next step, they are used to calculate pairwise Kendall’s · for all the edges that keep
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the required proximity condition for the R-vine tree structure. Kendall (1938) introduced a

measure for rank correlation which is given by

·(X1, X2) = 4
⁄ 1

0

⁄ 1

0
{C(u1, u2) ≠ �(u1, u2)}dC(u1, u2)

where �(u1, u2) = u1u2 is the independence copula. Repeatedly, the corresponding copula

families are chosen using the AIC. By using this method and the selection of the strongest

pairwise conditional dependencies first, an eleven-dimensional RVine copula is fitted to the

data (Czado et al., 2013). The details of this method are given in the preliminaries chapter.

The p-value of the goodness-of-fit test (the same test used for bivariate copulas) is 0.14 and

the fitted copula is used to generate scenarios.

In order to solve the optimization model, the solver MOSEK is used. The programming

has been done in R using the Rmosek package. One drawback of using Rmosek is that it

cannot solve an optimization problem with a quadratic term in the constraints. As a result,

a reformulation is done to transform the quadratic constraint into a conic term. Since the

covariance matrix is positive semi-definite, there exists a matrix G such that

� = GGT

This decomposition is not unique. The decomposition used in this research is the Cholesky

decomposition. The Cholesky decomposition or Cholesky factorization is a decomposition

of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and

its conjugate transpose (Golub and Van Loan, 1996). Let CCT denotes the Cholesky

decomposition of �. Then

xT �x = xT CCT x = ||CT x||2

With this reformulation, the Var constraint can be written as

||CT x|| Æ
Ô

m1

or equivalently (Ôm1, CT x) œ Qn+1 where Qn+1 is the (n + 1)-dimensional quadratic cone

and n = q
sœS |Is| (ApS, 2020).
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4.3 Results

The results provided in this section are for the month of July. The estimation of the unknown

parameters of the optimization model is done based on data from 2017 and 2018, then the

performance is assessed on data from 2019 which is an out of sample testing.

Figure 4.1 shows the e�cient frontier surface of the firm’s portfolio based on the data from

2017 and 2018 considering both risk measures. The selected level of confidence for CVaR is

– = 0.95 and the number of scenarios is equal to 10000. The upper bound for the standard

deviation of the portfolio, Ô
m1 changes between 1000 and 5000 and the upper bound for the

CVaR, m2 changes between 20000 and 200000.

Figure 4.1: E�cient frontier surface of the firm’s portfolio based on the data from 2017 and
2018
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Any portfolio on this surface is an optimal portfolio. The first optimal portfolio is selected

by setting Ô
m1 = 1000 and m2 = 20000 which is a very conservative portfolio with a small

risk.

The benchmark is the P&L of the electricity trading firm in the selected month. The

P&Ls for one day are obtained by the sum of the hourly P&Ls. The trade volumes that used

to obtain the benchmark are decided by the firm.

A backtest with real 2019 data is done by using the optimal trade volumes. These optimal

trade volumes are found by using the optimization model and they remain fixed for the month.

The daily P&Ls with the optimal trade volumes are also calculated. The firm’s trade volumes

and the optimal trade volumes are given in Table 4.4. The optimization model allocates the

Trading Strategy Zone Firm’s Trade Volume Optimal Trade Volume
A - 277 0
B - 266 0
C 1 45 0
C 2 15 0
D 1 38 0
D 2 38 0
D 3 38 67
D 4 38 0
D 5 38 0
D 6 38 11
D 7 38 0

Table 4.4: The trade volume allocated to each trading strategy by the firm and the optimal
trade volumes with Ô

m1 = 1000 and m2 = 20000

most possible budget MWhs to the trading strategies which has the most expected returns

to maximize the profit while satisfying the problem constraints. The budget is only allocated

to trading strategy D, zones 3 and 6. However, it did not allocate the total budget as the

risk measure constraints need to be satisfied. This concentration is not desirable since an

unpredicted event such as power outage in zones 3 and 6 might cause a big loss for the firm.

To avoid this, a more diverse allocation can be done by setting higher upper bounds for the

risk measures.
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The total number of MWhs allocated to trading strategies by the optimization model is

lower than the firm’s allocation due to the conservatism in the optimization model.

Figure 4.2 shows the cumulative P&L in July with an optimal portfolio vs the selected

portfolio by the firm. The real trades are the P&Ls obtained by using the firm’s selected

portfolio and the optimal trades are the ones obtained by using the optimal portfolio.

Figure 4.2: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 1000 and m2 = 20000

The firm’s selected portfolio caused a big loss in July 2019. A high trade volume allocation

to trading strategy B which has a negative average P&L resulted in a big loss at the end

of the month in 2019. In addition, an allocation of a high trade volume to trading strategy

A which has a low average P&L in 2019 and negative correlation with most of the other

trading strategies caused an undesirable result. Furthermore, the average of the possible

values for the P&Ls of the trading strategies A and B are ≠45.11$ and ≠13.62$, respectively.

This indicates that there is a high possibility that big negatives happen in these two trading

strategies. As a result, the optimization model would not allocate any budget to these two

trading strategies.

There are a few measures that the firm uses in order to compare two di�erent portfolios.

The first and most obvious one is how much the P&L of the portfolio changes at the end

of the month when the two portfolios (the optimal portfolio and the firm’s portfolio) are

compared. The P&L of July 2019 is changed by 107% with the optimal portfolio. This is the
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ratio of the P&L of the optimal portfolio over the firm’s portfolio. The other measure is how

much is the average of the losses and average of the three worst losses of each portfolio in the

selected month. Moreover, what is the percentage of the winning days of each portfolio in

the determined month. A winning day is a day on which the firm made a profit. The values

for these measures and also the standard deviation of the portfolios are provided in Table

4.5.

Measure Optimal Trades Real Trades
Percentage of change in the P&L 106.99 % -
P&L at the end of the month 34713.28 $ -496765.40 $
Average loss -8671.13 $ -65082.2 $
Three worst losses average -17916.21 $ -117261.8 $
Percentage of winning days 58.06% 45.16 %
Standard deviation of the portfolio 458.58 3291.92

Table 4.5: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 20000 and the firm’s selected portfolio

The optimal portfolio, even when it is a conservative one, has a better P&L compared

to the selected portfolio by the firm. Furthermore, the worst three losses average is lower

and the percentage of the winning days is higher for the optimal portfolio. The optimization

model would not allocate budget to the strategies with high variance and as a result the

average of the worst three losses is lower in the optimal portfolio.

If the firm is willing to increase the upper limit for CVaR to 50000 but keep the upper

limit for the standard deviation of the portfolio at 1000, the results would be as it is shown

in Figure 4.3.

The optimal solution for this optimization model is given in Table 4.6 alongside with the

firm’s trade volumes.

This time the optimization problem allocated more weight to Zone 6 of trading strategy

D as the upper bound for CVaR increased. It also decreased the allocated trade volume to

trading strategy D Zone 3 to keep the variance constraint satisfied.

However, the profit of the optimal portfolio becomes worse. The reason is that the

optimization model increases the weights for the riskier trading strategies which do not

increase the variance of the portfolio. Furthermore, the expected P&L of trading strategy
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Figure 4.3: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 1000 and m2 = 50000

Trading Strategy Zone Firm’s Trade Volume Optimal Trade Volume
A - 277 0
B - 266 0
C 1 45 0
C 2 15 0
D 1 38 0
D 2 38 0
D 3 38 57
D 4 38 0
D 5 38 0
D 6 38 78
D 7 38 0

Table 4.6: The trade volume allocated to each trading strategy by the firm and the optimal
trade volumes with Ô

m1 = 1000 and m2 = 50000

D Zone 6 is 36.33$ while the realized average P&L is -0.69$. This shows that an unforeseen

event happened in Zone 6 in 2019 which has not been happened in the previous data. As a

result, the trading strategy which has a higher risk but made a profit in 2018 and 2017, lost

money in 2019.

The values for the comparison measures is given in Table 4.7. Although, the percentage

of the winning days have increased, the final profit of the optimal portfolio became worse by

increasing the upper bound for CVaR.
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Measure Optimal Trades Real Trades
Percentage of change in the P&L 99.16 % -
P&L at the end of the month -4173.58$ -496765.40 $
Average loss -22665.86 $ -65082.2 $
Three worst losses average -40266.74 $ -117261.8 $
Percentage of winning days 64.52% 45.16 %
Standard deviation of the portfolio 898.41 3291.92

Table 4.7: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 50000 and the firm’s selected portfolio

The optimal portfolio with the highest expected profit can be obtained by setting Ô
m1 =

5000 and m2 = 200000. This optimal portfolio is the riskiest portfolio amongst all the optimal

portfolios. The allocated trade volumes using this optimization model is given in Table 4.8.

The optimization model allocated more of the total budget to the trading strategy as the

Trading Strategy Zone Firm’s Trade Volume Optimal Trade Volume
A - 277 0
B - 266 0
C 1 45 200
C 2 15 104
D 1 38 0
D 2 38 24
D 3 38 80
D 4 38 40
D 5 38 80
D 6 38 80
D 7 38 0

Table 4.8: The trade volume allocated to each trading strategy by the firm and the optimal
trade volumes with Ô

m1 = 2000 and m2 = 200000

upper bounds for the risk measures increase. The result for this portfolio is shown in Figure

4.4.

This portfolio changes the P&L of the firm by 165%. The average of the worst three

losses is ≠125577.4$ which is higher than the average three losses of the selected portfolio by

the firm, however, The P&L is also much higher. The values for the comparison measures is

given in Table 4.9.

The last portfolio that is explored in this section is the portfolio obtained by setting
Ô

m1 = 4566 and m2 = 153270. These numbers are the estimated variance and the estimated
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Figure 4.4: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 5000 and m2 = 200000

Measure Optimal Trades Real Trades
Percentage of change in the P&L 164.97 % -
P&L at the end of the month 322766.1$ -496765.40 $
Average loss -70134.24 $ -65082.2 $
Three worst losses average -125577.4 $ -117261.8 $
Percentage of winning days 61.30% 45.16 %
Standard deviation of the portfolio 3595.65 3291.92

Table 4.9: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

5000, m2 = 200000 and the firm’s selected portfolio

CVaR of the electricity trading firm. The allocated budget to di�erent trading strategies

using these upper bounds are shown in Table 4.10. In this portfolio, the optimization model

allocated less budget to trading strategy C, zone 2. When the upper bounds for the risk

constraints are set to lower amounts, the algorithm allocated less budget to the trading

strategy with more variance. The results of this portfolio is illustrated in Figure 4.5. By

allocating less budget to trading strategy C, zone 2 the profit becomes less, however the

optimal portfolio outperforms the firm’s portfolio. The comparison measures are given in

Table 4.11.

In all the four optimal portfolios, the allocated trade volume to trading strategies A,B,

zone 1 and zone 7 of trading strategy D is 0. This is due to the fact that the expected P&L
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Trading Strategy Zone Firm’s Trade Volume Optimal Trade Volume
A - 277 0
B - 266 0
C 1 45 200
C 2 15 16
D 1 38 0
D 2 38 24
D 3 38 80
D 4 38 40
D 5 38 80
D 6 38 80
D 7 38 0

Table 4.10: The trade volume allocated to each trading strategy by the firm and the optimal
trade volumes with Ô

m1 = 4566 and m2 = 153270

Figure 4.5: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 4566 and m2 = 153270

for trading strategies A and B are negative. The reason that the model allocates no trade

volume to zones 1 and 7 of trading strategy D is that they have higher variance amongst all

zones in trading strategy D, according to Table 4.3.
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Measure Optimal Trades Real Trades
Percentage of change in the P&L 153.93 % -
P&L at the end of the month 267928.5 $ -496765.40 $
Average loss -62208.3 $ -65082.2 $
Three worst losses average -113351.5 $ -117261.8 $
Percentage of winning days 61.29% 45.16 %
Standard deviation of the portfolio 3125.61 3291.92

Table 4.11: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

4566, m2 = 153270 and the firm’s selected portfolio
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Chapter 5

Conclusion

In this research, a mathematical solution is proposed to solve the portfolio optimization

problem for a partnering electricity trading firm which has four di�erent trading strategies

in their portfolio. The main goal was to allocate the limited number of MWhs (the budget)

to these four trading strategies such that two risk measures are controlled.

The portfolio optimization problem was formulated as an integer stochastic optimization

problem. The model parameters were obtained by using the mean of the fitted distribution to

di�erent trading strategies. The risk measures used in this study were the portfolio variance,

which is a quadratic term, and conditional value at risk of the portfolio. The two risk measures

were added to the optimization problem as constraints with upper bounds. The quadratic

term was reformulated as a conic term and the method proposed for the calculation of CVaR

was scenario generation. The scenarios were the possible values for the P&Ls of di�erent

trading strategies and they were generated from the joint distribution of the trading strategy

returns. Furthermore, the joint distribution was modelled by fitting an eleven-dimensional

vine copula. One of the challenges in this study was the limited number of the data points

since all of the data used was real data and no simulation was done. As a result, the classical

statistical methods such as distribution fitting was used instead of more modern methods

such as machine learning.

The optimization model was formulated for a determined time horizon where the period

could be selected by the firm. The selected period for this study is one month. This problem
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was solved by using a solver called Rmosek and the e�cient frontier surface was built for the

month of July. Di�erent optimal portfolios were assessed on the unseen data.

The expected P&L obtained from the training set, was di�erent from the realized average

P&L in the test set, for some of the trading strategies. The reason was an increase in

the temperature of some zones in those trading strategies in 2019 and the fact that it had

not happened in 2017 and 2018. The e�ect of this issue can be seen in Figure 4.3 which

illustrates the cumulative return of the firm both with optimal trade volumes and the firm’s

selected trade volumes with Ô
m1 = 1000 and m2 = 50000. Recall that m1 and m2 were

the upper bounds for the variance of the portfolio and the CVaR, respectively. This figure

demonstrates that even when the upper bound for the CVaR of the portfolio increased, the

realized profit became worse. The optimization problem allocated higher trade volume to

the trading strategy for which the expected P&L was high but the average realized P&L was

low. The results showed that there is always a trade-o� between the taken risk and profit.

In the results section, the result of the four optimal portfolios is provided. These

optimal portfolios are obtained by setting di�erent upper bounds for the optimization model

constraints. Note that each of these has its pros and cons. The optimal portfolio which

is going to be used as the firm’s portfolio can be decided by the firm by considering all of

the negative and positive facts about each portfolio. More profit can be made if the firm

is willing to take more risk, however, this is not always the case. Taking more risk in the

second optimal portfolio resulted in less profit.

The electricity markets are an interesting area for studying. There is a lot of potential for

further research. The expected P&L of the firm is estimated by the mean of the distribution

in this study. The estimation can also be done by using forecasting methods in time series

and machine learning including GLMs, GAMs, Neural Networks, etc. Furthermore, the

marginal distributions used in this study comes from the Johnson family of distributions.

The assumption here was that the marginals would not change but one can remove this

assumption and estimate the parameters of the marginals for future data. A multivariate

time-series model can be used to estimate the parameters of the marginal distributions at

each time step. As a result, the parameters of the marginals can be estimated dynamically.
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Appendix A

Trading Strategies

In order to keep the operations of the firm confidential, the ISO’s in which the trading

strategies apply is called ISO 1, ISO 2, ISO 3, ISO 4 and, ISO 5. ISO’s 2, 3, 4 and, 5 have

interfaces in ISO 1. Furthermore, ISO 1 has an interface in ISO’s 2 to 5.

1. Trading strategy A is a physical trading strategy. Let say an o�er is submitted to the

ISO 1’s day-ahead market to deliver a certain amount of electricity at the day-ahead

price. If the o�er clears in the day-ahead market, there is an obligation to deliver that

certain amount of energy and will receive the day-ahead ISO 1’s price at the ISO 2’s

interface of ISO 1. In order to buy that amount, there are two options, either it can

be bought from ISO 2 at the real-time price of the ISO 1’s interface of ISO 2, or it

can be bought at the real-time price of the ISO 2’s interface in ISO 1. The bid can be

submitted 90 minutes before the operation hour in the real-time market.

There is a prediction for the real-time price from ISO 2 at the ISO 1’s interface in ISO

2, which is being updated every 30 minutes before the operation hour. A bid must

be submitted no later than 90 minutes before the operating hour, such that if the last

prediction of the price were lower than a certain amount, a certain amount of energy

would be bought. After the bid is submitted, if the condition is satisfied and the flow

is physically feasible, the bid will clear, the electricity will flow and the amount of

electricity needs to be delivered from ISO 2 will be imported. If the bid does not clear

in ISO 2, there is an obligation to buy that certain amount from ISO 1 at the real-time
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ISO 1’s price. It is also possible that the bid clears partially in ISO 2.

For example, a bid is submitted such that 100 MWhs will be sold at the day-ahead price

at 2:00 pm. This bid is submitted the day before the operating day in the day-ahead

market. After the day-ahead market is closed and the day-ahead price is released, the

day-ahead price at the ISO 2’s interface in ISO 1 is 10$/MWh. Suppose that the o�er

is cleared in the day-ahead market and the firm has the obligation to deliver 100 MWhs

of electricity to the ISO 2’s interface in ISO 1 and sell it for 10$/MWh on the operating

day. To deliver this amount of electricity, the firm submits a bid before 12:30 pm to

the ISO 2’s market to buy 100 MWhs of energy at the ISO 1’s interface if the predicted

price at 1:30 pm was less than a certain amount determined by the firm. At 1:30 pm

if the condition is satisfied and the flow is physically feasible, the bid is cleared in the

ISO 2’s market. At 2:00 pm, if the real-time price at the ISO 1’s interface is greater

than 10$/MWh, the firm would lose money and if it is less than 10$/MWh the firm

would make profit.

However, it is possible that the flow is not physically feasible due to the transmission

constraints or the bid is not cleared because the condition is not satisfied. In this

case, the firm has the obligation to buy the electricity at real-time price at the ISO 2’s

interface in ISO 1. Again if the real-time price at the ISO 2’s interface in ISO 1 is less

than 10$/MWh, the firm would make money and if it is more that 10$/MWh the firm

would lose money.

2. Trading strategy B is also a physical trading strategy. A bid is submitted to the

real-time market no later than 90 minutes before the operating hour to the ISO 3’s

market at the ISO 1’s interface to buy energy from ISO 3 and sell it in ISO 1. The

settlement of the bid is the same as the one in trading strategy A, and if the bid is

cleared and the flow of the energy is physically feasible, the real-time price at the ISO

1’s interface in ISO 3 is paid and the price at the ISO 3’s interface at ISO 1 is received.

For example, the firm submits a bid to ISO 3’s market at 12:30 pm to buy 100 MWhs

of energy at 2:00 pm if the predicted price at 1:30 pm was less than a certain amount,

determined by the firm. Also the firm determines that this amount of energy would
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be sold at the ISO 3’s interface in ISO 1 at the real-time price. If the condition is

satisfied and the flow is physically feasible, the bid is cleared the firm buys 100 MWhs

of electricity at the real-time price, at the ISO 1’s interface in ISO 3 and sells it at the

ISO 3’s interface in ISO 1 at the real-time price. If the real-time price of the ISO 1’s

interface at ISO 3 is higher that the real-time price at the ISO 3’s interface in ISO 1,

the firm will lose money and otherwise, the firm will make profit.

3. Trading strategy C is a virtual (financial) trading strategy that trades on the day-

ahead price of the ISO 4 and the ISO 5’s interfaces in ISO 1 which will be denoted as

zone 1 and zone 2 in the following chapters. As it is mentioned before, virtual traders

can buy or sell electricity virtually in the day-ahead market, and the amount should

be sold back or repurchased at the same hour in the real-time market. A long or short

position can be taken in the day-ahead market, and the di�erence of the real-time price

and the day-ahead price will be lost or gained based on the taken position in the market.

For instance, let’s say the real-time price at 2:00 pm at the zone 1 is 20$/MWh and the

day-ahead price at 2:00 pm is 30$/MWh, if a short position is take in the day-ahead

market, the firm will make 10$/MWh of profit and if a long position is taken in the

market, the firm will lose 10$/MWh.

4. Trading strategy D

The trade in this strategy happens the same as in trading strategy C. The only di�erence

between these strategies is that trading strategy D trades on seven zones in ISO 1 which

will be called zones 1 to 7.
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Appendix B

Results for di�erent months in

2019

B.1 January

Figure B.1: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 1000 and m2 = 50000
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Measure Optimal Trades Real Trades
Percentage of change in the P& L -98.13 % -
P&L at the end of the month 33391.24 $ 1784495 $
Average loss -5766.54 $ -21808.92 $
Three worst losses average -12068.01 $ -33299.96 $
Percentage of winning days 61.29 % 80.64 %
Standard deviation of the portfolio 345.32 4065.13

Table B.1: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

3000, m2 = 100000 and the firm’s selected portfolio in January 2019

B.2 February

Figure B.2: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 4000 and m2 = 100000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 174.87 % -
P&L at the end of the month 80322.22 $ -107275.4 $
Average loss -52288.05 $ -43239.69 $
Three worst losses average -97569.69 $ -102617.2 $
Percentage of winning days 50 % 28.57 %
Standard deviation of the portfolio 3425.52 3519.79

Table B.2: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

4000, m2 = 100000 and the firm’s selected portfolio in February 2019

59



B.3 March

Figure B.3: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 3000 and m2 = 100000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 159.57 % -
P&L at the end of the month 848257.9 $ 326795.1 $
Average loss -47626.45 $ -56520.99 $
Three worst losses average -94222.54 $ -103813.9 $
Percentage of winning days 67.74 % 73.33 %
Standard deviation of the portfolio 3630.42 3756.23

Table B.3: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

3000, m2 = 100000 and the firm’s selected portfolio in March 2019
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B.4 April

Figure B.4: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 1000 and m2 = 50000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 91.91 % -
P&L at the end of the month 18667.58 $ 230824 $
Average loss -28506.8 $ -22434.97 $
Three worst losses average -55359.9 $ -58642.61 $
Percentage of winning days 70 % 63.33 %
Standard deviation of the portfolio 1036.38 1626.38

Table B.4: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 50000 and the firm’s selected portfolio in April 2019
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B.5 May

Figure B.5: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 1000 and m2 = 50000

Measure Optimal Trades Real Trades
Percentage of change in the P& L -23 % -
P&L at the end of the month 152146.8 $ 197565.7 $
Average loss -6860.19 $ -29481.95 $
Three worst losses average -10517.19 $ -75542.54 $
Percentage of winning days 80.64 % 54.84 %
Standard deviation of the portfolio 348.32 2351.42

Table B.5: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 50000 and the firm’s selected portfolio in May 2019
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B.6 June

Figure B.6: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 3000 and m2 = 70000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 1539.08 % -
P&L at the end of the month 503253.5 $ 30703.45 $
Average loss -22617.09 $ -55614.87 $
Three worst losses average -58865.15 $ -135637.7 $
Percentage of winning days 53.33 % 56.67 %
Standard deviation of the portfolio 2604.86 4511.92

Table B.6: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

3000, m2 = 70000 and the firm’s selected portfolio in June 2019
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B.7 August

Figure B.7: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 3000 and m2 = 90000

Measure Optimal Trades Real Trades
Percentage of change in the P& L -42.21 % -
P&L at the end of the month 284778.9 $ 492754.9 $
Average loss -21753.86 $ -37047.5 $
Three worst losses average -52799.58 $ -75366.46 $
Percentage of winning days 61.29 % 64.52 %
Standard deviation of the portfolio 1289.33 2353.75

Table B.7: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

3000, m2 = 90000 and the firm’s selected portfolio in August 2019
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B.8 September

Figure B.8: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 1000 and m2 = 20000

Measure Optimal Trades Real Trades
Percentage of change in the P& L -397.98 % -
P&L at the end of the month -49699.33 $ -9980.24 $
Average loss -5265.77 $ -17250.99 $
Three worst losses average -9466.58 $ -51982.72 $
Percentage of winning days 26.67 % 46.67 %
Standard deviation of the portfolio 221.81 1697.93

Table B.8: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 20000 and the firm’s selected portfolio in September 2019
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B.9 October

Figure B.9: The cumulative return of the firm both with optimal weights and weights selected
by the firm with Ô

m1 = 3000 and m2 = 100000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 393.59 % -
P&L at the end of the month 74503.08 $ -25376.43 $
Average loss -42878.57 $ -40161.86 $
Three worst losses average -76771.67 $ -92782.29 $
Percentage of winning days 67.74 % 64.52 %
Standard deviation of the portfolio 1722.9 2138.24

Table B.9: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

3000, m2 = 100000 and the firm’s selected portfolio in October 2019
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B.10 November

Figure B.10: The cumulative return of the firm both with optimal weights and weights
selected by the firm with Ô

m1 = 1000 and m2 = 20000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 78.07 % -
P&L at the end of the month -59590.08 $ -271743.4 $
Average loss -5267.29 $ -39164.83 $
Three worst losses average -10512.36 $ -103365.4 $
Percentage of winning days 43.33 % 43.33 %
Standard deviation of the portfolio 203.74 3558.01

Table B.10: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 20000 and the firm’s selected portfolio in November 2019
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B.11 December

Figure B.11: The cumulative return of the firm both with optimal weights and weights
selected by the firm with Ô

m1 = 1000 and m2 = 20000

Measure Optimal Trades Real Trades
Percentage of change in the P& L 82.61 % -
P&L at the end of the month -39871.92 $ -229286.1 $
Average loss -3556.68 $ -31881.28 $
Three worst losses average -12074.33 $ -80887.7 $
Percentage of winning days 38.71 % 41.94 %
Standard deviation of the portfolio 189.79 3123.14

Table B.11: The values for the firm’s measures to compare the optimal portfolio with Ô
m1 =

1000, m2 = 20000 and the firm’s selected portfolio in December 2019
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Appendix C

Correlation Matrix

1 2 3 4 5 6 7 8 9 10 11
1 1.00 0.26 -0.20 -0.39 -0.27 -0.06 -0.09 -0.07 -0.07 -0.05 0.22
2 0.26 1.00 0.32 0.36 -0.03 0.37 0.32 0.32 0.32 0.32 0.43
3 -0.20 0.32 1.00 0.47 0.55 0.92 0.95 0.94 0.93 0.80 0.73
4 -0.39 0.36 0.47 1.00 0.27 0.47 0.45 0.46 0.43 0.40 0.27
5 -0.27 -0.03 0.55 0.27 1.00 0.44 0.42 0.42 0.40 0.20 0.25
6 -0.06 0.37 0.92 0.47 0.44 1.00 0.96 0.94 0.95 0.80 0.78
7 -0.09 0.32 0.95 0.45 0.42 0.96 1.00 0.99 0.99 0.88 0.76
8 -0.07 0.32 0.94 0.46 0.42 0.94 0.99 1.00 0.99 0.89 0.73
9 -0.07 0.32 0.93 0.43 0.40 0.95 0.99 0.99 1.00 0.90 0.75

10 -0.05 0.32 0.80 0.40 0.20 0.80 0.88 0.89 0.90 1.00 0.68
11 0.22 0.43 0.73 0.27 0.25 0.78 0.76 0.73 0.75 0.68 1.00

Table C.1: The sample correlation matrix between the average hourly P&L
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