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Abstract

A Function Approximator Approach to Nonlinear Systems Analysis

Oreoluwa Albert Ajayi

A novel fuzzy inference system is introduced with desirable approximation properties for

highly nonlinear systems that can be expressed in linear parameter varying form. This fuzzy infer-

ence system uses a hashing function to eliminate unnecessary computations and is compared with

existing fuzzy inference systems. Furthermore, an application to nonlinear systems state estimation

is provided, and the result is compared with that of the Extended Kalman filter. The main benefit

of this novel fuzzy inference system is its suitability to resource-constrained embedded control and

estimation applications. Furthermore, multidimensional sampling is applied to the state-space vari-

ables and it is shown that (de)fuzzification in control systems and (de)modulation in communication

systems are analogous. Finally, the values of fuzzy submodels as quantum mechanical objects are

explored, for stability analysis and feedback controller synthesis for a class of nonlinear systems,

using artificial intelligence approaches. Simulations confirm the effectiveness of the proposed ap-

proach.
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Chapter 1

Introduction

1.1 Motivation

Industries that integrate safety-critical applications are typically slower than others in adopting

novel technology, due to the rigour required for demonstrating compliance to safety objectives. An

example is the aerospace industry, where original equipment manufacturers (OEMs) prefer to use

components which have service history and field reliability data available, as this makes quantitative

failure analysis feasible. As a result, OEMs must weigh the cost of demonstrating that their products

are adequately safe against expected financial returns, when performing design trade studies that

incorporate emerging technology.

Prior to the COVID-19 pandemic, many OEMs concluded trade studies and commenced pro-

totype development in urban air mobility and unmanned drone delivery, in order to increase their

market capitalization. Aviation experts noted that the profitability of such ventures may be hampered

by the ongoing pilot shortage in the aviation industry, due to the high initial and recurrent costs of

training commercial pilots on new aircraft types. The aftershocks of the COVID-19 pandemic has

reduced air transport demand globally, leaving fewer aircraft for pilots to fly.

In order to maintain adequate safety of flight (SOF) as airline operations recover, flight crew

will have to undergo costly recency training. Advancements in artificial intelligence (AI), machine

learning (ML) algorithms and computer hardware over the last two decades have made it possible to

automate more actions that would normally be performed by a flight crew in an aircraft. Promising
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results and lessons have been learnt from demonstrator projects such as NASA’s learn-to-fly project

[1] and the intelligent flight control system flight research project. In this regard, the European

Union Aviation Safety Agency (EASA) in references [2] and [3] has highlighted several AI/ML

trustworthiness issues such as:

• Traditional development assurance frameworks are not adapted to machine learning.

• Difficulties in keeping a comprehensive description of the intended function.

• Lack of predictability and explainability of the ML application behaviour.

• Lack of guarantee of robustness and of no ”unintended function”.

• Lack of standardised methods for evaluation of the operational performance.

• Complexity of architectures and algorithms.

Future regulatory frameworks for AI applications in aviation will be structured in a manner that

guarantees safety, security and public interest are not compromised. The onus is on OEMs to guar-

antee the deterministic and explainable behaviour of their systems. Lessons learnt from past aircraft

certification programs has shown that explainability tends to reduce with increased complexity of

architectures and algorithms. As a result, the tendency to treat complex systems as black boxes also

increase, making unintended functionality more likely, even with the implementation of rigorous

hardware/software requirement and change management processes.

1.2 Objectives

The objectives of this thesis are as follows:

• Define a strategy for intelligent control of multi-input multi-output (MIMO) nonlinear sys-

tems.

• Bridge the gap between research advancements and industry practice.

• Eliminate blackbox impediments to AI verification and validation, by creating a rule-based

explainability platform.
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1.3 Literature Review

A literature survey provides clues to the following questions:

• How can AI be applied to embedded control applications? Specifically, how can hardware

complexity be overcome?

• What design and testing strategy is better for modelling and control? Black box (i.e. model-

free) or white box (i.e. model-based)?

In reference [4], the authors highlight that machine learning systems are particularly prone to

incurring system-level technical debt, which is difficult to detect. This is consistent with the find-

ings of the authors in reference [3]. To overcome computation complexity in hardware-constrained

applications, the authors of reference [5] indicate the need for a better theoretical understanding of

hashing neural networks.

In the foreward of reference [6], Lotfi Zadeh states that “Generally, fuzzy systems work well

when we can use experience or introspection to articulate the fuzzy if-then rules. When we cannot

do this, we may need neural-network techniques to generate the rules“. The use of introspection

or experience refers to contexts where a mathematical model of physical system behaviour can be

developed; indicating that fuzzy methods are better suited to model-based problems, whereas neu-

ral networks are suited to model-free problems. Further insight on model-based fuzzy methods is

provided in reference [7], where the authors introduce a function approximator known as the Takagi-

Sugeno fuzzy inference system (TS-FIS), which approximates a nonlinear system using a weighted

sum of linear state-space submodels, provided the local/global sector nonlinearity condition is sat-

isfied over the state domain of interest. The weights of the TS-FIS linear submodels are determined

by fuzzy membership functions that are defined for each premise variable.

The author in reference [8] suggests that fuzzy membership functions are quantum values, which

indicates that fuzzy systems can be represented as quantum mechanics objects. In reference [9],

classical mechanics is defined by the author as a crisp limit of fuzzy quantum mechanics. The

quantum representation and implementation of linear time invariant systems in the presence of noise

is discussed in reference [10]. Note that approximating a nonlinear system using the TS-FIS will
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result in approximation error, which is regarded as information loss, and is associated with increased

entropy [11]. The author in reference [12] alludes to the wavenumber-limited nature of all physical

systems by deriving the Bekenstein bound; which is a finite bound on the entropy-to-energy ratio

of physical systems. The Bekenstein bound and the second law of thermodynamics are used in

reference [13] to derive the theory of general relativity (an extension of special relativity); which

states that space and time are a single entity called space-time, whose curvature is affected by the

presence of energy or matter. Reference [13] elaborately defines the Einstein relation as an equation

of state. Applications of the theory of general relativity to nonlinear systems control, data mining,

and navigational systems are given in references [14], [15] and [16].

In references [17], [18] and [19], the application of multidimensional sampling and reconstruc-

tion to wavenumber-limited multivariable functions is demonstrated. The definition of stability

for nonlinear state-space models with equilibirum points and limit cycles is provided in reference

[20], as well as Lyapunov methods for demonstrating stability. Using Lyapunov stability theory,

the authors in reference [21] provide sufficient conditions for the stability of a nonlinear system

approximated using the TS-FIS. The authors in reference [22] highlight a relationship between the

Lyapunov equation for linear systems and the generalized Einstein relation.

1.4 Contribution

The contributions of this thesis are as follows:

• A computationally efficient fuzzy inference system, that relaxes the sector-nonlinearity con-

straint of the TS-FIS.

• Use of multidimensional sampling as a systematic (rather than intuitive) method of fuzzy

modelling.

• Explainability of fuzzy AI/ML systems from a theoretical physics standpoint, with applica-

tions to nonlinear observer-based controller synthesis.

• Reduced algorithm complexity for the mathematical analysis of highly nonlinear systems.
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1.5 Thesis Structure

Chapter II introduces a novel model-based fuzzy inference system, which is referred to as the

Ore fuzzy inference system (Ore-FIS). The computational superiority of the Ore-FIS over the TS-

FIS due to the H(X) algorithm is explained, and proof of the function approximation properties

of the Ore-FIS is provided. A nonlinear observer based on the Ore-FIS is derived and extended

to discrete-time, by modifying the Kalman filter algorithm, based on similar work in [23]. This

extension is called a hashing based neurofuzzy network Kalman filter (HBNN-KF) and is compared

with the extended Kalman filter, via simulation, for the state-estimation of a unicycle mobile robot.

The EKF is chosen for comparison rather than the unscented Kalman filter (UKF) because:

• Typically, the UKF processing time is significantly larger than that of the EKF, although the

UKF estimates better than the EKF using noisy measurements.

• It is more common to use the EKF for nonlinear state estimation in aerospace applications.

In Chapter III, the wavenumber-limited nature of physical nonlinear systems is used to con-

struct a fuzzy space and subsequently determine an appropriate number of fuzzy sets per premise

variable. This is done by extending sampling in time to sampling in space. It is shown that fuzzi-

fication and defuzzification is the state-space equivalent of modulation and demodulation, and a

metric to help determine whether fuzzification or linearization is appropriate for a control problem

is derived. Chapter III concludes by providing sufficient stability conditions for linear parameter

varying (LPV) nonlinear systems approximated using the Ore-FIS, and discusses considerations for

stability analysis of such systems in the presence of time-varying uncertainty. Chapter IV concludes

the work presented in the thesis.
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Chapter 2

Nonlinear Systems State-Estimation

Overview

A novel fuzzy inference system is introduced with desirable approximation properties for highly

nonlinear systems that can be expressed in linear parameter varying form. This fuzzy inference sys-

tem uses a hashing function to eliminate unnecessary computations and is compared with existing

fuzzy inference systems. Furthermore, an application to nonlinear systems state estimation is pro-

vided, and the result is compared with that of the extended Kalman filter. The main benefit of

this novel fuzzy inference system is its suitability to resource-constrained embedded control and

estimation applications.

2.1 Introduction

A critical step in the design of a controller for a system is the development of a suitable model

for the system, if it is not available a priori. A model can be defined as a mathematical con-

struct intended to quantify the nature of observations of physical phenomena. It serves as a bridge

between theoretical abstractions and pragmatic considerations, and is typically constructed based

on measurements obtained from the phenomena of interest, in addition to the practitioner’s expert

knowledge, in order to predict outputs of said phenomena as accurately as desired. Due to the ex-

istence of measurement error in the process, any model can be expected to predict phenomena with
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some uncertainty; hence the common trope that a controller is only as good as the constructed plant

model used in its synthesis.

Note that every system identification method relies on measurements [24], [25], which are crisp

and inherently incapable of providing complete information about the signal(s). It is therefore im-

portant to also model parametric uncertainty using a probabilistic approach [26], [27]. A drawback

of this approach, however, is that it is only suited to dealing with uncertainties of a random nature,

not systemic-induced uncertainties. In practice, mitigating all systemic uncertainty contributions is

as challenging as identifying all possible systemic contributions [28], [29].

Zadeh states in [6] that ”generally, fuzzy systems work well when we can use experience or

introspection to articulate the fuzzy if-then rules. When we cannot do this, we may need neural

network techniques to generate the rules”. This is exemplified by the authors of [23] in what is

commonly referred to as the Takagi-Sugeno Fuzzy inference system (TS-FIS). The TS-FIS can

approximate a given nonlinear model to any desired degree of accuracy, provided the sector nonlin-

earity condition is satisfied over the domain of interest.

In this work, a novel Kalman filter is introduced based on a fuzzy inference system (FIS) that

takes the states of a modelled nonlinear system as the premise variables (unlike the TS-FIS which

takes functions of the system states as premise variables). This new FIS, which we refer to as the

Ore-FIS, is proven to approximate a given nonlinear model to any desired degree of accuracy, pro-

vided the Lipschitz condition is satisfied over the domain of interest. Conditions under which the

states of a nonlinear system approximated by the Ore-FIS can be accurately estimated from the sys-

tem’s output measurements are derived. [30] analytically compares fuzzy and crisp measurements

and shows that random-fuzzy variables contain more information and mitigate uncertainty.

The remainder of this chapter is organized as follows. In Section 2.2, the function approximation

problem is formulated. In Section 2.3, the nonlinear observer problem in the context of the Ore-FIS

is presented. In Section 2.4, a Kalman filter extension is made and subsequently demonstrated in

Section 2.5.
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2.2 Problem Formulation

2.2.1 Ore Fuzzy Inference System

Consider the Nonlinear system
.
x = f(x, u)

y = g(x)
(1)

Assume this system can be rewritten as

.
x = A(x)x+B(x)u

y = C(x)x
(2)

where A(x) ∈ Rn×n, B(x) ∈ Rn×m, C(x) ∈ Rr×n, x ∈ Rn, u ∈ Rm and y ∈ Rr. Assume also

xi,min ≤ xi ≤ xi,max for i ∈ Nn. Thus, A(x), B(x) and C(x) have n2, nm and rn elements,

respectively. Therefore, there is a total number of not more than n2 + nm + rn TS-FIS premise

functions for the TS-FIS as it takes the premise variables from the pool of candidate premise func-

tions.

Now, let a subset of the state variables be considered as premise variables. Then, the function

approximation properties may hold provided the Lipschitz condition is satisfied on a compact set

defined on the state variables of the physical system to be approximated. In this proposed FIS, the

number of premise variables is reduced to n in comparison with the TS-FIS.

By reducing the premise variables, the total number of rules/submodels and consequently com-

putation time can be decreased. This proposed FIS will be referred to as the Ore-FIS. It is assumed

that there are s fuzzy sets per premise variable in the Ore-FIS, and that x1, x2, . . . , xn form the

pool of candidate premise variables, p of which are selected. The premise variables can be selected

such that they are the independent state variables appearing in the TS-FIS pool of candidate premise

functions.

Definition 1: Fij is the i-th fuzzy set of xj and MFij is the value of membership function of the i-th

fuzzy set of premise variable xj given a crisp value of xj . In this case, i ∈ Ns, j ∈ Np, and MFij

has the following properties:
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Figure 2.1: The triangular membership functions

(1) 0 ≤MFij ≤ 1, i 6= j;

(2) the membership functions are triangular, and

(3) the premise variables are a subset of the independent state variables.

Fig. 2.1 illustrates a triangular membership function. As it can be observed, vi,j is the vertex of

the i-th fuzzy set of premise variable xj . Moreover, it can be observed that MFi,j = 1 if and only if

xj = vi,j .

The width of a fuzzy set of premise variable xj is shown by4wj . It is straightforward to show

that 4wj ∝ 1
s . It is important to note that the inequality xj,min ≤ xj ≤ xj,max implies that all

values of xj must lie within at least one fuzzy set. Note also that if there are s fuzzy sets per premise

variables, and there are p premise variables, then from basic combinatorics, there will be sp rules.

In the TS-FIS, all possible fuzzy rules/submodels are computed even though some rules have

no weight. If a rule has at least one membership function with a value of zero, the relative weight

of that rule will be zero.

Definition 2: An activated membership function is one that has a non-zero value for a given crisp

premise variable.

In the Ore-FIS, it is observed that a crisp value of xj,min ≤ xj ≤ xj,max cannot belong to more

than 2 fuzzy sets (this can be verified by inspecting Fig. 2.1). Hence, each premise variable must

activate at least one membership function and a maximum of two membership functions. Therefore,
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at any point in time, a nonlinear system is represented by at least one submodel (or rule) and at most,

2p submodels (or rules).

Each fuzzy rule can be described by a 5-tuple Ψi = (hi(x), −→vi , A(−→vi ), B(−→vi ), C(−→vi )),

where −→vi ∈ Rp. In the above expression, Ψi refers to the i-th rule, hi(x) is a scalar representing

the relative weight of rule i, −→vi is a column vector constructed such that each element is the vertex

of the fuzzy sets of the i-th rule. A(−→vi ) is the matrix obtained by replacing the premise variable in

A(x) with the vertices of the i-th rule. Likewise, B(−→vi ) and C(−→vi )) are obtained by replacing the

premise variables in B(x) and C(x) respectively with the vertices of the i-th rule.

Definition 3: Fuzzification in the Ore-FIS is a transformation from the real-space to the fuzzy space

using a hashing function H(x). Therefore, models approximated by the Ore-FIS are hashing-based

neurofuzzy networks (HBNNs).

Definition 4: The dimension of the fuzzy space is p + 1, where the points are (−→vi , hi(x)) for

i = 1, . . . , 2p.

Remark 1: The fuzzy rules exist in the fuzzy space and the submodels representing the nonlinear

function can be constructed with the information in the fuzzy 5-tuple Ψi.

Remark 2: H(x) maps crisp values in the real space to fuzzy submodels associated with (−→vi , hi(x)).

Remark 3: H(x) is such that only the activated fuzzy sets are computed during fuzzification.

The benefit of usingH(x) is that all computations associated with rules with zero relative weight

are avoided. Since there are at least sp − 2p submodels, the computational savings associated with

H(x) are significant. Given a crisp value of premise variable xj , it is observed from Fig. 2.1 that

the vertices of the fuzzy sets of xj are ordered in the form of an arithmetic series written below

vi,j = v1,j + (i− 1)
∆w

2
(3)

2.3 Main Results

2.3.1 The H(x) Algorithm

Consider p premise variables and s fuzzy sets per premise variable. Let Ci(t) denote the crisp

value of the i-th premise variable at time t. The upper and lower vertices saddling Ci(t) are given

10



by the following formulas

vlower = v1,i + floor(
ci(t)−v1,i

∆wi
× 2)× ∆wi

2

vupper = v1,i + ceil(
ci(t)−v1,i

∆wi
× 2)× ∆wi

2

(4)

Remark 4: If floor( ci(t)−v1,i∆wi
×2) = ceil(

ci(t)−v1,i
∆wi

×2) then the crisp value is a member of exactly

one fuzzy set.

Across all premise variables, there are a maximum of 2p and a minimum of p fuzzy sets to be

formed. Consequently, a maximum of 2p rules and a minimum of one rule are to be formed by

combining the activated fuzzy sets of all the premise variables.

If a fuzzy rule is described by Ψi = (hi(x), −→vi , A(−→vi ), B(−→vi ), C(−→vi )), its associated sub-

model is given by

ẋ = A(vi)x+B(vi)u

y = C(vi)x
(5)

Recall that vi is derived from either vlower or vupper calculated for each premise variable.

2.3.2 A Separation Principle for Nonlinear Systems

Consider system (28). This system after fuzzification has the following format with µ submodels

having non-zero relative weight

ẋ =

µ∑
i=1

[A(vi)x + B(vi)u]h(Ψi) + e1(x) (6a)

y =
∑µ

i=1C(vi)xh(Ψi) + e2(x)

y =
∑µ

i=1 ŷih(Ψi) + e2(x)
(6b)

where 1 ≤ µ ≤ 2p and ŷi = C(vi)x. Note that any arbitrary error e(x) =
∑µ

i=1 e(x)h(Ψi)

11



since
∑µ

i=1 h(Ψi) = 1. The fuzzified nonlinear system can now be rewritten as

ẋ =
∑µ

i=1[A(vi)x + B(vi)u+ e1(x)]h(Ψi)

y =
∑µ

i=1[C(vi)x+ e2(x)]h(Ψi)

y =
∑µ

i=1 [ŷi + e2(x)]h(Ψi)

(7)

The structure of the nonlinear fuzzy observer is assumed to be as follows

˙̂x =

µ∑
[

i=1

Ac(vi)x̂+ L(vi)ŷi + z(vi)]h(Ψi) (8)

Let e0 = x− x̂. This implies ė0 = ẋ− ˙̂x.

Theorem 1: If the pair (C(vi), A(vi)) satisfy the detectability test for all µ submodels, then

∃L(vi) for i = 1, . . . , µ such that ė0 − e1(x)→ 0 as t→∞.

Proof: Substituting ẋ and ˙̂x from (29a) and (8), respectively, the following equation is obtained

ė0 =
µ∑

[
i=1
A(vi)x+B(vi)u+ e1(x)

−Ac(vi)x̂− L(vi)ŷ − z(vi)]h(Ψi)

ė0 =
µ∑

[
i=1

(A(vi)− L(vi)C(vi))x−Ac(vi)x̂

+B(vi)u− z(vi) + e1(x)]h(Ψi)

(9)

Assume Ac(vi) = A(vi)− L(vi)C(vi) and also z(vi) = B(vi)u; (9) is then rewritten as

ė0 =

µ∑
[

i=1

Ac(vi)(x− x̂) + e1(x)]h(Ψi) (10)

Remark 5: Theorem 1 implies the HBNN observer output will always contain a bias term e1(x).

By proving the function approximation properties of the Ore-FIS, it follows that the term e1(x) can
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be made arbitrarily small.

Theorem 2: Assume that the region of operation defined by the state variables of a physical system

are within a compact hyper-rectangle, and that the nonlinear state-space representation satisfies the

Lipschitz condition within such a polytope. Then, said physical system can be approximated to any

degree of accuracy by the Ore-FIS.

Proof: Consider the nonlinear function F (x) = A(x)x, where x ∈ Rn and A(x) ∈ Rb×n. Let

a1(x), . . . , ab(x) be the rows of matrix A(x). Then, fi(x) = ai(x)x ,∀i ∈ Nb. If the Ore-FIS is

used to approximate F (x), then

fi(x) =

µ∑
j=1

h(ψj)ai(vj)x+ ei(x) (11)

Equation (11) can be rewritten as

fi(x)−
µ∑
j=1

h(ψj)ai(vj)x = ei(x) (12)

Taking the norm 2 of both sides of the above equation yields
∥∥∥fi(x)−

∑µ
j=1 h(ψj)ai(vj)x

∥∥∥ =

‖ei(x)‖. The term
∑µ

j=1 h(ψj)ai(vj)vj is added and subtracted from the left-hand side of (12) to

obtain ∥∥∥∥∥∥fi(x)−
µ∑
j=1

h(ψj)ai(vj)x−
µ∑
j=1

h(ψj)ai(vj)(vj − vj)

∥∥∥∥∥∥
= ‖ei(x)‖

(13)

The equation above can be rewritten as

∥∥∥∥∥∥fi(x)−
µ∑
j=1

h(ψj)ai(vj)vj −
µ∑
j=1

h(ψj)ai(vj)(x− vj)

∥∥∥∥∥∥
= ‖ei(x)‖

(14)

Note that fi(vj) = ai(vj)vj and also fi(x) =
∑µ

j=1 h(ψj)fi(x) because
∑µ

j=1 h(ψj) = 1. Thus,
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equation (14) can be rewritten as

‖ei(x)‖ =‖
∑µ

j=1 h(ψj)fi(x)

−
∑µ

j=1 h(ψj)fi(vj)−
∑µ

j=1 h(ψj)ai(vj)(x− vj) ‖
(15)

from which, it is straightforward to derive the following inequality

‖ei(x)‖ ≤
∥∥∥∑µ

j=1 h(ψj)(fi(x)− fi(vj)
∥∥∥

+
∥∥∥∑µ

j=1 h(ψj)ai(vj)(x− vj)
∥∥∥ (16)

Furthermore, assume that fi(x) : D → R, and that it is Lipschitz on D. So ‖fi(x)− fi(vj)‖ ≤

L ‖x− vj‖, where L is a positive constant. It is concluded that

‖ei(x)‖ ≤
∥∥∥∑µ

j=1 h(ψj)L(x− vj)
∥∥∥+

∥∥∥∑µ
j=1 h(ψj)ai(vj)(x− vj)

∥∥∥
≤
∑µ

j=1 h(ψj)L ‖x− vj‖+
∑µ

j=1 h(ψj) ‖ai(vj)‖ ‖x− vj‖

As a result

‖ei(x)‖ ≤
µ∑
j=1

h(ψj)(L+ ‖ai(vj)‖)(‖x− vj‖) (17)

Denote by aim the smallest number greater than ‖ai(vj)‖ for all values of vj , and note that aim is

finite. Note also that if a crisp value is a member of a fuzzy set, then the absolute value of the differ-

ence between the said crisp value and the vertex of the associated membership function is less than

or equal to 4w2 , where4w is the width of the fuzzy set of the premise variable associated with the

crisp value. Since 4w → 0 as s → ∞, ‖ei(x)‖ → 0 as well. This proves function approximation

property of the Ore-FIS.

2.4 HBNN Applications

The modified Kalman filter based on the TS-FIS is presented in [23]. The main difference

between the Ore-FIS and TS-FIS is the choice of premise variables. Therefore, a similar algorithm
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is developed for the Ore-FIS. Consider the system (2), and approximate it by the Ore-FIS as

ẋ =
∑µ

i=1 h(Ψi)A(vi)x+
∑µ

i=1 h(Ψi)B(vi)u

y =
∑µ

i=1 h(Ψi)C(vi)x
(18)

In discrete time, assume the system is represented by

x(k + 1) =
∑µ

i=1 h(Ψi)Â(vi)x+
∑µ

i=1 h(Ψi)B̂(vi)u

y(k) =
∑µ

i=1 h(Ψi)Ĉ(vi)x
(19)

Define Āk :=
∑µ

i=1 h(Ψi)Â(vi), B̄k :=
∑µ

i=1 h(Ψi)B̂(vi) and C̄k :=
∑µ

i=1 h(Ψi)Ĉ(vi). We can

then update the Kalman filter by the following steps:

(1) Calculate priory state estimate for the next iteration using

x̂− = Āk−1x̂k−1 + B̄k−1uk−1

(2) Calculate priory error covariance matrix using

P−k = Āk−1Pk−1Ā
T
k−1 +Qk−1

(3) Calculate Kalman gain using

Kk = P−k C̄
T
k

(
C̄kP

−
k C̄

T
k +Rk

)T
(4) Calculate updated state using

x̂k = x̂−k +Kk

(
yk − C̄kx̂−k

)
(5) Calculate updated error covariance matrix using

Pk =
(
I − kkC̄k

)
P−k

Remark 6: e1 is the error due to state function approximation, e2 is the error due to approxima-

tion of the output function, e0 is the error due to observation and ei is the error from approximating

the i-th row of F (x) = A(x)x. Qt is the covariance of the noise process matrix and Rt is the

covariance of the measurement noise, both of which are considered Gaussian in the Kalman filter.

Lets consider an application of the HBNN-KF to the attitude determination of a rigid body (e.g.

a small satellite) in earth’s orbit.
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
.
ω1

.
ω2

.
ω3

 =


k1ω2ω3 + c1u1

k2ω1ω3 + c2u2

k1ω2ω3 + c3u3

 (20)

It is possible to write this equation in multiple LPV forms such as


.
ω1

.
ω2

.
ω3

 =


0 0 k1ω3

k2ω3 0 0

0 k3ω1 0



ω1

ω2

ω3



+


c1 0 0

0 c2 0

0 0 c3



u1

u2

u3


(21)

The applications of small satellite for deterministic space-to-earth and earth-to-space ethernet com-

munications in low earth orbit (LEO) has generated a lot of research interest. LEO satellites cover

less of the earths surface when compared with geostationary satellites. Additionally, the low de-

ployment altitude (600Km to 1,500Km) means the time required to complete a full orbit is much

shorter. This means that higher accuracy is required for antenna orientation.

Phased-array antennas can be steered electrically (beam-forming) or mechanically using the

attitude determination and control system (ADCS). If a suitable model of sensor output as a function

of the system states can be constructed using MEMS mathematical modelling [31], then HBNNs

may be suitable for observer design and controller synthesis. This can be an alternate adaptive and

robust solution for an ADCS.

The feedback gain may be obtained online if a sufficiently fast solution of the Ricatti equation

is obtainable for each activated fuzzy submodel [32]. The feedback gain may also be obtained if

a linear matrix inequality (LMI) problem[33] is solvable online using interior point methods. This

will require hardware in the loop (HIL) simulations with a real time operating system (RTOS).

For the purpose, it will be necessary to write interior-point LMI algorithms in C/C++, as this will

allow the use of RTOS on miniature satellites for deterministic ethernet, with the OSI physical layer

operating at radio frequencies greater than 6.0GHz [34].
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Figure 2.2: The states estimated by the HBNN-KF, EKF and sensor output

2.5 Simulation Results for Mobile Robot Tracking

In this section, a mobile robot system will be tracked using the HBNN-KF and the results are

compared with the EKF. Consider the following model of a unicycle mobile robot in [35].


.
xt
.
yt
.
θt

 =


r vR+vL

2 cos θt

r vR+vL
2 sin θt

r vR−vLb

 (22)

where vL and vR are inputs representing the linear velocity of the left and right wheels, b is the

distance between two wheels, and r is the radius of the wheels. Furthermore, x, y and θ are the

states of the robot, specifying its location. The discrete time approximation with constant sampling

time T is 
xk

yk

θk

 =


xk−1 + (T )r vR+vL

2 cos θk−1

yk−1 + (T )r vR+vL
2 sin θk−1

θk−1 + (T )r vR−vLb

 (23)
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Assume r and b are equal to 0.5m and 1.0m, respectively. The system (23) can be rewritten the

following form

xk = Axk−1 +B(xk−1)u (24)

where A = I3×3 and B(x) is equal to

B(x) =


1
4T cos θk−1

1
4T cos θk−1

1
4T sin θk−1

1
4T sin θk−1

0.5T −0.5T

 (25)

(note that u =

vR
vL

). The location of the robot is considered to be the output, hence C = I3×3.

SinceA(x) and C(x) are linear, the premise functions only contain the nonlinear elements ofB(x).

The vector of premise function is given by

F (θ) =

cos θ

sin θ

 =

f1(θ)

f2(θ)

 (26)

The premise functions depends on only one variable (i.e. p = 1); thus the only premise variable

is θ. The simulations are run by MATLAB/SIMULINK on a personal computer with an 4-core

i5-5200U processor at 2.2 GHz, and 8GB DDR3-SODIMM. Fig. 3.2 shows the state estimation

results using the HBNN-KF and EKF. Table 1 presents the mean square error (MSE) of the x, y and

θ for different values of R using the EKF, while Table 2 gives the results for the HBNN-KF (R0 is

assumed [0.2, 0, 0; 0, 0.2, 0; 0, 0, 1]). The lower MSE of the HBNN-KF implies that it is a more

accurate state estimator.

Table 2.1: Comparing the MSE of EKF at different sensor noise values

MSE(EKF) R=0.5I R=R0 R=I R=2R0 R=5I
x 10.2345 8.5804 13.9509 22.2357 56.5626
y 5.4315 14.2908 15.2189 40.7898 42.3878
θ 1.5102 3.6157 3.0686 4.1798 6.9931
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Table 2.2: Comparing the MSE of the HBNN-KF at different sensor noise values

MSE(HBNN -KF) R=0.5I R=R0 R=I R=2R0 R=5I
x 2.1317 0.7696 4.1761 1.7628 12.7028
y 2.4964 1.1262 4.4924 2.0267 8.8892
θ 0.6960 1.1852 1.4588 1.2000 3.5040

On the other hand, it is observed that the computation time for the EKF is 0.412s and for HBNN-

KF is 0.665s in this application. However, an objective comparison cannot be made based only on

the computing time. This is due to the fact that the HBNN-KF code implementation is suboptimal

because of rapid prototyping and also because the computation time is application-dependent. An

objective comparison of computing time for both the EKF and HBNN-KF must be performed on a

real time system with hardware-in-the-loop to give realistic results.

2.6 Conclusion

The function approximation and state estimation properties of the hashing based neurofuzzy

network Kalman filter (HBNN-KF) have been demonstrated theoretically and by simulation. One

obvious benefit of the HBNN-KF is that stochastic/non-deterministic behavior is consistent with

fuzzy if-then rules. The other benefit of this method is the ability to increase information gain by

arbitrarily reducing approximation error. It is evident from the simulation case that the HBNN-KF

is more robust and has a lower covariance than the extended Kalman filter (EKF). Future work will

implement code optimizations for the HBNN-KF and make comparisons with the EKF or UKF for

satellite attitude determination applications, with detailed attitude sensor models included in the

simulations.
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Chapter 3

Nonlinear Systems Stability and Control

Overview

A novel fuzzy inference system is introduced, that has desirable approximation properties for

highly nonlinear systems that can be expressed in linear parameter varying form. This novel fuzzy

inference system uses a hashing function to eliminate unnecessary computation. Furthermore, mul-

tidimensional sampling is applied to the state-space variables and it is shown that (de)fuzzification

in control systems and (de)modulation in communication systems are analogous. Finally, the values

of fuzzy submodels as quantum mechanical objects are explored, for stability analysis and feed-

back controller synthesis for a class of nonlinear systems, using artificial intelligence approaches.

Simulations confirm the effectiveness of the proposed approach.

3.1 Introduction

The state-space representation is a physical abstraction that can be used to mathematically rep-

resent multi-variable systems. Such a model is often nonlinear, but is often linearized around an

equilibrium point which may be stable or unstable. Although typically the stability of nonlinear

systems is centered about linearized equilibrium points, the presence of phenomena such as non-

vanishing perturbations renders stability analysis of this nature inapplicable. To address this hurdle,

one can use the Lyapunov stability criterion and directly apply it to the nonlinear system [21] [20]
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[22].

An alternative to modelling nonlinear systems around equilibrium points is the use of function

approximators (e.g., neural networks and neurofuzzy networks). In practice, traditional artificial

intelligence (AI) and machine learning (ML) approaches such as neural networks are prone to in-

curring technical debt, which is very difficult to detect, as it exists at the system level rather than the

code level [4]. This is consistent with the findings in [3], where black-box design methodologies

are highlighted as an impediment to AI trustworthiness (which includes verification, validation and

explainability). In the foreword of [6], Lotfi Zadeh states that “Generally, fuzzy systems work well

when we can use experience or introspection to articulate the fuzzy if-then rules. When we cannot

do this, we may need neural-network techniques to generate the rules“. The use of introspection

or experience refers to contexts where a mathematical model of physical system behaviour can be

developed by an expert; indicating that fuzzy methods are better suited to model-based (or white-

box) problems, whereas neural networks are suited to model-free (or black-box) problems. Further

insight on model-based fuzzy methods is provided in [7], where the authors introduce a function

approximator known as the Takagi-Sugeno fuzzy inference system (TS-FIS), which approximates

a nonlinear system using a weighted sum of linear state-space submodels, provided the local/global

sector nonlinearity condition is satisfied over the state domain of interest.

In [36], a fuzzy inference system known as the Ore fuzzy inference system (Ore-FIS) is intro-

duced and is demonstrated to be computationally superior to the TS-FIS. This new fuzzy inference

system is proven to approximate a given nonlinear model to any desired degree of accuracy, pro-

vided the Lipschitz condition is satisfied over the domain of interest. The Ore-FIS is particularly

useful in embedded applications, where accurate results in real-time are desired, despite measure-

ment uncertainty and hardware constraints imposed by mission requirements.

The rest of this work is structured as follows. In Section 3.2, we formulate the problem of

nonlinear systems modelling using fuzzy quantum mechanics and apply the Petersen-Middleton

theorem to fuzzification and defuzzification in the Ore-FIS. In Section 3.3, we use fuzzy quantum

mechanics as a theoretical framework for the Ore-FIS and mathematically derive stability condi-

tions. In Section 3.4, some practical insights are given, as well as a summary of computational

limitations that will be addressed in future work by hardware-in-the-loop simulation. Section 3.5
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Figure 3.1: Crisp space to fuzzy space transformation

Figure 3.2: Simplified digital modulation

provides simulation results for a translational oscillator with rotational actuator (TORA) approxi-

mated using the Ore-FIS, which is stabilized using parallel distributed compensation, exploiting the

H(x) algorithm described in [36]. Finally, some concluding remarks are given in Section 3.6.

Figure 3.3: Fuzzification of a continuous multivariable function
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Figure 3.4: Simplified synchronous digital demodulation

Figure 3.5: Defuzzification of a sampled and processed multivariable function

3.2 Problem Formulation

3.2.1 A Fuzzy Quantum Representation of Nonlinear Systems

Consider the Nonlinear system
.
x = f(x, u)

y = g(x)
(27)

Assume this system can be rewritten as

.
x = A(x)x+B(x)u

y = C(x)x
(28)

where A(x) ∈ Rn×n, B(x) ∈ Rn×m, C(x) ∈ Rr×n, x ∈ Rn, u ∈ Rm and y ∈ Rr. Assume also

xi,min ≤ xi ≤ xi,max for i ∈ Nn.

In [9], the author defines classical mechanics as a crisp limit of fuzzy quantum mechanics. Also,

the author in [8] remarks that fuzzy systems can be represented as quantum mechanics objects, using

a quantum superposition of membership functions. In between fuzzification and defuzzification, the

system in (28) can be written as follows with µ submodels having non-zero relative weight by using
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the Ore-FIS

ẋ =

µ∑
i=1

[A(vi)x + B(vi)u]h(Ψi) + e1(x) (29a)

y =
∑µ

i=1C(vi)xh(Ψi) + e2(x)

y =
∑µ

i=1 ŷih(Ψi) + e2(x)
(29b)

where 1 ≤ µ ≤ 2p and ŷi = C(vi)x.

Definition 1: Each fuzzy rule can be described by a 5-tuple Ψi = (hi(x), −→vi , A(−→vi ), B(−→vi ), C(−→vi )),

where −→vi ∈ Rp. In the above expression, Ψi refers to the i-th rule, hi(x) is a scalar representing

the relative weight of rule i, −→vi is a column vector constructed such that each element is the vertex

of the fuzzy sets of the i-th rule. A(−→vi ) is the matrix obtained by replacing the premise variable in

A(x) with the vertices of the i-th rule. Likewise, B(−→vi ) and C(−→vi )) are obtained by replacing the

premise variables in B(x) and C(x) respectively with the vertices of the i-th rule.

Definition 2: The variables e1(x) and e2(x) represent the approximation errors, which can be made

arbitrarily small by increasing the number of fuzzy sets per premise variable.

The author of [10] highlights that any arbitrary linear time invariant system can be implemented

as a quantum system, provided additional quantum noises are permitted.

Remark 1: Note that any arbitrary error e(x) =
∑µ

i=1 e(x)h(Ψi) since
∑µ

i=1 h(Ψi) = 1. The

fuzzified nonlinear system can now be rewritten as

ẋ =
∑µ

i=1[A(vi)x + B(vi)u+ e1(x)]h(Ψi)

y =
∑µ

i=1[C(vi)x+ e2(x)]h(Ψi)

y =
∑µ

i=1 [ŷi + e2(x)]h(Ψi)

(30)

Remark 2: Approximating a nonlinear system using the Ore-FIS will result in approximation error,

which is regarded as information loss and is associated with an increase in entropy [11].

Consider that fuzzy submodels are quantum mechanical objects and that each submodel has a

relative weight associated with it.
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Definition 3: A wavefunction is a weighted sum or superposition of eigenfunctions.

Definition 4: A fuzzy submodel is an eigenfunction.

Definition 5: The Ore-FIS representation of a LPV nonlinear system is a wavefunction.

The problem posed in this subsection is that of finding a compact set of submodels to represent

a nonlinear system at a particular instant in time. The H(x) algorithm in [36] dictates that at

any point in time, there exists a finite number of fuzzy submodels with non-zero relative weight.

Therefore, the dimension of the inference problem collapses the n-dimensional state-space model

to a p-dimensional fuzzy topological space, since p is the number of premise variables and p ≤ n.

3.2.2 Wavenumber-limited Physical Systems

It is well known that the stability of a system represented by equation (28) can be analyzed

using Lyapunov energy functions. A definitiion of observability for the class of nonlinear systems

represented by equation (30) is given in [36]. Although a similar notion of nonlinear controllability

is desirable, a proper definition requires additional derivation.

As per the second law of thermodynamics, a consequence of the reversibility of a physical

process is that the total entropy of an isolated system does not decrease. If controllability of a

nonlinear isolated thermodynamic system is assumed to be dependent on the degree of reversibility,

a question arises as to the nature of the relationship between the energy and entropy.

By studying black-hole entropy, the author in [12] determines that it would be possible to violate

the second law of thermodynamics if the entropy to energy ratio of an isolated system is infinite.

Definition 6: The Bekenstein Bound [37] is expressed as

S
E ≤

2πR
h̄c

(31)

where S is entropy, E is energy, R is the effective radius of the system, c is the speed of light and h̄

is Planck’s constant.

Remark 3: Einstein’s field equations can be mathematically derived [13] by assuming that the law

of thermodynamics and the Bekenstein bound are true.

Remark 4: The Bekenstein bound is evidence that any physical process can be represented with a
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finite amount of information.

Definition 7: A wavenumber limited function f(x) : Rn → R is the multidimensional equivalent

of a scalar band-limited function of time.

We describe physical systems that are subject to the Bekenstein as being wavenumber-limited.

Therefore, depending on the uncertainty budget of a design, an appropriate amount of fuzzy sets per

premise variable must be found. In Section 3.3, the choice of number of fuzzy sets is shown to be a

systematic one, in contrast with a previous methods that depend on an expert’s intuition.

3.2.3 Multispectral Analysis of Physical Spaces

Although Lie groups [38] are commonly used in physics and mathematics to study differential

equations and fuzzy sets [39], these require a high degree of mathematical understanding. Spectral

analysis of multivariable nonlinear equations is a more intuitive approach for a practitioner with a

systems background [40], [41].

Definition 8: The points (−→vi , hi(x)) for 1 ≤ i ≤ 2p, as defined in [36], constitute the fuzzy space

and are mapped from the crisp space by H(x) as shown in Fig. 3.1.

An analysis of fuzzy spaces begins with the observation that fuzzy rules resemble hyper-rectangles

in a fuzzy space constructed using the Ore-FIS. If p premise variables are used, then there’s a max-

imum of 2p rules with non-zero relative weights, since there is at most two active fuzzy sets per

premise variable. These 2p hyper-rectangles are not only neighbours but actually overlap in the

fuzzy space.

Remark 5: Consider the system in equation (28). When such a system is fuzzified using the Ore-

FIS as shown in (30), the sample points vi, ∀i ∈ Nµ, where 1 ≤ µ ≤ 2p, and the weighted

versions of A(vi), B(vi), and C(vi) are used to construct the fuzzy submodels in the fuzzy space

Definition 9: The division of a premise variable into s fuzzy sets is the multi-dimensional equivalent

of sampling (i.e., multidimensional sampling).

A comparison can be made between transmitting a digital signal and fuzzifying a continuous

multivariable system as shown in Figs. 3.2 and 3.3. It is shown that sampling a continuous mul-

tivariable signal is necessary for fuzzification. Furthermore, consider defuzzification as a method

of multidimensional reconstruction of wavenumber-limited physical systems; it follows from the
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function approximation principle of the Ore-FIS that each premise variable (which is also a sys-

tem state) will have several quantized states with varying degrees of membership (i.e., fuzzy sets).

Consequently, the process of inferring which submodels are applicable (i.e., the H(x) algorithm)

is simply a choice of quantized premise variables with non-zero weight. A comparison between

receiving and reconstructing a digital signal and defuzzification is illustrated by Figs. 3.4 and 3.5.

Definition 10: Further processing may refer to any computational actions by a deterministic Turing

machine that are related to the H(x) algorithm, observation with the HBNN-KF [36], or state-

feedback control signal synthesis.

The concept of multidimensional periodicity in relation to the multivariable Fourier transform

is presented in [17]. It is shown below that multispectral analysis can be used to construct the fuzzy

space representation of a class of nonlinear system respecting the Bekenstein Bound.To this end,

consider a function a(x) : Rn → R defined ∀x ∈ D ⊆ Rn. The Fourier transform of a(x) as

defined in [17] is the following transformation

a(x)
f−→ A(w)

a(x)
f−1←− A(w)

(32)

Definition 11: The points (w,A(w)) will be referred to as wavepoints in the spectral domain (or

simply wavepoints). These wavepoints lie within a finite spectral support if A(w) has finite signal

energy. If A(w) has finite energy but is not a finite signal, it can be truncated and an adequate

spectral support can be found.

Remark 6: A sampled multivariable signal with finite energy is periodic in the spectral domain

[17]. Let Nn be the set of integers from 1 to n. Assume that the region of operation of a nonlinear

system is given by

ximin ≤ xi ≤ ximax , ∀i ∈ Nn

which is essentially a hyper-rectangle constraint on the state space. The convex nature of this

hyper-rectangle implies that it is also a polytope. In Section 3.3, we will use the Nyquist density (in

relation to reconstruction by defuzzification)to derive an upper bound on the number of fuzzy sets

per premise variable.
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3.2.4 Uncertainty in Fuzzy Systems

It is known that observations and control policies can be improved by using more information

with less uncertainty. Robustness of any arbitrary system can be loosely defined as a measure of said

systems performance in the presence of uncertainty. The lack of robustness guarantees in traditional

machine learning frameworks may result in unintended functionality [3], which is a concern in

safety-critical applications. This is compounded by a lack of explainability of machine learning

behaviour in neural networks.

The limitations of modelling physical systems with crisp variables in the presence of uncertainty

was first highlighted by Lotfi Zadeh [42]. Note that probability and possibility theory are two math-

ematical tools for characterizing measurement uncertainty [30]. A drawback of the probabilistic

approach to characterizing uncertainty in a system model is that it is based on boolean operations

hence rendering it incapable of representing ignorance[30]. The authors in [30] illustrate with sev-

eral thought experiments that the inability of probability theory to represent ignorance is because

probability theory assumes the true values are known prior to quantifying uncertainties. A question

arises as to how likely it is that the results of an experiment match presumptions, if the results are

not known prior to the experiment? The authors of [30] state that this is very unlikely, and infer that

models that address the practitioners’ ignorance are better than those that do not, since the former

is richer in information.

In his 1921 German address to the Prussian academy of sciences [43] titled ”Geometry and

Experience”, Albert Einstein questioned how mathematics, a product of human thought (based on

experience), can claim to be absolute and indisputable when human experience is not? His answer

was that ”as far as the laws of mathematics refer to reality, they are not certain; and as far as

they are certain, they do not refer to reality.” This can be interpreted to mean that if experience is

not absolute, then ignorance is a persistent factor in reality. Therefore, it can be argued that any

system designed with no consideration for ambiguity or uncertainty is likely to fail in real world

applications.

For a nonlinear and imprecise model of a physical system, maintaining stability at linearized
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equilibrium points is a challenging robust control problem. This difficulty stems primarily from

two assumptions made about a physical model; that the model can be adequately represented by a

linearized model, and that crisp variables can represent the model. Making these assumptions about

a physical system will result in information loss. It is to be noted that similar to reconstruction,

defuzzification leads to information loss. In Section 3.3, stability conditions are derived using

Lyapunov’s stability theory, by treating entropy-induced uncertainties are perturbations of weighted

fuzzy submodels.

3.3 Main Results

3.3.1 Multidimensional Fourier Transforms and Fuzzy Spaces

The Nyquist density specifies the minimum rate required for the unaliased reconstruction of a

sampled signal’s spectrum [17]. If fuzzification is considered as multidimensional sampling, then

the sampling density must be greater than or equal to the Nyquist density, in order to reconstruct

(via defuzzification) a sampled signal. If such a Nyquist density exists, then the signal must have

finite energy. For instance, if a(x) is continuous and belongs to the set of finite energy multivariable

signals, the energy of A(w) can be approximately calculated by wavepoints w ∈ Rn in a spectral

domain polytope.

Lemma III.1: Consider a class of nonlinear systems described by

.
x = A(x)x+B(x)u

y = C(x)x
(33)

Define the non-empty set M = MA ∪MB ∪Mc, where MA, MB , and Mc contain the

non-constant elements of A(x), B(x), and C(x), respectively. Let F (M) denote the set of Fourier

transforms of each element of M truncated by an appropriate spectral support, with mi ∈M ,

i ∈ N|M |. Let also nq(mi) ≥ 0 be the Nyquist density of mi, and p ≤ n be the number of premise
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variables. Then the number of fuzzy rules satisfies the inequality below

ζ ≤ supi,j(nq(mi)× ‖ Pj ‖)p (34)

Proof: The maximum number of fuzzy sets in a premise variable is the Nyquist density multiplied

by the length of the premise variable. If the constraint of an equal number of fuzzy sets per premise

variable is imposed, then a sufficient number of fuzzy sets is given by

s = supi,j(nq(mi)× ‖ Pj ‖) (35)

If a smaller amount of fuzzy sets is used, then the control system must be designed to be robust by

accounting for the additional uncertainty. Using combinatronics methods, an upper bound on the

number of fuzzy rules can be obtained as

ζ ≤ sp = supi,j(nq(mi)× ‖ Pj ‖)p (36)

3.3.2 Potential Functions

The authors in [22] indicate that a Lyapunov function is a potential function and note that the

Lyapunov equation is a specific case of the generalized Einstein relation [44] for linear systems.

Definition 12: The method of defuzzification used in the Ore-FIS is commonly referred to as centre-

of-gravity (COG) defuzzification.

Although the stability of individual fuzzy submodels is not sufficient for the stability of the non-

linear system, the approximation error in the Ore-FIS can be treated as a perturbation of the stable

submodels.In [21], under the assumption of zero approximation error, a sufficient condition for the

quadratic stability of a Takagi-Sugeno fuzzy system is given. A similar condition will be derived

using Lyapunov stability theory for the Ore-FIS.

Definition 13: By definition and without loss of generality, an equilibrium point x(0) ∈ Rn is stable

if there exists positive scalar values ε and δ(ε) such that the existence of ‖ x(0) ‖≤ δ(ε) implies
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that ‖ x(t) ‖≤ ε [20].

Theorem III.1: If the approximation error is sufficiently small and can be modelled as a pertur-

bation of the fuzzy submodels, then a sufficient condition for stability of the nonlinear system in a

given region is the stability of each weighted fuzzy submodel in that region..

Proof: Consider the LPV nonlinear system defined ∀x ∈ D ⊆ Rn

.
x = A(x)x =

µ∑
i=1

h(Ψi)A(vi)x+ e(x) (37)

where vi is the vertex point of rule Ψi, and A(vi) is Hurwitz ∀i ∈ Nµ. Let L(x) be a Lyapunov

energy function such that:

(1) L(x) = xTPx.

(2) λmin(P ) ‖ x ‖≤ L(x) ≤ λmax(P ) ‖ x ‖.

(3) ∂L
∂t + ∂L

∂x

∑µ
i=1 h(Ψi)A(vi)x ≤ −α ‖ x ‖2

(4) ‖ ∂L
∂x ‖≤ 2λmax(P ) ‖ x ‖

Note that
.
L(x) =

∂L

∂t
+
∂L

∂x
(

µ∑
i=1

h(Ψi)A(vi)x+ e(x)) (38)

then assuming e(x) = 0 and since ∂L
∂t = 0

.
L(x) =

∂L

∂x
(

µ∑
i=1

h(Ψi)A(vi)x) =

µ∑
i=1

h(Ψi)x
T (P + P T )A(vi)x (39)

which can then be written in the form

.
L(x) =

µ∑
i=1

−h(Ψi)x
TQ(vi)x (40)

where −Q(vi) = 2PA(vi). If P exists such that Q(vi) is positive definite ∀i ∈ Nµ, then the

nonlinear system is stable.

When the approximation error is non-zero, the quadratic stability conditions above must be
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revisited. Equation (37) can be rewritten as

.
x = A(x)x =

µ∑
i=1

h(Ψi)(A(vi)x+ e(x)) (41)

since e(x) =
∑µ

i=1 h(Ψi)e(x). In equation (41), it is obvious that the approximation error is

a perturbation of the linear Hurwitz submodels. If the approximation error can be modelled as

a vanishing perturbation, then we can study the stability of the nonlinear system along several

equilibrium points that are defined by the weighted submodels. Specifically, ∀x ∈ D, if ‖ e(x) ‖≤

γ ‖ x ‖ and 0 ≤ γ, then equation (38) can be written as

.
L(x) =

µ∑
i=1

h(Ψi)(−xTQ(vi)x+
∂L

∂x
e(x)) (42)

and then expressed as
.
L(x) =

µ∑
i=1

h(Ψi)(−xTQ(vi)x) +
∂L

∂x
e(x)) (43)

Let α =
∑µ

i=1 h(Ψi)λmin(Q(vi)). Then an upper bound on
.
L(x) is given by

.
L(x) ≤ −α ‖ x ‖2 + ‖ ∂L

∂x
‖‖ e(x) ‖ (44)

Note that

− α ‖ x ‖2 + ‖ ∂L
∂x
‖‖ e(x) ‖≤ −α ‖ x ‖2 +2λmax(P )γ ‖ x ‖2 (45)

If γ < α
2λmax(P ) , then

.
L(x) is negative definite.

On the other hand, modelling the approximation error as a nonvanishing perturbation is a more

generic case, since the state space solution may not necessarily approach the equilibrium point (as

is the case with limit cycles). By extending Lemma 9.2 in [20], we have that e(x) must satisfy the

following bound ∀x ∈ D = {x ∈ Rn| ‖ x ‖< r}.

‖ e(x) ‖< α

2λmax(P )

√
λmin(P )

λmax(P )
θr (46)

where 0 ≤ θ < 1 and r is the effective radius of the system.
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Remark 7: It is shown in [36] that the approximation error from the Ore-FIS can be made arbitrarily

small.

Remark 8: Note that µ satisfies the bound in equation (36).

Definition 14: Any fuzzy inference system that uses the H(X) algorithm as described in [36] is

called a hashing-based neurofuzzy network (HBNN).

3.4 Applicability to Nonlinear Control

The analysis of dynamic nonlinear systems will be incomplete, without considering digital sam-

pling and real-time scheduling effects. In observer-based feedback controller design for applications

requiring real-time performance, all of the following factors must be considered:

(1) Sufficiently small approximation errors are acceptable for state-space-time sampling (i.e.,

fuzzification, and digital sampling) and state space estimation.

(2) The stabilizability and detectability conditions are satisfied for all activated submodels through-

out the intended operational envelope of the system under control.

(3) The synthesized controller is robust to variations in estimation/measurements subject to un-

certainty of a given magnitude.

(4) A controller can be found for each activated fuzzy submodel, within a fixed time window on

a deterministic Turing machine.

(5) The reference state-space trajectory of the system is such that all activated submodels are

stabilizable and detectable.

Note that hardware-in-the-loop simulations can provide more insights than theoretical analysis; es-

pecially, when uncertainty is being considered. These factors will be the subjects of future work.

3.5 Simulation Results

Example 1. The translational oscillator with a rotational actuator (TORA) is fully described in

[21]. Let x1 and x2 be the translational position and velocity of the cart, and x3 and x4 be the
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Figure 3.6: TORA dynamics with q = 0.1 and R = 1000

Figure 3.7: TORA dynamics with q = 1 and R = 100

Figure 3.8: TORA dynamics with q = 10 and R = 50
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rotational position and velocity of the mass m respectively. The system dynamics is expressed by

the following nonlinear state-space equations:



ẋ1

ẋ2

ẋ3

ẋ4


=



0 1 0 0

−1
W 0 0 ε sin (x3)x4

W

0 0 0 1

ε cos (x3)
W 0 0 −ε2 cos (x3) sin (x3)x4

W





x1

x2

x3

x4


+



0

−ε cos (x3)
W

0

1
W


[
T

]
(47)

where T is input torque, W = 1− ε2 cos 2(x3), and ε = 0.1.

The control objective is to stabilize x1 at the origin using a hashing based neurofuzzy network

(HBNN). Based on the Ore-FIS, there are two premise variables (x3 and x4), resulting in 22 = 4

parallel distributed compensators (PDC). For simplicity, the feedback gains and the relative weights

are made constant based on the initial conditions. This is acceptable if the control objective is to

maintain the initial conditions (i.e., the regulator problem).

The feedback gains obtained by solving the LQR problem with a scalar parameter R and the

following matrix

Q =


q 0 0

0 0.001 0

0 0 0.001

 (48)

where q is a scalar. On the other hand, the energy input to the system is given by

E =

∫ tf

0
P dt =

∫ tf

0
ωT dt =

∫ tf

0
x4T dt (49)

The simulation confirms the main results in Theorem 1; that the nonlinear system is stabilized by
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considering only the weighted submodels determined by the H(x) algorithm, provided the approx-

imation error is sufficiently small. Based on the results in Figs. 3.6, 3.7 and 3.8, as R increases,

the magnitude of translational displacement from the equilibrium point decreases. The translational

amplitude and energy consumption for different combinations of R and q illustrated by Figs. 3.6,

3.7 and 3.8 are summarized in the table below.

Table 1. Translational amplitude and energy consumption for different parameter values

q R |x1| (m) Energy consumed (J)

0.1 1000 0.08 0.0011

1 100 0.08 0.0257

10 50 0.3 0.2801

3.6 Conclusion

By considering LPV nonlinear systems as a crisp limit of fuzzy quantum mechanics, and treating

approximation errors as quantum noises, stability conditions for LPV nonlinear systems are derived.

Additionally, concepts in digital telecommunication theory such as (de)modulation are shown to be

applicable in the multi-dimensional sense to state-space variables via (de)fuzzification, which means

the choice of fuzzy sets and rules can be decided systematically, and not just based on an expert’s

intuition. We note that the quantum mechanical objects presented (i.e., fuzzy submodels) have a

physical realization and, as such, must satisfy the Bekenstein bound. This work is preliminary and

leverages the synergy in mathematics, theoretical physics, and control systems engineering, and

constitutes a foundation for future work that address the nonlinear control problem in the context of

model predictive control, using fuzzy function approximators.
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Chapter 4

Conclusions and Future Research

Directions

This thesis has introduced novel concepts with regards to intelligent approximation, estimation

and control of LPV nonlinear systems. The function approximation property of the Ore-FIS has

been mathematically proven to hold, provided the Lipschitz condition is satisfied over the state

domain of interest. A discrete time estimator called the HBNN-KF has been derived as a result of

the Ore-FIS, and is shown to be more robust than the EKF in a specific application, with comparable

processing times.

Furthermore, when defuzzification is considered as a method of multidimensional reconstruc-

tion of wavenumber-limited physical systems; it follows from the function approximation principle

of the Ore-FIS that each premise variable (which is also a system state) will have several quantized

states with varying degrees of membership (i.e. fuzzy sets). Consequently, the process of inferring

which submodels are applicable (i.e. the H(x) algorithm) is simply a choice of quantized premise

variables with non-zero weight.

It is noted that the dimension of the inference problem collapses the n-dimensional state-space

model to a p-dimensional fuzzy topological space, since p is the number of premise variables and

p ≤ n. The 2p limit on the number of submodels is exploited to prove the quadratic stability of a

nonlinear system with fuzzy submodels defined by the Ore-FIS. A deliberate effort is made in this
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thesis to provide physical meaning to the operations of fuzzy observers and controllers and not just

a mathematical interpretation. A practitioner with a background in linear control theory will face

much less difficulty in analyzing nonlinear systems using the concepts defined in this thesis. The

following applications will be explored and compared with existing literature in future work:

(1) Stability analysis and robust-adaptive controller synthesis for systems with uncertainty.

(2) Online model parameter estimation and controller synthesis in model predictive control ap-

plications.
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