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Abstract 

 

Effects of Short Term Exposure to Elevated Predation Risk on the Learning of a Novel  

Foraging Task in Female Trinidadian Guppies (Poecilia reticulata) 

 

Ebony Elizabeth Demers 

 

Predation pressure is an important selection pressure that shapes prey morphology, life 

history and behaviours. Long-term exposure to high predation risk is known to shape learning, 

but the effects of short-term exposure to high predation risk on learning are less understood. 

Short-term exposure to elevated predation risk (using conspecific alarm cues) induces neophobia, 

which can have direct survival benefits for prey. Neophobia is also naturally occurring in certain 

wild populations, and is known to shape foraging related learning. However, the effects of risk 

induced neophobia on foraging related learning are unknown. The aim of this thesis was to 

examine the effects of short-term exposure to elevated predation risk on the learning of a novel 

foraging task. I designed an experiment where wild caught Trinidadian guppies were exposed to 

different background levels of predation risk. They were subsequently trained to associate a food 

reward with a coloured object over 4 days, during which they received acute risk reinforcement 

stimuli. Results show that background risk had no effect on the learning of the novel foraging 

task. Both high and low predation risk treatments learned the foraging task equally well. 

However, while acute risk did constrain learning, it did not inhibit it. No evidence was found that 

the learned association could be generalized across contexts. However, a significant side bias in 

the data, where the right side of the tank was preferred over the left, prevented any firm 

conclusions. Future studies might disentangle the effects of short-term background risk and acute 

risk on the learning of a novel foraging task.   
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1. Introduction 

 

Predation is a strong selective force acting on prey, shaping their morphology (Krueger 

and Dodson 1981; McCollum and Leimberger 1997), life histories (Crowl and Covich 1990; 

Stibor 1992), and behaviour (Lima and Dill 1990). As such, prey are forced to make trade-offs 

between predator avoidance and other fitness related activities. The ability to balance trade-offs 

requires the recognition of ecologically relevant threats (Brown et al. 2011). Recognizing threats 

can be difficult, as predation risk varies in space and time (Sih 1992; Sih et al. 2000). However, 

prey can improve their ability to evaluate varying threat levels by incorporating knowledge about 

diurnal or seasonal cycles (Ferrari and Chivers 2009), ontogenetic shifts in size due to gape 

limitations (Brönmark and Miner 1992), or selecting habitats with minimal predation risk 

(Werner and Gilliam 1984; Golub et al. 2005). Nevertheless, recognizing predation threats 

accurately is challenging for prey, given the high variability of these events, and the necessity of 

relying on cues and signals to detect predators (Chivers and Smith 1998). As such, prey often 

make behaviourally inappropriate (i.e. bad), and potentially costly, decisions (Dall 2010). 

Inappropriate decisions can lead to costs of varying degrees for prey. For instance, 

displaying predator avoidance behaviours in the absence of an acute threat (i.e. false-positive) 

may result in lost-opportunities to engage in other fitness related activities; however, failing to 

respond to an acute threat (i.e. false-negative) can result in mortality. Therefore,  there is an 

asymmetry between the costs of inappropriate behavioural decisions with regards to predation 

risk (Johnson et al. 2013). The nature of behavioural trade-offs means incurring some small cost 

is unavoidable; consequently, prey should “play it safe” when encountering anything new, in an 

attempt to incur lost-opportunity costs rather than increasing the risk of mortality.  
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Avoiding novel stimuli, or situations, as a means of protection from unknown risks is 

referred to as neophobia (Greenberg 2003). Neophobia has been studied in a variety of contexts 

including: object, gustatory, spatial, and predatory neophobia (Crane et al. 2020). These various 

forms of neophobia all share the common feature of increasing the chances of incurring lost-

opportunity costs, rather than increasing the risk of predation mortality. Predator neophobia has 

been documented in wild populations, and has also been shown to be inducible over short time 

periods. Brown et al. (2013) showed that wild Trinidadian guppies (Poecilia reticulata) from 

high predation risk populations exhibited increased anti-predator behaviours when exposed to a 

novel chemical cue, a response not seen in individuals from a low risk population. However, 

when individuals from low predation risk populations were exposed to conditions of elevated 

background risk for several days (using conspecific alarm cues), they subsequently displayed the 

same behaviours. These results suggest that neophobic predator avoidance may function as a 

potential mechanism to help prey manage variability in predation risk, and the associated 

asymmetrical costs (Brown et al. 2013; Elvidge et al. 2016). 

When faced with asymmetrical costs, incurring smaller lost-opportunity costs via 

neophobic behaviours is preferable. Lost-opportunity costs can be related to a number of 

different fitness related activities including mating, territory defence and foraging. For example, 

migratory new world black birds (Family Icteridae) are more neophobic than their resident 

counterparts are. When a novel object was placed next to a known food source, migratory birds 

took significantly longer to approach and start feeding than resident birds (Mettke-Hofmann et 

al. 2013). As migratory birds may experience novel situations more frequently than residents, 

displaying neophobic behaviours could protect them from potential risks. However, the benefit 

of protection is gained at the expense of lost-opportunities to forage.  
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Foraging is an important lost-opportunity cost as predators can impact prey fitness not 

solely through direct consumption effects, but also through indirect non-consumptive effects 

(Preisser and Bolnick 2008). For example, certain freshwater snails (Physella virgate, P. 

heterostropha) will spend more time on land, avoiding molluscivorous fish present in their 

aquatic feeding habitats. This reduction in foraging has a significant negative effect on the snails’ 

fecundity (Langerhans and DeWitt 2002; McCollum et al. 1998). Foraging is therefore an 

important fitness activity, and can be indirectly affected by predation via non-consumptive 

effects.  

As foraging is linked to fitness, the ability to learn novel foraging tasks can be beneficial. 

Learning over a short time period is defined as a change in behaviour based on recent experience 

(Brown 2012), allowing individual behavioural repertoires to be fined-tuned, or modified, to 

specific environments. Neophobia has been documented to constrain foraging related learning. 

Wild caught male starlings (Stumus vulgaris) that were more hesitant to feed in novel 

environments were also slower at learning a foraging task (Boogert et al. 2006). Seferta et al. 

(2001) also demonstrated a covariance between neophobia and learning in birds; individuals that 

were more neophobic, showed slower learning abilities in novel foraging tasks. These studies 

have examined the relationship between neophobia and learning, without including risk as a 

factor. Little is known of the relationship between risk induced neophobia and foraging related 

learning.  

Risk induced neophobia results in the display of a suite of different behaviours, including 

reduced movement and foraging (Brown et al. 2015a,b), reduced exploration (Elvidge et al. 

2016), and increased vigilance (Feyten and Brown 2018). Reduced movement and exploration 

would likely decrease the frequency of encountering novel foraging patches or tasks; increased 
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vigilance would likely decrease the time available to learn any new foraging tasks. We might 

therefore expect that inducing neophobia, via short term exposure to elevated predation risk, 

would constrain foraging related learning.  

Long term exposure to elevated predation risk has already been documented to shape 

learning in some fish species. Different populations within the same species have been shown to 

have different learning capabilities based on differing predation regimes (Brown and Braithwaite 

2005; Huntingford and Wright 1992; Brydges et al. 2008). Wild caught Panamanian bishop fish 

(Brachyraphis episcopi) from high predation risk populations learned a spatial task significantly 

slower than those from a low predation risk population (Brown and Braithwaite 2005). 

Conversely, high risk fish performed better on avoidance tasks than low risk fish. Using 

laboratory-bred descendants of wild caught three-spined stickelbacks (Gasterosteus aculeatus) 

Huntingford and Wright (1992) demonstrated that laboratory-bred first generation descendants of 

individuals from high predation populations learned to avoid a foraging patch faster when there 

was a simulated predation attack, compared to descendants from low predation populations. 

Despite predation risk showing both enhancing and reducing effects on learning, both these 

results can be argued to be adaptive for high risk populations. Slower spatial learning and 

heightened avoidance learning are both ways in which prey can protect themselves from 

potential risks.   

While long term exposure to high levels of predation risk shapes learning (Brown and 

Braithwaite 2005; Huntingford and Wright 1992; Brydges et al. 2008), the effects of risk induced 

neophobia (through exposure to short term predation risk) on learning are still unknown. While 

long term exposure to predation risk can result in genetically based behavioural differences 

(Huntingford and Wright 1992), short term exposure to predation risk is likely to result in 
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phenotypically plastic behaviours (Brown et al. 2013; Brown et al. 2015a,b; Ferrari 2014). Given 

the relationship between neophobia and learned foraging tasks (Boogert et al. 2006; Seferta et al. 

2001), and long term predation pressure and learning (Brown and Braithwaite 2005; Huntingford 

and Wright 1992; Brydges et al. 2008), a relationship between risk induced neophobia and 

learning would be expected. While studies have shown that risk induced neophobia interacts with 

learning with regards to predator identity (Brown et al. 2015a,b), whether risk induced 

neophobia interacts with the ability to learn novel foraging tasks is still unknown. As risk 

induced neophobia may be a potential mechanism for managing the costs associated with 

predation risk, any constraints it may impose on learning novel foraging tasks should be 

examined.  

The aim of this thesis was to examine how short term exposure to elevated predation risk 

influenced the learning of a novel foraging task. The behaviours associated with risk induced 

neophobia, namely reduced movement and exploration (Brown et al. 2015a,b; Elvidge et al. 

2016) and increased vigilance (Feyten and Brown 2018), would decrease the opportunities to 

encounter potentially new foraging opportunities. Consequently, I would expect this to 

negatively affect the ability of prey to learn a novel foraging task.  I used wild caught 

Trinidadian guppies to test the hypothesis that short term exposure to elevated levels of predation 

risk influenced, either by inhibiting or delaying, the learning of a novel foraging task. I designed 

an experiment where individuals were taught to associate a food reward with one of two 

coloured objects. I exposed guppies to different levels of short term predation risk (hereafter 

referred to as background risk), and then trained them to associate a food reward with one of two 

coloured objects, during which they were exposed to different levels of acute risk. In order to 

determine if the learned colour association could be generalized across contexts, I tested them to 
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see if they would apply the learned association in a novel situation, where there was no food 

reward. No food rewards were given, as I did not want to continue to train the fish to associate a 

food reward with a specific colour. Rather, my goal here was to see how often they would search 

for food based on their trained colour and food association.  

My general predictions for the training phase were that exposure to high levels of 

background risk would (i) increase the latency to approach a potential novel foraging 

opportunity, (ii)  result in fewer attempts to complete the task, and (iii) create longer latencies for 

familiarization with the tasks, compared to low levels of background risk.  For the testing phase, 

I predicted that exposure to high levels of background risk would inhibit the application of the 

learned task in a novel situation. I expected an interaction between background risk and trial 

number, where fish exposed to high levels of background risk would have (iv) longer latencies to 

approach the coloured object they were trained to associate a food reward with and (v) have 

fewer attempts to obtain food across all testing trials. I predicted the low background risk fish 

would increase their latencies and decrease their approaches across trials, as there was no food 

reward. I also predicted an (vi) interaction between background levels of risk, and acute risk 

reinforcement, where high background and high acute risks would have an additive effect, 

resulting in the longest latencies, and least number of entrances. Additionally, I predicted (vii) no 

effect of colour or (viii) side of the tank the rewarded object is on to influence the ability to learn 

the novel foraging task for both the training and testing phases.  

2. Materials and Methods 

2.1 Study species  

This study was conducted in 2016 and 2017 using wild caught female Trinidadian 

guppies from the Northern Mountain Range of the Republic of Trinidad and Tobago (Figure 1). 
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Only females were used as they are more likely to display modified behaviour patterns with 

regards to foraging than males, due to higher parental investment requirements (Laland and 

Reader 1999; Reader and Laland 2000). Fishing permits were acquired from the Trinidadian 

Ministry of Agriculture, Land and Marine Resources. Approximately 300 female guppies were 

collected from the Upper Aripo River, a low predation site (Croft et al. 2006; Botham et al. 

2008), on April 19th 2016. In 2017, approximately 120 female guppies were collected on April 

23rd, and 240 on April 27th. All tests were conducted using the low predation fish. Female 

guppies were also collected from the Lopinot River, a high predation site (Deacon et al. 2018), in 

order to make conspecific alarm cue. Approximately 250 female guppies were collected on April 

19th 2016, and 120 on April 24th 2017. Upon completion of data collection in both 2016 and 

2017, all remaining fish were returned to their respective streams. 

All fish were collected using seine nets, and temporarily held in 19 L plastic buckets, 

filled with approximately 8 L of stream water, and loosely covered with a plastic lid. Buckets 

were transported by truck to the laboratory facilities at the University of the West Indies, Saint-

Augustine, Republic of Trinidad and Tobago. The guppies where held in 121 x 44 x 46cm 

(LxWxH) glass tanks filled with 168L of dechlorinated water at 22˚C, and equipped with an 

airstone as well as two box filters. Tanks were kept on a 12h:12h light/dark cycle. Fish were fed 

ad libitum once per day using commercial flake fish food.  

2.2 Stimulus Preparation 

 To collect conspecific chemical alarm cues (AC), Lopinot River female guppies were 

euthanized via cervical dislocation (in accordance with Concordia University AREC protocol 

#30000255). Mean (± SD) of donors was 2.44 ± 0.41 cm (2016) and 2.27 ± 0.29 cm (2017). 

After the head (at the opercula) and tail (at the caudal peduncle) were removed, whole bodies 
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were homogenized in ~200 ml of dechlorinated water. A total of 89 (2016) and 59 (2017) 

guppies were used as cue donors. In both years, a final concentration of 0.1 cm2ml-1 was 

generated with the addition of dechlorinated water. Alarm cues of this concentration are known 

to reliably elicit antipredator responses in Trinidadian guppies (Brown and Godin 1999). 

2.3 Experimental Design and Data Collection 

The main goal of this experiment was to explore the effects of background predation risk 

on the learning of a novel foraging task. My experimental design consisted of three different 

treatment axes: Background risk (high/low), acute risk (high/low), and colour associated with 

food reward (red/white) - (Figure 2). A sample size of nine (n=9, mean ± SD standard length = 

23.20 ± 3.96mm) for each treatment combination was collected. The experimental protocol was 

performed over nine consecutive days (Figure 3). I collected the data over seven experimental 

blocks, four in 2016, and three in 2017.  

During the pre-exposure phase, I conditioned guppies to differing levels of background 

risk (high/low) for three days. Elevated levels of predation risk were simulated using conspecific 

AC, while dechlorinated water (DW) was used as a control (i.e. low risk). Conspecific alarm 

cues are a reliable indicator of risk, as they are only detected within the water column after 

mechanical damage to the skin of the fish (Chivers and Smith 1998).   

Following the pre-exposure phase, I moved onto the four day training phase. During this 

time I trained fish to associate a food reward with one of two coloured objects suspended within 

the water column, namely a red and white plastic cup. On each training day, the guppies were 

exposed to an acute risk reinforcement stimulus of either AC or DW in the morning and the 
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afternoon. This was done as neophobic behaviours induced by exposure to elevated background 

risk begin to wane without any reinforcement (Brown et al. 2015a,b).  

The goal of the testing phase was to see whether the learned association could be 

generalized across contexts. I created a novel situation by changing the shape and location of the 

cups within the tanks. 

2.4 Pre-exposure Phase 

 For each experimental block, I placed two shoals of 22 guppies into separate glass 

aquaria 60 x 30 x 30.5cm (LxWxH) containing 38 L of dechlorinated water at 22˚C. Each tank 

was equipped with an airstone, and held on a 12h:12h light dark cycle. Opaque white plastic was 

placed between the tanks to prevent any visual contact between treatment tanks. I injected 10 mL 

of stimulus three times a day (10am, 12pm, 2pm) for three consecutive days. Tanks being 

exposed to high levels of background risk received an AC stimulus, while those exposed to low 

levels of background risk received a DW stimulus. I injected the stimuli using a one-meter length 

of soft airline tubing that terminated directly above the airstone at the back of the tank. I flushed 

the stimulus through the tubing using 60ml of tank water. I fed the fish using commercial flake 

food ad libitum on the first two days, but not the third day to ensure they were hungry enough to 

forage the following day; food deprived guppies are more likely to forage innovatively (Laland 

and Reader 1999; Reader and Laland 2000).  

2.5 Training Phase 

The training phase took place over four days, starting the day after the pre-exposure 

phase was completed. Training took place in 44.5 x 30 x 31cm (LxWxH) glass aquaria filled 

with 15L of dechlorinated water at 22 ˚C. The tanks were equipped with an airstone, centered 
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against the back wall of the tank, and held on a 12h:12h light/dark cycle. Tanks were covered 

with opaque plastic on three sides to prevent any visual contact between tanks.  

On the first training day, I transferred the fish from their pre-exposure tanks into their 

respective training tanks in shoals of three. I used shoals of three rather than singletons as newly 

learned foraging tasks spread through guppy populations based on shoaling tendency (Laland 

and Williams 1997). The fish were left to acclimate undisturbed for 30 minutes. I then injected 

the morning acute reinforcement stimulus of 5ml of either AC or DW through a one-meter length 

of soft airline tubing that terminated directly above the airstone in the tank. I flushed the stimulus 

through the tubing using 60ml of tank water. The fish were left undisturbed for an additional 30 

minutes and then placed into a clear plastic cylinder (9 cm diameter) in the centre of the tank. I 

removed the airstone from the tank, and suspended the red and white cups upside down 

approximately four centimeters into the water column using wooden skewers. The bottoms of the 

cups were cut out to allow a food slurry to be dropped through the cup into the water column 

using a length of soft airline tubbing attached to a 60 ml syringe (Figure 4). The food slurry was 

prepared by mixing 125 mL of commercial flake food with 40 ml of dechlorinated water to 

create a viscous slurry. The fish were left to acclimate to the new set up in the clear cylinder for 

10 minutes.  

 The training session began immediately after I lifted the clear cylinder from the tank, and 

lasted for five minutes. During this time, I recorded the latency of the first fish to enter the 

reward zone. The reward zone was the area directly beneath the rewarded coloured cup (Figure 

4), as the fish needed to swim into this area in order to receive a single drop of food slurry as a 

reward. Each new entrance into the reward zone received a drop of food slurry. I also recorded 



11 
 

the total number of entrances into the reward zone. After five minutes, I removed the cups and 

any unconsumed food from the tank, and placed the airstone back into the water.  

For each training session, I switched the side of the tank that the rewarded cup was on to 

avoid any possible side bias. Four training sessions were completed each day, with 60-90 

minutes elapsing between sessions. Thirty minutes after the last training session of the day, I did 

a 50% water change on each training tank to remove excess food and waste. Twenty minutes 

after the water change was completed, I injected the afternoon acute reinforcement stimulus of 

5ml of either AC or DW. A total of 16 training sessions were completed over the course of four 

consecutive days.  

2.6 Testing Phase 

 Upon completion of the training phase, I left the fish in their training tanks with an 

airstone for a full day. During this time, no cups were placed in the tanks, they were not given 

any acute reinforcement stimuli, or any food. The testing phase took place the following day. 

The purpose of the testing phase was to determine if the learned colour association could be 

generalized across contexts. A novel situation was created by altering the shape and location of 

the cups. To alter the shape of the cups, I cut out a large section from each cup. I cut the cup in 

half vertically, starting from the top of the cup, and stopping two centimeters from the bottom of 

the cup, to leave the base intact.  

On the testing day, I placed the fish into a clear acclimation cylinder (9 cm diameter), and 

removed the airstone from the tank. I placed the altered cups right side up in the tank, and 

anchored them to the bottom using small rocks (Figure 5). The fish were left to acclimate in the 

cylinders for 10 minutes. The testing trial lasted for five minutes, and began as soon as I 
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removed the acclimation cylinder. I recorded the same behaviours as during the training sessions, 

except no food reward was given. Here, a successful entrance into the reward zone was recorded 

when a fish entered the area directly inside the area of the cup that was cut out (Figure 5). Four 

testing trials were conducted per tank, with 60-90 minutes between trials. As with the training 

sessions, I switched the side of the tank that the trained colour rewarded cup was on for each 

trial.  

2.7 Statistical methods 

All data were analyzed using generalized linear mixed models. As data were collected in 

seven treatment blocks and included repeated measures, random effects were used in all models 

to account for non-independence between tanks and treatment blocks. All analyses were 

conducted in R (v. 3.5.3).  

 2.7.1 Training Phase 

  To test the prediction that high background risk increases the latency to approach a novel 

foraging opportunity, I modelled the relationship between the latency of entry to the reward zone 

to my various predictors of interest. These predictors include, background risk, acute risk 

reinforcement, colour of the rewarded cup, side of the tank the rewarded cup was on, and 

training session. I modelled the relationship using a zero-inflated generalized linear mixed model 

(Zuur et al. 2009) given that a high number of fish did not enter the reward zone (i.e. zeroes). 

This model was divided in two components. First, whether fish entered the reward zone or not 

(hereafter referred to as the probability of entry) was modelled using a Bernoulli distribution. 

Second, the latency of entry to the reward zone was modelled, only for fish which entered the 

reward zone, using a Gamma distribution. These models were also used to test the prediction that 

high background risk creates a longer latency for familiarization with the task. A significant 
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interaction between background risk and training session would potentially indicate support for 

this prediction.   

To test the prediction that background risk affects the number of attempts to complete a 

foraging task, I modelled the number of entries in the reward zone to my various predictors using 

a Poisson distribution. It was not necessary to use zero-inflated modelling in this case because 

the Poisson distribution adequately includes zeroes (Zuur and Ieno 2016).  

All model selection was conducted using forward selection using AICc (Zuur  et al. 

2009; Zuur and Ieno 2016), given that replication was too low to model a large number of 

interactions at once in a zero-inflated model. Model selection for the latency of entry to the 

reward zone was applied separately on each model component (Bernoulli and Gamma; Zuur et 

al. 2009). Post-hoc comparisons of factor levels were analyzed using the package emmeans (v. 

1.3.3).   

2.7.2 Testing Phase 

 For the analyses in this section my predictors are similar to the ones mentioned above for 

the training phase (section 2.7.1). However, they included trial number, rather than training 

session.  

To test the prediction that high background risk inhibits the application of a learned task 

in a novel situation, I modelled the latency to enter the reward zone to my various predictors of 

interest. The modelling for this component of the analysis was conducted as described in section 

2.7.1. For the same reasons as described above, two components consisting of a Bernoulli and 

Gamma distribution were used. 

 To test the prediction that high background risk results in fewer attempts to obtain food in 

the novel situation (based on the previous training), I modelled the number of entries in the 
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reward zone to my various predictors of interest. This model also used a Poisson distribution, as 

described for the number of entries in the reward zone in section 2.7.1  

3. Results 

3.1 Training phase 

3.1.1 Latency to enter the reward zone 

The first component using a Bernoulli distribution was necessary, as the proportion of 

fish entering the reward zone was often low and varied (Figure 6). Collectively, just under one 

third (29%) of training sessions had no fish enter the reward zone (i.e. zeroes). The second 

component of the model was modelled using a gamma distribution, as the data were determined 

(visually) to be normally distributed. As the data were collected in seven treatment blocks, and 

included repeated measures, both components of the zero-inflated model accounted for the non-

independence of tanks and treatment blocks (Table 1). 

After forward model selection, the most parsimonious zero-inflated mixed model for the 

probability of entering the reward zone (AICc = 1225.82, Table 1 & 5, Figure 8), provided no 

support for my initial hypothesis that background levels of risk would affect the learning of a 

novel foraging task. Background risk had no effect on the probability of entering the reward 

zone, and was not included in any parsimonious model.  Rather, the acute risk reinforcement 

influenced the probability of entering the reward zone; fish were more likely to enter the reward 

zone when exposed to the DW than AC reinforcement stimulus (𝑥² = 8.16, df = 1, p = 0.004, 

Table 5, Figure 8).  

Contrary to my initial predictions, the colour of the trained cup did influence the 

probability of entry, where the probability was higher for the red than the white cup (𝑥² = 8.78, 

df = 1, p = 0.003, Table 5, Figure 8). Also contrary to my initial predictions, the side of the tank 
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that the rewarded cup was on influenced the probability of entry. A significant interaction was 

found between the side of the tank the rewarded cup was on and training duration. The 

probability increased more rapidly with training duration when the cup was on the right side of 

the tank than on the left side (𝑥² = 7.26, df = 1, p = 0.007, Table 5, Figure 8).  

The second component of the model only included the entrances into the reward zone 

(Figure 7). Similarly, this model did not provide any support for my initial hypothesis. After 

forward model selection, the most parsimonious zero-inflated mixed model suggested that the 

latency to enter the reward zone (AICc = 2471.84, Table 1 & 6, Figure 9) was not affected by 

background risk. Neither background risk, nor acute risk reinforcement was included in any 

parsimonious model. As such, there was also no support for my prediction that background risk 

would influence the latency for familiarization with the task, as I found no significant interaction 

between background risk and training duration.  

Partial support was found for my prediction that the colour of the reward zone would not 

be significant. This variable was also not included in parsimonious model. The latency to enter 

the reward zone did not differ between the red and white cups. Contrary to my initial prediction, 

the side of the tank the rewarded cup was on was once again significant. Analysis revealed a 

strong interaction between training duration and side of the tank the rewarded cup was on. The 

latency to enter the reward zone decreased more rapidly over training duration when the 

rewarded cup was on the right side of the tank than the left (𝑥² = 9.12, df = 1, p = 0.0025, Table 

6, Figure 9).  

3.1.2 Number of entries in the reward zone 

After forward model selection, the most parsimonious mixed model (AICc = 13266.93, 

Table 2 & 7, Figure 11), did not provide any support for my initial hypothesis. Background risk 
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had no effect on the number of entries in the reward zone, and was not included in any 

parsimonious model. Once again, it was the acute risk reinforcement stimulus that was included 

in the final model. The number of entries in the reward zone was higher for the DW 

reinforcement than the AC reinforcement stimulus (𝑥² = 58.56, df = 1, p < 0.0001, Table 7). 

Additionally, there was no support for my prediction that background risk would influence the 

latency for familiarization with the task. No significant interaction between background risk and 

training duration was found.  

My initial prediction concerning the colour of the rewarded cup was not supported, as the 

number of entries was higher for the red than the white cup (𝑥² = 18.71, df = 1, p < 0.0001, Table 

7). Additionally, my prediction about the side of the tank the rewarded cup was on was also not 

supported. A strong interaction between the side of the tank and training duration was found 

(𝑥² = 98.20, df = 1, p < 0.0001, Table 7). The number of entries increased more with training 

duration when the rewarded cup was on the right side of the tank than the left. Figure 10 is a 

scatterplot of the raw data, while Figure 11 displays the least squares means and standard error 

derived from the final mixed model. It was necessary to account for the non-independence of 

tanks and treatment blocks (Table 2).  

3.2 Testing Phase 

3.2.1 Latency to enter the reward zone 

The first component using a Bernoulli distribution was necessary, as the proportion of 

fish entering the reward zone was often low and varied (Figure 12). Collectively, over one third 

(36%) of trials had no fish entering the reward zone (i.e. zeroes). The second component of the 

model was modelled using a gamma distribution, as the data was determined (visually) to be 

normally distributed. As the data was collected in seven treatment blocks, and included repeated 
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measures, both components of the zero-inflated model accounted for the non-independence of 

tanks and treatment blocks (Table 3). 

After forward model selection, the most parsimonious zero-inflated mixed model for the 

probability of entering the reward zone (AICc= 373.6584, Table 3&8, Figure14A), provided no 

support for my initial hypothesis. Background risk had no effect on the probability of entering 

the reward zone, neither did the acute risk reinforcement stimulus. Neither of these variables 

were included in any parsimonious model.  

Partial support was found for my prediction that colour would be insignificant. This 

variable was also not included in any parsimonious model. The probability of entering the 

reward zone did not differ between the red and white cups. Surprisingly, the only variable that 

influenced the probability of entering the reward zone was the side of the tank the trained 

rewarded coloured cup was on. The probability of entering was higher when the cup was on the 

right side of the tank than the left side (x2=6.97, df= 1, p=0.0083, Table 8). 

 Similarly, the second component of the model for the latency to enter the reward zone 

(AICc=597.1171 Table 3 & 9, Figure 14B) also provided no support for my initial hypothesis. 

Background risk had no effect on the latency to enter the reward zone, neither did the acute risk 

reinforcement stimulus. Neither variable was included in any parsimonious model. As 

background risk had no effect, I also did not find support for my prediction about the interaction 

between background risk and trial. Partial support for my initial prediction about colour was 

found, as this variable was also not included in any parsimonious model. Again, the only variable 

that affected the latency to enter the reward zone was the side of the tank the trained rewarded 

coloured cup was on. The latency to enter was shorter when the cup was on the right side of the 

tank than the left (x2=11.28, df= 1, p=0.0008, Table 9). Indeed, Figure 13 indicates no consistent 
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pattern in the raw data, other than the effect of the side of the tank the trained rewarded coloured 

cup was on.  

3.2.2 Number of entries into the reward zone  

After forward model selection, the most parsimonious mixed model for the number of 

entries into the reward zone (AICc= 1453.015, Table 4 & 10, Figure 16), provided no support for 

my initial hypothesis. Background risk had no effect on the number of entries, and was not 

included in any parsimonious model. Similarly, acute risk reinforcement was also not included in 

the final model, as it had no effect on the number of entries.  

Partial support for my prediction about the number of entries was found, as the number of 

entrances decreased with trial number (x2=8.25, df=1, p=0.0040, Table 10). However, I was 

expecting a significant interaction between background risk and trial, where high risk individuals 

would have a low number of entrances across all trials, and the number of entrances for low risk 

individuals would start high and decrease over subsequent trials. 

 My predictions concerning colour and side were also not supported. The number of 

entries was higher for the white than the red cup (x2=6.73, df=1, p=0.0095, Table 10), and was 

higher for the right than the left side (x2=115.81, df=1, p<0.0001, Table 10). Figure 15 displays 

the raw data, while Figure 16 displays the least squares means derived from the final mixed 

model. This model accounted for the non-independence of tanks and treatment blocks (Table 4). 

4. Discussion 

The main goal of this thesis was to test the hypothesis that exposure to elevated predation 

risk over a period of a few days interferes with the learning of a novel foraging task. Overall, the 

results do not support my hypothesis. Background risk had no effect on the learning of a novel 

foraging task, and was not included in any parsimonious model. Fish exposed to high levels of 
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background risk were no slower to approach a novel foraging opportunity, did not have fewer 

attempts, and were no slower to become familiar with the task than those exposed to low levels 

of background risk. Both high and low background risk treatments learned the foraging task 

equally well. The latencies to enter the rewarded zone decreased, and the number of entrances 

increased consistently over the course of the 16 training sessions. While learning did occur, it is 

difficult to make any comments on the specific strength of the learned association. Most studies 

on foraging in guppies focus on the social transmission of foraging information (Reader et al. 

2003; Reader and Laland 2000; Swaney et al. 2001). The only study involving the completion of 

a novel foraging task (without social transmission), was investigating the factors that influenced 

innovative behaviour in guppies, and did not include any repeated measures (Laland and Reader 

1999). Despite the difficulty in making comparisons on the strength of the learned association, 

learning did indeed occur.  The observed behavioural changes coincide with Brown’s (2012) 

definition of learning; a change in behaviour over time based on recent experiences. The 

repeated training sessions allowed the fish to form a learned association between an object and a 

foraging reward, as seen in their decreased latencies and increased entrances over the course of 

the experiment. Thus, their behaviour changed over time to better suit their local environment.  

The lack of effect of background risk was unexpected, given the relationship between 

neophobia and learning (Boogert et al. 2006; Seferta et al. 2001). Short term predation risk is 

commonly simulated using conspecific alarm cues (ex: Ferrari 2014; Mitchell et al. 2016), and 

exposure to conspecific alarm cues for multiple days has been effective in inducing neophobia in 

multiple species including: Trinidadian guppies and woodfrog tadpoles (Rana sylvatica; Brown 

et al. 2013), juvenile convict cichlids (Joyce et al. 2016), northern red-bellied dace (Phoxinus 

eos; Brown et al. in press), and fathead minnows (Pimephales promelas; Crane et al. 2015). 
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Given that these exposures were sufficient to induce neophobia, my results suggest that while 

neophobia was likely induced in the fish, it had no apparent impact on their ability to learn a 

novel foraging task. 

Interestingly, exposure to acute levels of risk had more of an impact on learning than 

background risk. Shoals that were exposed to acute high risk reinforcement stimuli on training 

days showed a lower probability and greater latency to enter the reward zone than those exposed 

to acute low risk reinforcement stimuli.  Additionally, they had fewer entries into the reward 

zone. While acute risk was significant in the modelling, it is important to note, that exposure to 

high acute risk did not inhibit learning. Over the course of the 16 training sessions, fish exposed 

to high acute risk still decreased their latencies and increased their number of entrances. The 

difference between low and high acute risk was simply in the averages, not the trends. The acute 

pulses of risk were much closer to the training sessions in time, compared to the pre-exposure 

phase, and so more recent events might hold more weight than earlier ones. Indeed, European 

minnows (Phoxinus phoxinus) are less likely to locate a foraging patch when they have visual 

contact with a predator than when they do not (Johnsonn and Sundström 2007). While my 

experimental set up did not include exposure to risk during the actual training sessions, the acute 

risk exposures did occur much closer to the training sessions than the background risk pre-

exposure (i.e. on the same days). So perhaps the risk of predation experienced closer to the food 

locating portion of the experiment explains why acute risk had a mild effect on the ability to 

learn the foraging task, and background risk did not.  

Most of the studies examining predation risk and learning have used wild populations 

from different predation environments. These populations have had longer exposure times to 

differing conditions than fish in a laboratory setting could experience. As such, there are likely to 
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be more significant differences between wild populations, such as genetic divergence, than 

between laboratory treatments. For example, brain mass is positively correlated with predation 

pressure in multiple populations of Trinidadian guppies (Kotrschal et al. 2017). However, I did 

not use wild fish from high risk populations, so the cognitive abilities that are selected for in 

harsher environments (Roth et al. 2010) may not be present after such a short exposure to 

elevated risk in a laboratory setting. This may explain why long term exposure to high levels of 

predation risk affects learning, but short term exposure does not. However, short term exposure 

to predation risk may simply affect learning in contexts other than foraging. 

 While neophobia naturally occurs in wild populations of guppies, its plasticity (Brown et 

al. 2013) allows for controlled experiments in a laboratory setting. In addition to wanting to 

examine short term exposure to elevated predation risk, my justification for using only low 

predation guppies was to control for other differing variables between populations. This would 

allow for conclusions to be drawn specifically about background risk, as other environmental 

factors can influence learning. For example habitat variation has been shown to influence 

learning (Girvan and Braithwaite 1998). Three-spined sticklebacks (Gasterosteus aculeatus) 

from river populations learned a spatial task slower (based on spatial cues) than those from 

ponds. Ponds are considered to be more stable in terms of habitat compared to rivers (Girvan and 

Braithwaite 1998). A follow up study demonstrated that habitat stability actually interacted with 

predation pressure to shape learning and memory in B. episcopi (Brydges et al. 2008). Factors 

such as competition and population density can vary significantly between high and low risk 

predation populations of Trinidadian guppies (Magurran 2005).  Therefore, by inducing 

neophobia rather than using separate wild populations, I was able to control for other 

environmental aspects while manipulating background risk.    
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These claims about the effects of background and acute risks must be made cautiously 

however, as I did see a very significant effect of colour and which side of the tank the rewarded 

cup was on. The significance of the colour of the cups is not surprising in retrospect, as female 

guppies sexual selection is highly influenced by the carotenoid (orange-red) pigment in males 

(Kodric-Brown 1985). However, guppies are faster at learning to discriminate between colours 

than shapes (Lucon-Xiccato et al. 2019). While the guppies were more attracted to the red cup, 

they were still able to still learn with white cups. This demonstrates their ability to learn colour 

associations outside their sexual selection bias; while females are attracted to carotenoid 

pigments, they can still form associations with colours outside that part of the colour spectrum.  

When the rewarded cup was on the right side of the tank, the fish had significantly higher 

probabilities to enter, had shorter latencies, and had a greater number of entrances. The 

interaction between training duration and side shows that learning occurred only when the cup 

was on the right side of the tank, and not the left. No learning occurred when the rewarded cup 

was on the left, as I observed no change in behaviour over time. This could possibly be due to 

cerebral lateralization, but limited evidence could be found to support this. Cerebral lateralization 

is the separation of various cognitive functions between the two hemispheres of the brain (Bibost 

and Brown 2014; Brown et al. 2007). Cerebral lateralization can often manifest in a variety of 

behavioural side preferences, collectively termed laterality (Brown and Magat 2011). For 

example, chimpanzees show a preference for which hand they use while foraging (Marchant and 

McGrew 1996), and fish can display turning biases (Ferrari et al. 2017).  Laterality is shaped by 

predation risk, where fish from high predation populations display stronger laterality than those 

from low predation populations (Brown et al. 2004). Additionally, laterality is plastic, where 

short-term exposure to high predation risk results in stronger laterality (Broder and Angeloni 
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2014; Ferrari et al. 2015a; Jozet-Alves and Hébert 2013). Moreover, laterality has been shown to 

be positively correlated with cognitive performance (Bibost and Brown 2014). However, as my 

observed side bias was present across all treatments, and not only the high risk treatment, it is 

unlikely a result of laterality. While there is nothing in the experimental set up that would 

suggest a reason for the side bias, it is likely a factor that I was unable to identify.  

The goal of the testing phase was to see if the learned foraging task could be generalized 

across contexts. Overall, the results do not support any of my predictions. Neither background 

risk nor acute risk reinforcement had any significant effects; the probability and latency of entry, 

and the number of entries did not differ regardless of background or acute risk. The significant 

side bias recorded for the number of entries once again makes it difficult to draw conclusions. 

Unexpectedly, it was the white cup that was preferred over the red cup in the testing phase. This 

reversal in colour preference was surprising, considering the strong preference for carotenoid 

(orange-red) pigments in female guppies (Kodric-Brown 1985) which was observed in the 

training phase. The only partial support for a prediction that I found was that trial number was 

significant, where the number of entries decreased as the trials increased. This was expected, as 

no food reward was given. However I was expecting a significant interaction between trial and 

background risk. Once again the significant side bias towards the right side of the tank, as well as 

the switch of preferred colours, means that I cannot draw any definitive conclusions about the 

ability of the fishes to generalize learned foraging tasks across contexts.  

My results do not suggest that background predation risk in any way affected learned 

foraging behaviour to the extent that lost-opportunity costs were incurred.  This was surprising as 

Ferrari et al. (2019) found that risk induced neophobia had consequences even when there was 

no predation event or stimulus detected. Damselfish (Pomacentrus amboinensus) that were 
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exposed to high risk conditions for several days were poorer competitors compared to those 

exposed to low risk conditions. Even in the absence of an acute threat, exposure to high 

background risk had carry-over effects (Ferrari et al. 2019). I observed no such carry-over 

effects. The lost-opportunity costs regarding foraging, that are associated with neophobia, may 

not manifest for learning novel foraging opportunities. It is possible however, that exposure to 

elevated levels of background risk does not influence the learning of a novel foraging task in 

guppies. If this is indeed the case, it could have potential positive impacts for conservation.   

Exposing aquatic species to elevated levels of background risk, to induce neophobia, has 

been suggested as a tool for conservation efforts. Anthropogenic climate change has caused 

species distributions to expand and shift (Parmesan and Yohe 2003 ; Chen et al. 2011). 

Consequently, there has been an increase in invasive species (Rahel and Olden 2008; Mainka 

and Howard 2010). Invasive species can pose serious threats to local populations if native 

species do not recognize potentially novel predators. As neophobia has a direct survival benefit 

(Ferrari et al. 2015b), it may help prey deal with novel predators. If induced neophobia has 

minimal lost-opportunity costs for learning novel foraging tasks, it could potentially be induced 

in local populations to increase survival. As induced neophobia has potentially important 

conservation applications, it is important to elucidate the details of its expression, and potential 

carry over costs.  

Future studies with refined experimental designs might help to provide a clearer picture 

of the relationship between background risk and lost-opportunity costs for foraging. Eliminating 

the side bias, as well as using population specific alarm cues may provide different, more 

accurate results. Moreover, conducting experiments under semi-natural conditions, with more 

ecologically relevant foraging tasks, may also provide a clearer picture of how lost-opportunity 
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costs due to short term exposure to elevated levels of background risk would manifest. As lost-

opportunity costs relate to a range of fitness activities, exploring the relationship between 

background risk and behaviours such as mating and territory defence would provide a clearer 

picture, and develop a more comprehensive model of the interaction between predation risk, 

neophobia, and learning.  
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Figures 

 

Figure 1: Map of the Northern Mountain Range in the Republic of Trinidad and Tobago, 

indicating various rivers including the Upper Aripo (UA) and Lopinot (LT) sampling sites. Map 

of the mountains adapted from Suk and Neff (2009). Map of the island of Trinidad adapted from 

Vanegas-Ríos and Phillip (2013).   
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Figure 2: Fully factorial 2x2x2 experimental design illustrating the different levels of 

background risk (high= alarm cue /low=distilled water), acute reinforcement stimulus (Alarm 

cue=high /distilled water=low), as well as the colour of the reward cup (red/white) used for the 

training and testing.   
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Figure 3: Flow chart for experimental time line for days one through nine 
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Figure 4: Diagram of a side view of the tanks used during the training phase of the experiment. 

The dark and light grey quadrilaterals represent the red and white cups used for training. The 

syringe containing the food slurry is attached to a length of sift airline tubing terminating just 

inside the cup.  
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Figure 5: Diagram of a side view of the tank set up during the testing phase. Dark and light grey 

shapes represent the placement and configuration of the red and white cups.  
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Figure 6: Scatterplot relating proportion of entrances into the reward zone to the number of 

training sessions, background risk (high/low), acute reinforcement (AC: alarm cue/ DW: 

Dechlorinated water), colour of the rewarded cup (red/white), and the side of the tank the 

rewarded cup was on (left/right). 
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Figure 7:  Scatterplot of the raw data of the entrances into the reward zone relating the latency to 

enter the reward zone (minutes) to the number of training sessions, background risk (high/low), 

acute reinforcement (AC: alarm cue/ DW: Dechlorinated water), colour of the rewarded cup 

(red/white), and the side of the tank the rewarded cup was on (left/right). 
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Figure 8: Least squares means of the zero-inflated generalized linear mixed model relating the 

probability of entering the reward zone to number of trainings, acute reinforcement (AC: alarm 

cue/ DW: Dechlorinated water), color of the reward zone (red/white), and the side of the tank the 

rewarded cup was on(left/right). Error bars represent standard error.  
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Figure 9: Least squares means of the zero-inflated generalized linear mixed model relating the 

latency to enter the reward zone to number of trainings and the side of the tank the rewarded cup 

was on (left/right). Error bars represent standard error. 
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Figure 10: Scatterplot of raw data relating the number of entrances in the reward zone to the 

number of training sessions, background risk (high/low), acute reinforcement (AC: alarm cue/ 

DW: Dechlorinated water), colour of the rewarded cup (red/white), and the side of the tank the 

rewarded cup was on (left/right). 
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Figure 11: Least squares means of the generalized linear mixed model relating the number of 

entries in the reward zone to number of trainings, acute reinforcement  (AC: alarm cue/ DW: 

Dechlorinated water), color of the reward zone (red/white), and the side of the tank the rewarded 

cup was on (left/right). Error bars represent standard error. 
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Figure 12: Scatterplot relating proportion of entrances into the reward zone to the trial number, 

background risk (high/low), acute reinforcement (AC: alarm cue/ DW: Dechlorinated water), 

colour of the rewarded cup (red/white), and the side of the tank the trained rewarded cup was on 

(left/right). 
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Figure 13: Scatterplot of the raw data of the entrances into the reward zone relating the latency 

to enter the reward zone (minutes) to trial number, background risk (high/low), acute 

reinforcement (AC: alarm cue/ DW: Dechlorinated water), colour of the rewarded cup 

(red/white), and the side of the tank the trained rewarded cup was on (left/right). 
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Figure 14: Least squares means of the zero-inflated generalized linear mixed model relating the 

A) probability of entering the reward zone and B) Latency to enter the reward zone to the side of 

the tank the trained rewarded cup (red/white) was on for the testing phase. Error bars represent 

standard error.  
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Figure 15: Scatterplot of raw data relating the number of entrances in the reward zone to the trial 

number, background risk (high/low), acute reinforcement (AC: alarm cue/ DW: Dechlorinated 

water), colour of the rewarded cup (red/white), and the side of the tank the trained rewarded cup 

was on (left/right). 
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Figure 16: Least squares means of the generalized linear mixed model relating the number of 

entries into the reward zone to trial number, color of the reward zone (red/white), and the side of 

the tank the trained rewarded cup was on (left/right), for the testing phase. Error bars represent 

standard error. 
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Tables 

Table 1: Forward selection of the two components of a zero-inflated generalized linear mixed 

model relating the latency of entry to the reward zone to various predictors for the training phase. 

Not all models that were tested are shown. 

Model Distribution df AICc ΔAICc Log-

likelihood 

Weight 

LERZ.01 ~ 1 + 1|Tank + 1|Block Bernoulli 3 1369.75  -681.87 0.00 

LERZ.01~ B +1|Tank +1|Block Bernoulli 4 1371.77 -2.02 -681.8665 0.00 

LERZ.01 ~ S + 1|Tank + 1|Block Bernoulli 4 1288.5 -81.25 -640.23 0.00 

LERZ.01 ~ S*T + 1|Tank + 1|Block Bernoulli 6 1236.98 -132.77 -612.45 0.36 

LERZ.01~ S*T +B +1|Tank + 

1|Block 

Bernoulli 7 1238.99 -130.76 -612.45 0.13 

LERZ.01 ~ S*T + R + 1|Tank + 

1|Block 

Bernoulli 7 1231.9 -137.85 -608.9 4.56 

LERZ.01 ~ S*T + R + C + 1|Tank 

+ 1|Block 

Bernoulli 8 1225.82 -143.93 -604.85 94.95 

 

      

LERZ ~ 1 + 1|Tank + 1|Block Gamma 4 2534.06  -1263 0.00 

LERZ ~ B+ 1|Tank + 1|Block Gamma 5 2535.97 +1.91 -1261.95 0.00 

LERZ ~ S + 1|Tank + 1|Block Gamma 5 2482.18 -51.88 -1236.05 0.35 

LERZ ~ S*T + 1|Tank + 1|Block Gamma 7 2471.84 -62.22 -1228.85 61.17 

LERZ~ B*S*T ++ 1|Tank + 

1|Block 

Gamma 11 2478.86 -55.2 -1228.26 1.84 

LERZ ~ S*T + C + 1|Tank + 

1|Block 

Gamma 8 2472.90 61.16 -1228.36 36.29 

Note: * indicates interactions (including main effects), bold indicates the most parsimonious 

model. Abbreviations: LERZ.01, Bernoulli distribution for entry into the reward zone (yes/no), 

LERZ, Latency of entry in the reward zone (minutes); B, Background risk (high/low); R, Acute 

Reinforcement stimulus (alarm cue/distilled water); S, Side of the tank with the reward zone 

(left/right); T, Training duration (1-16); C, Colour of the reward zone (red/white);  1|Tank and 

1|Block are the random effects of tank and treatment block, respectively.   
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Table 2: Forward selection of a generalized linear mixed model relating the number of entries in 

the reward zone to various predictors for the training phase. Not all models tested are shown. 

Model Distribution df AICc ΔAICc Log-

likelihood 

Weight 

NERZ ~ 1 + 1|Tank + 1|Block Poisson 3 14578.65  -7286.31 0.00 

NERZ ~ B + 1|Tank + 1|Block Poisson 4 14579.02 +0.37 -7285.49 0.00 

NERZ ~ S + 1|Tank + 1|Block Poisson 4 13582.01 -996.64 -6786.99 0.00 

NERZ ~ S*T + 1|Tank + 

1|Block 

Poisson 6 13333.51 -1245.14 -6660.72 0.00 

NERZ ~ S*T +B+ 1|Tank + 

1|Block 

Poisson 7 13333.65 -1245.00 -6659.78 0.00 

NERZ ~ S*T + R + 1|Tank + 

1|Block 

Poisson 7 13283.59 -1295.06 -6634.75 0.02 

NERZ ~ S*T + R + C + 

1|Tank + 1|Block 

Poisson 8 13266.93 -1311.72 -6625.40 99.98 

Note: * indicates interactions (including main effects), bold indicates the most parsimonious 

model. Abbreviations: NERZ, Number of entries in the reward zone; B, Background risk (high/ 

low); R, Acute Reinforcement stimulus (alarm cue/distilled water); S, Side of the tank with the 

reward zone (left/right); T, Training duration (1-16); C, Colour of the reward zone (red/white);  

1|Tank and 1|Block are the random effects of tank and treatment block, respectively.   
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Table 3: Forward selection of the two components of a zero-inflated generalized linear mixed 

model relating the latency of entry to the reward zone to various predictors for the testing phase. 

Not all models tested are shown.  

Model Distribution df AICc ΔAICc Log-

likelihood 

Weight 

 

LERZ.01 ~ 1 + 1|Tank + 1|Block Bernoulli 3 378.7167  -186.32 2.47 

LERZ.01 ~ B + 1|Tank + 1|Block Bernoulli 4 380.2643 +1.5476 -186.06 1.14 

LERZ.01 ~ S + 1|Tank + 1|Block Bernoulli 4 373.6584 -5.0583 -182.76 31.00 

LERZ.01 ~ S * B + 1|Tank + 

1|Block 

Bernoulli 6 374.3131 -4.4036 -181.01 22.34 

LERZ.01 ~ S + R + 1|Tank + 

1|Block 

Bernoulli 5 375.0424 -3.6743 -182.41 15.52 

LERZ.01 ~ S * C + 1|Tank + 

1|Block 

Bernoulli 6 377.3207 -1.3960 -182.51 4.97 

LERZ.01 ~S + T +1|Tank+ 

1|Block 

Bernoulli 5 374.2932 -4.4235 -182.04 22.57 

       

LERZ ~ 1 + 1|Tank + 1|Block Gamma 4 606.1309  -298.95 0.47 

LERZ ~ B + 1|Tank + 1|Block Gamma 5 608.2432 +2.1123 -298.95 0.16 

LERZ ~ R + 1|Tank + 1|Block Gamma 5 608.1872 +2.0563 -298.92 0.17 

LERZ ~ S+ 1|Tank + 1|Block Gamma 5 597.1171 -9.0138 -293.39 42.57 

LERZ ~ S * B + 1|Tank + 1|Block Gamma 7 600.8831 -5.2478 -293.12 6.48 

LERZ ~ S + T+ 1|Tank + 1|Block Gamma 6 597.6400 -8.4909 -292.58 32.77 

LERZ ~ S + C + 1|Tank + 1|Block Gamma 6 598.9081 -7.2228 -293.22 17.38 

Note: * indicates interactions (including main effects), bold indicates the most parsimonious 

model. Abbreviations: LERZ.01, Bernoulli distribution for entry into the reward zone (yes/no), 

LERZ, Latency to enter the reward zone (minutes); B, Background risk (high/low); R, 

Reinforcement stimulus (alarm cue/distilled water); C, Colour of the reward zone (red/white); S, 

Side of the tank with the reward zone (left/right); T, Trial number; 1|Tank and 1|Block are the 

random effects of tank and treatment block, respectively.   
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Table 4: Forward selection of a generalized linear mixed model relating the number of entries in 

the reward zone to various predictors for the testing phase. Not all models tested are shown.  

Model Distribution df AICc ΔAICc Log-

likelihood 

Weight 

NERZ ~ 1 + 1|Tank + 1|Block Poisson 3 1578.935  -786.43 0.00 

NERZ ~ B + 1|Tank + 1|Block Poisson 4 1580.554 +1.629 -786.21 0.00 

NERZ ~ R + 1|Tank + 1|Block Poisson 4 1579.143 +0.208 -785.50 0.00 

NERZ ~ S + 1|Tank + 1|Block Poisson 4 1464.572 -114.363 -728.22 0.29 

NERZ ~ S * B+ 1|Tank + 1|Block Poisson 6 1468.284 -110.651 -727.99 0.05 

NERZ ~ S + C+ 1|Tank + 1|Block Poisson 5 1459.142 -119.793 724.46 4.45 

NERZ ~ S+T + C + 1|Tank + 

1|Block 

Poisson 6 1453.015 -125.92 720.36 95.21 

Note: * indicates interactions (including main effects), bold indicates the most parsimonious 

model. Abbreviations: NERZ, Number of entries into the reward zone; B, Background risk 

(high/low); R, Reinforcement stimulus (alarm cue/distilled water); C, Colour of the reward zone 

(red/white); S, Side of the tank with the reward zone (left/right); T, Trial number; 1|Tank and 

1|Block are the random effects of tank and treatment block, respectively.   
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Table 5: Post-hoc results from the final zero-inflated GLMM for the probability of entering the 

reward zone for the training phase  

Final Model: LERZ.01 ~ Side*Training + Colour+ Reinforcement + 1|Tank + 1|Block 

Predictor Chi Square Df P 

Training  43.34 1 <0.0001 

Side 70.73 1 <0.0001 

Colour 8.79 1 0.0030 

Reinforcement 8.16 1 0.0043 

Side*Training 7.26 1 0.0070 

Note * indicates interactions (including main effects). Abbreviations: LERZ.01, Bernoulli 

distribution for entry into the reward zone (yes/no). 1|Tank and 1|Block are the random effects of 

tank and treatment block, respectively.   
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Table 6: Post-hoc results from the final zero-inflated GLMM for the latency to enter the reward 

zone for the training phase 

Final Model: LERZ~ Side *Training + 1|Tank + 1|Block 

Predictor Chi Square Df P 

Side 52.33 1 <0.0001 

Training 5.74 1 0.0166 

Side*Training 9.12 1 0.0025 

Note * indicates interactions (including main effects). Abbreviations: LERZ, latency to enter the 

reward zone (minutes). 1|Tank and 1|Block are the random effects of tank and treatment block, 

respectively.   
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Table 7: Post-hoc results from the GLMM for the number of entries into the reward zone for the 

training phase 

Final model: NERZ ~ Side*Training + Reinforcement +Colour + 1|Tank + 1|Block 

Predictor Chi Square Df P 

Side 873.90 1 <0.0001 

Training 152.87 1 <0.0001 

Reinforcement 58.56 1 <0.0001 

Colour 18.71 1 <0.0001 

Side*Training 98.20 1 <0.0001 

Note * indicates interactions (including main effects). Abbreviations: NERZ, number of entries 

in the reward zone. 1|Tank and 1|Block are the random effects of tank and treatment block, 

respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

Table 8: Post-hoc results from the zero-inflated GLMM for the probability of entering the 

reward zone for the testing phase 

Final model: LERZ.01 ~ Side + 1|Tank + 1|Block 

Predictor Chi Square Df P 

Side 6.97 1 0.0083 

Note abbreviations: LERZ.01, Bernoulli model for the latency to enter the reward zone (yes/no). 

1|Tank and 1|Block are the random effects of tank and treatment block, respectively.   
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Table 9: Post-hoc results from the zero-inflated GLMM for the latency to enter the reward zone 

for the testing phase 

Final model: LERZ ~ Side + 1|Tank + 1|Block 

Predictor Chi Square Df P 

Side 11.28 1 0.0008 

Note abbreviations: LERZ, latency to enter the reward zone (minutes). 1|Tank and 1|Block are 

the random effects of tank and treatment block, respectively.   
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Table 10: Post-hoc results from the GLMM for the number of entries in the reward zone for the 

testing phase 

Final model: NERZ~ Side + Trial + Colour + 1|Tank + 1|Block 

Predictor Chi Square Df P 

Side 115.81 1 <0.0001 

Trial 8.25 1 0.0040 

Colour 6.73 1 0.0095 

Note abbreviations: NERZ, number of entries in the reward zone. 1|Tank and 1|Block are the 

random effects of tank and treatment block, respectively.   

 

 

 

 

 

 

 


