
METHODS TO ROBUST RANKING OF OBJECT

TRACKERS AND TO TRACKER DRIFT CORRECTION

Julien Valognes

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Electrical and

Computer Engineering

Concordia University
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Abstract

Methods to Robust Ranking of Object Trackers and to Tracker Drift

Correction

Julien Valognes

This thesis explores two topics in video object tracking: (1) performance evalua-

tion of tracking techniques, and (2) tracker drift detection and correction. Tracking

performance evaluation consists into comparing a set of trackers’ performance mea-

sures and ranking these trackers based on those measures. This is often done by

computing performance averages over a video sequence and then over the entire test

video dataset, consequently resulting in an important loss of statistical information

of performance between frames of a video sequence and between the video sequences

themselves. This work proposes two methods to evaluate trackers with respect to each

other. The first method applies the median absolute deviation (MAD) to effectively

analyze the similarities between trackers and iteratively ranks them into groups of

similar performances. The second method gains inspiration from the use of robust

error norms in anisotropic diffusion for image denoising to perform grouping and

ranking of trackers. A total of 20 trackers are scored and ranked across four different

benchmarks, and experimental results show that using our scoring evaluation is more

robust than using the average over averages.

In the second topic, we explore methods to the detection and correction of tracker

drift. Drift detection refers to methods that detect if a tracker is about to drift or has

drifted away while following a target object. Drift detection triggers a drift correction

mechanism which updates the tracker’s rectangular output bounding box. Most drift
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detection and correction algorithms are called while the target model is updating

and are, thus, tracker-dependent. This work proposes a tracker-independent drift

detection and correction method. For drift detection, we use a combination of saliency

and objectness features to evaluate the likelihood an object exists inside a tracker’s

output. Once drift is detected, we run a region proposal network to reinitialize the

bounding box output around the target object. Our implementation applied on two

state-of-the-art trackers show that our method improves overall tracker performance

measures when tested on three benchmarks.
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Chapter 1

Introduction

1.1 Motivation

Visual object tracking has been a growing field of research as it plays a fundamen-

tal role in many applications such as activity recognition (e.g., elderly health care

or athletes performance measurement), video surveillance, human-computer interac-

tions, augmented reality, and robot navigation. Ideally, object tracking techniques

aim to follow objects similarly to how the human visual system (HVS) would [14].

Given the initial location of a target object (in the form of a rectangular bounding

box) in a video sequence’s first frame, an object tracker aims to estimate the posi-

tion of the object in the next frames. While the HVS is well equipped to memorize

shapes and anticipate movements in unconstrained environments, developing a ro-

bust tracking method which can behave similarly to the HVS remains a challenge

due to numerous object-related (scale variation, deformation, motion blur, and fast

motion) and environment-related (illumination variation, partial and full occlusion,

and background clutter) attributes [48, 91, 55]. Such attributes can lead trackers to

show inaccuracies, drift, and potentially fail [17, 18]. Numerous object tracking tech-

niques are being continuously presented in the literature to address these challenges
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and one of the central questions is how to evaluate their performance with respect to

the state-of-the-art.

In this thesis, we have two main objectives: first, to investigate methods that

score and rank trackers and account for how trackers perform with respect to each

other; secondly, to investigate methods that detect tracker drift independently of how

a baseline tracker is designed. For our first objective, the motivation comes from a

recurring problem in object tracking evaluation protocols, which is the evaluation’s

reliance on the average as a measure of central tendency for estimating a tracker’s per-

formances with respect to other trackers [43, 44, 45, 46, 47, 48, 91, 90, 30, 64, 82, 77].

For our second objective, our motivation comes from the increasing research interest

in long-term video tracking challenges, such as drift, failure, or object disappearance

[48, 63, 64, 82, 52, 100, 50, 81, 73].

1.2 Problem Statement

Research in video object tracking progresses at such a high rate that many designs

are proposed on a yearly basis to compete with the state-of-the-art [48, 63]. One

issue that comes with this rapid growth is the difficulty to compare and evaluate as

objectively as possible the differences in performances between trackers. Since most

rankings are based on averaging averages of performance measures, it has become

increasingly difficult to argue which is best between a tracker that performs well in

certain sequences but poorly in other sequences, a tracker that fluctuates a lot in-

between sequences, and a tracker that performs consistently but slightly less well on

average. While ranking according to an average performance measure allows to nu-

merically order trackers with respect to each other, minor differences in performance

(for example an average difference of 0.03) should not justify alone such ranking.

Therefore, it is useful to present a method for scoring and ranking of trackers using

2



a robust estimator against outliers.

To this day, developing a tracking algorithm that is robust remains a challenge.

Due to appearance changes caused by illumination variation, object deformation, and

dynamic motion, it is a complex task for an object tracker to consistently estimate

the position of its target object without drifting away. To correct errors caused by

tracker drift and prevent a tracker from failing, integrating methods that aim to

propose regions in an image (called region proposal networks) may help improve a

tracker’s robustness.

1.3 Summary of Contributions

The two main objectives of this thesis are: (1) proposing a scoring and ranking method

for evaluation of video object trackers taking into account variations of performance

across video frames and across test video sequences, and (2) handling detection and

correction of tracker drift by integrating modern region proposal networks .

For our first objective, we divide our contribution into two separate works. Our

first work introduces a strategy to effectively determine similarly performing trackers

and iteratively rank them by using the median absolute deviation (MAD). Our second

work borrows the use of robust error norms in image denoising to propose a robust

method for scoring, grouping, and ranking trackers. We show that our scores are more

robust to noise and more representative of a tracker’s performance than the widely

used average of averages. We consider this robust method as our main contribution

in this thesis.

For our second objective, we integrate a tracker-independent drift detection method

using both saliency and objectness measures and a drift correction strategy that im-

proves the overall robustness of tracking algorithms using region proposal networks.
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1.4 Object Tracking: State-of-the-art

Due to numerous and unpredictable challenges present in video sequences (illumi-

nation variation, scale variation, occlusion, deformation, motion blur, fast motion,

in-plane rotation, out-of-plane rotation, out-of-view, background clutter, and low res-

olution), it is demanding for a tracker to follow any kind of arbitrary target. Over

the last decade, object tracking techniques have received lots of attention and have

made considerable progress to overcome those challenges.

CNN (Convolutional Neural Network) and CF (Correlation Filter)-based track-

ers have significantly advanced the field of visual object tracking and are amidst the

state-of-the-art [47, 48, 63]. CF-based visual tracking approaches have attracted con-

siderable attention due to being computationally efficient in the Fourier domain and

not requiring multiple target appearances. These methods circularly shift versions

of the input and regress them to soft class labels. The target object is tracked in

the next frame by matching the filter to the search window which yields the highest

correlation with the initial object. There exist multiple CF optimization methods to

model the input, including sum-of-squared error [8], kernelized correlation filters [40],

multiple dimensional features [93], spatio-temporal regularization [53], short-term

and long-term memory storage [41], multi-scale estimation [26], CNN-features [54],

and patch reliability [57]. CNN-based tracking is another widely applied tracking

technique for modeling target appearances on-line. When pre-trained on a large-

scale comprehensive dataset, those architectures have shown to carry out significant

performance improvements. Discriminative models [65, 38] are off-line pre-trained

frameworks which aim to learn a classifier that discriminates a target from its back-

ground. Deep regression models [79, 87, 39] more typically integrate CNN features

with the discriminative correlation filter framework to predict a set of interdependent

values: the bounding box (BB) coordinates in the case of visual tracking. In addition

to those two deep-tracking techniques, the Siamese architecture [52, 6, 100, 24, 97]
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has started to gain more attention due to its balance between accuracy and speed. It

consists of a CNN applied on two streams, processing the input image and an image

patch containing the object of interest separately, and cross-correlates them to search

for the test image in the next frame. To this day, most research attention goes to

Siamese architectures.

1.5 Datasets and Performance Measures

In this section, we introduce performance measures and datasets which are widely

used in video object tracking.

1.5.1 Datasets

Widely used publicly available benchmarks are OTB-100 [91] (also denoted OTB),

VOT2018-ST [48] (also denoted VOT-ST), NfS-30 [42] (also denoted NfS), TC128 [58],

and VOT2018-LT [48] (also denoted VOT-LT). These benchmarks are summarized

in Table 2.

Each benchmark is compiled for a different purpose. OTB-100 is the first large

benchmark introduced to cover all challenging aspects in visual tracking. VOT2018-

ST and VOT2018-LT both come from the 2018 VOT challenge [48] but are differen-

tiated to tackle short-term and long-term video challenges, respectively. Sequences

from the NfS dataset are captured at different frame rates, one at 30 frames per sec-

ond (NfS-30) and the other at 240 frames per second (NfS-240), to test the impact of

frame rate on different tracking architectures. TC128 only contains color sequences

in order to understand the role color information has on visual tracking.

Often, trackers perform differently for different datasets. To test the generalization

ability of a method, datasets can be combined into one dataset, e.g., one can combine

the short-term datasets into a single one called the OTB-100+VOT2018-ST+NfS-30
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Table 2: Sequence length information for benchmarks used: number of sequences,
minimum, maximum, average, and total number of frames.

Benchmark Sequences Min Max Average Total
OTB-100 100 71 3872 590 59040

VOT2018-ST 60 41 1500 356 21356
NfS-30 100 22 2584 484 48399
TC128 129 71 3872 429 55346

VOT2018-LT 35 1389 29700 4196 146847

dataset.

1.5.2 Performance Measures

To measure performance of object tracking algorithms, we assume there are T track-

ers {ti, i = 1, · · · , T} and L test video sequences vl, l = 1, · · · , L} each having Nl

frames {Ft, t = 1, · · · , Nl}. The objective measures widely used for accuracy and

robustness are Average Overlap Ratio (AOR) and Failure Rate (FR), respectively.

OTB-100 [91] and VOT2018 [48] benchmarks make use of said measures, but other

benchmarks present variations of them, such as Expected Average Overlap (EAO),

Longest Subsequence Measure (LSM), and F-measure (F).

1.5.2.1 Average Overlap Ratio

The AOR measures how accurately a tracker BB is placed with respect to the ground

truth over a sequence l. Given vl of Nl frames, it is defined as

AORl =

∑Nl
t=1 IoUtl

Nl

; AOR =

∑L
l=1 AORl

L
, (1)

where AOR is calculated over all L test videos of a dataset, and IoUtl is the ratio

of the number of overlapping pixels (intersection) between the output BB and the

ground truth BB and the total number of pixels in the ground truth box of frame Ft

in vl.
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1.5.2.2 Failure Rate

The FR evaluates the rate at which a tracker completely fails in a video sequence l,

i.e., how often IoUtl = 0. Given the Heaviside step function H(.), FR over sequence

l can be written as

FRl =

∑Nl
t=1H(IoUtl)

Nl

; FR =

∑L
l=1 FRl

L
. (2)

This measure may also be used alternatively as the Success Rate SR, where SR =

1− FR, to generate success plots as in [91].

1.5.2.3 Expected Average Overlap

The EAO is an objective measure used in the VOT2018 challenge [49] which combines

accuracy values of fragmented sequences to yield an expected AOR value. The VOT

protocol re-initializes a tracker after each failure. Any time a tracker fails at frame

Ft of a video sequence l, it is reinitialized to the ground truth BB at the subsequent

frame Ft+5. A sequence vl is thus turned into m + 1 video fragments if it fails m

times, m ≥ 1. For a tracker i, the VOT challenge calculates EAO as follows. AOR

is first measured over the entire video fragments on all frame ranges [1, n], where

n = 2, · · · , Nmax and Nmax is the maximum length of all tested fragments, meaning

evaluated ranges are [1, 2], [1, 3], · · · , [1, Nmax]. Only fragments that end with a failure

are picked; the rest is discarded. If a fragment is too short on [1, n], it is padded with

zeros. Otherwise, it is trimmed to fit said range. A EAO curve is then obtained by

averaging the AOR over all the fragments for each range. Obtaining the desired EAO

output consists in averaging the curve in a specific interval H = [Hlow, Hhigh]. To

find H, the authors apply a data smoothing probabilistic Kernel Density Estimation

(KDE) model on the dataset {vl}. Hlow and Hhigh correspond to the lengths where

the area under the probability density function is 0.5 and where p(Hlow) ≈ p(Hhigh)

starting from the mode. Finally, given EAOn the EAO at frame n, the desired EAO
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over H is calculated as

EAO =
1

Nhigh −Nlow + 1

Nhigh∑
n=Nlow

EAOn. (3)

In VOT2018-ST, the authors calculate EAO assuming that once a tracker fails, it

will keep failing and will not recover. This is not accurate since a tracker may still

recover once it has drifted or failed; therefore, we do not use the EAO for evaluation

in this chapter.

1.5.2.4 Longest Subsequence Measure

LSM is proposed in [64] to appropriately quantify BB overlap evaluation on long-term

tracking rather than short-term. Given the longest successfully tracked subsequence

vλ of a video sequence vl, it is defined as the ratio of the length Nλ of vλ to the full

length Nl of vl. For a tracker i, vλ is a successfully tracked subsequence if x% of

frames Ft in subsequence λ yield IoUtl ≥ 0.5. Therefore,

LSMl =
Nλ

Nl

. (4)

The parameter x is a tolerance threshold which the authors set to 95% to allow some

tracking failure. This means LSM permits temporary drift or failure to happen but

still penalizes cases in which a tracker accidentally recovers a lost target.

1.5.2.5 Precision, Recall, F-measure

These three measures are used in the VOT2018-LT [48] challenge for long-term track-

ing evaluation. Trackers in that challenge are required to perform re-detection after

a target object is lost. In fact, Precision Pr measures the percentage of all the re-

detection predictions (e.g., the tracker BBs) that agree with the ground truth, while

Recall Re is the percentage of all the ground truths that agree with the predictions.

Widely-used in binary classification, the F-measure provides a Pr/Re trade-off and is
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calculated as follows

F =
2Pr.Re

Pr + Re
, . (5)

1.6 Thesis Outline

In Chapter 2, we propose a similarity-based strategy to robustly evaluate and iter-

atively rank tested trackers. We employ the median absolute deviation (MAD) to

effectively analyze the similarities amidst trackers, place them in groups of similar

performance, and rank them to determine which are the top performing trackers.

In Chapter 3, we gain inspiration from image denoising and use the notion of

robust error norms in robust statistics to provide a scoring and ranking method that

is scientifically solid.

In Chapter 4, we present a drift detection strategy which computes edge-based

objectness and superpixel saliency measures on the output bounding box of a tracker.

Then, if drift is assumed, a drift correction algorithm relocates the bounding box on

the target object using a region proposal network.

In Chapter 5, we summarize our contributions and present future work to conclude

the thesis.
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Chapter 2

Similarity-Based Scoring and

Iterative Ranking of Object

Trackers

2.1 Introduction

Each year, numerous tracking techniques are introduced and compete with the state-

of-the-art. It is, therefore, important to have a systematic robust ranking strategy for

a fair evaluation and comparison of trackers. In the past 20 years, several benchmarks

such as CAVIAR [28], CDC [34], FERET [71], iLIDS [3], PETS [2], and MOT [78]

became publicly available to encourage research initiatives in video object tracking.

Tested trackers are initialized at a single frame of a video sequence with a rectangular-

shaped BB and are required to follow an object given that single example. More recent

benchmarks [43, 44, 45, 46, 47, 48, 63, 90, 91, 77] also tackle the problem of formulating

tracking performances in a manner that is easily quantifiable and as unbiased as

possible. The most commonly used indicators for evaluation are tracking accuracy and

robustness. However, quantifying accuracy and robustness often requires to measure
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averages over a sequence and then over the entire dataset, consequently resulting

in an important loss of statistical information. The final result is, thus, not truly

indicative of a tracker’s performance through time, which makes it difficult to evaluate

it relatively to that of its counterparts.

This chapter presents our strategy to robustly evaluate and iteratively rank tested

trackers; we use the median absolute deviation (MAD) to effectively analyze the

similarities amidst trackers while quantifying tracking performances over four bench-

marks.

In the rest of this chapter, section 2.2 presents related tracker ranking work; section

2.3 proposes our ranking method; section 2.4 gives simulation results; and section 2.5

concludes the chapter.

2.2 Related Work

Prior related work can be divided into evaluation and ranking of tracking algorithms.

Evaluation consists into comparing a set of trackers’ average performance measures

[43, 44, 45, 46, 47, 48, 91, 90, 30, 64, 82, 77], while ranking categorizes them based

on said evaluation [43, 44, 45, 46, 47, 48, 30, 77, 83, 68].

2.2.1 Evaluation

A variety of datasets are available with their own proposed evaluation methods.

Among the most widely-used benchmarks for tracking, OTB-100 [91] consists of 100

short sequences and evaluates trackers using precision and success plots as well as

accuracy and robustness measures. Accuracy is measured by the commonly used Av-

erage Overlap Ratio (AOR) between a tracker’s BB and the ground truth BB over

all test videos, whereas robustness is measured using either Temporal Robustness

Evaluation (TRE) or Spatial Robustness Evaluation (SRE). For a given sequence,

11



TRE averages all AORs obtained from running a tracker at different frames of the

sequence; the tracker is first initialized at the starting frame, and it is then reset to

all the consecutive subsequent frames. To measure SRE, the target BB is shifted by

10% of the target size and scaled from 80% to 120% of the ground truth BB. SRE is

thus the AOR average of 12 configurations: four center shifts, four corner shifts, and

four scale variations. The more recent VOT2018 competition [48] uses a dataset of 60

short sequences and 35 long sequences and is divided into three challenges: short-term,

real-time, and long-term. In the short-term VOT2018-ST challenge, three primary

measures are applied for tracking evaluation: accuracy, robustness, and Expected Av-

erage Overlap (EAO), and trackers which fail are reset to the ground truth five frames

later. Under that protocol, robustness simply consists in the number of failures in

a video sequence, accuracy is the widely-used AOR, and EAO, which is introduced

to account for variable sequence lengths, estimates the AOR a tracker is expected to

yield on a dataset of equally sized short sequences. The real-time challenge works

similarly to the short-term one but adds a constraint on tracking speed; tested track-

ers require to run at a speed equal or greater to 20 frames per second (FPS), and

trackers that do not respond in time are penalized by assigning their last reported

BB for evaluation. For long-term tracking, however, the VOT2018-LT challenge uses

precision Pr, recall Re, and a standard tracking F-score as per [62] to combine Pr with

Re and optimize their tradeoff. [77] covers various video tracking challenges in 315

sequence fragments and also combines precision Pr and recall Re using an overlap-

based F-score with a 50% Intersection over Union (IoU) criterion to distinguish false

positives from true positives.

Most available datasets for tracking evaluation have been tailored for short-term

scenarios, which are not representative of real life applications. To address such

disparity, researchers have proposed more largely scaled tracking benchmarks. The

VOT challenge [48], for instance, had only started introducing long-term tracking
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evaluation in 2018. [64] introduces its own TLP dataset of 50 lengthy videos of

approximately 13500 frames each on average. The authors also divide this benchmark

into two other separate datasets: TinyTLP, which consists of each sequence’s first 600

frames to match the OTB-100 dataset average length, and TLPattr, which comprises

of 90 short sequences categorized on a challenge basis (fast motion, illumination

variation, scale variation, partial occlusion, out-of-view or full occlusion, background

clutter). [64] proposes the Longest Subsequence Measure (LSM) objective measure

to address a tracker’s ability to continuously track a target in lengthy videos and

with a certain tolerance for failure. [82] focuses on the problem of target re-detection

due to objects not always being present throughout segments of video sequences.

The authors evaluate object localization by calculating the geometric mean of the

True Positive Rate (TPR) and True Negative Rate (TNR) of the estimated object

presence at each frame. This measure differs from the more commonly applied ones

for robustness as it evaluates more a tracker’s ability to re-detect an object in long

sequences rather than its ability to recover from occurring drift.

2.2.2 Ranking

The authors in [43, 44, 45, 46, 47, 48] evaluate all tested trackers based on accuracy

and robustness measures and numerically rank them from best to worst. VOT2013

[43] includes three experiments: firstly with initialization on the ground truth BB,

secondly with initialization on a noisy ground truth BB, and lastly with gray-scaled

image sequences. Trackers are then ordered accordingly to a joint ranking of all three

experiments. VOT2014 [44] does a joint ranking of only the two first experiments,

leaving the gray-scaled one behind. Compared to the first one, the second experiment

adds an element of randomness to the initialization of all trackers by perturbing the

size and shape of the ground truth BB up to 10%. [45] introduces the first VOT-TIR

in 2015 to rank trackers in infra-red and thermal imagery. The authors also add the
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EAO performance measure to which the ranking is based, and the following VOT2016

challenge [46] follows that protocol as well. The 2017 VOT challenge [47] evaluates

and ranks similarly to the previous one but adds a real-time challenge which accounts

for tracking speed in the ranking process. The 2018 VOT challenge [48] tackles three

experiments separately, short-term, real-time, and long-term tracking, to which each

have their own ranking. Finally, the VOT 2019 challenge [63] adds two challenges:

VOT-RGBT, which focuses on short-term tracking in RGB and thermal imagery, and

VOT-RGBD, which focuses on long-term tracking in RGB and depth imagery. [4]

revisits the VOT 2013 challenge alongside OTB-100 and creates mirror-transformed

versions of these datasets to evaluate and rank the robustness of trackers subject to

mirroring.

In [83], the authors conduct a comparative experiment on several objective mea-

sures to determine which are equivalent information-wise and then rank a set of test

trackers using the least correlated measures to reflect on different aspects of tracking.

Similarly, [77] searches for multiple measures to best describe accuracy and robust-

ness but its final decision on which measures to use for ranking is biased from the

start as it favors detection-based trackers. [42] compares accuracy and real-time per-

formances on a dataset at two different frame rates (30 FPS and 240 FPS) and shows

that changing the frame rate affects the ranking of trackers depending on their track-

ing principle. [68] applies four different ranking methods and averages them into a

mean rank; the first two model datasets as graphs and assign ranks using both an

aggregation algorithm and a PageRank-based solution [67], whilst the two last rank-

ings are derived from the Elo [22] and Glicko [33] sports rating systems. Similarly to

our work, the authors of that paper identify trackers as either best or second best;

however, any tracker which is not qualified as best is automatically assumed to be

second best, whereas our algorithm objectively justifies both score assignments.
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2.3 Proposed Ranking Method

Our proposed method consists of three stages: scoring, grouping, and ranking. The

inputs to the system are (a) the output BB of all tested trackers {ti; i = 1, · · · , T}

over all the test sequences {vl; l = 1, · · · , L}, each sequence has Nl frames {Ft; t =

1, · · · , Nl} (b) the ground truth BBs over said sequences, (c) the performance mea-

sure, and (d) the data dispersion estimator, MAD (Median Absolute Deviation) in

our case. Quality data qil is first calculated according to the selected measure (for

example, AOR or FR) over each tracker i and sequence l. The scoring stage applies

the data dispersion estimator on each T -sized row of {qil} and outputs a score si to

each ti;
1
L
≤ si ≤ 1. A higher si for a tracker i indicates that ti is more consistent

in yielding good outputs. The output vector {si} serves as the input quality data

for the grouping and ranking stages where, again, the MAD dispersion estimator is

iteratively applied on {si} to group all trackers i into groups {gi} and ranks {ri}.

2.3.1 Similarity-Based Scoring

The input to scoring is a T by L matrix of quality data {qil}. A tracker ti scores best

or second best when it achieves best or second best average performance among the

entirety of T trackers for a sequence l. However, due to possible outliers or similarities

in the quality data for a vl, simply appointing the best and second best scores to the

two top performance values does not make up for a fair assignment, as doing so does

not account for the dispersion in the quality data. We, therefore, define for each test

sequence l a deviation threshold dq based on the MAD estimator as in (6),

dq = Median(|{qil} −Median({qil})|). (6)

For each tracker i, the MAD evaluates its quality data’s affiliation to either a best

or a second best score. Our scoring methodology is described in Algorithm 1 and is

ran twice to first assign best scores, then second best scores. Scores are appointed to
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trackers {ti} on a per-sequence basis until all sequences {vl} are processed sequentially.

For each ti and an objective measure, the final score si over all {vl} is the normalized

summation of all its obtained scores for that measure; therefore, the output is a set

of T final scores. In the first scoring round, all trackers i are scored, whereas in the

second round, only trackers which have not scored best are considered for evaluation.

In Algorithm 1, Best({qil}) represents the best value (for instance the maximum AOR

or the minimum FR) in a set {qil}.

Algorithm 1: Scoring of trackers over all {vl} for an objective measure.

Data: Quality data {qil} of all trackers {ti; i = 1, · · · , T} on all test
sequences {vl; l = 1, · · · , L}.

Result: Score si for each ti.
1 for each tracker ti do
2 si = 0;
3 end
4 for each test sequence vl do
5 dq = MAD({qil});
6 qo = Best({qil});
7 for each tracker ti do
8 if |qil − qo| < dq then
9 si = si + 1;

10 end

11 end

12 end

13 {si} = {si}
L

;

Since a ti can be given either a best or a second best score, more weight is at-

tributed to the best ones. Therefore, we set the score weighting system {best, second

best} to fixed values {0.8, 0.2}. We also altered those weights from 0.6 to 0.9, with

increments of 0.1, and did not notice important variations in our final scoring results

when compared to our chosen distribution. We also thought about increasing the

number of best sets of scores to evaluate; however, increasing the number of best sets

does not improve our system and is even more likely to assign a score to trackers

that are poorly performing. In the scenario where we would have added a third best
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score, the weight would be so low that the final output would not be too different

to our current scoring system. For this reason, we only score best and second best

performing trackers.

2.3.2 Similarity-Based Grouping

Grouping divides the T test trackers into a set of groups {gi, i = 1, · · · , G ≤ T} of

similarly performing trackers based on the T scores {si} of an objective measure over

all test sequences {vl}. We name group the ti which share similar gi. There can be

T groups if all trackers have fully different scores; otherwise, the number of groups

G < T .

Algorithm 2 shows how grouping is performed. First, it calculates the MAD

threshold ds over the T scores si of the unassigned (not yet grouped) trackers i

in {ti}. A score si which is within the range defined by ds and max({si}) has its

corresponding tracker assigned a counter count as its group gi; the counter starts

at 1 and increments after each round. A new round of grouping starts if there still

exists an unassigned tracker in {ti}. The grouping algorithm ends whenever each ti

is assigned a gi.

Algorithm 2: Grouping of all trackers {ti}.

Data: Scoring data {si} of all trackers {ti; i = 1, · · · , T}.
Result: Group gi for each ti.

1 count = 1;
2 while ∃ unranked ti in {ti} do
3 ds = MAD({si});
4 so = max({si});
5 for each unassigned ti in {ti} do
6 if |si − so| ≤ ds then
7 gi = count;
8 end

9 end
10 count+ +;

11 end
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2.3.3 Iterative Ranking

The T tested trackers are iteratively scored and ranked based on the quality data

{qil} over all test sequences {vl}. At the start of each iteration k, each tracker is

placed in a set j of trackers with the same assigned rank {ti}j, j = 1, · · · , J ≤ T .

Initially, none of the ti are ranked and they all belong in the same set j of unranked

trackers (i.e., r0i = 0 and J = 1). The first iteration is similar to grouping; therefore,

r1i = gi. At iteration k, a rank is assigned at each tracker and multiple trackers may

have the same rank. The ranking algorithm ends whenever all ranks in the final set

{r1:ki } are all distinct from each other or when k = T . For more simplicity, the final

rank obtained at the last iteration is named rank and is noted ri. As an example,

iterations operate as follows. In the first iteration, the ranking algorithm ranks and

partitions the T trackers into J1 sets j1 based on the trackers’ scores {si} computed

from the quality values {qil}; best trackers are in set 1, second best trackers are in

set 2, third best trackers are in set 3, etc. In the second iteration, the J1 sets j1 are

partitioned into J2 > J1 subsets j2 based on the scores re-computed from the quality

values {qil}j of the ti in each set j1. Scores are re-computed in each set to better

determine how trackers within the same set perform with respect to each other. In

the following iterations, the same process is repeated: subsets are partitioned into

smaller subsets, and all trackers in the same newly partitioned subset are scored and

ranked against each other. In the last iteration, there can be up to J = T sets, that

is, when all trackers are ranked differently.

Algorithm 3 shows more precisely how the entire ranking process is achieved.

First, we use the quality data Qj = {qil}j, in other words, the quality values of

trackers i in the set of trackers {ti}j over all test sequences {vl}. Qj is a matrix of

size Tj ×L, where Tj = |{ti}j| is the number of trackers in {ti}j at iteration k; a row

in Qj designates a tracker i from {ti}j and a column designates a sequence l. Then,

we score() best and second best performances of each tracker i in {ti}j as per section
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2.3.1 to produce the Tj scores of set j, namely {si}j. We calculate the MAD threshold

ds over {si}j, and a score which is within the range defined by ds and max({si}j) has

its corresponding tracker assigned a counter count as its rank rki ; the counter starts

at 1 and increments after each round of ranking (“while” loop in Algorithm 3), that

is, after at least one tracker in {ti}j has been ranked. A new round starts if there

still exists an unranked ti in {ti}j. Once all trackers are ranked in iteration k, we

take the new sets {ti}j of similarly ranked trackers for iteration k + 1. The sets j for

iteration k+ 1 depend on the tracker ranks at iteration k, and j varies from 1 and J .

The algorithm iterates if k ≤ T and if at least two trackers are of the same rank. The

algorithm stops either when k = T + 1 or when all trackers are ranked differently. In

fact, T is the minimal amount of iterations required to fully achieve ranking, without

exception, over all {ti}. Hence, a final rank 1 ≤ ri ≤ T and only trackers that have

the same score end with the same rank.

Essentially, algorithm 3 in its first iteration k = 1 divides all trackers {ti} into

groups (same as algorithm 2); then, in each of the following iterations, each group is

divided into sub-groups, and each tracker in each sub-group is given a rank. Ranking

is based on the scores which are recomputed at each iteration. This is repeated until

all trackers are ranked.

At each new iteration, each trackers within a same set j have its score recomputed.

The score at k = 1 is the most relevant to display for analysis since it is used for

grouping and shows how all T trackers compare with respect to the top performing

trackers. At the last iteration, the final score of a tracker i is simply the score of the

tracker in the last set it was assigned in. This means the final score is not meaningful

to show or interpret on its own. However, the final rank ri depends on all scores, from

the first iteration to the last iteration, hence the importance of computing scores at

each iteration.
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Algorithm 3: Iterative ranking of all trackers {ti}.

Data: Quality data {qil} of all trackers {ti; i = 1, · · · , T} on all test
sequences {vl; l = 1, · · · , L}.

Result: Rank ri for each ti.
1 k = 1;
2 j = 1;
3 {ti}j = {ti};
4 do
5 for each {ti}j do
6 Qj = {qil}j;
7 {si}j = score(Qj);
8 count = 1;
9 while ∃ unranked ti in {ti}j do

10 ds = MAD({si}j);
11 so = max({si}j);
12 for each unranked ti in {ti}j do
13 if |si − so| ≤ ds then
14 rki = count;
15 end

16 end
17 count+ +;

18 end

19 end
20 k + +;
21 {ti}j = update({ti}j);
22 while k ≤ T and ∃ ti1 ∧ ti2 such that ri1 = ri2 ;
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2.3.4 How Robust is our Method?

Our scoring and ranking methods are based on a robust dispersion estimator: the

MAD. To demonstrate their robustness, we run a total of M experiments where the

original AOR quality data of each frame of a test video signal and for all trackers are

subjected to variations of signal independent noise; then, we evaluate our algorithm’s

response to impulse and non-zero mean Gaussian noise.

In the context of this experiment, impulse noise can be interpreted as the result

of random sharp and sudden image changes such as occlusion or fast motion. We can

also interpret the additivity of Gaussian noise to {qil} as random gradual changes

through frames such as illumination variation or motion blur.

To show the robustness of our scoring method, given T tested trackers {ti; i =

1, · · · , T}, let their scores be {si} and mean measures be {pi} generated from the

original quality data {qil} of an objective measure (such as AOR) over all sequences

{vl}, and let their noisy scores be {sni } and noisy mean measures be {pni } generated

from the noisy quality data {qnil} of that same objective measure. Our scoring is more

robust than averaging (mean) if, after M experiments,

∀i, Ψ(si, µsni ) > Ψ(pi, µpni ), (7)

where Ψ(·) = min(·)
max(·) ∈ [0, · · · , 1] is a min-max ratio applied for normalization,

µsni =
1

K

K∑
k=1

ski , (8)

µpni =
1

K

K∑
k=1

pki . (9)

µsni is the average score of tracker i over K different levels of a noise distribution

under test, and µpni is the average performance mean of tracker i over the same K

noise levels. In other words, our scoring is more robust than the mean if, overall, each

ti yields a ratio of scores Ψ(si, µsni ) closer to 1 than the ratio of means Ψ(pi, µpni ).
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To test if our ranking method is robust, let the ranks of all the T trackers be

{ri} generated from the original quality data {qil} of an objective measure over each

sequence l, and let their noisy ranks be {rni } generated from the noisy quality data

{qnil} of that same objective measure. Our ranking is robust if, after M experiments,

∀i, |ri − µrni | ≤ 1, (10)

where µrni is the average rank of each tracker i over K different levels of a noise

distribution,

µrni =
1

K

K∑
k=1

rki . (11)

In other words, our ranking is robust if, overall, each ti yields at most a difference of

1 between its original ri and its corresponding average of noisy ranks µrni .

Given the original overlap ratio quality data {qil}, that is, AORl values at each

test video sequence vl for each tracker ti, we add noise to AORl to get {qnil}. For im-

pulse noise, the noisy quality data {qnil} is the original quality data to which we apply

a binary-state sequence, with a noise density varying from 0.05 to 0.5, specifically,

0.05, 0.2, 0.35, and 0.5. For Gaussian noise, we pick three distributions with different

standard deviations std, namely 0.01, 0.05, and 0.1. To each Gaussian distribution,

we vary the mean from 0.1 to 0.4, specifically, 0.1, 0.2, 0.3, and 0.4. We run the exper-

iments M = 50 times across the combined dataset OTB-100+VOT2018-ST+NfS-30.

Tables 3 and 4 display Ψ(pi, µpni ) (noted ‘Mean ratio’), Ψ(si, µsni ) (noted ‘Score

ratio’) and |ri − µrni | (noted ‘Rank diff.’) results under impulse noise and Gaussian

noise, respectively. Both tables show that our proposed ranking responds moderately

to even strong variations in the input data not just on average, but for every tracker

i. Indeed, the rank difference is less or equal to 1, affirming the robustness of our

ranking methodology. We also see that, overall, the score ratio does not goes below

0.85, which is comparatively much more robust than the mean ratio where the ratio

can reach 0.55. We notice that in the case of impulse noise, the average score ratio
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and the average mean ratio are comparable and remain above 0.9, but in all cases of

Gaussian disturbances, the score performs much better than the mean.

In Table 5, we show the percentage of trackers with mean ratio and score ratio

above a certain threshold ths over all 16 cases of noise levels: 4 levels of impulse noise

as per Table 3 and 12 levels of Gaussian noise as per Table 4. We can observe that

the score is more robust than the mean.

We applied our robustness experiment only to the AOR values AORl at each

sequence but not to the FR values FRl because the latter are too small. In fact, the

average of all our AOR data is 0.46331, whereas that of our FR data is 0.2535, and

larger levels of noise negatively affects the experiment if our measure is, overall, closer

to 0 or to 1 (here the FR). To keep our noise distribution as unaltered as possible, it

is best to operate on a measure that is, overall, closer to 0.5 (here the AOR).

2.4 Results and Discussion

2.4.1 Experimental Setup

For testing our methods, we selected 20 trackers of different performance, speed, and

with their code publicly available: ATOM [24], CFWCR [38], CREST [79], CSRDCF

[61], DASIAMRPN [100], DAT [72], DIMP [97], DLST [94], DSST [26], ECO [25],

IBCCF [54], KCF [40], LADCF [92], MCCT [86], MDNET [65], SAMF [93], SIAMFC

[6], SIAMRPN++ [51], STAPLE [5], and STRCF [53]. Table 6 briefly describes each

of their tracking principles. As can be seen, the majority of them are correlation filter-

based, CNN-based, Siamese, or a combination of architectures, as those methods have

proven to compete most with the state-of-the-art [47, 48, 63]. DAT was chosen to

compete among the older trackers and is the only one to solely rely on a color tracking

principle. LADCF and MCCT trackers used in our evaluation are correlation filter-

based but also exist with a CNN architecture.
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Table 3: AOR mean ratio, score ratio, and rank difference results under impulse
noise and averaged over M = 50 runs for each tracker ti in the combined dataset
OTB-100+VOT2018-ST+NfS-30.

(a) Impulse noise of density 0.05 and 0.2 (b) Impulse noise of density 0.35 and 0.5

(c) Impulse noise of density 0.05 to 0.5
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Table 4: AOR mean ratio, score ratio, and rank difference results under Gaussian
noise and averaged over M = 50 runs for each tracker ti in the combined dataset
OTB-100+VOT2018-ST+NfS-30.

(a) Gaussian noise with std = 0.01 and means
0.1, 0.2, 0.3, and 0.4

(b) Gaussian noise with std = 0.05 and means
0.1, 0.2, 0.3, and 0.4

(c) Gaussian noise with std = 0.1 and means 0.1,
0.2, 0.3, and 0.4
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Table 5: Percentage of trackers with mean ratio or score ratio above ths.

Threshold Mean ratio Score ratio
ths % trackers % trackers
0.85 38 72.5
0.9 37 56
0.95 28 28

Table 6: Tracking principle and FPS over each benchmark for each tested tracker.

Tracking Principle Siamese Discriminative CNN Color Code Frames per second Average
Network Correlation Filter Matching Template OTB VOT-ST VOT-LT NfS FPS

1. ATOM [24] X - X - CC / GPU / P 21.324 25.761 30.836 24.468 25.597
2. CFWCR [38] - X X - PC / GPU / M 3.231 4.675 2.890 2.828 3.578
3. CSRDCF [61] - X - - PC / CPU / M 15.008 12.543 10.455 9.993 12.515
4. CREST [79] - X X - PC / GPU / M 1.463 1.592 1.316 1.674 1.576
5. DASIAMRPN [100] X - X - CC / GPU / P 68.313 175.55 71.724 72.341 96.982
6. DAT [72] - - - X PC / CPU / M 90.975 55.100 44.948 43.908 63.328
7. DIMP [97] X - X - CC / GPU / P 25.792 26.520 30.438 26.606 27.339
8. DLST [94] - - X - PC / GPU / M 0.888 0.899 - 0.774 0.854
9. DSST [26] - X - - PC / CPU / M 53.054 54.516 39.683 42.193 49.921
10. ECO [25] - X X - PC / GPU / M 2.082 2.298 1.934 1.394 1.925
11. IBCCF [54] - X X - PC / GPU / M 0.660 0.670 0.559 0.572 0.634
12. KCF [40] - X - - PC / CPU / M 121.960 79.050 51.262 37.436 79.482
13. LADCF [92] - X - - PC / CPU / M 23.775 21.853 18.755 19.291 21.640
14. MCCT [86] - X - - PC / CPU / M 39.094 7.476 27.665 32.696 26.422
15. MDNET [65] - - X - PC / GPU / M 0.708 0.717 0.641 0.659 0.695
16. SAMF [93] - X - - PC / CPU / M 26.185 15.031 8.636 6.502 15.906
17. SIAMFC [6] X - X - PC / GPU / M 14.117 13.93 - 8.919 12.322
18. SIAMRPN++ [51] X - X - CC / GPU / P 47.747 44.494 30.973 39.464 40.670
19. STAPLE [5] - X - - PC / CPU / M 77.335 71.463 49.510 61.56 70.119
20. STRCF [53] - X - - PC / CPU / M 25.985 20.568 18.001 18.935 21.829
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We collect the mean, score, group, and rank of each tracker for AOR and FR

measures over three short-term datasets: OTB-100 [91], VOT2018-ST [48], and NfS-

30 [42] (Chapter 1 section 1.5.1 briefly introduces these datasets). The scores and

groups displayed in all following tables is that calculated at iteration k = 1 since that

is the only time all trackers compete against each other.

2.4.2 Experimentation on OTB-100 Dataset

Mean, score, group, and rank results over the 100 sequences of OTB-100 are displayed

in Table 7. We first notice that the scoring does not replicate outputs similar to the

mean. For example, there is much more variance in the AOR scores of DIMP and

ECO trackers than in their respective mean AOR. We also see that a tracker can score

higher even if it has a lower mean than another tracker. For example, DASIAMRPN

has a higher mean AOR than CSRDCF but its score is slightly lower. Our results

show that the score does not directly correlate with the objective measure itself; it is

instead an indication of the frequency at which a tracker performs best relatively to

its counterparts using that objective measure. Hence, ranking would be different if it

were done according to the mean. Table 7 also shows that one tracker can be overall

more accurate (i.e., higher AOR score) than another one, while being simultaneously

less robust (i.e., lower FR score). For instance, SIAMRPN++ is in groups 5 and 2

for AOR and FR, respectively, whereas STAPLE is assigned groups 3 and 3 for those

measures. This means that SIAMRPN++ overall fails less than STAPLE on OTB-

100, but that STAPLE more consistently yields better accuracy. Moreover, we notice

less differences between FR scores and means than between AOR scores and means.

This makes sense since many of our tested trackers rarely fail and yield consistent FR

results across the widely studied OTB-100 dataset. Consequently, FR data variability

is much lower and the ranking based on score looks more closely to that which would

be based on the mean.
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Table 7: AOR and FR mean, score, group, and rank for all trackers ti over the OTB-
100 dataset. The 5 top-ranked trackers in terms of AOR are: ECO, LADCF, STRCF,
DIMP, CFWCR; those in terms of FR are: STRCF, LADCF, ECO, DIMP, MDNET.

AOR results split the trackers into 7 groups of performance. The first AOR group

includes ATOM, CFWCR, DIMP, ECO, LADCF, and STRCF. FR results split the

trackers into 5 groups which is a smaller amount of groups than with AOR. The first

FR group includes ATOM, CFWCR, DIMP, ECO, LADCF, MDNET, and STRCF

trackers, which is one more tracker than the first AOR group. In fact, the lower

data variability in FR explains the reduced number of groups, hence the addition of

MDNET in group 1.

2.4.3 Experimentation on VOT2018-ST Dataset

Mean, score, group, and rank results over the 60 sequences of VOT2018-ST are dis-

played in Table 8. For matters of consistency with OTB-100, we use a rectangular

annotated ground truth at each frame instead of the rotated one provided by the

benchmark. We first notice that the number of AOR and FR groups are larger than

in OTB-100, underlying the higher dispersion of data. In addition to that, the mean
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Table 8: AOR and FR mean, score, group, and rank for all trackers ti over the
VOT2018-ST dataset. The 5 top-ranked trackers in terms of AOR are: DIMP, ATOM,
MDNET, SIAMRPN++, IBCCF; those in terms of FR are: DIMP, SIAMRPN++,
MDNET, ATOM, CSRDCF.

performance measures are lower overall than in OTB-100. Despite having shorter

sequences on average, VOT2018-ST has more challenging videos than OTB-100, and

such attributes increase a tracker’s likeliness to drift earlier in a sequence. Indeed,

datasets from the VOT challenge are updated to keep up with the state-of-the-art,

whereas OTB-100 has remained unchanged since its release.

AOR and FR performance measures divide the candidate trackers into 8 and

6 groups, respectively. AOR group 1 only consists of DIMP whereas FR group 1

includes DIMP, MDNET, and SIAMRPN++. Trackers such as ATOM, ECO, and

LADCF that were ranked first in Table 7 over OTB-100 are now ranked in a lower

group, hence emphasizing the difference in performance between those trackers and

DIMP.
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Table 9: AOR and FR mean, score, group, and rank for all trackers ti over the NfS-30
dataset. The 5 top-ranked trackers in terms of AOR are: DIMP, ATOM, STRCF,
ECO, CFWR; those in terms of FR are: DIMP, ATOM, CFWCR, ECO, LADCF.

2.4.4 Experimentation on NfS-30 Dataset

The NfS benchmark is not as well known or as widely used as OTB-100 and VOT2018-

ST. It is divided into two datasets of 100 video sequences captured at different frame

rates: 240 FPS (NfS-240) and 30 FPS (NfS-30). All frames are annotated with a

rectangular ground truth. We test the trackers on NfS-30 as it presents a variety of

examples which have not been explored as much as in OTB-100 and VOT2018-ST

datasets, thus allowing to test their robustness to different target objects and envi-

ronments. Table 9 displays AOR and FR performance results over the 100 sequences.

AOR and FR results split the trackers into 8 and 7 groups of performance, re-

spectively. The FR-based number of groups is the highest amount among the three

studied datasets. This means there is more FR variance in the NfS-30 than in the

other datasets. Trackers ranked in the first group for both AOR and FR measures are

ATOM and DIMP. Trackers such as ECO, LADCF, and MDNET which have ranked

high in either OTB-100 or VOT2018-ST are placed in groups 2 or 3.

30



Table 10: AOR and FR mean, score, group, and rank for all trackers ti over the
combined short-term dataset OTB-100, VOT2018-ST, and NfS-30. The 5 top-ranked
trackers in terms of AOR are: DIMP, ATOM, ECO, MDNET, LADCF; those in
terms of FR are: DIMP, ATOM, CFWCR, ECO, SIAMRPN++.

2.4.5 Experimentation on Cross Datasets (Short-Term)

To obtain an overall evaluation of each tracker’s accuracy and robustness performance

across all short-term datasets (OTB-100, VOT218-ST, and NfS-30), one method

would be to collect the rank of each tracker in each dataset and then assign it the

mean or median rank as its final rank. Doing so, however, poses certain issues: (1) two

different trackers may be assigned a similar final rank, hence defeating the purpose

of ordering them, (2) smaller datasets are treated as equally as larger datasets, and

(3) some trackers are trained to perform better in a specific benchmark, therefore,

affecting the ranking when performed on that benchmark. To reduce possible bias

towards certain benchmarks, test the generalization ability of the trackers, and make

the ranking more fair, we run the scoring and ranking across all 260 video sequences

of OTB-100, VOT2018-ST, and NfS-30 combined. In doing so, the output of our

scoring and ranking method is a set of ranks and groups assigned at each tracker.
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Table 10 displays AOR and FR means, scores, ranks, and groups across the com-

bined short-term dataset. There is a total of 7 groups for AOR and 6 groups for

FR. We see that ATOM and DIMP trackers are in group 1 for both AOR and FR

performance measures. In addition, CFWCR, ECO, LADCF, MDNET, and STRCF

trackers are in group 2 for both AOR and FR measures are. Even though CFWCR,

ECO, LADCF, and STRCF were top trackers in OTB-100, we can clearly see that

ATOM and DIMP are the best performing ones on the cross datasets.

2.4.6 Experimentation on Long-Term Dataset VOT2018-LT

We run the scoring and ranking on the VOT2018-LT dataset, consisting of 35 long-

term videos. The aim of this experiment is to observe how much tracking perfor-

mances can be affected by video length and differ from those on short-term videos.

AOR and FR means, scores, ranks, and groups are displayed in Table 11.

We notice that DIMP is the only tracker to be assigned group 1 on both AOR and

FR measures since it performs, overall, much better than its counterparts. Nonethe-

less, we can observe that ATOM, DASIAMRPN, LADCF, and SIAMRPN++ are

in group 2 for both measures; among those four trackers, three of them (ATOM,

DASIAMRPN, and SIAMRPN++) have an implemented target re-detection algo-

rithm which allows them to reduce error loss when facing long-term challenges. While

trackers such as ECO, MDNET, and STRCF performed well on short-term sequences,

their incapability to re-detect lost objects puts them at a disadvantage on long-term

sequences.
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Table 11: AOR and FR mean, score, group, and rank for all trackers ti over the
VOT2018-LT dataset. The 5 top-ranked trackers in terms of AOR are: DIMP,
ATOM, DASIAMRPN, SIAMRPN++, LADCF; those in terms of FR are: DIMP,
SIAMRPN++, ATOM, DASIAMRPN, CFWCR.

Table 12: Summarizing results: trackers grouped 1 and trackers ranked 1 (underlined
and in bold) in all benchmark experiments.

Dataset AOR FR
OTB ECO, LADCF, STRCF, DIMP, CFWCR, ATOM STRCF, LADCF, ECO, DIMP, MDNET, CFWCR, ATOM

VOT-ST DIMP DIMP, SIAMRPN++, MDNET
NfS DIMP, ATOM DIMP, ATOM

VOT-LT DIMP DIMP
OTB+VOT-ST+NfS DIMP, ATOM DIMP, ATOM

2.4.7 Analysis and Discussion

2.4.7.1 Which are the Best Performing Trackers?

We summarize in Table 12 which trackers achieve rank 1 (i.e., ri = 1) at the end

of our iterative algorithm and which ones achieve group 1 (i.e., r1i = 1) after the

first iteration. We see that ECO, DIMP, MDNET, and STRCF achieve rank 1 in

either accuracy or robustness, and that ATOM, CFWCR, ECO, DIMP, LADCF, and

MDNET achieve group 1 for both AOR and FR, simultaneously, across at least one

dataset. When all three short-term datasets are merged, ATOM and DIMP are placed

in group 1, and DIMP is ranked 1 for both AOR and FR.
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ATOM and DIMP ranks are also preserved when looking into the four individual

experiments (OTB-100, VOT2018-ST, NfS-30, and VOT2018-LT). By counting how

often a tracker achieves group 1 in AOR and FR measures across all four benchmarks,

we see that DIMP scores 8/8, followed by ATOM with 4/8, then CFWCR, ECO,

LADCF, MDNET, and STRCF with 2/8, and finally SIAMRPN++ with 1/8.

Table 12 confirms that deep-learning trackers (here ATOM and DIMP), correlation

filter-based trackers (here LADCF and STRCF), or a combination of both tracking

principles (here CFWCR and ECO) well compete against each other. We also note

from Table 6 that the fastest of those top trackers are ATOM and DIMP, each running

at 25.6 and 27.3 FPS, respectively. Overall, the top tracker in our benchmark is DIMP.

2.4.7.2 Detailed Output of Proposed Algorithm

In the proposed algorithm, each tested tracker i is evaluated over each video sequence

l to yield scores {si}. We calculate the MAD threshold on two rounds to filter out

top performing and second top performing trackers from the rest of {ti}. Table 13

illustrates how our scoring algorithm works, where the performance measure is AOR,

and all test sequences with their calculated MAD thresholds dq (denoted thresh1 and

thresh2 in Table 13) for best and second best scoring are displayed.

2.5 Conclusion

Numerous trackers are proposed yearly and compete with the state-of-the-art; our goal

in this study was to identify trackers which were of similar AOR and FR performances

across all test sequences. Our motivation for this chapter was to provide a tracker

ranking protocol that accounted for data dispersion and did not only rely on averaging

average results. Our proposed method scored and ranked trackers using the MAD

dispersion estimator and calculated at each sequence the similarities in the quality
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Table 13: Average AOR per tracker and per sequence and calculated deviation thresh-
olds dq for best and second best scores, for the OTB-100 dataset.
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data. We then ran an iterative algorithm to cluster all trackers into groups and

sub-groups of similar performance. To extensively test our method, we ranked our

tested trackers over three short-term datasets, individually and altogether, and one

long-term dataset. Our observations over all ranking outputs indicated that DIMP

was the best performing tracker, followed by ATOM, and then by a group of similarly

performing trackers CFWCR, ECO, LADCF, MDNET, and STRCF.

We have shown in this chapter that data dispersion within tracking results can

play an important role in estimating a tracker’s level of performance. Even though

our method proved to be robust, it was purely applied. In the next chapter, we gain

inspiration from the use of robust norms applied in image denoising and look into

employing robust statistics to propose a scoring and ranking method that has more

scientific footing.
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Chapter 3

Robust Error Norm-Based Scoring

and Ranking of Object Trackers

3.1 Introduction

In Chapter 2, we achieve a robust scoring and ranking method to evaluate trackers

and rank them in groups of similar performance, the motivation being that current

tracking evaluation only relies on averaging performance measures which are averaged

across each video of a dataset [91, 48]. Using the median absolute deviation (MAD),

our evaluation estimates on a per-sequence basis which trackers perform similarly

and scores them accordingly. Even though we have shown that our similarity-based

ranking is robust, in this chapter, we go a step further and aim to use robust statistics

concepts used in anisotropic diffusion for image denoising to propose a theoretically

sold approach, where we apply robust error norms to score and rank trackers with

respect to each other.

In the rest of the chapter, section 3.2 presents the concepts which motivate our

work; section 3.3 briefly mentions related work; section 3.4 proposes our new rank-

ing method; section 3.5 provides simulation results and compares its ranks with the
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similarity-based ranking’s results; finally, section 3.6 concludes the chapter.

3.2 Robust Error Norms in Image Denoising

Error norm has been used in image processing before, for example, in anisotropic

diffusion for image denoising [7, 76]. Given a noisy image I = Iclean + noise where

noise is assumed to be additive white Gaussian noise, let s be the center pixel and

p be a neighbor of s within a neighborhood ηs. Let Is and Ip be the intensities of

pixels s and p, respectively. For all neighbors p in ηs, we define the difference, or

error, ep = Ip− Is as the image gradient from pixels s to p. Therefore, in a piecewise

constant image region, error ep is small and zero-mean normally distributed. An

optimal estimator for non-noisy (clean) Is minimizes e2p.

The MAD allows to determine whether the median reliably represents the values

within the set: the larger the MAD, the greater variability there is, and the less

representative the median becomes in the set. Let c be the scale factor of a known

distribution family of a set of data {ep}. The scale factor is the inverse of the 75th

percentile of the standard known cumulative distribution; for example, c = 1.4826

in a Gaussian distribution [66]. The MAD is used for the robust scale estimator

σ = c ·MAD{ep} [75] in order to reject outliers, or neighbors p of pixel s in a noisy

image I. Determining the clean image from I can be formulated as the following

minimization problem [7]

min
I

∑
s∈I

∑
s∈ηs

ρ(ep;σ), (12)

where ρ(·) is an error norm which minimizes the effect of the outliers and is more

robust than the quadratic norm [7] defined as

ρ(e;σ) =
e2

σ2
. (13)

Assuming that pixels p are of intensity close to that of s, the optimization (12)
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can be solved by gradient descent,

I t+1
s = I ts + λ · 1

|ηs|
∑
p∈ηs

ψ(etp;σ), (14)

where t is the iteration, etp = Ip − I ts, ψ(·) = ρ′(·) is an influence function, λ is a

constant rate of diffusion, and |ηs| is the cardinality of region ηs (i.e., its number of

neighbors). The influence function ψ influences (reduces or increases) the contribution

of Ip on the solution [35].

By defining the edge-stopping function h(e) = ψ(e)
e

, (14) becomes the Perona and

Malik anisotropic diffusion equation [70],

I t+1
s = I ts + λ · 1

|ηs|
∑
p∈ηs

h(etp;σ) · etp. (15)

The statistical interpretation of the Perona and Malik anisotropic diffusion equation

provides a means for detecting edges between the piecewise constant image regions;

denoising stops at outliers (edges) depending on the scale parameter σ.

A robust error norm is one that rejects outliers, that is, one whose influence

function reduces the contribution of outliers [7, 35]. Among these error norms is the

Lorentzian norm [7, 70]:

ρ(e;σ) = log(1 +
1

2

e2

σ2
), (16)

ψ(e;σ) = e
1

1 + e2

2σ2

, (17)

h(e;σ) =
1

1 + e2

2σ2

. (18)

ρ is the error norm, ψ(·) = ρ′(·) is the influence function, and h(·) is the edge-stopping

function h(·). By substituting (18) in (14), one can replicate the Perona and Malik

anisotropic diffusion equation [70], showing that anisotropic diffusion is the gradient

descent of an estimation problem with a known robust error norm [7],

I t+1
s = I ts + λ · 1

|ηs|
∑
p∈ηs

h(etp;σ) · etp

= I ts + λ · 1

|ηs|
∑
p∈ηs

1

1 + e2

2σ2

· ep.
(19)
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(a) ρ(e, σ) (b) ψ(e, σ)

Figure 1: Quadratic error norm ρ(e, σ) and influence ψ(e, σ).

(a) ρ(e, σ) (b) ψ(e, σ)

Figure 2: Lorentzian error norm ρ(e, σ) and influence ψ(e, σ).

Figures 1 and 2 show error norm and influence functions for the quadratic norm

and the Lorentzian norm, respectively, for a zero-mean Gaussian distribution. Al-

though the quadratic error norm ρ(e, σ) = e2

σ2 has an optimal local estimate of I ts, its

influence is a boundless linearly increasing function which is sensitive to outliers. The

Lorentzian error norm increases at a lower rate than the quadratic error norm and is

much more robust to outliers. Its influence, however, does not go to zero [7].

40



3.3 Related Work

Work related to evaluation and ranking of trackers is cited in Chapter 2 section

2.2. Our similarity-based scoring and iterative ranking algorithm in Chapter 2 is

the related work for the robust error norm-based ranking method we propose in

this chapter. In fact, the MAD is used in both methods as a robust estimator of

similarly performing trackers. In comparison, however, our proposed scoring and

ranking method in this chapter uses robust statistics and error norms to achieve a

scoring process that is statistically coherent. Different to the similarity-based method,

our error norm-based scoring first computes a robust scale estimate to score higher

neighboring trackers that are within the best region of performance. The scoring

operation is achieved using an edge-stopping function which assigns the highest score

to the best performing tracker and scores other trackers relatively to the top tracker,

regardless of how high or low the performance mean of the top tracker is. Therefore,

unlike our method in Chapter 2, our error norm-based scoring does not only assign

scores to the best and second best performing trackers and it yields scores that are

more spread across the domain [0, · · · , 1] . Our grouping in this chapter also computes

a robust scale estimate and groups trackers together if their performance differences

are within the range described by that scale. In this work, we show that our proposed

score is more representative of a tracker’s performance than the widely used average

of averages.

3.4 Proposed Tracker Evaluation Method

We borrow the idea of the use of error norms in image denoising to propose a robust

method to estimate the performance of a tracker with respect to other trackers by

relating its score and rank to an error norm. Two trackers can be considered neighbors

in terms of their performance if the error, or the difference, between their performances
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is not an outlier, that is, it remains within a robust scale defined as the MAD of the

error. This can be interpreted as detecting the boundaries between the piecewise

constant performance regions. Thus, trackers belong to a similar performing rank if

their performance measures are similar to the best performance measure within that

rank.

3.4.1 Robust Error Norm-Based Scoring

The input to the proposed scoring method is the performance (quality) data {qil} for

all tested trackers {ti, i = 1, · · · , T} over all test video sequences {vl, l = 1, · · · , L},

each having Nl frames {Ft, t = 1, · · · , Nl}. Let the best performing tracker i over a

sequence l yield qBl. For example, qBl = max{AORi; i = 1, · · · , T} for the average

overlap ratio, or qBl = min{FRi; i = 1, · · · , T} for the failure rate. Let eil = qBl − qil

be the difference in performances between the best tracker and other trackers in

sequence vl, where 0 ≤ eil ≤ 1. The set {eil, i = 1, · · · , T} contains a population

of sample errors where the difference in performance between the best tracker and

its similarly performing (neighboring) trackers is small, i.e. eil → 0. The errors of

neighboring trackers are from one distribution while the errors of far-neighbors are

from another distribution. As can be seen on the histograms of Figure 3, the histogram

(distribution) of AOR errors can be approximated as uniform as we decrease the range

of the histogram.

We define a scoring function h(eil) that assigns a high score when the error is small,

i.e. h(0) = max h(eil), and computes a lower score the larger the error becomes, i.e.

limeil→1 h(eil) = 0. We scale regions of neighboring trackers based on a robust scale

estimator

σl = cl ·MAD
1≤i≤T

{eil}, (20)

where σl is the robust scale of all errors eil at sequence l, MAD (Median Absolute

Deviation) is a robust measure of variability for detecting outliers in statistics, and
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(a) (b)

(c)

Figure 3: Histograms of AOR differences across ranges (a) 0 to 0.01, (b) 0 to 0.05,
and (c) 0 to 0.1, in the combined dataset OTB-100+VOT2018-ST+NfS-30.
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cl is a scale factor which depends on the distribution family. With respect to our

assumption of uniform noise within each constant region of performance, cl =
√

4/3 =

1.1547 [66].

Error norms can be used in robust statistics to estimate sets of data which contain

outliers. We look into three kinds of robust estimators, namely Lorentzian’s edge-

stopping (21), Huber’s minmax (22), and Tukey’s biweight (23) functions.

hLorentz(eil;σl) =
1

1 + e2

2σ2
l

(21)

hHuber(eil;σl) =


1
σl

: |eil| ≤ σl

sign(eil)

eil
: |eil| ≤ σl

(22)

hTukey(eil;σl) =


1
2
(1− e2il

σ2
l
)2 : |eil| ≤ σl

0 : |eil| ≤ σl

(23)

Figures 4 to 6 show Lorentzian, Huber, and Tukey error norms with their cor-

responding error norms and influence functions for a uniform distribution sampled

on the interval [0,· · · ,1], the same interval AOR and FR performance measures are

computed on. None of the magnitudes are re-scaled; however, we can re-scale Huber

and Tukey functions so that they return values in the range [0,· · · ,1], similar to the

Lorentzian function. Each error norm is more robust than the quadratic norm and

presents its own set of advantages. For instance, Tukey’s biweight (23) descends all

the way to zero, which means it can ignore the contributions of the worst perform-

ing trackers. Huber’s minmax (22) is constant for small errors and can, therefore,

assign the same highest score to trackers similar to the best performing tracker in a

sequence. However, its scoring can get unstable and produce too many inliers when

σl is high. The Lorenztian edge-stopping (21) delivers a good balance in-between

Huber’s minmax and Tukey’s biweight. Thus, at a sequence l, we choose to assign a

tracker i a score sil = hLorentz(eil;σl). As a result, our method assigns higher scores

to trackers that have close performance to the top tracker and low scores to outliers
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(a) h(eil) (b) ψ(eil) (c) ρ(eil)

Figure 4: Perona and Malik edge-stopping function and Lorentzian error norm.

(a) h(eil) (b) ψ(eil) (c) ρ(eil)

Figure 5: Huber’s minmax.

(far neighbors) for each test sequences.

Note that since (21) is a continuously decreasing function, if a tracker t1 has a

better mean performance than a tracker t2 for an objective measure, then s1l > s2l.

The Lorentzian edge-stopping presents issues in cases where there are no outliers

(for example when all FR values are zero); the MAD is zero, hence σl = 0 and

hLorentz(eil;σl) is undefined. To solve this problem, we propose

s �il = hLorentz(eil;σl) =


1

1+ e2

2σ2

: σl 6= 0

qil · (1− eil) : σl = 0,

(24)

where s �il designates the score of quality data qil such that the best value for qil is 1

(for example AOR). However, when the quality data qil has 0 for its best value (for
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(a) h(eil) (b) ψ(eil) (c) ρ(eil)

Figure 6: Tukey’s biweight.

example FR), we propose

s

�

il = hLorentz(eil;σl) =


1

1+ e2

2σ2

: σl 6= 0

(1− qil) · (1− eil) : σl = 0.

(25)

After all tracker scores are computed over each sequence, we apply the mean to

combine all scores sil of each ti over the L test sequences into one combined score for

each tracker,

si = Mean
1≤l≤L

{sil}. (26)

For (26), other measures of central tendency such as the median, midmean, and

winsored mean can be used. However, the mean is a better measure of the score’s

center if we have a symmetric distribution of scores [84]. For this, we plot in Figure

7 the histograms of tracker scores {sil} for all trackers as well as for three groups of

trackers (best, middle, and lowest) across the combined dataset OTB-100+VOT2018-

ST+NfS-30. We indicate the mean of the scores on each histogram. Figure 7a shows

that the distribution of scores over all trackers can be assumed symmetric; therefore,

we choose the mean of scores as a robust sample estimator of center. A symmetric

distribution can also be observed in the histograms of the middle and best trackers, in

Figures 7c and 7d, respectively. Unsurprisingly, the histogram of the lowest trackers

in Figure 7b is not as symmetric as the two other groups since trackers within the

lowest category do not score as high as the trackers in the middle and best category.
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(a) (b)

(c) (d)

Figure 7: Histograms of AOR scores {sil} for four categories of trackers: (a) all track-
ers, (b) lowest category, (c) middle category, and (d) best category, in the combined
dataset (i.e., OTB-100+VOT2018-ST+NfS-30).
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3.4.2 Error Norm-Based Grouping

Grouping divides the T test trackers into a set of groups {gi, i = 1, · · · , G ≤ T} of

similarly performing trackers based on the T scores {si} of an objective measure over

all test sequences {vl}.

To assign a group, let the best score of the best performing unranked tracker in

the combined scores {si} be sB, and let the error between sB and a score si in {si}

of another unranked tracker be ηi = sB − si. Let the scale estimate be

ση = cη ·MAD({ηi}), (27)

where cη is the scale factor of the family distribution of {ηi}. A tracker ti belongs in

the same group as the best performing unranked tracker if ηi ≤ ση. If there still exist

unranked trackers, we repeat the process: we update sB using the scores of unranked

trackers, compute errors {ηi}, measure the scale estimate ση, and compare ηi to ση

for each tracker, until all trackers are assigned a group.

To determine cη in (27), we determine the distribution of errors {ηil} at each

sequence vl. For a sequence l and for all trackers i, let the best score in {sil} be sBl,

and let ηil = sBl − sil be the error between sBl and the score of a tracker. Figure

8 displays the histograms of errors {ηil} across all sequences. As can be seen, the

tails are heavy, meaning they do not go down to zero. Overall, the histograms are

not conclusive about the type of probability distribution errors {ηil} represent. The

role of cη is important for grouping since it determines which trackers are grouped

together based on how similar their combined scores {si} are. The smaller cη is, the

more restrictive (27) is in grouping similar trackers together. In [66], values of cη

for different distributions are suggested. We test three values of cη and found that

cη = 0.9102 gives the most restrictive grouping, meaning that it is easier for a tracker

to become an outlier of a group. Therefore, we set cη = 0.9102.

Algorithm 4 shows how grouping is performed. First, it calculates the best score
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(a) (b)

(c) (d)

Figure 8: Histograms of score differences {ηil} across ranges (a) 0 to 0.005, (b)
0 to 0.01, (c) 0 to 0.02, and (d) 0 to 0.05 in the combined dataset (i.e., OTB-
100+VOT2018-ST+NfS-30).
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sB over the T scores si of the unassigned (not yet grouped) trackers in {ti}. Then,

it computes the T errors {ηi} and the scale estimate ση. An error ηi which is within

the range defined by ση has its corresponding tracker assigned a counter count as its

group gi; the counter starts at 1 and increments after each round. A new round of

grouping over the unassigned trackers starts if there still exists an unassigned tracker

in {ti}. The grouping algorithm ends whenever each ti is assigned a gi.

Algorithm 4: Grouping of all trackers {ti}.

Data: Scoring data {si} of all trackers {ti; i = 1, · · · , T}.
Result: Group gi for each ti.

1 cη = 0.9102;
2 count = 1;
3 while ∃ unranked ti in {ti} do
4 sB = max({si});
5 for each unassigned ti in {ti} do
6 ηi = sB − si;
7 end
8 ση = cη ·MAD({ηi});
9 for each unassigned ti in {ti} do

10 if ηi ≤ ση then
11 gi = count;
12 end

13 end
14 count+ +;

15 end

Note that the proposed scoring in section 3.4.1 assigns similarly-performing track-

ers similar scores; this facilitates the task of Algorithm 4 to group these similarly-

performing trackers into the same group.

3.4.3 Iterative Ranking

The T tested trackers are iteratively scored and ranked based on the quality data

{qil} over all test sequences {vl}. At the start of each iteration k, each tracker is

placed in a set j of trackers with the same assigned rank {ti}j, j = 1, · · · , J ≤ T .
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Initially, none of the ti are ranked and they all belong in the same set j of unranked

trackers (i.e., r0i = 0 and J = 1). The first iteration is similar to grouping; therefore,

r1i = gi. At iteration k, a rank is assigned at each tracker and multiple trackers may

have the same rank. The ranking algorithm ends whenever all ranks in the final set

{r1:ki } are all distinct from each other or when k = T . For more simplicity, the final

rank obtained at the last iteration is named rank and is noted ri. As an example,

iterations operate as follows. In the first iteration, the ranking algorithm ranks and

partitions the T trackers into J1 sets j1 based on the trackers’ scores {si} computed

from the quality values {qil}; best trackers are in set 1, second best trackers are in

set 2, third best trackers are in set 3, etc. In the second iteration, the J1 sets j1 are

partitioned into J2 > J1 subsets j2 based on the scores re-computed from the quality

values {qil}j of the ti in each set j1. Scores are re-computed in each set to better

determine how trackers within the same set perform with respect to each other. In

the following iterations, the same process is repeated: subsets are partitioned into

smaller subsets, and all trackers in the same newly partitioned subset are scored and

ranked against each other. In the last iteration, there can be up to J = T sets, that

is, when all trackers are ranked differently.

Algorithm 3 shows more precisely how the entire ranking process is achieved.

First, we use the quality data Qj = {qil}j, in other words, the quality values of

trackers i in the set of trackers {ti}j over all test sequences {vl}. Qj is a matrix of

size Tj ×L, where Tj = |{ti}j| is the number of trackers in {ti}j at iteration k; a row

in Qj designates a tracker i from {ti}j and a column designates a sequence l. Then,

we score() each tracker in {ti}j as per section 2.3.1 to produce the Tj scores of set j,

namely {si}j. We take the maximum score sB in {si}j to calculate errors differences

ηi between sB and all the other scores in {si}j. We compute the scale estimator ση

using the MAD of errors {ηi}. An error ηi which is within the range defined by ση has

its corresponding tracker assigned a counter count as its rank rki ; the counter starts
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at 1 and increments after each round of ranking (“while” loop in Algorithm 5), that

is, after at least one tracker in {ti}j has been ranked. A new round starts if there

still exists an unranked ti in {ti}j. Once all trackers are ranked in iteration k, we

take the new sets {ti}j of similarly ranked trackers for iteration k + 1. The sets j for

iteration k+ 1 depend on the tracker ranks at iteration k, and j varies from 1 and J .

The algorithm iterates if k ≤ T and if at least two trackers are of the same rank. The

algorithm stops either when k = T + 1 or when all trackers are ranked differently. In

fact, T is the minimal amount of iterations required to fully achieve ranking, without

exception, over all {ti}. Hence, a final rank 1 ≤ ri ≤ T and only trackers that have

the same score end with the same rank.

Essentially, algorithm 3 in its first iteration k = 1 divides all trackers {ti} into

groups (same as algorithm 2); then, in each of the following iterations, each group is

divided into sub-groups, and each tracker in each sub-group is given a rank. Ranking

is based on the scores which are recomputed at each iteration. This is repeated until

all trackers are ranked.

At each new iteration, each trackers within a same set j have its score recomputed.

The score at k = 1 is the most relevant to display for analysis since it is used for

grouping and shows how all T trackers compare with respect to the top performing

trackers. At the last iteration, the final score of a tracker i is simply the score of the

tracker in the last set it was assigned in. This means the final score is not meaningful

to show or interpret on its own. However, the final rank ri depends on all scores, from

the first iteration to the last iteration, hence the importance of computing scores at

each iteration.

3.4.4 How Robust is our Method?

To demonstrate the robustness of our scoring and ranking algorithms, we run a total

of M experiments where the original AOR quality data of each frame of a test video
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Algorithm 5: Iterative ranking of all trackers {ti}.

Data: Quality data {qil} of all trackers {ti; i = 1, · · · , T} on all test
sequences {vl; l = 1, · · · , L}.

Result: Rank ri for each ti.
1 k = 1;
2 j = 1;
3 cη = 0.9102;
4 {ti}j = {ti};
5 do
6 for each {ti}j do
7 Qj = {qil}j;
8 {si}j = score(Qj);
9 count = 1;

10 while ∃ unranked ti in {ti}j do
11 sB = max({si}j);
12 for each unranked ti in {ti}j do
13 ηi = sB − si;
14 end
15 ση = cη ·MAD({ηi});
16 for each unranked ti in {ti}j do
17 if ηi ≤ ση then
18 rki = count;
19 end

20 end
21 count+ +;

22 end

23 end
24 k + +;
25 {ti}j = update({ti}j);
26 while k ≤ T and ∃ ti1 ∧ ti2 such that ri1 = ri2 ;
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signal and for all trackers are subjected to variations of signal independent noise;

then, we evaluate our algorithm’s response to impulse and non-zero mean Gaussian

noise.

In the context of this experiment, impulse noise can be interpreted as the result

of random sharp and sudden image changes such as occlusion or fast motion. We can

also interpret the additivity of Gaussian noise to {qil} as random gradual changes

through frames such as illumination variation or motion blur.

To show the robustness of our scoring method, given T tested trackers {ti; i =

1, · · · , T}, let their scores be {si} and mean measures be {pi} generated from the

original quality data {qil} of an objective measure (such as AOR) over all sequences

{vl}, and let their noisy scores be {sni } and noisy mean measures be {pni } generated

from the noisy quality data {qnil} of that same objective measure. Our scoring is more

robust than averaging (mean) if, after M experiments,

∀i, Ψ(si, µsni ) > Ψ(pi, µpni ), (28)

where Ψ(·) = min(·)
max(·) ∈ [0, · · · , 1] is a min-max ratio applied for normalization,

µsni =
1

K

K∑
k=1

ski , (29)

µpni =
1

K

K∑
k=1

pki . (30)

µsni is the average score of tracker i over K different levels of a noise distribution

under test, and µpni is the average performance mean of tracker i over the same K

noise levels. In other words, our scoring is more robust than the mean if, overall, each

ti yields a ratio of scores Ψ(si, µsni ) closer to 1 than the ratio of means Ψ(pi, µpni ).

To test if our ranking method is robust, let the ranks of all the T trackers be

{ri} generated from the original quality data {qil} of an objective measure over each

sequence l, and let their noisy ranks be {rni } generated from the noisy quality data
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{qnil} of that same objective measure. Our ranking is robust if, after M experiments,

∀i, |ri − µrni | ≤ 1, (31)

where µrni is the average rank of each tracker i over K different levels of a noise

distribution,

µrni =
1

K

K∑
k=1

rki . (32)

In other words, our ranking is robust if, overall, each ti yields at most a difference of

1 between its original ri and its corresponding average of noisy ranks µrni .

Given the original overlap ratio quality data {qil}, that is, AORl values at each

test video sequence vl for each tracker ti, we add noise to AORl to get {qnil}. For im-

pulse noise, the noisy quality data {qnil} is the original quality data to which we apply

a binary-state sequence, with a noise density varying from 0.05 to 0.5, specifically,

0.05, 0.2, 0.35, and 0.5. For Gaussian noise, we pick three distributions with different

standard deviations std, namely 0.01, 0.05, and 0.1. To each Gaussian distribution,

we vary the mean from 0.1 to 0.4, specifically, 0.1, 0.2, 0.3, and 0.4. We run the exper-

iments M = 50 times across the combined dataset OTB-100+VOT2018-ST+NfS-30.

Tables 14 and 15 display Ψ(pi, µpni ) (noted ‘Mean ratio’), Ψ(si, µsni ) (noted ‘Score

ratio’) and |ri − µrni | (noted ‘Rank diff.’) results under impulse noise and Gaussian

noise, respectively. Both tables show that our proposed ranking responds moderately

to even strong variations in the input data not just on average, but for every tracker

i. Indeed, the rank difference is less or equal to 1, affirming the robustness of our

ranking methodology. We also see that for each ti, the score ratio does not goes below

0.85, which is comparatively much more robust than the mean ratio where the ratio

can reach 0.55. In all cases of noise disturbances, the score performs much better

than the mean.

In Table 16, we show the percentage of trackers with mean ratio and score ratio

above a certain threshold ths over all 16 cases of noise levels: 4 levels of impulse noise
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Table 14: AOR mean ratio, score ratio, and rank difference results under impulse
noise and averaged over M = 50 runs for each tracker ti in the combined dataset
OTB-100+VOT2018-ST+NfS-30.

(a) Impulse noise of density 0.05 and 0.2 (b) Impulse noise of density 0.35 and 0.5

(c) Impulse noise of density 0.05 to 0.5
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Table 15: AOR mean ratio, score ratio, and rank difference results under Gaussian
noise and averaged over M = 50 runs for each tracker ti in the combined dataset
OTB-100+VOT2018-ST+NfS-30.

(a) Gaussian noise with std = 0.01 and means
0.1, 0.2, 0.3, and 0.4

(b) Gaussian noise with std = 0.05 and means
0.1, 0.2, 0.3, and 0.4

(c) Gaussian noise with std = 0.1 and means 0.1,
0.2, 0.3, and 0.4
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Table 16: Percentage of trackers with mean ratio or score ratio above ths.

Threshold Mean ratio Score ratio
ths % trackers % trackers
0.85 38 100
0.9 37 89
0.95 28 45

as per Table 14 and 12 levels of Gaussian noise as per Table 15. We can observe that

for ths = 0.85, 100% of trackers are robustly scored using the score. Comparatively,

the mean robustly scores 38% of all trackers with the same threshold. Therefore, the

score is much more robust than the mean.

We applied our robustness experiment only to the AOR values AORl at each

sequence but not to the FR values FRl because the latter are too small. In fact, the

average of all our AOR data is 0.46331, whereas that of our FR data is 0.2535, and

larger levels of noise negatively affects the experiment if our measure is, overall, closer

to 0 or to 1 (here the FR). To keep our noise distribution as unaltered as possible, it

is best to operate on a measure that is, overall, closer to 0.5 (here the AOR).

3.5 Results and Discussion

3.5.1 Experimental Setup

Our experimental setup for this ranking methodology is the same as in Chapter 2.

We collect the mean, score, group, and rank of T = 20 test trackers for AOR and FR

measures over three short-term datasets (OTB-100 [91], VOT2018-ST [48], and NfS-

30 [42]), a long-term dataset (VOT2018-LT [48]), and all three short-term datasets

combined. Datasets are briefly described in Chapter 1 section 1.5.1 and trackers are

presented in Chapter 2 section 2.4.1.
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Table 17: AOR and FR mean, score, group, and rank for all trackers ti over the
OTB-100 dataset. The 5 top-ranked trackers in terms of AOR are: ECO, LADCF,
DIMP, ATOM, STRCF; those in terms of FR are: DIMP, CFWCR, ECO, LADCF,
MDNET.

3.5.2 Experimentation on OTB-100 Dataset

Mean, score, group, and rank results over the 100 sequences of OTB-100 are displayed

in Table 17. Out of all our benchmark experiments, OTB-100 presents the least total

amount of groups with 5 groups for AOR and 4 groups for FR. In fact, group 1

consists of 9 trackers for AOR and 11 trackers for FR. Given that OTB-100 is to this

day a well known and used dataset, many trackers are robust to this dataset’s video

challenges. Only a few trackers fail across the sequences, which is emphasized by the

high FR scores and the small amount of FR groups.

3.5.3 Experimentation on VOT2018-ST Dataset

Table 18 displays mean, score, group, and rank information for all trackers over the

60 sequences of VOT2018-ST. Compared to OTB-100, we notice that the number of

groups has increased: 10 groups for AOR and 7 groups for FR. In fact, the scores
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Table 18: AOR and FR mean, score, group, and rank for all trackers ti over the
VOT2018-ST dataset. The 5 top-ranked trackers in terms of AOR are: DIMP, ATOM,
MDNET, SIAMRPN++, IBCCF; those in terms of FR are: DIMP, SIAMRPN++,
ATOM, MDNET, CFWCR.

show more variability in the dispersion of quality data. AOR group 1 only consists

of DIMP whereas FR group 1 includes DIMP, MDNET, and SIAMRPN++.

3.5.4 Experimentation on NfS-30 Dataset

We display in Table 19 the mean, score, group, and rank results over the 100 sequences

of NfS-30, which is a lesser known dataset than OTB-100 or VOT2018-ST. There are

7 groups for both AOR and FR performance measures. In both cases, group 1 consists

of DIMP and ATOM trackers.

3.5.5 Experimentation on Cross Datasets (Short-Term)

For OTB-100, we observed in Table 17 that practically half of the trackers are in

group 1. Therefore, to reduce possible bias towards certain benchmarks, test the

generalization ability of the trackers, and make the ranking more fair, we run the
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Table 19: AOR and FR mean, score, group, and rank for all trackers ti over the
NfS-30 dataset. The 5 top-ranked trackers in terms of AOR are: DIMP, ATOM,
ECO, CFWCR, LADCF; those in terms of FR are: DIMP, ATOM, CFWCR, ECO,
SIAMRPN++.

scoring and ranking across all 260 video sequences of OTB-100, VOT2018-ST, and

NfS-30 combined. Table 10 displays AOR and FR means, scores, ranks, and groups

across the combined short-term dataset. There is a total of 7 groups for AOR and 7

groups for FR. ATOM and DIMP trackers are the only trackers which share group 1

for AOR and FR performance measures simultaneously.

3.5.6 Experimentation on Long-Term Dataset VOT2018-LT

We repeat the scoring and ranking for T = 18 trackers on the 35 long-term videos

of VOT2018-LT. AOR and FR means, scores, ranks, and groups are displayed in

Table 21. We notice that DIMP is the only tracker to be assigned group 1 on for

AOR but that both DIMP and SIAMRPN++ are in group 1 for FR measures. We

also observe that ATOM and DASIAMRPN are in group 2 for AOR and FR mea-

sures simultaneously. The ranking results well underline the tracking architecture of
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Table 20: AOR and FR mean, score, group, and rank for all trackers ti over the
combined short-term dataset OTB-100+VOT2018-ST+NfS-30. The 5 top-ranked
trackers in terms of AOR are: DIMP, ATOM, ECO, MDNET, LADCF; those in
terms of FR are: DIMP, ATOM, SIAMRPN++, CFWCR, ECO.

ATOM, DASIAMRPN, DIMP, and SIAMRPN++ trackers. In fact, these trackers

have an implemented target re-detection mechanism which allows them to undergo

long-term challenges, such as disappearance, reappearance, and full occlusion, more

advantageously than the other test trackers.

3.5.7 Analysis and Discussion

3.5.7.1 Which are the Best Performing Trackers?

We summarize in Table 12 which trackers achieve rank 1 (i.e., ri = 1) at the end of

our iterative algorithm and which ones achieve group 1 (i.e., r1i = 1) after the first

iteration. We see that ECO and DIMP achieve rank 1 in either accuracy or robustness,

and that ATOM, CFWCR, ECO, DIMP, IBCCF, LADCF, MCCT, MDNET, and

STRCF achieve group 1 for both AOR and FR, simultaneously, across at least one

dataset. When all three short-term datasets are merged, ATOM and DIMP are placed
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Table 21: AOR and FR mean, score, group, and rank for all trackers ti over the
VOT2018-LT dataset. The 5 top-ranked trackers in terms of AOR are: DIMP,
ATOM, DASIAMRPN, SIAMRPN++, LADCF; those in terms of FR are: DIMP,
SIAMRPN++, ATOM, DASIAMRPN, ECO.

Table 22: Summarizing results: trackers grouped 1 and trackers ranked 1 (underlined
and in bold) in all benchmark experiments.

Dataset AOR FR
OTB ECO, LADCF, DIMP, ATOM, STRCF, CFWCR, DIMP, CFWCR, ECO, LADCF, MDNET, ATOM, STRCF,

MDNET, IBCCF, MCCT SIAMRPN++, IBCCF, DASIAMRPN, MCCT
VOT-ST DIMP DIMP, SIAMRPN++, MDNET

NfS DIMP, ATOM DIMP, ATOM
VOT-LT DIMP DIMP, SIAMRPN++

OTB+VOT-ST+NfS DIMP, ATOM DIMP, ATOM, SIAMRPN++

in group 1 for AOR and FR, and DIMP is ranked 1 in both cases.

ATOM and DIMP ranks are also preserved when looking into the four individ-

ual experiments (OTB-100, VOT2018-ST, NfS-30, and VOT2018-LT). By count-

ing how often a tracker achieves group 1 in AOR and FR measures across all four

benchmarks, we see that DIMP scores 8/8, followed by ATOM with 4/8, MDNET

and SIAMRPN++ with 3/8, and finally CFWCR, ECO, IBCCF, LADCF, MCCT,

STRCF with 2/8. Overall, the top trackers in our benchmark are DIMP and ATOM.
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Table 23: Top five ranked trackers ti based on the AOR and FR means and scores in
all benchmark experiments.

3.5.7.2 Mean-Based Ranking vs. Score-Based Ranking

We show in Table 23 the trackers that have been assigned the five best ranks in each

experimental benchmark based on the mean and on the score. DIMP and ATOM can

be considered the two best trackers whether we look into the mean-based ranking or

the score-based ranking. Most notable differences in terms of ranking go to CFWCR

and DASIAMRPN which are ranked higher with the score-based ranking and the

mean-based ranking, respectively. In both rankings combined, the most prevalent

trackers are DIMP, ATOM, SIAMRPN++, ECO, LADCF, and MDNET.

We list in Table 24 the AOR ranks and FR ranks of all trackers based on the

mean and on the score in two experimental benchmarks: the combined dataset OTB-

100+VOT2018-ST+NfS-30 and the long-term dataset VOT2018-LT. The five best

ranks are noted in bold. Overall, there is at most a difference of 1 between the mean-

based ranks and the score-based ranks. However, for CREST, DASIAMRPN, DLST,

and STRCF trackers, there is at least one benchmark or performance measure where

the difference between the mean-based rank and the score-based rank is of 2 or more.

Such differences emphasize the variability in the quality data of those four trackers

that our error norm-based scoring accounts for.
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Table 24: Ranks ri of each tracker ti based on the AOR mean, similarity-based score,
and error norm-based score in the combined dataset OTB-100+VOT2018-ST+NfS-30
and the long-term dataset VOT2018-LT.

AOR OTB+VOT-ST+NfS VOT2018-LT
Mean rank Score rank Mean rank Score rank

ATOM 2 2 3 2
CFWCR 6 6 8 9
CSRDCF 12 11 13 13
CREST 14 13 11 11

DASIAMRPN 10 14 2 3
DAT 20 20 17 17

DIMP 1 1 1 1
DLST 13 12 - -
DSST 18 18 15 15
ECO 3 3 7 7

IBCCF 8 8 10 10
KCF 19 19 18 18

LADCF 5 5 5 5
MCCT 11 10 12 12

MDNET 4 4 6 6
SAMF 17 17 14 14

SIAMFC 15 15 - -
SIAMRPN++ 9 9 4 4

STAPLE 16 16 16 16
STRCF 7 7 9 8

FR OTB+VOT-ST+NfS VOT2018-LT
Mean rank Score rank Mean rank Score rank

ATOM 2 2 4 3
CFWCR 4 4 5 6
CSRDCF 11 11 12 12
CREST 14 12 7 10

DASIAMRPN 7 9 3 4
DAT 19 20 14 15

DIMP 1 1 1 1
DLST 12 14 - -
DSST 18 18 16 16
ECO 5 5 6 5

IBCCF 10 10 11 11
KCF 20 19 18 18

LADCF 8 7 9 7
MCCT 13 13 13 14

MDNET 6 6 8 9
SAMF 17 17 15 13

SIAMFC 16 16 - -
SIAMRPN++ 3 3 2 2

STAPLE 15 15 17 17
STRCF 9 8 10 8
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3.5.7.3 How do the Score and Mean Compare?

Combined scores {si} and mean measures {pi} generated from the original quality

data {qil} of an objective measure are heavily correlated. In fact, the correlation

factor between {si} and {pi} for both AOR and FR performance measures are 0.9924

and -0.9948, respectively. However, there are important differences between the score

and the mean that justify our usage of the score over the mean to characterize tracker

performance.

A widely used method to summarize the overall (center) performance of a tracker

is by averaging the averages of its performance data {qil} (e.g., AOR) in all video

sequences of a dataset. The average (mean) is, however, not the best measure of

center of a variable unless the distribution is symmetric [84]. To show this in our

context, we group trackers into three categories of performance (best, middle, lowest)

and plot the histograms of their average AOR values {qil} across the combined dataset

OTB-100+VOT-ST+NfS-30 in Figure 9. We also indicate the AOR mean on each

histogram. As can be seen, these distributions are not symmetric; therefore, the mean

is not a good measure of central tendency. As we have seen in Figure 7, the scores

generated from our scoring method do follow a symmetric distribution.

Using the score over the mean is more robust (as shown in section 3.4.4) as well

as more representative of the distribution of the quality data {qil}. Unlike the score,

the mean does not compare tracker performances at each sequence. In fact, the score

evaluates at a sequence-level which is the best performing tracker and then scores all

other trackers relatively to the top tracker. Therefore, our ranking is based on the

combined scores {si} instead of the mean.
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(a) (b)

(c)

Figure 9: Histograms of AOR quality data {qil} for three categories of trackers: (a)
lowest category, (b) middle category, and (c) best category, in the combined dataset
(i.e., OTB-100+VOT2018-ST+NfS-30).

67



3.6 Conclusion

We developed a tracker ranking protocol inspired by the use of error norms in anisotropic

diffusion for image denoising. For scoring, we use the Lorentzian edge-stopping func-

tion to robustly estimate the similarities in the AOR and FR quality data of all

trackers at each sequence. We then ran an iterative algorithm to cluster all trackers

into groups and sub-groups of similar performance. To extensively test our method,

we ranked our tested trackers over three short-term datasets, individually and al-

together, and one long-term dataset, and compared our ranks with those from the

similarity-based ranking. Our observations over all ranking outputs indicated that

DIMP was the best performing tracker, followed by ATOM, and then by a group

of similarly performing trackers MDNET and SIAMRPN++. Our framework also

displayed, overall, ranking results similar to those from our similarity-based scoring

and ranking methodology.

Our scoring calculates the scores based on the mean averaged of a performance

measure over all frames of a video sequence. Future work may include computing

scores at the frame level, instead of at the sequence level, and then calculating the

average score or applying another scoring function to these scores.
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Chapter 4

Drift Detection and Correction

using Region Proposal Networks

4.1 Introduction

Object tracking is a complex computer vision task which estimates the state of a

target object at every frame of a video sequence. Despite all the progress made in

this field, frequent challenging factors such as heavy occlusion, object deformation,

strong motion, illumination variation, and background clutter still lead trackers to

show inaccuracies, drift, and potentially fail [17, 18]. During drift, object labels or

high level structures are more complicated to identify. Therefore, it begs to question

if detecting the presence of an object rather than the object or its label could suffice

to detect drift. For example, measuring a region’s objectness, or likelihood to be an

object, could inform that an object is drifting away.

A tracker may undergo partial drift or complete drift (failure), as shown in Figure

10; in the former case, the tracker’s output still overlaps with the ground truth

object, but not in the latter case. Detecting such occurrences has become essential

in recent object tracking techniques as it allows a tracker to reinitialize its tracking
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Figure 10: Examples of partial drift (blue) and complete drift (green) from the ground
truth (black) in ‘Skydiving’ sequence.

algorithm using a drift correction mechanism, hence bettering its overall accuracy

and robustness performances. Few drift detection approaches assess tracking failure

at a tracker’s output, that is, independently of the base tracker’s design. In fact,

most drift detection and correction algorithms are called while the target model is

updating [24, 97, 23, 100, 50, 81]. The aim of this chapter is to formulate the drift

detection and correction problem into a dual process which can be applied over any

tracker, independently of its architecture.

In the rest of the chapter, section 4.2 presents related work; section 4.3 describes

our saliency and objectness-based drift detection and region proposal network (RPN)-

based drift correction methodologies; section 4.4 provides simulation results; finally,

section 4.5 concludes this chapter.

4.2 Related Work

In the context of visual tracking, it is important to make the distinction between

object detection and drift detection as separate but related tasks. Object detection is

a term that is often used to refer to the localization and classification of an object in
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an input image or video. It is also used to refer to localization (without classification)

of objects. Its output is a bounding box. Drift detection refers to methods that

detect if a tracker is about to drift or has drifted away while following a target object.

Drift detection is always followed with a drift correction (or tracker initialization)

step, where the output bounding box of a tracker is updated. Among popular object

detectors, region proposal networks [32, 31, 74, 59, 36, 15] are deep architectures which

predict image regions to be either foreground objects or part of the background.

Saliency and objectness are measures which can be used for both object and drift

detection, as these measures estimate the presence of an object in the form of a

percentage score [21, 16, 27, 20, 80, 1, 10, 101].

Compared to the use of object detection for object tracking [24, 97, 23, 52, 100,

50, 81, 73, 6, 99, 88, 51], there is little research done in drift detection and correction

alone [29, 69, 89]. This section first investigates drift detection and correction and

object detection in video tracking strategies; then it presents different ways in which

the presence of objects is detected, whether it be with region proposal networks or

with saliency and objectness measures.

4.2.1 Drift Detection in Object Tracking

The research most related to our work is [29]; it presents a saliency-based drift de-

tection and a post-tracking segmentation-based drift correction. It requires no prior

information of the target object and computes at each frame the overall saliency of

the object inside the tracker output to dictate whether drift is happening or not. If

drift is assumed to happen, it then applies automatic GrabCut segmentation [9] com-

bined with a robust selection of foreground and background seeds to filter out feature

points belonging to the background, extract the target object, and hence correct the

tracker drift. This method is tracker-independent so it can be embedded to any track-

ing architecture. Among other segmentation-based drift correction methods, [69] is a
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model-free and closed loop fine Random-Walker segmentation scheme which uses the

spatial properties of a segmented object to enhance the object’s localization in the

following frame and reduce drift; [89] presents a joint online tracking and segmen-

tation algorithm where the tracking output at each frame is initially hypothesized

through SLIC superpixel segmentation. Multi-part tracking and segmentation tasks

are then formulated in a unified energy objective function to facilitate tracking of the

target object.

4.2.2 Object Detection in Object Tracking

In recent years, CNN-based trackers have become the highlight of state-of-the-art

tracking techniques. The methods [24, 97, 23, 52, 100, 50, 81, 73] combine object

tracking and object detection tasks but the drift detection problem is often over-

looked or formulated differently as either a bounding box regression task or a global

re-detection task. [97, 24, 23] are examples of using bounding box regression to avoid

tracking failure. [97] handles changes in the target aspect ratio by modeling uncer-

tainties and ambiguities in the target state and combining confidence-based regression

models with its own probabilistic regression model; [24] predicts accurate target state

estimations by overlap maximization; [23] prevents inappropriate model updates by

introducing a Meta-Updater which captures appearance variations from the target ob-

ject and its background at each frame. It stops the tracker from updating whenever

the update is deemed likely to cause drift.

In long-term video challenges, re-detection is a tracking task which has increasingly

gained attention [48, 63]. It consists of detecting a target object that was out-of-scene

or fully occluded and that reappears later in the same sequence. For example, DASI-

AMRPN [100] and SIAMRPN++ [51] are Siamese tracking architectures [6, 99, 52, 88]

which have gained significant popularity for their robustness to long-term challenges
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and their balance between tracking accuracy and speed. Siamese architectures con-

sist of a convolutional neural network applied on two streams, each processing the

input image and a training image separately and then cross-correlated to search for

the test image in the following frames. DASIAMRPN [100] and SIAMRPN++ [51]

propose a framework consisting of a Siamese subnetwork for feature extraction and a

region proposal network (RPN) for generating object proposals. The RPN is divided

into two branches, one for foreground and background classification, and one for re-

fining object proposals. To furthermore improve tracking performances in contexts

of occlusion, [100] triggers a local-to-global search strategy that switches depending

on a detection score and increases incrementally until the target object is recovered,

whereas [51] implements an effective spatial aware sampling strategy on its search

image.

4.2.3 Region Proposal Networks

Fully convolutional region proposal network (RPN) are deep networks that take an

input image and outputs a set of scored rectangular object proposals (or region pro-

posals), each score designating its proposal’s objectness. RPN are primarily class-

agnostic but recent object detection [32, 31, 74, 95, 98, 85, 59, 36, 15] and video

object tracking [52, 100, 51] frameworks employ those architectures for object local-

ization and classification tasks. [32] popularized deep RPN-based object detection

and consists of three modules; the first module generates class-independent region

proposals; the second module extracts from each proposal a 4096-dimensional feature

vector; the third module is a support vector machine used for object classification.

Numerous extensions to this framework have been proposed [31, 74, 59, 36, 15]. For

example, [31] builds on [32] and improves on accuracy and on training and testing

speeds to achieve near real-time rates, and [74] merges two RPN architectures, one of
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which uses the convolutional feature maps generated by [31] to generate new propos-

als, to construct a single unified network for object detection. FPN [59] exploits the

multi-scale pyramidal architecture of the convolutional neural network and builds a

feature pyramid using image pyramids to get high-level semantic features maps at all

scales.

Anchors are default bounding boxes which serve as regression references in RPN

architectures to predict proposals. Guided Anchoring (GA-RPN) [85] revisits an-

choring schemes and learns sparse anchors with a wide range of scales and aspect

ratios rather than uniformly sampling them, and improves the detection performance

by generating higher quality proposals. [95] introduces meta-learning to anchor gen-

eration; instead of enumerating every possible bounding box, that is, predefining a

number of anchor boxes with all kinds of positions and sizes, anchor functions are dy-

namically generated. [98] formulates the anchor matching as a maximum likelihood

estimation and assigns a likelihood probability to each anchor for representing an

object. The likelihood probability is formulated as a loss function; therefore, anchors

which have a large classification error are classified as part of the background.

4.2.4 Saliency and Objectness Measures

Saliency and objectness information can be used to detect the presence or absence

of objects in an image region (often rectangular). In the context of drift detection,

a bounding box which has low saliency or low objectness is one that is more likely

to not contain an object. This section looks into existing measures of saliency and

objectness.

4.2.4.1 Saliency

Saliency is the quality of an object to stand out from its environment. As such, it can

be extracted to discriminate between an object and its background. For example, [20]
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takes both a bottom-up and a data-driven human visual attention approach: it gen-

erates region-based contrast (RC) saliency maps, as an improvement over histogram-

based contrast (HC) maps, where saliency values are assigned to regions of a seg-

mented input image. The algorithm outperforms on natural scenes; however, it does

not perform as well on images with high texture. Similarly to [29], which is used

in drift detection, [16] selectively picks seeds to discriminate foreground from back-

ground; however, it localizes salient objects using bit-mapping in compressed images

to generate a salient object window and salient object map within the bounderies

of the window. [27] also performs saliency detection in the compression domain; it

extracts luminance, color, texture, and motion information of video frames at block

level and combines a static saliency map of viewed frames with a motion saliency

map of predicted frames to generate its final saliency map. These non-learning-based

approaches have significantly reduced computational complexity compared to their

deep-learning counterparts, at the cost of being less accurate.

The challenges that come with estimating an object’s saliency are in the subjective

nature of saliency. For example, [12, 11, 60, 56] are created through a combined

effort of human participation and automated saliency computation to distinguish as

objectively as possible the salient regions of images, but human intervention adds a

restriction on the size of the training examples and on the number of object classes.

In addition to that, only a few benchmarks look into saliency of dynamic targets in

videos [96]. Saliency datasets mostly contain natural scenes or obviously separated

foregrounds and, as such, lack examples of dynamic objects. For these reasons, we

do not investigate deep-learning saliency models.

4.2.4.2 Objectness

Objectness measures can also be used to evaluate the likelihood of an image region

to be an object. Evaluating the objectness of an image window can be performed
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in several ways, for example by defining a well-closed boundary, by differentiating a

foreground from its background, or by capturing salient information. [21] presents

a simple and fast method by resizing image windows to 8 × 8 and using binarized

normed gradient features to describe objects. The authors also incorporate a seg-

mentation strategy to improve the object localization. [1] trains its objectness model

to separate class-specific object windows from non-class specific object windows and

background windows using characteristics of superpixel straddling in image segmen-

tation. [101] generates bounding box proposals by operating on groups of edges rather

than superpixels: candidate boxes are scored based on the number of contours that

are fully enclosed within the box. [80] proposes its own objectness measure, called

foreground connectivity, to determine whether a pixel belongs to a foreground, and

uses that information to generate a saliency map of an image. [10] also uses saliency

characteristics but combines them to contrast and motion information to highlight

moving objects in complex video settings.

Among the presented measures of objectness, only [21, 10] have been experimen-

tally tested on datasets containing video challenges. Nonetheless, all methods are

computationally inexpensive and can, therefore, be applied on a frame-basis in the

scope of detecting the occurrence of drift.

4.2.5 Summary of our Contributions

Regardless of a tracker’s robustness, drift is always susceptible to occur, hence the

importance of drift detection. Different to CNN-based trackers [24, 97, 23, 52, 100,

50, 81, 73] that either apply bounding box regression to reduce drift or re-detect a

target object after the tracker has failed, our method automatically detects instances

where drift is occurring. In addition, our drift detection is not class-specific and,

therefore, applies to any kind of target drift. Similar to [29], our proposed system is

tracker-independent. We also estimate the likelihood an object is present inside the
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tracker output by computing the saliency of the output. However, we improve on

the accuracy of our drift detection by combining our saliency measurements with ob-

jectness measurements. Finally, unlike segmentation-based drift correction methods

[29, 69, 89], our drift correction runs a RPN that reinitializes the tracker’s output

whenever drift occurs.

We contribute an efficient method that automatically detects drifts using a com-

bination of edge-based objectness and superpixel saliency measures on the bounding

box image. Then, if drift is assumed, we initiate a region proposal network strategy to

relocate the bounding box on the drifting target. Both drift detection and correction

algorithms are independent of the tracker baseline design and are, therefore, modules

that can be added to any tracking architecture.

4.3 Proposed Method

Given the output bounding box Bt of a baseline object tracking algorithm, at the

current frame Ft of a video sequence, our method applies two steps to improve the

tracking accuracy of the baseline tracker: (1) drift detection using a combination of

saliency and objectness measures, and (2) drift correction using a region proposal

network.

4.3.1 Saliency and Objectness-Based Drift Detection

We propose a drift detection method which uses image color and edge information

to detect the presence of objects in a bounding box. Measurements of saliency s

are performed as per [29], where the image region in Bt is first partitioned into K

segments rk of saliency sk, defined as follows

sk =
∑
j 6=k

nj ·Dlab(rk, rj) · e−E(rk,ri)/σ
2
s , (33)
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(a) (b)

Figure 11: Partitioning of salient regions in sequence ‘gymnastics2’: (a) ground truth
bounding box, and (b) salient segments of the bounding box image.

where nj is the number of pixels in rj, Dlab(rk, rj) is the LAB color distance between

rk and rj, and E(rk, rj) is the Euclidean distance between those regions’ center. All

pixels within a segment rk are defined as salient if sk is larger than a given threshold.

For example, the image mask from Figure 11b shows which pixels of Figure 11a

are salient with respect to their neighbors. We can see that the segments which

separate foreground from background are labeled as salient. While segments from the

background are filtered out, we also notice in the foreground object that neighboring

segments similar in color are not described as salient from each other. This is due to

the the nature of (33) which relies on color and Euclidean distances between regions;

therefore, contrasting regions are defined as more salient than neighboring regions

that are homogeneous in color. Finally, the overall saliency s is calculated in [29] as

the ratio between the number of salient pixels Ns and the total number of pixels Nt

in the bounding box Bt,

s =
Ns

Nt

. (34)

For objectness evaluation, we use the EdgeBoxes algorithm [101], which outputs

a limited number of scored rectangular bounding box proposals {EB}; each score
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(a) No drift (b) Drift

Figure 12: Objectness detection in sequence ‘Deer’ with Staple tracker [5]: EdgeBox
proposals (green), Staple Bt (black), candidate EB which overlaps most with Bt

(blue), and area AEB (red).

represents the likelihood the score’s corresponding bounding box contains an object

based on image contours, in the form of a percentage score. Therefore, we assume

that for a tracker output Bt to have high objectness o, it must have a high affinity

with an EdgeBox proposal EB, that is, it must overlap well with an object proposal

EB. At frame Ft, we measure o by applying [101] over a rectangular search region

AEB. The search region AEB is centered around Bt and is of width wBt + 2p1 and

height hBt + 2p1, where wBt and hBt are the width and height of Bt, respectively, and

p1 is the search region’s pixel extension. Therefore, we measure objectness as follows

o = max
{EB}
{AOR(Bt,EB)}, (35)

where AOR is the average overlap ratio between Bt and a candidate proposal EB.

Figure 12 shows how our objectness-based drift detection works. When Bt is well

centered around the target object, there exists an object proposal EB in AEB which

overlaps well with Bt; however, when Bt is drifting away from its target, no proposal

EB overlaps well with Bt.

Finally, to determine whether the target object inside Bt has drifted from its

expected position, we compare parameters s in (34) and o in (35) to thresholds
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(ts1 ,ts2) and to1 , respectively,

Drift =


1 : (s ≤ ts1 ∨ s ≥ ts2) ∧ (o ≤ to1),

0 : otherwise.

(36)

Given the high frame rate of our non-learning-based approach, we can apply this

saliency and objectness-based drift detection on a tracker output Bt at every frame

Ft of a video sequence. Different from [29], our drift detection uses a combination

of color and contour information to measure a window’s likelihood of containing an

object. Using only saliency or only objectness as a means to indicate the presence

of drift yields more false positives than using a combination of the two. For a more

efficient application of our RPN-based drift correction (see section 4.3.2), our drift

detection looks into scenarios where Bt is on the edge of completely drifting (failure).

In fact, our aim in using a region proposal for drift correction is not to refine the

bounding box around the target object, but to relocate it when the target object is

partially out of bounds. The thresholds (ts1 ,ts2) and to1 are experimentally tested out

with that aim in mind and are estimated using the OTB [91] benchmark (see section

4.4.1).

4.3.2 Drift Correction using Region Proposals

The drift correction module is triggered once drift is detected. For an image I of

width W and height H, and for a tracker output Bt of size wBt × hBt , let {RP}

be the proposals of a RPN (i.e., GA-RPN [85]) in a rectangular search region ARP,

where each candidate RP is of width wRP and height hRP. The search region ARPN

is centered around Bt and is of width wBt + 2p2 and height hBt + 2p2, where p2 is

the RPN search region’s pixel extension. Although Bt is not a region proposal, we

consider it to also be amidst the candidates. In fact, if the RPN does not provide

good proposals to recover the target object from drift, Bt will remain the output of
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the whole system.

For a proposal RP, we define the aspect ratio αRP
r and the relative area αRP

a ,

αRP
r =

min(wRP, hRP)

max(wRP, hRP)
(37)

αRP
a =

wRP × hRP

W ×H
, (38)

where (αRP
r , αRP

a ) ∈ [0, · · · , 1] × [0, · · · , 1]. The aspect ratio αRP
r is normalized as

a ratio between the minimum and the maximum of a proposal’s height and width

in order to better compare the proportions of its corresponding proposal with that

of other proposals. Similarly, the relative area αRP
a is normalized by dividing the

proposal’s area by that of the entire frame I. Given the aspect ratio αBtr and the

relative area αBta of Bt, our goal is to select proposals {RP} which fit both the size

and the area of Bt. Therefore, we select region proposals such that |αRP
r − αBtr | ≤

cr and |αRP
a − αBta | ≤ ca, where cr and ca are thresholds. Theoretically, if a RP

satisfies conditions cr → 0 and ca → 0, then both Bt and RP fit perfectly. However,

we experimentally select values cr and ca that accept candidate bounding boxes of

proportions slightly different to Bt. In fact, we assume that from frame t − 1 to t

and during drift, the proportions of Bt are susceptible to slightly change from those

of Bt−1.

Let rk∗ be the partitioned superpixel regions of either Bt−1 or B1, rkt be the

partitioned superpixel regions of either Bt or the selected candidate RP that overlaps

most with Bt, and let rs∗ and rst be their salient regions, respectively, with saliency

calculated as per (33). To chose between the RPN candidate and Bt as the output

at frame t, we measure the average color distances of their salient regions with Bt−1

and B1 and select the bounding box which solves the problem

min
rst ,rs∗

1

m

∑
j∈rst

Dlab(rs∗ , rj), (39)

where m is the number of salient regions rst and Dlab(rs∗ , rj) is the LAB color Bhat-

tacharya distance between rs∗ and rj. Hence, we choose the bounding box that has
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salient features most similar color-wise to the salient features of either the tracker’s

previous output or the ground truth at frame t = 1.

Different from [29] which does not require any training, our drift correction uses

a trained CNN-based region proposal network. Whilst the GrabCut segmentation-

based drift correction works well in instances of a gradually drifting tracker [29], ours

has a wider search area which allows to recover a target object from severe drift. In

addition, the RPN is trained to detect objects with all their high level structures and

generate a bounding box proposal around the entire object, unlike [29] which solely

identifies the salient regions inside the tracker output. As such, both method are

capable to recover from drift but ours performs more accurate reinitialization.

4.4 Results and Discussion

In this section, we provide the experimental setup and discuss the results of our drift

detection and correction. We first present the setup for our work, then we discuss the

evaluation protocol, and finally we discuss the results of our simulation and compare

them to other methods.

4.4.1 Experimental Setup

We run our simulations on a virtual environment provided by ComputeCanada’s

Graham general purpose cluster. Trackers and drift detection and correction methods

are run with P100 Pascal GPUs and using Python 3.7, CUDA 10, CUDNN 7.5, and

OpenCV 3.4 modules. Trackers of choice for these simulations are DASIAMRPN

[100] and SIAMRPN++ [51]. We test three variants of each tracker design: (1) the

baseline tracker, (2) the baseline tracker to which we include our objectness-based

drift detection and RPN-based drift correction, (3) the baseline tracker to which we

include the saliency-based drift detection and GrabCut-based drift correction [29].
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For our RPN-based drift correction, we use the state-of-the-art Guided Anchoring

RPN (GA-RPN) [85] run with the ResNet-50 convolutional neural network [37] and

FPN [59] as the backbone network. This architecture is provided by the mmdetection

toolbox [19], an open source object detection toolbox which supports popular region

proposal networks and object detection methods. For the segmentation-based drift

correction [29], we use GrabCut segmentation from the OpenCV library.

We run every tracker variant over two datasets: VOT2018 [48] and TC128 [58].

VOT2018 is a widely used short-term tracking set of 60 video sequences released

to the public for preparation to the yearly Visual Object Tracking Challenge. All

frames are annotated and assigned an attribute: occlusion, illumination change, mo-

tion change, size change, camera motion, and unassigned. TC128 is a less experimen-

tally used dataset consisting of 128 color sequences and 129 ground truths. While

each ground truth is annotated at each frame, challenging attributes are provided

on a per-sequence basis: illumination variation, scale variation, occlusion, deforma-

tion, motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-of-view,

background clutters, and low resolution. Our evaluation protocol focuses primarily

on analyzing variations in the failure rate FR, as it is a better estimator of drift than

the average overlap area AOR. In fact, FR is better than AOR at representing the

percentage of video frames in which a tracker either fails or tracks successfully.

We pick the widely used OTB dataset [91] for training in order to fine-tune our

parameters. For drift detection, we set thresholds (ts1 , ts2) and to1 in (36) to (0.375,

0.625) and 0.4, respectively. For EdgeBox [101], we set the maximim number of

candidate boxes to 20, and the pixel extension of the image search area AEB to

p1 = 64 pixels. Different values for AEB were tested experimentally, and we chose a

search area that is large enough for the EdgeBox object proposal to detect edge-based

objects, but small enough for it to compute fast. For the Guided Anchoring RPN [85],

we set both thresholds cr and ca to 0.125, and the pixel extension of the RPN search
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area ARP to p2 = 64 pixels. We implement the Grabcut segmentation-based drift

detection algorithm [29] with slight variations: (1) we measure histogram similarity

using the Bhattacharya distance, (2) we call OpenCV’s Fast keypoint detector instead

of the SIFT keypoint detector, as SIFT is now patented as a non-free OpenCV 3

module, and (3) we define both an absolute background that is 24 pixels distant from

the probable foreground, and a probable background that is in-between the probable

foreground and the absolute background. For SLIC superpixel segmentation, we set

the smoothing Gaussian kernel to 10 and the maximum number of superpixel segments

to 100 + wBt×hBt
100

with a maximum cap of 400.

4.4.2 Comparison with Baseline Design

Table 25 displays the average FR and average AOR over VOT2018 and TC128

datasets of DASIAMRPN [100] and SIAMRPN++ [51] baseline designs as well as

with our drift detection and correction implementation, denoted RPN DD/DC. We

can see that our design improves the overall FR of each baseline tracker on the com-

plete datasets. However, our drift detection and correction does not run on every

sequence; which shows by the FR value being the same for both the base tracker

and our implementation. For example, FR changes for DASIAMRPN in 37 of the

60 VOT2018 video sequences, and in only 17 of the 128 video sequences of TC128.

For SIAMRPN++, FR changes in only 8 of the 60 VOT2018 video sequences, and in

15 of the 128 video sequences of TC128. Several factors may explain why FR does

not always vary: (1) the baseline tracker was already successfully tracking its target

object, (2) drift of failure was not detected, or (3) the drift detection algorithm was

executed but the tracker’s output was chosen over the RPN candidate boxes. In the

first case, the failure rate remains unchanged whether drift is detected or not. In the

second case, drift happened and remained undetected, or it was detected but was not

successfully corrected. The last case depends more on the examples on which the
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Table 25: VOT2018 and TC128 datasets: Mean FR, AOR, and percentage improve-
ment of the RPN-based drift detection and correction over the original base design
of DASIAMRPN and SIAMRPN++.

region proposal network was trained, and therefore, on its ability to detect objects in

challenging video images. To investigate how well our drift detection and correction

worked on affected sequences, we measure FR across those sequences only, as shown

in Table 26, and the overall improvement is much higher than when looking at all

sequences altogether. Figures 13 to 22 display visual bounding box results of our

implementation versus those of DASIAMRPN and SIAMRPN++ trackers on ten of

the selected sequences from VOT2018 and TC128. Each frame is annotated with its

frame number on the bottom left.

We also notice in Tables 25 and 26 that the AOR does not increase as much as FR,

whether we are looking at the entire datasets VOT2018 and TC128 or at the selected

videos in which FR change. In addition, that increase in FR does not compensate for

a decrease in AOR. This means that our system is not badly affecting the AOR of

the unselected videos, and therefore, our implemented system is, overall, more robust

and accurate than the original base designs.
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Table 26: Selected videos from VOT2018 and TC128: Mean FR, AOR, and percent-
age improvement of the RPN-based drift detection and correction over the original
base design of DASIAMRPN and SIAMRPN++.

Figure 13: DASIAMRPN (green), our implementation (blue), and ground truth
(black) on ‘Fish2’ sequence of TC128.
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Figure 14: DASIAMRPN (green), our implementation (blue), and ground truth
(black) on ‘Badminton1’ sequence of TC128.

Figure 15: DASIAMRPN (green), our implementation (blue), and ground truth
(black) on ‘rabbit’ sequence of VOT2018.
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Figure 16: DASIAMRPN (green), our implementation (blue), and ground truth
(black) on ‘soccer2’ sequence of VOT2018.

Figure 17: DASIAMRPN (green), our implementation (blue), and ground truth
(black) on ‘drone1’ sequence of VOT2018.
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Figure 18: DASIAMRPN (green), our implementation (blue), and ground truth
(black) on ‘crabs1’ sequence of VOT2018.

Figure 19: SIAMRPN++ (green), our implementation (blue), and ground truth
(black) on ‘Yo-yos2’ sequence of TC128.
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Figure 20: SIAMRPN++ (green), our implementation (blue), and ground truth
(black) on ‘CarDark’ sequence of TC128.

Figure 21: SIAMRPN++ (green), our implementation (blue), and ground truth
(black) on ‘Hand2’ sequence of TC128.
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Figure 22: SIAMRPN++ (green), our implementation (blue), and ground truth
(black) on ‘soccer1’ sequence of VOT2018.

4.4.3 Comparison with Related Work

To our knowledge, only [29] in the current literature addresses post-tracking drift

detection and correction independently of tracker architecture. We therefore compare

our system to our implementation of the GrabCut segmentation-based drift detection

and correction proposed in [29]. Table 27 shows how both implementations perform on

the entire VOT2018 and TC128 datasets and provides the percentage of improvement

in FR measure over the GrabCut-based method. Our RPN-based drift detection

and correction is denoted RPN DD/DC and the GrabCut-based drift detection and

correction is denoted GrabCut DD/DC.

Stating that our drift detection and correction works better than that of [29] would

be far-fetched, as it performs better in FR in only one case: TC128 with DASIAMRPN

tracker. Table 27 actually shows that the GrabCut-based approach works better

overall than our method. These results show the limitations of our RPN-based system,

and they show the advantages of non-learning-based approaches such as GrabCut over

deep-learning-based approaches. Whilst region proposal networks can outperform the

state-of-the-art when trained on an extensive list of examples, the majority of those
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Table 27: VOT2018 and TC128 datasets: Mean FR, AOR, and percentage improve-
ment of the RPN-based drift detection and correction over the GrabCut-based one of
DASIAMRPN and SIAMRPN++.

examples are high definition images and contain commonly used labels. Applying a

RPN on challenging video images with unknown target objects can pose a problem,

as detecting a stationary object in an image is not similar to detecting an object

that is undergoing challenges in motion, deformation, or illumination variation. We

also notice that our method works better on the VOT2018 dataset, which is widely

used in tracking evaluation, but performs more poorly on TC128, which is less known

and does not contain as much high-definition content. In such scenarios, it could

be favorable to use non-learning-based methods, such as GrabCut segmentation, to

identify objectness characteristics, such as edges and salient regions, rather than

objects.

Despite not performing as well in FR as the GrabCut-based drift correction [29]

in FR, our method appears to be overall as accurate in terms of AOR. Table 27

shows that our drift correction yields a higher average AOR for each tracker and each

dataset, although the percentage improvement is minor. This means that our method

does not correct drift as frequently as [29], but when it does, it relocates the target

object more effectively. In fact [29] only uses a saliency-based drift detection, which

means it calls its drift correction on more false positives than our method, which relies
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on both saliency and objectness measures. Thus, the GrabCut-based drift correction

changes Bt more frequently, including instances where there is no drift or need for

correction.

Besides our method and [29], we also tried combinations of both works, that is,

we tested our drift detection with the drift correction from [29] and we tested the

drift detection from [29] with our drift correction. However, both tests did not yield

consistently better results. In fact, when we combined the drift detection from [29]

with our RPN-based correction, the RPN was triggered too often in instances where

the target object was not drifting. This combination is less efficient and does not take

advantage of the RPN’s search region to detect drifting objects. Quite contrarily,

it could potentially lead to instances of wrongful object localization. In the case

where we combined our drift detection with the GrabCut-based drift correction from

[29], we also noticed that accuracy or robustness results were not better overall.

The GrabCut segmentation-based drift correction required the target object to be

consistently inside the tracker’s bounding box. Since our drift detection executed

correction when the bounding box most likely did not contain an object, those two

processes did not combine well. Therefore, our drift detection is better suited for our

RPN-based correction since it is better adapted for local re-detection tasks, whereas

the drift detection and correction from [29] work better together as a bounding box

regression task.

4.4.4 Limitations of Proposed Method

Although our drift detection and correction enhances a tracker’s overall accuracy and

robustness by 7.03% in terms of FR and 1.26% in terms of AOR across all VOT2018

and TC128 sequences combined, there are frames in some sequences where it fails

to do so. We make the distinction between two cases of failure: (1) our system’s

overall performances do not change compared to the original tracker design, and (2)
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our system under-performs compared to the original tracker design.

Case (1) where neither FR nor AOR performance measures are affected is less

serious but it is still to be considered for matters of efficiency. It happens if drift is

occurring but our method does not trigger drift correction. This means we falsely

estimated the presence of drift. It also happens if drift correction is triggered but

the bounding box is not relocated. This means either the RPN did not recognize

any object in the vicinity of the search area ARPN , or none of the candidate RPN

proposals were chosen over Bt.

Case (2) where our method under-performs the baseline tracker happens if drift

correction proposes a RPN candidate that overlaps less with the ground truth than

Bt, that means when drift correction is successfully executed but is not needed.

Overall, looking at FR results of both DASIAMRPN and SIAMRPN++ trackers

across all video sequences of VOT2018 and TC128 datasets, we identify a total of 13

sequences (3.44% of all test cases) where the percentage decrease in the average failure

rate over all frames of our method compared to the baseline tracker is larger than

2.5%. One of these cases happens using SIAMRPN++ on TC128, one case happens

using SIAMRPN++ on VOT2018, 4 cases happen using DASIAMRPN on TC128,

and the 7 remaining cases happen using DASIAMRPN on VOT2018. We notice that

our method performs less using DASIAMRPN than using SIAMRPN++. Figure 23

illustrates an example where the the drift correction localizes the wrong object after

the target was occluded, and Figure 24 shows an instance where the drift correction

fails at the start of the sequence. As in Figure 24, the target object can be recovered

at later frames, but the recovery can be either tracker dependent (i.e., a tracker’s

object re-detection mechanism) or tracker independent (i.e., our drift correction).

One major reason our method can seriously fail is due to our saliency measures

during drift detection. As it was shown on Figure 11 in section 4.3.1, our saliency-

based drift detection does not entirely extract the foreground object and extracts the
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Figure 23: Failure case: DASIAMRPN (green), our implementation (blue), and
ground truth (black) on ‘Kite1’ sequence of TC128.

Figure 24: Failure case: DASIAMRPN (green), our implementation (blue), and
ground truth (black) on ‘dinosaur’ sequence of VOT2018.
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background at the contour of the target object. This affects (39) which has a decisive

role in reinitializing the tracker output during drift correction by either keeping Bt

as the system’s output or replacing Bt with a RPN proposal. (39) uses the output

of (33); thus, it is important that (33) well labels foreground superpixels as salient.

Consequently, when (33) fails, the whole proposed method fails. To prevent scenarios

similar to Figures 23 and 24 from happening, we need to better control the saliency

estimation of superpixels, that is, reduce the number of background salient regions

and increase the number of foreground salient regions.

4.5 Conclusion

This chapter investigated tracker drift. Even though target re-detection is being

explored more in object tracking, most existing methods remain tracker-dependent.

We looked into achieving drift detection and correction before drift happened. Drift

detection was completed using a combination of saliency and objectness measures,

and drift correction was then executed using a region proposal network. FR and

AOR results of our implementation on DASIAMRPN and SIAMRPN++ baseline

trackers showed that our method improved overall tracker robustness and accuracy

measures by 7.03% in terms of FR and 1.26% in terms of AOR when tested on all

sequences from VOT2018 and TC128 datasets.

Future contributions for drift correction may involve using deep-learning-based

one shot video object segmentation [13] instead of a region proposal network. In this

context, the target mask is collected at the first frame and would be the only data

used as prior information.

In terms of drift detection, our saliency computations can be reworked in order to

better extract the target object from the background. This means we need to improve

the estimation of superpixel saliency (33). Note that (39) uses the output of (33); thus,
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it is important that (33) well labels foreground superpixels as salient. Consequently,

when (33) fails, the whole proposed method fails. Therefore, future work may include

improving the selection of salient superpixels. This can be achieved first by only

accepting superpixels that are within the boundaries of an absolute foreground and

that contain salient feature points, in a similar way to [29]. To define the absolute

foreground, we can compute the overall difference of pixel intensities between the

foreground object and its background at a video’s first frame. We then only pick

the salient superpixels inside the absolute foreground that contain salient points, for

example extracted SIFT feature points, and use those superpixels for (39). Using

this strategy, we can (1) discard superpixels from the foreground and (2) capture a

diverse set of superpixels that well describe the foreground object.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we explored two topics in video object tracking: performance evaluation

of tracking techniques and tracker drift detection and correction.

When a tracker is newly introduced, its quality is compared with that of exist-

ing trackers based on its average performances. This method of evaluation does not

use robust statistics or does not account for the presence of outliers. To facilitate the

evaluation of object tracking techniques, we presented two robust scoring and ranking

methods. Our first method effectively determined similarities between trackers and

iteratively ranked them by using the median absolute deviation (MAD). Our second

method used robust error norms, similarly to how they are employed in anisotropic

diffusion for image denoising, to group trackers in the same piecewise uniform region

of performance. Twenty trackers were scored and ranked according to their average

overlap ratio and failure rate performance measures and across four different bench-

marks.

Video object tracking is a sophisticated task which will inevitably drift or even fail

as a result of various challenges such as illumination variation, object deformation,
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motion blur, occlusion, and clutter, caused either by the environment or the target

object. To tackle this issue, we first proposed a drift detection method which measures

saliency and objectness features inside the tracker output at each frame. Then, we

introduced a drift correction strategy that centers the output bounding box around

the target object using a region proposal network. We embedded our implementation

on two state-of-the-art trackers, tested the trackers on three benchmarks, and showed

that our implementation improved the overall accuracy and robustness of the baseline

tracker designs.

5.2 Future Work

In our scoring function in Chapter 3, the calculations of our scores were based on

the mean average of a performance measure over all frames of a video sequence. In

the future, we may include scoring to the frames themselves; then, we could calculate

either the average score or apply another scoring function to these scores.

In terms of drift detection, our saliency computations can be reworked in order to

better extract the target object from the background. This can be achieved first by

only accepting superpixels that are within the boundaries of an absolute foreground

and that contain salient feature points, in a similar way to [29]. To define the absolute

foreground and distinguish it from the background, we can compute the overall differ-

ence of pixel intensities between the foreground object and its background at a video’s

first frame. We then only pick the salient superpixels inside the absolute foreground

that contain salient points, for example SIFT features, and use those superpixels for

equation (39).

Another contribution may involve using deep-learning-based one shot video object

segmentation [13] instead of region proposal networks for drift correction. The only

data that would be used as prior information is the target object’s mask.
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jir, G. Häger, A. Lukežič, A. Eldesokey, and G. Fernandez. The sixth visual

object tracking vot2018 challenge results. 2018.

[50] H. Lee, S. Choi, and Kim C. A memory model based on the siamese network for

long-term tracking. In The European Conference on Computer Vision (ECCV)

Workshops, 2018.

[51] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan. Siamrpn++: Evolution

of siamese visual tracking with very deep networks. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2019.

[52] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High performance visual tracking

with siamese region proposal network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8971–8980, 2018.

[53] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang. Learning spatial-temporal

regularized correlation filters for visual tracking. In CVPR, 2018.

[54] F. Li, Y. Yao, P. Li, D. Zhang, W. Zuo, and M.-H. Yang. Integrating boundary

and center correlation filters for visual tracking with aspect ratio variation. In

ICCVW, 2017.

[55] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D. Hengel. A survey

of appearance models in visual object tracking. In ACM Trans. Intell. Syst.

Technol., volume 4, pages 1–48, 2013.

[56] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient

object segmentation. In IEEE Conf. Comput. Vis. Pattern Recognit., pages

280–287, 2014.

106



[57] Y. Li, J. Zhu, and S. C. Hoi. Reliable patch trackers: Robust visual tracking

by exploiting reliable patches. In CVPR, 2015.

[58] P. Liang, E. Blasch, and H. Ling. Encoding color information for visual tracking:

Algorithms and benchmark. In IEEE Trans. on Image Processing, 2015.

[59] T. Lin, P. Dollr, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature

pyramid networks for object detection. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 936–944, 2017.

[60] T. Liu, J. Sun, N.-N. Zhen, X. Tang, and H.-Y. Shum. Learning to detect a

salient object. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2007.
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