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Abstract

Phenomenology of new physics beyond the Standard Model: signals of dark mat-

ter and new gauge bosons at colliders

Özer Özdal, Ph.D.

Concordia University, 2020

In this PhD thesis we investigate various aspects of phenomenology of new physics
beyond the Standard Model (SM) in the context of extensions of supersymmetric & non-
supersymmetric realisations.

In extensions of supersymmetric realisations, we first study the low scale predictions
of the supersymmetric standard model extended by U(1)B−L × U(1)R symmetry, obtained
from SO(10) breaking via a left-right supersymmetric model, imposing universal boundary
conditions. We find that the lightest neutralino or sneutrino emerge as dark matter candi-
dates, with different low scale implications. Secondly, we perform a comprehensive analysis
of the secluded UMSSM model, consistent with present experimental constraints. In this
model the additional Z ′ gauge boson can be leptophobic without resorting to gauge kinetic
mixing and, thus lowering the LHC bounds on its mass. Thirdly, we test E6 realisations
of a generic U(1)′ extended Minimal Supersymmetric Standard Model (UMSSM) against all
currently available data, from space to ground experiments, from low to high energies. Large
gauge kinetic mixing implies that the Z ′ boson emerging from the breaking of the additional
U(1)′ symmetry is rather wide since it decays mainly into WW pairs.

In extensions of non-supersymmetric realisations, we study mass bounds of the WR

gauge boson in generic left-right symmetric models. Assuming that the gauge bosons couple
universally to quarks and leptons, we allow different gauge couplings gR ̸= gL and mass
mixing, V L

CKM ̸= V R
CKM in the left and right sectors. WR mass bounds can be considerably
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relaxed, while ZR mass bounds are much more stringent. In addition, we perform a consistent
analysis of the alternative left-right symmetric model emerging from E6 grand unification.
We show that the exotic neutrino inherent to this class of models, the scotino, is a viable
candidate for dark matter satisfying relic density and direct detection constraints.
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Chapter 1

Introduction: The Standard Model of

Particle Physics

As the main achievement of 20th century, Particle Physics questions of how the fundamental
particles interact and how three of four forces are related to each other. These are included
in an elegant way in the Standard Model (SM) of particle physics.

1.1 Main Blocks of the Standard Model

In this section, we will explain the SM without giving full details. Detailed reviews and
books can be found in the literature [25–27]. The SM is a theory that explains the particles
discovered so far and three of the four fundamental forces which are important for interactions
of these particles. These three forces are the electromagnetic, strong and weak forces. One
of the greatest achievements of the SM is to calculate the properties of particles and their
interactions with great precision. In short, the SM is a gauge theory of spin 0, 1/2 and 1
particles based on SU(3)C⊗SU(2)L⊗U(1)Y gauge symmetry group with subscripts C, L, Y
denoting color, left chirality and weak hypercharge. SU(2)L⊗U(1)Y governs the electroweak
interactions and SU(3)C determines the strong interactions. For each gauge group there are
corresponding generators, and each generator has an associated "vector field". These vector
fields keep the the Lagrangian invariant under local transformations. For this reason, vector
fields, which are carriers of physical forces, are also called "gauge fields".

In the SM, the particles are arranged in two groups, as fermions and bosons. Fermions
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are particles having half-integer spin. They obey Fermi-Dirac Statistics. In the SM, fermions
are divided into three families of quarks and leptons. These three families are identical to
each other, except for their masses. The ordinary matter is made up of the first families,
while heavier families are rather unstable and decay to the particles of the first families.
Leptons are singlets under SU(3)C . In other words, they do not carry color charge; and
hence, they do not participate in strong interactions. They only participate in electro-weak
interactions. However, quarks are color triplets. Namely, each quark flavour carries three
colors. Since quarks carry both color charge and hyper-charge, they participate both strong
and electroweak interactions.

According to solutions of the Dirac equation, we have left and right handed particles.
Left handed particles are doublets under SU(2)L ⊗ U(1)Y symmetry and carry the same
hypercharge within the doublet, while right-handed particles are singlets under the same
gauge symmetry. In this context, SU(2)L⊗U(1)Y forms a chiral theory, since it distinguishes
the left-handed particles from the right-handed ones. On the other hand, bosons are particles
with integer spin. They obey Bose-Einstein Statistics and they are force carrier particles.
SU(3)C has 8 generators (32 - 1 = 8 generators) which are the gluons (Ga

µ, a=1,2,..,8) of
SU(3)C . SU(2)L has 3 generators (W a

µ , a=1,2,3 gauge fields) and U(1)Y has one generator
(Bµ gauge field). The latter 4 generators mix to give masses to the W± and Z bosons, which
are mediators of the weak interactions and the photon, the mediator of the electromagnetic
interactions, remains massless.

SU(3)C −→ 8 gauge bosons (Gluons Ga
µ)

SU(2)L −→ 3 gauge bosons (W±, Z)

U(1)Y −→ 1 gauge boson (Bµ)

At high energies, these 12 gauge bosons are massless. However at low energies
SU(2)L ⊗ U(1)Y symmetry breaks down to U(1)EM through the spontaneous symmetry
breaking mechanism, and the gauge bosons acquire their masses. The mechanism behind
this symmetry breaking is called the Higgs Mechanism. Therefore, in order to be a con-
sistent theory, the SM predicts a scalar (spin=0) Higgs boson which was experimentally
observed at CERN in July 2012 [28, 29].
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1.1.1 Spontaneous Symmetry Breaking

The electroweak part of the SM distinguishes the left-handed and right-handed fermions and
hence it forms a chiral theory. The subscript "L" in SU(2)L indicates that SU(2)L only
interacts with left-handed fermions and is blind to right-handed ones. Therefore, in the
formulation of the SM, left-handed fermions reside in SU(2)L doublets, while right-handed
ones are singlets. In the electroweak Lagrangian, it could easily be seen that left-handed and
right-handed particles transform differently under SU(2)L ⊗ U(1)Y .

LEW = ΨRγ
µD(R)

µ ΨR +ΨLγ
µD(L)

µ ΨL (1.1)

where

D(L)
µ = ∂µ −

igL
2
W i
µ · σi −

igY
2
Bµ (1.2)

D(R)
µ = ∂µ −

igY
2
Bµ (1.3)

Under SU(2)L transformations, left-handed particles transform as ΨL → Ψ′
L where

Ψ′
L = exp(− igL

2
W i
µ · σi)ΨL, whereas right-handed particles remain unchanged (i.e. ΨR →

Ψ′
R = ΨR). This arises from the fact that right-handed fermions do not carry a SU(2)L

charge.

When one writes down the electroweak Lagrangian, one may also consider writing a
mass term, mψψ= m(ψRψL+ψLψR), for fermion fields. However, the mass term of fermions
includes mixing of the left and right handed fermions. Since left-handed and right-handed
fermions transform in different ways under SU(2)L ⊗ U(1)Y , one can easily see that the
Lagrangian with such a mass term is not invariant . Therefore, mass terms of fermions in
the electroweak Lagrangian are forbidden by SU(2)L ⊗ U(1)Y symmetry.

LEW = ΨRγ
µD(R)

µ ΨR +ΨLγ
µD(L)

µ ΨL +˂˂˂˂˂˂˂˂˂˂hhhhhhhhhhm(ΨRΨL +ΨLΨR) (1.4)

However, experiments show that the fermions are massive. In order to derive fermions masses,

a new complex scalar SU(2)L doublet Higgs field, Φ =

(
ϕ1

ϕ2

)
is introduced with no color
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charge. This Higgs complex scalar field interacts with fermions as indicated below in the
Yukawa Lagrangian, written only for first families.

Ly = ydQΦdR + yRLΦeR + yuQΦ
cuR + ... (1.5)

where Q =

(
uL

dL

)
and L =

(
νeL

eL

)
.

In order to conserve hypercharge in the electroweak interactions, the total hypercharge
of each term in the Yukawa Lagrangian must be zero. This is satisfied if the hybercharge
of the complex scalar Higgs field is 1. Then it turns out that, according to the Gell-Mann-
Nishijima formula (Q = τ3+Y/2), the upper component of the complex Higgs doublet has an
electric charge of 1 while the lower component is neutral as indicated below where τ3 stands
for the isospin.

Φ =

(
ϕ1

ϕ2

)
−→ τ3 = 1/2, Y = 1, then Q = +1

−→ τ3 = −1/2, Y = 1, then Q = 0
−→ Φ =

(
ϕ+

ϕ0

)
. (1.6)

Another important feature of the Yukawa Lagrangian is that d-type quarks masses are
generated with the interaction of the Higgs field itself, while the masses of the u-type quarks
are obtained with the interaction with the conjugate Higgs scalar field. The Higgs field has a
non-zero vacuum expectation value (VEV), which induces the mass terms for the fermions.
The Higgs potential is introduced in Eq. 1.7 where λ is always positive to satisfy vacuum
stability. The Higgs potential has the following form below where two different configurations
are possible according to sign of µ2 as represented in Fig. 1.1.

For the positive values of µ2, the minimum of the Higgs potential gives zero VEV
while the negative value of µ2 leads to a non-zero VEV.

V (ϕ) =
1

2
µ2ϕ2 +

1

4
λϕ4 , (1.7)

∂V (ϕ)

∂ϕ
= ϕ(µ2 + λϕ2) = 0 , (1.8)
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Figure 1.1: Higgs potential before (left) and after (right) spontaneously symmetry breaking.

µ2 > 0 −→ v = ⟨ϕ⟩ = 0 , (1.9)

µ2 < 0 −→ v = ⟨ϕ⟩ = ±
√

−µ2

λ
. (1.10)

Consequently, the Higgs scalar field develops its VEV due to its desire to be at the minimum
potential energy. Then, the fermion mass terms, which could not be written in the electroweak
Lagrangian, are obtained through spontaneous symmetry breaking. The fact that the gauge
bosons of the weak interactions (W±, Z bosons) are massive and the photon as a mediator
of electromagnetic interactions is massless, forces SU(2)L ⊗ U(1)Y symmetry to break into
U(1)EM symmetry. Note that the Higgs field does not carry any color charge; and hence, its
non-zero VEV does not break SU(3)C symmetry. In this sense, gluons remain massless after
the electroweak symmetry breaking and SU(3)C forms an exact symmetry.

Since the Higgs field is described as a doublet and complex scalar, it has four degrees
of freedom. After the spontaneous symmetry breaking, three massless Higgs bosons arise
in addition to one massive Higgs boson. These massless Higgs bosons which are called
"Goldstone Bosons" are swallowed by W± and Z bosons and the remaining massive one is
generated as the physical state called the Higgs boson.

As fermions acquire their masses via Yukawa interactions, gauge bosons acquire their
masses through the gauge interactions. In order to assign gauge bosons masses, the kinetic
terms associated with the Higgs field interact in the Lagrangian indicated as follow.

Lkin =
1

2
(DµΦ)

†(DµΦ) (1.11)
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where Φ is given as follows, after it develops VEV.

Φ =

(
0

v + h

)
(1.12)

While v represents the VEV of the neutral Higgs field, h denotes the perturbative effects
around the vacuum expectation value.

1.1.2 Mass Generation of Gauge Bosons

The Dµ in the Equation 1.11 is defined under SU(2)L ⊗ U(1) symmetry as follows

Dµ = ∂µ −
igL
2
W i
µ · σi −

igY
2
Bµ (1.13)

where the covariant derivative for the SU(2) part can be written as

W i
µ · σi = W 1

µ · σ1 +W 2
µ · σ2 +W 3

µ · σ3 =

[
W 3
µ

√
2W+

µ√
2W−

µ −W 3
µ

]
. (1.14)

After expanding (DµΦ)
†(DµΦ) expression, one gets the terms which are arranged in paran-

theses multiplying v2, hv and hh, as denoted in Equation 1.15.

(DµΦ)
†(DµΦ) = v2

(
g2L
2
W−
µ W

µ+ +
g2L
8
W 3
µW

µ3 − gLgY
4

W 3
µB

µ +
g2Y
8
BµB

µ

)

+hv

(
g2L√
2
W−
µ W

µ+ +
g2L
2
√
2
W 3
µW

µ3 − gLgY√
2
W 3
µB

µ +
g2Y
2
√
2
BµB

µ

)

+ hh

(
g2L
2
W−
µ W

µ+ +
g2L
4
W 3
µW

µ3 − gLgY
2

W 3
µB

µ +
g2Y
4
BµB

µ

)
, (1.15)

where W+
µ and W−

µ are defined as, respectively

W+
µ =

1√
2
(W1 − iW2) W−

µ =
1√
2
(W1 + iW2) (1.16)
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It turns out that the terms in the v2 parantheses in Equation 1.15 are the mass terms of weak
gauge bosons. These bosons acquire their masses depending on the magnitude of the coupling
constant g. The first term represents the mass term of W− and W+ bosons. Nevertheless,
the mass of Z boson cannot be obtained from the second, third and the fourth terms since
both W 3

µ and Bµ fields both contribute to the mass of Z boson. Therefore, the mass of Z
boson can be acquired only after diagonalising the second, third and the fourth terms.

1

2

(
W 3
µ Bµ

)( g2L −gLgY

gLgY g2Y

)(
W 3
µ

Bµ

)
=
(

Aµ Zµ

)( a 0

0 b

)(
Aµ

Zµ

)
. (1.17)

Then, Aµ, Zµ,Wµ and Bµ can be obtained as follows

W 3
µ = cos θAµ − sin θZµ Bµ = − sin θAµ + cos θZµ

Zµ = − sin θW 3
µ + cos θBµ Aµ = cos θW 3

µ + sin θBµ , (1.18)

where θ is called the "Weinberg angle" and responsible for the mixing. It is represented in
the following way

sin θ =
gY√
g2Y + g2L

cos θ =
gL√

g2Y + g2L
(1.19)

Then, one can obtain the following expression in which the mass terms of W+,W− and Z

bosons can be easily seen.

(DµΦ)
†(DµΦ) =

1

2
v2
[(

g2L
2
W−
µ W

µ+

)
+ (g2L + g2Y )ZµZ

µ

]
+ ... (1.20)

In Eq. 1.20, the masses of W− and W+ bosons depend only on the constant gL whereas the
mass of Z boson depends on both the constants gL and gY . After the diagonalisation process,
the mass of the field A is obtained to be zero which represents to the massless photon. With
all these physical states of gauge fields, the kinetic part of the Higgs Lagrangian vacuum
takes the following form

g2Lv
2

4
W µ+Wµ− +

1

2

(g2L + g2Y )

4
ZµZµ + 0AµAµ (1.21)
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and the predictions for the tree level physical masses of gauge bosons are

MW =
gLv

2
, MZ =

gv

2
=

MW

cos θW
, MA = 0 , (1.22)

where g =
√
g2L + g2Y and the photon (Aµ) remains massless. The numerical values of W±

and Z boson masses are approximately calculated to be MW± ≈ 78 GeV and MZ ≈ 89 GeV.
When the loop corrections are included, they add to the prediction of tree-level calculation
by roughly 2 GeV, and these estimates achieve to a complete agreement with the observed
masses.

MW = 80.398± 0.025 GeV, MZ = 91.1876± 0.0021 GeV . (1.23)

1.2 Challenges of the Standard Model

Although the SM is consistent with experimental results in almost all predictions, it is still
far from being a complete theory due to numerous unexplained arbitrary parameters and
unexplained phenomena. Some of the problems of the SM are summarized as follows:

Gauge Hierarchy Problem: In the SM, a doublet Higgs field is introduced to gen-
erate masses for weak gauge bosons and fermions. When the Higgs boson mass is calculated
at tree level, its mass is obtained to be around electroweak scale. Besides that, the Higgs
boson mass must remain stable in a theoretical consistent model. However, quantum correc-
tions from each particle that couples directly or indirectly to the Higgs field yield very large
contributions to Higgs boson mass. This is known as "Gauge Hierarchy Problem". This
problem will be analysed in more detail in subsection 1.2.1.

Neutrino Masses and Mixings: Right-handed neutrinos have not been observed
experimentally thus and they are not included in the SM. Therefore, left-handed neutrinos
cannot acquire their masses even after the electroweak symmetry breaking since the mass
term contains both left and right-handed spinors. Even though neutrino masses are predicted
to be much lighter compared to the other fermions, the experimental measurements indicate
that the neutrinos must have mass.

Baryon Asymmetry Problem: The SM cannot explain the dominance of matter
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with respect to anti-matter. There is some convincing evidence that the amounts of matter
and anti-matter should be equal at high energies as the solution of Dirac equation described.
However, as the temperature decreases after the Big Bang, this symmetry is somehow broken.
As a result, we live in a matter dominated universe. The source of this asymmetry can be
explained with the CP violation, which was firstly observed in neutral Kaon meson. However,
the amount of CP violation in the SM is not sufficient to generate the observed baryon
asymmetry in the universe.

Dark Matter: Based on the cosmological observations, the Standard Model can only
explain about 4% of the universe. This observation states that 23% of the energy density
of the universe must consist of dark matter which does not interact via electromagnetic
interactions. In the SM, there is no suitable candidate particle for dark matter, which is
proposed to interact weakly with Standard Model particles.

Family Problem: All observed matter is made up of only the first family (νe, e−,
u, d). However, the existence of two other families (νµ, µ−, c, s) and (ντ , τ−, t, b) has been
proved by experiments. The second and third families are just heavier copies of the first
family and they eventually decay into the first family particles, and do not play any role in
generating the existent matter. Hence, the SM has no a proper explanation to the question
of why the second and third families of quarks and leptons exist in the universe.

Fermion Masses: It seems that Higgs mechanism can precisely explain the fermion
masses. However, the value of the fermion masses is proportional to the Yukawa coupling,
which describes the strength of the interaction of Higgs boson and fermions. Yet these
couplings cannot be determined in the SM and are expressed as free parameters in the
theory.

Gauge Symmetry Problem: The mathematical framework of the SM is a direct
product of three gauge groups SU(3)C ⊗ SU(2)L ⊗ U(1)Y with their different corresponding
arbitrary gauge couplings. However, the SM does not provide any deep explanation to
understand the origin of the SM gauge symmetry. In addition, there is no understanding
for the parity violating chiral feature of electroweak part of the SM. Moreover, since the
hypercharges of fermions under the corresponding gauge group are assigned to obtain the
correct electric charge of each fermion, they are completely arbitrary quantum numbers in
the SM.

Electrical Charge Quantization: The Standard Model has no explanation to the
question of why the electric charges of particles are always quantized as multiples of e/3 to

9



form neutral atoms and stabilize the matter.

Gauge Coupling Unification: According to the Standard Model, gauge couplings
corresponding to three fundamental forces do not unify at any energy scale. However, at high
energies„ only one single symmetry group and the corresponding gauge coupling is proposed,
included in Grand Unified Theories (GUT). Since the SM is a valid theory at low scales, the
corresponding grand unified theory has the SM as a subgroup, and the breaking mechanism
can enlighten the origin of the SM gauge groups. On the other hand, in other extended models
such as supersymmetry, the gauge couplings unify at Grand Unification Scale (MGUT ≈ 1016

GeV) and it provides a strong motivation for supersymmetric (SUSY) GUTs.

1.2.1 Gauge Hierarchy Problem

As summarized briefly above, one of the most significant problems of the SM is known as
the "Gauge Hierarchy Problem". This arises from the contributions to the Higgs boson mass
resulting from quantum corrections, when we take the loop level corrections into account.
Every particle that interacts with the Higgs field generates very large contributions to its
mass. If there is no other accepted theory between the Plank scale and electroweak scale, the
Planck scale can be taken as the cut-off scale (ΛUV ). In this way, radiative corrections to the
Higgs boson mass squared have scale of 1038 GeV2. Those quantum corrections depend on
Yukawa couplings, the self interaction coupling of Higgs boson and gauge boson couplings as
represented in Fig. 1.2. These contributions diverge quadratically depending on the cut-off
scale as indicated in Eq. 1.24.

m2
h = m2

0 +
1

16π2

(
3

4
g21 +

9

4
g22 + 3λh − 12λ2t

)
∧2

UV , (1.24)

where λh, λt, g2, and g1 are the Higgs quartic, top Yukawa, SU(2)L, and hypercharge gauge
couplings, respectively. Here m0 is the bare Higgs mass parameter that appears in the
Lagrangian prior to renormalization, and mh is the renormalized quadratic term which de-
termines the value of the physical Higgs mass. Contributions to Higgs boson mass are much
larger than Higgs boson’s own mass. The amount of required for fine-tuning the Higgs mass
to its measured value and to cancel quantum corrections in SM is temendous. In the SM,
quadratic divergences occur only in the Higgs sector because fermions and bosons have chiral
and gauge symmetries respectively to protect their own masses, and they depend on the
cut-off scale (ΛUV ) logarithmically. However, the Higgs boson mass is not preserved by any
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Figure 1.2: Quantum corrections to Higgs mass after interacting with fermions, with itself
(top) and gauge bosons (bottom) respectively.

symmetry.

As indicated in Eq. 1.24, bosonic and fermionic loops give contributions with different
sign. Therefore, in supersymmetry (SUSY) these contributions can cancel in an elegant way
by defining a fermionic partner for each boson and vice versa as illustrated in Fig. 1.3. In
order to cancel the contributions in Eq. 1.24 resulting from the fermion loop, the coupling of
the fermion loop and the coupling of the corresponding bosonic superpartner must be equal.
In addition to that, the higgsino which is the fermionic superpartner of Higgs boson, counters
the Higgs contribution in Eq. 1.24. In order to cancel this contribution, two Higgs bosons
are required in the theory. As we will discuss further in subsection 2.2.1, two Higgs doublets
must indeed exist in SUSY because of the holomorphy of the superpotential. Therefore, all
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ultraviolet divergences can be naively cancelled in SUSY.

Figure 1.3: Supersymmetry (SUSY) defines a superpartner to each particle to cancel
quadratic quantum corrections to the Higgs mass.

1.3 New Physics Hunter: Extended Summary of the The-

sis

The aim of this thesis is to investigate various aspects of phenomenology of new physics
beyond the Standard Model (SM) in the context of extensions of supersymmetric & non-
supersymmetric realisations. The thesis is organized as follows.

In chapter 2, we introduce the motivation for Minimal Supersymmetric Standard
Model (MSSM) and briefly discuss its field content and interactions. We conclude with the
shortcomings of MSSM which lead us to explore the models discussed in chapter 3, chapter
4 and chapter 5. The detailed analysis on the mass spectrum and Higgs boson decays is
presented in the supersymmetric standard model extended by U(1)B−L symmetry (BLSSM)
[30, 31].

In chapter 3, we study the low scale predictions of the supersymmetric standard
model extended by U(1)B−L × U(1)R symmetry, obtained from SO(10) breaking via a left-
right supersymmetric model, imposing universal boundary conditions [1]. Two singlet Higgs
fields are responsible for the radiative U(1)B−L × U(1)R symmetry breaking, and a singlet
fermion S is introduced to generate neutrino masses through an inverse seesaw mechanism.
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The lightest neutralino or sneutrino emerge as dark matter candidates, with different low
scale implications. We find that the composition of the neutralino lightest supersymmetric
particle (LSP) changes considerably depending on the neutralino LSP mass, from roughly
half U(1)R bino, half minimal supersymmetric model (MSSM) bino, to a singlet higgsino,
or completely dominated by the MSSM higgsino. The sneutrino LSP is statistically much
less likely, and when it occurs it is a 50-50 mixture of right-handed sneutrino and the scalar
S̃. Most of the solutions consistent with the relic density constraint survive the XENON 1T
exclusion curve for both LSP cases. We compare the two scenarios, investigate parameter
space points and find consistency with the muon anomalous magnetic moment only at the
edge of a 2σ deviation from the measured value. However, we find that the sneutrino LSP
solutions could be ruled out completely by the strict reinforcement of the recent Z ′ mass
bounds. We finally discuss collider prospects for testing the model.

In chapter 4, we perform a comprehensive analysis of the secluded UMSSM model,
consistent with present experimental constraints [2]. We find that in this model the addi-
tional Z ′ gauge boson can be leptophobic without resorting to gauge kinetic mixing and,
consequently, also d-quark-phobic, thus lowering the LHC bounds on its mass. The model
can accommodate very light singlinos as DM candidates, consistent with present day cos-
mological and collider constraints. Light charginos and neutralinos are responsible for muon
anomalous magnetic predictions within 1σ of the measured experimental value. Finally, we
look at the possibility that a lighter Z ′, expected to decay mainly into chargino pairs and
followed by the decay into lepton pairs, could be observed at 27 TeV.

In chapter 5, we test E6 realisations of a generic U(1)′ extended Minimal Supersym-
metric Standard Model (UMSSM), parametrised in terms of the mixing angle pertaining to
the new U(1)′ sector, θE6 , against all currently available data, from space to ground ex-
periments, from low to high energies [3]. We find that experimental constraints are very
restrictive and indicate that large gauge kinetic mixing and θE6 ≈ −π/3 are required within
this theoretical construct to achieve compliance with current data. The consequences are
twofold. On the one hand, large gauge kinetic mixing implies that the Z ′ boson emerging
from the breaking of the additional U(1)′ symmetry is rather wide since it decays mainly into
WW pairs. On the other hand, the preferred θE6 value calls for a rather specific E6 breaking
pattern different from those commonly studied. We finally delineate potential signatures of
the emerging UMSSM scenario in both Large Hadron Collider (LHC) and in Dark Matter
(DM) experiments.
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In chapter 6, we study mass bounds of the WR gauge boson in generic left-right
symmetric models [4]. Assuming that the gauge bosons couple universally to quarks and
leptons, we allow different gauge couplings gR ̸= gL and mass mixing, V L

CKM ̸= V R
CKM in the

left and right sectors. Imposing constraints from collider experiments and K0, Bd, Bs physics,
we investigate scenarios where WR is lighter, or heavier than the right handed neutrino νR.
In these scenarios, WR mass bounds can be considerably relaxed, while ZR mass bounds are
much more stringent. In the case where MWR

≤ MνR , the experimental constraints come
from WR → tb and WR → jj channels, while if MWR

≥ MνR , the dominant constraints
come from WR → ℓℓjj. The observed (expected) limits in the two-dimensional (MWR

, MνR)
mass plane excluded at 95% confidence level extend to approximately MWR

= 3.1 (3.3) TeV
in the ee channel and 3.3 (3.4) TeV in the (µµ) channel, for a large range of right-handed
neutrino masses up to MνR= 2.1 (2.1) TeV in the ee channel and 2.6 (2.5) in the (µµ) channel,
representing a significant relaxation of the mass bounds.

In chapter 7, we perform a consistent analysis of the alternative left-right symmetric
model emerging from E6 grand unification [5]. We include a large set of theoretical and
experimental constraints, with a particular emphasis on dark matter observables and collider
signals. We show that the exotic neutrino inherent to this class of models, the scotino, is
a viable candidate for dark matter satisfying relic density and direct detection constraints.
This has strong implications on the scotino mass restricting it to lie in a narrow window, as
well as on the spectrum of Higgs bosons, rendering it predictable, with a few light scalar,
pseudoscalar and charged states. Moreover, we also show that the extra charged W ′ gauge
boson can be light, and investigate the most promising signals at the future high-luminosity
upgrade of the LHC. Our findings show that the most optimistic cosmologically-favoured
scenarios should be observable at 5σ, whilst others could leave visible hints provided the
background is under good control at the systematical level.

In chapter 8, we conclud the predictions of supersymmetric & non-supersymmetric
realisations, and discuss briefly directions for future research.
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Chapter 2

Minimal Supersymmetric Extention of

the Standard Model

In this section, we describe the basics of the Minimal Supersymmetric Standard Model
(MSSM) without going into all the details. Detailed reviews and books can be found in
the literature [32–48].

2.1 Motivation

The "Gauge Hierarchy Problem" of the Standard Model is the most important problem re-
garding the Higgs mass stabilization. Supersymmetry (SUSY) suggests an elegant solution
for Gauge Hierarchy Problem by relating bosonic and fermionic degrees of freedom of par-
ticles. In Supersymmetry a cancellation of the quadratic corrections to the Higgs mass is
obtained by introducing a boson partner for each fermion and a fermion partner for each
boson, which are called superpartners. For this purpose, SUSY requires a transformation,
so-called a supersymmetric transformation, which turns a bosonic state into a fermionic state
and vice versa. Therefore, SUSY can be simply described as a symmetry that provides a con-
nection between fermions and bosons. The idea of a symmetry between bosons and fermions
has been introduced in two-dimensional string theory. Later, in 1974, Wess and Zumino
constructed the first four dimensional supersymmetric field theory. SUSY generators repre-
sented by Q̂ are constructed in such a way that, when they act upon a bosonic state, they
transform it to a fermionic one and vice versa.

15



Q̂|Fermion⟩ = |Boson⟩, Q̂|Boson⟩ = |Fermion⟩ . (2.1)

Since SUSY operators Q̂ alter only the spin of the particles by 1/2 unit, all quantum numbers
of the particles and superpartners are exactly the same except for their spin. Interestingly,
two successive SUSY transformations end with the initial state, but they shift the field in
spacetime. In this context, SUSY is the only known symmetry that also relates the internal
symmetries to the spacetime symmetries.

2.2 SUSY Formalism

In the Wess-Zumino model, the SUSY algebra is not closed off-shell. As we stated before,
SUSY requires the number of bosonic and fermionic degrees of freedom to be equal in su-
permultiplets. As a Weyl spinor has two complex components, it contains four degree of
freedom. However, in the case of on-shell fields, the equation of motion imposes two con-
straints which reduce the number of degree of freedom to two. Since a complex scalar field
has two degrees of freedom, the number of fermionic and bosonic degrees of freedom match
on-shell. However, off-shell fields do not have to satisfy the equation of motion and so the
number of bosonic and fermionic degrees of freedom do not match. Therefore, SUSY algebra
only closes on-shell when there is a single complex scalar field and one Weyl spinor in the
theory.

SUSY can be rendered a symmetry also in the off-shell cases by adding scalar an
"auxiliary field" denoted by F . Such a field provides two more bosonic off-shell degree of
freedom. On the other hand, it does not have a kinetic term. F has to be zero on-shell in a
model which is invariant under SUSY transformations. The degrees of freedom of the fields
are listed in Table 2.1.

On-shell Off-shell
Φ 2 2
Ψ 2 4
F 0 2

Table 2.1: Number of bosonic and fermionic degrees of freedom in the chiral Lagrangian.

In order to get the field F to have no on-shell degrees of freedom, the equation of
motion for this field is written as F ∗ = F = 0. Since the simplest real term depending on F
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and F ∗ is FF ∗, the Lagrangian takes the form as represented in Eq 2.2

L = ∂µΦ
∗∂µΦ +Ψ†iσµ∂µΨ .+ FF ∗ (2.2)

Despite of being a scalar field, dimension of field F is 2, that is, [F ] = 2.

[Φ] = 1 [Ψ] = 3/2 [F ] = 2 (2.3)

After adding the F field in our theory, the variation of each field can be represented as
follows:

δΦ = ϵΨ (2.4)

δΨ = −iσµ(iσ2ϵ∗)∂µΦ + Fϵ (2.5)

δF = −iϵ†σµ∂µΨ . (2.6)

In order to have a interacting supersymmetric theory, one also has to deal with supersym-
metric gauge theories. If we consider U(1) free gauge theory, the superpartner of the photon
field Aµ will be a left-chiral Weyl spinor denoted by λ and called "photino". Therefore,
the summation of the kinetic terms for the photon and the photino constitutes the gauge
Lagrangian represented in Eq. 2.7

L = −1

4
FµνF

µν + λ†iσµ∂µλ (2.7)

where transformations of the fields are described as follows

δAµ = ϵ†σµλ+ λ†σµϵ (2.8)

δλ =
i

2
Fµνσ

µσνϵ (2.9)
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δλ† = − i

2
Fµνϵ

†σνσµ (2.10)

However, here again the algebra does not close off-shell. In case of on-shell, Aµ has two
degrees of freedom as two transverse polarization states and the photino, represented as a
left-chiral Weyl fermion, has two degrees of freedom on-shell. Nevertheless, when off-shell,
a vector field Aµ has three degrees of freedom whereas a left-chiral Weyl fermion has four.
Therefore, one has to add one extra bosonic degree of freedom in the form of a real scalar
field which is conventionally denoted by D as indicated in Table 2.2.

On-shell Off-shell
A 2 3
λ 2 4
D 0 1

Table 2.2: Number of bosonic and fermionic degrees of freedom in the U(1) gauge Lagrangian.

In order to guarantee that the field D has no on-shell degrees of freedom, the equation
of motion for this field is written as D = 0. Like the auxiliary field F , dimension of the D
field is also 2. Therefore, following term is added to the Lagrangian.

Laux =
1

2
D2 . (2.11)

L = Lgauge + Laux = −1

4
FµνF

µν + λ†iσµ∂µλ+
1

2
D2 . (2.12)

The variations of the fields after adding the D real scalar field are defined as follows:

δAµ = ϵ†σµλ+ λ†σµϵ . (2.13)

δλ =
i

2
Fµνσ

µσνϵ+Dϵ . (2.14)

δD = −iϵ†σµ∂µλ+ i(∂µλ)
†σµϵ . (2.15)

In the light of success of the special relativity, any kind of relativistic model of elementary
particles should be constructed in a way that guarantees the Lorentz invariance. In this sense,
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the Lagrangian and relevant operators must be consistent with the relativistic transformations
of the fields. In the SM, the internal symmetries and Lorentz symmetry are not connected
to each other. On the other hand, the connection between SUSY and Lorentz symmetry can
be understood within the graded Lie algebra of Poincare group, in which the Poincare group
generators are extended with anti-commuting operators.

The symmetry group of four-dimensional spacetime, SL(2, C) is isomorphic to SU(2)⊗
SU(2) which transforms differently under Lorentz transformations. Hence the spinor repre-
sentation of SL(2, C) should be formed by two Weyl spinors, one of which is indicated with
dotted indices, while the other with the undotted ones. If one extends the Poincare algebra
with the generators that transform these dotted and undotted spinors, the commutation and
anti-commutation rules can be obtained as

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 , (2.16)

{Qi
α, Q

j

β̇} = 2δij(σµ)αβ̇Pµ , (2.17)

[Pµ, Q
i
α] = [Pµ, Q

i

α̇] = 0 , (2.18)

[Qi
α,Mµν ] =

1

2
(σµν)βαQ

i
β , (2.19)

[Q
i

α̇,Mµν ] = −1

2
Qi
β̇
(σµν)β̇α̇ , (2.20)

where Pµ represent the generators of translations and Mµν stand for the generators of Lorentz
transformations while the spinorial indices are α, α̇, β, β̇ = 1, 2, and the space-time indices
are denoted by µ, ν = 0, .., 3 and i, j = 1, 2, .., N . If we apply the commutation rules given in
Eqs.(2.19 and 2.20) for M1,2 = J3, it is seen that the generators Q and Q respectively raise
and lower the spin by 1/2 when they act on to the particle state, and this is basically the
definition of the SUSY transformations.

This extended algebra which provides a useful opportunity to combine statistics of
particles of integer and half-integer spin by enlarging space-time symmetries is called "Super-
Poincare Algebra". In this thesis, we consider only unextended N = 1 supersymmetry
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which corresponds to one spinor of charge Qα and its conjugate Qα̇ in order to deal with
minimal particle content and to avoid the renormalizability problems in the extended SUSY
models.

Despite of the fact that left handed and right handed fermions are indicated by dou-
blets and singlets, respectively in SM, particles in SUSY can be represented in irreducible par-
ticle states, so called “supermultiplets" , where each supermultiplet contains both fermionic
and bosonic states with the condition that the fermionic and bosonic degrees of freedom of
each supermultiplet must be equal to each other.

nF = nB , (2.21)

where the fermionic and bosonic degrees of freedom in the supermultiplet are represented as
nF and nB, respectively. In order to construct the SUSY correctly, there are two types of
supermultiplets where each fundamental particle of SM exists with its corresponding super-
partner.

Chiral (Matter) Supermultiplets : A chiral supermultiplet consists of a two com-
ponent chiral Weyl fermion and its corresponding superpartner as a complex scalar field.
Since a two component spinor has two degrees of freedom on-shell, its corresponding super-
partner must be a complex scalar field to satisfy the equality of number of degrees of freedom
in supermultiplets. Chiral supermultiplets classify fermions whose left-handed parts trans-
form differently than the right-handed parts under SU(2)L⊗U(1)Y , as well as Higgs bosons
and their fermionic superpartners, the higgsinos. Since there must be one chirality in the
SUSY, instead of introducing right handed particles, conjugates of the right handed particles
and corresponding right handed superpartners are included in supermultiplets.

Gauge (Vector) Supermultiplets : Vector bosons (spin 1) of SM and their fermionic
(spin 1/2) superpartners are combined in one supermultiplet so-called “gauge (vector) super-
multiplets". In order to conserve the equality of number of fermionic and bosonic degrees
of freedom, the superpartner of the massless spin 1 vector boson must be a massless two
component spin 1/2 Weyl spinor.
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2.2.1 Field Content

Since MSSM shares the same gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y with the SM, it is the
simplest supersymmetric extension of the SM. Each gauge field and each fermion is replaced
by a vector supermultiplet and a chiral supermultiplet, respectively. Therefore, MSSM has
a minimal number of superpartners and their interactions. Since there is a corresponding
superpartner for each SM particle, MSSM doubles the number of particles of the SM. Also,
while the SM has one Higgs doublet, for the reason explained below, there is an extra doublet
Higgs field in MSSM as demonstrated in Eq. 2.22. In the SM while d-type quark masses
are gained by complex scalar Higgs field itself, the charge conjugate of the Higgs field is
introduced to acquire masses to the u-type quarks. However, the holomorphic feature of
the superpotential strictly prohibits any field and complex conjugate of that field to exist in
the superpotential simultaneously. Since introducing complex conjugate of Higgs field is not
allowed in superpotential, one Higgs doublet is not enough to give mass to all particles as
it is in SM. Because of the fact that Yukawa interaction terms can be obtained only from
superpotential, a second doublet Higgs field is required in the MSSM as represented in Eq.
2.22. In order to conserve hypercharge, the second Higgs doublet (Hd) is introduced by
assigning it -1 hypercharge (YHu = +1 and YHd

= −1).

Hu =

(
H+
u

H0
u

)
Hd =

(
H0
d

H−
d

)
(2.22)

The superpotential for MSSM is now written as

Ŵ = µĤu · Ĥd + huQ̂ · Ĥuû
c
R + hdQ̂ · Ĥdd̂

c
R + heL̂ · Ĥdê

c
R , (2.23)

where Hu, Hd, Q, L, ucR, dcR, ecR denote the superfields and hu, hd, he stand for dimensionless
Yukawa couplings. The dot product in the superpotential can be expressed using the anti-
symmetric parameter ϵαβ such as µĤu · Ĥd = µϵαβ(Hu)α(Hd)β. Instead of the antisymmetric
parameter ϵαβ, µĤu · Ĥd = µĤT

u (iσ2)Ĥd can be used as an alternative notation.

2.2.2 SUSY Breaking

Supercharges commute with the momentum operator as indicated in Eq. 2.24. So, when
supercharges act on a state, the eigenvalue of P µPµ remains unchanged as in the follow-
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ing.

[Pµ, Qα] = 0 , (2.24)

P µPµ|Ψ⟩ = m2|Ψ⟩ (2.25)

Qα|Ψ⟩ = m2|Ψ⟩ . (2.26)

Therefore, all the particles in the same supermultiplet have the same mass. However, if the
bosonic partner of electron, so the-called selectron, was as light as the electron, this would
mean that we would have seen it by now. Since selectrons are bosons, they are not restricted
by Pauli-Exclusion Principle. Therefore, all selectron could be located in the ground state
and this would be totally disaster. Fortunately, this kind of particle degeneracy does not
exist in nature.

SUSY can be broken by adding some terms to the Lagrangian which are not invariant
under SUSY transformations. These SUSY breaking interactions cancel divergences, property
which is the main motivation of SUSY. Therefore, only softly-broken terms are included into
the Lagrangian as in Eq. 2.27 in order to maintain main motivation of SUSY.

L���SUSY = −1

2
(M1B̃B̃ +M2W̃W̃ +M3g̃g̃) + h.c.

−m2
Hu
H†
uHu −m2

Hd
H†
dHd − (bHuHd + h.c.)

−m2
Qq̃

†q̃ −m2
Ll̃

†l̃ −m2
uũ

†
RũR −m2

dd̃
†
Rd̃R −m2

eẽ
†
RẽR

− (AuũRq̃Hu + Add̃Rq̃Hd + AeẽR l̃Hd) . (2.27)

In order to break supersymmetry, spontaneous symmetry breaking (SSB) can also be used as
discussed in the SM. In case of SSB, charges that generate the symmetry do not annihilate
the ground state.

Q|0⟩ ≠ 0 . (2.28)

In SUSY, supercharges Q1 and Q2 do not annihilate the ground state. Then, a non-zero
VEV of the Hamiltonian is obtained.

⟨0|H|0⟩ > 0 . (2.29)
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In free space, the kinetic energy part of the Hamiltonian can be taken as zero which leaves
only the potential energy part. Since the scalar field is the only field that has non-zero VEV,
we can construct

⟨0|V (ϕ)|0⟩ > 0 (2.30)

The auxiliary fields yield the potential energy as in the following.

V (ϕi) = FiF
†
i +

1

2
D2 , (2.31)

where Fi = ∂W
∂ϕi

and D = qiϕ
†
iϕi − ξ for Abelian gauge theories. In this case, a term ξD,

so-called Fayet-Illiopoulos term, is included into the Lagrangian. This term is important
for D-type SUSY breaking. However, gauge invariance prevents the existence of a Fayet-
Illiopoulos term for non-Abelian theories and a DaDa term is included to the Lagrangian,
where Da = gϕ†

iT
aϕi.

2.2.3 R-parity

In addition to conservation of hypercharge, baryon and lepton number are also conserved in
Eq. 2.23. However, it is possible to add some gauge invariant extra terms to superpotential
as represented in Eq. 2.32. Even though these terms conserve hypercharge, and they are
not restricted by gauge invariance and renormalization, the extra terms in Eq. 2.32 violate
baryon and lepton number conservation.

Ŵ ′ = µ′L̂ · Ĥu + λ1L̂ · L̂êcR + λ2L̂ · Q̂d̂cR + λ3û
c
Rd̂

c
Rd̂

c
R , (2.32)

where the lepton numbers are L = +1 for L̂i , L = −1 for êcR and L = 0 for all other super-
multiplets and B = +1/3 for Q̂i, B = −1/3 for ûcR, d̂cR and B = 0 for all others. Therefore,
the first three terms in Eq. 2.32 violate conservation of lepton number by 1 unit and the last
term in Eq. 2.32 violates the conservation of baryon number by 1 unit. However, baryon and
lepton number violating processes have not been observed in experiments. Besides, if these
violating terms are allowed, then the proton, which constitutes the matter, decays rapidly.
Proton decay through s̃∗R interaction is represented in Fig. 2.1. Therefore, a new symmetry
so-called “R-parity" is introduced to prohibit rapid proton decays and to make it a stable
particle. R-parity is defined by introducing opposite R-parity numbers to the scalar and
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fermion components of a chiral superfield as follows:

PR = (−1)3B+L+2S , (2.33)

where B, S and L denote baryon number, spin and lepton number, respectively.

Figure 2.1: Proton decays via R-parity violating s̃∗R interactions.

R-parity introduces opposite R-parity numbers to the scalar and fermion components
of a chiral superfield due to the spin dependence as (-1)2S. Considering the dependence on
the baryon and lepton numbers, all SM particles and Higgs bosons have PR = +1 while all
superpartners have PR = −1. Since this new symmetry is not conserved in Eq 2.32, these R-
parity violating interactions interactions become strictly prohibited and the proton keeps its
stability safely. R-parity brings two significant consequences that I remark upon below

• Since the initial state in the LHC experiments involve only the SM particles (PR =

+1), the conservation of R-parity allows only the processes with final states including an
even number of superpartners (PR = −1).

• In the decay chain of a superpartner, the lightest supersymmetric particle (LSP)
which cannot decay into a SM particle in the final state due to the conservation of R-parity
must be a stable particle. Therefore, at least one sparticle must exist as LSP in the final
state. If the LSP is neutral, it could be evaluated as a candidate for non-baryonic dark matter
candidate.

2.3 The Shortcomings of MSSM

Since sparticles are not observed in experiments at the same energy level as their correspond-
ing SM particles, SUSY indeed is a broken symmetry. In order to cancel one loop radiative
corrections from the top quark, the corresponding top squark mass should be around 1 TeV.
Therefore, the soft SUSY breaking scale must be above the electroweak scale. Although this
rescaling creates gauge hierarchy problem one more time, the required fine-tuning is not so
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much. In this way, MSSM reduces gauge hierarchy problem of SM to the “little hierarchy
problem".

One of the most important problems of the MSSM is the µ problem. The bi-linear
mixing of the MSSM Higgs doublets are parmetrized by the µ-term in the superpotential,
and this term is crucial in the electroweak symmetry breaking (EWSB). In this context, the
EWSB condition can determine the value of µ-term up to its sign. Despite its connection to
the EWSB, the µ-term can be at any scale, since it preserves SUSY. This is called µ-problem
in MSSM. More explicitly, the Z boson mass can be written as a function of the SUSY scale
MSSM parameters defined at SUSY scale beyond tree level as seen in Eq. 2.34.

M2
Z

2
=
MH2

d
+
∑

d−(MH2
u
+
∑

u) tan β
2

tan β2 − 1
− µ2 , (2.34)

where
∑

u,d are loop corrections at the SUSY scale. The fine tuning measure can be defined
as in Eq. 2.35.

FT = ∆EW = maxi

⏐⏐⏐⏐ Ci

M2
Z/2

⏐⏐⏐⏐ , (2.35)

where the coefficients Ci are defined as

CMHd
=

M2
Hd

tan2 β − 1
, C∑

d
=

max(
∑

d)

tan2 β − 1

CMHu
=
M2

Hu
tan2 β

tan2 β − 1
, C∑

u
=

−max(
∑

u) tan
2 β

tan2 β − 1

Cµ = −µ2 . (2.36)

In other words, the fine tuning measures the maximum contribution relative to the squared
Z-mass/2 [49, 50]. If one of these single contributions is large, the other contributions have
to be “fine-tuned" to compensate.

Electroweak breaking in the MSSM requires substantial fine-tuning, mainly due to the
smallness of the tree-level Higgs quartic coupling. Hence the fine tuning is efficiently reduced
in supersymmetric models with larger tree-level Higgs quartic coupling, and this happens
naturally when the breaking of SUSY occurs at a low scale. [51–57].
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Chapter 3

Supersymmetric U(1)B−L× U(1)R model

(BLRSSM)

3.1 Introduction

The discovery of the SM-like Higgs boson, while completing the particle content of the Stan-
dard Model (SM), has not slowed down the search for new physics. As it stands, the SM may
be viable over a certain energy range, but is incomplete, since it fails to explain properties
such as the hierarchy problem, neutrino masses, cosmological inflation, and dark matter. As
well, a Higgs mass of 125 GeV presents a problem for the SM (e.g., electroweak vacuum
instability), and for most of its extensions. Thus constructing and studying viable alterna-
tives, models which aim to solve some of the outstanding problems in SM, are both justified
and necessary. Out of these, supersymmetry presents a compelling solution to the hierarchy
problem and a clear one for dark matter. However, in its minimal incarnation, the mini-
mal supersymmetric model (MSSM), it shares some of its outstanding problems with the
SM.

Some of these issues may be resolved in models with extended gauge groups. In these
models, additional D-term contributions to the Higgs mass matrices weaken considerably
MSSM mass limits [58–60]. Depending on the models studied, these models can also resolve
additional problems of MSSM. For instance, models with left-right symmetry [61] can yield
neutrino masses via the seesaw mechanism [62–64].

In [65], an extended supersymmetric model based on SU(3)C × SU(2)L × U(1)R ×
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U(1)B−L was proposed. The model can be embedded in SO(10) SUSY-GUT, much like the
left-right supersymmetric model, and generate a new seesaw mechanism for neutrino masses.
The factor U(1)R can be thought off as remnant of a more complete SU(2)R. Unlike the
left-right supersymmetric model, which requires Higgs triplet representations with vacuum
expectation values (VEV) vR ∼ 1015 GeV for obtaining neutrino masses and gauge unifi-
cation, the symmetry in this model can be broken by singlet Higgs bosons (thought of as
remnants of a doublet representation in left-right models), with VEVs in the TeV range,
while still allowing for gauge coupling unification. In [65], the smallness of neutrino masses
was explained as based on an inverse seesaw mechanism. The general features of the TeV
scale soft-supersymmetry breaking parameters were explored in [66], outlining conditions for
models with intermediate scales obtained from breaking SO(10). The Higgs sector of the
model was further explored, showing that a larger mass than that predicted by MSSM can
be obtained. The parameter space was further explored in [67], where benchmarks, branching
ratios, as well as lepton violation constraints were analyzed.

In this work, we concentrate on investigating, discriminating, and restricting the pa-
rameter space of the model using dark matter studies. We include up-to-date constraints on
the spectrum coming from the Higgs signal strengths and mass data, and including LHC re-
strictions on squark and gluino masses, constraints on flavor parameters from the B sector, as
well as recent lower limits on the Z ′ mass. Assuming universal scalar and gaugino masses, we
show that the lightest supersymmetric particle (LSP) can be the sneutrino (which is different
from the usual in this scenario, being a mixture of the right sneutrino and a gauge singlet
fermion introduced to generate the inverse seesaw mechanism); or the lightest neutralino
(which is favored to be a mixture of the two U(1) binos). Relic density and indirect dark
matter detection severely restrict the parameter space, as indeed does the recent limit on
the Z ′ mass [6]. Within the parameter space allowed by dark matter limits, we analyze the
consequences on sparticle spectra, the neutral Higgs sector and on the anomalous magnetic
moment of the muon, which shows more than 3 σ [68] discrepancy with the SM prediction.
Finally we investigate the possibilities of testing the model at the LHC.

Our work is organized as follows. We provide a brief description of the model in Sec.
6.2, capitalizing on more complete descriptions which have appeared previously. In Sec. 7.3
we describe in detail the parameters of the model and constraints imposed on them. Dark
matter phenomenology is explored in Sec. 3.4, for both neutralino LSP 3.4.1 and sneutrino
LSP 3.4.2. We then look at the consequences of our findings and compare the two scenarios
in Sec. 3.5, for the sparticle spectrum, the Higgs sector 3.5.1 and the anomalous magnetic
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moment of the muon 3.5.2, and show that imposing the Z ′ strict mass limits basically rules
out the sneutrino DM solutions in 3.5.3. We discuss possibilities for detection in Sec. 7.6.
We leave some relevant formulas for the Appendix.

3.2 Model Description

In this section, we describe the supersymmetric model under investigation briefly. This model,
based on SU(3)c × SU(2)L × U(1)R × U(1)B−L (thereafter referred to as the BLRSSM) was
first introduced in [65] and further studied in [66, 67, 69]. The model emerges from breaking
of supersymmetric SO(10) to the SM through the following intermediary steps,

SO(10) → SU(3)C × SU(2)L × SU(2)R × U(1)B−L → SU(3)C × SU(2)L × U(1)R × U(1)B−L

→ SU(3)C × SU(2)L × U(1)Y .

The advantages of this model are

• It is obtained by breaking of SO(10) through a left-right symmetric model, thus inher-
iting some of its attractive features [61, 70];

• It is able to explain neutrino masses by the inverse seesaw mechanism [65];

• It preserves gauge coupling unification of the MSSM, even when the breaking scale in
the last step is of the order of the electroweak scale [66];

• It resolves the MSSM Higgs mass problem by yielding larger Higgs masses through
additional D-terms in the soft-breaking potential, without resorting to heavy particles
[66];

• It could yield signals differentiating it from MSSM, which may lie in different regions
of SUSY parameter space;

• It could provide different dark matter candidates and phenomenology, which in turn
informs the study of direct and indirect searches.

The particle content of the model contains, in addition to the SM particles:

1. In the fermionic/matter sector, an additional (right-handed) neutrino N c
i , required

for anomaly cancellation, and an additional singlet fermion S, needed for generating
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neutrino masses. Both these fermions come in 3 families and are accompanied by their
scalar partners;

2. In the bosonic/Higgs sector, two new Higgs fields, XR and XR, remnants of SU(2)R
doublets, needed to break U(1)R × U(1)B−L → U(1)Y , and their fermionic partners;

3. In the gauge sector, an additional neutral gauge field, Z ′, which emerges from the
mixing of the neutral gauge fields of SU(2)L, U(1)R and U(1)B−L, (W 0, BR, BB−L),
and its fermionic partner.

In a sense, the model described here is minimal: however it requires an extra Z2 matter
parity to avoid breaking of R-parity [67].

The superpotential in this model is described by

W = µHuHd + Y ij
u QiHuu

c
j − Y ij

d QiHdd
c
j − Y ij

e LiHde
c
j

+ Y ij
ν LiHuN

c
i + Y ij

s N
c
iXRS − µRXRXR + µSSS , (3.1)

where the first line of Eq.(4.1) contains the usual terms of the MSSM, while the second line
includes the additional interactions from the right-handed neutrino N c

i and the singlet Higgs
fields XR, XR with -1/2 and +1/2 B − L, and +1/2 and -1/2 R charges, respectively. The
first term of the second line in superpotential describes the Yukawa interactions between
neutrinos, and Y ij

ν is the Yukawa coupling associated with these interactions. In a similar
manner, Y ij

s represents the Yukawa coupling among N c
i , XR and S. Moreover, µR is similar

to µ′ term of the B−L extension of supersymmetric model (BLSSM) and stands for bilinear
mixing between XR and XR fields. Note that there is also a µS term to generate non-zero
neutrino masses with inverse seesaw mechanism, and as customary, it is restricted to have a
low value, as it cannot give important contributions to any other sector except for neutrinos.
Contrary to BLSSM [31, 71, 72], where neutrinos have Majorana mass terms, N c

i fields
interact with XR and S through Y ij

s N
c
iXRS term, and lead to SM-singlet pseudo-Dirac mass

eigenstates. Besides, the interaction of the SU(2)L singlet Higgs fields XR, S and N c
i yield

a significant contribution to the masses of the extra Higgs bosons. Implementing the inverse
seesaw mechanism into model allows Y ij

ν and Y ij
s to be at the order of unity. Hence, the

contribution from the right-handed neutrino sector to the Higgs boson cannot be neglected
and yields a different low scale phenomenology from MSSM and BLSSM with inverse seesaw
mechanism [73–75].
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The soft-breaking Lagrangian terms in the model are

−LSB,W = −Bµ(H
0
uH

0
d −H−

d H
+
u )−BµRXRXR + Au(ũ

⋆
R,iũL,jH

0
u − ũ⋆R,id̃L,jH

+
u )

+ Ad(d̃
⋆
R,id̃L,jH

0
d − d̃⋆R,iũL,jH

−
d ) + Ae(ẽ

⋆
R,iẽL,jH

0
d − ẽ⋆R,iν̃L,jH

−
d )

+ Aν(ν̃
⋆
R,iν̃L,jH

0
u − ẽ⋆R,iν̃L,jH

−
u ) + As,ijXRν̃R,iS̃ + h.c. ,
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(|H0

d |2 + |H−
d |

2) +m2
Hu

(|H0
u|2 + |H+

u |2)

+ m2
q,ij(d̃

⋆
L,id̃L,j + ũ⋆L,iũL,j) +m2

d,ij d̃
⋆
R,id̃R,j +m2

u,ijũ
⋆
R,iũR,j

+ m2
l,ij(ẽ

⋆
L,iẽL,j + ν̃⋆L,iν̃L,j) +m2

e,ij ẽ
⋆
R,iẽR,j +m2

ν,ij ν̃
⋆
R,iν̃R,j +m2

s,ijS̃
⋆
i S̃j

−LSB,λ =
1

2

(
M1λ

2
B +M2λ

2
W +M3λ

2
g + 2MBR

λBλR + h.c.
)
, (3.2)

which contain triple scalar interactions, scalar masses and masses for the gauginos of all
gauge groups, denoted by λ’s.

The U(1)R × U(1)B−L symmetry is broken spontaneously to U(1)Y by the vacuum
expectation values (VEVs) of XR and XR

⟨XR⟩ =
vXR√
2
, ⟨XR⟩ =

vXR√
2
, (3.3)

while SU(2)L×U(1)Y is broken further to U(1)EM by the VEVs of the Higgs doublets

⟨H0
d⟩ =

vd√
2
, ⟨H0

u⟩ =
vu√
2
. (3.4)

We denote v2R = v2XR
+ v2XR

and tan βR =
vXR

vXR

, in analogy with v2 = v2d + v2u, tan β =
vu
vd

.

The spectrum for this model, including particle masses, neutrino seesaw, mixing of gauge
bosons and the neutralino sector has been discussed before [69], and we do not repeat it here.
In what follows we concentrate on scanning the model parameters first by imposing Higgs
sector, particle masses and other low energy restrictions, and then looking for dark matter
candidates and resolution of the anomalous magnetic moment of the muon, thus restricting
the parameter space to region where these conditions are satisfied.

3.3 Scanning Procedure and Experimental Constraints

We proceed to analyze the model by scanning the fundamental parameter space of BLRSSM.
We use SPheno 3.3.3 package [76, 77] obtained from the model implementation in Sarah
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Parameter Scanned range Parameter Scanned range

m0 [0., 3.] TeV vR [6.5, 20.] TeV

M1/2 [0., 3.] TeV diag(Y ij
ν ) [0.001, 0.99]

A0/m0 [−3., 3.] diag(Y ij
s ) [0.001, 0.99]

tan β [0., 60.] sign of µ positive

tan βR [1., 1.2] sign of µR positive or negative

Table 3.1: Scanned parameter space.

4.6.0 [78, 79]. This package employs renormalization group equations (RGEs), modified by
the inverse seesaw mechanism to evolve Yukawa and gauge couplings from MGUT to the weak
scale, where MGUT is determined by the requirement of gauge coupling unification. We do
not strictly enforce the solutions to unify at MGUT, since a few percent deviation is allowed
due to unknown GUT-scale threshold corrections [80]. MGUT is thus dynamically determined
by the requirement of gauge unification, that is gL = gR = gB−L ≈ g3, with subindices denot-
ing the gauge couplings associated with SU(2)L, SU(2)R, U(1)B−L and SU(3)C respectively.
With boundary conditions determined at MGUT, all the soft supersymmetry breaking (SSB)
parameters along with the gauge and Yukawa couplings are evolved to the weak scale.

We performed random scans over the parameter space, as illustrated in Table 3.1,
imposing universal boundary conditions for scalar and gaugino masses. We comment briefly
first on the parameters chosen, and then on the constraints included. Here m0 corresponds
the mass terms for all scalars, and M1/2 represents the mass terms for all gauginos, including
the ones associated with the U(1)B−L and U(1)R gauge groups. In setting the ranges for the
free parameters, we scan scalar and gaugino SSB mass terms between 0–3 TeV, regions which
yield sparticle masses at the low scale, especially the LSP.

Here A0 is the trilinear scalar interaction coupling coefficient, and we adjusted its range
to avoid charge and/or color breaking minima, which translates into |A0| ≲ 3m0 [81, 82].
Also, tan β is the ratio of vacuum expectation values of the MSSM Higgs doublets vu/vd,
while tan βR which denotes the ratio of vacuum expectation values of vXR

/vXR
, is also free

parameter in this model. Practically however, tan βR is required to be close to 1, in order to
prevent large D-term contributions to the sfermion masses and to avoid tachyonic solutions.
The VEV vR represents the vacuum expectation value which breaks extra U(1)B−L × U(1)R

symmetry. Since the breaking scale of the extra symmetry plays a crucial role in determining
the Z ′ mass, the gauge boson associated with U(1)B−L × U(1)R symmetry, we scan vR
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Observable Constraints Ref. Observable Constraints Ref.

mh1 [122, 128] GeV [29] mt̃1
⩾ 730 GeV [87]

mg̃ > 1.75 TeV [87] mχ±
1

⩾ 103.5 GeV [87]

mτ̃1 ⩾ 105 GeV [87] m
b̃1

⩾ 222 GeV [87]

mq̃ ⩾ 1400 GeV [87] mτ̃1 > 81 GeV [87]

mẽ1 > 107 GeV [87] mµ̃1 > 94 GeV [87]

χ2(µ̂) ≤ 2.3 - BR(B0
s → µ+µ−) [1.1, 6.4]× 10−9 [88]

BR(B → τντ )

BRSM (B → τντ )
[0.15, 2.41] [89] BR(B0 → Xsγ) [2.99, 3.87]× 10−4 [90]

mZ′ > 3.5 TeV [6] ΩDMh2 [0.09-0.14] [91, 92]

Table 3.2: Current experimental bounds imposed on the scan for consistent solutions.

between 6.5 and 20 TeV to obtain Z ′ boson masses consistent with the current experimental
bounds.

The parameter µ is the bilinear mixing of the MSSM doublet Higgs fields, while µR
is the bilinear mixing of the SU(2)R remnants Higgs fields, which are singlet under SU(2)L
symmetry. The values of µ and µR can be determined by the radiative electroweak symmetry
breaking (REWSB) but their signs cannot; thus, only their signs remain as free parameters.
Since the model contributions to muon anomalous magnetic moment are related to the sign of
µM1/2, we scan over positive µ values, but we accept both negative and positive solutions of
µR, while requiring solutions consistent with experimental predictions, and favoring solutions
which improve upon the SM predictions for the muon g−2 factor. The superpotential of the
model also includes a µS parameter, which yields non-zero neutrino masses via the inverse
seesaw mechanism. However, µS is constrained to be small, so that it cannot effect any
supersymmetric particle masses or decays. We also fixed the top quark mass to its central
value (mt = 173.3 GeV) [83] in our scan. The Higgs boson mass is very sensitive to the top
quark mass, and small changes in its value can shift Higgs boson mass by 1-2 GeV [84, 85],
although it does not significantly affect sparticle masses [86]. Hence, we scan both diag(Y ij

ν )
and diag(Y ij

s ) between 0.001–0.99, though the inverse seesaw mechanism prefers values of
order 1.

In scanning the parameter space, we use the interface which employs Metropolis-
Hasting algorithm described in [93]. All collected data points satisfy the requirement of
REWSB. After collecting the data, we impose current experimental mass bounds on all the
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sparticles and SM-like Higgs boson as highlighted in Table 3.2. Although we restrict the
SM-like Higgs boson to lie between 122-128 GeV with 3 GeV uncertainty, we also employed
HiggsBounds 4.3.1 package [94] to compare our Higgs sector predictions with the experi-
mental cross section limits from the LHC, and we require agreement with Higgs boson decay
signal strengths at tree level, h→ WW ⋆, h→ ZZ⋆ and h→ bb̄. Thus using the mass-centered
χ2, and selecting the parametrization for the Higgs mass uncertainty as “box" we employed
HiggsSignals 1.4.0 package [95] and bounded the solutions which yield total χ2(µ̂) ⩽ 2.3.
Another constraint comes from rare B-decay processes, Bs → µ+µ− [88], b → sγ [90] and
Bu → τντ [89]. The B-meson decay into a muon pairs, in particular, constrains the parame-
ter space since there the SM predictions are consistent with the experimental measurements.
The supersymmetric contributions are proportional to (tan β)6/m4

Ai
and constrained to be

small. Hence, mAi
has to be heavy enough (mAi

∼ TeV) to suppress the supersymmetric
contributions for large tan β values. In addition to these limitations, dark matter observa-
tions severely restrict the parameter space, requiring the LSP to be stable and electric and
color neutral, which excludes a significant portion of parameter space where stau is the LSP.
We concentrate on two different data sets, one with the neutralino being the LSP, and one
where sneutrino is the LSP, and we shall distinguish these two scenarios throughout our in-
vestigations. We employ micrOMEGAs 4.3.1 package [96] and tag the solutions which yield
consistent relic density within 20% uncertainty range provided from WMAP data [91, 92] as
specified in Table 3.2. Apart from relic abundance constraint, we do not impose any restric-
tion from the dark matter experiments. All the experimental restrictions mentioned above
are listed in Table 3.2.

3.4 Dark matter phenomenology

For either neutralino or sneutrino to be viable candidates for dark matter, they must yield
the correct level of relic abundance for thermal dark matter production in the early Universe,
determined very precisely as the amount of non-baryonic dark matter in the energy-matter
of the Universe, ΩDMh

2 = 0.1199 ± 0.0027 [11], with ΩDM being the energy density of the
dark matter with respect to the critical energy density of the universe, and h the reduced
Hubble parameter.

In addition, as the lack of any dark matter signals in either direct or indirect dark
matter detection experiments confront our theoretical expectations, these must satisfy in-
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creasingly severe constraints from experiments. The interaction of dark matter with detector
nuclear matter can be spin-dependent or spin-independent. The spin-dependent scattering
can only happen for odd-numbered nucleons in the nucleus of the detector material, while in
spin-independent (scalar) scattering, the coherent scattering of all the nucleons in the nucleus
with the DM are added in phase. Consequently, in direct detection experiments, the experi-
mental sensitivity to spin-independent (SI) scattering is much larger than the sensitivity to
spin-dependent scattering, and thus we shall concentrate on the former.

We proceed as follows. First, we analyze the consequences of having the lightest
neutralino as the dark matter candidate. Using the results in the previous sections, we
explore the parameter space of the model which is consistent with this assumption. We
follow in the next subsection with the parameter restrictions for sneutrino dark matter.

3.4.1 Neutralino Dark Matter

In this subsection, we concentrate on analyzing the consequences on the mass spectrum of the
BLRSSM obtained by scanning over the parameter space given in Table 3.1 where lightest
neutralino (χ̃0

1) is always the LSP, and highlight the solutions compatible with the constraints
showed in Table 3.2. We start with Fig. 3.1 which displays the allowed parameter regions,
with plots in m0 −M1/2, m0 − A0/m0 and M1/2 − tan β planes. Throughout the graphs, all
points satisfy REWSB. Blue points satisfy all experimental mass bounds, signal strengths of
SM-like Higgs boson and rare B-decay constraints given in Table 3.2. Red points obey the
above mentioned constraints, as well as relic density bounds, 0.09 ≤ ΩDMh

2 ≤ 0.14. The
m0−M1/2 plane shows that solutions for M1/2 ≲ 800 GeV are excluded by the constraints in
Table 3.2, and the requirement of consistent relic density (red points) excludes a significant
portion of the LHC allowed region (blue points). For M1/2 ∼ 1 TeV, m0 is bounded between
2–3 TeV, and low m0 values can survive for larger M1/2. On the other hand, the m0−A0/m0

panel shows that the regions with larger m0 values prefer positive values of the trilinear
scalar interaction strength A0, while almost all solutions with consistent relic density have
positive A0 parameter. Unlike the B − L Supersymmetric Standard Model (BLSSM) [31],
where negative A0 solutions for m0 ≥ 1 TeV do not satisfy REWSB, here all LSP constraints
can be fulfilled for this portion of parameter space, while only the relic density constraint
imposes positivity of A0. The M1/2 − tan β plot indicates that it is possible to find solutions
with 0.09 ≤ ΩDMh

2 ≤ 0.14 only for large tan β values, 40 ≤ tan β ≤ 60, although it is easier
to satisfy LHC limitations for low tan β values.
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Figure 3.1: Parameter scans for neutralino LSP scenario. (Left) m0 vs M1/2, (center) m0

vs A0/m0 and (right) M1/2 vs tan β. All points are consistent with REWSB and neutralino
LSP. Blue points satisfy all the experimental limits listed in Table 3.2. Red points form a
subset of blue, and represent solutions consistent with the relic density constraint.
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In Fig. 3.2, we show specific results for the determination of sparticle mass spectrum,
with plots in (top left) mt̃1

−mχ̃0
1
, (top right) mb̃1

−mχ̃0
1
, (bottom left) mχ̃±

1
−mχ̃0

1
and (bottom

right) mτ̃1 −mχ̃0
1

planes. The color coding is the same as Fig. 3.1. Furthermore, the mass
region in which the two masses are degenerate is displayed as a solid green line. We note that
the LSP neutralino solutions consistent with the relic density bound can be obtained only
when 300 GeV ≤ mχ̃0

1
≤ 800 GeV. As can be seen frommt̃1

−mχ̃0
1
andmb̃1

−mχ̃0
1
planes, we find

that stop and sbottom masses have to be at least ∼ 1.5 TeV and 2 TeV respectively to fulfill
all the restrictions. Even though it is possible to find light stop solutions (mt̃1

≤ 1 TeV) when
340 GeV ≤ mχ̃0

1
≤ 550 GeV, the relic density condition is not satisfied for these solutions.

Moreover, unlike the results of BLSSM [31] where the lightest chargino masses are always
above 600 GeV, here the mχ̃±

1
−mχ̃0

1
plot shows that there is a region of parameter space where

lightest chargino solutions is nearly degenerate with the lightest neutralino when 300 GeV
≤ mχ̃0

1
≤ 500 GeV. These solutions correspond to the case where the lightest chargino decays

into the neutralino LSP and W/W ⋆ boson (χ̃±
1 → χ̃0

1 +W±(W ⋆±)), and the branching ratio
for this channel is almost 1. On the bottom right panel, the mτ̃1 −mχ̃0

1
plane illustrates the

stau mass along with the LSP neutralino mass. There is a parameter space around mχ̃0
1
∼ 600

GeV, where stau mass is almost degenerate with the LSP neutralino and becomes the next
to lightest supersymmetric particle (NLSP), but also for a region of the parameter space,
the stau can be much heavier than the neutralino LSP. The lightest stau NLSP solutions
compatible with the relic density constraint occur around 500 GeV. One can choose one of
these solutions and study relevant neutralino annihilation processes mediated by a light stau
[97].

The bottom plots in Fig. 3.2, show our results for the sparticle spectrum for the gluino
and sneutrinos, with the plots in mq̃ − mg̃, (where q̃ represents squarks from the first two
families), and mν̃1 − mχ̃0

1
planes. The mq̃ − mg̃ plane shows that squarks masses for the

first two families and gluino masses should be heavier than 2.2 TeV but lighter than 4 TeV
(orange points). Although the relic density condition and the current ATLAS experimental
limit [98] strictly constrain the crucial portion of the parameter space, most of the solutions
are consistent with this experimental exclusion. Finally, the mν̃1−mχ̃0

1
plane reveals that it is

hard to find solutions with sneutrino as the supersymmetric NLSP if we require consistency
with the relic density bound, and the lightest sneutrino solutions satisfying all bounds can
be obtained at around 1 TeV.

Note that the graphs contain also information on the composition of the neutralino
LSP. As can be seen from gluino vs squarks panel, light blue points, which represent the
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mixed neutralino LSP solutions consistent with the relic density bounds, are mostly found
under the yellow curve (the excluded region). However, orange points representing mixtures
of R-bino and B − L bino (gauginos of U(1)R and U(1)B−L, respectively) as well as green
and black points which stand for H̃-like and H̃R-like neutralino LSPs respectively are mostly
located within the 1 sigma error of the yellow line.

To continue the investigation of the neutralino LSP composition, in Fig. 3.3 we plot
the correlation between the neutralino mass and gaugino and higgsino mass ratios with (top
left) M4/M1, (top right) M1/µ, (bottom left) M2/µ, and (bottom right) µR - µ, for correct
relic density. The color coding is the same as Fig. 3.1. According to the M4/M1 − mχ̃0

1

plane, there must be a clear relation between the B − L bino B̃ and B̃R masses so that
the ratio of B̃R/B̃ should be at around ∼ 1.8, decreasing slightly when the neutralino LSP
mass increases. The next two plots compare the bino-higgsino (top right) and wino-higgsino
(bottom left) masses, respectively, by looking at their mass ratio. In the top right plot,
almost all solutions satisfying LHC collider bounds, and all solutions satisfying relic density
constraints have M1/µ ≲ 1, that is the bino is lighter than the higgsino mass parameter. The
left bottom plane shows that, despite allowing for light higgsinos, the wino is mostly lighter
than the higgsino over all the parameter space where relic density bounds are satisfied. The
µR − µ plot (bottom right) shows that solutions prefer positive µR to the negative ones, and
µR can take values in a large range between 500 GeV–7 TeV while the relic density bound can
only be fulfilled with the low µ values. As can be seen from µR − µ plane, the relic density
constraint can be satisfied mostly when µ ≲ 0.5 TeV and 0.7 TeV ≲ µ ≲ 1.5 TeV.

The neutralino LSP content consistent with all constraints (including relic density) is
as follows: its mass is constrained as 300 GeV ≲ mχ̃0

1
≲ 500 GeV, and for those parameter

points, the neutralino LSP content is a B̃R-ino, H̃-ino and B̃-ino mixture, in this region the
wino masses are heavier than the higgsino masses for solutions consistent with the relic density
bound. Since M1/µ ≲ 1, the bino mixes more than the higgsinos to form the LSP neutralino.
In the region 500 GeV ≲ mχ̃0

1
≲ 800 GeV, the LPS neutralino is about 60%B̃R − 40%B̃

admixture, consistent also with the top left plot in Fig. 3.4.

In Fig. 3.4 we present results specific to dark matter phenomenology, plotting the
relic density and spin-independent cross section as a function of the lightest neutralino mass.
In addition, we plot the correlation between the lightest pseudoscalar and the third lightest
neutral Higgs boson h3, to highlight the fact that dark matter annihilation proceeds through
these two funnels. We show (top left) ΩDMh

2−mχ̃0
1
, (top right) σSInucleon−mχ̃0

1
, (bottom left)
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Figure 3.2: Plots in (top left) mt̃1
−mχ̃0

1
, (top right) mb̃1

−mχ̃0
1
, (middle left) mχ̃±

1
−mχ̃0

1
,

(middle right) mτ̃1 −mχ̃0
1
, (bottom left) mq̃−mg̃, and (bottom right) mν̃1 −mχ̃0

1
planes. The

color coding is the same as Fig. 3.1. In the bottom left panel, the color coding represents the
neutralino composition as indicated in the insert. The solid line in each plane indicates the
degenerate mass region.
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Figure 3.3: Plots for the neutralino LSP mass and mass ratios: (top left) M4/M1, (top right)
M1/µ, (bottom left) M2/µ, and (bottom right) µR - µ correlations. The color coding is the
same as Fig. 3.1.

39



mA1 −mχ̃0
1
, and (bottom right) mh3 −mA1 plots. In the top left and top right plane color

coding is indicated in the insert, while for the bottom plots the color coding is the same as
Fig. 3.3. The top left plot confirms our previous results on the content of LSP neutralino
between 500 – 800 GeV is composed of 60% B̃R-ino and 40% B̃-ino, whereas when 300 GeV
≲ mχ̃0

1
≲ 500 GeV, its content is shared among B̃R-ino, H̃-ino and B̃-ino . The top left plot

shows the dependence of the relic density, and the right plot shows the dependence of the spin-
independent proton and neutron cross section, with neutralino LSP mass. The solid green
line represents the current exclusion limit for XENON1T experiment [99] while yellow and
green shaded regions represent solutions within ±1σ,±2σ errors respectively. As can be seen
from the graph, most solutions consistent with the relic density constraint can be found below
the XENON1T exclusion bound, specifically between 10−10 pb – 10−11 pb. Hence they can be
detected by the next generation DM detectors such as XENONnT [100], LZ and DARWIN
[101]. Note that we also have a substantial amount of solutions consistent with the relic
density above XENON1T exclusion limit. These solutions correspond to the region where 300
GeV ≲ mχ̃0

1
≲ 500 GeV and where the LSP content is either completely H̃-ino or the mixture

of B̃R-ino, H̃-ino and B̃-ino. Thus all solutions surviving consistency with both the current
XENON1T exclusion limit and the relic density constraint consist of LSP neutralinos with
500 GeV ≲ mχ̃0

1
≲ 800 GeV, and with 60% B̃R and 40% B̃ admixture. Finally, the mA1 −mχ̃0

1

and mh3 −mA1 plots indicate the funnel channels for the LSP neutralino. The solid green
line displays the degenerate mass region for the lightest CP-odd Higgs boson and the LSP
neutralino, while the yellow shadowed region indicates solutions with mA1 = 2mχ̃0

1
, within

8% error. As can be seen from the graph, the lightest CP-odd Higgs boson, or the neutral
h3 Higgs boson can annihilate into two LSP neutralinos when 450 GeV ≲ mχ̃0

1
≲ 800 GeV.

Solutions consistent with the relic density constraint can be found when A1 is degenerate
with h3, with mass between 1 and 3 TeV. In this energy scale A1 and h3 provide the main
funnel channels of this model. Apart from these, we have also verified the relation of the relic
density with the IceCube confidence level exclusion and the neutrino flux, and all neutralino
LSP solutions surviving relic and cross section bounds are within 1% confidence level of the
experimental result.

3.4.2 Sneutrino Dark Matter

The BLRSSM contains, in addition to the three left sneutrinos, six additional singlet states,
three right sneutrinos and three S̃, the scalar partners of S. The latter two provide candidates
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Figure 3.4: Dependence of: (top left) relic density and (top right) spin independent cross
section with nuclei on mχ̃0

1
, (bottom left) the lightest pseudoscalar Higgs mass on mχ̃0

1
planes,

and (bottom right) the degeneracy between the lightest pseudoscalar mass and the third
lightest neutral Higgs boson. Both of these provide the funnel channel for the LSP neutralino
annihilation. All points except the dark blue ones are consistent with all constraints as in
Table 3.2, while the dark blue ones violate the relic constraints only. The color coding in the
mχ̃0

1
−mA1 plot is the same as in Fig. 3.1. The solid line shows the degenerate mass region in

these plots. In addition, the shaded region represents A1 funnel solutions where mA1 = 2mχ̃0
1

within 8% error.
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Figure 3.5: Dependence of the relic density ΩDMh
2 on the lightest sneutrino mass mν̃1 ,

showing the right sneutrino composition (left panel) and S̃ composition (right panel). All
points are consistent with REWSB, LHC bounds, B-physics constraint and sneutrino LSP,
while only the points between the two dashed lines satisfy relic density constraints.

for sneutrino dark matter, as they do not suffer from too large annihilation cross section
(thus small relic density) from interacting through Z or W bosons. Sneutrinos thus provide
alternative candidates for dark matter in this model, and we analyze their consequences in
this subsection. In the left and right panels of Fig. 3.5 we show the dependence of the relic
density ΩDMh

2 as a function of the lightest scalar neutrino mass. The color bars in the
right side of each plot indicate the right-handed sneutrino and the S̃ content, respectively.
As can be seen from the plot, even though it is possible to find sneutrino LSP solutions for
almost all values of mν̃1 between 0–1400 GeV, requiring consistency with the relic density
bound constraints LSP sneutrinos to be between 200–400 GeV. Thus the indication would be
that sneutrino LSP case allows lighter LSP masses compared to the neutralino LSP scenario.
The right-handed content of the sneutrino LSP solutions changes between 45%-80%, while
S̃ composition varies between 20%-52%. Imposing relic density bounds, the mixed sneutrino
LSP is about 50-50 % between right-handed and S̃. Thus the scalar partner of S, introduced
for neutrino seesaw, plays a crucial role in the sneutrino LSP composition.

In Fig. 3.6 we analyze the dependence of the nucleon spin-independent cross section,
σSIp for both the proton (left panel) and neutron (right panel). The color coding is the same
as Fig. 3.1 and also indicated in the legend of the plots. The plots show the relation for the
spin independent cross section for proton and neutron respectively. We note that both dark
matter constraints (the relic density and σSIp ) severely restrict the parameter space where
the sneutrino is the LSP in this model.
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Figure 3.6: Dependence of the spin independent cross section for the proton σSIp (left) and
neutron σSIn (right) as a function on the sneutrino LSP mass mν̃1 . All points are consistent
with REWSB and sneutrino LSP. The color coding in each plane is the same as Fig. 3.1.

3.5 Comparison of the two Dark Matter scenarios

In the previous section, we analyzed DM phenomenology for both neutralino LSP and sneu-
trino LSP scenarios in BLRSSM. As discussed in detail, BLRSSM provides quite different
mass spectrum for two distinct variants of LSP, and these relatively two different mass spec-
tra change the low scale DM phenomenology in important manner. While we found sneutrino
LSP scenario to be highly constrained and statistically unlikely, there are a few parameter
points that survive universal boundary conditions, so in this section, we compare results for
the two different LSP scenarios. In Fig. 3.7 we plot in the µ− µR and tan β −M2/µ depen-
dence. Dark blue points satisfy the mass bounds and constraints from the rare B-decays for
the neutralino LSP solutions. Red points form a subset of dark blue, and represent neutralino
LSP solutions which satisfy the relic density constraint. Light blue solutions are consistent
with the mass bounds and the constraints from the rare B-decays for sneutrino LSP solu-
tions, while yellow points form a subset of light blue, and represent sneutrino LSP solutions
consistent with the relic density constraint.

The µ− µR plots compare the higgsino sectors of our model. We note that while the
neutralino LSP solution can allow values of µR between 0–9 TeV, sneutrino LSP solutions
prefer low µR values, mainly between 0–4 TeV for positive µR. Even this range becomes
narrow, around 1.5 TeV, for lighter higgsinos. For the sneutrino LSP solutions, µR values
favor the region between 4–7 TeV when µ < 1.5 TeV. On the right panel, the tan β −M2/µ

plane shows the relative wino and higgsino mass ranges for the two LSP scenarios.
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Figure 3.7: Dependence of higgsino parameters µR and µ (left), and of M2/µ of tan β (right).
All points are consistent with mass bounds, B-physics bounds, HiggsBounds and Hig-
gsSignals. Dark blue points displays neutralino LSP solutions whereas light blue ones
stand for sneutrino LSP solutions. Red points represent the neutralino LSP solution, while
green ones stand for sneutrino LSP solutions, consistent in addition, with the relic density
bound.

From the plots, we conclude that for sneutrino LSP, M2/µ ≲ 1 and the wino is
always lighter than the higgsino over all the parameter space. For the neutralino LSP case,
the higgsinos can be lighter or heavier than winos. Also, tan β values for sneutrino LSP
solutions are found anywhere in the 0–50 range, and solutions consistent with the relic density
constraint can be obtained for either M2/µ ≲ 1 or M2/µ ≳ 1. Requiring consistency with
the relic density bound solutions with M2/µ ≳ 1 correspond to neutralino LSP, and tan β

values lie in the 10–50 range. Requiring compatibility with the relic density bound, further
constrains the region M2/µ ≲ 1 to correspond to B̃−B̃R dominated neutralino LSP solution,
where tan β should be between 40–60.

In general the model clearly favors solutions with neutralino LSP to those with sneu-
trino LSP.

3.5.1 The neutral Higgs sector

The choice of LSP affects the heavier states in the Higgs Sector of BLRSSM. For both
neutralino and sneutrino LSP solutions, the lightest neutral Higgs boson can be lighter than
150 GeV. Fig. 3.8 shows the results for the values of Higgs masses for both LSP cases with
plots for mh2 relative to mh1 (left) and mA1 dependence of tan β (right), where A1 is the
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lightest pseudoscalar. The color coding is described in the legend of these planes. The left
plot shows that while the two lightest neutral Higgs bosons can be degenerate when the LSP is
neutralino, degenerate solutions cannot be obtained for the sneutrino LSP, where the second
lightest Higgs boson mass is between 150–700 GeV. This phenomenon can be explained as
due the contributions obtained from different elements of CP-even Higgs mass matrix. When
mh2 > 150 GeV, the dominant contribution comes from the m2

RR element of CP-even Higgs
mass matrix, corresponding to singlet Higgs fields associated with U(1)R × U(1)B−L. Thus
there h2 is mostly a singlet Higgs boson. The off-diagonal term m2

LR which provides essential
mixing between the two sectors becomes important when mh2 < 150 GeV. For the sneutrino
LSP solutions, the Yukawa coupling Ys is constrained to be small (as the sneutrino LSP
mass is generated mostly through this term), unlike when the LSP is the neutralino. The
Ys coupling then imposes lighter h2 masses, mostly generated by the singlet Higgs field XR.
The other Higgs bosons can be quite heavy. This is seen also in the right-hand side of
Fig. 3.8, where we plot the dependence of the mass of the lightest pseudoscalar Higgs boson
A1 (degenerate with h3), with tan β. As before, the region in tan β ∼ 40-60 represents the
mixed binos neutralino LSP solutions, while for tan β < 40, regions with larger (smaller) A1

mass correspond to sneutrino (neutralino) LSP. Thus second lightest Higgs boson is a singlet
in both scenarios, but, while the sneutrino LSP scenario favors the 150-700 GeV mass range,
for the neutralino LSP solutions the second lightest Higgs boson mass can be much heavier
than 700 GeV.

3.5.2 The muon anomalous magnetic moment

The experimental results for the muon anomalous magnetic moment pioneered by the BNL
E821 experiment [102, 103] have been improved with the updated results from FNAL E989
[104] and J-PARC E34 [105] experiments. However, the SM prediction for the muon anoma-
lous magnetic moment [106], aµ = (g−2)µ/2, indicates a 3.5σ deviation from the experimental
results,

∆aµ = aexpµ − aSMµ = (28.7± 8.0)× 10−10(1σ) (3.5)

The SM prediction is limited in precision by the evaluation of hadronic vacuum polarization
contributions. Calculations exist for the lowest contributions, evaluated using perturbative
QCD and experimental cross section data involving e+e− annihilation into hadrons. However,
the large discrepancy has motivated possible explanations within new physics scenarios.
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Figure 3.8: Dependence of mh2 and mh1 (left) and dependence of mA1 on tan β (right).
The color coding is as follows. Dark blue and light blue points represent neutralino LSP and
sneutrino LSP solutions respectively, and they both satisfy all experimental bounds illustrated
in Table 3.2, except for the relic density bound. In addition, red and green solutions form a
subset of dark blue and light blue respectively, and they both represent solutions consistent
with the constraints in Table 3.2, including the relic density bound. In addition, the solid
green line shows the degenerate mass region where mh1 = mh2 .

In MSSM, if one of the smuons and bino or wino soft masses can be sufficiently light,
supersymmetry can ameliorate this discrepancy. However, if the model is required to obey
universality conditions at MGUT, obtaining the correct Higgs boson mass is the greatest
challenge to explaining the muon g − 2 anomaly. We can expect better results from the
BLRSSM model since it includes inverse seesaw mechanism and an extra gauge sector. The
effect of inverse seesaw mechanism can be read through RGE for the smuons. As can be
seen from the last two terms of Eq. (A.7), the Yukawa coupling Yν helps decrease the smuon
masses at low scales, as compared to models without inverse seesaw. A similar effect can be
read through the RGE of µ Eq. (A.1) and sneutrinos Eq. (A.6). The presence of another free
Yukawa coupling Ys in addition to Yν contributes to evolving light sneutrino masses to the
low scale via RGE as can be seen from the Eq. (A.6).

Here we investigate the effects on the muon g − 2 anomaly for both sneutrino and
neutralino LSP cases. Fig. 3.9 displays the correlations between muon aµ and the relevant
free parameters in m0, M1/2, tan β and µ. The color coding is the same as Fig. 3.8 except
that we do not impose the relic density constraint. In addition, the shadowed regions show
1, 2 and 3 σ deviations between the calculated contribution to muon g − 2 factor and its
experimental value. The top left side plot shows that ∆aµ favors low values form0 (light scalar
masses). Similarly light gaugino masses (light electroweakinos) are also required to decrease
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Figure 3.9: ∆aµ dependence of m0 (top left) , M1/2 (top right), tan β (bottom left) and µ
(bottom right). The color coding is the same as Fig. 3.8, except that the relic density bound
is not implemented. In addition, the shadowed regions show 1 σ, 2 σ and 3 σ differences
between the theoretical contribution to muon g − 2 factor and its experimental value.

the ∆aµ discrepancy, as seen from the top right handed plot. The need of light scalars and
electroweakinos agrees with large tan β values (bottom left panel). Finally, the ∆aµ depends
sensitively on the µ parameter, as in MSSM, and here the contribution to the muon g − 2

factor drops sharply for µ > 1.5 TeV. This is due to one loop contributions effects, where, as
the µ term increases, the contributions where the higgsinos run in the loop are suppressed,
while bino-smuon loop is left as only effective contributing diagram. However, as the bino
masses cannot be as low as B̃R masses, the contribution from this channel is insufficient. And
thus, against expectations, the inverse seesaw mechanism cannot sufficiently enhance muon
∆aµ within universality conditions, and the corrections hardly reach the 2σ region.
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3.5.3 Z ′ mass constraints

To highlight the differences between the two scenarios, we kept the model as general as
possible and did not impose the latest Z ′ mass bounds so far. In this subsection, we include
an investigation of implications of the constraints imposed on the Z ′ mass by a recent new
study at ATLAS [6], requiring an increase in the lower bound for the BLRSSM model to
MZ′ > 3.9 (3.6) TeV in the ee(µµ) channels. One must be careful when applying these
bounds. First, the experiment assumes non-supersymmetric models, and thus a case where
Z ′ does not decay to supersymmetric particles, which will modify its total decay width and
thus branching ratios. Second, the parameter choice and unification scale is different from
ours: the choice depends on symmetry breaking scales and assumed multiplet composition
of the GUT parent. With this note of caution, we explore the parameter space here.

First, we show some of the decay rates of the Z ′ boson in BLRSSM. Fig. 3.10 displays
some of the important decay channels of Z ′ where BR(Z ′ → ll) = BR(Z ′ → ee)+BR(Z ′ →
µµ) + BR(Z ′ → ττ) + BR(Z ′ → νν), BR(Z ′ → l̃l̃), BR(Z ′ → qq) and BR(Z ′ → χ̃χ̃),
all plots as a function of mZ′ . Throughout, all points are consistent with LHC, B-physics
bounds, HiggsBounds and HiggsSignals. Dark blue points show neutralino LSP solu-
tions whereas light blue ones stand for sneutrino LSP solutions.

The top left panel in Fig. 3.10 exhibits the branching ratio of Z ′ into lepton pairs
while the top right panel shows the branching for the supersymmetric partners in the same
channel. As can be seen from top left plane, the branching ratio of Z ′ into all leptons
(e+e−, µ+µ−, τ+τ− and their neutrinos). changes between 25% − 37% while its decays
into their supersymmetric partners, sleptons, are low, in the range of 0% and 16%. It is
interesting to note that these models, unlike E6-derived models containing an extra U(1)′

gauge group, are not likely to be leptophobic as the branching ratio into leptons is significant
throughout the parameter space investigated. The bottom panels of Fig. 3.10 show the
branching ratio into quarks (left) and into neutralinos and/or charginos (right). As usual,
the largest branching ratio obtained is hadronic (40%-62%), which, though significant, is not
as large as for U(1)′ models [107], which will likely adversely affect the Z ′ production cross
section. The decay into two charginos or neutralinos occurs above their mass threshold and
is very small throughout the whole parameter space (0%-8%). So it appears that the decay
of the Z ′ boson is fairly consistent with a non-supersymmetric scenario. Based on this, we
shall investigate the effects of setting the mass lower bound to be mZ′ > 3.5 TeV throughout
our analyses.
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Figure 3.10: Branching ratios of Z ′ in BLRSSM. (Top left): BR(Z ′ → ll(ee+ µµ+ ττ and
their neutrinos)); (top right) BR(Z ′ → l̃l̃), (bottom left) BR(Z ′ → qq̄) and (bottom right)
BR(Z ′ → χ̃χ̃). Neutralino LSP points are represented in dark blue, sneutrino LSP points in
light blue. The solutions excluded by [6] are in the shaded green region.
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Figure 3.11: Cross sections times branching ratios of Z ′ in BLRSSM. (Left): σ(pp → Z ′) ×
BR(Z ′ → ll(ee + µµ)); ( right) σ(pp → Z ′) × BR(Z ′ → qq̄), with branching ratios values
only shown in the right-sided panels. The experimental results from by ATLAS [6] (left) and
CMS [7] (right), are shown as red curves, with 1σ deviation shaded in green and 2σ deviation
shaded in yellow.

Next, we analyze the likelihood of observing the Z ′ in hadronic or leptonic decays.
In Fig. 3.10 we plot the production cross section σ(pp → Z ′) followed by the decay into
leptons (e+e−+µ+µ− only, as in the ATLAS [6] results), on the left hand side, and the same
production cross section, followed by the decay into qq̄ pairs (excluding top quarks), on the
right. We indicate the branching ratios explicitly on the panels at the right-hand side, and
compare both results with the experimental curves obtained by ATLAS [6] and CMS [7].
Although the dominant decay modes of Z ′ are into qq̄ pairs, the leptonic decays are the most
limiting and, in this very much constrained model, the limits on the Z ′ mass turn out to be
closer to 3.75 TeV (at 2σ). Clearly, the model parameters are quite close to this limit, and
Z ′ should be observed with only a small increase in luminosity. For the three benchmarks
chosen in Sec. 7.6, in Table 3.3, we chose the mass of Z ′ to be close to the experimental
limit. The values for σ(pp → Z ′) × BR(Z ′ → ll(ee + µµ)) are just below the experimental
limits, but again, an increase of luminosity of a factor of 2-5 will either show a peak in the
curve, or rule this scenario out.

3.6 Collider Signals and Dark Matter Detection

With the constraints on Z ′ mass from the previous subsection, we revisit the plots for the
spin independent cross section for proton and neutron respectively. While in the Fig. 3.6,
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Figure 3.12: Dependence of the spin independent cross section for the proton σSIp (left) and
neutron σSIn (right) as a function on the sneutrino LSP mass mν̃1 , for , mZ′ ≥ 3.5 TeV. All
points are consistent with REWSB and sneutrino LSP. The color coding in each plane is the
same as Fig. 3.1.

we considered mZ′ ≥ 2.5 TeV, and the spin-independent proton (or neutron) cross sections
for sneutrino LSP solutions were satisfied with XENON1T experimental exclusion limit,
imposing the new Z ′ mass limit excludes most of the parameter space for sneutrino LSP
solutions, as shown in Fig. 3.12. Specifically, of about 106 scanned parameter points only 18
solutions compatible with the relic density bound are found, and only 10 of them can survive
XENON1T experimental exclusion limit. Imposing Z ′ mass constraints, the sneutrino LSP
scenario thus emerges as extremely constrained and, realistically, ruled out. However, the
neutralino LSP scenario is unaffected by the Z ′ mass limits and survives direct detection
constraints, as in Fig. 3.4.

In addition to direct detection, DM searches also attempt to identify visible products
resulting from DM interactions, focusing on searching for SM particles produced by the decay
or annihilation of DM. These are indirect searches, and the advantages of these are the large
amounts of available DM, while the challenges are that the DM interacts weakly with SM
particles, so the rate of production of these particles is expected to be small. In our model,
R-parity is exact and the DM is stable, however DM can annihilate into leptons, hadrons
and W+W− pairs. We plot, in Fig. 3.13, left top panel, the annihilation cross section of
DM as a function of the LSP neutralino mass, and compare it with the constraints from
µ+µ− (pink dotted line), τ+τ− (yellow dotted line), W+W− (green dotted line), and bb̄

(black dotted line), derived from the combined analysis from Fermi-LAT experiment [8]1. As
1Comparably strong limits come also from AMS-02 [108] and the cosmic microwave background.
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before, the regions in red satisfy all constraints, including for relic density, and they lie below
the exclusion curves. The dominant annihilation decays of DM are into bb̄ and τ+τ−, and
in Table 3.3, we give branching ratios for the specific benchmarks chosen. Since solutions
consistent with the relic density (the red points) are close to the Fermi-LAT experimental
curves, we included these in the annihilation cross section plot. However, for both neutrino
flux and muon flux (bottom panels), our results are small compared to experimental Fermi-
LAT results [8]. Specifically, our values for neutrino flux are changing between 106 – 1010

km2/year, while experimental results for neutrino flux are between 1010 – 1014 km2/year [109].
Similarly, our values for the muon flux are between 10−2 – 103 km2/year, while experimental
results for muon flux are between 102 – 105 km2/year [110]. Finally, we show the photon flux
result (top right panel), which changes between 10−14 – 10−22 km2/year, and which is tiny
and does not explain the γ-ray excess from the galactic centre (GC) detected by Fermi-LAT,
for photons between 20 MeV and 300 GeV. We include exact values for the fluxes for our
benchmarks in Table 3.3.

Lastly, we would like to analyze the production and decays for this scenario at the
LHC. We choose benchmarks from the parameter scan results which satisfy all experimental
bounds, including the relic density constraint and XENON1T exclusion limits, and favor
light neutralino LSP solutions as the only ones surviving all constraints. We proceed by
exporting the BLRSSM to the UFO format [111] and use MG5_aMC@NLO framework
version 2.5.5 [112] to simulate hard-scattering LHC collisions and evaluate the cross sections
for various signals. For the calculation of cross sections, we select three benchmarks with
different features, which could showcase different features of the model for detection at the
LHC.

The first benchmark, benchmark 1 has HR̃-like neutralino LSP. (Even though param-
eter scans allow Higgsino-like and higgsino-binos mixed LSP neutralino solutions between
300-500 GeV, no benchmark in this range can be found as these states are completely ex-
cluded by the XENON1T exclusion limit.) We thus select benchmarks with mixed B̃R − B̃

content. For benchmarks 2-3, BR(χ̃0
2 → χ̃0

1h1) and BR(χ̃±
1 → χ̃0

1W
±) are almost unity. Spar-

ticle masses are similar in both cases, with the exception of the lightest chargino, which is
heavier for benchmark 3. Also, for benchmark 3, BR(τ̃1 → τ1χ̃

0
1) ∼ 1 while this is much

smaller for benchmark 2. Note that benchmarks satisfy all the constraints, including the
IceCube22 [113] exclusion. Our results are shown in Table 3.3.

Even though LSP neutralino mass is quite light (428 GeV) for benchmark 1, we find
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Figure 3.13: (Top left): Annihilation cross section of DM as a function of the LSP neutralino
mass, and compare it with the constraints from µ+µ− (pink dotted line), τ+τ− (yellow dotted
line), W+W− (green dotted line), and bb̄ (black dotted line), derived from the combined
analysis from Fermi-LAT experiment [8]; (top right): Photon flux as a function of the LSP
neutralino mass; (bottom left): Neutrino flux as a function of the LSP neutralino mass;
(bottom right): Muon flux as a function of the LSP neutralino mass. As before, the regions
in red satisfy all constraints, including relic density.
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that both chargino-chargino and neutralino-chargino production cross sections are quite low,
due to the fact that the neutralino is mostly H̃R-like. For the other benchmarks, with
neutralino contents of mixed binos, the second lightest neutralino and chargino masses are
degenerate. We estimated the cross sections for chargino/neutralinos and stau production
as being the most promising. The highest cross-section values for chargino-chargino pro-
duction and chargino-neutralino production are obtained for benchmark 2 whose neutralino
and chargino masses are 470 GeV and 767 GeV, respectively. As can be seen from the Ta-
ble 3.3, chargino-chargino production and neutralino-chargino production cross sections are
7.03 ×10−1 fb and 1.27 fb, respectively. The cross-section values decrease in benchmark 3
(with respect to benchmark 2) when neutralino and chargino masses are 506 GeV and 954
GeV (versus 470 and 767 GeV), respectively. For all benchmarks, Z ′ masses are above 4 TeV,
consistent with the latest ATLAS result, but very close to the exclusion limit, as discussed
in the previous subsection, 3.5.3. Note that gluino masses are about 2.5 TeV for all bench-
marks, making gluino results testable at the HL-LHC or by the next generation colliders
[114, 115].

Including all the constraints, we conclude that production of supersymmetric par-
ticles in BLRSSM fall below detector sensitivity. Especially because the final signals will
have even lower production cross sections, as they will be suppressed by branching ratios of
chargino/neutralinos to missing energy + leptons. A way to improve our results is to relax
some or most universality constraints, and looking for effective cuts which would enhance the
signal over the background. We shall return to this in a future work.
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Benchmark 1 Benchmark 2 Benchmark 3
m0 [GeV] 2916 1831 2073

M1/2 [GeV] 1159 1092 1166
tan β 55.9 45.3 58.6
tan βR 1.15 1.19 1.06

A0 [GeV] -16.56 826 1652
< vR > [GeV] 11321 11711 12969
Yν (MSUSY) 0.18 2.11×10−3 0.25
Ys (MSUSY) 0.41 0.62 0.49

µ [GeV] 1246 787 1305
µR [GeV] 434 1144 3817
m

χ̃0
1

[GeV] 428 (H̃R-like) 470 (mixed B̃R − B̃) 506 (mixed B̃R − B̃)

m
χ̃0
2

[GeV] 958 768 954

m
χ̃
±
1

[GeV] 507 767 954

mh2
[GeV] 428 380 224

mh3
[GeV] 1158 1018 1013

mA1
[GeV] 1175 1020 1017

mt̃1
[GeV] 2455 1977 2209

m
b̃1

[GeV] 2778 2279 2458

mτ̃1
[GeV] 1790 1332 1064

mν̃1
[GeV] 2638 2036 1858

mZ′ [GeV] 4046 4182 4632
mg̃ [GeV] 2671 2473 2634

σ(pp → χ̃±
1 χ̃0

2) [fb] 1.25 ×10−3 1.27 7.29 ×10−1

σ(pp → χ̃+
1 χ̃−

1 ) [fb] 3.9 ×10−1 7.03 ×10−1 3.47 ×10−1

σ(pp → τ̃1τ̃1) [fb] 4.50 ×10−4 2.05 ×10−3 3.46 ×10−3

BR(χ̃0
2 → χ̃0

1h1) - 0.94 0.89
BR(χ̃±

1 → χ̃0
1W

±) - 0.99 0.99
BR(τ̃1 → τ1χ̃

0
1) - 0.51 0.99

σ(pp → Z′ → qq̄) [fb] 5.75 ×10−1 4.24 ×10−1 1.61 ×10−1

σ(pp → Z′ → e+e− + µ+µ−) [fb] 1.31 ×10−1 9.67 ×10−2 3.68 ×10−2

BR(Z′ → e+e− + µ+µ−) 0.12 0.12 0.12
BR(Z′ → e+e− + µ+µ− + τ+τ−) 0.18 0.18 0.18

BR(Z′ → νν̄) 0.16 0.16 0.15
BR(Z′ → qq̄) 0.56 0.56 0.55
BR(Z′ → l̃l̃) 4.01 ×10−4 3.54 ×10−3 2.07 ×10−2

BR(Z′ → q̃q̃) - 1.79 ×10−4 1.38 ×10−4

BR(Z′ → χ̃χ̃) 7.64 ×10−2 8.06 ×10−2 7.33 ×10−2

Ωh2 0.1369 0.0978 0.0958
σSI
nucleon [pb] 1.60 ×10−11 1.80 ×10−10 2.43 ×10−11

σSD
p [pb] 4.68 ×10−8 1.12 ×10−6 6.72 ×10−8

σSD
n [pb] 4.31 ×10−8 9.15 ×10−7 6.38 ×10−8

Icecube22 Exclusion CL [%] 1.15 ×10−2 0.65 3 ×10−2

< σv > [cm3s−1] 2.12 ×10−26 1.33 ×10−26 3.07 ×10−26

Φν [km2y−1] 2.39 ×106 1.70 ×108 6.97 ×106

Φµ[km2y−1] 2.28 ×10−2 1.37 6.16 ×10−2

Φγ [cm2 s GeV]−1 9.25 ×10−16 8.42 ×10−16 1.85 ×10−15

Annihilation modes
χ̃0
1χ̃

0
1 → bb̄ 76% 74% 75%

χ̃0
1χ̃

0
1 → τ+τ− 23% 20% 24%

χ̃0
1χ̃

0
1 → h1Z - 6% -

Table 3.3: Benchmarks for BLRSSM with relevant cross-sections and branching ratios. We
include relevant information on the Z ′ boson and dark matter. In bold, the lightest chargino
and the two lightest neutralino states. Missing entries represent values smaller than 10−4.
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Chapter 4

Leptophobic Z ′ bosons in the secluded

U(1)′ model

4.1 Introduction

With the discovery of the Higgs boson, the last piece of the Standard Model (SM) construction
was fit into place. Furthermore, almost all SM predictions have been confirmed by exper-
imental results, even precision tests involving higher order perturbative Electroweak (EW)
and Quantum Chromodynamics (QCD) effects. However, as it stands, the SM cannot be the
final theory and the quest for physics Beyond the SM (BSM) is very much alive. Among the
many proposed BSM scenarios, Supersymmetry (SUSY) appears to be one of the most pop-
ular ones, since it provides elegant solutions to the SM drawbacks, such as the stabilization
of the EW scale under radiative corrections, an explanation for the baryon asymmetry of the
Universe and for the presence of Dark Matter (DM) in it. However, the minimal version of
SUSY, the Minimal Supersymmetric SM (MSSM), provides no explanation for the µ prob-
lem [116–119]. The µ parameter, the so-called higgsino mass term, is expected to be at the
SUSY-breaking scale but, for successful EW symmetry breaking, its value should be at the
scale of the latter. Adding a U(1)′ gauge symmetry to the MSSM, one solves this problem by
replacing the µ parameter of the MSSM with an effective one, generated dynamically by the
Vacuum Expectation Value (VEV) of the singlet Higgs field responsible for breaking U(1)′.
Furthermore, the additional U(1)′ symmetry is able to generate neutrino masses by allowing
right-handed neutrinos into the superpotential and can account for either Majorana- [120] or
Dirac-type neutrinos [121].
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Normally, it is expected that both EW and U(1)′ symmetry breaking are achieved
through soft-breaking parameters, which would imply that the mass of the gauge boson as-
sociated with U(1)′, a Z ′, would be of the same order as the EW scale [122–124]. This
conflicts with experimental measurements at the Large Hadron Collider (LHC) [9], though,
which impose a lower bound on the Z ′ mass, from the Drell-Yan (DY) channel, i.e., di-lepton
hadro-production, of O(4) TeV or more. The most natural solution to this inconsistency
is that the VEV of the singlet Higgs field is large compared to the EW scale, O(1 − 10)

TeV, pushing the SUSY scale very high and rendering it mostly unobservable at the present
LHC. Alternatively, it was observed that fine-tuning the kinetic mixing between the two
U(1) groups could yield Z ′ bosons which do not decay directly into lepton pairs [125]. Cor-
responding Z ′ gauge boson masses are then limited by its di-jet decays, whose bounds are
much weaker in comparsions to DY ones [10]. Various aspects of the additional gauge boson
and its phenomenological implications have been also studied within non-SUSY and SUSY
frameworks [126–136].

An alternative is represented by a U(1)′ model where the SUSY-breaking scale and Z ′

mass are disjoint: the former is close to the EW scale while a large value for the latter can
be generated by the VEVs of additional Higgs fields (S1, S2, S3, so-called secluded singlets)
which are charged under the U(1)′ group but couple weakly to the SM fields [137]. This BSM
scenario is known as the secluded U(1)′ model, a realization of the generic class of U(1)′-
extended MSSMs (UMSSMs). It allows for both explicit and spontaneous CP symmetry
breaking and is able to account for baryogenesis [138]. Differences between this UMSSM
scenario and the MSSM would likely reveal themselves in the nature of DM, as in the extended
scenario several additional singlinos as well as sneutrinos could be viable candidates for it
[139].

In a nutshell, the secluded U(1)′ model extends the MSSM by an additional Abelian
group, to SU(3)c⊗SU(2)L⊗U(1)Y⊗U(1)′, and by four Higgs singlets (three in addition to the
one needed to break U(1)′, to ensure a Z ′−Z mass hierarchy). Exotics with Yukawa couplings
to a singlet Higgs field must be introduced to ensure the theory is anomaly free. However,
despite the presence of these couplings, one can assume their masses to be at the Grand
Unification Theory (GUT) scale and thus neglect them in TeV scale phenomenology1. (Note,
however, that they have been studied extensively in [140].) Previous studies of this secluded
U(1)′ model exist, but none consistent with present experimental data on the discovered
Higgs boson mass and signal strengths or with Z ′ gauge boson mass bounds. In this work,

1Furthermore, their charges are such that they do not mix with ordinary matter.
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we revisit this BSM scenario in detail, with particular interest in addressing the unresolved
problems of UMSSMs, by providing light Z ′ masses yet compatible with current bounds,
an acceptable (g − 2)µ value and DM relic density plus the viable existence of light SUSY
particles, altogether providing one with new distinguishing signals of this BSM realization in
LHC experiments.

In showing all this, we shall prove first that, in such a U(1)′ secluded model, lep-
tophobia can be achieved easily and without gauge kinetic mixing between the Z and Z ′,
so that a light Z ′ gauge boson can survive all experimental constraints in presence of finite
width effects. Furthermore, we shall show that this BSM scenario can predict corrections to
(g−2)µ within 1σ of the experimentally observed value. Finally, we will also find that, in our
UMSSM realization, the Lightest SUSY Particle (LSP), for a large region of its parameter
space, is a singlino consistent with all DM constraints accompanied by very light charginos
and neutralinos, with masses of O(100) GeV, in turn consistent with collider limits, into
which a Z ′ can then decay yielding sizable signals at the LHC.

Our work is organized as follows. In the next section, Sec. 6.2, we provide a description
of the secluded U(1)′ model, with particular emphasis on the gauge and neutralino sectors,
i.e., where differences with respect to the MSSM will manifest themselves. We describe
the implementation of this BSM scenario, including the free parameters and the constraints
imposed on these, in Sec. 7.3. Then, we explain the implications emerging from a wide scan of
its parameter space for Z ′ physics at colliders, in Sec. 6.5, and onto the DM candidate in relic
density and direct detection experiments, in Sec. 4.5. Furthermore, in presence of all such
constraints on the mass and coupling spectrum of the model, we analyze the consequences
for the muon anomalous magnetic moment in Sec. 4.6. We further study the possibility
of observing a light Z ′ boson via chargino/neutralino decays at the High-Luminosity LHC
(HL-LHC) and High-Energy LHC (HE-LHC) in Sec. 4.7.

4.2 The secluded U(1)′ Model

In this section, we review the secluded U(1)′, known also as the secluded UMSSM. In addition
to the MSSM superfields, the model has three right-handed neutrino superfields N̂ c

i and four
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scalar singlets Ŝ, Ŝ1, Ŝ2 and Ŝ3. The superpotential in this model is described by

W = Y ij
u Q̂iĤuûcj − Y ij

d Q̂iĤdd̂cj − Y ij
e L̂iĤdêcj

+ Y ij
ν L̂iĤuN̂ c

i + λĤuĤdŜ +
κ

3
Ŝ1Ŝ2Ŝ3 +

nφ∑
n=1

hiφSφiφj +

nΥ∑
n=1

hiΥSΥiΥj, (4.1)

where the first line of Eq. 4.1 contains the usual terms of the MSSM while the second line
includes the additional interactions of right-handed neutrinos N̂ c

i (assumed to be Dirac fields
here) and Ĥu, as well as the singlet superfields Ŝ, Ŝ1, Ŝ2 and Ŝ3, and where Υi and φi are
the exotics, which, as explained above, are assumed to be heavy and decoupled from the low
energy spectrum. The effective µ term is generated dynamically as µ = λ⟨S⟩. The scalar
potential includes the F -term, given by

VF = λ2(|Hu|2|Hd|2 + |S|2|Hu|2 + |S|2|Hd|2)

+ κ2(|S1|2|S2|2 + |S2|2|S3|2 + |S3|2|S1|2) , (4.2)

while the D-term scalar potential is

VD =
g21 + g22

8
(|Hd|2 − |Hu|2)2

+
1

2
g′ 2

(
QS|S|2 +QHu |Hu|2 +QHd

|Hd|2 +
3∑

n=1

QSi
|Si|2

)2

, (4.3)

where g1, g2 and g′ are the coupling constants for the U(1)Y , SU(2)L and U(1)′ gauge groups
while Qϕ is the U(1)′ charge of the field ϕ. Finally, the potential includes the SUSY-breaking
soft terms,

Vsoft = m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

S|S|2 +
3∑

n=1

m2
Si
|Si|2 − (AλλSHuHd + AκκS1S2S3 + h.c)

+ (m2
SS1

SS1 +m2
SS2

SS2 +m2
S1S2

S†
1S2 + h.c.). (4.4)

In Table 4.1 we give the complete list of the fields in the model, together with their spin,
number of generations and charge assignments under the extended gauge group. The secluded
U(1)′ charge assignments and anomaly cancellation conditions allow for some freedom in the
choice of the U(1)′ charges, absent in other U(1)′ models. In general, the U(1)′ change
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SF Spin 0 Spin 1
2

Generations U(1)Y ⊗ SU(2)L ⊗ SU(3)C ⊗ U(1)′

q̂ q̃ q 3 (1
6
,2,3, Q′

q)

l̂ l̃ l 3 (−1
2
,2,1, Q′

ℓ)

Ĥd Hd H̃d 1 (−1
2
,2,1, Q′

Hd
)

Ĥu Hu H̃u 1 (1
2
,2,1, Q′

Hu
)

d̂ d̃∗R d∗R 3 (1
3
,1,3, Q′

d

û ũ∗R u∗R 3 (−2
3
,1,3, Q′

u)
ê ẽ∗R e∗R 3 (1,1,1, Q′

e)
v̂R ν̃∗R ν∗R 3 (0,1,1, Q′

v)

Ŝ S S̃ 1 (0,1,1, Q′
s)

Ŝ1 S1 S̃1 1 (0,1,1, Q′
s1
)

Ŝ2 S2 S̃2 1 (0,1,1, Q′
s2
)

Ŝ3 S3 S̃3 1 (0,1,1, Q′
s3
)

φ̂ φ̃ φ 3 (Yφ,1,1, Q
′
φ)

φ̂ φ̃ φ 3 (Yφ,1,1, Qφ′)

Υ̂ Υ̃ Υ 2 (YΥ,1,1, Q
′
Υ)

Υ̂ Υ̃ Υ 2 (YΥ,1,1, QΥ
′)

Table 4.1: Superfield configuration in the secluded UMSSM.

assignments can be chosen as follows:

QQ = α, QHu = β, QS = γ, Qℓ = −3α +
γ

3
,

QHd
= −β − γ, Qu = −α− β, Qd = −QQ −QHd

= −α + β + γ,

Qe = −Qℓ −QHd
= 3α + β +

2γ

3
, QN = −Qℓ −QHu = 3α− β − γ

3
,

QS1 = QS3 = δ, QS2 = −2QS1 = −2QS3 = −2δ. (4.5)

Here, QHd
= 0 dictates γ = −β. From the conditions above we can choose, for simplicity,

Qe = Qℓ. The leptophobic condition Qℓ = Qe = 0 requires α = −β
9
, so that the leptophobia

condition can be achieved without resorting to kinetic mixing between the two U(1) groups2.
Thus, Eq. 4.5 can be rewritten in terms of α and δ only as:

QQ = α, QHu = −9α, QS = 9α, Qℓ = 0, QHd
= 0,

Qu = 8α, Qd = −α, Qe = 0, QN = 9α,

QS1 = QS3 = δ, QS2 = −2QS1 = −2QS3 = −2δ. (4.6)

2This is unlike models where the U(1)′ charges are derived from the mixing of, e.g., θE6
angles [3].
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After the spontaneous breaking of the extended gauge symmetry group down to electromag-
netism (EM), the W±, Z and Z ′ bosons acquire masses while the photon remains massless.
At tree level, the squared masses of the Z and Z ′ bosons are given by

M2
Z =

g21 + g22
2

(
⟨H0

u⟩2 + ⟨H0
d⟩2
)
,

M2
Z′ = g′

2

(
QS⟨S⟩2 +QHu⟨H0

u⟩2 +QHd
⟨H0

d⟩2 +
3∑

n=1

QSi
⟨Si⟩2

)
, (4.7)

where H0
d ≡ vd√

2
and H0

u ≡ vu√
2

stand for the neutral components of the down-type and

up-type Higgs fields Hd and Hu.

While the chargino sector is unaltered, the neutralino sector of the secluded U(1)′

model includes five additional fermion fields: the U(1)′ gauge fermion Z̃ ′ and four singlinos
S̃, S̃1, S̃2, S̃3, in total, nine neutralino states χ̃0

i (i = 1, . . . , 9) [137]:

χ̃0
i =

∑
a

N 0
iaG̃a , (4.8)

where the mixing matrix N 0
ia connects the gauge-basis neutral fermion states to the physical-

basis neutralinos χ̃0
i . The neutralino masses Mχ̃0

i
are obtained through the diagonalization

N 0MN 0 T = Diag
{
Mχ̃0

1
, . . . , Mχ̃0

9

}
. The 9× 9 neutral fermion mass matrix is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MZ̃ 0 −MZ̃H̃d
MZ̃H̃u

0 MZ̃Z̃′ 0 0 0

0 MW̃ MW̃ H̃d
−MW̃ H̃u

0 0 0 0 0

−MZ̃H̃d
MW̃ H̃d

0 −µ −µHu µ′
Hd

0 0 0

MZ̃H̃u
−MW̃ H̃u

−µ 0 −µHd
µ′
Hu

0 0 0

0 0 −µHu −µHd
0 µ′

S 0 0 0

MZ̃Z̃′ 0 µ′
Hd

µ′
Hu

µ′
S MZ̃′ µ′

S1
µ′
S2

µ′
S3

0 0 0 0 0 µ′
S1

0 − κv3
3
√
2

− κv2
3
√
2

0 0 0 0 0 µ′
S2

− κv3
3
√
2

0 − κv1
3
√
2

0 0 0 0 0 µ′
S3

− κv2
3
√
2

− κv1
3
√
2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(4.9)

(4.10)

where the lightest eigenvalue is the DM candidate. In the neutralino mass matrix, the mass
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mixing terms are defined in terms of tan β =
vd
vu
, ⟨S⟩ =

vS√
2

and ⟨Si⟩ =
vi√
2
(i = 1, 2, 3),

as

MZ̃ H̃d
= MZ sin θW cos β , MZ̃ H̃u

=MZ sin θW sin β ,

MW̃ H̃d
= MZ cos θW cos β , MW̃ H̃u

=MZ cos θW sin β , (4.11)

where µi, µ′
j stand for the effective couplings in each sector, given in terms of hs or g′, the

coupling constant of U(1)′, as

µHd
= hs

vd√
2
, µHu = hs

vu√
2
, µ′

Hd
= g′QHd

vd,

µ′
Hu

= g′QHuvu , µ′
S = g′QSvS , µ′

Si
= g′QSi

vi . (4.12)

4.3 Computational Setup

Following the development of the model as in Sec. 6.2, to enable our analysis and impose
constraints coming from experimental data, we implement the model within a computational
framework. We have then made use of SARAH (version 4.13.0) [78, 79, 141] to generate
CalcHep [142] model files and a UFO [111] version of the model [143], so that we could employ
MicrOMEGAs (version 5.0.9) [144] for the computation of the predictions relevant for our
dark matter study, MG5aMC (version 2.7.2) [112] for generating the hard-scattering event
samples necessary for our collider study, and SPheno (version 4.0.4) [76, 77] package for
spectrum analysis. We make use of HiggsBounds [94] to constrain the possibility of BSM
Higgs bosons detection at colliders and HiggsSignals [95] to test the signal strengths of
the SM-like Higgs state. During the numerical analysis performed in this work, we have used
the PySLHA 3.2.4 package [145] to read the input values for the model parameters that
we encode under the SLHA format [146], and to integrate the various employed programmes
into a single framework.

Using our interfacing and following the Metropolis-Hastings technique, we performed
a random scan over the parameter space, illustrated in Table 7.2, where we restrict ourselves
only to universal boundary conditions. Herem0 denotes the Spontaneous Symmetry Breaking
(SSB) mass term for all the scalars while M1/2 stands for the SSB mass terms for the gauginos
including the one associated with the U(1)′ gauge group. As before, tan β is the ratio of
VEVs of the MSSM Higgs doublets, A0 is the SSB trilinear scalar interacting term, λ is the
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Parameter Scanned range Parameter Scanned range

m0 [0., 3.] TeV vS [0.97, 15.8] TeV

M1/2 [0., 3.] TeV v1 [1.6, 15.] TeV

tanβ [1., 55.] v2 [0.8, 11.2] TeV

A0/m0 [−3., 3.] GeV v3 [1.6., 15.] TeV

λ [3.× 10−2, 0.6] κ [0.3, 2.65]

Aλ [1.8, 7.5] TeV Aκ [−8.3,−0.2] TeV

Y ij
ν , (i = j) [1× 10−8, 1× 10−7] Y ij

ν , (i ̸= j) 0.

Table 4.2: Scanning range of parameter space of the secluded U(1)′ model.

coupling associated with the interaction of the Ĥu, Ĥd and Ŝ fields while κ is the coupling
of the interaction of the Ŝ1, Ŝ2 and Ŝ3 fields. Trilinear couplings for λ and κ are defined as
Aλλ and Aκκ, respectively, at the SUSY scale. Here, Y ij

ν is the Yukawa coupling of the term
L̂iĤuN̂

c
i and we vary only the diagonal elements in the range of 1 × 10−8 – 1 × 10−7 while

setting the off-diagonal elements to zero.

We followed [147] where a simple method for analyzing the impact of precision EW
data above and below the Z peak on flavor-conserving heavy new physics is implemented.
There, the corrections to all leptonic data can be converted into oblique corrections to the
vector boson propagators and condensed into seven parameters. Numerical fits for the new
physics parameters are included and the method is applied to generic Z ′ gauge bosons high-
lighting parameter combinations most strongly constrained. The authors report the 99%
Confidence Level (CL) iso-contours of bounds on MZ′/g′ for a set of Z ′’s. Their constraints
depend only on the leptonic and Higgs U(1)′ charges, QHu , QHd

, Qℓ, Qe, and the assumption
that their arbitrary overall normalization is fixed, Q2

Hu
+ Q2

Hu
+ Q2

ℓ + Q2
e = 2. Given that

we fix Qℓ = Qe = QHd
= 0, the Z ′ gauge boson in our model cannot be considered as one

of the given set of Z ′’s, so that the bounds on MZ′/g′ given by [147] are not applicable in a
straightforward way. Therefore, we require a 2σ (i.e. 95% CL) agreement with EW precision
observables, parametrized through the oblique parameters S, T, U [148–151]. The constraints
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from the latter are included by evaluating

χ2
STM = XTC−1X , (4.13)

with XT = (S−Ŝ, T−T̂ , U−Û). The observed parameters deviations are given by [152]

Ŝ = 0.05, T̂ = 0.09, Û = 0.01, (4.14)

where the unhatted quantities denote the model predictions. The covariance matrix is
[152]

Cij =

⎡⎢⎢⎣
0.0121 0.0129 −0.0071

0.0129 0.0169 −0.0119

−0.0071 −0.0119 0.0121

⎤⎥⎥⎦ .
We then require χ2

STU ≤ 8.025, corresponding to a maximal 2σ deviation given the 3 degrees
of freedom.

4.4 Gauge boson mass constraints

After imposing the constraints from the previous section, we turn our attention to gauge
bosons. From the SSB of the SU(2)L ⊗ U(1)Y ⊗ U(1)′ symmetry, the gauge bosons Z and
Z ′ mix to form physical mass eigenstates. The Z − Z ′ mixing mass matrix is

M2
Z =

(
M2

ZZ M2
ZZ′

M2
ZZ′ M2

Z′Z′

)
. (4.15)

As the mixing between the Z and Z ′ bosons is very small, to a good approximation, these are
good physical states, with masses given in Eq. 4.7. Following the methodology described in
the previous section, we scan the parameter space imposing constraints on SUSY particles,
rare B-meson decays and oblique parameters so that the SM Z gauge boson properties are
consistent with experimental data, as indicated in Table 6.1. In the following, we analyze the
properties of the gauge sector for all scenarios accepted in our scanning procedure. In Fig.
4.1, we depict the relations between the parameters MZ′ , g′SUSY, QQ, the ratio of MZ′/g′SUSY

and χ2
STU. Here, g′SUSY is the coupling constant for the U(1)′ group at the SUSY-breaking

scale. The color bar of the upper panels shows the χ2
STU values for solutions with χ2

STU ≤ 8.025
while the color bar of the left bottom panel represents the gauge coupling g′SUSY. According
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Observable Constraints Ref. Observable Constraints Ref.

mh1 [122, 128] GeV [29] mt̃1
⩾ 730 GeV [153]

mg̃ > 1.75 TeV [153] mχ±
1

⩾ 103.5 GeV [153]

mτ̃1 ⩾ 105 GeV [153] mb̃1
⩾ 222 GeV [153]

mq̃ ⩾ 1400 GeV [153] mτ̃1 > 81 GeV [153]

mẽ1 > 107 GeV [153] mµ̃1 > 94 GeV [153]

χ2
STU ≤ 8.025 - BR(B0

s → µ+µ−) [1.1, 6.4]× 10−9 [88]
BR(B → τντ )

BRSM(B → τντ )
[0.15, 2.41] [89] BR(B0 → Xsγ) [2.99, 3.87]× 10−4 [90]

Table 4.3: Current experimental and theoretical bounds used to determine consistent solu-
tions in our scans.

to the top left panel of Fig. 4.1, the ratio MZ′/g′SUSY can be as low as 2.2 TeV when the
charge QQ is small (i.e., [1.− 3.]× 10−2) while the bound on MZ′/g′SUSY tends to increase up
to 8 TeV for larger QQ values (i.e., 1× 10−1). Further, the top right and bottom left panel of
Fig. 4.1 shows that light Z ′ solutions consistent with the constraints given in Table 6.1 can be
found to lie around 1.5 TeV. For heavier Z ′ masses, the range for the ratio MZ′/g′SUSY opens
up to a larger interval. As seen from the bottom panels of the figure, the lowest bound on
the ratio MZ′/g′SUSY can be fulfilled at 2117 GeV when MZ′ = 1388 GeV, the corresponding
gauge coupling being g′SUSY ≃ 0.66, QQ = 1.11 × 10−2 and χ2

STU = 2.64. The lowest bound
on MZ′/g′SUSY increases drastically, up to 15.7 TeV, when g′SUSY has its minimum value 0.25,
MZ′ = 3940 GeV and χ2

STU = 6.01.

In Fig. 7.1 top left panel, we present the comparison of σ(pp→ Z ′)× BR(Z ′ → ℓℓ) vs
MZ′ consistent with the ATLAS data of [9], scanning through the whole parameter space and
displaying the values of BR(Z ′ → ℓℓ) in different color codes. The experimental constraints
are the same as in Fig. 4.1 except that we relax the χ2

STU value, since we want to plot the
branching ratios (BR) also for light Z ′ solutions which are excluded by the χ2

STU bound.
Since we fix Qℓ = Qe = 0, the Z ′ state does not couple to ℓℓ. However, the small mass
mixing Z − Z ′ still allows the Z ′ to decay into ℓℓ states, but only with BRs of 0.01% for
MZ′ ≃ 600 GeV while the BR decreases drastically for heavier Z ′ masses. The ATLAS
observed limit on the fiducial cross section times BR ranges from 3.6 (13.1) fb at 250 GeV
to about 0.014 (0.018) fb at 6 TeV for a zero (10%) relative width signal in the combined
di-lepton channel [9]. Therefore, our results imply a lower limit of ∼ 700 GeV at the 95%
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Figure 4.1: The effect of oblique parameters and (g − 2)µ experimental bounds on the ratio
MZ′/g′.
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CL on MZ′ for the Z ′ boson in the combined di-lepton channel. In the top right panel of
Fig. 7.1 we compare the CMS high-mass di-jet yield from Ref. [10] with our predictions for
σ(pp → Z ′)× BR(Z ′ → qq̄), obtained after scanning the secluded UMSSM parameters as
described in Table 7.2 and imposing the constraints of Table 6.1. For the sake of consistency
with the experimental analysis, the σ×BR rate is multiplied by an acceptance factor A = 0.5

and the fraction of Z ′ → tt̄ events is not included in the calculation.

These results are similar to those found in Z ′ models which employ gauge kinetic
mixing to achieve leptophobia. However, there are some differences. One is that, while in
these other scenarios the di-jet BR of the Z ′ cannot be lowered below 36%, in the secluded
UMSSM it can be lowered to 5%. Another important aspect is that the model is also d-quark-
phobic (the BR of Z ′ to d-type quarks is only about 1.4%). This is a direct consequence
of different U(1)′ charge assignments. Leptophobia and d-quark-phobia have thus further
lowered the bound on the Z ′ mass by lowering its production cross section. Also, we benefit
from new experimental acceptance (A = 0.5 with the new data at L = 137 fb−1 [10], compared
to A = 0.6 at L = 27 fb−1 and 36 fb−1 [154]). From the top right panel of Fig. 7.1, one
learns that the computed σ × BR is always below the CMS exclusion limits [10, 154] in
the range 1.5 TeV < MZ′ < 6 TeV at the 95% CL, with the exception of a tiny region
around MZ′ ≃ 2.3 TeV. One can, therefore, conclude that much lighter Z ′ bosons consistent
with the constraints given in Table 6.1 could be allowed by data when leptophobic secluded
UMSSM realizations, such as the one introduced in section 6.2, are considered. In the middle
left panel, we check the ratio Γ(Z ′)/MZ′ to assure that the Narrow Width Approximation
(NWA) can be used consistently while in the middle right panel we investigate the variation
of the Z ′ mass limit with the QQ charge, QQ = α, the free parameter for the matter fields
in the secluded U(1)′ group. As seen from the color bar in the middle left panel, the Z ′ is
quite narrow for the solutions found while the color bar of the middle right panel indicates
that also the α parameter should be quite small (less than α < 2 × 10−1). Moreover, one
can see the correlation between α and Γ(Z ′)/MZ′ . When α is increased, the Γ(Z ′)/MZ′ ratio
also increases and approaches the CMS observed limits. As seen from the bottom left panel
of Fig. 7.1, MZ′/g′ ratios below ∼ 3 TeV require a decay width smaller than 1% and a QQ

value smaller than ∼ 2× 10−2. Finally, the bottom right panel of Fig. 7.1 shows the relation
between various Z ′ masses and the U(1)′ charges for the S1, S2 and S3 secluded singlets,
where we set QS1 = QS3 = −QS2/2 = δ for simplicity. Solutions with lighter Z ′ masses
necessitate smaller δ values while δ values increase for heavier Z ′ masses. This relation can
be understood via Eq. 4.7.
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Figure 4.2: Leptophobic Z ′ mass limits (Qℓ = Qe = 0). We investigate the Z ′ production
cross section multiplied by the di-lepton and di-jet BR (and by the acceptance A = 0.5 for
the latter), respectively. We compare theoretical predictions of the secluded UMSSM to the
bounds obtained by the ATLAS [9] and CMS [10] collaborations.
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4.5 Dark Matter

In this section, we analyze the model parameters which survive cosmological bounds from
the DM experiments. We investigate the constraints on the model arising from requiring the
lightest neutralino to be a viable DM candidate, with properties compatible with current
cosmological data. First, we demand that the predicted relic density agrees within 20%
(to conservatively allow for uncertainties on the predictions) with the recent Planck results,
ΩDMh

2 = 0.12 [11, 12]. We calculate, for all points returned by our scanning procedure in
Table 7.2 that are in addition compatible with current experimental bounds given in Table
6.1, the associated DM relic density. We present our results in Fig. 4.3.

In all the subfigures, the relic density is plotted as a function of the mass of the light-
est neutralino, denoted by Mχ̃0

1
. As seen from the panels, solutions consistent with the relic

density constraint emerge for almost all values of Mχ̃0
1

depending on the χ̃0
1 composition,

which is given in the following basis: (B̃′, B̃, W̃ , H̃u, H̃d, S̃, S̃1, S̃2, S̃3). The color bar of the
top left panel of Fig. 4.3 shows the S̃ content, as we are particularly interested in singlinos as
non-MSSM LSP candidates. One can learn from this panel that the relic density observed by
the Planck collaboration can be accommodated by S̃-like χ̃0

1’s lying roughly in the [25, 300]
GeV window, region largely disallowed for MSSM neutralinos. Once the lightest neutralino
spectrum becomes heavier, the contribution of the combination of S̃1, S̃2 and S̃3 singlets
increases, so as to become dominant for Mχ̃0

1
heavier than 400 GeV, as seen from the upper

right panel of Fig. 4.3. In the middle left panel, we focus on the combined contribution of all
singlinos, that is, S̃, S̃1, S̃2 and S̃3. As seen from the panel, singlino-like LSP solutions largely
dominate the parameter space. The middle right panel shows the higgsino-like neutralino
content. As observed from the panel, the relic density is at the scale of 10−3 for higgsino-like
neutralino with Mχ̃0

1
∼ 100 GeV, but it increases dramatically for heavier higgsino-like neu-

tralino masses. As in the MSSM, the relic density observed by the Planck collaboration can
be accommodated by higgsino-like solutions at roughly ∼ 1 TeV. Since TeV scale neutralino
solutions are naturally less appealing from a collider point of view and we want to pay par-
ticular attention to singlino LSP scenarios, we did not increase the scanned neutralino mass
range beyond 1 TeV. Although potentially viable scenarios could be obtained for even heavier
neutralinos (in particularly, for winos), for the purpose of this work, we ignore this regime
throughout. The bottom left panel of Fig. 4.3 represents the bino composition of the lightest
neutralino. Note that only solutions with bino contribution larger than 20% are represented
in the panel. Although there are some bino dominated χ̃0

1 solutions in our spectrum, their
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corresponding relic density mostly tends to lie in the [10, 100] range. An important fact is
that the lightest bino-like solutions can be obtained near 300 GeV. Bino contributions start
to decrease, yielding lower values of the relic density, and giving a maximum 50% contribu-
tion, when the relic density constraint is satisfied and Mχ̃0

1
∼ 400 GeV. The other ∼ 50%

contributions to mostly bino-like solutions consistent with the relic density constraint mainly
come from higgsinos and winos, both of which contribute more significantly for heavier χ̃0

1

masses, up to roughly 850 GeV, where we can classify the DM as mixed neutralino states. We
summarize the various lightest neutralino DM compositions in the bottom right panel of Fig.
4.3. As seen from this panel, bino dominated neutralino solutions cannot be good candidates
for DM since they do not satisfy the relic density constraints. Viable mixed (mostly bino
and higgsino) neutralino DM solutions can be found with a mass lying in the 400–800 GeV
range. When the spectrum is heavier, i.e., with a lightest neutralino Mχ̃0

1
∈ [0.8–1.0] TeV,

the relic density as observed by the Planck collaboration can be accommodated by higgsino
or singlino dominated solutions. It should be noted that B̃′ contributions are no more than
5% in the whole parameter space. Given that we mostly focus on small QQ values, this leads
to small couplings with the gaugino B̃′ associated with the U(1)′ gauge group, so relatively
small B̃′ contributions are expected.

Finally, we depict, in Fig. 4.4, the constraints coming from direct detection experi-
ments. The top panels show the spin-independent cross section for the nucleon as a function
of the mass of the lightest neutralino. Note that the results for spin-independent cross sections
for proton and neutron are almost the same. Therefore, we denoted it as σnucleon

SI and nor-
malised it to the present-day relic density. The top left plane shows how the spin-independent
cross section for the nucleon depends on the composition of the lightest neutralino for so-
lutions which survive all the constraints given in Table 6.1. Blue solutions in the top right
panel refer to all solutions represented in the top left plane whilst all the other colors are
subsets of blue and represent solutions consistent with the relic density constraint in addition
to the ones in Table 6.1. The black line indicates the limits from the Xenon 1T [155] with
the region above the curve being excluded. In addition, the blue and red lines show the
prospects for XENON nT and DARWIN [101] collaborations, respectively. As seen from the
top left plane, almost all singlino solutions survive the results of the Xenon 1T experiment
[155] while some portion of higgsino and bino dominated solutions are excluded. Another
important feature is that all mixed neutralino solutions are strictly excluded by Xenon 1T.
Once we compare our solutions consistent with the relic density bound to the result of Xenon
1T, a large fraction of higgsino dominated solutions consistent with the former are excluded
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Figure 4.3: Relic density predictions for secluded UMSSM scenarios satisfying all the con-
straints imposed during our scan and compatible with Z ′ bounds from the LHC, indicating
the dependence on the mass of the lightest neutralino. In each panel of the figure, we analyze
the composition of the LSP for different parameter regions. The horizontal green band in
all panels indicates the measured value of the relic density, consistent at 2σ with the Planck
experiment [11, 12].
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by the latter as seen from the top right figure. In contrast, singlino DM solutions consistent
with the relic density bound are always below the excluded region by Xenon 1T and can be
probed by the next generation of DM experiments such as Xenon nT and Darwin.

Whilst we have demonstrated that the singlino-type lightest neutralino could be a
viable DM candidate from the point of view of the relic density and direct detection bounds,
at the same time it is important to verify that DM indirect detection bounds are also satisfied.
In the bottom panels of Fig. 4.4, we present the value of the total DM annihilation cross
section at zero velocity as a function of the lightest LSP neutralino mass for all scanned
scenarios satisfying the Z ′ boson limits from the LHC. Configurations for which the relic
density is found in agreement with Planck data are shown along with their higgsino, singlino
and mixed compositions in the bottom right panel, whilst any other setup returned by the
scan is shown in light sky-blue and tagged as “Main Constraints”, referring to those given
in Table 6.1. In our predictions, we rescaled also the DM annihilation cross section to its
present-day density. We compare our predictions to the latest bounds derived from the Fermi-
LAT data [23, 156]. We depict, as a yellow area, the parameter space region that is found
out to be excluded. The bottom panel of Fig. 4.4 indicates that, unlike relic density and
direct detection bounds, which impose strong constraints on the model parameters, indirect
detection experiments are easily satisfied for a large portion of the parameter space. Most
singlino DM scenarios naturally feature an annihilation cross section that is at least 3 or
4 orders of magnitude too small to leave any potentially visible signal in Fermi-LAT data.
Therefore, singlino DM solutions are unaffected by current indirect detection limits and
will potentially stay so for some time by virtue of their correspondingly small annihilation
cross sections. In contrast, the annihilation cross sections of higgsino and mixed neutralino
solutions are about 10−26 cm3 s−1, hence, they are more likely to be probed by Fermi-LAT
when the precision of the annihilation cross section measurement will be improved.

4.6 Muon anomalous magnetic moment

The measurement of the muon anomalous magnetic moment exhibits an intriguing discrep-
ancy between the value found from the E821 experiment at BNL [68] and the value predicted
by the SM. Adding uncertainties, the deviations amount to 3.5 σ [153, 157] while recent
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Figure 4.4: DM direct and indirect detection constraints on the parameter space on the
secluded UMSSM model. The top panels show the constraints from the spin-independent
cross section for the nucleon while the bottom panels show the corresponding annihilation
cross sections.
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theory predictions for aµ find values as large as 4.1σ,

∆aµ ≡ aexpµ −∆aµ ≡ aSMµ = 268(63)(43) · 10−11.

Several models have been constructed and dedicated entirely to explain this discrepancy.
Conversely, whether the discrepancy is real or not3, it has been used as a test of how well
BSM scenarios perform.

In the secluded UMSSM, loop diagrams with additional neutralinos and sleptons as
well as with (right) sneutrinos and charginos provide additional contributions to the (g− 2)µ

observable. We present the results of our analysis in Fig. 4.5, where we show solutions consis-
tent with the muon anomalous magnetic moment within 1σ of the experimental value. Here,
we indicate the model solutions over the following planes: (Mχ̃±

1
,Mχ̃0

1
) (top left); (Mχ̃±

1
,Mχ̃0

2
)

(top right); (Mχ̃±
1
,Mχ̃0

3
) (bottom left) and (Mν̃1 ,Mτ̃1) (bottom right). When the lightest

neutralino is singlino, the second and the third lightest ones are higgsino-like, rather light
and almost degenerate in mass. The main contribution to the muon anomalous magnetic
moment comes from these two heavier states as well as (albeit more marginally) from the
lightest (right) sneutrino and (through slepton-mixing) stau states, in the appropriate dia-
grammatic combinations. As seen from the figure, a large portion of the solutions satisfies
the ∆aµ bound within 1σ. The grey region below the black curve represents the parameter
space ruled out by ATLAS searches [13, 14], close to which most solutions are found.

4.7 Z ′ signal at colliders

In this section, we investigate the observability of a secluded UMSSM scenario with light
Z ′ masses at LHC. To choose correct benchmarks, we first compare the range of chargino
and neutralino masses with restrictions from the ATLAS searches for chargino/neutralino
states [13, 14]. We make use of SModelS (version 1.2.2) [158–161] in order to calculate the
upper limit on the chargino-neutralino cross sections based on ATLAS-SUSY-2019-08 [13] and
ATLAS-SUSY-2018-32 [14] implemented and validated with the SModelS authors. Fig. 4.6
showcases our results in terms of the lightest chargino and neutralino masses, as functions
of the ratio between our calculated cross sections versus the upper limit on the chargino-
neutralino cross sections. We exclude all solutions with signal strength value exceeding 1.

3Leading order hadronic vacuum polarization contributions represent the main limitation of theoretical
calculations of non-perturbative low-energy QCD behavior.
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Figure 4.5: Parameter regions of chargino, neutralino, (right) sneutrino and stau masses
consistent with ∆aµ within 1σ. We show the following mass mappings: (top left) lightest
chargino versus lightest neutralino; (top right) lightest chargino versus second lightest neu-
tralino; (bottom left) lightest chargino versus third lightest neutralino; (bottom right) lightest
(right) sneutrino versus lightest stau. The grey region is ruled out by ATLAS searches for
chargino-neutralino states [13, 14]. The model solutions to the (g−2)µ discrepancy are dom-
inated by the neutralino (higgsino-like)-slepton and chargino-sneutrino loop contributions,
where, in particular, the contributing neutralinos and charginos are light yet consistent with
all experimental constraints.
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Figure 4.6: (Left) Neutralino-chargino mass limits in secluded UMSSM. The black curve
represents mass limits from ATLAS [13, 14], while our analysis rules out only points which
exceed the upper limits on the chargino-neutralino cross sections, as indicated on the right-
side color bar (which gives our predicted cross section measured against the limits from
ATLAS). (Right) Z ′ production cross sections multiplied by the di-jet BRs (and by the
acceptance A = 0.5).

This plot is complementary to the one shown in Fig. 4.5 top left panel, with the grey region
in that plot corresponding to the area below the curve. While in the former plot we indicate
muon g−2 values consistent with experiment, here we explore neutralino and chargino masses
constrained by bounds given in Table 6.1, with the aim to choose benchmarks compatible
with allowed EW-ino masses. Our plot indicates, however, that the parameter space allowed
by this model is less restrictive than the one in the ATLAS analysis. We rule out some points
for low chargino-neutralino masses (in red, lower left-hand corner) but allow the purple-blue
points in the upper right-hand corner. Of particular interest is a region specific to this model,
which allows singlino masses <∼ 50 GeV and chargino masses <∼ 350 GeV, region ruled out for
neutralinos and charginos in the MSSM. We shall concentrate our analysis in this parameter
region.

Scanning over the whole range of allowed Z ′ mass values, we find that consistency with
ATLAS production and di-lepton decay results allows MZ′ to be quite light. However, for
the parameter space to satisfy both DM and muon anomalous magnetic moment constraints
to at least 2σ, the Z ′ mass must be MZ′ >∼ O(3) TeV as seen from the right plane of figure
4.6. To highlight the model characteristics, we chose two benchmarks, BM I and BM II.
The first benchmark is consistent with all constraints, including relic density, and satisfies
the bounds on the g− 2 factor of the muon at 1σ. The second benchmark satisfies the same
constraints, except that we relax requirements on consistency with the anomalous magnetic
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[GeV] m0 M1/2 A0 vS vS1 = vS2 = vS3

BM I 942 2821 662 2421 5401
BM II 1722 2568 -1092 2282 6935

tan β λ Aλ κ Aκ α δ Y ij
v

BM I 11.9 2.04 ×10−1 3469 1.81 -4781 4.48×10−2 4.44×10−1 1.63×10−8

BM II 20.1 9.70 ×10−2 3051 6.73×10−1 -3910 4.44×10−2 4.00×10−1 6.71×10−8

Table 4.4: Set values for the free secluded UMSSM parameters defining our benchmark
scenarios BM I and BM II. Here, m0 is the universal scalar mass and M1/2 the gaugino
mass.

[GeV] MZ′ MH0
1

MH0
2

MH0
3

MH0
4

MH0
5

MH0
6

MA0
1

MA0
2

MH±
1

BM I 3307 126 332 2559 3405 3535 4148 3405 5066 3407
BM II 2291 123 394 758 2474 3138 3332 3138 3580 3139

[GeV] Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

Mχ̃0
5

Mχ̃0
6

Mχ̃0
7

Mχ̃0
8

Mχ̃0
9

Mχ̃±
1

Mχ̃±
2

BM I 45 358 363 1247 2295 2321 3595 4106 4590 359 2321
BM II 44 160 165 1100 1133 2122 2201 2325 3025 162 2121

Table 4.5: Particle spectrum of BM I and BM II: bosons (top) and fermions (bottom). All
masses are given in GeV.

moment of the muon. We list the values of the relevant free parameters in the model in Table
4.4 and the corresponding mass values for the fermions and bosons in the model in Table
4.5.

While scanning over the parameter space consistent with all constraints, we were
unable to find any allowed parameter space for which MZ′ < 3.3 TeV (BM I). Relaxing the
imposed constraints on the anomalous magnetic moment of the muon completely (for BM

II), while requiring agreement with the measured relic density, still poses rigid constraints
on the parameter space, but allows a lower MZ′ ∼ 2.3 TeV. The relevant predictions for BM

I and BM II for the DM and (g− 2)µ observables discussed in the above sections are shown
in Table 7.5. To test the signal coming from production and decay of the leptophobic Z ′

boson, we use its decay into supersymmetric particles, here into chargino pairs, followed by
the decay into lepton pairs or jets plus missing energy4. The decay of the lightest chargino
yielding lepton or jet final states is into χ̃±

1 → χ̃0
1W

± and we choose points for which this
4The decay into chargino pairs is not the only one yielding the required di-lepton (or jets) + missing ET

signal, but it dominates other intermediate steps by a few orders of magnitude.

77



BR is almost 1, as shown in Table 7.6. In the same table, we show predictions for the LHC
phenomenology of our two benchmark scenarios, including the production cross sections at
a centre-of-mass energy

√
s = 13, 14, 27 and 100 TeV, plus the dominant BRs of the Z ′.

For both scenarios, Z ′ boson production is small enough relatively to the LHC limits at a
centre-of-mass energy of 13 TeV. The cross section is about 0.016 fb for BM I and 0.1889 fb
for BM II after accounting for the Z ′ boson decaying into electron and muon pairs through
two chargino states. Consequently this makes the Z ′ signal difficult to observe, even with
more luminosity at a centre-of-mass energy of 13 TeV.

The Z ′ production cross section is therefore about 0.33 fb for BM I and 3.82 fb for
BM II at 13 TeV, after accounting for the Z′ bosons decaying into all SM fermions (quarks +
leptons) via two chargino states, giving rise to a multi-jet plus missing energy signature. The
latter is also typically expected from supersymmetric squark/gluino production and decay,
so that the results of SUSY searches in the multi-jet plus missing energy mode could be
reinterpreted to constrain the secluded UMSSM. We therefore recast these results from [162–
165] with MadAnalysis 5. However, such a rate is far beyond the reach of typical multi-jet
plus missing transverse momentum searches at the LHC, as confirmed by reinterpreting and
extrapolating the results of the CMS search in [164] and the results of the ATLAS search in
[162, 163, 165] targeting superpartner production and decay in the jets plus missing transverse
momentum mode to integrated luminosity of 3 ab−1 with MadAnalysis 5. Consequently,
this makes the Z ′ signal difficult to observe in di-jet final states, even with more luminosity.
We therefore focus on Z ′ signals that instead involve di-leptons in the final state at a centre-
of-mass energy of 14 TeV and 27 TeV.

The study of [125] provides a prescription for finding leptophobic Z ′ bosons at the
center-of-mass energy

√
s = 14 TeV and 3 ab−1 of luminosity in the di-lepton channel. The

signal process consists of the resonant production of a chargino pair, followed by the decay
of each chargino into a charged lepton and missing energy,

pp→ Z ′ → χ̃±
1 χ̃

∓
1 → ℓ+ℓ− +��ET . (4.16)

We followed the same procedure and carried out a full Monte Carlo (MC) event simu-
lation at the LHC, for a center-of-mass energy

√
s = 14 TeV and applied the cuts as in [125].

The production cross section of Z ′ boson is 17.1 fb for BM I and 146.1 fb for BM II for a
center-of-mass energy

√
s = 14 TeV as given in Table 7.6. We have made use of SARAH to

generate a UFO [111] version of the model, so that we could employ MG5_aMC (ver-
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sion 2.7.2) [112] for generating the hard-scattering signal event samples necessary for our
collider study. These events, obtained by convoluting the hard-scattering matrix elements
with the leading-order set of NNPDF 3.1 parton densities [166], were subsequently matched
with Pythia 8 (version 8.244) [167] parton showering and hadronisation algorithms, plus
we simulated the typical response of an LHC detector by means of the Delphes 3 [168]
programme (version 3.4.2) employing the Snowmass parameterization [169, 170] that relies
on the anti-kT algorithm [171] with a radius parameter R = 0.6 as implemented into Fast-

Jet [172] (version 3.3.3) for event reconstruction. We have employed MadAnalysis 5 [173]
(version 1.8.23) and normalized our results to an integrated luminosity of 3 ab−1 for the
collider analysis.

We select events featuring two well-separated muons and veto the presence of jets, by
requiring

N ℓ = 2, ∆R(ℓ1, ℓ2) > 2.5, N j = 0. (4.17)

The transverse momenta of the two leptons and the missing transverse energy are required
to fulfill

pT (ℓ1) > 300 GeV, pT (ℓ2) > 200 GeV, ��ET > 100 GeV. (4.18)

To investigate the observability of the two benchmarks at the HL-LHC, we use of two standard
significance parameters, labelled as s and ZA (the Asimov significance), defined as:

s =
S√

B + σ2
B

, (4.19)

ZA =

√
2

(
(S +B) ln

[
(S +B)(S + σ2

B)

B2 + (S +B)σ2
B

]
− B2

σ2
B

ln

[
1 +

σ2
BS

B(B + σ2
B)

])
, (4.20)

where S is the number of signal events, B of background events and σB is the standard
deviation of background events.

The corresponding cutflows are shown in Table 4.8, where we give our original and final
number of signal events, and the ones surviving each cut, shown in the left-handed column.
We assume that we would get the same cut efficiency of the background as in [125]. One can
see that the significance of the benchmarks at 14 TeV and with integrated luminosity 3 ab−1

is very small, making it unlikely to be observed, even at the HL-LHC. Therefore, we extend
the analysis of our benchmark scenarios at 27 TeV, and in Table 4.8, we give our original
and final number of signal events in parentheses. We estimate the number of background
events at 27 TeV by using a boost factor calculated from the dominant background channel,
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ΩDMh2 σproton
SI [pb] σneutron

SI [pb] ⟨σv⟩ [cm3s−1] ∆aµ × 1010

BM I 0.131 1.84×10−13 1.89×10−13 5.58 ×10−29 36.4 (within 1σ)

BM II 0.124 2.21×10−11 2.26×10−11 8.17×10−29 173.4 (outside 3σ)

Table 4.6: Predictions for the BM I and BM II scenarios, of the observables discussed in
our dark matter analysis.

σ(pp→ Z′) BR(Z′ → χ̃±
1 χ̃

∓
1 ) BR(Z′ → jj) BR(χ̃±

1 → χ̃0
1W

±)

13 TeV 14 TeV 27 TeV 100 TeV

BM I 12.09 17.1 169.3 2474 0.059 0.309 0.99
BM II 113.7 146.1 862.2 8638 0.066 0.340 1.0

Table 4.7: Z ′ production cross section at
√
s = 13, 14, 27 and 100 TeV and branching ratios

for the BM I and BM II scenarios, relevant for the associated LHC phenomenology.

the di-boson production. While BM I remains below the 3σ minimum significance required
for a positive identification, the BM II significance rises above 3σ at

√
s = 27 TeV and

integrated luminosity 3 ab−1, making this benchmark promising at the HE-LHC. That this
indeed so is seen in Fig. 4.7, where we plot significance curves for s and ZA at

√
s = 27

TeV, for both BM I and BM II, as a function of the total integrated luminosity L. While
BM I would be observable at high integrated luminosity 3 ab−1 at 3σ under only the most
optimistic scenario, in which we assume small systematic errors (∆syst = 5%), BM II shows
promise for observability even for larger systematic errors, ∆syst = 20%. Of course, we stress
that, while BM II is promising, it was obtained by relaxing the condition that the model
satisfies (g − 2)µ to (1-2)σ.
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Step Requirements BM I BM II

0 Initial 71 (92) 726 (3854)

1 N ℓ = 2 45 (61) 386 (2310)

2 Electron Veto 13 (18) 115 (712)

3 |ηℓ| < 1.5 13 (18) 112 (685)

4 Iµrel < 0.15 13 (18) 107 (663)

5 ∆R(ℓ1, ℓ2) > 2.5 11 (18) 107 (662)

6 N j = 0 11 (18) 60 (330)

7 pT (ℓ1) > 300 GeV 6 (18) 17 (107)

8 pT (ℓ2) > 200 GeV 2 (17) 6 (36)

9 ��ET > 100 GeV 2 (15) 4 (25)

s (∆syst = 20%) 0.53 (2.33) 1.09 (3.89)

ZA (∆syst = 20%) 0.51 (2.03) 0.99 (3.16)

Table 4.8: Events surviving after each cut (as given in the left column) and significance of
BM I and BM II at 14 (27) TeV and integrated luminosity 3 ab−1.

Figure 4.7: Significance of benchmarks BM I (left panel) and BM II (right panel) at
√
s = 27

TeV, as a function of the luminosity L. In each panel we plot the usual significance s and the
Asimov significance ZA. Different curves are obtained assuming different systematic errors,
as indicated in the upper left-hand panel.
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Chapter 5

E6 Motivated UMSSM Confronts

Experimental Data

5.1 Introduction

After the observation of a Standard Model (SM)-like Higgs boson by ATLAS [28] and CMS
[29] in 2012, almost all ongoing and planned observational or collider experiments have been
concentrating on searching for New Physics (NP). Undoubtedly, Supersymmetry (SUSY) is
one of the most studied NP theories at these experiments, since it has remarkable advantages.
In SUSY theories, the stability problem of the hierarchy between the Electro-Weak (EW)
and Planck scales is solved by introducing new particles, differing by half a spin unit from
the SM ones, thereby onsetting a natural cancellation between otherwise divergent boson and
fermion loops in a Higgs mass or self-coupling. Furthermore, since it relates the latter to the
strength of the gauge boson couplings, SUSY predicts a naturally light Higgs boson in its
spectrum, indeed compatible with the discovered 125 GeV Higgs boson. Also, SUSY is able
to generate dynamically the Higgs potential required for EW Symmetry Breaking (EWSB),
which is instead enforced by hand in the SM. Finally, another significant motivation for SUSY
is the natural Weakly Interacting Massive Particle (WIMP) candidate predicted in order to
solve the DM puzzle, in the form of the Lightest Supersymmetric Particle (LSP).

Though SUSY also has the key property of enabling gauge coupling unification, this
requires rather light stops (the counterpart of the SM top quark chiral states), though, at
odds with the fact that a 125 GeV SM–like Higgs boson requires such stops to be rather
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heavy within the Minimal Supersymmetric Standard Model (MSSM), which is the simplest
SUSY extension of the SM, thereby creating an unpleasant fine tuning problem. Another
phenomenological flaw of the MSSM is that, in the case of universal soft-breaking terms
and the lightest neutralino as a DM candidate, the constraints from colliders, astrophysics
and rare decays have a significant impact on the parameter space of the MSSM [174], such
that the MSSM, in its constrained (or universal) version, is almost ruled out under these
circumstances [175]. Moreover, the MSSM has some theoretical drawbacks too, such as the
so-called µ problem and massless neutrinos. The aforementioned flaws of the MSSM are
motivations for non-minimal SUSY scenarios [48].

Among these, UMSSMs, which have been broadly worked upon the literature, are quite
popular [122, 139, 176–196]. In the SUSY framework, these models can dynamically generate
the µ term at the EW scale [117, 197, 198] while even the non-SUSY versions of these are
able to provide solutions for DM [199–202], the muon anomaly [203] and baryon leptogenesis
[204, 205]. The right-handed neutrinos are also allowed in the superpotential to build a
see-saw mechanism for neutrino masses if the extra U(1) symmetry arises from the breaking
pattern of the E6 symmetry [206]. Moreover, such E6 motivated UMSSMs meet the anomaly
cancellation conditions by heavy chiral states in the fundamental 27 representation.

Since there is an extra gauge boson, so-called Z ′ boson, as well as new SUSY particles
in their spectrum, UMSSM have a richer collider phenomenology than the MSSM. Promising
signals for a Z ′ state at the LHC would emerge from searches for heavy resonances decaying
into a pair of SM particles in Drell-Yan (DY) channels. The most stringent lower bound on
the Z ′ mass has been set by ATLAS in the di-lepton channel as 4.5 TeV for an E6 motivated ψ
model [9]. Such heavy resonance searches rely upon the analysis of the narrow Breit-Wigner
(BW) line shape. In the case of the Z ′ boson with large decay width Γ(Z ′) this analysis
becomes inappropriate because the signal appears as a broad shoulder spreading over the
SM background instead of a narrow BW shape [207]. Furthermore, the emerging shape can
be affected by a large (and often negative) interference between the broad signal and SM
background. However, there are alternative experimental approaches for wide Z ′ resonances
in the literature [208]. In these circumstances, the stringent experimental bounds on the Z ′

mass could be relaxed for a Z ′ boson with a large width Γ(Z ′).

This large Z ′ width can be obtained in several Beyond the SM (BSM) scenarios when
the Z ′ state additionally decays into exotic particles or the couplings to the fermion families
are different. In an E6 motivated UMSSM, through these channels, Γ(Z ′) could be as large
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as 5% of the Z ′ mass [209]. However, other decay channels could come into play, such as
WW and/or hZ (where h is the SM–like Higgs boson), could have large partial widths in the
presence of kinetic mixing between two U(1) gauge groups. With this in mind, we study in
this work an E6 motivated UMSSM in a framework where such two U(1) groups kinetically
mix so as to, on the one hand, enable one to find only very specific such models compatible
with all current experimental data and, on the other hand, generate a wide Z ′ which in turn
allows for Z ′ masses significantly lower than the aforementioned limits, These could onset
signals probing such constructs, at both the LHC and DM experiments.

The outline of the paper is the following. We will briefly introduce E6 motivated
UMSSMs in Section ??. After summarising our scanning procedure and enforcing experi-
mental constraints in Section 5.3, we present our results over the surviving parameter space
and discuss the corresponding particle mass spectrum in Section 5.4, including discussing
DM implications.

5.2 Model Description

In addition to the MSSM symmetry content, the UMSSM includes an extra Abelian group,
which we indicate as U(1)′. The most attractive scenario, which extends the MSSM gauge
structure with an extra U(1)′ symmetry, can be realised by breaking the exceptional group
E6, an example of a possible Grand Unified Theory (GUT) [122, 177–184, 190–196, 210, 211],
as follows:

E6 → SO(10)× U(1)ψ → SU(5)× U(1)χ × U(1)ψ → GMSSM × U(1)′, (5.1)

where GMSSM = SU(3)c × SU(2)L × U(1)Y is the MSSM gauge group and U(1)′ can be
expressed as a general mixing of U(1)ψ and U(1)χ as

U(1)′ = cos θE6U(1)χ − sin θE6U(1)ψ. (5.2)

In this scenario, the cancellation of gauge anomalies is ensured by an anomaly free
E6 theory, which includes additional chiral supermultiplets. These additional chiral super-
multiplets are assumed to be very heavy and embedded in the fundamental 27-dimensional
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representations of E6, which constitute the particle spectrum of this scenario alongside the
MSSM states and an additional singlet Higgs field Ŝ [210]. The Vacuum Expectation Value
(VEV) of S is responsible for the breaking of the U(1)′ symmetry. Furthermore, E6 scenarios
are also encouraging candidates for extra U(1)′ models since they may arise from superstring
theories [212]. Moreover, E6 theories generally allow one to include see-saw mechanisms for
neutrino mass and mixing generation because of the presence of the right-handed neutrino
in their 27 representations [213]. In this study, we assume that the right-handed neutrino
does not affect the low energy implications and set its Yukawa coupling to zero.

One can neglect the superpotential terms with the additional chiral supermultiplets as
these exotic fields do not interact with the MSSM fields directly, their effects in the sparticle
spectrum being quite suppressed by their masses. In this case, the UMSSM superpotential
can be given as

W = YuQ̂ĤuÛ + YdQ̂ĤdD̂ + YeL̂ĤdÊ + hsŜĤdĤu, (5.3)

where Q̂ and L̂ denote the left-handed chiral superfields for the quarks and leptons while
Û , D̂ and Ê stand for the right-handed chiral superfields of u-type quarks, d-type quarks
and leptons, respectively. Here, Hu and Hd are the MSSM Higgs doublets and Yu,d,e are
their Yukawa couplings to the matter fields. The corresponding Soft-SUSY Breaking (SSB)
Lagrangian can be written as

−L���SUSY = m2
Q̃
|Q̃|2 +m2

Ũ
|Ũ |2 +m2

D̃
|D̃|2 +m2

Ẽ
|Ẽ|2 +m2

L̃
|L̃|2

+m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

S|S|2 +
∑

aMaλaλa

+
(
ASYSSHu ·Hd + AtYtŨ

cQ̃ ·Hu + AbYbD̃
cQ̃ ·Hd + AτYbL̃

cẽ ·Hd + h.c.
)
,

(5.4)
where mQ̃, mŨ , mD̃, mẼ, mL̃,mHu , mHd

and mS̃ are the mass matrices of the scalar particles
identified with the subindices, while Ma ≡ M1,M2,M3,M4 stand for the gaugino masses.
Further, AS, At, Ab and Aτ are the trilinear scalar interaction couplings. In Eq. (5.3), the
MSSM bilinear mixing term µHdHu is automatically forbidden by the extra U(1)′ symmetry
and it is instead induced by the VEV of S as µ = hSvS/

√
2, where vS ≡ ⟨S⟩. Employing

Eqs. (5.3) and (5.4), the Higgs potential can be obtained as

V tree = V tree
F + V tree

D + V tree
���SUSY (5.5)

with
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V tree
F = |hs|2 [|HuHd|2 + |S|2 (|Hu|2 + |Hd|2)] ,

V tree
D =

g21
8
(|Hu|2 + |Hd|2)2 +

g22
2
(|Hu|2|Hd|2 − |HuHd|2)

+
g′2

2
(QHu |Hu|2 +QHd

|Hd|2 +QS|S|2) ,

V tree
���SUSY = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2 + (AshsSHuHd + h.c.) ,

(5.6)

which yields the following tree-level mass for the lightest CP-even Higgs boson mass:

m2
h =M2

Z cos
2 2β +

(
v2u + v2d

) [h2S sin2 2β

2
+ g′2

(
QHu cos

2 β +QHd
sin2 β

)]
. (5.7)

All MSSM superfields and Ŝ are charged under the U(1)ψ and U(1)χ symmetries and the
charge configuration for any U(1)′ model can be obtained from the mixing of U(1)ψ and
U(1)χ, which is quantified by the mixing angle θE6 , through the equation provided in the
caption to Table 5.1.

Model Q̂ Û c D̂c L̂ Êc Ĥd Ĥu Ŝ

2
√
6 U(1)ψ 1 1 1 1 1 -2 -2 4

2
√
10 U(1)χ -1 -1 3 3 -1 -2 2 0

Table 5.1: Charge assignments for E6 fields satisfying Qi = Qχ
i cos θE6 −Qψ

i sin θE6 .

In addition to the singlet S and its superpartner, the UMSSM also includes a new
vector boson Z ′ and its supersymmetric partner B̃′ introduced by the U(1)′ symmetry. After
the breaking of the SU(2)× U(1)Y × U(1)′ symmetry spontaneously, Z and Z ′ mix to form
physical mass eigenstates, so that the Z − Z ′ mass matrix is as follows

M2
Z =

(
M2

ZZ M2
ZZ′

M2
ZZ′ M2

Z′Z′

)
=

(
2g21
∑

i t
2
3i |⟨ϕi⟩|

2 2g1g
′∑

i t3iQi |⟨ϕi⟩|2

2g1g
′∑

i t3iQi |⟨ϕi⟩|2 2g′2
∑

iQ
2
i |⟨ϕi⟩|

2

)
, (5.8)

where t3i is the weak isospin of the Higgs doublets or singlet while the |⟨ϕi⟩|’s stand for their
VEVs. The matrix in Eq. (5.8) can be diagonalised by an orthogonal rotation and the mixing
angle αZZ′ can be written as

tan 2αZZ′ =
2M2

ZZ′

M2
Z′Z′ −M2

ZZ

. (5.9)
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The physical mass states of Z and Z ′ are given by

M2
Z,Z′ =

1

2

[
M2

ZZ +M2
Z′Z′ ∓

√
(M2

ZZ −M2
Z′Z′)

2
+ 4M4

ZZ′

]
. (5.10)

Besides mass mixing, the theories with two Abelian gauge groups also allow for the existence
of a gauge kinetic mixing term which is consistent with the U(1)Y and U(1)′ symmetries
[127, 214, 215]:

Lkin ⊃ −κ
2
B̂µνẐ ′

µν , (5.11)

where B̂µν and Ẑ ′
µν are the field strength tensors of U(1)Y and U(1)′, while κ stands for the

kinetic mixing parameter. The mixing factor can be generated at loop level by Renormalisa-
tion Group Equation (RGE) running while no such term appears at tree level [128]. In order
to attach a physical meaning to the kinetic part of the Lagrangian, we need to remove the
non-diagonal coupling of B̂µν and Ẑ ′

µν by a two dimensional rotation:

(
B̂µ

Ẑ ′
µ

)
=

(
1 − κ√

1−κ2

0 1√
1−κ2

)(
Bµ

Z ′
µ

)
, (5.12)

where B̂µ and Ẑ ′
µ are original U(1)Y and U(1)′ gauge fields with off-diagonal kinetic terms

while Bµ and Z ′
µ do not posses such terms. Due to the transformation in Eq. (5.12), a non-

zero κ has a considerable effects on the Z ′ sector of the UMSSM. One of these is that the
rotation matrix which diagonalises the mass matrix in Eq. (5.8) is modified. Therefore, the
mixing angle in Eq. (5.9) can be rewritten in terms of κ [215]:

tan 2αZZ′ =
−2 cosχ(M2

ZZ′ +M2
ZZ ŝW sinχ)

M2
Z′Z′ −M2

ZZ cos
2 χ+M2

ZZ ŝ
2
W sin2 χ+ 2M2

ZZ′ ŝW sinχ
, (5.13)

where sinχ = κ and cosχ =
√
1− κ2 1. Note that the impact of κ can be negligible

only if MZ ≪ MZ′ and κ ≪ 1. The |αZZ′| value is strongly bounded by EW Precision
Tests (EWPTs) to be less than a few times 10−3. In models with kinetic mixing (e.g., in
leptophobic Z ′ models), this limit could be relaxed but does not exceed significantly the
O(10−3) ballpark [123]. The kinetic mixing also affects the interactions of the Z ′ boson
with fermions. After applying the rotation in Eq. (5.12), the Lagrangian term which shows

1In this notation, generally used to express kinetic mixing factor, χ is called the kinetic mixing angle.
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Z-fermion and Z ′-fermion interaction can be written as [127]:

Lint = −ψ̄iγµ
[
gyYiBµ + (gpQi + gypYi)Z

′
µ

]
ψi , (5.14)

where gy, gp and gyp are the redefined gauge coupling matrix elements after absorbing the
rotation in Eq. (5.12) and they can be written in terms of original diagonal gauge couplings
and the kinetic mixing parameter κ:

gy =
gY Y gEE − gY EgEY√

g2EE + g2EY
= g1,

gyp =
gY Y gEY + gY EgEE√

g2EE + g2EY
=

−κg1√
1− κ2

,

gp =
√
g2EE + g2EY =

g′√
1− κ2

,

(5.15)

where gY Y , gEE, gEY and gY E are the elements of non-diagonal gauge matrix obtained by
absorbing the rotation in Eq. (5.12) [216]:

G =

(
gY Y gY E

gEY gEE

)
. (5.16)

It is important to notice that parts of the mass mixing matrix in Eq. (5.8) change in the
case of kinetic mixing and the off-diagonal gEY and gY E enter in MZZ′ as well.

As seen from Eqs. (5.14)–(5.15), the kinetic mixing results in a shift in the U(1)′

charges of the chiral superfields, which define the couplings of the Z ′ boson with fermions:

Qeff
i = Qi − κ

g1
g′
Yi . (5.17)

Since the anomaly cancellation conditions for Qi and Yi in E6 models stabilises the theory,
this new effective charge configuration is also anomaly free. Moreover, if one makes a special
choice in the (κ,Qi) space, the Z ′ boson can be exactly leptophobic [125, 128, 129].

Compared to the MSSM, the UMSSM has a richer gaugino sector which consists of
six neutralinos. Their masses and mixing can be given in the (B̃′, B̃, W̃ , h̃u, h̃d, S̃) basis as
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follows:

Mχ̃0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M ′
1 0 0 g′QHd

vd g′QHuvu g′QSvS

0 M1 0 − 1√
2
g1vd

1√
2
g1vu 0

0 0 M2
1√
2
g2vd − 1√

2
g2vu 0

g′QHd
vd − 1√

2
g1vd

1√
2
g2vd 0 − 1√

2
hsvu − 1√

2
hsvu

g′QHuvu
1√
2
g1vu − 1√

2
g2vu − 1√

2
hsvS 0 − 1√

2
hsvd

g′QSvS 0 0 − 1√
2
hsvu − 1√

2
hsvd 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.18)

where M ′
1 is the SSB mass of B̃′ and the first row and column encode the mixing of B̃′

with the other neutralinos. Since the UMSSM does not have any new charged bosons, the
chargino sector remains the same as that in the MSSM. Besides the neutralino sector, the
sfermion mass sector also has extra contributions from the D-terms specific to the UMSSM.
The diagonal terms of the sfermion mass matrix are modified by

∆f̃ =
1

2
g′Qf̃ (QHuv

2
u +QHd

v2d +QSv
2
S), (5.19)

where f̃ refers to sfermion flavours. It can be noticed that all neutralino and sfermion masses
also depend on κ in the presence of kinetic mixing due to Eqs. (5.15) and (5.17) [217].

5.3 Scanning Procedure and Experimental Constraints

In our parameter space scans, we have employed the SPheno (version 4.0.0) package [76]
obtained with SARAH (version 4.11.0) [78]. In this code, all gauge and Yukawa couplings in the
UMSSM are evolved from the EW scale to the GUT scale that is assigned by the condition
of gauge coupling unification, described as g1 = g2 = g′. (Notice that g3 is allowed to have a
small deviation from the unification condition, since it has the largest threshold corrections
at the GUT scale [218].) After that, the whole mass spectrum is calculated by evaluating
all SSB parameters along with gauge and Yukawa couplings back to the EW scale. These
bottom-up and top-down processes are realised by running the RGEs and the latter also
requires boundary conditions given at MGUT scale. In the numerical analysis of our work, we
have performed random scans over the following parameter space of the UMSSM:
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Parameter Scanned range Parameter Scanned range

m0 [0., 3.] TeV hs [0., 0.7]

M1,4/M3 [−15., 15.] TeV vS [1., 15.] TeV

M3 [0., 3.] TeV As [−5., 5.] TeV

M2/M3 [−5., 5.] TeV θE6 [−π/2, π/2]
tan β [1., 50.] κ [−0.5, 0.5]

A0 [−5.,−5.] TeV

Table 5.2: Scanned parameter space.

where m0 is the universal SSB mass term for the matter scalars while M1,M2,M3,M4 are the
SSB mass terms of the gauginos associated with the U(1)Y , SU(2)L and SU(3)c and U(1)′

symmetry groups, respectively. Besides, A0 is the SSB trilinear coupling and tan β is the
ratio of the VEVs of the MSSM Higgs doublets. As is the SSB interaction between the S, Hu

and Hd fields. In addition, as mentioned previously, θE6 and κ are the Z − Z ′ mass mixing
angle and gauge kinetic mixing parameter. Finally, we also vary the Yukawa coupling hs and
vS (the VEV of S) which is responsible for the breaking of the U(1)′ symmetry.

In order to scan the parameter space efficiently, we use the Metropolis-Hasting al-
gorithm [93]. After data collection, we implement Higgs boson and sparticle mass bounds
[29, 153] as well as constraints from Branching Ratios (BRs) of B-decays such as BR(B →
Xsγ) [90], BR(Bs → µ+µ−) [88] and BR(Bu → τντ ) [89]. We also require that the predicted
relic density of the neutralino LSP agrees within 20% (to conservatively allow for uncertain-
ties on the predictions) with the recent Wilkinson Microwave Anisotropy Probe (WMAP)
[219] and Planck results, ΩCDMh

2 = 0.12 [11, 12]. The relic density of the LSP and scattering
cross sections for direct detection experiments are calculated with MicrOMEGAs (version
5.0.9) [220]. The experimental constraints can be summarised as follows:
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mh = 123− 127 GeV(and SM− like couplings),

mg̃ ≥ 1.8 TeV,

0.8× 10−9 ≤ BR(Bs → µ+µ−) ≤ 6.2× 10−9 (2σ tolerance),

mχ̃0
1
≥ 103.5 GeV,

mτ̃ ≥ 105 GeV,

2.99× 10−4 ≤ BR(B → Xsγ) ≤ 3.87× 10−4 (2σ tolerance),

0.15 ≤ BR(Bu → τντ )UMSSM

BR(Bu → τντ )SM
≤ 2.41 (3σ tolerance),

0.0913 ≤ ΩCDMh
2 ≤ 0.1363 (5σ tolerance).

(5.20)

As discussed in the previous section, the kinetic mixing affects the Z − Z ′ mixing matrix
and adds new terms related to the off-diagonal gauge matrix elements gEY and gY E into
the mixing term MZZ′ . Furthermore, the mixing angle could be enhanced near or beyond
the EWPT bounds. The main reason is that the new MZZ′ element includes the term with
proportional to gEYQ2

Sv
2
S. Therefore, one must take a specific gEY range if one wants to avoid

violating the EWPT limits for αZZ′ . In our analysis, we allow this range as gEY ∼ O(10−3)

to obtain a large (but compatible with EWPTs) αZZ′ , as Γ(Z ′ → WW ) and Γ(Z ′ → Zh) are
very sensitive to this coupling. In order to account for EWPTs, we have parameterised the
latter through the EW oblique parameters S, T and U that are obtained from the SPheno

output [148–152].

In the case that Γ(Z ′)/MZ′ is large2, the LHC limits on the Z ′ boson mass and cou-
plings, which are produced under the assumption of Narrow Width Approximation (NWA),
cannot be applied, as interference effects are not negligible [222, 223]. Therefore, here, we
define the Z ′ Signal (S) as the difference between σ(pp → γ, Z, Z ′ → ll) and the SM Back-
ground (B) σ(pp → γ, Z → ll), where l = e, µ. The corresponding cross section values have
been calculated by using MG5_aMC (version 2.6.6) [112] along with the leading-order set
of NNPDF 2.3 parton densities [224].

The following list summarises the relation between colours and constraints imposed
in our forthcoming plots.

• Grey: Radiative EWSB (REWSB) and neutralino LSP.
2Notice that we have put a bound on the total width of the Z ′ boson, Γ(Z ′) ≲ MZ′/2, so as to avoid

unphysical resonance behaviours [221].
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• Red: The subset of grey plus Higgs boson mass and coupling constraints, SUSY particle
mass bounds and EWPT requirements.

• Green: The subset of red plus B-physics constraints.

• Blue: The subset of green plus WMAP constraints on the relic abundance of the
neutralino LSP (within 5σ).

• Black: The subset of blue plus exclusion limits at the LHC from Z ′ direct searches via
pp→ Z ′ → ll and pp→ Z ′ → WW .

We further discuss the application of these limits in the next section. We ignore here
(g−2)µ constraints, as we can anticipate that the corresponding predictions in our E6 inspired
UMSSM are consistent with the SM, due to the fact that the relevant slepton and sneutrino
masses are rather heavy and so is the Z ′ mass.

5.4 Mass Spectrum and Dark matter

This section will start by presenting our results for the Z ′ mass and coupling bounds (in
a large Γ(Z ′) scenario) and how these can be related to the fundamental charges of an E6

inspired UMSSM, then, upon introducing the LHC constraints affecting the SUSY sector, it
will move on to discuss the DM phenomenology in astrophysical conditions.

Figure 5.1: The Z ′ boson mass limits on σ(pp → Z ′ → ll) vs MZ′ (left panel) and σ(pp →
Z ′ → WW ) vs MZ′ (right panel). The experimental exclusion curves obtained by the ATLAS
[9, 15] and CMS [16, 17] collaborations are showed against the results of our scan colour coded
in terms of the relevant Z ′ BR.
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Figure 5.2: The gauge kinetic mixing parameter κ versus U(1)′ charge mixing angle θE6 (left
panel) and the Z ′ width-to-mass ratio Γ(Z ′)/MZ′ vs the Z ′ mass MZ′ (right panel). Our
colour convention is as listed at the end of Section 5.3. The vertical dashed lines in the left
panel corresponds to well-known E6 realisation with defined θE6 choices.

Fig. 5.1 shows the comparison of the experimental limits on the Z ′ boson mass and
cross section (hence some coupling combinations) as obtained from direct searches in the
processes pp → ll at L = 137 fb−1 [9] and pp → WW at L = 36 fb−1 [15–17]. All points
plotted here satisfy all constraints that are coded “Blue" in the previous section while the
actual colours display the BR of the related Z ′ boson decay channel. According to our results,
in the left panel, we find that the Z ′ boson mass cannot be smaller than 3.5 TeV in the light
of the ATLAS dilepton results [9]. Indeed, it is thanks to the gauge kinetic mixing effects on
the U(1)′ charges and the negative interference onset by the wide Z ′ with the SM background
that we are able to obtain this lower limit, as the ATLAS results [9] reported a lower limit at
4.5 TeV (e.g., for an E6 based ψ model). Furthermore, as can be seen from the right panel,
the ATLAS results on the Z ′ → WW channel [15], when taken within 2σ, put a lower Z ′

mass limit at MZ′ ≳ 4 TeV. This lower bound is somewhat relaxed by some CMS results also
shown in the same plot, down to 3.5 TeV. In the reminder of this work, therefore, we use
the Z ′ boson mass allowed by all Z ′ direct searches in the dilepton and diboson channels as
being MZ′ ≳ 4 TeV.

In Fig. 5.2 we present our results in plots showing the gauge kinetic mixing parameter
versus the U(1)′ charge mixing angle, i.e., on the plane (θE6 , κ) (left panel), and the Z ′

boson mass versus the ratio of its total decay width over the former, i.e., on the plane
(MZ′ ,Γ(Z ′)/MZ′) (right panel). The former plot shows that the parameter space of the θE6

mixing angle, which also defines the effective charge of U(1)′, is constrained severely when
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we apply all limits mentioned in Section 5.3. We see that θE6 values are found in the interval
[−1,−0.8] radians while the corresponding κ values are found in [0.2, 0.4]. We notice that
such solutions do not accumulate against any of the most studied E6 realisations, known
as ψ,N, I, S, χ and η [153]. The latter plot indeed makes the point that wide Z ′ states are
required to evade LHC limits from Z ′ direct searches, with values of the width being no less
than 15% or so of the mass. The right panel shows that Γ(Z ′)/MZ′ can drastically increase
with large MZ′ . This is due to the fact that the decay width Γ(Z ′ → WW ) is proportional
to (M5

Z′/M4
W ) as well as sin2 αZZ′ [225]. (Recall that the “Black" points here include the

constraints drawn from the previous figure.)

The solutions in the (θE6 , κ) region which we have just seen have special U(1)′ effective
charge configurations, are presented in Fig. 5.3. Herein, we show such charges, as given in
Eq. (5.17), for left and right chiral fermions by visualising our scan points over the planes
(Qeff

Q , Qeff
U ), (Qeff

Q , Qeff
U ) and (Qeff

L , Qeff
E ). As seen from the top left and right panels, when

we take all experimental constrains into consideration (“Black" points), the family universal
effective U(1)′ charges for left handed (Qeff

Q ) quarks are always very small, with the right
handed up-type (Qeff

U ) quark charges smaller than those of the right handed down-type
(Qeff

D ) ones. As for leptons, it is the left handed (Qeff
L ) charges which are generally larger

than the right handed ones (Qeff
E ) (as shown in the bottom left panel of the figure). This

pattern builds up the distribution of fermionic BRs seen in the bottom right panel of the
figure, as the partial decay width of the Z ′ into fermions f , Γ(Z ′ → ff), is proportional
to MZ′(Qeff

left

2
+ Qeff

right

2
) [209]. However, such a BR(Z ′ → XX) distribution is actually

dominated by Z ′ → WW decays over most of the MZ′ range (with the companion Z ′ → Zh

channel always subleading), given that, for large Z ′ masses, as mentioned, Γ(Z ′ → WW ) is
proportional to M5

Z′/M4
W , hence the rapid rise up to 98% with increasing MZ′ , particularly so

from 4 TeV onwards (notice that these decay distributions have been produced by the “Blue"
points appearing in the other panels). It is thus not surprising that the most constraining
search for the Z ′ of E6 inspired UMSSM scenarios is the diboson one, rather than the dilepton
one (limitedly to the case of its SM decay channels).

We now move on now to study the other two sectors of our U(1)′ construct, namely,
the spectrum of Higgs and SUSY particle masses. A selection of these is presented in Fig. 5.4
with plots over the following mass combinations (clockwise): (mb̃,mt̃), (mg̃,mχ̃0

1
), (mχ̃0

1
,mA)

and (mν̃ ,mτ̃ ). The colour coding is the same as the one listed at the end of Section 5.3.
As seen from the top left and right panels of the figure, the SUSY mass spectrum of the
allowed parameter region (i.e., the “Black" points) is quite heavy with the lower limit on
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Figure 5.3: The distributions of the effective U(1)′ charges for quarks and leptons over the
following planes: (Qeff

Q , Qeff
U ) (top left), (Qeff

L , Qeff
E ) (top right), and (Qeff

Q , Qeff
D ) (bottom

left). In the bottom right plot we show the BRs of the Z ′ for different decay channels,
BR(Z ′ → XX) as a function on MZ′ , where XX represents a SM two-body final state. Our
colour convention is as listed at the end of Section 5.3 and the bottom right panel contains
only the “Blue" points in the other panels.
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stop, sbottom and gluino masses of about 4 TeV. The reason for the large sfermions mass
arises from the fact that the contributions of the U(1)′ sector to such masses are proportional
to v2S, which also determines the mass of the Z ′. Therefore, the experimental limits on the
Z ′ mass in Fig. 5.1 in turn drive those on the sfermion masses. The bottom left panel shows
that the LSP (neutralino) mass should be 0.8 TeV ≲ mχ̃0

1
≲ 1.7 TeV (the extremes of the

“Black" point distribution). In this plot, the solid red line shows the points with mA = 2mχ̃0
1
,

condition onsetting the dominant resonant DM annihilation via A mediation, so that very
few solutions (to WMAP data) are found below it. As for the stau masses, see bottom right
frame, these are larger than the sneutrino ones (again, see the “Black" points), both well in
the TeV range. In summary, both the Higgs and SUSY (beyond the LSP) mass spectrum is
rather heavy, thus explaining the notable absence of non-SM decay channels for the Z ′, as
already seen.

Figure 5.4: The mass spectrum of Higgs and SUSY states over the following planes: (mb̃,mt̃)
(top left), (mg̃,mχ̃0

1
) (top right), (mχ̃0

1
,mA) (bottom left) and (mν̃ ,mτ̃ ) (bottom right). Our

colour convention is as listed at the end of Section 5.3.
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In Fig. 5.5 we illustrate the neutralino and chargino mass spectrum, also in relation
to the effective µ parameter, µeff , using plots over the following parameter combinations (S̃
being the singlino): (µeff ,mS̃), (mχ̃0

1
,mχ̃±

1
), (mχ̃0

2
,mχ̃3

0
) and (mχ̃0

2
,mχ̃±

1
). (The colour coding

is the same as in Fig. 5.2.) Herein, (the diagonal) dot-dashed red lines indicate regions in
which the displayed parameters are degenerate in value. The top left panel shows that the
LSP, the neutralino DM candidate, is higgsino-like or singlino-like since the other gauginos
that contribute to the neutralino mass matrix are heavier and decouple (see below). The
higgsino-like DM mass can be 1 TeV ≲ mχ̃0

1
≲ 1.2 TeV while the singlino-like DM mass can

cover a wider range, 0.8 TeV ≲ mχ̃0
1
≲ 1.7 TeV. Further, as can be seen from the top right

panel, the lightest chargino and LSP are largely degenerate in mass (typically, within a few
hundred GeV) in the region of the higgsino-like DM mass and the chargino mass can reach 3

TeV. These solutions favour the chargino-neutralino coannihilation channels which reduce the
relic abundance of the LSP, such that the latter can be consistent with the WMAP bounds.
(This region also yields the A resonant solutions, mA = 2mχ̃0

1
, as seen from the bottom left

panel of Fig. 5.4.) The bottom left panel illustrates the point that, for higgsino-like DM, the
mass gap between the second and third lightest neutralino can be of order TeV, though there
is also a region with significant mass degeneracy. Then, as seen from the bottom right panel,
the lightest chargino and second lightest neutralino are extremely degenerate in mass for all
allowed solutions (“Black" points). Altogether, this means that EW associated production
of mass degenerate charginos χ̃±

1 and neutralinos χ̃0
2 where χ̃±

1 → Wχ̃0
1 and χ̃0

2 → hχ̃0
1 is

possible for both type of higgsino- and singlino-like LSP. However, it must be said that EW
production of mass degenerate neutralinos cannot be possible because of the heavy sleptons
shown in the bottom right panel of Fig. 5.4. Hence, a potentially interesting new production
and decay mode emerges in the -ino sector, pp → χ̃0

2χ̃
0
3 → (h/Z)(h/Z)χ̃0

1χ̃
0
1, which could be

probed at the High Luminosity LHC (HL-LHC).

Before closing, we investigate how cosmological bounds from relic density and from
DM experiments impact our solutions. Fig. 5.6 shows that our relic density predictions for
singlino LSP (left panel) and higgsino LSP (right panel) as the DM candidate. The color bars
show the singlino (left panel) and higgsino (right panel) compositions of LSP. (Notice that
the population of points used in this plot correspond to the “Green” points listed at the end
of Section 5.3, i.e., meaning that all experimental constraints, except for DM itself and the Z ′

mass and coupling limits, are applied.) The dark shaded areas between the horizontal lines
show where the “Black" points are in this figure. The dot-dashed(solid) lines indicate the
WMAP bounds on the relic density of the DM candidate within a 5σ(1σ) uncertainty. The
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Figure 5.5: The mass spectrum of chargino and neutralino states over the following planes:
(µeff ,mS̃) (top left), (mχ̃0

1
,mχ̃±

1
) (top right), (mχ̃0

2
,mχ̃3

0
) (bottom left) and (mχ̃0

2
,mχ̃±

1
) (bot-

tom right). Our colour convention is as listed at the end of Section 5.3.

region within the dot-dashed lines covers also the recent Planck bounds [12]. Altogether, the
figure points to a singlino-like DM being generally more consistent with all relic density data
available, though the higgsino-like one is also viable, albeit in a narrower region of parameter
space, with the two solutions overlapping each other.

In Fig. 5.7 we depict the DM-neutron Spin-Independent (SI, left panel) and Spin-
Dependent (SD, right panel) scattering cross sections as functions of the WIMP candidate
mass, i.e., that of the neutralino LSP. The color codes are indicated in the legend of the
panels. Here, all points satisfy all the experimental constraints used in this work, i.e., they
correspond to the “Black” points as described at the end of Section 5.3. We represent solutions
with |Z χ̃

16|2 > 0.6 as singlino-like χ̃0
1 and show them in dark cyan colour. Likewise, solutions

with |Z χ̃
14|2 + |Z χ̃

15|2 > 0.6 are represented as higgsino-like χ̃0
1 and they are coded with red
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Figure 5.6: Relic density predictions for singlino-like (left) and higgsino-like (right) DM as
a function of the mass of the neutralino LSP. The colour bars show the composition of the
LSP. The meaning of the horizontal lines is explained in the text.

colour. In the left panel, the solid(dashed) lines indicate the upper limits coming from
current(future) SI direct detection experiments. The black, brown and purple solid lines show
XENON1T [155], PandaX-II [226] and LUX [227] upper limits for the SI χ̃0

1 - n cross section,
respectively, while the green and blue dashed lines illustrate the prospects of the XENONnT
and DARWIN for future experiments [101], respectively. As seen from this panel, all our
points are presently consistent with all experimental constraints yet certain DM solutions
can be probed by the next generation of experiments. In the right panel, the black, green
and purple solid lines show XENON1T [228], PandaX-II [229] and LUX [230] upper limits for
the SD χ̃0

1 - n cross section, respectively. As seen from this plot, all solutions are consistent
with current experimental results, for both singlino- and higgsino-like DM.
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Figure 5.7: DM-neutron SI (left) and SD (right) scattering cross section as a function of the
mass of the WIMP candidate (neutralino LSP). The colour bars show the composition of the
LSP. Limits from current (solid) and future (dashed) experiments are also shown.
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Chapter 6

Relaxing LHC constraints on the WR

mass

6.1 Introduction

The discovery of the Higgs boson at the LHC, while providing the missing ingredient of the
Standard Model (SM), has intensified the search for physics beyond it. Though there is a
marked lack of non-standard signals at colliders, the existence of neutrino masses is a defi-
nite sign of beyond the SM. Using only left-handed neutrinos and the standard Higgs doublet
representation of the SM, massive neutrinos appear only from higher dimension operators
acting at the Planck scale. While by no means the only solution, left-right symmetric models
(LRSMs) [231–233] provide a natural explanation for neutrino masses without resorting to
higher scales. Based on the SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, these models restore parity sym-
metry, which is conserved at high energy, and spontaneously broken at some energy scale
connected to the SU(2)R breaking scale [234]. That is, LRSMs provide a renormalizable
framework where left- and right-handed fields are treated the same way: they are doublets
under SU(2). Small neutrino masses are induced by heavy (and most often, Majorana) right-
handed neutrinos through the phenomena known as the seesaw mechanism [62, 235]. Within
the framework described here both Type I and Type II seesaw mechanisms can be naturally
imbedded in the model.

In addition, LRSMs gauge the anomaly-free B − L (B - baryon, L - lepton, number)
symmetry, and replace the physically meaningless hypercharge Y by the B − L quantum
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number in the definition of charge

Q = T3L + T3R +
B − L

2
,

with T3 the third component of isospin. In some LRSMs, CP-violating phases are connected
with the right-handed quark system, and the smallness of the CP violation in the quark sector
is related to the suppression of the V + A currents and the large right-handed gauge boson
mass [236, 237]. These models also provide a solution to the strong CP violation problem. In
LRSMs, the strong CP parameter Θ → −Θ under parity, and thus Θ = 0 at tree level, with
small non-zero contributions arising at two loop level only [238]. The LRSMs are constrained
at low energies by flavor-violating mixing and decays, by CP observables, and, more recently,
by increasingly restrictive collider limits on new particle (additional gauge or Higgs bosons)
masses.

In making any specific predictions, there are several sources of uncertainty in the
model. One comes from the precise nature of the additional Higgs bosons needed to break
the symmetry to the SM one. Higgs triplets are favored by the seesaw mechanisms, and
yield Majorana neutrinos. Alternatively, additional left- and right- handed doublet Higgs
representations yield Dirac neutrino masses. Another source of uncertainty comes from
the right-handed quark mixing matrix, similar to that of the left-handed quark Cabibbo-
Kobayashi-Maskawa (CKM) mixing. Two scenarios of left-right models have been most often
considered: manifest and pseudo-manifest left-right symmetry. Manifest left-right symmetry,
assumes no spontaneous CP violation, i.e. all Higgs vacuum expectation values (VEVs) are
real. The quark mass matrices are Hermitian, and the left- and right-handed quark mix-
ings become identical, up to a sign uncertainty of the elements from negative quark masses
[239, 240]. Pseudo-manifest left-right symmetry assumes that the CP violation comes en-
tirely from spontaneous symmetry breaking of the vacuum and all Yukawa couplings are real
[241, 242]. The quark mass matrices are complex and symmetric, and the right-handed quark
mixing is related to the complex conjugate of the CKM matrix multiplied by additional CP
phases. However, studies of the left-right symmetric model with more general structures,
where no a priory assumptions on masses and mixing in the right sector are made, also exist
in the literature [243–245].

Another source of uncertainty comes from the gauge coupling constant in the right-
handed sector. It is commonly assumed that left-right symmetry imposes gL = gR. If
breaking of SU(2)R ⊗ U(1)B−L occurs at a high scale, at that scale gL = gR, but below

102



that, the couplings gL and gR could evolve differently, and would be different at low energy
scales.

Bounds on extra particle masses depend strongly on the above assumptions, in par-
ticular on the size of the right-handed gauge coupling and/or the right-handed CKM matrix
elements, and none more so than the charged gauge boson WR. This boson is interesting for
several reasons. First, regardless of the other details of the spectrum of left-right models, dis-
covery of a charged gauge boson will be an indication of the presence of an additional SU(2)
symmetry group, and if testing its decay products would indicate that it is right-handed,
this will be an unambiguous signal for left-right symmetry1. Second, the LHC has signifi-
cantly improved searches for WR bosons, and the limits on their masses are becoming more
stringent. A previous work considered implications for the single WR production, pp→ WRt

at the LHC, showing that significant signals above the background are possible, if we relax
equality between gauge couplings and of CKM matrices in left and right sectors [245].

Extensive analyses performed indicate problems with both manifest and pseudo-
manifest scenarios [246]. In the manifest LRSM, there are more minimization conditions
than the number of VEVs, thus the model suffers from a fine-tuning problem. In the pseudo-
manifest LRSM, the decoupling limit yields either a model with light left-handed triplet Higgs,
(already excluded by the ρ parameter), or a two Higgs doublet model (excluded due to large
tree level flavor-changing neutral currents). It seems that a better way to proceed would be
to keep the parameter space of the model as general as possible, but impose all constraints
from collider searches and from flavor and CP bounds from low-energy phenomenology.

In light of recent experimental measurements and interpretations restricting WR and
ZR boson masses, we re-consider the scenarios assumed in the analyses, and recast the results
using an unrestricted LRSM. For example, considering the CMS analysis, the effect of gR < gL

can reduce the production cross section, thus bringing down the lower limit obtained on MWR
.

This analysis is timely, as more precise analyses are expected to emerge from the Run II at
the LHC in the next year or so.

We first discuss the relevant parameters of the model and their relations to the masses
and couplings of the states involved, and then look for suitable parameter choices that can
make an impact on the search channel, at the same time ensuring that all constraints, includ-
ing those from the flavour sector are satisfied. We also demonstrate that in suitably chosen
parameter space regions, it is possible to have other decay channels open up, resulting in a

1Unlike the discovery of a Z ′ which can indicate the presence of any variety of additional U(1)′ groups.
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reduction of the branching ratio to the collider signal channel.

Our work is organized as follows: In Section 6.2, we briefly describe the left-right
symmetric model with an emphasis on the gauge sector. After we summarize the experimental
mass bounds on WR, νR and doubly charged Higgs bosons in Section 6.3, we explain the
model implementation and the experimental constraints employed in our analysis in Section
7.3. We analyze two separate cases, MWR

< MνR , MWR
> MνR , and then present our results

on WR − νR mass exclusion limits in Section 6.5.

6.2 The Left-Right Symmetric Model

The framework of the model is based on the gauge group SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗
U(1)B−L. We extend the Standard Model gauge symmetry, first by introducing the SU(2)R
symmetry, then by gauging the B−L quantum number. Both left- and right-handed fermions
are doublets under the extended SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge group. The
quantum numbers of the particles under SU(2)L ⊗ SU(2)R ⊗ U(1)B−L are:

LLi =

(
νL

ℓL

)
i

∼ (2,1,−1) , LRi =

(
νR

ℓR

)
i

∼ (1,2,−1) , for the leptons, and (6.1)

QLi =

(
uL

dL

)
i

∼ (2,1,1/3) , QRi =

(
uR

dR

)
i

∼ (1,2,1/3) , for the quarks, (6.2)

where i = 1, 2, 3 are generation indices. The subscripts L and R are associated with the
projection operators PL,R = 1

2
(1∓γ5). The electroweak symmetry is broken by the bi-doublet

Higgs field

Φ ≡

(
ϕ0
1 ϕ+

2

ϕ−
1 ϕ0

2

)
∼ (2,2,0) . (6.3)

In addition, to break the SU(2)R⊗U(1)B−L gauge symmetry and to provide Majorana mass
terms for neutrinos (the right-handed neutrino is automatically included in the right-handed
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lepton doublet), we introduce the Higgs triplets

∆L ≡

(
δ+L /

√
2 δ++

L

δ0L −δ+L /
√
2

)
∼ (3,1,2) , ∆R ≡

(
δ+R/

√
2 δ++

R

δ0R −δ+R/
√
2

)
∼ (1,3,2) . (6.4)

While only ∆R is needed for symmetry breaking, ∆L is included to preserve left-right sym-
metry. After symmetry breaking, the most general vacuum is

⟨Φ⟩ =

(
κ1/

√
2 0

0 κ2e
iα/

√
2

)
, ⟨∆L⟩ =

(
0 0

vLe
iθL/

√
2 0

)
, ⟨∆R⟩ =

(
0 0

vR/
√
2 0

)
. (6.5)

We define the ratio tan β =
κ1
κ2

. The Lagrangian density for this model contains kinetic,
Yukawa terms and potential terms:

LLRSM = Lkin + LY − V (Φ,∆L,∆R) . (6.6)

The kinetic term is

Lkin = i
∑

ψ̄γµDµψ = L̄Lγ
µ

(
i∂µ + gL

τ⃗

2
· W⃗Lµ −

gB−L

2
Bµ

)
LL

+ L̄Rγ
µ

(
i∂µ + gR

τ⃗

2
· W⃗Rµ −

gB−L

2
Bµ

)
LR

+ Q̄Lγ
µ

(
i∂µ + gL

τ⃗

2
· W⃗Lµ +

gB−L

6
Bµ

)
QL

+ Q̄Rγ
µ

(
i∂µ + gR

τ⃗

2
· W⃗Rµ +

gB−L

6
Bµ

)
QR , (6.7)

where we introduce the gauge fields, W⃗L,R and B corresponding to SU(2)L,R and U(1)B−L.
The next term in the Eq. (6.6) is the Yukawa interaction for quarks and leptons

LY = −
[
YLL

L̄LΦLR + ỸLR
L̄RΦLL + YQL

Q̄LΦ̃QR + ỸQR
Q̄RΦ̃QL + hijLL

c

Li
iτ2∆LLLj

+ hijRL
c

Ri
iτ2∆RLRj

+ h.c.
]
, (6.8)

where for leptons YLL,R
, ỸLL,R

and for quarks YQL,R
, ỸQL,R

are 3×3 diagonal complex matrices,
hijL and hijR are 3× 3 complex symmetric Yukawa matrices and Φ̃ = τ2Φ

⋆τ2. Finally, the last
term in the Lagrangian in Eq. (6.6) is the scalar potential for the bidoublet Φ and triplet
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∆L,R Higgs fields, and is given by

V (ϕ,∆L,∆R) = −µ2
1

(
Tr
[
Φ†Φ

])
− µ2

2

(
Tr
[
Φ̃Φ†

]
+
(
Tr
[
Φ̃†Φ

]))
− µ2

3

(
Tr
[
∆L∆

†
L

]
+ Tr

[
∆R∆

†
R

])
+ λ1

((
Tr
[
ΦΦ†])2)

+ λ2

((
Tr
[
Φ̃Φ†

])2
+
(
Tr
[
Φ̃†Φ

])2)
+ λ3

(
Tr
[
Φ̃Φ†

]
Tr
[
Φ̃†Φ

])
+ λ4

(
Tr
[
ΦΦ†] (Tr [Φ̃Φ†

]
+ Tr

[
Φ̃†Φ

]))
+ ρ1

((
Tr
[
∆L∆

†
L

])2
+
(
Tr
[
∆R∆

†
R

])2)
+ ρ2

(
Tr [∆L∆L] Tr

[
∆†
L∆

†
L

]
+ Tr [∆R∆R] Tr

[
∆†
R∆

†
R

])
+ ρ3

(
Tr
[
∆L∆

†
L

]
Tr
[
∆R∆

†
R

])
+ ρ4

(
Tr [∆L∆L] Tr

[
∆†
R∆

†
R

]
+ Tr

[
∆†
L∆

†
L

]
Tr [∆R∆R]

)
+ α1Tr

[
ΦΦ†] (Tr [∆L∆

†
L

]
+ Tr

[
∆R∆

†
R

])
+ α2

(
Tr
[
ΦΦ̃†

]
Tr
[
∆R∆

†
R

]
+ Tr

[
Φ†Φ̃

]
Tr
[
∆L∆

†
L

])
+ α∗

2

(
Tr
[
Φ†Φ̃

]
Tr
[
∆R∆

†
R

]
+ Tr

[
Φ̃†Φ

]
Tr
[
∆L∆

†
L

])
+ α3

(
Tr
[
ΦΦ†∆L∆

†
L

]
+ Tr

[
Φ†Φ∆R∆

†
R

])
+ β1

(
Tr
[
Φ∆RΦ

†∆†
L

]
+ Tr

[
Φ†∆LΦ∆

†
R

])
+ β2

(
Tr
[
Φ̃∆RΦ

†∆†
L

]
+ Tr

[
Φ̃†∆LΦ∆

†
R

])
+ β3

(
Tr
[
Φ∆RΦ̃

†∆†
L

]
+ Tr

[
Φ†∆LΦ̃∆

†
R

])
, (6.9)

where we include the complex parameters explicitly.

The SU(2)R, SU(2)L and U(1)B−L gauge couplings in Eq. (6.7) are denoted by gR,
gL and gB−L. For the LRSM model to break down to the SM, the hierarchy of the vacuum
expectation values (VEVs) must be, vR ≫ (κ1, κ2) ≫ vL, and

√
κ21 + κ22 = v = 246 GeV.

Here the presence of non-zero VEV of ∆R, vR breaks the SU(2)R⊗U(1)B−L to U(1)Y , while
the presence of bi-doublet VEVs κ1 and κ2 break the electroweak symmetry, at the same time
inducing a VEV for ∆L denoted by vL. The third component of the SU(2)R gauge boson
and the gauge boson corresponding to U(1)B−L mix to give the mass eigenstate ZR and the
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gauge boson corresponding to the U(1)Y , Bµ. Denoting the mixing angle as ϕ,(
Zµ
R

Bµ

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
W 3µ
R

V µ

)
(6.10)

Denoting the weak mixing angle as θW , the three neutral gauge bosons further mix to give
the mass eigenstates Zµ

L, Zµ
R and the photon, Aµ:⎛⎜⎜⎝

Zµ
L

Bµ

Zµ
R

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cos θW − sin θW sinϕ − sin θW cosϕ

sin θW cos θW sinϕ cos θW cosϕ

0 cosϕ − sinϕ

⎞⎟⎟⎠
⎛⎜⎜⎝

W 3µ
L

W 3µ
R

V µ

⎞⎟⎟⎠ (6.11)

yielding

MA = 0

M2
Z1,2

=
1

4

[ [
g2Lv

2 + 2v2R(g
2
R + g2B−L)

]
∓

√[
g2Lv

2 + 2v2R(g
2
R + g2B−L)

]2 − 4g2L(g
2
R + 2g2B−L)v

2v2R

]
. (6.12)

In the charged sector, the left and right gauge bosons mix to give the mass eigenstates, W1

and W2; (
W1

W2

)
=

(
cos ξ − sin ξ

sin ξ cos ξ

)(
WL

WR

)
, (6.13)

where the mixing angle ξ and the mass eigenvalues are given by

tan 2ξ =
4gRgLκ1κ2

2g2Rv
2
R + (g2R − g2L)v

2
≈ 2gLκ1κ2

gRv2R
(6.14)

M2
W1

=
1

4

[
g2Lv

2 cos2 ξ + g2R(2v
2
R + v2) sin2 ξ − 2gRgLκ1κ2 cos ξ sin ξ

]
M2

W2
=

1

4

[
g2Lv

2 sin2 ξ + g2R(2v
2
R + v2) cos2 ξ + 2gRgLκ1κ2 cos ξ sin ξ

]
. (6.15)

In the limit of (κ1, κ2) ≪ vR and gR ∼ gL we have sin ξ ≈ κ1κ2
v2R

, sin2 ξ ≈ 0, cos ξ ≈ 1,

leading to

M2
W1

=
1

4
g2Lv

2 , M2
W2

=
1

4

[
2g2Rv

2
R + g2Rv

2 + 2gRgL
κ21κ

2
2

v2R

]
. (6.16)

The SU(2)R breaking scale vR, and mixing angle ξ are restricted from low energy observables,
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such as KL−KS, ϵK , B0− B̄0 mixings and b→ sγ processes, which constrain the right scale
through the charged right handed WR boson mass as well as the triplet Higgs masses. Taking
into account the smallness of the mixing angle ξ, in what follows we shall refer to W1 as WL

and W2 as WR, as to be able to compare with experimental results and nomenclature2.

6.3 Mass Bounds on right-handed gauge, Higgs bosons,

and neutrinos from colliders

The choice of the parameter space of the model would affect masses in the right-handed
sector, and thus below, we summarize collider limits imposed on these.

6.3.1 Right-handed charged gauge boson

The WR boson can decay into jets and, if the SU(2)R gauge coupling equals the SU(2)L one
(gL = gR), limits on sequential W ′ bosons can be reinterpreted straightforwardly. ATLAS
and CMS have obtained bounds of 3.6 TeV [18] and 3.3 TeV [154], on such a sequential
extra gauge boson, respectively. LHC has analyzed possible signatures of the additional
gauge bosons in LRSM, which for the charged gauge boson translate into three main search
channels, (i) WR → tb̄ [20, 247], (ii) WR → 2j [18] and (iii) WR → ℓνR → ℓℓW ∗

R → 2ℓ2j [22],
the third one being relevant only in the kinematic regions with MνR < MWR

. The Majorana
nature of the right-handed neutrino allows for probing both the same-sign and opposite-sign
dilepton channels [248]. Both ATLAS and CMS, in their latest analyses with 37 fb−1 and
35.9 fb−1 luminosities, respectively, at

√
s = 13 TeV, have provided stringent limits on MWR

,
in the 3.5-4.4 TeV region. CMS [249] considered both scenarios of (i) MνR ≥ MWR

and (ii)
MνR < MWR

, where in the second case, in addition to the hadronic decay, WR can decay to
νRℓ. The branching fraction of WR → tb̄ is quoted as (0.32 - 0.33) in the first scenario and
(0.24 - 0.25) in the second scenario, for a WR mass range of 500 GeV to 5 TeV, where the
1% difference is due the phase space effects coming from the top quark mass (as compared
to the vanishing light quark mass). The ATLAS analysis [21] also considered both scenarios.
However, they searched for WR gauge bosons in final states with two charged leptons and two
jets. Both CMS and ATLAS assumed strict LR symmetry setting gR = gL and V L

CKM = V R
CKM

in their analyses.
2Note however that they both contain a non-zero left and right SU(2) gauge component.
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6.3.2 Doubly-charged Higgs bosons

Mass bounds on the doubly-charged Higgs bosons must satisfy consistency with the various
LHC limits. The restrictions on the mass of the left-handed doubly charged Higgs boson
δ++
L are considerably weakened as these can decay into both same sign lepton pairs and

same sign WL pairs. The latter decay mode is not available to the right-handed doubly-
charged Higgs boson δ++

R , so the restrictions coming from the doubly-charged Higgs bosons
decaying into two same-sign leptons, which are very strong, apply. The exception is the case
in which the doubly-charged Higgs boson decays into a di-tau final-state [250, 251]. Without
any significant excess of events, the LHC analyses mentioned presently provide stringent
constraints from direct searches, which require the masses of the doubly charged scalars to
be above ∼ 600 GeV (∼ 500 GeV for decays into di-taus only).

Not all constraints coming from (first and second family) dilepton decays can be
evaded, as the right-handed triplet Higgs field are needed to generate masses for the right-
handed neutrinos. In our scenario, WR production and decays are not affected by the doubly-
charged triplet Higgs bosons, and thus the latter can be heavy, O(vR).

6.3.3 Right-handed neutrinos

Generic searches for right-handed neutrinos were performed at LEP [252], leading to bounds
on right-handed Majorana neutrino masses of at most 90.7 GeV. In our model the right-
handed neutrino mass matrix reads

M ij
νR

= hijRvR , (6.17)

where hijR also dictates the different doubly-charged Higgs branching ratios. If we enforce
that the SU(2)R doubly-charged Higgs boson decays mainly into taus, the right-handed tau
neutrino turns out to be significantly heavier than the others. The mass of right-handed
neutrinos are determined by the choices of vR and hR and can be chosen to be either MνR ≥
MWR

or MνR ≤MWR
, for the two scenarios that we investigate. We now proceed to analyze

the parameter space of the model, and subject it to constraints from phenomenology.
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6.4 Model Implementation and Constraints

In most analyses, WR bosons are expected to be heavy. However all of the analyses assume
that the model is manifestly left-right symmetric, that is, the coupling constants are the
same for the left and right gauge sectors, gL = gR and that the quark mass mixing in the
right-handed sector V R

CKM is either diagonal, or equal to the one in the left-handed sector (the
Cabibbo-Kobayashi-Maskawa matrix, V L

CKM). This does not have to be the case, and analyses
of a more general model, the so-called asymmetric left-right model exist [243, 245].

We take this general approach here. We calculate the production cross section and
decays of the WR bosons in the LRSM with gL ̸= gR and allowing for general entries in the
mixing matrix for the right-handed quarks, V R

CKM , parametrized as the left-handed matrix,
but allowing the elements to vary independently:

V R
CKM =

⎡⎢⎢⎣
cR12c

R
13 sR12c

R
13 sR13e

iδR

−sR12cR23 − cR12s
R
23s13e

iδR cR12c
R
23 − sR12s

R
23s

R
13e

iδR sR23c
R
13

sR12s
R
23 − cR12c

R
23s

R
13e

iδR −cR12cR23 − sR12c
R
23s

R
13e

iδR cR23c
R
13

⎤⎥⎥⎦ (6.18)

We then proceed as follows.

• We first choose one value for MWR
. Then we vary the parameters cR12, cR13 and cR23 in the

range [−1, 1]. The phase δR is set to zero (as we are not concerned with CP violation),
and we impose matrix unitary condition. For each set of the randomly chosen V R

CKM

parameters as above, we impose the theoretical and experimental constraints including
the mass bounds and flavor constraints from K and B mesons, as listed in Table 6.1.
This ensures, for instance, that the non-SM neutral bidoublet Higgs boson is very heavy
(> 10 TeV), as required to suppress flavor-violating effects.

• For each value of MWR
we obtain many solutions for V R

CKM consistent with all bounds.
Of these solutions, we choose the one yielding the smallest branching ratio for WR → tb̄
3.

• Noting that the flavor bounds are very sensitive to these elements, we fit them carefully
for each solution. The V R

CKM elements thus obtained are restricted to a viable ranges of
values. We distinguish between two possibilities: one when the WR mass is lighter than
that of the right-handed neutrinos νR, and the case where the right-handed neutrino

3We have also tried to minimize BR(WR → jj) but found that this choice yields a more restrictive lower
mass bound for WR.
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Observable Constraints Ref. Observable Constraints Ref.

∆Bs [10.2-26.4] [253] ∆Bd [0.294-0.762] [253]

∆MK < 5.00 ×10−15 [254] ∆MK

∆MSM
K

[0.7-1.3] [254]

ϵK < 3.00 ×10−3 [254] ϵK
ϵSM
K

[0.7-1.3] [254]

BR(B0 → Xsγ) [2.99, 3.87]× 10−4 [90] BR(B0→Xsγ)
BR(B0→Xsγ)SM

[0.7-1.3] [90]

Mh [124, 126] GeV [29] MH±±
1,2

> 535 GeV [255, 256]

MH4,A2,H
±
2

> 4.75×MWR
[257] -

Table 6.1: Current experimental bounds imposed for consistent solutions.

is lighter. In the second case, the right-handed gauge boson can decay also into νRℓ,
modifying its branching ratio to top and bottom quarks. For the case of MνR < MWR

,
these ranges of elements in the right-handed CKM matrix are

V R
CKM =

⎡⎢⎢⎣
[3.63× 10−3 − 0.736] [0.650− 0.999] [3.18× 10−2 − 0.754]

[0.671− 0.999] [1.93× 10−3 − 0.550] [2.24× 10−2 − 0.501]

[2.05× 10−4 − 0.439] [3.01× 10−2 − 0.619] [0.781− 0.996]

⎤⎥⎥⎦ ,
(6.19)

while in case of MνR > MWR
the ranges of elements in the right-handed CKM matrix

are:

V R
CKM =

⎡⎢⎢⎣
[1.28× 10−3 − 9.91× 10−2] [0.858− 0.996] [5.25× 10−2 − 0.504]

[0.805− 0.997] [8.68× 10−5 − 5.22× 10−2] [4.16× 10−4 − 0.585]

[9.30× 10−3 − 0.589] [2.62× 10−2 − 0.511] [0.807− 0.998]

⎤⎥⎥⎦ .

(6.20)

• When MνR > MWR
, solutions emerge allowing for low values of BR(WR → tb̄), which

vary from about 23.3% for high MWR
, to about 29% for low MWR

, while when MνR <

MWR
, this ratio changes from 15.7% for high MWR

, to about 24.7% for low MWR
.

For this analysis, a version of an LRSM model produced with SARAH 4.13.0 [78,
79, 141] was implemented in SPHENO 4.0.3 package [76, 77]. We use HiggsBounds [94]
and HiggsSignals [95] to test out the signal strengths of the SM-like Higgs state and
check the consistency of the Higgs sector for each solution. The relevant cross sections were
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Parameter Scanned range Parameter Scanned range

vR [2.2, 20] TeV diag(hijR) [0.001, 1]

V R
CKM: cR12, cR13, cR23 [−1, 1]

Table 6.2: Scanned parameter space.

calculated by MG5_aMC@NLO v2.6.3.2 [112, 258] using the NNPDF2.3 [224] parton
distribution function (PDF) set. In order to get cross sections at the next-to-leading order
(NLO) accuracy, a version of an LRSM model was produced with FeynRules [259]. An UFO
[111] file obtained from FeynRules is implemented in MG5_aMC@NLO [260] and then
used for the numerical evaluation of the hard-scattering matrix elements. We use pySLHA

3.2.2 package [145] for manipulating SUSY Les Houches Accord (SLHA) files during the
numerical analysis performed in this work.

We performed random scans over the parameter space, as illustrated in Table 7.2, and
imposed the mass bounds on all the particles, as well as other constraints as given in Table 6.1.
In scanning the parameter space, we used the interface which employs the Metropolis-Hasting
algorithm. In what follows, we shall distinguish between two cases, Scenario I, MνR > MWR

,
and Scenario II, MνR < MWR

.

6.5 MWR
Mass Bounds: the analysis

In a general left-right model, the masses of the ZR and WR gauge bosons are related, but
the mass ratios depend sensitively on the values of the coupling constants gR and gB−L.
While the mass of WR is proportional to gR, the mass of the ZR boson is proportional to√
g2R + g2B−L. Breaking the symmetry to U(1)em imposes that couplings constants are related

through
1

e2
=

1

g2L
+

1

g2R
+

1

g2B−L
, (6.21)

and therefore decreasing gR results in increasing gB−L. Note also that these couplings are
related, through SU(2)R ⊗ U(1)B−L → U(1)Y symmetry breaking to the coupling of the
hypercharge group, gY , through

1

g2Y
=

1

g2R
+

1

g2B−L
. (6.22)
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This means that, setting sinϕ =
gB−L√
g2R + g2B−L

, and with the usual definition of sin θW =

gY√
g2L + g2Y

, we obtain

tan θW =
gR sinϕ

gL
≤ gR
gL

, (6.23)

showing clearly that we cannot lower gR below its minimum value, gL tan θW . Lowering gR
will decrease the production cross section for WR, while having no effect on its branching
ratios. We analyze the case where gR = gL, as well as when gL ̸= gR = 0.37, its allowed
minimal value.

In the top left panel of Fig. 6.1 we plot the relationship between the two gauge boson
masses, WR and ZR, for the two cases (gR = gL and gL ̸= gR = 0.37). As seen from the
figure, the ZR mass is much closer to WR mass when gR = gL, and in that case the ZR mass
bounds (especially coming from production, followed by decays into dileptons) may have an
effect on the WR mass bounds. While for gL ̸= gR = 0.37, ZR is expected to be much heavier
than WR, making the latter more likely to be much lighter and more likely to be the first
observed.

6.5.1 Scenario I: MνR > MWR

We now proceed to investigate the case where the right handed neutrino is heavier than WR,
(so the on-shell decay WR → νRℓ is disallowed) and where the possible decay channels for
WR are:

WR → jj(qq̄′), WR → WLh, WR → WLZ and WR → WLhh ,

all the other Higgs states being very heavy. Of these, the three-body decay WLhh is very
weak with Γ(WR→WLh)

Γ(WR→WLhh)
∼ 1/v, while the decay WR → WLh depends on tan β. Most analyses

assume tan β to be very small (∼ 0.01), yielding BR(WR → WLh) to be negligible. Pertur-
bativity bounds alone require tan β < 0.8, however the mass of the SM-like Higgs boson h

also depends on tan β, and values of tan β > 0.6 result in the instability of the h mass. To
keep our analysis general, we investigated the production and decays of the WR mass for two
cases: small tan β = 0.01, and large tan β = 0.5. In addition, we allow for two values of gR,
viz. gR = gL, and gL ̸= gR = 0.37, as well as vary matrix elements of V R

CKM to show how the
results are affected. The resulting plots for σ(pp → WR) × BR(WR → tb̄) are given in the
top right plane of Fig. 6.1, where we compare our four different cases (different colour-coded,
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as indicated in the panel insertion) with the CMS result [249] using collision data collected
at

√
s =13 TeV with L=35.9 fb−1. We show the observed and expected limit curves for the

combined electron and muon final states. For gL = gR, V L
CKM = V R

CKM and tan β = 0.01, we
note that the branching ratio WR into tb̄ ranges from 32% to 33%, as WR decays into qq̄′ pairs
democratically. We confirm the CMS result [249] and exclude WR boson mass up to 3.6 TeV.
For the case where gR ̸= gL and V L

CKM = V R
CKM, represented by the blue line, we set gR ≃ 0.37

and tan β = 0.01. The WR production cross section decreases due to relatively small gR, and
the exclusion limit for WR masses can be reduced to 2.7 TeV in that scenario. Increasing
tan β to 0.5 and gR ≃ 0.37, enhances the branching ratios of WR → WLh to about ∼ 1.95%
and the branching ratio of WR → WLZL to about ∼ 2.0%. In this case, the branching ratio
of WR → tb̄ is reduced slightly, to 31.0% - 31.8%, as shown by the pink line. As can be read
from the plot, this reduces the WR mass limits only slightly, to 2675 GeV. However, when
we allow V L

CKM ̸= V R
CKM, tan β= 0.5 and gR ≃ 0.37, this maximizes decays of WR into other

final states, and the branching ratio of WR → tb̄ is reduced substantially: from about 20%
for high MWR

(4 TeV) to about 29% for low MWR
(1.5 TeV). The orange line in the top right

plane of Fig. 6.1 represents our result for this scenario, and the exclusion limit is reduced to
2360 GeV with respect to observed limit, whereas it can be estimated at 1940 GeV based on
the expected limit.

In the left bottom panel of Fig. 6.1 we plot the cross section of pp → WR → jj vs
WR mass, and compare it to the ATLAS result [18] at

√
s =13 TeV for L=37 fb−1. (For

comparison, we included their acceptance factor A ). The red curve represents the exclusion
limit for WR mass when the gauge couplings gL = gR, and tan β = 0.01. The branching
fraction of WR → jj varies slightly with mass. We keep the same color coding for curves
as in the previous panel. The mass restrictions are comparable, but slightly weaker than
those for the WR → tb̄ decay, ranging from MWR

≥ 3625 GeV when gL = gR, tan β = 0.01

and V R
CKM = V L

CKM, to MWR
≥ 2.0 TeV when gR = 0.37, tan β = 0.5 and V R

CKM ̸= V L
CKM.

Neither results are particularly sensitive to values of tan β, but depend on choices for gR and
V R
CKM.

The right bottom plane of Fig. 6.1 represents comparison with the CMS result [19]
which searches for decay WR → WLZ in the ννqq̄′ final state using the pp collision data
collected at

√
s =13 TeV at L=35.9 fb−1. Since the branching ratio of WR → WLZ is

negligible (< 10−4) for small tan β values, we show our result in this channel only for large
tan β values (i.e. tan β = 0.5), when the branching ratio of WR → WLZ is at about 2 %.
As seen from the graph, our curves are always below the experimental curves and thus WR
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Figure 6.1: (Top left): The comparison of WR and ZR masses for gL = gR and gL ̸= gR =
0.36; (top right) The cross section of WR → tb vs WR mass for different values of tan β and
gR; (bottom left) The cross section of WR → jj vs WR mass, for different values of tan β and
gR, compared to ATLAS data [18]; (bottom right) The cross section of WR → WLZ vs WR

mass, where the experimental data shown for comparison is from CMS [19]. The last three
plots are for the case when MνR > MWR

.
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masses cannot be excluded using the WR → WLZ → qq̄′νν channel.

6.5.2 Scenario II: MνR < MWR

The case where the WR is heavier than the right-handed neutrino opens the possibility of
WR → νRℓ, followed by decay of νR → ℓW ∗

R → ℓjj giving rise to an ℓℓjj signature. The
Majorana nature of the right-handed neutrino allows for probing both the same-sign and
opposite-sign dilepton channels [248]. Both the ATLAS [21] and CMS [22] collaborations
have looked for such a WR signal, excluding WR masses up to about 4.7 TeV for right-handed
(muon or electron) neutrino masses up to 3.1 TeV [22]. For lower right-handed neutrino
masses (below 200 GeV), the bound is less restrictive than the one originating from dijet
searches. For the tau channel, it is even much weaker, with MWR

constrained to be only
smaller than 2.9 TeV [261].

In Fig. 6.3, we plot our results and compare it with the current experimental results.
Throughout our analysis we assign one right-handed neutrino mass to be half of the mass of
WR, for comparison with the experimental analysis. (The results obtained though are typical
for large gaps between νR, WR masses.) The top left plane of Fig. 6.3 shows the exclusion
based on WR → tb̄ channel. The red line shows the result for gL = gR, tan β = 0.01 and
V L
CKM = V R

CKM. In addition to the decays into hadrons, WR also decays into νRℓ, about 5.8%
for each lepton flavor. We note that the branching ratio of WR into tb̄ ranges from 26.5% to
27.3%. We confirmed the CMS result [249] and find out that the observed (expected) 95%
confidence level (CL) lower limit for WR mass bounds is 3450 (3320) GeV. We also study the
effect of gR ̸= gL by setting gR ≃ 0.37 and tan β = 0.01. In this scenario the leptonic decay
rates (WR → νRℓ) increase to about 6.7% for each lepton flavor, and the branching ratio of
WR → tb̄ ranges from 25.7% to 26.5%. The estimated observed (expected) bound on WR

masses is 2575 (2375) GeV at 95% CL, as seen from the blue line. In order to see the effect of
large tan β and gR ̸= gL, we set gR ≃ 0.37 and tan β = 0.5. In addition to WR decays into tb̄,
qq̄′ and νRℓ, the decays of WR → hWL and WR → WLZ are non-negligible, with each one at
about 2% BR. Therefore, the branching ratio of WR into tb̄ is reduced slightly further, and
now ranges between 24.8% and 25.6%. The green line shows our result, and the estimated
observed (expected) limit at 95% CL is 2565 (2350) GeV. Finally, setting gR ≃ 0.37, tan β
= 0.5, and varying the matrix elements of V R

CKM, the branching ratio of WR → tb̄ varies
from about 15.7% for high MWR

(4 TeV), to about 24.7% for low MWR
(1.5 TeV). The pink

line shows our result, and the estimated observed (expected) limit at 95% CL is 2320 (1850)
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GeV.

The top right plane of Fig. 6.3 shows the WR mass exclusion based on WR → jj

channel. The estimated exclusion limits vary from 3.5 TeV for the scenario where gL = gR,
tan β = 0.01 and V L

CKM = V R
CKM, to 2.0 TeV for the scenario which we set gL ̸= gR = 0.37,

tan β = 0.5 and V L
CKM ̸= V R

CKM as can be read in detail from Table 6.4.

In addition to WR → tb̄ and WR → jj channels, the most stringent bounds come from
the channel in which the WR boson decays to a first or second generation charged lepton and
a heavy neutrino of the same lepton flavor. Both ATLAS [21] and CMS [22] assume that the
heavy neutrino further decays to another charged lepton of the same flavor and a virtual W ⋆

R

with a 100% rate. The virtual W ⋆
R then decays into two light quarks, producing the decay

chain

WR → ℓνR → ℓℓW ⋆
R → ℓℓqq′, ℓ = e or µ . (6.24)

However, this is true only for small tan β values, where the corresponding mixing
angle ξ between the two charged gauge bosons is extremely small. In the large tan β case,
the mixing between WL and WR, although small enough to satisfy flavor and CP bounds,
becomes important, inducing a WL contribution to the above channel, producing the decay
chain

WR → ℓνR → ℓℓWL → ℓℓqq′, ℓ = e or µ . (6.25)

This can be traced to the interaction of right-handed neutrino field with W+µ
L ℓ and

W+µ
R ℓ [260]:

νW+µ
L ℓ −→ i√

2
γµ (gLPLKL cos ξ − gRPRKR sin ξ) (6.26)

νW+µ
R ℓ −→ i√

2
γµ (gRPRKR cos ξ − gLPLKL sin ξ) (6.27)

where KL and KR are PMNS mixing matrices in the left and right leptonic sectors,
defined as

KL = V ν†
L V ℓ

L, KR = V ν†
R V ℓ

R. (6.28)
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Remember that, while we denote the gauge bosons by WR,L, in the presence of mixing,
each physical eigenstate is a mixture of the the left- and right-handed gauge bosons. For the
case of no mixing between charged gauge bosons, WL is purely left-handed, and consequently,
νR will not decay to this state. However, the second term in Eq. (6.26) is important as the
mixing ξ increases, and MνR decreases. Contributions to ℓℓjj final states through W ⋆

R and
WL are illustrated in the Fig. 6.2, where we set MWR

= 3.5 TeV both in the left and right
plane. The green line shows the branching ratio of νR → ℓqq′, namely, the contribution to
ℓℓjj final states through virtual W ⋆

R boson, Eq. (6.27), while the red curve represents the
branching ratio of νR → WLℓ, namely, the contribution to ℓℓjj final state through an WL

boson Eq. (6.26). The lower x-axis and the top x-axis represent the mixing angle ξ between
the charged gauge bosons and tan β, respectively, thus showing the correlation between them.
In the left plot, we show this correlation for the case of gL = gR, while the right plot depicts
the same correlation, but for the case gL ̸= gR = 0.37. The plots indicate that, when both
tan β and ξ are small, all contributions proceed through a virtual W ⋆

R boson. As an increase
in tan β induces an increase in ξ, the contributions to ℓℓjj final states receive contributions
through both virtual W ⋆

R and real WL bosons. When gL = gR, tan β = 0.01 and MWR
= 3.5

TeV, approximately 98% of the total contribution to ℓℓjj final state comes through the virtual
W ⋆
R boson, with WL boson contribution to about 2%. The mixing between two charged gauge

bosons become more important in case of gL ̸= gR. When gL ̸= gR = 0.37, tan β = 0.5 and
MWR

= 3.5 TeV, the contribution to ℓℓjj final state through WL boson increases to 30%,
meaning that the contribution through a virtual W ⋆

R boson has been reduced to 70%4. Since
we increased the ratio of gL/gR from 1.0 to 1.79 by setting gR ≃ 0.37, the vacuum expectation
value vR needs to be increased approximately by 1.8 times to obtain the the same WR boson
mass as in the gL = gR case, the corresponding ξ value decreasing slightly compared to the
case where gL ̸= gR. The decrease in gR and increase in tan β increases the contribution
through WL into ℓℓjj final state. In case of small ξ, which also corresponds to small tan β,
the branching ratio of νR → WLℓ is negligible (< 10−4). As the mixing ξ between charged
gauge bosons increases (concurrently with tan β), the second term in Eq. (6.26) starts to
give non-negligible contributions, and as a result, the branching ratio of νR → WLℓ becomes
larger. In case of gR = gL and small tan β, the main contribution to WR → νRℓ comes
from the first term in Eq. (6.27). Increasing tan β and decreasing gR slightly reduces the
contribution of this term since it is proportional to gR cos ξ. Therefore, the branching ratio
of WR → νRℓ slightly decreases in the case of gL ̸= gR, and the contribution to ℓℓjj final

4The values chosen for tanβ and mixing angle ξ satisfy all flavor constraints in Table 6.1.
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state is compensated through WL contributions, slightly more so compared to the gL = gR

case.

The bottom planes of Fig. 6.3 show the result of the analysis of the ℓℓjj final states.
The bottom left panel plots the result for decays into ℓℓ = ee channel whereas the bottom
right one is for the ℓℓ = µµ channel. For the scenarios where tan β = 0.01, the contribution
through WL bosons is suppressed. Therefore, the main contribution to ℓℓjj final states comes
via the virtual W ⋆

R boson. However, for consistency we sum up the contributions through
the virtual W ⋆

R and real WL boson, and our graphs for large tan β values in the bottom
planes represent the combined contribution. The most stringent bounds occur for gL = gR,
tan β = 0.01 and V L

CKM = V R
CKM. We confirmed in that case the CMS result [22] and find out

that the observed (expected) 95 % CL lower limit on WR masses is 4420 (4420) GeV in the
ee channel and 4420 (4500) GeV in the µµ channel.

The observed (expected) limit is reduced to 3800 (3800) GeV in the ee channel and
3800 (3950) GeV in the µµ channel when gL ̸= gR, tan β = 0.01 and V L

CKM = V R
CKM. In

the scenarios where tan β = 0.5, contributions to ℓℓjj final states proceed through both
virtual W ⋆

R and WL bosons. When the WR mass is about 1 TeV, approximately 90.5% of
the combined contribution is obtained through WL bosons, limiting the virtual W ⋆

R boson
contribution to 9.5%. However, this relation is flipped when WR mass is about 4 TeV, where
77.5% of the combined contribution to ℓℓjj final states is obtained through the virtual W ⋆

R

boson, leaving theWL boson to contribute at 20.6%. In the scenario where we gL ̸= gR = 0.37,
tan β = 0.5, and V L

CKM = V R
CKM, we improve the bounds to where the observed (expected)

95% CL lower limit is 3725 (3720) GeV in the ee channel, and 3750 (3900) GeV in the µµ
channel. In addition to lowering gR and increasing tan β, we verified the effect of different
CKM matrices, allowing V L

CKM ̸= V R
CKM in our final scenario. The partial contributions

through virtual W ⋆
R and WL in this scenario are very close to the one where V L

CKM = V R
CKM

and gR ̸= gL, and tan β = 0.5. In this case the results are least constraining and we find that
the observed (expected) 95% CL lower limit is 3100 (3300) GeV in the ee channel and 3350
(3400) GeV in the µµ channel.

We now proceed to explore constraints on the WR and related νR masses and compare
these to the CMS and ATLAS analyses.
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Figure 6.2: Branching ratios of νR → lqq′ and νR → WLℓ versus mixing angle ξ between
WL and WR (bottom x-axis), changing with tan β (upper x-axis) when gL = gR (left) and
when gL ̸= gR = 0.37 (right). We set V L

CKM = V R
CKM for this analysis.

6.5.3 Correlating WR and νR mass bounds

In Fig. 6.4, we analyze the correlations in the two dimensional MWR
− MνR mass plane,

covering a range of neutrino masses both below and above the WR boson mass. Contrary
to the CMS analysis [22], which assumes that only one heavy neutrino flavor νR contributes
significantly to the WR decay width, in our analysis all three heavy right-handed neutrino
flavors contribute democratically. The WR production cross section is calculated for each
solution in this 2D plane using MG5_aMC@NLO, and the observed (expected) 95% CL
limits obtained from our analysis are applied to explore excluded regions. The expected
and observed upper limits on the cross section for different WR and νR mass hypotheses
are compared with the latest CMS results [22] @ L = 35.9 fb−1 and ATLAS results [21] @
L = 36.1 fb−1, as seen in Fig. 6.4. Note that we generate our results using the CMS [22]
data, as this is available. The ATLAS analysis, although more recent and at a slightly higher
luminosity, is able to rule out a small subset of parameter points in the MWR

< MνR region.
However they do not share their observed (expected) cross section plots publicly. Because of
that, when we extrapolate our results for slightly higher luminosity in that region, our cross
sections are very small, and we do not obtain any restrictions. Thus, we decided it safer
to compare our analysis with the existing data points provided by CMS, while indicating
restrictions from both experimental analyses on the plots.

In the MνR < MWR
case, we assume that the contribution comes through the following
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decay chain:
WR → ℓνR → ℓℓW ⋆

R → ℓℓqq′, ℓ = e or µ , (6.29)

while in the MνR > MWR
case, we assume that the contribution comes through the following

decay chain:
W ⋆
R → ℓνR → ℓℓWR → ℓℓqq′, ℓ = e or µ . (6.30)

In our analysis, there is no excluded region in the MνR > MWR
region since the corresponding

cross section in that region is below the experimental limits, as can be read from the color bars
in Fig. 6.4. This is understood from our previous analysis, as the production cross section of
νRℓ through WR bosons dominates the one obtained through the virtual W ⋆

R bosons. The top
planes of Fig. 6.4 represent the results of the exclusion in the two dimensional MWR

−MνR

mass plane based on the scenario where gL = gR, tan β = 0.01 and V L
CKM = V R

CKM, whereas
middle and bottom planes show the same exclusion for the scenario where gL ̸= gR = 0.37,
tan β = 0.5, V L

CKM = V R
CKM and gL ̸= gR = 0.37, tan β = 0.5, V L

CKM ̸= V R
CKM, respectively.

For the scenario where gL ̸= gR, tan β = 0.5 and V L
CKM = V R

CKM, WR bosons with masses up
to 3.7 (3.7) TeV in the ee channel and up to 3.7 (3.9) TeV in the µµ channel are excluded at
95% CL, for MνR up to 2.8 (2.9) TeV in the ee channel and 3.1 (3.0) TeV in the µµ channel.
The 2D exclusion limits are less stringent in the ee channel, where WR boson masses are
excluded up to 3.0 TeV for νR masses close to the MWR

=MνR degeneracy line. On the other
hand, we exclude less parameter space in the two dimensional MWR

−MνR mass plane when
gL ̸= gR = 0.37, tan β = 0.5 and V L

CKM ̸= V R
CKM. As seen from the bottom planes of Fig. 6.4,

WR bosons with masses up to 3.1 (3.3) TeV are excluded at 95% CL, for MνR up to 2.1 TeV,
in the ee channel whereas WR bosons with masses up to 3.3 (3.4) TeV are excluded at 95%
CL, for MνR up to 2.6 (2.5) TeV in the µµ channel. Here again, the 2D exclusion limits are
less stringent in the ee channel, where WR boson masses are excluded up to 2.0 TeV for MνR

masses close to the MWR
=MνR degeneracy line.

In Table 6.3 we show explicitly the limits for different values of gL, gR, tan β and V L
CKM

versus V R
CKM values for MνR > MWR

case. The second column gives the expected limits, while
the third the observed limits5. The last column indicates the dominant constraining channel.
For this scenario, the most stringent limits come from WR → jj, for the case when gL = gR,
tan β = 0.01 and V L

CKM = V R
CKM, where MWR

≥ 3.60 (3.625) TeV for the observed (expected)
mass limits, while the least constraining case is the decay WR → tb̄, when gL ̸= gR = 0.37,

5Our theoretically estimated observed and expected values are obtained for the points where our model
curves intersect the respective observed and expected experimental curves.
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Figure 6.3: (Top left): The cross section ofWR → tb̄ vsWR mass, compared to CMS data [20];
(top right) The cross section ofWR → jj vsWR mass, compared to the ATLAS measurements
[21]; (bottom left) The cross section of WR → eejj vs WR mass, for the case MνR =MWR

/2,
compared to the CMS data [22]; (bottom right) The cross section of WR → µµjj vs WR

mass, for the case where MνR =MWR
/2, compared to [22].
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Figure 6.4: Observed (continuous lines) and expected (dashed lines) 95% CL exclusion con-
tours in the MWR

−MνR plane in the ee (left columns) and µµ (right columns) channels for
Majorana νR neutrinos. The dashed blue line in the each plane indicates the region where
MWR

= MνR . We also show observed and expected limits by ATLAS [21] @ L = 36.1 fb−1,
and CMS [22] @ L = 35.9 fb−1, obtained assuming gL = gR, tan β = 0.01 and V L

CKM = V R
CKM.

The cross section values are indicated by the colors in the legend of the planes. In the top
planes, the continuous (dashed) black (red) line shows the estimated observed (expected)
limit for the scenario where gL = gR, tan β = 0.01 and V L

CKM = V R
CKM. In the middle planes,

gL ̸= gR = 0.37, tan β = 0.5 and V L
CKM = V R

CKM, whereas the same limits in the bottom planes
are analyzed for the scenario where gL ̸= gR = 0.37, tan β = 0.5, and also V L

CKM ̸= V R
CKM.
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Scenario I: MνR > MWR
Lower limits for MWR

(GeV) Exclusion
channel

Expected Observed

gL = gR, tanβ = 0.01,
V L
CKM = V R

CKM

3450 3600 WR → tb

gL ̸= gR, tanβ = 0.01,
V L
CKM = V R

CKM

2700 2700 WR → tb

gL ̸= gR, tanβ = 0.5,
V L
CKM = V R

CKM

2675 2675 WR → tb

gL ̸= gR, tanβ = 0.5,
V L
CKM ̸= V R

CKM

1940 2360 WR → tb

gL = gR, tanβ = 0.01,
V L
CKM = V R

CKM

3625 3620 WR → jj

gL ̸= gR, tanβ = 0.01,
V L
CKM = V R

CKM

2700 2555 WR → jj

gL ̸= gR, tanβ = 0.5,
V L
CKM = V R

CKM

2650 2500 WR → jj

gL ̸= gR, tanβ = 0.5,
V L
CKM ̸= V R

CKM

2010 2000 WR → jj

Table 6.3: Lower limits for MWR
in GeV, when MνR > MWR

.

tan β = 0.5 and V L
CKM ̸= V R

CKM, where MWR
≥ 2.36 (1.94) TeV for the observed (expected)

mass limits.

We repeat the analysis in Table 6.4 for the case where MνR < MWR
, using the same

column notations as in Table 6.3. For this second scenario, the most stringent limits come
from WR → µµjj, for the case when gL = gR, tan β = 0.01 and V L

CKM = V R
CKM, where MWR

≥
4.42 (4.5) TeV for the observed (expected) mass limits, while the least constraining case is
the case WR → tb̄, when gL ̸= gR = 0.37, tan β = 0.5 and V L

CKM ̸= V R
CKM, where MWR

≥ 2.32
(1.85) TeV for the observed (expected) mass limits.

To assess properties and differences between the two scenarios, in Table 6.5 we give
the complete set of parameters for two representative benchmarks, one for the first scenario,
MνR > MWR

and one for the second scenario, MνR < MWR
, with the WR masses, cross

sections and branching ratios given in Table 6.6, for LHC at
√
s = 13 and 27 TeV.

While there are no discerning differences in the parameters of scalar potential, Eq. (6.9),
or tan β (chosen to maximize WR → WLh), the Yukawa coupling generating the Majorana
masses is an order of magnitude larger in Scenario I, needed to generate MνR > MWR

; while
in Scenario II vR is about 50% larger, to generate an MWR

larger by about 50% than in
Scenario I. The main contributions to the cross sections come from the off-diagonal element
(12) = (us) and (21) = cd in V R

CKM. For BM I, the largest partonic contribution to the cross
section (us̄ → WR) decreases by 8.2% from 13 TeV to 27 TeV while the contribution from
the same channel decreases by 10.4% for BM II. For BM I, the second largest partonic
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Scenario II: MνR < MWR
Lower limits for MWR

(GeV) Exclusion
channel

Expected Observed

gL = gR, tanβ = 0.01,
V L
CKM = V R

CKM

4420 4420 WR → qqee

gL ̸= gR, tanβ = 0.01,
V L
CKM = V R

CKM

3800 3800 WR → qqee

gL ̸= gR, tanβ = 0.5,
V L
CKM = V R

CKM

3720 3725 WR → qqee

gL ̸= gR, tanβ = 0.5,
V L
CKM ̸= V R

CKM

3300 3100 WR → qqee

gL = gR, tanβ = 0.01,
V L
CKM = V R

CKM

4500 4420 WR → qqµµ

gL ̸= gR, tanβ = 0.01,
V L
CKM = V R

CKM

3950 3800 WR → qqµµ

gL ̸= gR, tanβ = 0.5,
V L
CKM = V R

CKM

3900 3750 WR → qqµµ

gL ̸= gR, tanβ = 0.5,
V L
CKM ̸= V R

CKM

3400 3350 WR → qqµµ

gL = gR, tanβ = 0.01,
V L
CKM = V R

CKM

3320 3450 WR → tb

gL ̸= gR, tanβ = 0.01,
V L
CKM = V R

CKM

2375 2575 WR → tb

gL ̸= gR, tanβ = 0.5,
V L
CKM = V R

CKM

2350 2565 WR → tb

gL ̸= gR, tanβ = 0.5,
V L
CKM ̸= V R

CKM

1850 2320 WR → tb

gL = gR, tanβ = 0.01,
V L
CKM = V R

CKM

3500 3500 WR → jj

gL ̸= gR, tanβ = 0.01,
V L
CKM = V R

CKM

2500 2430 WR → jj

gL ̸= gR, tanβ = 0.5,
V L
CKM = V R

CKM

2460 2400 WR → jj

gL ̸= gR, tanβ = 0.5,
V L
CKM ̸= V R

CKM

2000 2000 WR → jj

Table 6.4: Lower limits for MWR
in GeV when MνR < MWR

.
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vR gR tanβ diag(hijR) α1 α2 α3

BM I : 9.8 TeV 0.36 0.55 0.9 0.6 0.6 2.0
BM II : 14.1 TeV 0.37 0.55 7.5 ×10−2 0.6 0.6 2.0

λ1 λ2 λ3 ρ1 ρ2 ρ3 ρ4 = λ4

BM I : 0.15 0.14 0.142 2.12×10−3 3.4×10−3 5.5×10−3 0.0
BM II : 0.16 0.16 0.162 1.79×10−3 4.0×10−3 4.0×10−3 0.0

Table 6.5: Parameter values for BM I and BM II.

BM I : MνR > MWR
BM II : MνR < MWR

mWR
[GeV] 2557 3689

mνR [GeV] 16797 1838
σ(pp → WR) [fb] @13 TeV 48.7 3.98
σ(pp → WR) [fb] @27 TeV 478.0 77.3

BR(WR → tb) [%] 26.3 19.9
BR(WR → jj) [%] 58.6 45.8
BR(WR → νRℓ) [%] - 6.5 (each family)

BR(WR → h1WL) [%] 1.8 1.5
BR(WR → WLZ) [%] 2.0 1.6
BR(νR → ℓqq′) [%] - 65.3
BR(νR → WLℓ) [%] 1.1×10−4 33.1
BR(νR → WRℓ) [%] 99.9 -

Table 6.6: Related Branching Ratios and Cross Sections for BM I and BM II.

contribution, dc̄ → WR increases by 3.1% from 13 TeV to 27 TeV, while the contribution
from the same channel increases by 5.6% for BM II. Because of the highly non-diagonal
V R
CKM for both benchmarks, the dominant decay is into jj = qq̄′ ̸= tb̄, followed by tb̄ in BMI,

while in BM II the decay into leptons and neutrinos (combined for three families) is of the
same strength as tb̄.
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Chapter 7

Natural dark matter and light bosons

with an alternative left-right

symmetry

7.1 Introduction

The nature of dark matter and its interactions is one of the most puzzling conceptual issues
of the Standard Model of particle physics and points clearly towards the existence of new
physics. So far, the most popular extensions of the Standard Model (SM) that contain
natural dark matter (DM) candidates have been either supersymmetric, so that R-parity
conservation enforces a stable supersymmetric state behaving as a weakly-interacting massive
particle (WIMP) [262], or featuring axion-like particles that could additionally shed light on a
potential solution to the strong CP problem [263, 264]. While experimental DM searches are
on-going and put stronger and stronger constraints on the phenomenological viability of the
models, several new ad-hoc mechanisms have been recently designed to supplement the SM
with a DM candidate. In the latter, the observed properties of DM [12] can be successfully
reproduced by an appropriate tuning of the particle masses and properties. For instance,
new force carriers could be introduced to mediate the interactions of the dark sector with
the SM one, as within the dark photon or vector portal models [265–269]. Differently, the
connection between the dark and visible sector could be realised through interactions with
vector-like fermions [270–275]. Whilst appealing from a phenomenological point of view by
virtue of their simplicity, such DM setups are however quite unnatural. In this work, we
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therefore go back to natural dark matter models and focus on a less studied class of scenarios
that emerges from the grand unification of the SM gauge interactions.

Grand unification models based on the breaking of the exceptional group E6 [276,
277] have been popular for awhile, at the beginning as a result of developments in string
theories [178], then later as generators of models with additional U(1) symmetries [210].
These so-called U(1)′ models arise from considering the SO(10) × U(1) subgroup of E6.
However, the E6 group has also an SU(3) × SU(3) × SU(3) subgroup. One of these SU(3)
remains unbroken and is associated with the SM strong interaction group SU(3)c, while
the two others further break into the SU(2)L × SU(2)H × U(1)X group that embeds the
SU(2)L×U(1)Y electroweak symmetry. In the so-called left-right symmetric model (LRSM),
that naturally accounts for non-vanishing neutrino masses [231, 232, 234, 241], SU(2)H is
identified with SU(2)R and U(1)X with U(1)B−L. In such a configuration, the right-handed
SM fermions and the right-handed neutrino νR are collected into SU(2)R doublets. The
structure of the Higgs sector could however lead to non-acceptable tree-level flavour-violating
interactions that would conflict with the observed properties of kaon and B-meson systems.
Consequently, the SU(2)R×U(1)B−L symmetry has to be broken at a very high energy scale
to mass-suppress any potential flavour-violating effect. This additionally pushes the masses
of the extra Higgs and gauge bosons of the model to the high scale, making them unlikely to
detect at the LHC. Furthermore, in its minimal incarnation, the LRSM lacks any viable DM
candidate [278].

It is nevertheless possible to associate the SU(2)H symmetry with a different SU(2)R′

group in which the assignments of the SM fermions into doublets are different [279, 280]. This
model is called the alternative left-right symmetric model (ALRSM) [281, 282]. In this case,
the SU(2)R′ partner of the right-handed up-quark uR is an exotic down-type quark d′R (instead
of the SM right-handed down-type quark dR), and the SU(2)R′ partner of the right-handed
charged lepton eR is a new neutral lepton, the scotino nR (instead of the more standard
right-handed neutrino νR). The right-handed neutrino νR and down-type quark dR therefore
remain singlets under both the SU(2)L and SU(2)R′ groups. In addition, the model field
content also includes SU(2)L singlet counterparts to the new states, i.e. an nL scotino and
a d′L down-type quark. Consequently, one generation of quarks is described by one SU(2)L
doublet QL = (uL, dL), one SU(2)R′ doublet QR = (uR, d

′
R) and two SU(2)L × SU(2)R′

singlets d′L and dR. Similarly, one generation of leptons is described by one SU(2)L doublet
LL = (νL, eL), one SU(2)R′ doublet LR = (nR, eR) and two SU(2)L × SU(2)R′ singlets nL
and νR. Moreover, the right-handed neutrino νR and the nL scotino being singlets under
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U(1)B−L, are unlikely to be viable DM candidates, as their too weak interactions with the
SM particles would make them over-abundant. On the contrary, the nR scotino may fulfill
the role.

In this work, we will show that this is indeed the case. The nR scotino can be an
acceptable DM candidate satisfying requirements from imposing agreement with the observed
relic density and the non-violation of the DM direct and indirect detection bounds. This
however yields very stringent constraints on the model parameter space. In contrast with the
usual LRSM, the charged right-handed gauge boson W ′ couples right-handed up-type quarks
and charged leptons to their exotic quarks and scotino partners. Therefore, the limits on the
W ′-boson mass (originating mainly from the properties of the K0 − K̄0 mixing in the LRSM
case [244]) do not apply. Similarly, the different couplings of the Higgs states to fermions
forbid most dangerous flavour-violating effects, so that the mass limits on the Higgs states
can also be relaxed. As will be demonstrated in the rest of this paper, these considerations
lead to a quite predictable lower-energy spectrum with signatures potentially observable at
the high-luminosity LHC.

The aim of this work is therefore to provide a comprehensive analysis of the ALRSM
setup, emphasising for the first time the complementarity between cosmological, low-energy
and collider constraints in this class of extensions of the SM. We update and extent previous
recent works that have focused on the dark matter [283] and collider [284] phenomenology
independently. In section 7.2, we provide a brief description of the ALRSM and detail the
technical setup underlying our analysis in section 7.3. Our results are presented in the next
sections. In section 7.4, we analyse the constraints on the model parameter space originating
from LHC searches for new gauge bosons, performed in a similar way as for the LRSM [4].
Section 7.5 is dedicated to cosmological considerations and their impact on the parameter
space. In section 7.6 we focus on determining promising signals of the model at the future
high-luminosity upgrade of the LHC. In appendices B.1 and B.2, we include further details
on the diagonalisation of the model Higgs and fermionic sector respectively, and document
our implementation of the ALRSM in FeynRules [259] in appendix B.3.

7.2 The alternative left-right symmetric model

The alternative left-right symmetric model [279–282] is a variant of the more usual mini-
mal left-right symmetric model. It is based on the SU(3)c × SU(2)L × SU(2)R′ × U(1)B−L
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gauge group, to which we supplement a global U(1)S symmetry. The spontaneous break-
ing of SU(2)R′ × U(1)S is implemented so that the L = S + T3R charge, that can be seen
as a generalised lepton number, remains unbroken (with T3R being the third generator of
SU(2)R′).

The quantum numbers and representations chosen for the fermionic field content of the
ALRSM are motivated by heterotic superstring models in which all SM matter multiplets are
collected into a 27-plet of E6. Under the E6 maximal subgroup SU(3)c×SU(3)L×SU(3)H ,
the 27 representation is decomposed as

27 =
(
3,3, 1

)
+
(
3̄, 1, 3̄

)
+
(
1, 3̄,3

)
≡ q + q̄ + l . (7.1)

Explicitly, the particle content for this decomposition can be written, ignoring the sign struc-
ture for clarity, as

q =

⎛⎜⎜⎜⎜⎜⎝
uL

dL

d′L

⎞⎟⎟⎟⎟⎟⎠ , q̄ =

(
ucR dcR d′cR

)
, l =

⎛⎜⎜⎜⎜⎜⎝
Ec
R NL νL

N c
R EL eL

ecR νcR ncR

⎞⎟⎟⎟⎟⎟⎠ , (7.2)

where d′, E, N and n are exotic fermions and u, d, e and ν are the usual up-type quarks,
down-type quarks, charged leptons and neutrinos. In this setup, SU(3)L operates ver-
tically and SU(3)H horizontally. There are three different ways to embed SU(2)H into
SU(3)H [279]. The most common one consists in imposing the first and second column
of the above multiplets to form SU(2)H doublets, which corresponds to the usual LRSM
(SU(2)H = SU(2)R) [231, 232, 234, 241]. The second option requires in contrast that the
first and third columns of the above multiplets form an SU(2)H doublet, which corresponds
to the ALRSM (SU(2)H = SU(2)R′) [279–282] . Finally, the third and last option corre-
sponds to doublets formed from the second and third columns of the above multiplets, which
corresponds to the Inert Doublet Model (SU(2)H = SU(2)I) [285–287].

We are interested here in the second option. In the rest of this section, we present a
summary of the model description, leaving computational details for the appendix. While
previous descriptions of the ALRSM exist, we provide extensive details to properly and
consistently define our notations, which is relevant for the model implementation in the
high-energy physics tools depicted in section 7.3.
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Fields Repr. U(1)S

QL =

(
uL

dL

) (
3,2,1, 1

6

)
0

QR =

(
uR

d′R

) (
3,1,2, 1

6

)
−1

2

d′L
(
3,1,1,−1

3

)
−1

dR
(
3,1,1,−1

3

)
0

LL =

(
νL

eL

) (
1,2,1,−1

2

)
1

LR =

(
nR

eR

) (
1,1,2,−1

2

)
3
2

nL
(
1,1,1, 0

)
2

νR
(
1,1,1, 0

)
1

Fields Repr. U(1)S

ϕ =

(
ϕ0
1 ϕ+

2

ϕ−
1 ϕ0

2

) (
1,2,2∗, 0

)
−1

2

χL =

(
χ+
L

χ0
L

) (
1,2,1, 1

2

)
0

χR =

(
χ+
R

χ0
R

) (
1,1,2, 1

2

)
1
2

Gµ

(
8,1,1, 0

)
0

WLµ

(
1,3,1, 0

)
0

WRµ

(
1,1,3, 0

)
0

Bµ

(
1,1,1, 0

)
0

Table 7.1: ALRSM particle content, given together with the representation of each field under
SU(3)c × SU(2)L × SU(2)R′ × U(1)B−L (second column) and the U(1)S quantum numbers
(third column). We consider the matter sector (left panel), the gauge sector (lower right
panel) and the Higgs sector (upper right panel) separately.
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Pairing the fields presented in eq. (7.2) into SU(3)c × SU(2)L × SU(2)R′ × U(1)B−L

multiplets yields phenomenological issues for the neutrino sector, as the lightest neutrinos get
masses of the order of the up quark mass [288]. This can be cured by adding an E6 singlet
scotino nL to the field content, together with a pair of (heavy) 27 + 27 Higgs fields. As a
consequence, the exotic E and N fermions become much heavier and can be phenomenolog-
ically ignored. The resulting fermionic content of the model is presented in the left panel of
table 7.1, together with the representations under the model gauge group and the associated
U(1)S quantum numbers. The electric charge of the different fields can be obtained through a
generalised Gell-Mann-Nishijima relation Q = T3R+T3L+YB−L, which subsequently explains
the unconventional B − L charges.

In order to recover the electroweak symmetry group, the gauge and global symmetry
SU(2)R′ × U(1)B−L × U(1)S is first broken down to the hypercharge U(1)Y while preserving
the generalised lepton number L. This is achieved through an SU(2)R′ doublet of scalar
fields χR charged under U(1)S. While we introduce an SU(2)L counterpart χL to maintain
the left-right symmetry, the latter is in contrast blind to the global U(1)S symmetry. The
electroweak symmetry is then broken down to electromagnetism by means of a bidoublet of
Higgs fields charged under both SU(2)L and SU(2)R′ , but with no B−L quantum numbers.
We refer to the right panel of table 7.1 for details on the gauge and Higgs sector of the
ALRSM.

The model Lagrangian includes, on top of standard gauge-invariant kinetic terms for
all fields, a Yukawa interaction Lagrangian LY and a scalar potential VH. The most general
Yukawa Lagrangian allowed by the gauge and the global U(1)S symmetries is given by

LY = Q̄LŶ
uϕ̂†QR−Q̄LŶ

dχLdR−Q̄RŶ
d′χRd

′
L− L̄LŶeϕLR+ L̄LŶ

νχ̂†
LνR+ L̄RŶ

nχ̂†
RnL+h.c. ,

(7.3)
where all flavour indices have been omitted for clarity so that the Yukawa couplings Ŷ are
3 × 3 matrices in the flavour space, and where the hatted quantities refer to the duals of
the scalar fields ϕ̂ = σ2ϕσ2 and χ̂L,R = iσ2χL,R (with σ2 being the second Pauli matrix).
The most general Higgs potential VH preserving the left-right symmetry is given, following
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standard conventions [289], by

VH =− µ2
1Tr
[
ϕ†ϕ
]
− µ2

2

[
χ†
LχL + χ†

RχR
]
+ λ1

(
Tr
[
ϕ†ϕ
])2

+ λ2 (ϕ·ϕ̂) (ϕ̂† ·ϕ†)

+ λ3

[(
χ†
LχL

)2
+
(
χ†
RχR

)2]
+ 2λ4

(
χ†
LχL

) (
χ†
RχR

)
+ 2α1Tr

[
ϕ†ϕ
][
χ†
LχL + χ†

RχR
]

+ 2α2

[(
χ†
Lϕ
)(
χLϕ

†)+ (ϕ†χ†
R

) (
ϕχR

)]
+ 2α3

[(
χ†
Lϕ̂

†) (χLϕ̂)+ (ϕ̂χ†
R

) (
ϕ̂†χR

)]
+ κ
[
χ†
LϕχR + χ†

Rϕ
†χL
]
,

(7.4)

and contains bilinear (µ), trilinear (κ) and quartic (λ, α) contributions. In the above expres-
sion, the dot to the SU(2)-invariant product.

After the breaking of the left-right symmetry down to electromagnetism, the neutral
components of the scalar fields acquire non-vanishing vacuum expectation values (vevs),

⟨ϕ⟩ = 1√
2

(
0 0

0 k

)
, ⟨χL⟩ =

1√
2

(
0

vL

)
, ⟨χR⟩ =

1√
2

(
0

vR

)
, (7.5)

with the exception of ϕ0
1, which is protected by the conservation of the generalised lepton

number that also forbids mixing between the SM d and exotic d′ quarks. Moreover, all scalar
fields with the same electric charge mix. Expressing the complex neutral scalar fields in terms
of their real degrees of freedom,

ϕ0
1 =

1√
2

[
ℜ{ϕ0

1}+ i ℑ{ϕ0
1}
]
,

ϕ0
2 =

1√
2

[
k + ℜ{ϕ0

2}+ i ℑ{ϕ0
2}
]
,

χ0
L,R =

1√
2

[
vL,R + ℜ{χ0

L,R}+ i ℑ{χ0
L,R}

]
,

(7.6)

we can write the mixing relations involving the massive CP -even Higgs bosons H0
i (with

i = 0, 1, 2, 3), the massive CP -odd Higgs bosons A0
i (with i = 1, 2) and the two massless

Goldstone bosons G0
1 and G0

2 that give rise to the longitudinal degrees of freedom of the Z
and Z ′ bosons, as⎛⎜⎜⎜⎜⎜⎝

ℑ{ϕ0
1}

ℑ{ϕ0
2}

ℑ{χ0
L}

ℑ{χ0
R}

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0

0 UA
3×3

0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
A0

1

G0
1

G0
2

A0
2

⎞⎟⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎜⎝
ℜ{ϕ0

1}
ℜ{ϕ0

2}
ℜ{χ0

L}
ℜ{χ0

R}

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0

0 UH
3×3

0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
H0

1

H0
0

H0
2

H0
3

⎞⎟⎟⎟⎟⎟⎠ .

(7.7)
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The ϕ0
1 field has been prevented from any mixing by virtue of the conservation of the gen-

eralised lepton number, and we refer to appendix B.1 for the expressions of the 3× 3 Higgs
mixing matrices UA

3×3 and UH
3×3, as well as for those of the six Higgs-boson masses. In the

charged sector, the ϕ±
1 , ϕ±

2 , χ±
L and χ±

R fields mix into two physical massive charged Higgs
bosons H±

1 and H±
2 , as well as two massless Goldstone bosons G±

1 and G±
2 that are absorbed

by the W and W ′ gauge bosons,(
ϕ±
2

χ±
L

)
=

(
cos β sin β

− sin β cos β

)(
H±

1

G±
1

)
,

(
ϕ±
1

χ±
R

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
H±

2

G±
2

)
, (7.8)

with
tan β =

k

vL

and tan ζ =
k

vR

. (7.9)

We refer again to appendix B.1 for the explicit expressions of the masses of the physical
states in terms of other model parameters.

By definition, the breaking of the left-right symmetry generates masses for the model
gauge bosons and induces their mixing (from the Higgs-boson kinetic terms). The charged
W = WL and W ′ = WR bosons do not mix as ⟨ϕ0

1⟩ = 0, and their masses are given by

MW =
1

2
gL
√
k2 + v2L ≡ 1

2
gLv and MW ′ =

1

2
gR
√
k2 + v2R ≡ 1

2
gRv

′ . (7.10)

In the neutral sector, the gauge boson squared mass matrix is written, in the (Bµ,W
3
Lµ,W

3
Rµ)

basis, as

(M0
V )

2 =
1

4

⎛⎜⎜⎝
g2B−L (v2L + v2R) −gB−L gL v

2
L −gB−L gR v

2
R

−gB−L gL v
2
L g2L v

2 −gL gR k2

−gB−L gR v
2
R −gL gR k2 g2R v

′2

⎞⎟⎟⎠ . (7.11)

It can be diagonalised through three rotations that mix the B, W 3
L and W 3

R bosons into the
massless photon A and massive Z and Z ′ states,⎛⎜⎜⎝

Bµ

W 3
Lµ

W 3
Rµ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cφW

0 −sφW

0 1 0

sφW
0 cφW

⎞⎟⎟⎠
⎛⎜⎜⎝
cθW −sθW 0

sθW cθW 0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
1 0 0

0 cϑW −sϑW
0 sϑW cϑW

⎞⎟⎟⎠
⎛⎜⎜⎝
Aµ

Zµ

Z ′
µ

⎞⎟⎟⎠ , (7.12)

where si and ci respectively denote the sine and cosine of the angle i. The φW -rotation
mixes the B and W 3

R bosons into the hypercharge boson B′ as generated by the breaking of
SU(2)R′ × UB−L into to the hypercharge group U(1)Y . The θW -rotation denotes the usual
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electroweak mixing, and the ϑW -rotation is related to the strongly constrained Z/Z ′ mixing.
The various mixing angles are defined by

sφW
=

gB−L√
g2B−L + g2R

=
gY
gR

and sθW =
gY√
g2L + g2Y

=
e

gL
,

tan(2ϑW ) =
2cφW

cθW gLgR(c
2
φW
k2 − s2φW

v2L)

−(g2L − c2φW
c2θW g

2
R)c

2
φW
k2 − (g2L − c2θW g

2
B−Ls

2
φW

)c2φW
v2L + c2θW g

2
Rv

2
R

,

(7.13)

where gY and e denote the hypercharge and electromagnetic coupling constant respectively.
Neglecting the Z/Z ′ mixing, the Z and Z ′ boson masses are given by

MZ =
gL

2cθW
v and MZ′ =

1

2

√
g2B−Ls

2
φW
v2L +

g2R(c
4
φW
k2 + v2R)

c2φW

. (7.14)

The breaking of the gauge symmetry furthermore generates masses and mixings in
the fermion sector. The masses of the up-type quark and charged leptons are controlled by
the vev k of the Higgs bidoublet, whereas the masses of the neutrinos and the down-type
quarks arise from the vev vL of the χL Higgs triplet. The scale of the exotic fermion masses
is in contrast solely induced by the vev vR of the χR triplet. Similarly to what is achieved in
the LRSM, all fermion mixing are conveniently absorbed into two CKM (VCKM and VCKM′)
and two PMNS (VPMNS and VPMNS′) rotations,

dL → VCKMdL , νL → VPMNSdL , d′R → VCKM′d′R , nR → VPMNS′nR . (7.15)

We refer to appendix B.2 for additional details on the generation of the fermion masses, and
their explicit expression in terms of the other model free parameters.

Finally, we supplement the model Lagrangian by the effective couplings agH and aaH of
the SM Higgs boson to gluons and photons,

Leff = −1

4
agHH

0
0G

a
µνG

µν
a − 1

4
aaHH

0
0FµνF

µν , (7.16)

where Ga
µν and Fµν respectively denote the gluon and photon field strength tensors.
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7.3 Computational setup

To perform our analysis of the cosmology and collider phenomenology of the ALRSM, we
have implemented the model presented in section 7.2 into FeynRules (version 2.3.35) [259].
Whereas an implementation was already publicly available for many years [284, 290], we
found several issues with the latter that justified the development of a new implementa-
tion from scratch. First, the Goldstone sector is incorrectly implemented in the existing
implementation, which could yield wrong predictions when jointly used with a tool handling
computations in Feynman gauge by default (like MicrOMEGAs [220]). Secondly, all scalar
fields are doubly-declared (i.e. both under their standard and dual form), the implementa-
tion is only partly relying on FeynRules built-in functions to treat index contractions and
covariant derivatives, and the declaration of the model parameters relies particularly heavily
on the existence of an unnecessary large amount of temporary intermediate abbreviations.
This consequently renders the implementation hard to verify and understand. Moreover, the
electroweak sector is defined by five independent parameters instead of three. Thirdly, the
existing implementation enforces the unnecessary equality gL = gR, that is justified neither
theoretically nor phenomenologically. Relaxing this constraint would have required to modify
all relations relevant for the gauge and Higgs boson masses and mixings (see section 7.2 and
appendix B.1), which would have been quite a complex task given the heavy handling of
the model parameters. Finally, the original implementation has also the VCKM = VCKM′ and
VPMNS = VPMNS′ equalities built in, which is again not justified (see appendix B.2). For all
those reasons, we decided on designing a fresh, more general, implementation, that is also
publicly released on the FeynRules model database1. In order to facilitate the usage of
our FeynRules implementation, we document it further in appendix B.3, where we provide
information on the new physics mass-eigenstates supplementing the SM field content, the
free model parameters and their relation to all the other (internal) parameters.

We have then made use of FeynRules to generate CalcHep [142] model files and
a UFO [111] version of the model [143], so that we could employ MicrOMEGAs (ver-
sion 5.0.8) [220] for the computation of the predictions relevant for our dark matter study,
and MG5_aMC (version 2.6.4) [112] for generating the hard-scattering event samples nec-
essary for our collider study. These events, obtained by convoluting the hard-scattering
matrix elements with the leading-order set of NNPDF 2.3 parton densities [224], are sub-
sequently matched with the Pythia 8 (version 8.243) [167] parton showering and hadroni-

1See http://feynrules.irmp.ucl.ac.be/wiki/ALRM_general.
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Parameter Scanned range Parameter Scanned range

tan β [0.7, 50] mn1 [10, 2000] GeV
gR [0.37, 0.768] mn2 [10, 2000] GeV
v′ [6.5, 13] TeV mn3 [10, 2000] GeV

λ2 0. md′ [500, 2000] GeV
λ3 [0.01, 0.09] ms′ [md′ , 2500] GeV
κ [−50,−1] GeV mb′ [ms′ , 3000] GeV

α1 = α2 = α3 [0.01, 0.5]

Table 7.2: Ranges where the new parameters defining the new physics sector of the model
are allowed to vary.

sation algorithms, and we simulate the typical response of an LHC detector by means of
the Delphes 3 [168] programme (version 3.4.2) that internally relies on the anti-kT algo-
rithm [171] as implemented into FastJet [172] (version 3.3.2) for event reconstruction. We
have employed MadAnalysis 5 [173] (version 1.8.23) for the collider analysis of section 7.6.
Moreover, we have additionally used the generated UFO model with MadDM [291] to inde-
pendently verify the results obtained with MicrOMEGAs , in particular for what concerns
gauge invariance.

In addition, we have relied on HiggsBounds (version 4.3.1) [292] and HiggsSignals

(version 1.4.0) [95] to verify the compatibility of the ALRSM Higgs sector with data, with
the H0

0 field being associated with the SM Higgs boson. We have used the PySLHA pack-
age [145] to read the input values for the model parameters that we encode under the SLHA
format [146], and to integrate the various employed programmes into a single framework.
Using our interfacing, we performed a random scan of the model parameter space following
the Metropolis-Hastings technique. We have fixed the SM parameters to their Particle Data
Group (PDG) values [153], chosen the VCKM′ and VPMNS′ matrices to be equal to their SM
counterparts, and varied the remaining 15 parameters as described in table 7.2.

The SU(2)R′ coupling gR is allowed to vary within the [0.37, 0.768] window. The
lower bound originates from the gR/gL ratio that is theoretically constrained to be larger
than tan θW [293], whereas the upper bound is phenomenological. In practice, gR can indeed
vary all up to the perturbative limit of gR =

√
4π. However, imposing an upper bound

on gR that is 4–5 times smaller guarantees scenarios that are viable with respect to LHC
limits [18, 294–296] and that feature at least one light extra gauge boson (see section 7.4).
The same light-spectrum considerations has lead to our choices for the values of the tan β
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and v′ parameters, with the additional constrains stemming from the expectation that the
SU(2)R′ symmetry has to be broken in the multi-TeV regime and that the Z/Z ′ mixing must
be negligibly small.

The ranges and configuration adopted for the parameters of the Higgs sector are
driven by the Higgs potential minimisation conditions of eqs. (B.2) and (B.3), as well as by
the above-mentioned LHC constraints on the Z ′-boson mass, and by the requirement that
the lightest charged Higgs boson is not tachyonic. It turns out that all phenomenologically
acceptable scenarios feature α1 ∼ α2 = α3 and λ2 = 0, so that we set for simplicity

λ2 = 0 and α1 = α2 = α3 . (7.17)

Moreover, λ3 has to be small and we recall that κ has to be negative (see appendix B.1).
Finally, the exotic quarks and scotino masses are not restricted and we allow them to vary
mostly freely, with a phenomenological upper bound allowing them to be not too heavy.

7.4 Gauge boson mass constraints

Following the methodolgy described in the previous section, we scan the parameter space
imposing constraints on the properties of the Higgs sector so that the H0

0 scalar boson is
SM-like and has features agreeing with experimental data. In this section, we analyse the
properties of the gauge sector for all scenarios accepted in our scanning procedure.

In the upper left and right panels of figure 7.1, we depict the relations between the
masses of the extra gauge bosons MZ′ and MW ′ and the ALRSM coupling constants gL, gB−L

and gR. We observe, in the upper left panel of the figure, that in the ALRSM the ratio of the
neutral to the charged extra boson masses ranges from about 1.20 for a maximal gR value
of 0.768 (light green line) to about 3.05 for a minimal setup defined by gR = 0.37 (purple
line). The left-right symmetric case gL = gR ≈ 0.64 is also indicated (dark blue line). This
shows that a large variety of splittings can be realised for gauge boson masses lying in the 1–5
TeV range. Equivalently, both compressed spectra in which the Z ′-boson is only 20% heavier
than the W ′-boson and more split spectra in which the Z ′-boson is more than about 3 times
heavier than the W ′-boson are allowed by Higgs data, and this for a large set of W ′-boson
masses lying in the 1–4 TeV range. We compare those findings with predictions relevant for
the usual LRSM for similar gR values (dark green and orange lines for gL = gR and gR = 0.37
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Figure 7.1: Properties of the gauge sector for the ALRSM scenarios featuring a Higgs sector
compatible with data. We emphasise the relations between the W ′ and Z ′ boson masses with
the gauge couplings and also investigate the LHC constraints on the mass of the Z ′ boson.
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respectively). It turns out that the MZ′/MW ′ ratio is lower in the ALRSM than in the LRSM
for a given gR value, i.e. the ALRSM gauge boson spectrum is more compressed than in the
standard LRSM for a given SU(2)R coupling constant value. In the upper right panel of
figure 7.1, we study the dependence of this mass ratio on the gB−L an gR coupling constants.
The latter two couplings are related to the hypercharge coupling,

1

g2Y
=

1

g2R
+

1

g2B−L

, (7.18)

so that large gR values are always associated with low gB−L values and vice versa. In typical
scenarios, the hierarchy vL ≪ k ≪ vR is fulfilled as vL is small (which is also favoured by
constraints originating from the ρ parameter [297]), k drives the electroweak vacuum and is
of O(100) GeV, and vR is related to the breaking of the SU(2)R′ symmetry and is thus larger.
Therefore, eqs. (7.10), (7.13) and (7.14) yield

MZ′

MW ′
≈ 1

cφW

=
gB−L

gY
. (7.19)

When gR is larger, gB−L is smaller and cφW
is consequently larger. Smaller MZ′/MW ′ ratios

are thus expected. Conversely, with increasing values of gB−L, cφW
and gR become smaller

so that the MZ′/MW ′ ratio increases. In those case, the W ′ boson can become up to about
three times lighter than the Z ′-boson (see the upper left panel of the figure). This feature
has profound consequences on the possible existence of light ALRSM W ′ bosons allowed by
data.

The W ′-boson does not indeed couple to pairs of ordinary SM fermions, but instead
couples to a SM up-type quark and an exotic down-type quark d′, or an electron and a
scotino. It can consequently not be directly produced at colliders and all LHC bounds on an
additional W ′ boson originating from dijet and dileptonic resonance searches are automati-
cally evaded [18, 294–296]. Only the neutral ALRSM Z ′-boson can potentially be searched
for through standard extra gauge boson LHC analyses, as it is allowed to couple to pairs of
SM fermions. We evaluate the resulting bounds in the lower left panel of figure 7.1 in which
we consider the most constraining limits originating from the cleaner searches in the dilepton
mode. For each benchmark scenario selected by our scanning procedure, we evaluate the Z ′-
boson production cross section, including the branching ratio associated with a Z ′ → e+e−

or µ+µ− decay, and compare our predictions to the bounds arising from the ATLAS search of
ref. [296]. The spread in cross section obtained for a given Z ′ mass stems from the different
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values of the strength of the Z ′-boson fermionic couplings, which we estimate by
√
g2R + g2B−L

and which is represented through the colour map in the figure. For the smallest coupling
values, Z ′ bosons as light as 4 TeV are allowed by data, whilst when the coupling strength
gets larger, the limits can be pushed up to 5 TeV2.

As previously mentioned and visible from the upper left panel of figure 7.1, the W ′-
and Z ′-bosons can feature a very split spectrum so that a 4-5 TeV Z ′ boson can coexist
with a 1–2 TeV W ′-boson. This feature is illustrated in the lower right panel of the figure in
which we present, for each scenario satisfying the LHC Z ′ bounds (the excluded benchmarks
being shown in grey), the corresponding value of the gR coupling. The latter dictates the
W ′-boson mass value, as given by eq. (7.10) which we also represent through the colour map.
For the lowest gR values allowed in the scan, the additional gauge boson splitting is expected
to be the largest (see the upper left panel of figure 7.1), so that viable scenarios featuring a
W ′ boson as light as 1–2 TeV and a Z ′-boson not excluded by present searches are found.
The considered Z ′ bounds are expected to slightly improve by about 20% during the high-
luminosity operation phase of the LHC [298], which does not challenge the existence of light
W ′ bosons (see the lower right panel of figure 7.1). The lightest options for the W ′ boson
correspond to scenarios featuring the smallest gR value theoretically allowed (gR ∼ 0.37), the
Z ′-boson being in this case constrained to lie above roughly 5 TeV. Viable scenarios in which
the Z ′-boson is lighter, with MZ′ ≈ 4 TeV, are also allowed by data. In that configuration,
the U(1)B−L and SU(2)R′ coupling constant are of a similar magnitude, gR ≈ gB−L ∼ 0.5 (see
the upper right panel of figure 7.1), and the W ′/Z ′ boson splitting is smaller (MW ′ ≈ 3 TeV).
Our results also show that the largest gR values correspond to the heaviest scenarios, being
thus disfavoured to be observed at current colliders. This motivates the upper bound set on
gR in our scan (see section 7.3).

7.5 Dark matter

In this section, we investigate the constraints on the model arising from imposing the lightest
scotino as a viable DM candidate with properties compatible with current cosmological data.
First, we require that the predicted relic density agrees within 20% (to conservatively allow
for uncertainties on the predictions) with the recent Planck results, ΩDMh

2 = 0.12 [11]. We
2Whilst in the large coupling case, the Z ′ width over mass ratio can reach 10%, we have verified that

our approximation in which we neglect the interferences of the signal with the SM dilepton continuum was
reasonably satisfactory.
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calculate, for all points returned by our scanning procedure that are in addition compatible
with the LHC Z ′-boson bounds (see section 7.4), the associated DM relic density. We present
our results in figure 7.2. In all the subfigures, the relic density is given as a function of the
mass of the lightest scotino that we denote by mnDM

. Two classes of solutions emerge from the
results. In a first set of allowed masses, the lightest scotino is quite light, with a mass lying
in the [700, 1050] GeV window. The relic density as observed by the Planck collaboration
can however also be accommodated when the spectrum is heavier, i.e. with a lightest scotino
featuring mnDM

∈ [1.7, 2] TeV. This last case is naturally less appealing from a collider
search point of view. For this reason, we did not increase the scanned scotino mass range
(see section 7.3), although potentially viable scenarios could be obtained for even heavier
scotinos, and we mostly ignore this regime in the following discussion. In this case, the
right value obtained for the relic density prediction stems from enhanced annihilations into
fermions through Z ′-boson s-channel exchanges (see the lower right panel of the figure).

In the different panels of figure 7.2, we analyse the properties of those ALRSM scenar-
ios for which a relic density compatible with Planck data has been found. A first remarkable
feature is that when the DM scotino state is light (i.e. when mnDM

∈ [700, 1050] GeV), sev-
eral Higgs bosons are also light (upper left panel of the figure). The degenerate H0

1 and A0
1

neutral states, as well as the charged H±
2 boson, hence have masses of 100–200 GeV. The

heavier the lightest scotino, the lighter these scalar and pseudoscalar bosons turn out to be.
More precisely, for a scotino mass of about 750 GeV, the (pseudo)scalar masses are about
200 GeV, whilst for a scotino mass of 800–1000 GeV, they turn out to be about 100 GeV.
Moreover, the second scalar states H0

2 and A0
2 are only slightly heavier (upper right panel of

figure 7.2), with masses found to lie around 400 GeV. As a consequence of the presence of all
those light states, scotino annihilations into pairs of Higgs bosons contribute significantly to
the total annihilation cross section, as illustrated in the central right panel of figure 7.2. This
figure shows that on the contrary to any other regime probed in our scan, channels where
DM annihilates into Higgs bosons contribute about 30–65% to the total relic density when
mnDM

∈ [700, 1050] GeV. Such an enhancement (by comparison with heavier DM scenarios
where those channels are usually negligible) arises from the heaviest scalar state H0

3 that can
mediate several DM annihilation modes. This scalar boson is found to have a mass roughly
equal to twice the DM mass MH0

3
≈ 2mnDM

(see the central left panel of figure 7.2). There
hence exists a new funnel allowing for efficient DM annihilations into Higgs bosons, prevent-
ing DM from being over-abundant. In addition, the H0

3 funnel also mediates annihilations
into W ′∓H±

2 systems, that turn to be dominant for a DM mass of about 900 GeV (lower left
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Figure 7.2: Relic density predictions for all ALRSM scenarios satisfying the Higgs constraints
imposed during our scan and compatible with LHC Z ′ bounds, and its dependence on the
mass of the lightest scotino. In each panel of the figure, we depict a specific property of all
those scenarios. In the upper left panel, we represent by a colour code the mass of the H0

1 ,
A0

1 and H±
2 Higgs states, whilst in the upper right panel, we focus on the one of the H0

2

and A0
2 Higgs bosons. The mass of the scalar Higgs boson H0

3 is presented relatively to the
scotino mass in the central left panel, and the fractions of the DM annihilation cross section
associated with annihilations in Higgs bosons, W ′±H∓

2 systems and fermions pairs are given
in the central right, lower left and lower right panels respectively.
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Figure 7.3: Predictions for the total DM annihilation cross section as a function of the mass
of the lightest scotino. We show all points returned by the scan and that are compatible with
LHC Z ′ bounds. Scenarios for which the predictions for the relic density agree with Planck
data are shown in red, whilst scenarios for which DM is over-abundant or under-abundant
are shown in blue. We superimpose to our predictions constraints from Fermi-LAT [23], the
yellow area being excluded.

panel of figure 7.2).

Whilst we have demonstrated that the lightest scotino could be a viable DM candidate
from the point of view of the relic density, it is important to verify that dark matter indirect
and direct detection bounds are at the same time satisfied. In figure 7.3, we present the value
of the total DM annihilation cross section at zero velocity as a function of the scotino mass
for all scanned scenarios satisfying the Z ′-boson LHC limits. Configurations for which the
relic density is found in agreement with Planck data are shown in red, whilst any other setup
returned by the scan is shown in blue. In our predictions, we have moreover rescaled the DM
annihilation cross section to its present-day density. We compare our predictions to the latest
bounds derived from the Fermi satellite mission data [23]. We depict, as a yellow area, the
parameter space region that is found out to be excluded. Most scanned scenarios naturally
feature an annihilation cross section that is 1 or 2 orders of magnitude too small to leave any
potentially visible signals in Fermi-LAT data, with a few exceptions where the annihilation
cross section at present time is enhanced. In general, such an enhancement simultaneously
leads to a reduction of the relic density so that Planck data is at the same time accommodated.
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Figure 7.4: DM-proton (left) and DM-neutron (right) spin-independent scattering cross sec-
tion as a function of the mass of the lightest scotino mnDM

. Red points represent the scenarios
featuring a relic density consistent with Planck data, and blue point any other scenario re-
turned by the scan. We restrict the results to scenarios satisfying the LHC Z ′ bounds.

Equivalently, a significant fraction of the scenarios that are excluded by indirect detection
bounds turn out to feature a relic density agreeing with cosmological data (the red points
lying within the yellow contour). Fortunately, most potentially viable parameter regions
from the relic density standpoint are unaffected by current indirect detection limits and will
potentially stay so for some time by virtue of their correspondingly small annihilation cross
sections.

In figure 7.4, we focus on DM direct detection bounds and represent the DM-proton
(left panel) and DM-neutron (right panel) spin-independent scattering cross section σproton

SI

and σneutron
SI as a function of the of the mass of the lightest scotino. Once again, our results

are normalised to the present-day relic density and points compatible (incompatible) with
Plank data are shown in red (blue). Our predictions are then compared with the results of
the Xenon 1T experiment [155]. In the ALRSM, neutron-scotino scattering cross sections are
naturally larger than proton-scotino scattering ones by virtue of the differences between the Z
and Z ′ couplings to the up-type and down-type quarks, so that stronger constraints arise from
the former process. Moreover, the distribution of points in three clusters, as visible in the right
panel of figure 7.4, stem from two features. First, these clusters are associated with different
Z ′ mass ranges, lighter Z ′-bosons being associated with smaller neutron-DM scattering rates.
Second, down-type quarks play a special role in the ALRSM as they do not couple to the
Z ′-boson. This impacts the DM-neutron scattering cross section (consequently due to the
larger down-quark content of the neutron) whilst leading to a more ‘continuous’ behaviour for
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the DM-proton scattering cross section. A large fraction of all scenarios accommodating the
correct relic density are consequently excluded by the Xenon 1T limits on the neutron-DM
scattering cross section. Few options featuring a scotino mass in the 700–1050 GeV range
survive, made possible by a suppression of the Z ′-boson exchange diagrams due to a larger
Z ′ boson mass in those scenarios.

In conclusion, we were able to obtain scenarios satisfying DM relic density and direct
and indirect detection constraints. The existence of those scenarios is however pretty con-
strained, in particular due to direct detection bounds that put severe requirements on the
model spectrum, rendering it very predictable. In the surviving scenarios, the lightest scotino
(i.e. our DM candidate) has a mass in the 750–1000 GeV window and a set of non-SM-like
Higgs bosons are light. In particular, the lightest H0

1 and A0
1 bosons, as well as the H±

2

boson, have masses in the 100–200 GeV window. Moreover, the next scalar state H0
2 and

pseudoscalar state A0
2 are only mildly heavier, with masses in general around 400 GeV. The

heaviest scalar H0
3 is in contrast much heavier, with a mass roughly equal to twice the lightest

scotino mass. As a consequence of the presence of the funnel topology, the DM annihilation
cross section is predicted to be in the right range of values to accommodate Planck data. A
small fraction of scenarios are moreover compatible with DM direct and indirect detection
bounds. Another general feature is that those scenarios feature a potentially light W ′ boson,
with a mass lying in the 1–2 TeV range, not excluded by the results of the LHC.

7.6 Scotino DM signal at colliders

In this section we explore the implications at the LHC of the cosmology-favoured scenarios
that have emerged from our dark matter analysis. We choose three benchmark scenarios
consistent with the constraints previously studied and provide their definition in terms of the
model free parameters in the upper panel of table 7.3. As detailed in section 7.3, the scalar
potential parameter λ2 = 0 for all scenarios. Moreover, the small λ3 value, together with
the equality of all αi parameters and the moderate κ value, implies that the A0

1, H0
1 and H±

2

Higgs bosons are quite light (as derived from the relations presented in appendix B.1). We
have also chosen scenarios with a small gR value close to the theoretically allowed limit, which
guarantees a light W ′-boson (see section 7.4) and induces v′ ≈ vR ∼ 7− 8 TeV. The breaking
of the SU(2)R′ × U(1)B−L symmetry at such a scale naturally leads to a Z ′-boson mass of
about 5 TeV for all benchmark scenarios and a W ′-boson mass of about 1.5 TeV. This is more
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tan β gR v′ [GeV] λ3 κ [GeV] α1 = α2 = α3

BM I 4.58 0.374 7799 0.0196 -31.08 0.0144
BM II 1.78 0.370 6963 0.0237 -2.43 0.110
BM III 4.55 0.374 7799 0.0196 -30.38 0.0144

[GeV] MH0
1

MH0
2

MH0
3

MA0
1

MA0
2

MH±
1

MH±
2

BM I 193 907 1546 193 907 907 194
BM II 82 213 1578 82 167 167 82
BM III 192 894 1546 192 894 894 192

[GeV] MZ′ MW ′ Mn1 Mn2 Mn3 Md′ Ms′ Mb′

BM I 4992 1460 756 971 1202 1500 1800 2000
BM II 5113 1288 909 1134 1223 1400 1822 2200
BM III 4992 1460 902 1023 1312 1500 1936 2821

Table 7.3: Values of the free ALRSM parameters defining our three benchmark scenarios
BM I, BM II and BM III (upper panel) and resulting mass spectrum (middle and lower
panels). All masses are given in GeV.

precisely shown in the lower and middle panels of table 7.3 in which we present the masses
of all new physics fields. In the selection of our benchmark points, we impose the lightest
scotino to have a mass in the [700–1050] GeV mass window, the BM I scenario focusing
on a lighter DM option (mnDM

≈ 750 GeV) and the two other scenarios on a heavier setup
(mnDM

≈ 900 GeV). As discussed in section 7.5, many Higgs states are quite light, with masses
of about 200 GeV (BM I and BM III scenarios) or 100 GeV (BM II scenario). In addition,
our benchmark points choice is LHC-driven, so that we target spectra in which the exotic
down-type quarks are heavier than the W ′-boson so that a typical model signature could
consist of W ′-boson pairs produced in association with jets through the pp→ d′d′ → W ′jW ′j

process, for instance.

An interesting feature of the model concerns the lightest charged Higgs boson H±
2 ,

that, from the LHC perspective, is long-lived, so that previous studies [284] are inapplicable.
As seen in table 7.4, the H±

2 decay width is indeed of about 2 × 10−18 GeV for the BM I

and BM III scenarios, and of 2 × 10−20 GeV for the BM II case, so that those scenarios
could be probed by searches for heavy stable charged particles (HSCP), the H±

2 bosons being
pair-produced via the Drell-Yan mechanism. The corresponding cross sections are given in
table 7.4, for proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV and
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for electron-positron collisions at a centre-of-mass energy of 183 GeV. As the H±
2 boson is

lighter in the BM II scenario than in the other two scenarios, the associated predictions
are larger in the BM II case. For instance, for proton-proton collisions at 13 TeV, the total
production rate hence reaches about 414 fb, compared to about 18 fb for the BM I and
BM III cases.

The related searches in 13 TeV LHC collisions exclude signal cross sections ranging
from 10 to 100 fb, the exact limit value depending on the model [299–304]. The cross sections
associated with BM I and BM III H±

2 -boson pair production lie at the border of the stau
exclusion limits, so that it is possible that two those benchmark scenarios are excluded.
However, a direct transposition of the limits is not straightforward as a consequence of the
modeling of various detector effects, which renders any conclusive statement complicated.
Similar conclusions hold for 7 and 8 TeV LHC search results [305–307]. On the other hand,
all those searches specifically target HSCP with masses larger than 100 GeV, so that they are
unsensitive to the BM II scenario. For the latter, one must thus rely on LEP results, covering
the [45.9, 89.5] GeV mass range [308]. Upper limits on typical HSCP signal cross sections
of 0.05–0.19 pb have been extracted from data, but again for models different from the one
investigated in this work. Such a model dependence in the results once again prevents us from
reinterpreting the results in the ALRSM framework. As HSCP search results may consist
in a very general smoking gun on the model, we strongly encourage the LHC experimental
collaborations to provide information allowing one to recast of their search precisely enough,
as to be able to provide limits for the model considered in this work. In the meantime, we
focus on other probes for the model.

The heavier charged Higgs state H±
1 could in principle be constrained by more stan-

dard searches for additional Higgs states, such as the one of ref. [309]. Those searches are
however always targeting a specific production mode and a given decay channel which are not
relevant in the cosmology-favoured ALRSM case. For example, the CMS [309] and ATLAS
[310] collaborations have investigated the LHC sensitivity to a charged Higgs boson decaying
in the H± → τ±ντ mode. In the heavy H±

1 case (scenarios BM I and BM III), cross sec-
tions of a few fbs are excluded whilst in the light case (BM II scenario), the analysis targets
charged Higgs boson production from the rare decay of a top quark. For heavier charged
Higgs bosons, analyses of charged Higgs boson production and decay in a tb final state or
heavy Higgs boson production in association with a tb pair or a Wbb system have also been
carried on (see, e.g., refs. [311, 312]).
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Benchmarks BM I BM II BM III

Γ(H±
1 )[GeV] 3.07 1.9× 10−3 3.07

σ(pp→ H±
1 ) @ 13 TeV [pb] 6.503× 10−5 0.04352 6.901× 10−5

σ(pp→ H±
1 W

∓bb̄) @ 13 TeV [pb] 2.723× 10−3 2.44 2.919× 10−3

σ(pp→ H±
1 tb̄+ h.c.) @ 13 TeV [pb] 2.664× 10−3 2.374 2.859× 10−3

Γ(H±
2 )[GeV] 1.93× 10−18 2.62× 10−20 1.85× 10−18

σ(pp→ H±
2 H

∓
2 ) @ 7 TeV [fb] 5.412 163.3 5.588

σ(pp→ H±
2 H

∓
2 ) @ 8 TeV [fb] 7.153 199.8 7.392

σ(pp→ H±
2 H

∓
2 ) @ 13 TeV [fb] 18.18 414.7 18.71

σ(ee→ H±
2 H

∓
2 ) @ 183 GeV [fb] - 161.1 -

BR(H±
1 → tb̄) 99.6 % − 99.6 %

BR(H±
1 → Wbb̄) − 80.5 % −

BR(H±
1 → cs̄) − 8.9 % −

BR(H±
1 → τν) − 4.83 % −

BR(H±
1 → cb̄) − 2.1 % −

Table 7.4: Properties of the light charged Higgs states for the BM I, BM II and BM III
benchmark scenarios.

We have compared, for all the experimentally relevant signatures, the corresponding
predictions (reported in table 7.4) in the considered ALRSM scenarios with the most recent
bounds. The cross sections excluded at the 95% confidence level have been found to be orders
of magnitude larger than our model predictions. Similarly, we have verified that the corre-
sponding mass ranges (for the heavy stable H2 state) are not excluded by LEP [313].

The light neutral states H0
1 and A0

1 are also long-lived, and can therefore leads to a
missing-energy signatures (as they cannot decay into lepton or quark pairs). However, in the
corresponding considered spectrum, they can only be produced from rare decays of exotic
quarks, so that this gives rise to signatures potentially worth investigating in order to discover
or exclude the model. In the following, we focus instead on more abundantly produced final
states.

In table 7.5, we present, for each of the considered benchmark scenarios, predictions for
the dark matter features studied in section 7.5. Each scenario leads to predictions compatible
with the cosmological experimental bounds by virtue of a different dynamics. In the first BM

I scenario, the DM annihilation cross section is dominated by annihilations into Higgs-boson
pairs (∼ 60%) as well as into pairs of SM gauge bosons (∼ 35%), and fermions to a smaller
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ΩDMh
2 σproton

SI [pb] σneutron
SI [pb] ⟨σv⟩ [cm3s−1]

BM I 0.118 8.08× 10−10 2.88× 10−11 7.81× 10−28

BM II 0.120 8.09× 10−10 8.37× 10−10 3.29× 10−27

BM III 0.119 7.72× 10−10 3.67× 10−11 1.17× 10−27

Table 7.5: Predictions, for the BM I, BM II and BM III scenarios, of the observables
discussed in our dark matter analysis of the previous section.

σ(pp→ Z ′) [fb] σ(pp→ W ′W ′) [fb] σ(pp→ W ′d′) [fb] σ(pp→ d′d′) [fb]

BM I 0.821 0.0458 0.574 1.65
BM II 0.871 0.0672 1.080 2.72
BM III 0.810 0.0465 0.564 1.61

BR(Z ′ → ℓℓ) BR(W ′ → e nDM) BR(W ′ → µ nDM) BR(W ′ → τ nDM)

BM I 0.166 0.203 0.054 0.020
BM II 0.167 0.158 0.056 0.016
BM III 0.171 0.178 0.063 0.018

BR(d′ → W ′ u) BR(d′ → W ′ c) BR(d′ → H±
2 u) BR(d′ → H±

2 t)

BM I 0.764 0.041 0.089 0.047
BM II 0.919 0.049 0.014 ≈ 0

BM III 0.764 0.041 0.089 0.048

Table 7.6: Predictions, for the BM I, BM II and BM III scenarios, of various quantities
relevant for the associated LHC phenomenology at a centre-of-mass energy of 13 TeV. In our
notation, ℓ equivalently denotes an electron or a muon.

extent. Such an annihilation pattern is typical of light scotino DM setups, as illustrated in
the figure 7.2. In the BM II scenario, DM annihilates essentially in W ′∓H±

2 systems, whilst
in the BM III scenario, it dominantly annihilates into pairs of SM charged leptons (∼ 50%),
quarks (∼ 30%) and neutrinos (∼ 15%). The BM II and BM III scenarios hence illustrate
the two classes of viable scenarios emerging from more moderately heavy scotino dark matter
(mnDM

∈ [800, 1000] GeV).

In table 7.6, we show predictions relevant for the LHC phenomenology at a centre-
of-mass energy of 13 TeV for our three benchmark scenarios. Production cross sections for
various processes involving new physics states are presented in the upper panel, whilst the
middle and lower panels include the dominant branching ratios of the extra gauge bosons and
exotic down-type quarks. We ignore monojet production via the associated production of a
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scotino pair with a hard jet as this process occurs at a too small rate (O(1) fb for an optimistic
100 GeV requirement on the leading jet). Other new physics processes generally occur at
a larger rate, as shown in the table. For all three scenarios, Z ′-boson production is small
enough relatively to the LHC limits (by construction of our benchmarks). The rate is hence of
about 0.15 fb after accounting for the Z ′-boson branching ratio into electron and muon pairs,
BR(Z ′ → ℓℓ) ∼ 17% for ℓ equivalently denoting an electron or a muon. Consequently this
makes the Z ′ signal difficult to observe, even with more luminosity. As the W ′-boson only
couples to SM up-type quarks and exotic down-type quarks, it cannot be singly produced.
We therefore focus on other processes typical of the ALRSM that instead involve pairs of W ′

bosons and exotic d′ quarks. The production of a pair of W ′-bosons leads to the production of
multileptonic systems in association with missing transverse energy carried away by scotinos,
as illustrated by the branching ratio information of the middle panel of table 7.6. The total
W ′-boson branching ratio into leptons and scotinos BR(W ′ → ℓnDM) reaches 20–30% in all
three scenarios, after including the subdominant tau-lepton contribution. The resulting signal
cross section (including the branching ratio into a lepton-scotino pair) is then about 0.010 fb.
Such a rate is far beyond the reach of typical multileptons plus missing energy searches at
the LHC, as confirmed by reinterpreting [314, 315] and extrapolating [316] the results of
the CMS search of ref. [317] targeting electroweak superpartner production and decay in the
leptons plus missing energy mode to 3 ab−1 with MadAnalysis 53. This signal, featuring a
production times decay rate observable in the 10 ab range at the LHC (for a centre-of-mass
energy of 13 TeV), could however become visible at future colliders.

The upper panel of table 7.6 also includes cross sections relevant for d′d′ and d′W ′

production. Such processes yield production cross sections in the 1 fb range, which makes
them potentially more appealing as a door to observing ALRSM at the LHC. Taking into
account the large d′ → W ′j branching fraction, a key signature of those processes is comprised
of two leptons, jets and missing transverse energy carried away by the scotinos emerging from
the W ′-boson decays. This signature is also typically expected from supersymmetric squark
production and decay, so that the results of supersymmetry searches in the opposite-sign
dilepton, jets and missing energy mode could be reinterpreted to constrain the ALRSM. We
therefore recast the results of the CMS stop search of Ref. [24] with MadAnalysis 54, and
extrapolate our findings to 3 ab−1. We present our results in figure 7.5. The LHC significance

3Details on the reimplementation of the CMS electroweak superpartner search of ref. [317] in MadAnal-
ysis 5 can be found in refs. [318, 319].

4Details on the reimplementation of the CMS stop search of ref. [24] in MadAnalysis 5 can be found in
refs. [320, 321].
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is evaluated according to two measures, labelled by s and ZA, that are given by

s =
S√

B + σ2
B

and ZA =

√
2

[
(S +B) ln

[
(S +B)(S + σ2

B)

B2 + (S +B)σ2
B

]
− B2

σ2
B

ln

[
1 +

σ2
BS

B(B + σ2
B)

]]
,

(7.20)
where the number of selected signal and background events are denoted by S and B ±
σB respectively. The first method (s) is rather standard, whereas the second one (ZA) is
more adapted to small numbers of background events [322]. Moreover we consider a signal
where both the W ′d′ and the d′d′ channels contribute. It turns out that while the LHC
has currently very little sensitivity to the signal (i.e. with 36 fb−1), sensitivity levels of
about 3σ (for the BM I and BM III scenarios) to 5σ (BM II scenario) could be reached
at its high-luminosity operation phase (i.e. with 3000 fb−1) with a conservative level of
systematical uncertainties of 20%. In the figure, we also show how a better understanding of
the background (corresponding to reduced uncertainties) could guarantee a discovery with
luminosities as low as about 750 fb−1 (5% of systematics) or 1500 fb−1 (10% of systematics)
for the most optimistic BM II scenario. For the two other more difficult to observe scenarios,
the signal is suppressed so that luminosities of about 1500-2000 fb−1 should be necessary for
a discovery with a level of 5% systematics.
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Figure 7.5: LHC sensitivity to a signature comprised of a dilepton, jets and missing energy
in the context of the BM I (upper left), BM II (upper right) and BM III (lower) scenarios.
We present our results as a function of the luminosity and recast the CMS stop search of
ref. [24], and plot the two significance measures of eq. (7.20).
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Chapter 8

Conclusion

In chapter 3, we analyzed the predictions of the mass spectrum in the BLRSSM framework
with universal boundary condition, highlighting the solutions consistent with the DM restric-
tions (relic density and spin independent cross sections with nucleons) for both neutralino
and sneutrino LSP scenarios. We found that the stop and sbottom masses are between 2-3
TeV, and the chargino can be degenerate with the LSP neutralino between 300-500 GeV. In
addition, the relic density constraint can be satisfied for masses in the range 300 ≲ mχ̃0

1
≲ 800

GeV. H̃ dominated or mixed LSP neutralino solution can be obtained below 300 GeV, how-
ever these solutions are ruled out by the XENON1T spin independent cross section exclusion
curve. When all DM constraints are taken into account, the model favours LSP neutralinos
with masses between 500 ≲ mχ̃0

1
≲ 800 GeV, bino-dominated, and with composition 60% B̃R

- 40% B̃. We also showed that, when the LSP is neutralino, A1 and h3 are funnel channels
for pair-producing them.

In addition, the model allows in principle a sneutrino LSP where its content can be
either right-handed dominated or mixed, ν̃R and S̃, with masses between 250-1300 GeV. In
this sense, sneutrino LSP solutions can be lighter than the neutralino LSP ones. Purely
right-handed dominated sneutrino LSP solutions have difficulty to satisfy the relic density
constraint and only mixed ones survive. Also, most of the sneutrino LSP solutions are
consistent with the XENON 1T spin independent cross section exclusion curve. However,
strict imposition of the Z ′ mass bounds basically rule out the sneutrino solutions, while not
having any effect on the neutralino LSP parameter space. This is one of the most important
predictions of the model.

The parameter spaces corresponding to neutralino and sneutrino are quite different.
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If allowed, sneutrino LSP solutions favor low singlet higgsino mass parameter, µR, and the
second lightest neutral Higgs boson as singlet, while neutralino LSP favor larger µR parame-
ters. Sneutrino LSP solutions are spread out over the whole range of tan β, while neutralino
solutions are restricted in the 40 ≲ tan β ≲ 60. Neutralino LSP solutions allow for degenerate
masses of the two lightest neutral Higgs bosons, while the sneutrino LSP, although favoring
a light mh2 , does not. The anomaly in the anomalous magnetic moment of the muon favors
neutralino LSP contributions, where for a large range of scalar masses, and a more restricted
one for gauginos and higgsinos, the corrections are within 2σ of the experimental result, while
sneutrino LSP solutions can at best produce results within 3σ of the desired values.

We analyzed collider signatures of this proposed scenario, including all constraints,
and they are not promising, even at the high-luminosity LHC. The largest cross sections
are obtained for chargino/neutralino production, and they are at most of O(1) fb, without
including cascade decays into leptons which would reduce them further. In the future, collider
signals could be enhanced by relaxing some of the severe constraints on the model, such as
the universality conditions, and finding suitable cuts to enhance signal versus background.
This may extend the parameter space, allowing sneutrino LSP back into the consideration.
Work in these directions is underway.

However, under the present scenario, the Z ′ mass lies just below the sensitivity of LHC
at 36 fb−1, and would be seen during the LHC Run 2, with a modest increase in luminosity.
For dark matter detection, direct searches remain the most promising. Projected sensitivities
of XENONnT and particularly of DARWIN(200t × y) would observe or rule out the most
promising region of neutralino LSP candidates (500-800 GeV). These features are hopeful
indicators for the accessibility of the BLRSSM model in the near future.

In chapter 4, we have presented an analysis of the secluded UMSSM, a non-minimal
SUSY scenario wherein the gauge symmetry of the MSSM is augmented by a U(1)′ group
and where a secluded sector is also added in the form of three additional scalar superfields.
Their role is to separate the SUSY-breaking scale from the mass of the Z ′, the gauge boson
introduced by the additional gauge symmetry following its spontaneous breaking, so that the
latter can have a value well within the LHC reach irrespectively of the SUSY mass scale.

Our analysis here has highlighted, in particular, some novel phenomenological features
pertaining to this BSM scenario, which would make it distinguishable from the MSSM or E6
motivated UMSSM scenarios. For a start, the Z ′ can be leptophobic without invoking gauge
kinetic mixing. Thus one can naturally lower the experimentally imposed limits on its mass
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coming from its LHC hadroproduction followed by di-lepton and di-jet decays. In addition,
and setting it apart from that of U(1)′ scenarios with gauge kinetic mixing, the Z ′ is also
d-quark-phobic, allowing one to reduce its mass constraints event further.

Then, we have shown that the model predicts the existence of very light charginos
and neutralinos, the lightest of the latter being a singlino-like DM candidate satisfying relic
density constraints as well as direct and indirect detection bounds. In fact, alongside this new
singlino state, an LSP with mass Mχ̃0

1
<∼ 50 GeV, our BSM scenario also accommodates a sim-

ilarly light lightest chargino companion, with Mχ̃±
1
<∼ 350 GeV, both of which are respecting

collider constraints. Furthermore, the next-to-LSP and next-to-next-to-LSP are higgsinos
and, together with the lightest chargino, they are largely responsible (once appropriately
combined with the lightest sleptons in one-loop Feynman diagrams) for obtaining a value for
the muon anomalous moment consistent with experimental measurements at 1σ.

Finally, armed with such specific model setup, we have investigated the prospects of
detecting such a light Z ′ boson in its SUSY cascade decays via the aforementioned lightest
charginos and neutralinos, eventually yielding a di-lepton final state in presence of significant
missing transverse energy. The fact that the model is d-quark phobic, useful to reduce the
mass constraints, has an adverse effect on the production cross section for Z ′, rendering
it smaller than in the E6 motivated UMSSM. In addition, the S, T, U parameters impose
conditions on the U(1)′ associated charges, constraining them to be small. The secluded
UMSSM is a good model for loosening Z ′ mass bounds, but no so promising for signal
observability.

Requiring the parameter space to satisfy all experimental conditions, including the DM
and (g − 2)µ ones simultaneously, or just the relic density, we have devised most favourable
benchmark points with MZ′ ≈ 3.3 TeV. Relaxing the (g − 2)µ requirement, our second
benchmark allows MZ′ ≈ 2.3 TeV. Of the two benchmarks, the latter one shows more promise
to be observed at the HE-LHC at 3σ or better, as proved from a prototypical MC analysis
performed, while the former would be observed only assuming small systematic errors. Our
analysis should justify dedicated searches with real data from ATLAS and/or CMS.

In chapter 5, we have explored the low scale and DM implications of an E6 based
UMSSM, with generic mixing between the two ensuing Abelian groups, mapped in terms of
the standard angle θE6 . Within this scenario, we have restricted the parameter space such
that the LSP is always the lightest neutralino χ̃0

1, thus serving as the DM candidate. We have
then applied all current collider and DM bounds onto the parameter space of this construct,
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including a refined treatment of Z ′ mass and coupling limits from LHC direct searches via
pp→ ll and pp→ WW processes, allowing for interference effects between their Z ′ and γ, Z
components. We have done so as compliance of such a generic E6 inspired UMSSM with
all other experimental constraints necessarily requires a gauge kinetic mixing between the Z
and Z ′ states (predicted from RGE evolution from the GUT to the EW scale), which in turn
onsets a significant Z ′WW coupling. So that, for Z ′ masses in the TeV range, the Z ′ → WW

decay channel overwhelm the Z ′ → ll one, thus producing a wide (yet, still perturbative) Z ′

state and so that it is the former and not the latter search channel that sets the limit on
MZ′ , at 4 TeV, significantly below what would be obtained in a NWA treatment of the Z ′.
To achieve this large Z ′ width scenario, the fundamental parameters responsible for it, i.e.,
the gauge kinetic mixing coefficient and the aforementioned E6 mixing angle, are found to
be 0.2 ≲ κ ≲ 0.4 and −1 ≲ θE6 ≲ −0.8 radians, respectively. Curiously, the values of θE6

that survive our analysis are not those of currently studied models, known as ψ,N, I, S, χ
and η types. As for the DM sector, solutions consistent with all current experimental bounds
coming from relic density and direct detection experiments were found for two specific LSP
compositions: a higgsino-like LSP neutralino with 0.9 TeV ≲ mχ̃0

1
≲ 1.2 TeV and a singlino-

like LSP neutralino with 0.9 TeV ≲ mχ̃0
1
≲ 1.6 TeV. In this respect, we have been able to

identify chargino-neutralino coannihilation and A (the pseudoscalar Higgs state) mediated
resonant annihilation as the main channels rendering our DM scenario consistent with WMAP
and Planck measurements, with the LSP state being more predominantly singlino-like than
higgsino-like. Further, as for SI and SD χ̃0

1 - n scattering cross section bounds from DM
direct detection experiments, we have seen that both DM scenarios are currently viable (i.e.,
compliant with present limits) yet they could be detected by the next generation of such
experiments (though we did not dwell on how the two different DM compositions could be
separated herein). In fact, other than in the DM sector, further evidence of the emerging
E6 scenario may be found also in collider experiments, in both the Z ′ and SUSY sectors.
In the former case, in the light of the above discussion, it is clear that direct searches at
the LHC Run 3 for heavy neutral resonances in WW final states may yield evidence of
the Z ′ state, though such experimental analyses should be adapted to the case of a wide
resonance. In the latter case, since our set up yields a rather heavy sparticle spectrum for
third generation sfermions (mt̃,b̃ ≳ 4 TeV and mτ̃ ≳ 5 TeV) as well as the gluino (mg̃ ≳ 4

TeV), chances of detection may stem solely from the EW -ino sector, where some relevant
masses can be around or just below the 1 TeV ballpark, with pp→ χ̃0

2χ̃
0
3 → (h/Z)(h/Z)χ̃0

1χ̃
0
1

being a potential discovery channel at the HL-LHC. Addressing quantitatively these three
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future probes of our E6 based UMSSM was beyond the scope of this paper, but this will be
the subject of forthcoming publications.

In chapter 6, we performed a comprehensive analysis of mass bounds on WR gauge
boson in a LRSM with general gauge couplings, VEVs, mixing angles and right-handed quark
mixing matrix. We reinterpret the CMS and ATLAS analyses using this scenario, and find
considerably relaxed bounds on WR masses. We divide the parameter space into two cases,
one for MWR

< MνR , and another for MWR
> MνR , as this ordering has implications on WR

decay channels.

When MνR > MWR
, decays of right-handed W -boson into a top quark and a bottom

quark or into two jets are dominant. We compare our predictions with the results of CMS and
ATLAS at

√
s = 13 TeV, integrated luminosity of 35.9 fb−1 and 37.0 fb−1, respectively. 95%

CL upper limits on the product of the WR boson production cross section with its branching
fraction to a top and a bottom quark (tb̄) or with the branching fraction to two jets (jj) are
calculated as a function of the WR boson mass. These analyses recover the excluded ranges
obtained by CMS and ATLAS ranging from 55.4% for the two jets channel to 65.5% for a top
and bottom quark channel in the limit of exact left-right symmetry and small tan β, while
when relaxing these limits, much less stringent constraints are obtained on the production
of WR bosons decaying to a top and a bottom quark and on WR bosons decaying into two
jets. Note that increasing tan β only serves to enhance the non-fermionic decays WR → WLh

and WR → WLZL, whose branching ratios are small for allowed values of tan β, 2% at most.
While the results are not particularly sensitive to tan β, they depend crucially on gR and
V R
CKM. The least constrained choice for this scenario is setting gL ̸= gR = 0.37, tan β = 0.5

and V L
CKM ̸= V R

CKM, when the observed (expected) lower limit on WR mass at 95% CL is 2360
(1940) GeV for the tb channel and 2000 (2010) GeV for the jj channel.

When MνR < MWR
, we investigate exclusion bounds for WR bosons and heavy right-

handed Majorana neutrinos masses, using the final states containing a pair of charged leptons
(electrons or muons), and two jets (ℓℓjj), with ℓ = e, µ. We compare our result with the
results obtained by CMS (ATLAS) with L = 35.9 fb−1 (36.1 fb−1) at

√
s = 13 TeV at the

LHC. We again reproduce the CMS and ATLAS results for gL = gR, tan β = 0.01 and
V L
CKM = V R

CKM, and find three different parameter choices which relax the current WR and
νR mass exclusion limits. Assuming that gauge couplings and CKM matrices in the right-
handed sector are different from those of the SM, a region in the two-dimensional plane
(MWR

−MνR) excluding a smaller range of right-handed neutrino masses is found at 95%
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CL. Based on the scenario where we allow gL ̸= gR = 0.37, tan β = 0.5 and V L
CKM ̸= V R

CKM, a
WR boson decaying into a right-handed heavy neutrino is excluded at 95% CL up to a mass
of 3100 GeV in the ee channel, and 3350 GeV in the µµ channel, providing less stringent
limits on this parameter space. The excluded region for MWR

extends to about MWR
≃

3.1 TeV, for MνR ≃ 2.0 TeV in the electron channel and about MWR
≃ 3.3 TeV, for MνR

≃ 2.0 TeV in the muon channel. Conversely, the MνR limits reach about 2.2 TeV for MWR

= 2.6 TeV in the electron channel and 2.6 TeV for MWR
= 2.8 TeV in the muon channel.

We also analyze the region where MνR > MWR
in the MWR

−MνR contour plot, but find
no excluded solutions in this region. These results also recover the experimentally excluded
ranges, further relaxing the limits obtained by CMS and ATLAS, ranging from 66% for BR’s
in the eejj channel to 71% for µµjj channel. Overall our results yield weaker limits on WR

mass from the production of WR bosons decaying into ℓℓjj, yielding hope that WR could be
discovered at HL-HE LHC.

Finally, allowing gL ̸= gR = 0.37 and V L
CKM ̸= V R

CKM will not have significant conse-
quences on other sectors of the model. Both the singly charged and doubly charged Higgs
bosons δ+R and δ++

R are expected to be heavy. Even so, their production mechanism is domi-
nated by photon-mediated Drell Yan, or γγ fusion, and their branching ratios are independent
of gR. This leads further support to WR production and decay as being most promising signal
to test this scenario.

The Standard Model is plagued by several theoretical inconsistencies, while being con-
firmed by experiments to a high degree of accuracy. Still, there are at least two outstanding
experimental facts which the SM does not explain: neutrino masses and dark matter. The
standard left-right symmetric model (LRSM) naturally incorporates neutrino masses. How-
ever, without ad hoc additional particles it does not include any viable dark matter candidate.
In chapter 7 ,we have considered in this work an alternative realisation of the left-right sym-
metric model, the so-called ALRSM, that can also be obtained from the breaking of an E6

Grand Unified setup. Such a class of models has the advantage to offer naturally solutions for
both neutrino masses and dark matter problems of the SM. Unlike in the LRSM, in ALRSM
the SU(2)R′ doublets of right-handed fermions contain exotic states, namely down-type-like
quarks d′ in the quark sector, and neutrino-like scotinos n in the lepton sector. The latter,
being part of a doublet, couples to the extra W ′ and Z ′ bosons. In this work, we have
shown that this property of the scotino is sufficient to promote it as a bona fide dark matter
candidate. Its gauge couplings indeed allow for a sufficient increase in the DM annihila-
tion cross section so that the relic density, as measured by the Planck collaboration, can be
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accommodated.

Imposing various constraints on the model, such as requiring a cosmology compatible
with data (relic density, DM direct and indirect detection) and extra gauge bosons not
excluded by the LHC results, we have shown that scotino DM must have a mass in a relatively
narrow range of 750–1000 GeV (while ignoring heavier options less appealing from the point
of view of new physics at current collider experiments). In addition, this restriction imposes
strict mass bounds on several of the Higgs bosons of the model. In particular, at least one
scalar, one pseudoscalar and one charged Higgs boson have to be light, in the 100–400 GeV
mass regime. Moreover, the W ′ gauge boson does not couple to pairs of ordinary fermions so
that its mass is mostly unconstrained, unlike the one of the WR boson of the usual LRSM.
The only existing bounds arise indirectly, from limits on the Z ′-boson mass derived from its
non-observation in LHC data. This however still allows the W ′ boson to be light, with a
mass of O(1) TeV. The model also predicts additional light Higgs states. Given the structure
of the model, they however evade all present collider bounds. Of these, a light charged Higgs
boson is expected to be long lived, while neutral states would manifest themselves as missing
transverse energy at colliders.

We have devised three benchmark scenarios and studied the possibility of observing
those DM-favoured ALRSM realisations at the LHC. We have tested the relevance of the
ALRSM signatures arising from the pp → W ′W ′, W ′d′ and d′d′ processes. For our choice
of spectra, we have shown that the latter two processes have similar cross sections, so that
they could both provide an opportunity for the discovery of the ALRSM at the LHC. Out
of the three benchmarks, the most promising one can indeed yield a 5σ discovery within
the future high-luminosity run of the HL-LHC, the exactly luminosity needed depending
on assumptions made on the systematic errors. The two other scenarios, associated with
smaller cross sections, are harder to probe but good prospects are foreseen provided one gets
a better control of the background. On the other hand, HSCP searches could possibly consist
in smoking guns on the model, provided that future results are either directly interpreted
in the ALRSM framework or are released together with enough information for a proper
recasting.

In summary, the ALRSM analysed here has numerous attractive features once we im-
pose that its cosmological properties accommodate data: light Higgs bosons, a light charged
gauge boson, neutrino masses, and a viable dark matter candidate. The latter in particular
renders the spectrum well-defined. In addition, such ALRSM scenarios emerge naturally
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from a grand unified E6 theory, a promising UV completion of the SM, and they offer the
promise of being detectable at the high-luminosity LHC.

Last but not least, we studied the predictions of the mass spectrum in the BLRSSM
framework with universal boundary condition. However, there are some of the advantages
of considering non-universal masses and /or boundary conditions. Resolution of the little
hierarchy problem, describing the tension between the observed Higgs boson mass and the
prediction of the MSSM. Also, the ATLAS result on direct SUSY searches reinforces the
exclusion of the low mass part of the stau co-annihilation region. Constraints from B meson
decays lead support for the supersymmetric parameter space for tan β ≥ 30, where the reso-
nant annihilation region of the SUSY dark matter relic density is also effective, reinforcing the
exclusion of the low mass part of the latter. The direct DM detection experiments strengthen
incompatibility between the SUSY explanations of the observed muon g−2 anomaly and DM
relic density with the 125 GeV Higgs boson mass, unless scalar masses are non-universal.

It is also crucial to relate W′ and Z′ signal at the collider since they are completely
independent searches at the LHC. One can investigate the LHC phenomenology of a class of
realistic theories beyond the SM with the electroweak gauge group extended to include an
additional SU(2)′ gauge group, which predicts the existence of both W ′ and Z ′ bosons. One
way to take into account the correlations betweenW ′ and Z ′ is to work in a general framework,
that is to parameterize the interaction of new heavy resonances in a model independent
manner. In this scenario, the Lagrangian describing the interactions includes many free
parameters. Alternatively, it may desirable to restrict this freedom and chose a simple specific
model. For example, in the Sequential Standard Model (SSM) [323, 324], the boson couplings
are assumed to be SM-like and the only free parameter is their mass, possibly together with
a global normalization factor for the coupling strength. As a future study, I try to provide
a framework enabling one to cross reference W′ & Z′ searches. Meaning, these objects can
come together in BSM scenarios, so any information experimentally obtained (exclusion,
evidence, etc.) on one such particle can be transferred (under some theoretical assumption)
onto the other. For example, this can avoid W’ results being interpreted in parameter spaces
of BSM scenarios which may have already been excluded by Z’ results interpreted in the same
framework, and vice versa. Or, more interestingly, if an anomaly is seen in one case, this
would point to where the correlated anomaly must be seen in the other case, if the underlying
model is correct. In doing so, I use both cross section and asymmetry (charge and spin)
observables, the latter being particularly useful for broad W′ & Z′. I try to parametrise this
correlation in a form that can capture many models at once.
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Appendix A

Renormalization Group Equations for

BLRSSM

We gather below some of the relevant equation referred to in the paper.

β(1)
µ = µ

(
− 3g2L+3Tr

(
YdY

†
d

)
+3Tr

(
YuY

†
u

)
− g2R− g2RB +Tr

(
YeY

†
e

)
+Tr

(
YvY

†
v

))
. (A.1)

β(1)
µR

= −1

2
µR

(
2g2R + 2g2RB − 2

√
6gBLgRB − 2

√
6gBRgR + 3g2BL + 3g2BR − 2Tr

(
YsY

†
s

))
.

(A.2)

β
(1)
Bµ

= +Bµ

(
− 3g2L + 3Tr

(
YdY

†
d

)
+ 3Tr

(
YuY

†
u

)
− g2R − g2RB + Tr

(
YeY

†
e

)
+ Tr

(
YvY

†
v

))
+ 2µ

(
2gRgRBMBR + 3g2LM2 + 3Tr

(
Y †
d Td

)
+ 3Tr

(
Y †
uTu

)
+ g2RM4 + g2RBM1 + Tr

(
Y †
e Te

)
+ Tr

(
Y †
v Tν

))
.

(A.3)

162



β
(1)
BµR

= +BµR

(
− 3

2
g2BL − 3

2
g2BR − g2R − g2RB +

√
6gBLgRB +

√
6gBRgR + Tr

(
YsY

†
s

))
+ µR

(
3g2BLM1 + 2g2RBM1 − 2

√
6gBRgRBMBR + 4gRgRBMBR

− 2gBL

(
− 3gBRMBR +

√
6gRBM1 +

√
6gRMBR

)
+ 3g2BRM4 − 2

√
6gBRgRM4 + 2g2RM4 + 2Tr

(
Y †
s Ts

))
.

(A.4)

β
(1)

m2
Hu

= −2g2R|M4|2 − 6g2L|M2|2 − 2gRB

(
gRBM1 + gRMBR

)
M∗

1

− 2
(
g2RMBR + g2RBMBR + gRgRB

(
M1 +M4

))
M∗

BR − 2gRgRBMBRM
∗
4

+ gRBσ1,1 + gRσ1,3 + 6m2
Hu

Tr
(
YuY

†
u

)
+ 2m2

Hu
Tr
(
YvY

†
v

)
+ 6Tr

(
T ∗
uT

T
u

)
+ 2Tr

(
T ∗
ν T

T
ν

)
+ 2Tr

(
m2
l Y

†
v Yv

)
+ 6Tr

(
m2
qY

†
uYu

)
+ 6Tr

(
m2
uYuY

†
u

)
+ 2Tr

(
m2
νYvY

†
v

)
.

(A.5)

β
(1)

m2
ν
= −3g2BR1|M4|2 + 2

√
6gBRgR1|M4|2 − 2g2R1|M4|2

+
(
− 3g2BLM1 + gBL

(
2
√
6gRBM1 − 3gBRMBR +

√
6gRMBR

)
+ gRB

(
− 2gRBM1 − 2gRMBR +

√
6gBRMBR

))
1M∗

1

+
(
− 3g2BLMBR − 3g2BRMBR +

√
6gBR

(
2gRMBR + gRB

(
M1 +M4

))
− 2

(
g2RMBR + g2RBMBR + gRgRB

(
M1 +M4

))
+ gBL

(
− 3gBR

(
M1 +M4

)
+

√
6
(
2gRBMBR + gR

(
M1 +M4

))))
1M∗

BR − 3gBLgBRMBR1M
∗
4 +

√
6gBLgRMBR1M

∗
4

+
√
6gBRgRBMBR1M

∗
4 − 2gRgRBMBR1M

∗
4 +

√
3

2
gBL1σ1,1 − gRB1σ1,1 +

√
3

2
gBR1σ1,3

− gR1σ1,3 + 2m2
χYsY

†
s + 4m2

Hu
YvY

†
v + 2TsT

†
s + 4TνT

†
ν +m2

νYsY
†
s + 2m2

νYvY
†
v

+ 2Ysm
2
SY

†
s + YsY

†
sm

2
ν + 4Yvm

2
l Y

†
v + 2YvY

†
vm

2
ν .

(A.6)

163



β
(1)

m2
l
= −3g2BR1|M4|2 − 6g2L1|M2|2 − 3gBL

(
gBLM1 + gBRMBR

)
1M∗

1

− 3
(
g2BLMBR + gBLgBR

(
M1 +M4

)
+ g2BRMBR

)
1M∗

BR

− 3gBLgBRMBR1M
∗
4 −

√
3

2
gBL1σ1,1 −

√
3

2
gBR1σ1,3

+ 2m2
Hd
Y †
e Ye + 2m2

Hu
Y †
v Yv + 2T †

eTe + 2T †
νTν +m2

l Y
†
e Ye

+ m2
l Y

†
v Yv + 2Y †

em
2
eYe + Y †

e Yem
2
l + 2Y †

vm
2
νYv + Y †

v Yvm
2
l . (A.7)

164



Appendix B

Alternative left-right symmetric model

(ALRSM)

B.1 Diagonalisation of the scalar sector

The scalar potential VH of eq. (7.4) is bounded from below if

λ1 ≥ 0 , λ2 ≤ 0 , λ3 ≥ 0 , α12 ≥ 0 , α13 ≥ 0 and α2 − α3 ≥ 0 , (B.1)

where αij = αi + αj, and if one of the following conditions is realised,[
λ12 ≥ 0

]
or

[
λ12 ≤ 0 , λ1 + λ2 ≥ 0 and λ21 + 4λ22 + 8λ1λ2 ≤ 0

]
, (B.2)

with λ12 = λ1 + 2λ2. Moreover, its minimisation allows for the reduction of the number of
degrees of freedom of the Higgs sector by three,

µ2
1 = α12

(
v2L + v2R

)
+ k2λ1 +

κvLvR√
2k

, µ2
2 = α12k

2 + λ3
(
v2L + v2R

)
, λ4 = λ3 −

κk√
2vLvR

.

(B.3)
Focusing first on the charged scalar sector, the squared mass matrix turns out to be block
diagonal. The ϕ±

1 and χ±
L fields therefore mix independently from the ϕ±

2 and χ±
R fields, as

shown by eq. (7.8). The corresponding 2 × 2 blocks of the mass matrix (M±
L)

2 and (M±
R)

2
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are written, respectively, in the (ϕ±
2 , χ

±
L) and (ϕ±

1 , χ
±
R) bases, as
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and are diagonalised by the rotations of eq. (7.8). The corresponding mass eigenvalues MH±
1

and MH±
2
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(B.5)
As α2 − α3 ≥ 0 from eq. (B.1), forbidding tachyonic fields yields κ < 0. This further implies
λ4 ≥ 0 by virtue of eq. (B.3). As shown by eq. (7.7), the pseudoscalar and scalar components
of the ϕ0

1 field do not mix and consist of the physical H0
1 and A0

1 eigenstates. They are
mass-degenerate, with masses MH0

1
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The squared mass matrices (M0
ℜ)

2 and (M0
ℑ)

2 of the three remaining scalar and pseudoscalar
fields are respectively given, in the (ℜ{ϕ0
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L},ℜ{χ0
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and are diagonalised by the two UH
3×3 and UA

3×3 rotation matrices of eq. (7.7). These are
explicitly given by
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⎞⎟⎟⎟⎟⎟⎟⎠ ,

(B.8)

and depend on various functions of the Higgs mass eigenvalues MH0
i
,

fi =
2M4

H0
i
vLvR +M2

H0
i
(v2L + v2R)(

√
2kκ− 4vLvRλ3)− 2

√
2k(v2L − v2R)

2λ3κ

vR

[
M2

H0
i
(4kvLvRα12 +

√
2v2Lκ) + 2

√
2(k2α12 + v2Lλ3)(v

2
R − v2L)κ

] ,

gi =
vL

vR

M2
H0

i
(4kvLvRα12 +

√
2v2Rκ) + 2

√
2(k2α12 + v2Rλ3)(v

2
L − v2R)κ

M2
H0

i
(4kvLvRα12 +

√
2v2Lκ) + 2

√
2(k2α12 + v2Lλ3)(v

2
R − v2L)κ

,

D1 = 1 + f 2
0 + g20 ,

D2 = f 2
2 (1 + g20) + (g0 − g2)

2 − 2f0f2(1 + g0g2) + f 2
0 (1 + g22) ,

ξ = sgn
[
g0(f2 − f3) + g2(f3 − f0) + g3(f0 − f2)

]
.

(B.9)

In our conventions, we trade the λ1 free parameter of the scalar potential for the mass of
the lightest Higgs state H0

0 (that can then be set freely and thus match the SM Higgs boson
mass). λ1 becomes thus a dependent parameter,

λ1 =
1

2k3

√
2kvLvRM

6
H0

0
+ a(4)M4

H0
0
− 2a(2)M2

H0
0
− 4α2

12κk
4(v2L − v2R)

2

√
2vLvRM4

H0
0
+ (κk − 2

√
2λ3vLvR)(v2L + v2R)M

2
H0

0
− 2κkλ3(v2L − v2R)

2
, (B.10)
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and the remaining scalar masses then read

M2
A0

2
= − κ√

2kvLvR

[
v2Lv

2
R + k2(v2L + v2R)

]
and M2

H0
2,3

=
1

2

[
a±

√
a2 + 4(b+ aM2

H0
0
)

]
.

(B.11)
with

a(4) = − 2
√
2kλ3vLvR(v

2
L + v2R) + κ

(
v2Lv

2
R + k2(v2L + v2R)

)
,

a(2) = 2
√
2α2

12k
3vLvR(v

2
L + v2R) + κ

(
λ3v

2
Lv

2
R(v

2
L + v2R) + k2

[
4α12v

2
Lv

2
R + λ3(v

2
L − v2R)

2
])

,

a =
1√

2kvLvR

[
vLvR

(
2
√
2k3λ1 − κvLvR

)
+ k
(
2
√
2λ3vLvR − κk

)(
v2L + v2R

)]
−M2

H0
0
,

b =
1

kvLvR

[√
2κk2

(
4α12v

2
Lv

2
R + λ3(v

2
L−v2R)2

)
+
(
4k3(α2

12−λ1λ3)vLvR +
√
2κ(k4λ1+λ3v

2
Lv

2
R)
)(
v2L+v

2
R

)]
.

(B.12)

B.2 The fermion sector

Fermion mass terms are generated from the Yukawa Lagrangian of eq. (7.3) after the breaking
of the SU(2)L × SU(2)R′ × U(1)B−L symmetry down to electromagnetism,

Lmass
F = − k√

2

[
ēLŶ

eeR+ūLŶ
uuR

]
− vL√

2

[
d̄LŶ

ddR+ν̄LŶ
ννR

]
− vR√

2

[
d̄′RŶ

d′d′L+n̄RŶ
nnL

]
+h.c.

(B.13)
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The different mass matrices Ŷ can be diagonalised through 12 unitary rotations,

k√
2
Ŷu → k√

2
VuY

uU †
u =

⎛⎜⎜⎝
Mu 0 0

0 Mc 0

0 0 Mt

⎞⎟⎟⎠, vL√
2
Ŷd → vL√

2
VdY

dU †
d =

⎛⎜⎜⎝
Md 0 0

0 Ms 0

0 0 Mb

⎞⎟⎟⎠,
vL√
2
Ŷν → vL√

2
VνY

νU †
ν =

⎛⎜⎜⎝
Mνe 0 0

0 Mνµ 0

0 0 Mντ

⎞⎟⎟⎠, k√
2
Ŷe → k√

2
VeY

eU †
e =

⎛⎜⎜⎝
Me 0 0

0 Mµ 0

0 0 Mτ

⎞⎟⎟⎠,
vR√
2
Ŷd′ → vR√

2
Ud′Y

d′V †
d′ =

⎛⎜⎜⎝
Md′ 0 0

0 Ms′ 0

0 0 Mb′

⎞⎟⎟⎠, vR√
2
Ŷn → vR√

2
UnY

nV †
n =

⎛⎜⎜⎝
Mne 0 0

0 Mnµ 0

0 0 Mnτ

⎞⎟⎟⎠,
(B.14)

leading to diagonal and real Y matrices. These rotations equivalently correspond to replacing
the fermion gauge eigenbasis by the physical one,

uL → VuuL , dL → VddL , νL → VννL , eL → VeeL , d′L → Vd′d
′
L , nL → VnnL ,

uR → UuuR , dR → UddR , νR → UννR , eR → UeeR , d′R → Ud′d
′
R , nR → UnnR .

(B.15)

As in the SM, conventionally we keep the left-handed up-type quark and charged lepton bases
unchanged and absorb the Vu − Vd and Vν − Ve rotations in a redefinition of the down-type
quark and neutrino states. Similarly, the Uu − Ud′ and Un − Ue rotations are conveniently
absorbed in a redefinition of the d′R and nL bases, the right-handed up-type quark and charged
lepton bases being kept unchanged,

dL → V †
uVddL ≡ VCKMdL , νL → V †

e VννL ≡ VPMNSdL ,

d′R → U †
uUd′d

′
R ≡ VCKM′d′R , nR → U †

eUnnR ≡ VPMNS′nR .
(B.16)

Omitting any potential Majorana phase, each of the four CKM/PMNS rotation matrices can
be defined by three mixing angles θij and a Dirac phase δ.
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Field Spin Name PDG

Z′ 1 Zp 32

W ′+ 1 Wp 34

ni (i = 1, 2, 3) 1/2 nl 6000012, 6000014, 6000016

d′i (i = 1, 2, 3) 1/2 dqp 6000001, 6000003, 6000005

H0
i (i = 0, 1, 2, 3) 0 h0 25, 25, 45, 55

A0
i (i = 1, 2) 0 A0 36, 46

H+
i (i = 1, 2) 0 Hp 37, 47

Table B.1: Mass eigenstates that supplement the SM, together with their spin quantum
number (second column), the name used in the FeynRules implementation (third column)
and the associated PDG identifier (last column).

Parameter Name LH block LH counter

tanβ tb SMINPUTS 5

gR gR SMINPUTS 6

v′ vevp SMINPUTS 7

λ2 lam2 HPOTINPUTS 1

λ3 lam3 HPOTINPUTS 2

α1 alp1 HPOTINPUTS 3

α2 alp2 HPOTINPUTS 4

α3 alp3 HPOTINPUTS 5

κ kap HPOTINPUTS 6

agH Ghgg EFFECTIVEHIGGS 1

aaH Ghaa EFFECTIVEHIGGS 2

Parameter Name LH block LH counter

Mνe Mve MASS 12

Mνµ Mvm MASS 14

Mντ Mvt MASS 16

Mne Mne MASS 6000012

Mnµ Mnm MASS 6000014

Mnτ Mnt MASS 6000016

Md′ MDP MASS 6000001

Ms′ MSP MASS 6000003

Mb′ MBP MASS 6000005

Parameter Name LH block LH counter

λ CKMlam CKMBLOCK 1

A CKMA CKMBLOCK 2

ρ̄ CKMrho CKMBLOCK 3

η̄ CKMeta CKMBLOCK 4

s
(CKM′)
12 CKMps12 CKMBLOCK 11

s
(CKM′)
23 CKMps23 CKMBLOCK 12

s
(CKM′)
13 CKMps13 CKMBLOCK 13

δCKM′ CKMpdel CKMBLOCK 14

Parameter Name LH block LH counter

s
(PMNS)
12 PMNSs12 PMNSBLOCK 1

s
(PMNS)
23 PMNSs23 PMNSBLOCK 2

s
(PMNS)
13 PMNSs13 PMNSBLOCK 3

δPMNS PMNSdel PMNSBLOCK 4

s
(PMNS′)
12 PMNSps12 PMNSBLOCK 11

s
(PMNS′)
23 PMNSps23 PMNSBLOCK 12

s
(PMNS′)
13 PMNSps13 PMNSBLOCK 13

δPMNS′ PMNSpdel PMNSBLOCK 14

Table B.2: New physics external parameters of our ALRSM implementation, together with
their name and the Les Houches (LH) block and counter information allowing to change
its numerical value on run time. We recall that for consistency, κ < 0 and the conditions
of eqs. (B.1) and (B.2) must be satisfied. Those parameters supplement the usual set of
electroweak inputs given in the LEP scheme, as well as all SM fermion masses.
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B.3 Technical details on our FeynRules implementation

We collect the properties of the new physics fields and external parameters associated with
our FeynRules implementation of the ALRSM model in tables B.1 and B.2, where we
additionally include properties useful for the user when running any programme relying on
our implementation.

As can be noticed from the tables, the left-handed and right-handed scotinos are
combined to form a Dirac fermion ni (with i = 1, 2, 3 being a generation index) and the
left-handed and right-handed exotic quarks are combined to form a Dirac fermion d′i (with
i = 1, 2, 3 being again a generation index). Whilst all fermion masses are free parameters of
the model (see also appendix B.2), all boson masses are internal (i.e. are derived parameters),
with the exception of the SM Higgs boson mass MH0

0
(see appendix B.1) and the Z-boson

mass. As for the SM implementation included with FeynRules, our model defines the
electroweak sector following the LEP scheme that is known to yield the minimal parametric
uncertainty in the predictions. The three electroweak inputs are thus the Fermi coupling GF ,
the fine structure constant α and the Z-boson mass MZ . The gauge and scalar sectors are
then fully defined by fixing nine parameters, that we choose to be v′, tβ, gR, λ2, λ3, α1, α2,
α3 and κ. We recall that the user must ensure that the conditions of eqs. (B.1) and (B.2) are
satisfied when providing the numerical values of these parameters, and that κ < 0 to avoid
tachyonic charged Higgs bosons.

All other parameters of the gauge and Higgs sectors are then derived as follows. The
vacuum expectation values v, vL, vR and k are obtained from GF , v′ and tβ,

v2 =
1√
2GF

, vL = v cos β , k = v sin β and v2R = v′2 − k2 . (B.17)

As in the SM the W -boson mass is derived from the electroweak inputs,

M2
W =

M2
Z

2

[
1 +

√
1− 2

√
2

πα

GFM2
Z

]
, (B.18)

so that eq. (7.10) can be used to derive the SU(2)L gauge coupling gL. As e =
√
4πα,

one can then derive the hypercharge coupling gY and the sine and cosine of the electroweak
mixing angle θW from eq. (7.13), which further allows us to calculate the B − L coupling
constant gB−L, the cosine of the φW mixing angle and the so far neglected Z − Z ′ mixing. It
is up to the user to verify that his/her choice of input parameter yields tan(2ϑW ) ≲ 10−3.

171



Furthermore, the W ′- and Z ′-boson masses are obtained from eqs. (7.10) and (7.14), and the
other parameters of the Higgs potential (i.e., µ1, µ2, λ1 and λ4) are obtained from eq. (B.3)
and eq. (B.10).

In the fermion sector, the various CKM and PNMS matrices are obtained from their
standard expressions in terms of three mixing angles and a phase,

V =

⎛⎜⎜⎝
c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎟⎟⎠ , (B.19)

where sij ≡ sin θij and cij ≡ cos θij denote the sine and cosine of the various mixing angles.
Concerning the SM CKM matrix, we have however traded the input parameters by the usual
Wolfenstein parameters A, λ, ρ̄ and η̄,

s
(CKM)
12 = λ , s

(CKM)
23 = Aλ2 and s

(CKM)
13 eiδCKM =

Aλ3
√
1− A2λ4(ρ̄+ iη̄)√

1− λ2
[
1− A2λ4(ρ̄+ iη̄)

] .
(B.20)
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