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Abstract

Scalable Reliable Controller Placement in Software Defined Networking

Abdunasser Alowa, Ph.D.

Concordia University, 2020

Software Defined Networking (SDN) is a new networking paradigm that facilitates a centralized

system of computer networks by decoupling the control and data plane from each other, where a

controller maintains the management of a global view of the network. SDN architectures can provide

programmatic interfaces in communication networks that significantly simplify network management.

Hence, the controllability and manageability of a network can be improved. On the one hand,

the placement of controllers can significantly impact network performance in terms of controller

responsiveness. On the other hand, SDN offers the ability to have controllers distributed over the

network to solve the single point of failure problem at the control plane, increasing scalability and

flexibility. However, there are some inevitable problems for such networks, especially for controller-

related problems. For instance, scalability, reliability, and controller availability are some of the

hottest aspects of SDN. More precisely, failure of the controllers themselves may lead to the impact

of these aspects and the collapse of the network performance.

Despite the issues mentioned above, the controller placement challenges must be appropriately

addressed to take advantage of the SDN. The connections between the controller (control plane)

and the switches (data plane) in SDN are established by either an in-band or an out-of-band con-

trol mechanism. New challenges still arise regarding the connection availability and provide more

protection for the connection between the data and control planes. A disconnection between the

two planes could result in performance degradation. Although the SDN offers the advantage of an

environment of multiple distributed controllers, yet the intercommunication factor between these

controllers is still a key challenge. This thesis investigates the issues mentioned above and organizes

them into four stages.

First, dealing with the controller placement problem as the most crucial concern in SDN, via

exploiting the independent dominating set approach to ensure a distribution of controllers with

lowest response times. We propose a new node degree-based algorithm named High Degree with

Independent Dominating Set (HDIDS) for the controller placement problem in the SDN networks.

HDIDS is composed of two phases to deal with controller placement: (1) determining candidate
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controller instances by selecting those nodes with the highest degree; and (2) partitioning the network

into multiple domains, one controller per domain.

To further improve network performance, reliability, and survivability, one solution is to deploy

backup controllers to satisfy the quality of service requirements. In this regard, as a second step, we

enhance the controller placement approach by designing a reliable and survivable controller place-

ment strategy. This strategy relies on the efficient deployment of backup controllers by constructing

virtual backup domains set(s) to ensure the durability and resilience of network control management.

The approach design is called a Survivable Backup Controller Placement approach.

Furthermore, to achieve reliable control traffic between data and control planes in an in-band

control network, as a third stage, we design and implement an In-band Control Protection Module

that finds a set of ideal paths for the control channel under the failure conditions. The proposed

protection mechanism protects as much control traffic as possible.

Finally, we present a practical approach for the controller placement problem in software defined

networks aiming to minimize the inter-controller communication delay time and the delay time

between controller and switches. The principal concept employed in this approach is the Connected

Dominating Set. Further, we present an algorithm using the Minimum Connected Dominating Set,

which minimizes the delay time between the distributed SDN controllers.
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Chapter 1

Introduction

1.1 Software Defined Networking in glance

Network technologies have helped to solve many computing challenges. They have enabled the

successful development of a variety of emerging technologies, such as distributed cloud comput-

ing. However, the traditional approaches to innovation in network technologies can be very slow,

complicated, inflexible, and expensive. This has contributed to the slow development of scalable

information technology (IT) infrastructure and a diversity of IT solution issues.

There is a need for new solutions that address the problems with traditional network technologies.

These solutions will facilitate the development of flexible and cost-effective network services and

applications. Recently, Software Defined Networking (SDN) and Network Functions Virtualization

(NFV) have emerged as two complementary technologies for enabling flexible and programmable

networking. SDN makes the control of networking programmable; this allows elastic networks that

can respond to changing needs. Until recently, typically network layers were merged on the same

device.

To meet the varied needs of the industry, service providers, organizations, and even end-users, var-

ious functional components of today’s network resources are separated physically and operationally

from each other. Although the traditional network architecture has worked fine, with current hard-

ware Virtualization common today, it becomes challenging, if not impossible, for the conventional

network architecture to meet the new virtual requirements. A network device is comprised of a data

plane that is often a set of switches connecting the different network ports on a device, and a control

plane that is the brain of the device. For instance, to set up network paths, all routing protocols

used to build loop-free paths inside a network are executed in a distributed fashion. That is, each

device in the network has a separate control layer that implements the routing protocol. However,
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in a centralized control plane model, only one (or at least logical) control plane exists. This brain

pushes commands to every device and thus drives them to manipulate its physical switching and

routing hardware, typically in networks’ layers were merged on the same device.

Figure 1: Traditional network view Vs SDN Network view

As shown in Figure 1, in traditional networks, the control and data planes are combined in a

network device. The control plane is responsible for the configuration of the node and the program-

ming of the paths to be used for data flows. After the paths have been determined, as in forwarding

policy, they are pushed down to the data plane. Policy adjustment is possible only through changes

to the configuration of the devices. This design might impose restrictions for network operators who

wish to scale their networks in response to changing traffic demands.

Differently, on the right side of Figure 1, in the SDN approach, the control plane is moved out of

the individual network devices and into a separate, centralized controller. SDN switches are man-

aged by a network operating system (NOS). The NOS collects information using an Application

Programming Interface (API) and manipulates the data plane of the switches. It also provides an

abstract model of the network topology to the SDN controller. With this design, the controller can

exploit the complete knowledge of the network to improve flow management and support service-

user requirements of scalability and flexibility [2]. Although network operators can build and utilize

network control mechanisms with different SDN protocols, some issues regarding scalability, reliabil-

ity, and robustness remain. In the multiple distributed SDN networks, it is not easy to change the

switches and protocols configurations for network managers. Therefore, the need for effective mech-

anisms to make the network stable and robust is inevitable. At the same time, the design of these

mechanisms must be done without sacrificing the flexibility of network control. In addition, to satisfy

these criteria, as the controller plays a key role in SDN networks, several controller-related factors

can significantly impact on the network performance. For instance, the placement of the controller

is important to keep a network controllable and manageable. This thesis discusses mechanisms for

address and avoidance of stability and robustness issues in SDN networks.
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1.2 Research Focus

Despite the efficient solutions for utilizing SDN, there are some open issues and challenges that

should be addressed. Multiple distributed controllers in a large-scale SDN environment is our main

objective in this research. More specifically, we are interested in different aspects of SDN as follow:

1.2.1 Controller Placement Problem in SDN

The controllers are the brain of SDN and the functions major engine; hence, controller placement

can greatly impact network performance in terms of controller responsiveness. In order to address

the controller placement problem and allow for distributed and scalable solutions, controllers need

to communicate with their switches such that routing updates, controller allocation information,

etc., can be shared with them promptly. The response time between the distributed controllers is

also an important factor. Dealing with this problem can be simplified by considering two ques-

tions: how many controllers are needed to manage the whole network, and where should they be

placed in the network? [3]. The best placement of controllers can be achieved in terms of different

metrics and considerations based on the objectives of the network. Moreover, the response time of

switch-controller and inter-controller must be satisfied. Such delay time thresholds are of utmost im-

portance since they impact the control decision. For this reason, getting the best possible placement

requires studying new and efficient methods and metrics to determine the impact of the placement

of controllers on SDN performance.

1.2.2 Survivability in SDN

The core concept of SDN is to abstract the control plane from the data plane. SDN architectures

can provide programmatic interfaces in communication networks that significantly simplify network

management and improves the efficiency of utilization. Distributed multiple controller SDN environ-

ments have become the preferred solution towards better scalability of SDNs. As known, a chance

of failure in the network exists. For instance, each controller should handle a certain number of

requests of their assigned switches due to its resource constraints. Therefore, the controller will be

subject to failure if traffic demands exceed the controller’s capacity. Moreover, a controller may fail

due to software or hardware issues. Thus, survivability of the control network in case of controller

failure recovery is a crucial concept to maintain the continuity of the network operations and to meet

the Quality of Service (QoS) requirement in SDN networks. To this end, in the thesis, we intend to

study the possibility of controller survivability in order to maintain reliable network performance.
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1.2.3 In-band Control Failure in SDN

The control channel in SDN constructed in one of two ways; In-band or Out-of-band. Most of the

earlier research works have extensively studied the out-of-band scheme. Therefore, in our research,

we focus on the in-band approach, where all control messages are exchanged through the same data-

plane channels, unlike the out-of-band, which uses separate channels for each switch. In in-band SDN

networks, this matter is crucial, especially when there are unexpected issues raised. For instance,

the in-band control scheme enforces the existence of the dependency networks pattern, where a set

of nodes in the network rely on sending the control traffic over a particular node. Therefore, dealing

with control channel recovery in failure event is one of the in-band network challenges that need

to be investigated. Motivated by these pointers, we aim to cope with in-band failure occurrence in

SDN effectively. Mainly, providing more protection and controllability of the in-band SDN network

under the failure scenario is one of our objectives in the research.

1.2.4 Inter-controller Delay Time Minimization in SDN

With respect to scalability and using multiple SDN controllers, that assist in employing a larger

number of network switches, intercommunication cost between distributed controllers is still a key

challenge. Under this part of the thesis, an effective approach for the controller placement problem

in SDN that aims to minimize the communication delay time between the controllers and the delay

time between controller and switch is addressed.

1.3 Research Contributions

With SDN evolving, its promise is clear. Significantly, most of communication service providers

accelerate the applications deliver time and enhancing the quality of these services. Despite its

advantages, SDN brings up more challenges that need more investigation and analysis. One of the

major concerns about SDN is the delay time among all network components, whether between the

elements of control and data planes or between the elements in the same plane. Moreover, satisfying

the reliability, scalability, and performance requirements, considering the various aspects of SDN,

requires more research. Motivated by these concerns, this research focus on improving SDN taking

into account different criteria. We summarized and concluded the key contributions of this research

as follows: One of the most various factors which affect the scalability of SDN is the placement

of controllers. The best placement of controllers can be achieved in terms of different metrics and

considerations based on the network’s objectives. For this reason, getting the best possible placement

requires studying new and efficient methods and metrics to determine the impact of the placement
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of controllers on SDN performance.

Therefore, inChapter 3, we present a dynamic approach to ensure the distribution of the controllers

and defines the number of controllers required to satisfy a required maximum response time in the

network. This algorithm implemented based on the Independent Dominating Set concept combined

with the node’s degree, in which the node with high connected links will be selected as the base

of defining the controller’s placement in the network. Compared to the K-means algorithm [4], we

conduct extensive simulation experiments to show and evaluate our approach performance. The

related paper:

• Abdunasser Alowa, Thomas Fevens, Combined degree-based with independent dominating

set approach for controller placement problem in software defined networks. In 22nd Con-

ference on Innovation in Clouds, Internet and Networks and Workshops (ICIN 2019, Paris,

France) - Published.

In the distributed multiple controller SDN architectures, backup controllers, will be instantly as-

signed to the switches previously managed by the failed controller. However, one controller’s failure

can greatly affect the backup controller due to the added load (overload), and in the worst-case

scenario, generating consecutive failures to other controllers leading to the crash of the entire net-

work. Therefore, and to construct an effective and reliable SDN control network, in Chapter 4, we

propose a survivable backup controller placement approach to provide more efficient protection for

the primary control plane. Our mechanism inspired by building a virtual backup domain aiming to

finds the best locations of the backup controllers for fast recovery from primary controllers’ failures.

The related paper:

• Abdunasser Alowa, Thomas Fevens, Yaser Khamayseh, Survival Backup Strategy for Con-

troller Placement Problem in SDN. In International Journal of Computer and Telecommuni-

cations Networking (Computer Networks - 2020) -Under Review.

Despite all the advantages of SDNs, new challenges arise regarding the connection availability

between the data and control planes. A disconnection between the two planes could result in

performance degradation, especially if the control traffic is affected. Motivated by these concerns,

in Chapter 5, we propose and implement an in-band control protection approach to improve the

robustness and stability of the control channel between the control and data planes in SDN. Our

module has demonstrated clear superiority in the performance of finding the ideal paths for in-band

control channel recovery, whereas much control traffic as possible can be protected. The related

paper:
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• Abdunasser Alowa, Thomas Fevens, A Dynamic Recovery Module For In-band Control

Channel Failure In Software Defined Networking. In IEEE Conference on Network Softwariza-

tion and Workshops (NetSoft 2020)- Ghent, Belgium - published.

When SDN is deployed in large-scale networks, they may consist of multiple domains, each with sets

of switches managed by a single controller. Due to this distributed design layout, The controller

placement should satisfy performance requirements such as the maximum allowable delay time of

inter-controller communication for synchronization purposes as well as the delay time between the

controllers and its assigned switches. We formulate the controller placement problem taking into

consideration the delay times of inter-controller and controller-switch. To solve this problem, in

Chapter 6, we employ the Minimum Connected Dominating Set (MCDS) strategy to improve

the distribution of the controllers in the network, achieving a low average delay time between the

controllers while maintaining an acceptable average delay time between the controllers and their

assigned switches. The evaluation shows that our proposed mechanism effectively decreases the

inter-controller delay time as well as maintaining the controller-switch delay time at an acceptable

level. The related paper:

• Abdunasser Alowa, Thomas Fevens, Towards Minimum Inter-Controller Delay Time in Soft-

ware Defined Networking. In 15th International Conference on Future Networks and Commu-

nications (FNC 2020)- Leuven,Belgium - Published.

1.4 Research Outline

The thesis is organized as follows:

• Chapter 1 presents a glance about the networks and the early solutions that laid the founda-

tion for SDN, followed by research objectives, research contribution, and end up by an overview

of the thesis structure.

• Chapter 2 explores the SDN architecture and its benefits, challenges. Moreover, this chapter

provides an overview of OpenFlow protocol characteristics. Then we show the structure of the

SDN control plan where we describe using a single controller versus multiple controllers; in

addition, we outline in-band and out-f-band control architecture in SDN.

• Chapter 3 puts focus on addressing the controller placement problem CPP in SDN. In this

chapter, we describe High Degree with Independent Dominating Set (HDIDS) approach. We

explain our method philosophy in detail and compare it with other previous works in the same

domain, followed by all experiments results.
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• Chapter 4 explains how to improve the survivability of the controller in SDN. In this chapter,

we address the failure occurrence problem in SDN, model this NP-hard problem based on

virtual backup domain VBD, and solve it using our proposed heuristics.

• Chapter 5 discusses the in-band control channel failure in SDN, how to achieve reliable control

traffic between data and the control planes. Therefore, we present an In-band Control Protec-

tion Module (ICPM), which provides a protection approach of the in-band control channel in

SDN.

• Chapter 6 researches a different direction of controller placement problem. In this chapter,

we discuss the controller placement problem in terms of minimizing the inter-controller delay

time and its influence on determining the number of required controllers and their locations

in the network.

• Chapter 7 summarizes and concludes my thesis, followed by the potential directions of the

research in the future.
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Chapter 2

Background

2.1 Software Defined Networking

This chapter provides an overview of SDN and OpenFlow. Furthermore, we explorer different

directions of the SDN controller architecture. Finally, we shed light on the control channel scheme

in SDN networks.

2.1.1 SDN Architecture

The main idea behind SDN is to make the next generation of networks more dynamic, adaptive,

and manageable to changing network requirements easily and rapidly. SDN is suitable for a network

where each host is connected and managed by a single administrator e.g., a campus, a company, or a

data center network. It is hard to make traditional networks dynamic and adaptive because network

control software is implemented in the network devices. The network administrators must ask the

network device vendors to implement new control mechanisms to meet their new needs any time

a new network service or configuration automation mechanism is introduced into their networks.

SDN was developed by the Open Networking Foundation (ONF). The organization is funded by

technology companies, including Microsoft, Google, Facebook, Verizon, and Yahoo!. ONF seeks

to improve networking through SDN, creates SDN standards such as the OpenFlow standard and

related technologies. SDN introduces a separation between the data plane and the control plane.

This separation makes it possible to remove control decisions from network hardware, allows for

programmable network hardware, and for the creation of software that defines the behavior of the

network [5].

Figure 2 shows the SDN architecture that is composed of three planes defined as follows:

1. Application Plane
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Figure 2: SDN Architecture

This plane hosts a variety of applications for the network (e.g., routing, virtualization, traffic

management). The applications can implement an abstracted view of the network by commu-

nicating with the controller using an open application programming interface (API).

2. Northbound API

This channel is the API that the application plane uses to communicate with the controller

plane. Its primary function is to enable communication between a particular component of

a network in the control layer and a higher-level component in the application layer.The ap-

plications plane can send to the network controller what is their needs (e.g. data, storage,

bandwidth, and so on) and the controller can deliver those resources.

3. Control Plane

This plane is the brain of the SDN architecture and represents a status view of the complete

network. The controller is responsible for translating all devices requirements that are directed

from the application plane down to the data plane by populating the routing information in the

forwarding tables of the data plane elements. Moreover, the controller is in charge of making

decisions on how to forward the packets between network devices and pushing such decisions

to the network devices for execution [6].
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4. Southbound API

The Southbound API allows the communication between the SDN control plane and the data

plane elements such as network nodes (both physical and virtual switches) by using a commu-

nication protocol. The most well-known protocol used by this API is OpenFlow [7].

5. Data plane

This plane is comprised of switches and routers that perform the function of forwarding data

packets from one device to another based on the information in the forwarding tables that are

programmed by the control plane protocols.

2.1.2 SDN Benefits

SDN seeks to separate the control plane from the data plane. While the control plane decides how

to deal with the traffic, the data plane forwards traffic based on the decisions that the control plane

makes. This separation of the control plane by SDN leads to the control of multiple data plane

elements (i.e., routers, switches, and other devices) via a single software control program. Other

advantages of SDN are as follows:

1. Centralized network provisioning

SDN architecture grants the capability of control network management from a centralized per-

spective. In a nutshell, by separating data and control planes, SDN allows the user to provision

physical and virtual elements from one location. Although, in traditional networks, managing

numerous disparate systems is difficult due to the individual infrastructure monitoring task.

SDN eliminates this barrier and allows an administrator to drill among network layers and

adapts with the network purposes [8].

2. Lower operating costs

SDN is one of the most promising new generation networking technologies. By adopting

this layout, network operators have more potential to control their infrastructure, allowing

customization, optimization, and improving network performance, efficiently. Consequently,

reducing overall capital and operational costs.

3. Hardware savings and reduced capital expenditures

Adopting SDN also gives the administrator the ability to optimize the network hardware

efficiently. The control component instructions can improve re-using existing equipment with

a new purpose at will. Hence, less expensive hardware can be deployed to archive a high effect.

4. Cloud abstraction

Cloud computing has become widely accepted and continues to evolve into a unified computing
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infrastructure. Using SDN to abstract cloud resources, it is easier to unify the resources. The

SDN controller can manage all the various network components that make up the data center

platforms.

5. Guaranteed content delivery

One of the main benefits of SDN is the ability to manage and control data traffic. This

can facilitate the implementation of quality of services (QoS) for voice over IP (VOIP) and

multimedia transmissions. The advantages of SDN vary from network to network. Thus, it

is important to assess the network components and infrastructure to determine whether SDN

can help to address issues related to resource availability, virtualization, and network security.

2.1.3 SDN Challenges

In this section, I discuss the weaknesses and challenges of dealing with the SDN networks and

the OpenFlow protocol. SDN and OpenFlow offer a way to simplify the prototyping, deployment,

and management of the network elements. However, some aspects can affect the safety and the

availability of networks and must be taken into consideration. These aspects are discussed below.

1. Availability

One of the essential aspects that must be considered. The strong dependence between the

switches and the controller can be a problem whenever a modification of the rules is needed.

Furthermore, if there is only one centralized controller in the network, the controller might be-

come a single point of failure (SPoF). To guarantee controllers’ availability and failure recovery,

a distributed approach can be implemented.

2. Scalability

A common perception that the centralized controller in SDN and with increasing the number

of switches, flows, bandwidth, etc. may fail to handle all the incoming requests while provid-

ing the same quality of service. Therefore, a variety of factors (e.g., the controller’s capacity,

the placement of the controllers, load balance, and the latency between controllers and net-

work devices) that would help in the process of scale-up the networks while maintaining the

standard of providing high-quality service within an acceptable time level. Moreover, these

considerations can facilitate a stable long-term networking environment.

3. Resilience

In traditional networks, when the failure happens to one of the network’s switch, the backup

paths which are pre-programmed into neighboring switches will be activated. Thus, traffic can

switch to one of the backup paths. The core feature of the SDN approach is the decoupling
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between the data plane and the control plane. Therefore, if a failure occurs, it would affect

both control and data planes. In other words, when a switch fails in the network, it not only

affects the switch-to-controller communication but also all the switches along the control path,

including the failed switch. On the other hand, if the control logic in SDNs networks fails,

the ability of management controlling and forwarding will break down. This will result in

undelivered data packets, the dropping of flow requests, and an unreliable network. Beheshti

et al. in [9], for example, considered the connection resiliency between the controller and the

switches. Their proposed algorithms were designed to increase the possibility of fast failover

based on resilience-aware controller placement and routing of the control’s traffic.

4. Security

In SDN, the fact that the controller has the essential knowledge of the network makes it a

potential target of attacks and threats, especially, if the control component is a single. Also,

the channels among the controller and the switches could be vulnerable. According to the

OpenFlow specification, it is possible to use secure communication with the TLS protocol, but

this depends on the design of the network.

5. Flow table consistency

The controller can directly modify flow tables on different OpenFlow switches. Thus, a network

update leads to an update of the flow tables. In other words, the packets matching must be in

the same way in all OpenFlow flow tables. Otherwise, a difference in the flow tables entries may

lead to inconsistency of OpenFlow tables, which will lead to false network decisions. To avoid

such network update issues, the controller must guarantee efficient flow tables consistency.

6. The Network performance

The control model adopted can influence network performance. Because the flow table size is

limited, the management of a vast number of flows can present some performance challenges.

However, a well-designed network could reduce performance issues through a proactive ap-

proach, which is known to achieve better performance than the reactive mode because it limits

the number of messages exchanged between the controllers and the switches.

2.2 OpenFlow

This section will shed light on the most well-known protocol utilized to initiate the connection

between the control and the data plans, that is, the OpenFlow protocol.
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2.2.1 OpenFlow Overview

OpenFlow is the most widely used communication protocol for the interaction between the control

and data layers in SDN [7]. OpenFlow allows direct access and easy manipulation of the data plane

elements such as switches and routers, both physical and virtual. It was designed for network traffic

management between two different planes. A protocol like OpenFlow is needed to move network

control out of the networking switches to logically centralized control software.

OpenFlow-enabled switch

An OpenFlow-enabled switch consists of one or more flow tables and a group table, various actions

such as add, delete, and update of flow entries can be done by the controller. OpenFlow switches

exchange the control messages with the controller through a specific channel. Figure 3 illustrated

the OpenFlow-enabled switch layout. When the OpenFlow switch receives a packet, and it has no

Figure 3: OpenFlow-enabled Switch

match in the flows entries, the switch takes action by sending this packet to the controller. In its

turn, the controller then makes a decision on how to handle the packet by either dropping or adding

it as a new flow entry and instructing the switch on how to forward similar packets in the future

[10].

Packet matching

When a packet arrives at the Flow Table, the packet match fields that can be different according

to the packet type are extracted from the packet header, and they are used for the table lookup.
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Furthermore, the matching process may differ depending on the data received from the ingress port

and, in case the metadata fields, that can also be used to pass information between tables. Thus, in

case of positive matching, an instruction set associated with the matched flow entry will be executed

by the switch. These instructions typically can contain actions (like packet forwarding, packet

modification, and group table), or they can modify the pipeline processing. Furthermore, if some

measures are applied during the pipeline processing, the changes are reflected in the packet match

fields, which represent the current packet state. In any case, when the instruction set associated

with a matching flow entry does not specify the next table, the pipeline processing stops. Only at

that time, the packet is processed with its associated actions set and usually forwarded, as shown

in Figure 4. More details on all other mechanisms of OpenFlow-enabled switches, such as pipeline

processing, pipeline consistency, tables instructions, etc., can be found in [10].

Figure 4: OpenFlow Packets Matching Flowchart

2.2.2 OpenFlow Protocol

OpenFlow is a group of instructions that the controller used to manage the data plane elements.

OpenFlow protocol supported the different types of messages to administer the switch. All these

messages classified into three categories.

1. Controller to Switch messages:

These messages are usually initiated by the controller and used to inspect the switch state

(e.g.get information from the switch).

• Packet_out: This is used by the controller to inject the switch by new flow entries or to a
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forward packet(s) received by another switch. A message should include a list of actions

that must be applied.

• Modify State: The controller uses this message to add, delete, or modify flows in the flow

tables of the switch.

• Send packet: Used when the controller needs to send packets out of a particular port on

the switch.

• Barrier Request/ Replies: Used for notifying the controller of completed operations from

the switch.

• Features: This is the message exchanged between the controller and the switch after a

secure connection is established. The switch replies to the controller by the same message

with the capabilities that it can support.

• Configuration: This is an OpenFlow message that the controller used to setup configura-

tion parameters inside the switch.

2. Asynchronous messages:

These messages express the way the switch can talk to the controller without any permission

to speak. This is where the switch can inform the controller of dropped packets or an interface

going down.

• Port status: Any change in the status of the port is sent to the controller; this includes

a port going down.

• Packet_in: When a switch receives a packet, and the packet does not match any flow

entries, the switch sends this message to the controller.

• Flow removed: This message is sent to the controller if any flow entry is removed from the

flow table since any flow entry added is associated with an idle timeout, a hard timeout.

• Error: This message is used by the switch to inform the controller of any errors it sees.

3. Symmetric messages:

These messages are bi-directional and are used by the controller or the switch without any

permission. For example, hello or echo requests are exchangeable messages between the sender

and the receiver and can be replied without solicitation. There are three different types of

these messages:

• Hello: Like traditional network protocols, hello messages are exchanged between the

controller and a switch on the startup stage.
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• Echo: This message must be replied if any side receives one. The controller and the

switch can initiate these types of messages, which can be used to give an idea about the

latency of the switch to controller connection.

• Vendor: Any additional functionality that the switch offers can be sent to the controller

by this message.

2.3 Single versus Multiple Controller Scheme

A controller is responsible for functions such as routing by maintaining the forwarding tables of

the switches, whereas the switches in the data plane primarily perform packet forwarding functions.

When a new routing path is required at the data plane layer, the switches must consult with

their assigned controller for the routing decisions that the switches must make. In growing SDN

networks, the deployment of multiple controllers is required to overcome the bottleneck that occurs

when using a single physical controller. The structure of the SDN controllers is divided into two

types as indicated in Figure 5.

Figure 5: Single vs. Multiple Controllers architectures

• Single Controller:

In this model, only one controller is administrating the whole network. In the early stages

of the SDN appearance, the main tendency was to have a physically centralized controller to

control the network. Therefore, the single controller can represent a single point of failure

SPoF and affect the scalability aspects.
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• Multiple Controllers:

Unlike the single model, the physically distributed control layout, multiple controllers teams

up to manage the network by deciding how packets should be forwarded by switches to achieve

some level of performance and scalability. Moreover, multiple distributed controllers can assist

each other in addressing any failure that could occur at any controller by exchanging their roles

(primary/backup). HyperFlow [11] and Onix [12] are examples of SDN multiple controller

schemes.

In the research we focus on multiple controllers architecture, and the structure of the multiple SDN

controllers can be classfied into two types:

2.3.1 Centralized Control Scheme

In the centralized network, the controllers are logically centralized, physically distributed. All con-

trollers are equally responsible for share and synchronize all information about the state of the

whole network, and the decision is building based on the global network view. Furthermore, in a

centralized scheme, it easy to ensure that the network is in a consistent, optimal configuration. On

the other hand, in any newly established flows, an added latency becomes a bottleneck in large scale

deployments. Additionally, as the scale grows, all advanced services are handled centrally, instead

of locally.

2.3.2 Distributed Control Scheme

Differently, in a distributed design, all controllers will be portioned physically and logically. Each

of which is in charge of managing a particular domain and has just a view of the domain it is

responsible for. This feature can significantly enhance the scalability of the network. Practically,

each distributed controller makes a decision of its managed domain. Other advantages can be noted

in the distributed pattern, such as achieving high-availability and better latency during the handling

of Packet_in.

• Flat Architecture

In the flat architecture, the controllers are positioned on the same level; each one manages a

part of the network (see Figure 6). In other words, all controllers share the network view, and

its responsibilities are equally divided.

• Hierarchical Architecture

The hierarchical architecture is having three layers, as illustrated in Figure 7, where each

layer contains a set of controllers. The top layer includes the root (Super) controller, which
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Figure 6: Flat Controller Architecture

administrates the domains’ controller and synchronizes the global abstracted network view

through a distributed protocol. A set of controllers are positioned in the middle layer, each one

taking charge of managing its domain. The bottom layer includes all forwarding components

of the data plane [13].

Figure 7: Hierarchical Controller Architecture
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2.4 In-Band vs. Out-of-Band Control Scheme

The control connection concerning the data plane can be performed in two different ways: either by

an In-band or Out-of-band connectivity, as illustrated in Figure 8.

Figure 8: In-band versus Out-of-band Controller Architectures.

• In-band Control

As shown in the Figure 8A, in the in-band approach, all control messages are exchanged

through the same data plane channels. Reducing the cost of maintaining the network is one

of the advantages of the in-band approach compared to the out-of-band scheme since separate

control network channels are not required. Second, the in-band control does not require a

separate port on a switch for the control channel. In-band also has drawbacks, for instance,

the switch who is in charge of exchanging the control traffic with the controller (where the

controller is placed) is at the risk of attack or failure and thus its role in redirecting control

flows to the controller will end unless there is a backup alternative.

• Out-of-band Control

Unlike in-band, Figure 8B demonstrates out-of-band where a dedicated network channel car-

ries control packets. Generally, the control network architecture is constructed by dedicated

physical links between the controller and every switch associated with that controller. The

common example of using this approach is the data centers that are limited in geographical

size. This pattern of networks design is considered costly to build, especially for small and

medium organizations because of the requirement of separate networks [14]. Also, building

a separate network may not be feasible in some scenarios (e.g., widely distributed central
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offices in the access network). Besides, it has other major disadvantages. First, because of

the separation of the control traffic from the data traffic. This raises some security concerns

that are out of our scope. Second, failures of the control plane will also affect the data plane.

Thus, a failure will disconnect the switch from its control component and make the network’s

recovery more challenging. For instance, the work proposed by Sharma et al. [15] and Guo

and Bhattacharya [16] adopted the in-band scheme in the connection between controller and

switches as an assumption to define a controller placement
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Chapter 3

Combined Degree-Based with

Independent Dominating Set

Approach for Controller Placement

Problem in Software Defined

Networking

The main concept of SDN relies on abstracting the controller from the data layer to reduce the

overhead of control messages between the control and data planes. Therefore, in the controller

placement strategy design, which typically refers to how to optimally determine the location of

controllers in the network and the association relationship between controllers and switches. It

should be taking into account that the placement of the controller directly affects the latency between

the controllers and switches, hence, which affecting the performance of the entire network. In this

chapter, we aim to study the controller placement problem in SDN networks, design a strategy that

relies on using the CDS concept. Following [17] in terms of placing controllers at the locations of

the nodes, in this chapter, we provide an algorithm to dynamically determine which forwarding

nodes are to be the primary host locations for the controllers. Furthermore, we present a method to

guarantee the distribution of the controllers in the network. Compared to previous reference work,

we significantly achieved an average low response time between the controllers and their associated

forwarding nodes while also maintaining a low maximal response time between the nodes.
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3.1 Introduction

The main idea behind SDN is to make the next generation of networks more dynamic and adaptive

through the easy and rapid management of changeable network requirements. SDN is suitable for

a network where each host is connected and managed by a single administrator, e.g., a campus, an

enterprise, or a data center network. Conversely, it is hard to make traditional networks dynamic

and adaptive because the network control software is implemented directly onto the network devices.

In the latter, the network administrators must ask the network device vendors to implement new

control mechanisms to meet their needs whenever a new network service or configuration automation

mechanism is introduced into their networks. The key idea of SDN is to separate the network control

logic (control plane) from the packet forwarding logic (data plane). A controller is responsible

for functions such as routing by maintaining the forwarding tables of the switches, whereas the

switches in the data plane primarily perform packet forwarding functions. When a new routing

path is required at the data plane layer, the switches must consult with their assigned controller for

the routing decisions that the switches must make. In growing SDN networks, the deployment of

multiple controllers is required to overcome the bottleneck that occurs when using a single physical

controller. The single centralized controller cannot meet the high demands of flow processing,

especially when there is no match for the incoming packets in the existing flow entries at the switches

[3]. Furthermore, a single controller has many limitations in terms of scalability, resilience, security,

etc. [18]. Thus, a multi-controller environment is required to manage large scale SDN networks.

However, deployment of multiple controllers requires a state synchronization between the controllers

in order to maintain a consistent view of the network [19].

To make the controller placement problem distributed and scalable, controllers need to commu-

nicate with their switches such that routing updates, controller allocation information, etc., can be

shared with them in a timely manner. Dealing with this problem can be simplified by considering

two questions: how many controllers are needed to manage the whole network, and where should

they be placed in the network? The best placement of controllers can be achieved in terms of dif-

ferent metrics and considerations based on the network’s objectives. For this reason, getting the

best possible placement requires studying new and efficient methods and metrics to determine the

impact of the placement of controllers on SDN performance.

The objective of our controller placement approach is to minimize the response time between

the controller(s) and the forwarding nodes to enhance the network’s performance while considering

different factors, such as the topology of the network and the shortest paths between the nodes.
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3.2 Related Work

Many new networking problems have been raised since the emergence of SDN, particularly as such

networks grow in size. One of the most debated and interesting issues is the SDN controller place-

ment problem. Understanding the placement and number of required controllers is a key factor in

answering SDN performance and fault tolerance questions. This design choice is called the Controller

Placement Problem [3]. In this section, we review some previous works which formulate/solve the

controller placement problem using various approaches.

Some research still emphasizes using Integer Linear Programming (ILP) formulation to find

the minimum number of required controllers. Killi et al. [17] proposed a Mixed Integer Linear Pro-

gramming (MILP) model called Controller Placement With Planning for failures (CPWP) in SDN to

handle the controller placement problem. Due to the computationally intensive approach of ILP, this

model is limited to small and medium-size networks. Later, to alleviate these limitations, the authors

developed a simulated annealing heuristic to solve the problem of capacitated controller placement

in large-scale networks taking into consideration controller failure(s) scenarios [20]. Similarly, Yao

et al. [21] introduced another approach using ILP to solve the controller placement problem. This

approach suffers from shortcomings, as it emphasized the importance of the delay time and the

dynamic traffic load between the controller and switches and neglected the average delay time of all

switches, which resulted in some switches being placed far from their assigned controllers.

Partitioning methods have also been discussed using different techniques. For instance, Xiao

et al. [22] addressed the controller placement problem in WAN networks by partitioning the WAN

networks into small subnetworks using spectral clustering method and then placing a controller in

each small subnetwork. Zhonget al. [23] defined an algorithm called Min-Cover that aims to cluster

the forwarding devices and then place one controller at each cluster’s center. In their turn, Hu et

al. [24] deal with controller placement while considering reliability. Their objective is to minimize

the percentage of control path loss, but this model is considered effective only when the number of

controller placements is at most 5. Li et al. [25] developed a control-domain adjustment algorithm

calld (CDAA) based on Breadth-first search (BFS) method, where BFS is used to select the migration

switches based on their distance to the its master controller and current traffic load.

Rath et al. [26] developed a game theory-based method to determine the appropriate locations

of the controllers. Controllers can be dynamically added or deleted depending on their load. The

key feature of this technique is improving the QoS and minimizing the controllers’ deployment cost

while not mentioning the specific controller placements. Sallahi et al. [27] introduced a mathematical

formulation model to optimize the number of controllers by activating or deactivating the controllers

and links to improve the network performance. Huang et al. [28] introduced a technique to
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address the controller placement problem by developing a mathematical model aiming to optimize

control plane utilization while simultaneously guaranteeing low network response time. The authors

combined a scheduling algorithm named a gradient-descent-based (GD) to balance the trade-off

between scheduling performance and problem scalability.

In a different trend, heuristic algorithms have been proposed. Hock et al. [29] optimize the

placement of controllers in the context of reliability by developing a framework called Pareto Optimal

resilient COntroller placement in SDN-based core networks (POCO). POCO achieves load balancing

between the controllers and the switches. An extended POCO framework with heuristics has also

been proposed by Lange et al. [30], where they considered only the latency between the switches

and each controller to estimate how many controllers need to be deployed and their corresponding

locations.

Wang et al. [4] have proposed an algorithm based on using optimized k-means to minimize the

latency between the controller and its switches in a sub-network. Their experimental results showed

that the maximum latency they get is shorter than one achieved by using the regular k-means

algorithm. However, the authors adopted a distribution of the controllers’ placements in terms of

the farthest distance method between the current controller and the following selected one. This

strategy suffers from some drawbacks, as a controller may be deployed on a node where there is

only one link that could negatively affect failure and recovery issues. Moreover, the hierarchical

architecture of multiple controllers [13, 31] is designed to solve the single point of failure problem

in a large scale network. The implications of the multiple points of failure can be observed on their

neighborhood links/nodes, where the abrupt increase in the network’s load around the neighborhood

of failures can overload on a certain number of nodes and links. Network Clustering Particle Swarm

Optimization Algorithm (NCPSO) is a meta-heuristic optimization approach inspired by a natural

process presented by Liu et al. [32]. The researchers utilized an evolutionary algorithm called particle

swarm optimization (PSO) to address the controller placement problem. Loads of controllers were

taken into account, which is the critical factor for large-sized networks. Singh et al. [33] conducted

a comprehensive survey of the controller placement problem with analyzing the existing solutions

and the constraints associated with it.

3.2.1 Preliminary concepts

The challenges generated by SDN networks require applying diverse mechanisms until reaching a

suitable solution. Therefore, in this section, we introduce some preliminary concepts of the tech-

niques we use in this chapter.
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Controller-Switch Response Time

An early attempt to define the controller placement in SDN was by Heller et al. [3], where they

formulated the controller placement problem as an optimization problem by considering different

criteria, which include average response time and maximum response time. These two metrics are

defined as follows:

• Average Response Time (RSavg)

The objective of this metric is to determine a controller placement that will minimize the overall

average response time from the controller to every node. It corresponds to the minimized p-

means optimization problem. The goal is to find the p centers that minimize the sum of the

distances between a set of nodes and the p centers [4].

RSavg =
1
n

∑
v=V

min
c∈C

d(v, c) (1)

• Maximum Response Time (RSmax)

The goal of this metric is to find a controller placement that minimizes the maximum response

time from the controller to any forwarding node. This corresponds to the minimum p-center

optimization problem that aims to partition a set of nodes into p clusters. A specific node is

attached to the cluster with the closest mean.

RSmax = min
v=V

max
c∈C

d(v, c) (2)

High Degree (HD) Clustering Algorithm

The High Degree clustering technique is a connection-based clustering approach. The degree of a

node is the number of connected links from other (neighboring) nodes to the node. A node with the

highest degree in the network is chosen as a cluster center [34]. As indicated in Figure 9, node 6 is

a high degree node with 5 links.

Dominating Set (DS)

Dominating sets were studied as early as 1862 when de Jaenisch [35] studied the problems of finding

the minimum number of queens that are necessary to cover or dominate an n×n chessboard. Berge

[36] and Ore [37] in 1962 formalized this subject in graph theory.

A dominating set is a subset S of the nodes of a graph G such that every node in G is either in

S or a neighbor to a node in S. Dominating sets are widely used in networks clustering where it can

be classified into three major types; 1) Independent Dominating Sets (IDS), 2) Weakly Connected

Dominating Sets (WCDS), and 3) Connected Dominating Sets (CDS) [1].
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Figure 9: High degree node concept

Figure 10: (a):IDS, (b):WCDS, (c):CDS;

Based on [1]

• Independent Dominating Sets (IDS)

IDS is a dominating set S of a graph G in which there are no adjacent vertices in S. Figure

10.a shows an example IDS where the red nodes indicate the cluster centers.

• Weakly Connected Dominating Sets (WCDS)

S is a subgraph set of graph G, a weakly induced subgraph (S)w consists of all vertices of S,

its adjacent, and all links with graph G with minimum one endpoint. A subset S is a WCDS

if S is dominating and (S)w is connected. Figure 10.b show a WCDS example.

• Connected Dominating Sets (CDS)

A connected dominating set (CDS) is a subset S of a graph G such that S forms a dominating

set and S is connected. Figure 10.c shows a sample CDS.

The idea is to find a minimum dominators problem that is formulated for the context of a network
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where the objective is to find a minimum number of controllers that allow all the other forwarding

nodes to be controlled by at least one of the selected controllers. However, finding a minimum

dominating set is NP-hard, which means there is likely no polynomial-time algorithm can guarantee

an optimal solution. Therefore, we will consider a heuristic approach.

3.3 Problem Formulation

We represent the network as a graph G(V,E) where V represents the node set in the network

topology, and E represents the link set, the connections between pairs of distinct nodes in V , the

weight of which is the propagation delay of the link. In SDN, the nodes and controllers are the

forwarding elements; therefore, we make the distinction in our work of assuming that the controller

locations are at node locations in the network. Let C = (c1, c2, ..., cn) be the set of controllers to be

deployed and let S = (s1, s2, ..., sn) denotes the set of switches in the network such that V = C ∪S.

When a node is selected as a controller, it is moved from S to C. Also, we define d(s, c) as the

shortest path distance from a node s ∈ V to c ∈ V (mainly we are interested in the shortest distance

from a forwarding node s ∈ S to its associated controller c ∈ C).

Determining the controller placement is an optimization problem where we can identify a solution

by optimizing an evaluation metric. In this part, we use response time as the evaluation metric.

Traditionally, response time represents the time taken by a packet to travel from the source node

to the destination node. At the same time, in the SDN approach, we will assume the response

time is the time taken from the forwarding node to the controller and that this time is proportional

to the distance between them. The links between nodes in the topologies we will consider for our

simulations are known to be fiber optics, for which the signal propagation is nearly at the speed

of light. To maintain authenticity, the propagation delay for a link was calculated by dividing the

distances between nodes by the speed of the light. The main goal in this chapter is to specify a

required number of SDN controllers and to determine their placement and associated assignment of

the controllers to the forwarding nodes in the data plane, such that the response time is minimized.

Generally, our main objective is to minimize controller to node delay time in terms of average and

maximum values.

3.4 Proposed Approach

In this section, we walk through in detail of how the algorithm works, supported by an example.

We propose to use a network partition using a high degree node approach to specify the placement

of the controllers needed in the network.
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3.4.1 High Degree with Independent Dominating Set HDIDS

Unlike previous works, our approach relies on defining the candidate nodes for controller locations

to ensure minimum response time between the controller and its associated switches and minimizing

the maximal response time as well. We look at the overall network distribution in terms of obtain-

ing a minimum response time. Towards this end, our algorithm consists of two phases to deal with

controller placement: (1) iteratively determining candidate controller instances from S using a high

node degree method until all nodes in S are dominated by nodes in C, or the maximum number of

controllers is reached (details of this iterative algorithm given in Algorithm 1), and (2) partitioning

the network into multi-domains exploiting the independent dominating set approach to ensure con-

troller distribution in a manner that achieves as close as possible the minimum response time. The

aim of using this strategy is to determine high degree nodes that represent cluster centers, in order

to build the network subsets for forwarding nodes at the end. The major selection factor of this

approach builds on iteratively selecting the node with a high degree and minimum total distances

to other nodes in the network.

Here we give a detailed description of the controller selection algorithm. With a given number

of controllers, k, to be deployed in the network, in our proposed algorithm, we iteratively aim to

detect the near-optimal location s from the set of potential locations set S not sharing an edge with

any of the selected controllers in C (i.e., s is not dominated by any node in C).

Algorithm 1 Controller Selection

Require: G(V , E)

1: S ← V , C ← ∅

2: while C 6= ∅ do

3: S′ ← NodesWithMaximumDegree(S,G)

4: if |S′| = 1 then

5: C ← C ∪ (S′ = {s})

6: else

7: s← NodeWithMinTotalShortestPaths(S′, G)

8: C ← C ∪ {s}

9: end if

10: S ← S \ ({s} ∪NeighborNodes(s,G))

11: end while

12: return C
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Initially, C is the empty set and S = V . At each iteration, the nodes in S that are not dominated

by any node in C, call this set S′, are considered. All the nodes with a maximal degree in S′ are

selected. If there is only one node with a maximal degree in S′, then this node s is selected. If there

is more than one node with a maximal degree in S′, then out of this subset of maximal degree nodes,

the node s is selected that has the smallest total of the shortest path lengths to all other nodes in

the network. For calculating the shortest paths among all nodes in the network, the path finding

algorithm A* algorithm with a Haversine heuristic [38] has been employed. Then the selected node

s is removed from S and added to the controller set C. The iterations end when all the nodes (if

any) remaining in S are dominated by nodes in C, or the number of nodes in C is k. In Algorithm

1, we reference some simple procedures:

• AllNodesWithMaxDegree(S,G): returns a set of all the nodes with the maximum

degree from the set S.

• NodeMinTotalShortestPaths(S′, G): returns a node with the smallest total of short-

est paths to all other nodes in G.

• NeighborNodes(s,G, S)): returns the set of all neighboring nodes of s which are in S.

In all cases, where more than one node meets the node requirements, one node is chosen randomly.

3.4.2 Example: Clustering Description by HDIDS Algorithm

In this example, we use the topology shown in Figures 11a to 11d to illustrate the mechanism steps

of HDIDS algorithm for finding the best number of the controllers and their placements.

The first step of HDIDS algorithm is to find a node with a maximum connection degree to select

it as the first controller. As shown in the Figure 11a, node (5) has degree d = 5 (we denote the

degree of node connection with the symbol d); hence, node 5 is selected as the first controller. In

the case of multiple nodes with the same degree, we choose the node that provides a minimum total

of the shortest paths lengths to all other nodes in the network.

The next step is to find the potential location of the second controller. This can be achieved

by selecting the second node that meets some conditions: (1) if exists, the node with the same

connection degree of the first controller or the next level of connection degree with the minimum

total distances to other nodes, and (2) it does not have a direct connection with the first controller.

As shown in Figure 11b, there is no node with the same connection degree as node 5. Therefore,

node 8 is the second controller with a connection degree d = 4. Each node will be assigned to the

nearest controller using the shorter paths.

Similarly, for the third controller, it can be seen that there is more than one node with degree

3 (1, 3, 4, 6, 7, 9, and 11). In this instance, nodes 1, 3, 4, 6, and 7 have a direct connection with
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(a) (b)

(c) (d)

Figure 11: Controller Selection Scheme

the first controller (node 5), while nodes 7 and 9 have a direct connection with the second controller

(node 8). Hence, as the only node of degree 3 with no direct link to a chosen controller, node 11 is

selected as the third controller as illustrated in Figure 11c.

One of the most important features of our approach is that the maximum number of controllers

is determined according to the structure of the network and the communication between the nodes.

As apparent in Figure 11d, the only node that topology does not have any direct connection with

any of the previously selected controllers is node 2. Hence, node 2 is selected as the last possible

controller placement.

As a result, we end with 4 controllers as the optimum number of controllers with their placements.

The domains after assigning each node to its appropriate controller (with the shortest path from

that node to any controller) are shown in Figure 12.
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Figure 12: Final controller selection scheme

3.4.3 Time Complexity of HDIDS algorithm

In this section, we highlight the time complexity of the HDIDS algorithm.

First, AllNodesWithMaxDegree(S,G) procedure can take up to O(n2) time. A graph can

have up to n(n− 1)/2 edges. To calculate the degrees of all the nodes, we need to look at all these

edges (i.e., count the number of neighbors of each node). Once all nodes’ degrees calculated, then

they will be stored in a max-heap. Building the heap, and maintaining the heap over the running

of the algorithm would be O(n log n).

Second, For NodeMinTotalShortestPaths(S’, G) procedure, it requires a maximum of n iterations

over the entire running of the algorithm (assuming that S′, G represents all the nodes in the worst

case). Hence, for every node in S′, G, the time complexity of this is will take O(n2 log n) time.

3.5 Results and Discussion

All the experiments described in this section were carried out on an Intel(R) Core(TM) i7-6770 CPU

@3.40GHz and 16GB RAM with Windows 7 Pro (64-bit) operation system.

In order to evaluate the performance of HDIDS, various evaluation experiments were conducted.

We evaluate our approach on networks of different sizes and structural topologies adopted from

Internet topology Zoo [39]. Note, since these are real topologies, the distance between the nodes

represents a link weight. Table 5 shows the main characteristics of experimental topologies.

In the following part, we first compare the response time performance between HDIDS and

Optimized K-means (OK-Means) algorithm by Wang et al. [4]. We evaluate the algorithms in two

aspects, the first is the average response time, while the second aspect is the maximal response time
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Network topology Number of nodes (t) Number of links

Internet2 OS3E 34 42

ATT North America 25 57

Bell Canada 48 65

TataNID 145 196

Table 1: Main characteristics of experimental topologies

of any node associated to its controller. And we further characterize both that average and maximal

response time performance against the number of controllers. The results of the simulations are

depicted in the following section.

3.5.1 Average Response Time

Figure 13 compares the number of controllers with their impact on the average response time on

the Internet2 OS3E topology. We can observe that for all numbers of controllers up to 12, and

our algorithm achieves better average response time than that achieved by Optimized K-means.

However, the gap decreases with the number of controllers (with the increasing overlap in the

selected sets of controllers). For example, for 10 controllers, our algorithm HDIDS achieves 1.83ms

while Optimized K-means has an average response time of 2.49ms.

Figure 13: Average Response time in Internet2 OS3E

A similar pattern is repeated for the other three experimental topologies. For instance, for the

Bell Canada topology as shown in Figure 14, for fewer than 8 controllers, HDIDS has substantially

better performance in terms of average response time.

When the number of controllers increases past 8, though, Optimized K-means has slightly better
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Figure 14: Average Response time in Bell Canada

performance. For example, for 10 controllers, HDIDS obtained 2.0ms while Optimized K-means

obtained 1.65ms as average response time. Similarly, in the ATT topology Figure 15, we see that

HDIDS has better performance until about 6 controllers where for more than 6 controllers Optimized

K-means performs better. For 8 controllers, Optimized K-means achieved 1.5ms, which is less than

the 1.7ms by our approach HDIDS. The featured contribution of our algorithm, is that it achieves

a much better average response time than Optimized K-means in large networks. As a good side

effect of SDN, it gives the network operator more scalability by having the ability to manage and

change network infrastructure at any moment.

Figure 15: Average Response time in ATT North America

The above three networks (Internet2 OS3E, ATT North America, and Bell Canada) would be

considered to be medium-sized networks (Heller et al. [3] where he defined a medium-size network as
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having 18 to 24 nodes). Therefore, TataNID topology has been chosen as an example of large network

with 145 nodes to show the effectiveness of our algorithm. Here, for all numbers of controllers, as

seen in the following Figure, the average response time for HDIDS is significantly better than that

achieved by Optimized K-means. For instance, when the number of controllers is 11, we can observe

HDIDS gets 1.83ms while Optimized K-means achieves 3.79ms.

Figure 16: Average Response time in TataNID

Figure 16 also demonstrates the effectiveness of increasing the number of controllers for large

networks. It can be seen that changing the number of SDN controllers from one to two results

in a reduction of up to 50% overall in the average response time. Further increase in the number

of controllers beyond 10, though, has a much less significant effect on average response time. Ta-

ble 2 illustrates a selection of the number of controllers in the experimental topologies and their

corresponding average response times.

Topology Internet2 OS3E ATT Bell Canada TataNID

HDIDS k=10 k=8 k=9 k=10

1.73ms 1.72ms 2.0ms 1.81ms

OK-Means k=11 k=10 k=10 k=10

2.11ms 1.46ms 1.65ms 3.79ms

Table 2: Illustration of the number of controllers (k) and corresponding Average response time

If we were to consider an average response time threshold between controllers and switches

that our SDN must remain below, Table 3 describes the corresponding number of controllers for

both algorithms within average response time thresholds equal to 2ms, 3ms, and 4ms, respectively.
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Threshold 2ms 3ms 4ms

HDIDS OK-Means HDIDS OK-Means HDIDS OK-Mean

Internet2 OS3E 9 12 5 9 4 8

Bell Canada 9 9 5 8 3 6

ATT 7 7 5 5 4 5

TataNID 8 > 12 4 >12 2 10

Table 3: Minimum number of controllers required threshold of 2ms, 3ms and 4ms average response

time

Our algorithm HDIDS requires 9 controllers in Internet2 OS3E and Bell Canada topologies for the

average response time threshold of 2ms, while it requires 8 controllers in TataNID topology (as

compared to more than 12 for Optimized K-Means). For threshold times from 2ms to 4ms, HDIDS

reduces the number of required controllers between 0% to 50% compared to Optimized K-Means

in medium-sized networks. While in TataNID topology as an example of a large topology, HDIDS

decreases the controller number between 33% to 80%. Obviously, HDIDS requires fewer controllers

than Optimized K-Means for all networks for the threshold of 2ms, 3ms, and 4ms except three cases

where the number of controllers is the same.

3.5.2 Maximal Response Time

In this section, we illustrate the results obtained by our algorithm HDIDS in terms of the maximal

response time. The findings presented in the following two figures show a reduction in the maximum

response time in Internet2 OS3E and Bell Canada topologies, respectively. Since choosing the

node with the minimum total distances to all other nodes in the network is an initial step in both

Optimized K-means and our algorithm for finding the placement of the controllers, we can observe

there is an match of the maximal response time in some topologies as indicated in Figure 17 and

Figure 18. In Figure 17, it is clear that the maximal response time of Internet2 OS3E topology in

both approaches for k = 1 is the same (15.4ms).

Considering Bell Canada topology as indicated in Figure 18, the maximal response time is

(18.43ms) for the Bell Canada. Afterward, the maximal response time decreases with the starting

partitioning process, with HDIDS consistently outperforming Optimized K-means. The maximum

response time for both HDIDS and Optimized K-means approaches in Internet2 OS3E and Bell

Canada topologies is reduced. For example, it decreased to 15.5ms to 3.4ms, and from 18.43ms to

6ms in Internet2 OS3E and Bell Canada topologies respectively when number of controllers is 4.

Interestingly, Optimized K-means as shown in Figure 19 has better performance in terms of
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Figure 17: Maximal response time of Internet2 OS3E

Figure 18: Maximal response time of Bell Canada.

maximal response time for 1 or 2 controllers and then again, although only slightly, when the number

of controllers is 6 or more. As mentioned above, our algorithm produced a better performance in

large network topologies and this also holds in terms of the maximal response time.

As appears in Figure 20, HDIDS decreased maximum response time from 13.9ms for 1 controller

to 1.2ms for 9 controllers, with HDIDS consistently outperforming Optimized K-means.

Again, if we were to consider, in this case, a worst case response time threshold that our SDN

must remain below, Table 4 illustrates the corresponding number of controllers in our algorithm

HDIDS and Optimized K-Means algorithm within average of the minimum maximal response time

threshold equal to 2ms, 3ms, and 4ms, respectively.
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Figure 19: Maximal response time of ATT North America.

Figure 20: Maximal response time of TataNID.

Table 4 shows that for both Internet2 OS3E and ATT topologies the required number of con-

trollers within a 2ms maximum response time threshold are the same. This is due to these topologies

being located in the same geographical area. While in Bell Canada and TataNID topologies, our

algorithm HDIDS achieves a number of controllers fewer than the Optimized K-Means algorithm.

Also, HDIDS achieved a clear distinction in the number of controllers required within 3ms or 4ms

maximum response time in all four topologies.

To our knowledge, the optimal number of controllers required for these experimental topologies

for either average or worst case response times have not been presented in the literature. All the

previous related work considered different parameters or metrics to evaluate the controllers’ optimal
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Threshold 2ms 3ms 4ms

HDIDS OK-Means HDIDS OK-Means HDIDS OK-Mean

Internet2 OS3E 8 8 4 7 4 6

Bell Canada 6 8 5 5 5 6

ATT 7 7 5 6 4 6

TataNID 6 8 5 6 5 6

Table 4: Minimum number of controllers required threshold of 2ms, 3ms, and 4ms maximal

response time

number and placement, so it could not be compared directly with our results. Similarly, some

previous works conducted different experiments on random topologies to determine the optimal

number and placement of controllers.

3.6 Conclusions

In large SDN networks, it is very hard to manage the entire network with one controller unit due to

the increased number of forwarding nodes andthe increased number of routes that must be managed

as well. Geographically, with larger SDNs, there is an increased lag between the forwarding nodes

and their controller. As a result, the controller units are no longer able to provide optimal network

performance or QoS. Hence, using a certain number of controllers to handle this issue is desirable.

In this chapter, we propose a new technique named HDIDS to deal with the controller placement

problem with regards to minimizing the average and worst response time between the controllers

and their assigned forwarding nodes.

Our approach in HDIDS is based on selecting the available controller with the highest connection

degree and then exploiting the independent dominating set method to automatically form clusters

of forwarding nodes associated with each controller in the network. We conducted experiments un-

der many different metrics and topologies sized from medium to large. Compared with previously

published work, experimental results showed that our approach provides better results, especially

in large networks, in minimizing response time and maximal response time reduction as well. The

problem of SDN controller placement has several aspects that still need to be understood, where fur-

ther investigation is required. For example, covering different performance metrics such as reliability

and survivability.
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Chapter 4

Survival Backup Strategy for

Controller Placement Problem in

Software Defined Networking

The controller placement is of paramount importance in the SDN scenario, as explained in the

previous chapters. Besides that, in order to construct an effective and reliable SDN control network,

in this chapter, we propose a backup controller scheme that finds the best locations for the backup

controllers for fast recovery from the controller’s failures. The main goal of this scheme is to enhance

the survivability of the multiple controller architecture.

4.1 Introduction

The core objective of SDN is to provide a version of next generation networks that are more dynamic

and adaptable in terms of management of changeable network requirements. A controller is in

charge of the controlling functions, such as configuring the forwarding tables and setting up network

paths of all switches. Complementary, the switches in the data plane primarily perform packet

forwarding functions. When a new routing path is required at the data plane level, the switches

must communicate with their assigned controller for the routing decisions that the switches must

make. In large networks, one controller is not sufficient to manage network resources, particularly

with respect to addressing the high demands of flows processing [3]. Furthermore, a central controller

may subject to Single Point of Failure (SoPF) [18], where if there is a fault in the controller, it will

lead to whole network performance deterioration. The SDN is being used for increasingly large

networks in order to meet the scalability, reliability, and availability demands. However, in order to
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maintain a consistent view of the network, a multiple controller model requires state synchronization

between the controllers. Given longevity and reliability requirements, it is important to ensure the

highly robust networks by enhancing the reliability and protection levels. The multiple controller

environment brings convenience, however, it may suffer from some inevitable problems that lead to

network failure (e.g., the possible failure of a controller itself). In the case of a controller’s failure, the

connected switches will lose the connections to their associated failed controller unless they can be

migrated to an alternate controller. Nevertheless, without careful management of how these switch

migrations occur, those alternate controllers are still vulnerable to failure due to exhaustion of their

capacity. Therefore, a proper controller backup approach is necessary to recover a broken network

from controller failure [40].

To our knowledge, the previous works on controller backup strategies were based on selecting

one of the existing controllers as a backup controller that will replace the failed primary controller

by migrating the affected switches to the backup controller. Assigning one of the existing controllers

as a backup controller in case of controller failure may deem inappropriate due to the harm it may

cause to this controller by overloading it with the new switches traffic, hence, in turn, increasing

its failure probability. There are two assignment patterns from the perspective of using the existing

controllers as a backup. On the one hand, some techniques re-assign all switches managed by

the failed controller to the nearest controller, which requires administrative intervention [17]. On

the other hand, other techniques reallocate each switch under the failed controller separately to the

nearest controller for that switch. These techniques will need to reconstruct the whole network, such

as updating the policies, routing, and flow tables for all controllers, which is a time-exhaustion task

[41]. Survivability of the control network in case of controller failure recovery is a crucial concept to

maintain the continuity of the network operations. Therefore, the survivability-based assignment is

also a significant consideration to meet the Quality of Service (QoS) requirement in SDN networks.

Getting the best placement of the controllers in SDN networks requires further investigation

to develop efficient methods and metrics to determine the impact of the controllers’ placement on

the performance of SDNs. Motivated by those as mentioned earlier, we aim to make the network

controllers’ structure robust enough to resist the failure by designing a dynamic, flexible backup

approach that can make the network survivable even after controller failure event(s).

4.2 Related Work

In SDN, by decoupling the control plane from the data plane, all the control decisions are incor-

porated into a (logically) centralized entity called a controller. However, the controller placement

problem (CPP) in SDN can be summarized as where to place controllers and how many to use [3].
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In the following section, we go through some previous research that formulates/solve the controller

failure problem in different trends.

4.2.1 Overview on SDN Survivability

Many researchers have considered the controller placement problem in recent years. However, other

related aspects, such as resilience, availability, reliability, still need more investigations. In the

following part, we review some works related to these aspects of the controller placement problem.

Particularly, we present work on the backup controller placement in SDN.

Survivor is a representative work presented by Müller et al. [42]. It is a controller placement

technique aiming to improve the connectivity, capacity, and recovery as a survivability aspect. Two

different methods are introduced by the authors; (i) an integer linear programming model for en-

hancing the connectivity between the switches and controllers by increasing paths diversity, while

guaranteeing that the controller capacity will not be exceeded; (ii) improving fault-tolerant by com-

posing a controllers’ backup list to increase recovery efficiency.

In [43], Zhang et al. treat the backup controller placement problem by setup a backup controller

for each primary domain to handle connectivity. However, the authors did not consider the total

placed number of (primary/backup) controllers and the communication overhead issues that will arise

in the network. Botelho et al. [44] focused on performance aspects of the control level by addressed

the consistency between a network controller and their set of backups. The authors conclude that

acceptable performance can be achieved with strict consistency and fault-tolerant systems. Although

Vizarreta et al. [45] did not take the controllers’ capacity into consideration, they proposed two

resilient strategies that provided the shortest working and backup control paths for dealing with link

and node failures. The first method involved joining each switch to its assigned controller through

two disjoint paths, while the second method connects each switch with two controller instances via

disjoint paths. The authors evaluate their solution’s performance using the expected control path

loss and the average control path availability. Yang et al. [46] addressed the controller placement

problem considering single and multi link failure. The authors developed a greedy algorithm to

place the controllers greedily and iteratively based on the link failure rate and applying Monte Carlo

simulation to reduce the computational overhead.

For QoS and resilience considerations, Tanha et al. [47] proposes two heuristic algorithms based

on graph theory technique to solve the backup problem. The authors take into account both the

latency between the switches and the controllers and the capacity of the controllers. Furthermore,

a polynomial-time algorithm proposed to solve this NP-hard problem.

An optimization model for minimizing the cost of the network with backup capacity suggested

by Killi and Rao [48]. The model enhanced the mapping between the switches and the controllers
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while achieving full resilience against pre-specified controllers’ failure. Although this approach uses

the existing core controllers as backup instances with using a reserved capacity on the controllers,

it may suffer the consequences of cascading failure of the controllers. According to [49], Hu et al.

proposed a reliable and load balance-aware multi-controller deployment (RLMD) scheme to assure

balancing the load rate between the controllers and the switches within the multiple clusters. Their

approach efficiently managed to balance the allocation of the controller traffic loads but is suffer

addressing the fault tolerance issue.

4.2.2 Improving SDN Controllers survivability

In the distributed multiple controller SDN architecture, backup controllers will be instantly assigned

to the switches previously managed by the failed controller. However, one controller’s failure can

significantly affect the backup controller due to the added load (overload). In the worst case scenario,

generating consecutive failures to other controllers leads to the crash of the entire network. This

phenomenon is known as controllers cascading failure [50]. Figure 21 illustrates a simple example of

the controller cascading failure phenomenon.

Figure 21: The controller cascading failure phenomenon

As shown in the example, an SDN network with three controllers C1, C2, and C3, and each

controller manages two switches. As a controller C1 fails, as shown in Figure 1(b), its associated

switches will be disconnected. According to the existing backup controller methods, the disconnected

switches of C1 are migrated to the nearest controller, which is C2. Unfortunately, due to the
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limitation of the controller’s capacity, C2 cannot simultaneously manage the switches (S1 and S2)

of the failed controller C1 with its switches (S3 and S4). The capacity of controller C2 will be

exhausted by the flow requests of (S1 to S4), as a result, C2 will fail. Likewise, the disconnected

switches S1 to S4 will be reassigned to the controller C3, and for the same reason, C3 also fails.

Finally, all the controllers in the network have failed, and the entire network collapses.

A controller’s capacity is a factor to consider in maintaining the stability of network performance,

where overloading the controller would generate more severe consequences on the network. In the

above example, we can notice that an existing primary controller’s assignment as a backup controller

is an inadequate choice, especially if the controllers’ capacities are almost fully utilized. Therefore, it

is necessary to introduce a dynamic backup controller assignment mechanism to increase the control

plane flexibility in order to deal with the failure scenarios.

4.3 Network Model and Problem Formulation

The network modelled as a connected graph G(V,E) where V represents the node set in the network

topology, and E denotes the set of links. The connections between pairs of distinct nodes in V , the

weight of which is the propagation delay of the link based on their geographical locations. In SDN,

the controllers can be placed at the same location of the switches. Therefore, we assume the primary

controllers are placed in the locations of switches (i.e., C = S). Let C = (c1, c2, . . . , cn) be the set

of controllers to be deployed and let S = (s1, s2, . . . , sn)) denotes the set of switches in the network

such that C ⊆ S = V . The distance d(s, c) defined as the shortest path from a node s ∈ V to c ∈ V .

Further, the shortest path computed by using A* algorithm associated with a Haversine heuristic

[38]. The desirable goal is to achieve a fault-tolerant control plane through improving the backup

controller approach under the controller’s failure scene. Generally, our main objective is to find the

best placements of the candidate backup controllers inside each VBD that satisfied the minimum

response time in terms of average and maximum values.

4.4 Proposed Approaches For Survivable Backup Controller

4.4.1 Our Assumption

Virtual Backup Domain (VBD)

To further enhance the control services survivability of the network in case of a controller failure,

we present a novel survivable approach to be implemented on top of the primary controller selection

approach. The core component of our strategy is the construction of what we term a Virtual Backup
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Domain (VBD). A VBD is a grouping set of one or more domains associated with the primary

controllers ( here we consider our approach HDIDS selection) in the network, facilitating the selection

of the backup controllers. The main idea of this method is to combine k of the domains (typically

neighbouring domains) produced by the primary controllers’ selection approach to generate a new

VBD. If we assume that there are n such domains, then grouping (packing) k of them together

into one VBD such that k < n, hence, at least dn/ke VBDs are defined. For this end, we propose

several k-matching backup approaches where k domains are grouped into n VBDs. These approaches

intend to group a k domains into a new VBD where k ≥ 1. For the special case of k = 1, each

domain is also a VBD, so a new backup controller is selected for each domain/VBD. As the value

of k increases, the number of required backup controllers decreases. However, the recovery time is

expected to increase due to the larger sizes of the VBDs. Therefore, the proposed approach tries

to strike a balance between two contradicting metrics: monetary cost (in terms of the number of

required backup controllers) and recovery time (to recover from a primary controller failure).

Virtual Backup Domain: Example

Figure 22 illustrates an example of a SDN where the backup controllers are determined using VBDs.

In this figure, we have an SDN network with eight domains, each has a primary controller designated

by (yellow color), each manages three switches. As the architecture relies on an in-band strategy,

we can observe that each primary controller is installed at a switch. Domain 1, domain 2, and

domain 4, for instance, are grouped in VBD-1, which colored in blue since they are neighbouring

with minimum delay time.

The algorithm computes the ideal placement of the backup controller in the VBD based on

the node with minimum average response time to all nodes in the virtual domain. For k = 3

as an example, in the above figure, the switch S2 in domain 1 selected as the best location of the

backup controller (red color) that satisfies the resilience requirements. Likewise, in the second virtual

domain VBD-2, which is described with pink color, switch S1 in domain 3 selected as a candidate

backup controller placement. Furthermore, for larger k values, the algorithm complexity increases

significantly due to an increasing number of possible selections of k domains. To deal with the

complexity issue, we developed two different categories of algorithms to determine VBDs. First, in

Section 4.4.2, we design and implement a full enumeration algorithm that employs an exhaustive

search for all possible domain combinations to generate the optimal grouping of domains into VBDs.

Second, due to the high complexity of the optimal algorithm (in particular for larger k and larger

networks), in the three following sections, we propose three heuristic algorithms for determining

VBDs based on using the node degree while minimizing the distance between selected domains. For

all four algorithms, once the first phase is complete and the VBDs are determined, the specific node

46



Figure 22: Backup controller placement strategy using VBDs

that will serve as the backup controller in each VBD is defined in the same way as the second phase

of HDIDS (e.g. node selected provides the minimum total of the shortest paths lengths to all other

nodes within the VBD).

4.4.2 Full Enumeration (FE)

Full enumeration methods are used to solve combinatorial optimization problems. Combinatorial

optimization problems are problems where decision variables are binary, expressing that an object

(e.g., graph, edge, node) is chosen or is not chosen. This leads to a vast number of possible solutions

with the difficulty of selecting and finding the best solution [51]. This method generates all the

possible combinations of k domains in the network. It measures the cost of each group and returns

the best one. Since this solution approach is exhaustive, it obtains the optimal result.

In this algorithm, after determining the domains with primary controllers using HDIDS, we

apply the full enumeration technique on all domains in the network where its primary controller

placement will represent each domain. The method relies on measuring the cost function defined

as the shortest distance between the domains (primary controllers). Generally, adjacent domains

are more connected, therefore the algorithm will return all possible solutions of combinations of k

domains.
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4.4.3 Max Degree with Short Distance (MDSD)

In the MDSD algorithm for determining VBDs, if there is only one domain with a maximal degree,

then this domain is selected. If there is more than one domain with a maximal degree, the domain

with the smallest total of the shortest path lengths from its primary controller to all other do-

mains (primary controllers) is chosen. Algorithm 2 summarized steps of our first proposed heuristic

algorithm. In this Algorithm, we reference some simple procedures:

• AllDomainsWithMaxDegree(S,G,C) which returns a set of all the domains with the

maximum degree in S.

• DomainMinTotalShortestPaths(K ′, G,C) which returns a domain with the smallest

total of shortest paths from its primary controller to all other primary controllers in S.

• AControllerMinShortestPath(S, T,G) which returns a domain from set S that is a

neighboring domains of any domain in P with the minimum shortest path from its primary

controller to any primary controller representing the domains in the set of domains P .

• Tuple(k, T ) which returns the set T as a k-tuple, padded with empty entries if T < k.
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Algorithm 2 MDSD
Require: C, G(V,E), k

1: S ← C, K ← ∅, P ← ∅, T ← ∅

2: while S 6= ∅ do

3: K′ ← AllDomainsWithMaxDegree(S,G,C)

4: if |K′| = 1 then

5: K ← K ∪ (K′ = {c})

6: else

7: c← DomainMinTotalShortestPaths(K′, G,C)

8: K ← K ∪ {c}

9: end if

10: S ← S \ {c}

11: T = {c}; i = k − 1

12: while i > 0 do

13: {m} ← AControllerMinShortestPath(C, T,G)

14: if {m} 6= ∅ then

15: T ← T ∪ {m}; i = i− 1

16: else

17: i = 0

18: end if

19: end while

20: P ← P ∪Tuple(k, T );

21: end while

22: return P

4.4.4 Low Degree with Short Distance (LDSD)

Opposed to the previous algorithm MDSD, this algorithm starts with a candidate domain with the

minimum degree instead of maximum degree (see line 3) and then otherwise follows the same steps

of MDSD algorithm as shown in Algorithm 3.
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Algorithm 3 LDSD
Require: C, G(V,E), k

1: S ← C, K ← ∅, P ← ∅, T ← ∅

2: while S 6= ∅ do

3: K′ ← AllDomainsWithMinDegree(S,G,C)

4: if |K′| = 1 then

5: K ← K ∪ (K′ = {c})

6: else

7: c← DomainMinTotalShortestPaths(K′, G,C)

8: K ← K ∪ {c}

9: end if

10: S ← S \ {c}

11: T = {c}; i = k − 1

12: while i > 0 do

13: {m} ← AControllerMinShortestPath(C, T,G)

14: if {m} 6= ∅ then

15: T ← T ∪ {m}; i = i− 1

16: else

17: i = 0

18: end if

19: end while

20: P ← P ∪Tuple(k, T );

21: end while

22: return P

The reason for developing degree-based algorithms is to consider if the domain degree has an

effect on the response time improvement. We further develop this idea by proposing the following

algorithm that combines two domains based on inter-domain adjacent degree. It starts by calculating

all short paths between the primary controllers, then combines each k domain conditioned by the

direct connection between any two nodes inside those domains.
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4.4.5 Inter-Domain Adjacent with Short Distance (IDASD)

The idea of this algorithm is to return closest pairs of controller representing neighboring domains.

The details of this algorithm are demonstrated in Algorithm 4 where we reference the follow-

ing simple procedures: a) AllShortestDistBetweenPairs(S,G) which returns a list of all the

shortest distances between each of the pairs of controllers in S; b) APairWithShortestDist(S, T )

which returns, using the shortest distances between pairs stored in T , a pair of controllers in S with

the shortest distance; c) IfNeighbouringDomains(S′, G) returns TRUE is the pair of controllers

S′ represent neighboring domains (the shortest path between the pair of controllers has no more than

two hops); and d) RemoveAllPairsContains(S, s) which removes all pairs in S which contain the

controller s. Algorithm 4 returns a list of k-tuples of controllers representing neighboring domains.

Any remaining unselected domains are considered VBDs.
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Algorithm 4 :IDASD
Require: C, G

1: S ← (Ci, Cj), i 6= j, T ← ∅, P ← ∅

2: T ← AllShortestDistBetweenPairs(S,G)

3: while S 6= ∅ do

4: S′ ← APairWithShortestDist(S, T )

5: S ← S \ S′

6: if IfNeighbouringDomains(S′, G) == TRUE then

7: (s, t)← (S′)

8: RemoveAllPairsContains(S, s)

9: RemoveAllPairsContains(S, t)

10: T = {s, t}; i = k − 2

11: while i > 0 do

12: {m} ← AControllerMinShortestPath(C, T,G)

13: if {m} 6= ∅ then

14: T ← T ∪ {m}; i = i− 1

15: RemoveAllPairsContains(S,m)

16: else

17: i = 0

18: end if

19: end while

20: K ← K ∪Tuple(k, T );

21: end if

22: end while

23: return K

4.5 Performance Evaluation

In this part of the experiments we review the results obtained from of the survivable backup mech-

anism. All experiments results were carried out on an Intel(R) Core(TM) i7-6770 CPU @3.40GHz

and 16GB RAM with Windows 7 Pro (64-bit) operating system.
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4.5.1 Survivable Backup Controller Placement

After determining the appropriate placements of the primary controllers within the network, the

next step is to set the backup controllers’ locations carefully. This process relies on 1) the best

joint-domains approach using the full enumeration and the heuristic algorithms, 2) find the most

appropriate location of backup controllers within the virtual backup domains. For this purpose, we

contrast the average response time results for both FE and the heuristic approaches. Afterward, we

show the effect of the average response time of the selected placement of the backup controller to

all nodes in the VBD. Finally, we examine the quality of the solutions we gained by all algorithms.

Average Response Time of k-packing Approaches

With the varying number of k domains, in Figure 23, we observe that for k = 2 the FE solution

earned the best average response time with 34.01 ms. In comparison, the IDASD algorithm came in

the second best solution with a slightly different of 34.25 ms. On the other hand, k = 3, the average

response time of the MDSD is the best average response time with 26.44ms, while the FE algorithm

is the worst average response time with 58.28ms.

Figure 23: Average response time of k-packing grouping method for Internet2 topology

Concerning the effect of the topology structure, Figure 24 of TataNID topology shows the differ-

ence in the performance compared to the Internet2 topology. At k=2, the best average response time

with 15.56ms still given by the FE algorithm. However, MDSD has performed the best performance

among all the heuristic algorithms with 15.68ms. Increasing the number of joint-domains reflects

the better performance of our heuristic algorithms. It can be noticed that the best average response

time was achieved by MDSD algorithm with 14.09ms followed by IDASD with 14.21ms.
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Figure 24: Average response time of k-packing grouping method for TataNID topology

Average Response Time of selected Backup Controller Placement

Here we examine the differences between the optimization and heuristic algorithms in terms of

selecting the survivable controller node. In order to find this node, we perform a straightforward

technique, which is to choose the node that provides the minimum total of the shortest paths lengths

to all other nodes in VBD to be the survivable controller placement.

Figure 25: Average response time of backup controller placement in Internet2 topology

In terms of medium networks, Fig. 25 demonstrates Internet2 topology with k=2 and shows that

our adjacent heuristic algorithm IDASD achieved 33.85 ms of average response time as the FE

algorithm. With maximize the number of joint-domains k to 3, the FE and IDASD algorithms

gained the worst average response time in contrary to their performance when k = 2. In contrast,
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the MDSD algorithm experienced a lower average response time of 35.5 ms, displayed by a blue bar.

The experiment results in Fig. 26 exhibits the average response time in terms of selecting the

backup node in TataNID topology. At k=2, the FE algorithm gives 12.9 ms as the best average

time, while the heuristic algorithms’ performance is close to each other with slight differences. This

is due to the fact that our heuristic algorithms rely on the nodal degree and adjacent mechanism,

and because 85% of the nodes degree in TataNID topology range from 3 to 5 links. The better

average response time acquired by the heuristic algorithms was 15.45 ms by the MDSD. As can be

seen in the same figure (beige bar), with an increase k to 3, our heuristic algorithm MDSD obtained

the best average response time with 15.85 ms.

Figure 26: Average response time of backup controller placement in TataNID topology

The reasons behind this are concluded in two points: 1) as stated, the complexity of the network

is related to the number of nodes and 2) increasing the number of clustered domains. In addition,

the heuristic algorithms are restricted by some conditions to come up with the near FE solution

quickly.

It should be noted that the computation time of FE algorithm is considerable for larger topologies

and value of k = 4 and more. Figure 27 shows the simulation run time for the all algorithms on

Internet2 topology with k values equal to 2 and 3. we can see that FE algorithm takes run time

longer than the heuristic algorithms even in the seconds.

The same time consumed by all algorithms for TataNID topology is indicated in the Figure

28. It is been clear that the simulation time increased compared to the previous topology. For FE

algorithm, it reaches 167.11 seconds for k = 2 and 184 seconds for k = 3, while it did not exceed 30

seconds in all heuristics algorithms.
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Figure 27: Simulation Run Time - Internet2 topology

Figure 28: Simulation Run Time - TataNID topology

Quality of Solutions

As stated previously, the main goal of the proposed solutions is to combine nearby domains into a

VBD. Each VBD includes up to k original domains. Finally, we seek to obtain the ideal backup

controller placement that minimizes the average response time. To evaluate the performance of the

solutions, we represent each domain as a node where the primary controller placement expresses

this node. We consider the average delay time f1,i as a first cost term to measure the quality of

each ith scheme. This term aims to minimize the average response time. However, this term alone

is not sufficient to fully describe the quality of the resulting VBDs. E.g., a scheme may construct

more VBDs from other schemes and hence decrease the average delay but at the cost of too many

VBDs. Therefore, we add a second cost term f2,i that represents the number of generated VBDs.

This term aims to balance f1,i by limiting the number of VBDs. For each scheme (i), both terms
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report different ranges of values. For example, the number of VBDs ranges from 1 to the maximum

number of controllers, whereas the delay time is measured in milliseconds. To be able to combine

both these cost terms into an effective cost function, we first normalize both the cost terms into the

range [0, 1]. Hence, the cost function for scheme i is computed as:

Fi = α

 f1,i
max
allj

f1,j

+ (1− α)

 f2,i
max
allj

f2,j

 (3)

where α is used as a weight coefficient to linearly interpolate between the two normalized cost terms.

In case of α is equal to 1, the cost function is equal to f1,i whereas when α is equal to 0, the cost

function is equal to f2,i. With this equation, we strike a balance between two conflicting factors:

performance and cost.

The effect of changing the value of the parameter α varies. A lower number of VBDs means

a lower cost for the network operators (fewer backup controllers will be needed) and higher delays

experienced by the users. On the other hand, a higher number of VBDs means a higher cost for

the network operators (more backup controllers will be needed) and lower delays experienced by the

users as a result of the tight grouping of clusters.

Figure 29: Quality of proposed solutions for k = 2 in Internet2 topology

Figure 29 illustrates the results for Internet2 topology and for k equals to 2. We note that

all schemes produced the same number of virtual clusters; hence, f2,i has no effect on the total

cost function Fi. It shows that both the FE and IDASD schemes achieved the best solution for

the Internet2 network. The results for increasing the number of combined clusters from 2 to 3 are

depicted in Figures 30.

When α equals to 0 (i.e., the cost function is solely evaluated using the number of generated
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Figure 30: Quality of proposed solutions for k = 3 in Internet2 topology

VBDs f2,i), both FE and IDASD schemes achieved the best solutions as both schemes resulted in

a lower number of VBDs than MDSD and LDSD. However, when increasing the value of α, both

MDSD and LDSD schemes managed to outperform the FE and IDASD schemes as MDSD and

LDSD achieved lower delays. As the value of α increases, the effect of the delay factor f1,i increases.

The experiments’ results of TataNID topology are demonstrated in Figures 31 and Figure 32 for k

= 2 and k = 3 respectively. For the case of k = 2, we note that all schemes resulted in the same

number of VBDs, hence, there is no effect of f2,i on the total cost Fi. However, we note that the

FE scheme achieved the best solution followed by MDSD.

Figure 31: Quality of proposed solutions for k = 2 in TataNID topology
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For the case of k = 3, the FE algorithm achieved the minimal number of VBDs, hence, a higher

delay value. The LDSD scheme achieved rather balanced results in terms of both parameters. The

MDSD and IDASD achieved comparable results.

Figure 32: Quality of proposed solutions for k = 3 in TataNID topology
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4.6 Conclusions

As networks grow today, managing networks with a single controller is hard due to the increasing

number of switches that require a large number of paths through which data is routed to all compo-

nents of the network. Preserving a network of a large number of switches from the failure requires

an efficient mechanism to deal with the placement of primary controllers and, at the same time,

make network controllers robust enough to handle sudden failures, maintain availability within a

permissible time frame. To improve the network’s trustworthiness and its robustness under failure

circumstances and ensure the stability of the network, in this chapter, we have proposed a survivable

backup controller placement approach that enhances the performance and throughput of the net-

work. We evaluated our algorithms comprehensively using real topologies. The experimental results

illustrated that our approaches provide better results, especially in large networks, in minimizing

response time reduction.

Although SDN is a promising technology and has positive influences on network performance

improvement, many challenges are becoming evident and need more research and effective solutions.

On the one hand, the failure of this in-band SDN network has a significant impact on performance,

especially when the failure is tied to the main controller. Motivated by this matter, in the next

chapter, we will discuss the failure of the main controller under the in-band controlling design in the

SDN networks.
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Chapter 5

Dynamic Recovery Module For

In-band Control Channel Failure In

Software Defined Networking

This chapter proposes the implementation of our novel architecture and its core that is embodied

in the ICPM module. In this chapter, we formulate the in-band control channel failure problem,

we propose dynamic failure recovery methods and measure the reliability of the control channel in

in-band SDN networks.

5.1 Introduction

SDN is an innovative paradigm that provides more flexibility and adaptability of data communication

by separating the control plane from the data plane. In SDN, controller placement involves assigning

a controller to a set of switches in a given portion of the data plane. OpenFlow is a standard protocol

that defines how to create and manage the connections between the controller and switches in SDN

[52].

Despite the advantages of the in-band control structure, the usage of in-band control management

suffers from a weakness regarding failure occurrences. For instance, when a failure occurs in a control

component (node/link), the subsequent nodes will be affected by such failure. Consequently, control

packets may not be processed correctly in the control-lost switches, hence leading to performance

degradation. Furthermore, the master gate switch, where the controller is placed, may fail as any

part of the network due to the hardware failure, attack, etc. A single node failure can adversely affect

other neighbouring nodes that depend on the defective node and could fail. This phenomena called
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a dependency network [53]. See an example shown in Figure 33 where the routes to the controller

of the nodes 2, 3, and 5 are dependent on node 4; if node 4 fails, all the aforementioned nodes will

be affected.

Figure 33: Failure in dependency networks

In in-band SDN networks, this matter is crucial, so dealing with control channel recovery after

failure is one of the in-band network challenges that need to be investigated. Motivated by these

factors, the objective of the chapter is to deal with in-band failure occurrence in SDN effectively. In

particular, our goal is to provide more reliability and controllability of in-band SDN fashion under

the failure scenario, and therefore we propose an In-band Control Protection Module (ICPM). The

ICPM provides a protection approach of the in-band control channel that addresses the failure of

any of the in-band control component in SDN networks and protect as much as possible of the

control traffic of the affected switches. The ICPM approach does not apply to out-of-band control

architectures since when a switch fails in an out-of-band SDN, the controller will discover this failure

and immediately react to the failure by redirecting the control traffic to the backup link either by a

proactive or reactive strategy [54].

The contributions of this chapter are threefold. First, we formulate the in-band control channel

failure problem where we propose dynamic failure recovery methods and measure the reliability of

the control channel in in-band SDN networks. Second, we define two notions: neighborhood and

backup, based on which we give the formulation of the problem and design a module integrated

into the switches to solve the problem. Third, we conduct experimental simulations to show our

approach is efficient compared to the benchmark of other works [55], and evaluate the performance

in networks of different scales and degrees of connectivity.
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5.2 Related Work

In the out-of-band mode of network control, when a controller fails in the physical network, all the

switches managed by the failed controller are disconnected from the control plane. To deal with

this situation, the OpenFlow standard defines a switch as having a backup controller called a slave

controller such that the switches can migrate to the backup controller easily. However, dealing with

the issue of failure in in-band networks is different because even a (link/switch) failure may impact

the control system of the network and result in more disruption compared to the out-of-band scenario

[56].

There exists some research work on how to make in-band control for SDNs practical, including

work on failure detection and recovery for paths between switches and controllers. Sharma et al. [54]

studied the problem of link failure that occurs in the data plane and how it affects the control

communication between the switches and the controller. For this, a restoration mechanism was

presented to make the controller react to link failure by removing all affected forwarding rules and

installing new rules after computing the backup paths. In addition, Sharma et al. [54] proposed a

protection mechanism where all backup paths are pre-established before any link failure such that

traffic will be immediately redirected to the backup paths when the failure occurs. Their results

show that only the full protection recovery scheme meets the requirements of 50ms [57]. The authors

of [54] did not consider situations where the controller or master gate switch fails.

A flow tagging mechanism introduced by Thorat et al. [58] is a proactive recovery method to

recover from single link failure. In the event of a link failure, all victim packets will be tagged with

a VLAN label and redirected to the other end of the failed link. There are several techniques for

achieving immediate recovery from failure. One of the common techniques employed by today’s

networks is protection recovery mechanism. Generally, the protection methods are classified into

two main categories: link protection or path protection.

Further, path protection is classified into two types, which are 1:1 and 1+1 [59]. 1+1 path

protection requires provisioning two disjoint paths where the data traffic generated by the source

node sends over both paths. In case of failure, at least one of the paths remains alive, hence the

destination node will be able to receive the data without interruption. While the path protection

scheme is simple, easy, and increases the overall throughput of the transmission, it incurs high

communication overhead due to doubling the transition of data over two disjoint paths. Conversely,

the 1:1 path protection technique employs only the primary path to transmit traffic. However, in

the event of a link or switch failure, the 1:1 path protection technique redirects the traffic from the

failed primary path to an alternate backup path [60].

Most of the recent works exploring failure management in SDNs have relied on constructing a
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substitute path for every possible disrupted flow [61, 62, 63].

In Sgambelluri et al.’s work [62], there exist flow rules on the backup path for every single

possible disrupted flow on the primary path. For every new incoming flow to each link along

path, the controller installs new flow rules to setup the backup path. However, this approach is

impractical for a network having thousands of flows per link since the approach may impose more

overhead on the switch to store additional flow rules for a backup path for every flow on the link.

Furthermore, the controller intervention during the rule’s installation increases the recovery time due

to the propagation delay of the failure notification message. Kim et al. [64] proposed CORONET

as a fault-tolerant system that recovers from multiple link failures. The authors considered the

failure event in data plane using link layer data packets (LLDP) protocol for detecting failure [64].

However, LLDP may not be efficient due to the constant monitoring requirements, which may create

extra LLDP packet processing at the controller and, hence, increase the traffic in the network.

Asadujjaman et al. [52] introduce an in-band control channel approach that deals with recovering

multiple failures simultaneously.

Local rerouting and constrained reverse forwarding strategies were proposed by Hu et al. [55] in

their protection mechanism for control traffic. In the former strategy, the control traffic is redirected

to an upstream neighbor switch that is connected to the controller in its primary path, while in latter,

the control traffic is forwarded to the downstream switch connected to the controller. Although

control traffic may need to be forwarded back multiple hops to reach the controller, this method

limits the number of hops. Therefore, it cannot guarantee that all switches will be protected.

Moreover, only a single link failure is studied in most of the related work. Ochoa-Aday et al.

[65] presented a fault-recovery mechanism for control path in failure event. In this mechanism, the

local switches react to recover the control paths quickly, and the global controller knowledge helps

to optimize the recovery paths. The scheme proposed by Park et al. [66] aims to react to the in-

band OpenFlow networks changes by adopting a detouring strategy. To this end, it selects the low

traffic paths for the control messages to guarantee fast network recovery. Chan et al. [67] proposed

a fast recovery scheme for in-band controlled multi-controller networks based on a cycle monitoring

approach. With the collaboration of multiple controllers, the failure type and failure location can

be determined within a short time. Goltsmann et al. [68] proposed a calculation scheme of the

recovery path in the switches. They try to minimize the flow table size through storing only the

switches-to-neighbor routes. The switches should have the ability to quickly discover the network

topology and install flow entry into other switches.

In terms of dealing with failure occurrence in the data plane, some research have been conducted

to deal with this issue. Capone et al. [14] further develop a protection scheme of networks based on

backup paths computed in advance. This approach was inspired by employing the MPLS routing
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protocol that guarantees minimum recovery time and zero packet-loss after failure detection. Simi-

larly, Cascone et al. [69] proposed an MPLS-based method to treat the failure of the SDN data plane

by distinguishing different forwarding behaviors to react upon failure without controller involvement.

The major difference of our approach compared to most of the previous works is that our proposed

strategy handles failure events that may occur in the master gate switch (i.e. the switch where the

controller is placed) and through which all control messages are exchanged. Also, our strategy deals

with any node’s failure located along the path of a control channel. On the contrary, while some

methods proposed by previous works were efficient in dealing with link failure situations, they were

not efficient in dealing with node failure. However, our approach module can’t handle the links

failure in large-scale networks due to the high volume of exchanged messages between neighbors

until a broken link is detected and hence prepare a recovery path.

In addition, our algorithm will seek to minimize the amount of lost control messages during

a node failure. To this end, the proposed algorithm will convert the traffic along its available

path while avoiding local loops in the network until updating all routing information for all nodes

along the affected path. This mechanism aims to avoid the loss of control packets, especially for

real-time traffic, and improve the qualify of service (QoS). Our goal is then to deal with different

failure scenarios, whereas much control traffic as possible can benefit from the proposed protection

approach. In the following section, we formulate the in-band protection control problem and then

introduce an approach to solve it.

5.3 Problem Formulation

In this section, we formulate the in-band control network protection problem, which focuses on

defining the control networks and maximizes the number of switches, whose control packets can be

protected by the proposed protection approach.

5.3.1 Network Model

Our focus in this sction considers in-band control in SDN with a single controller, where each switch

has only one routing path to reach the controller. We represent the network as a graph G(V,E)

where V are graph nodes that denote the switches set in the network, and E denotes the links set,

the connections between pairs of switches in V where the weight of each link is the propagation delay

of the link. In SDN, the switches and controllers are the forwarding elements, therefore, we make

the distinction in our work of assuming that the controller locations are at switch locations in the

network. For each switch i ∈ V , let C(i) be the controller that manages switch i, let NG(i) denote

set of neighboring switches of the switch i in G, and let d = |NG(i)| be the degree of the switch
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vi. We consider two subsets of switches in the neighborhood of switch i, 1NG(i) and 2NG(i).

1NG(i) = NG(i) = (v1, v2, . . . , vd) where vj ∈ NG(i) is a switch directly connected to vi, and

2NG(i) = (v1, v2, . . . , vt) where vj ∈ 2NG(i) is a switch at a two-hop distance from vi (excluding

vi itself) and t = |2NG(i)| is the total number of switches at a two-hop distance from vi. In light of

our previous work on primary controller placement [70], we consider the placement of the controller

at the switch with a high connection degree, all control traffic between a controller and the switches

must be built over the same data channel in the network.

5.3.2 Terminologies

In this section, we set several terminologies that we will use later in the development phase

• Master Gate Switch (MGS)

A switch i ∈ V is termed the master gate switch if the controller C(i) placed at the switch i

location.

• Backup Gate Switch (BGS)

The control path of every switch i ∈ V is the shortest path from i to the controller C(i).

Therefore, switch i in the network denoted as an backup gate switch if i is linked to the master

gate switch with shortest path.

• Failed Switch (FS)

Since we are dealing with the protection of the in-band control channels against the failure in

SDN, to be consistent in the following section, the switch that is suffering the failure will be

called failed switch.

• Detector Switch (DS)

In case of switch i failure, a switch j ∈ V is called a detector switch if it meets the following

conditions:

1. It is directly connected to the failed switch i, and

2. Its control path passes through the failed switch i.

• Protector Switch (PS)

In case of switch i failure, a switch j ∈ V called a protector switch if the restore path from the

detector switch for i passes through j.

5.3.3 In-Band Control Network Failure

In SDN networks, the failure of the control plane may result in a high risk to the network, especially if

there are no efficient prepared steps to overcome this matter. Particularly, in an in-band controlling
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scheme, the failure impacts different components such as the master gate switch where the controller

placed which is the most critical part of the in-band controlling scheme or any data plane elements

(node/link) that exist on control paths. In this section, we present different failure scenarios in

in-band control logic in SDN.

5.3.4 Master Gate Switch Failure

In SDN networks, the control and data planes are both involved in the in-band control management.

In particular, the master gate switch is the main component of in-band control responsible for

passing all control traffic to the controller. While most research works suggested different ways to

address the data plane failure in the in-band SDN controlling scheme, yet the problem of dealing

with the failure of the most important control component (the master gate switch) still needs to be

investigated. To the best of our knowledge, we are the first to consider the failure of the master gate

switch. The master gate switch is a critical point because any flaw in this component dramatically

influences the entire network performance level.

As stated earlier, we want the control traffic to be re-forwarded to the controller as fast as

possible while preserving the maximum amount of control traffic. Therefore, we adopt building

network control channels under the management of two gate switches. To this end, we use a backup

gate switch beside the master gate switch to support recovering the network from the master gate

switch failure.

The controller and switches can maintain proper connectivity through using OpenFlow protocol

echo request (OFPT_ECHO_REQUEST) and reply (OFPT_ECHO_REPLY) messages. This

message and its reply ensure continuity of communication between the controller and switches [10].

In the design of our approach, when the controller no longer receives OFPT_HELLO messages

(alive messages) from the master gate switch, this means a failure has occurred. The controller

immediately will activate and migrate the control traffic to the backup gate switch, update the

topology, and change all control paths as needed.

5.3.5 Control Path Switch Failure

Any switch can represent more risk when a high percentage of control traffic passes through it. In

other words, if there are switches that exchange the control messages with the controller over a

particular switch, the failure of this component will threaten a large portion of the network. As

mentioned before, in our approach, each switch will have two control paths to the controller via

both the master gate and backup gate switches. In the case that any switch along a control path

fails, the former switch of the failed switch along the control path will detect the failure and activate

the protection mode. To make our approach more reliable, we have restricted the backup path of
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each switch such that the backup path does not pass through the master gate switch and instead, we

use the shortest path to the backup gate switch. To determine these shortest paths in the network,

we use Dijkstra’s algorithm [71] for computing these paths for every switch in the network to the

controller provided that these paths do not include passing through the master gate switch.

Figure 34: In-band failure scenarios in SDN networks

In Figure 34, we highlight the potential failure scenarios. We observe two switches are defined,

the first switch indicated by a surrounding circle indicates the master gate switch failure, and the

second switch by a surrounding square shows the control switch failure. In the first situation, as

mentioned before, the controller will be alarmed by this failure and activate the backup gate switch

and update the control paths. In the second scenario (again, see Figure 34), when switch P crashes,

this will disable all dependent nodes (S, L, Y, and N). Hence, switch N will take action of protecting

the control traffic of the affected switches by turning on its protection mode.

Figure 35: Backup control path illustration
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For instance, in Figure 35, the controller is connected to the master gate switch D and the backup

gate switch V. The primary path toward the controller of switch R as an example is colored in blue

while the backup path indicated by the red solid line path which passes the master gate switch D

with a cost of 7, but as aforementioned, the backup path should not pass through the master gate

switch. Hence, it neglects this path and shifts to the path R-X-V with a cost of 9 as shown by a

dotted red path.

5.3.6 Critical Switch Problem

Ideally, from a network management point of view, each switch should have two disjoint control

paths such that the backup path might provide fast recovery of the failure of any control component

along the primary control channel. However, a critical problem may still arise during the recovery

process. Define the importance of a switch such that the more primary and backup paths that pass

through a switch, the more important it is. Consider that the switches in the network are ranked in

terms of their importance. Then, the higher the switch rank, the more critical it is [72]. The most

critical switches may be located at the intersections of a large number of primary and backup paths,

and therefore their failure may result in the breakdown of the entire recovery process.

5.4 In-band Control Traffic Protection Scheme

To meet the reliability requirement in in-band control traffic against unexpected control component

failure in SDN, in this section, we introduce a control protection module that utilizes a distributed

control traffic component for failure detection and restoration method.

5.4.1 ICPM Module Overview and Design

Module Overview

We introduce a dynamic distributed technique to protect and restore the in-band control channel

in SDN. Our goal is to achieve a reliable controller-switches control channel in the presence of

any single control component failure. More specifically, we propose an In-band Control Protection

Module (ICPM) that accomplishes a set of tasks that depend on each other (e.g., failure detecting,

preparing an appropriate recovery path, and restoring the control channel via an alternative path).

Hence, the switches can handle the control channel by their own means.

Module Design

The key objective of this module is to preserve the control channel as protected as much as possible

under failure circumstances while also protecting as much as possible the fail-affected control traffic.

Therefore, to ensure reliable control channel recovery, we implement different functions inside the
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module, which is described in the next part. Figure 36 illustrates the design of ICPM functions with

the information exchanged between all units.

Figure 36: In-band Control Protection Module (ICPM)

• Control Channel Status Monitoring (CCSM) Unit

This unit is in charge of tracking the port status and detecting the failure of the next control

switch. The BFD protocol [73] was adopted in this unit to detect the failure between two

switches. Each switch transmits bidirectional forwarding detection (BFD) packets periodically

to its subsequent switch along the control path. If the switch misses M consecutive BFD

packets, it deems that the other switch experienced a failure.

• Neighboring Switches Statistics (NSS) Unit

Restoring and protecting the control channel depends on how fast and responsive the module

in calculating and determining the best recovery path. Therefore, in every switch’s ICPM, this

unit exchanges the neighboring switches’ information (e.g., location, distance, and connection).

• Control Recovery (CR) Unit

To recover the control path after failure, the CR unit of each switch’s ICPM determines the

new control path to the controller based on the statistics information collected by the NSS

unit. In OpenFlow protocol, a fast-failover using Group Entry has been introduced in order to

switch the traffic to an alternative path without involving the controller [11]. Therefore, we

use the Group Table concept to protect the control channel by pointing the control traffic to

an alternative path. Each flow entry in the flow table guides the packets to one of the group
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entries of group table which contains a number of action buckets. Precisely, we design the

group entries to have two main action buckets I) Hop-Bypass mode, II) Backup Forwarding

mode. In the bypass mode, the control traffic bypasses the failed control switch using 1-hop

or 2-hop neighboring switches, while in backup forwarding mode, the CR unit will change

the traffic to the pre-calculated backup path. Eventually, the RC unit compares the resulting

paths of both buckets and ultimately decides which recovery path to choose. More details on

these techniques are presented in the next section.

5.4.2 Implementation

Hop-Bypass Mode (HBM)

In the hop-bypass scheme, a switch makes a local decision to select the proper neighbor hop for

forwarding control traffic. To this end, a switch must know all its 1-hop and 2-hop neighbors to

select the neighbor whose distance closest to the switch located after the failed switch along the

primary path. Although bypass protection is not limited to any routing protocol, the specifics of

the mechanism depends on the characteristics of the underlying on-demand routing protocol.

Figure 37: Hop-Bypass forwarding scheme

Figure 37, shown an illustrative example of hop-bypass protection mode. We consider the control

path “N-P-R-D” from distention switch N to master gate switch D as indicated in blue color. Upon

the failure of switch P, switch N as a detector detects the failure and first triggers a local query to its

neighbors, repairs the failed path by using a 1-hop neighbor bypass protection mode. The neighbors

reply if they have active links to switch R which is the switch located after the failed switch, if not,

then move out to the 2-hop neighbor bypass mode. As shown, switch X informs switch N with its

connectivity with switch R. Switch N patches the path accordingly and the control traffic is first

forwarded to switch X and then to switch R to reach the master gate switch D.
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Backup Forwarding Mode (BFM)

The activation of this mode relies on either the failure of the master gate switch or a switch failure

along the control path where the alternate control path of the failed switch needs more than a 2-hop

neighboring switch to forward the control message. Upon switch failure, the CR unit in ICPM

prepares all backup paths for every switch to the backup gate switch. Finally, the shorter path will

be selected, the detector switch converts the flow to the backup path as shown in Figure 37 with

red color.

5.5 Performance Evaluation

5.5.1 Experimental Environment

We created our simulation platform using C++ and all the experiments described in this section

were carried out on an Intel(R) Core(TM) i7-6770 CPU @3.40GHz and 16GB RAM with Windows

7 Pro (64-bit) operation system. We tested our approach on three different topologies conducted

from SNDlib library [74], with their basic profiles listed in Table 5.

Network topology Number of nodes Number of links

Norway 27 51

Pioro40 40 89

Germany50 50 88

Table 5: Main characteristics of experimental topologies

We initialize our network by setting the required parameters that are described in Table 6. We

set the delay time based on the distance calculated using nodes’ latitudes and longitudes given in

the topology file divided by the speed of light in optical fiber. The switch with the highest degree

and with the minimum total shortest distances to other given switches in topology is configured to

be the master gate switch, while the closest connected switch to the master gate switch is selected

as the backup gate switch.

5.5.2 Evaluation Scenario

We generate packet_in messages with a constant rate of 100 packets/ms at each switch and log the

time when the master gate switch receives these messages. The metric that had been used during

the simulations is the number of packets that were dropped due to the failed switch divided by the

total number of packets that would be sent ideally on the control channel without loss; we call the

metric the Control Packet Drop Rate (CPDR). For experiments, the time from failure detection
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Network topology Value

Simulation Time 60 sec

Packet_in Transmit Rate/ms 100 packets

Experiments per switch 30 times

Failure Interval Time Random

BFD messages 3 messages

Table 6: Simulation Parameters

(e.g., no packets pass the failed switch) until resuming send packet_in messages is indicated as the

Control Channel Recovery Time.

We follow the same steps as described here. At first, we setup the control channel for every switch

in the network, we then establish control channels from all switches by sending packet_in messages

to the master gate switch where the controller is located. After these initial setup finished, we

disconnect a specific switch at random interval time. Finally, we continue to transmit the packet_in

messages from all switches which use the broken switch to pass its traffic until the desired switch’s

control channel are restored. Separately, we conduct the simulation of the same experiment with

30 runs on every switch (where the selected switch will be the one to fail). The interval time of

failure selected randomly and reported the average values of lost packets number and the number

of packets delivered on the master gate switch. As such, we repeat each set of experiments once for

each of the switches in each topology.

5.5.3 Control Packet Receive Rate

First, we study the effect of switch failure has on the percentage of control traffic that arrives at

the master gate switch. As we mention above, the total number of packets that would be sent

ideally by every switch, without any switch failure, is computed according to the simulation time

and the distance from each switch to the master gate switch. Figure 38 for the Norway topology

indicates the percentage of the total packets ideally received by master gate switch (Rcv-ideal-stu)

compared with the number of packets received in failure situation without applying our approach

(Rcv-failure-stu). The ideal receive rate is less than 100% for most nodes since some packets are

still in transit when the simulation ends. Note that the master gate switch is switch N16 while the

switch N24 is selected as the backup gate switch. In this figure, we can notice each node’s failure

effect on the whole network. For instance, without applying our approach, node N9 failure can affect

20% of the network packets while the failure of node N16 which is the master gate switch can affect

almost 100% of the network packets.
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Figure 38: Packets received (Ideal vs Failure):Norway Topology

As for the Pioro40 topology, the percentage of the total packets ideally received by master gate

switch (Rcv-ideal-stu) compared with the number of packets received in failure situation without

applying our approach (Rcv-failure-stu) is given in the Figure 39. In this topology, node 37 selected

as a master gate switch, we can see that all control packets are dropped 100%, and with the same

behavior, some nodes dropped packets with different percentages, due to the fact that some packets

are still in transit at the failure moment.

Figure 39: Packets received (Ideal vs Failure): Pioro40 Topology
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5.5.4 Control Packet Drop Rate

Now, we study the improvement that our ICPM approach has on control traffic when recovering

from a switch failure.

Figure 40: Control packets drop rate: Norway Topology

Figure 40 clearly depicts that the number of control packets dropped in some switches for the Norway

topology. We can observe there are 11 switches in the Norway topology dropped packets at full rate

of 100%. The reason behind this is as we mentioned earlier in Section 5.3.6 regarding the Critical

Switch Problem. In order to demonstrate the importance of our ICPM approach and to provide

a solution to this problem, we enhance our approach by proposing a backup path that is entirely

separate from the primary path, meaning the backup path does not intersect the primary path for

any switch. A significant improvement compared with the previous method can be seen in Figure 40

as highlighted with the orange curve. Some switches show fewer dropped packets rate than others in

the control path protection scheme. This is due to the avoidance of extra overhead of the switches

located far from the master gate switch or due to its less-dependent switches.

Similarly, in Figure 41, for the 25 switches in the Pioro40 topology that has previously dropped

their traffic at 100%, by applying our ICPM approach, a noticeable improvement can be seen. The

rate of dropped packets at some switches such as (N1, N28, and N33) appears higher than the rest,

this due to a larger number of switches that rely on using these switches to send their traffic to the

controller.
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Figure 41: Control packets drop rate: Pioro40 Topology

5.5.5 Failure Recovery Time

When the switch is located on the recovery path, the control channel’s restoration process can fail

at that point. Visually, as shown in Figure 42, the x-axis shows switch IDs, and the y-axis shows

the required time in milliseconds to setup the recovery path for protecting all the control traffic

traveling by every switch. We measured the failure recovery time for all switches with randomly

varying failure times. It can be seen that the recovery time of some switches is indicated by red

circles which means the recovery process failed at those switches (they are not 0ms) due to the

critical switch problem. In contrast, by applying the enhanced version of our methodology, we can

notice the recovery time can now be seen for these critical switches. For instance, the recovery time

of switch N25 changed from no-recovery to 3ms which is determined as the lowest recovery time

achieved within the set of critical switches, while the highest recovery time of switch N2 changed

from no-recovery to 9.8ms. From another angle, as an illustrative instance, the recovery time of

switch N15 in Figure 42 was 2.1 ms in the regular recovery algorithm while it increased to 4.3 ms

after applying the enhanced version of the algorithm. Again, this due to the different backup paths

selection. Figure 43 shows Pioro40 topology with the critical switch matter. Switch N31 indicated

as the lowest achieved recovery time of 2.5ms while switch N23 is the highest recovery time with

9.03ms within the critical switches set. Furthermore, the recovery time of switch N4 is 0ms, and the

reason is that the switch N4 is the backup gate switch of the recovery process in the network.

We also consider a comparison of our approach with the reverse forwarding protection approach,

which we refer to as CNP, introduced by Hu et al. [55]. Figure 44 presents a failure recovery time

comparison. It can see that our ICPM approach achieved the lowest recovery time, while the recovery

time achieved by reverse forwarding protection (CNP) is higher than our algorithm except for a few
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Figure 42: Failure recovery time within critical switches: Norway topology

Figure 43: Failure recovery time within critical switches: Pioro40 Topology

switches that match the same recovery time. As shown, the recovery time of some switches was

affected by using a non-intersecting backup path strategy. Furthermore, some other switches adopt

the hop-bypass approach as a shorter path to reach the master gate switch.

In a different direction, switches (N1, N3, N5, N6, N7, N9, N11, N12, N13, and N16) maintain

the same recovery time. This is due to the fact that there are no hop-bypass paths or due to the

backup path that does not intersect with any switch located on the primary path. However, our

ICPM approach is still outperforming the reverse forwarding protection scheme. Significantly, we

can see the recovery time of switch 24 is 0ms, this due the switch N24 is the backup gate switch

in Norway topology as mentioned early. In the failure situation, switch 24 immediately adopts the

control traffic and directs it to the controller.
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Figure 44: Failure recovery time: Norway Topology

Figure 45: Failure recovery time: Pioro40 Topology

Figure 45 highlight the failure recovery time of Pioro40 topology. We can notice the difference

in performance between our approach compared to CNP, as our solution demonstrates a better

recovery time for all switches in the Pioro40 network.
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5.6 Conclusions

The requirements of network survivability have been altered by SDN, where maintaining the con-

nectivity between the controller and switches becomes a major challenge during disruptions in the

network. In this sense, we investigate in-band control channel failure in SDN networks, where we

propose a module approach to be integrated into the forwarding components in the network. A by-

pass and non-intervention backup recovery technique has been employed in this work to recover from

switch failure in an SDN. Whenever a particular switch fails, the objective is to handle the switch

failure, especially if it is related to a switch group-based. If the failure affects a group of dependent

switches, the action is taken such that all control traffic of the affected switches is re-routed to an

alternative recovery path. Significantly, this would help reduce the number of dropped packets that

would occur during failure and minimize the recovery time of affected switches. Simulation results

show that our solution has better performance in decreasing the packet dropping rate and recovery

time.
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Chapter 6

Towards Minimum Inter-Controller

Delay Time in Software Defined

Networking

In multiple SDN controller environments, the controllers need to maintain proper communication

with other controllers. In this chapter, we give attention to the minimization issue of inter-controller

delay time and delay time among forwarding elements in SDN, and determining the controllers’

placement that satisfies these criteria.

6.1 Introduction

Today’s networks have been improved through the introduction of new technologies aimed at fulfilling

vital requirements that will enhance the networks’ scalability, flexibility, and reliability. SDN is an

emerging technology that provides a more inherent dependency relationship between the forwarding

devices and the controller(s) to improve network performance and provide high-quality services. The

main mechanism underlying SDN networks is the separation of the data and control planes from

each other, making the network management process easier and less costly. At the same time, these

improvements bring many challenges, especially in the control plane. Large-scale SDN networks

are managed by multiple distributed controllers to avoid a single point of failure at the controller

[13]. Yet, the major challenge remains as to how many controllers are appropriate and where these

controllers should be placed.

To answer these two questions, various considerations and metrics can be used to find the best

placement of controllers such as the delay time between the controllers and their associated switches,
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the delay time between the controllers themselves, the load balance among the controllers, etc.

Therefore, finding the optimal placement of controllers is a trade-off case based on the network’s

objectives.

When SDN is deployed in large-scale networks, they may consist of multiple domains, each with

sets of switches managed by a single controller. Due to this distributed design, the controllers need

to maintain proper communication with other controllers which should not be neglected [75] and

as well as with its assigned switches. Most research works proposed in the literature give more

attention to controller placements optimizing switch-controller communication, be it in terms of

improving its latency, resilience, etc. On the other hand, the inter-controller communication has not

received as much consideration, which is the main goal of this chapter. To this end, we apply the

Connected Dominating Set (CDS) idea, which facilitates placing the controllers in such a way that

it minimizes the delay time between the controllers while maintaining an acceptable delay time for

controller-switch communication.

A dominating set (DS) is a subset S of all elements in the graph G such that each element in

the graph G is either in S or is adjacent to at least one element in S. A connected dominating set

(CDS) is a subset S of a graph G such that S forms a dominating set and S is connected [1]. The

nodes in the CDS are called dominators and the rest of the nodes of the network which are one

hop away from the CDS are called dominatees [76]. A CDS is a useful approach for routing and

exchanging messages. From the SDN perspective, the controller placement problem can be simulated

by a CDS architecture, where the CDS can helps to reduce the communication time between the

controllers. The question of finding the CDS with minimum cardinality is called Minimum Connected

Dominating Set (MCDS) which is an NP-Complete problem that requires heuristics to determine

the CDS [77].

6.2 Related Work

SDN is centered on an innovation architecture of centralized control. This design is directed towards

moving control plane functions from the network by decoupling the control and data planes from each

other. The OpenFlow protocol [10] is the most common communication interface between a controller

and switches in SDN. Therefore, in an OpenFlow architecture, a logically centralized controller is

in charge of managing a set of switches by instructing them with routing rules that dictate their

packet handling behavior. In SDN, a single, centralized controller cannot manage a large-scale

network due to high traffic demands, which lead to a Single Point of Failure problem (SPoF) [78]

with the controller failing. As a result, the deployment of multiple controllers is inevitable which in

turn requires state synchronization between the controllers in order to maintain a consistent global
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view of the network [19]. Since the controllers are required to communicate with their associated

switches as well as conduct interacts with other controllers, the problem of controller placement is

of particular importance as the location and capability of the controllers may significantly affect the

performance of the network in terms of scalability, reliability, and availability.

The work conducted by Heller et al. [3] was the first mention of the controller placement

problem in SDN. The authors concentrated only on minimizing the average and maximum (worst

case) switch-to-controller latencies. At the same time, they ignored some other significant aspects,

such as inter-controller latency and failure situations.

Other research proposed various strategies to cope with the multiple controller placement prob-

lem in SDN. Yeganeh and Ganjali [79] proposed a logically distributed controller framework called

KANDOO, consisting of two layers of hierarchical design. The lower layer contains a set of local con-

trollers without a network-wide view, where each controller manages a specific sub-domain. At the

same time, the upper layer is a logically centralized (root) controller that maintains a network-wide

view and manages all local controllers in the lower layer. KANDOO is a solution to the problem

of massive traffic flow between local controllers, while it did not describe how the root controllers

interact with each other to maintain a global view of the network, as well as the local controllers,

to maintain scalability compared to a standard OpenFlow topology.

In multiple SDN controllers, maintaining a global view of the whole network is essential to ensure

smooth network performance. However, inconsistent or stale states at the controller may result in

the application layer making incorrect decisions, which then leads to inappropriate or sub-optimal

operations of the network [19]. Yin et al. [80] propose "SDNi" as an East/Westbound interface

between controllers in a distributed control environment. In SDNi, the network is split into multiple

domains, each of which is being managed by a particular SDN controller. SDNi strives to facilitate

exchanging the network status information among multiple domains and assisting in coordinating

the controllers’ decision-making processes.

Tanha et al. [47] propose a technique named Resilient Capacitated Controller Placement Prob-

lem (RCCPP) which considers different factors such as the capacity of the controllers, the load of

the controllers, switch-controller propagation delay, and the propagation delay between controllers.

Mouawad et al. [81] address the controller placement problem by focusing on the network load as

the main factor and using a dynamic switch migration algorithm to minimize the switch-controller

latency. They evaluate their scheme concerning the number of overloaded controllers and the number

of migrated switches.

By dividing the entire network into multiple sub-networks, Qi et al. [82] introduces a modified

density peaks clustering (MDPC) algorithm for planning the controllers’ placement. Their goal is to

minimize the average propagation delay time between switches and controllers, while they neglected
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to examine the inter-controller delay time.

6.3 Network Model

We represent the network as a graph G(V,E) where V are the graph nodes that denote the set of

switches in the network, and E denotes the links set which are the connections between pairs of

switches in V , the weight of each link is the propagation delay of the link. In SDN, the switches

and controllers are the forwarding elements; therefore, we make the distinction in our work of

assuming that the controllers’ placements are at switch locations in the network. Controller-switches

communication is constructed based on the in-band scheme [83]. Hence, there are no dedicated links

between the controllers and their assigned switches, and all control messages are transmitted through

the data link plane.

6.4 Proposed Algorithm

In this section, we present an algorithm for stable connected MCDS construction based on distance.

The proposed method consists of three stages:

1. Constructing a Dominating Set (DS)

2. Building the Connected Dominating Set (CDS) that rely on the coloring method

3. Shrinking the connected dominating set to create a Minimum Connected Dominating Set

(MCDS)

More details are provided below.

6.4.1 Stage 1: Dominating Set Construction

The following steps are performed to define the dominating set:

1. Initially we set the white color for all nodes in the network.

2. The node i with color white with the highest number of connected neighbors is selected from

the graph G(V,E) and identified a first black node (this node is a dominator node). In the

event of more than one node with the same highest connectivity degree, a node with a minimum

total shortest distance to all nodes in the network is selected to break the tie.

3. All 1-hop connected nodes (neighbors) of node i that are colored white are colored gray (i.e.,

these are dominatees).
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4. Steps 2-3 are repeated through several iterations until all nodes in the graph G(V,E) are

colored either as black or gray.

Figure 46: Stage 1: example of the Dominating Set (nodes colored black) selection process.

Stage 1 can be understood with the help of Figure 46. As seen in Figure 46, the left sub-figure

shows all nodes initially are colored white. In the sub-figure on the right hand, node 3 is chosen

as the first black node since it is the node associated with the largest number (6) of links. All its

neighbors (1, 2, 4, 5, 6, and 7) are colored gray. The next choice is made on node 9, which has five

links. Similarly, the color of all its connected neighbors (6, 7, 10, 11, and 12) are set to gray (note:

nodes 6 and 7 were colored previously by node 3). After applying Phase 1 to an SDN architecture,

a black node denotes a controller while a gray node refers to a switch.

6.4.2 Stage 2: Connected Dominating Set Construction

This stage aims to connect all nodes in dominating set D through finding a set of connectors C.

For CDS formation, the following steps are performed:

1. Determine k, the maximum number of black nodes connected to any gray node. Let i = k.

2. Consider all gray nodes which are connected to exactly i black nodes. These selected nodes

are connectors and are colored maroon. As observed in Figure 47, node 6 is selected as a

connector which is indicated by the maroon color.

3. If the i black nodes connected to a current connector are all already connected to another

connector, the current connector is deselected.

As indictaed in Figure 47, node 12 is not selected as a connector since the black nodes it is

connected to (nodes 9 and 13) are also connected to a connector (node 6).

4. If i = 2 and the black nodes are connected by more than one connector then the connector

with less distance between the two black nodes will be chosen and rest are deselected. This is

not done for i > 2 since it may result in a disconnected CDS.
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Figure 47: Determining Connectors

5. Check if the dominating set D gets connected; i.e. each black node has a direct link to another

black node or connector.

6. If D gets connected or i = 2, continue to next step. Otherwise, the algorithm will go back to

step 2 with i = i− 1.

7. Set the color of all connector nodes as black.

6.4.3 Stage 3: Minimum Connected Dominating Set Construction

The major objective of this stage is to minimize the size of the CDS obtained in stage 2. Determining

the minimum appropriate number of the black nodes to meet the minimum delay time is a significant

matter.

For MCDS formation, the following steps are performed:

1. We apply a single-iterate condition to convert back to being a switch (i.e., color as gray) any

black nodes with only one link to another black node. The reason behind this is to maintain

as few a number as possible of black nodes connected to the gray nodes within 1-hop or 2-

hops. In this way, we ensure that the delay time between the controllers is a minimum while

maintaining an acceptable delay time between the controllers and the switches.

2. Finally, we appoint each gray node (switch) to the closest black node (controller) forming

multiple clusters. See Figure 48 where each resulting cluster is denoted by a different color

(the controller of the cluster slightly darker in color).
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Figure 48: Final clusters

6.5 Performance Evaluation

6.5.1 Experimental Environment

The simulation experiments were conducted using C++ and carried out on an Intel(R) Core(TM) i7-

6770 CPU @3.40GHz and 16GB RAM with Windows 7 Pro (64-bit) operation system. The essential

characteristics of the topologies used in the simulations are described in Table 7. Since we are dealing

with real networks where every node has longitude and latitude, we employ the A* algorithm with

the Haversine formula [84] to calculate the shortest distance between all node pairs in the network.

Network topology Number of nodes Number of links

ATT North America 25 57

India35 35 80

Bell Canada 48 65

Germany50 50 88

Table 7: Main characteristics of experimental topologies

In the following experiments, we compare our proposed approach with the HDIDS algorithm

developed in [70] which uses an Independent Dominating set to determine controller placement.

6.5.2 Inter-Controller Delay Time

As a resilience metric, we investigate how the inter-controller delay time can be reduced based on the

choice of controller placement, and what influence this has on the network performance. Formally,

the inter-controller delay time for controller ci is defined as the average of delay time d(ci, cj) along
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the shortest paths between ci and all other controllers cj in the set of controllers C:

1
(|C|−1)|

∑
cj∈C,i 6=j

d(ci, cj) (4)

Ideally, the controllers should be placed as close together as possible to minimize inter-controller

communication costs. Therefore, we employ the MCDS as the basis of our strategy to achieve the

minimum delay time between the controllers.

In this part of the experiments, we conduct several simulations on different real networks to study

inter-controller delay time. The inter-controller delay time varies a great deal from one controller

to another. The reason is due to the formation process of the connected dominating set. In other

words, the selection of dominators and connectors concerning the topology and geometry of the

network leads to a wide range of shortest path lengths between controllers which in turn determines

inter-controller delay time.

Figures 49–52 show the inter-controller delay time for four different networks. Figure 49 shows

the inter-controller delay time between the 7 controllers determined by our algorithm for the India35

topology. We can observe that the inter-controller delay time of each controller separately for our

algorithm is less compared to HDIDS, even with the significant variance in delay times. Further,

the average inter-controller delay time across all controllers is 5.67ms for our approach compared to

8.43ms achieved by HDIDS.

Figure 49: Inter-Controller Delay Time of India35 topology

Similarly, Figure 50 illustrates the results for the ATT topology, where the delay time is again

less for our method as compared to HDIDS. The overall average inter-delay time by our proposed

approach is 3.234ms, whereas 6.484ms by HDIDS.
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Figure 50: Inter-Controller Delay Time of ATT North America topology

In Figure 51, we determined 13 controllers with an overall average inter-controller delay time of

6.43ms compared to 8.811ms by HDIDS.

Figure 51: Inter-Controller Delay Time of Bell Canada topology

In Figure 52, German50 topology, our technique outperforms with an average inter-controller

delay time of 6.69ms compared to 7.57ms by HDIDS. Note that in Figures 51 and 52, the inter-

controller delay time for every controller is less than that determined by HDIDS (except for one

controller for Germany50). The deployment of each type of SDN controller has a cost ($) which is

based on different criteria (e.g., number of physical ports, the maximum number of requests that

can be processed per second, etc.) [85].

As seen across all four topologies, we can realize that in small topologies, like India35 and ATT
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Figure 52: Inter-Controller Delay Time of Germany50 topology

North America, the number of controllers ranging between 6-7 have an average inter-controller delay

time between 3-7ms.

In comparison, for slightly larger topologies (Bell Canada and Germany50), the controller number

is around 13, while the inter-controller delay time goes down to 6.5-7ms. Thus, there is a trade-off

between achieving the minimum delay time compared to the cost of the SDN controller deployment

(i.e., number of controllers).

6.5.3 Required Number of Controllers

In order to demonstrate the extent and effectiveness of our method to place the controllers in SDN

networks compared to HDIDS. Table 8 shows the required number of controllers obtained by our

approach against HDIDS approach.

Network topology Proposed HDIDS

ATT North America 6 8

India35 7 8

Bell Canada 13 16

Germany50 13 14

Table 8: A comparison of the number of controllers.

From the Table 8, the number of controllers required to manage each network which obtained

by our new technique is better than what was achieved previously.
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6.5.4 Controller-Switch Delay Time

Even though the main objective of this work is to reduce the communication delay between the

controllers, however maintaining the average controller-switch delay time within an adequate range

is also desirable. To quantify the delay times in a network, we take the average of the delay times

of the shortest paths from all switches in S = V \C to the controller closest to that switch which we

denote as the controller–switch delay time as follow:

1
|S|

∑
s∈S

min
c∈C

d(s, c). (5)

For our analysis for controller-switch delay time, we will investigate using a range of the number

of controllers. This analysis will be done by varying the single-iterate condition of stage 3 by allowing

for a variable number of controllers to be removed from the CDS and making them switches. Note

that this differs with our proposed strategy where the number of controllers is defined automatically

to solve the controller placement problem as to study the inter-controller delay time in previous

subsections.

Generally, to get less or much closer average controller-switch delay time, the number of con-

trollers in the network must be increased. We present a comparison of results shown in Figures

53 to 56 for average controller-switch delay time between our proposed technique with a variable

number of controllers and that of HDIDS. Note that x-axis shows the number of controllers, while

the required number of controllers to obtain efficient inter-controller delay times, as discussed in

Section 6.5.3, is highlighted by the red circles.

Figure 53: Average Controller-Switch delay time of India35 topology

According to Figure 53, at the beginning with one controller, HDIDS accomplishes an average

90



controller-switch delay time that is less than the proposed strategy. This relative comparison re-

mains the case even with the continuation of the controller selection stages with a larger number

of controllers. Our algorithm’s average delay time jumps from 8.9 ms at four controllers to 10.1ms

with five controllers. At seven controllers, as selected for inter-controller delay time in the previous

sub-sections, our approach has an average controller-switch delay time of 6.89ms compared to 5.27ms

for HDIDS. Then, gradually it begins to descend until it stabilizes to a very close level to HDIDS

at nine controllers and higher.

Figure 54: Average Controller-Switch delay time of Att topology

Regarding ATT topology, a similar scenario has been noted. At the three controllers, the average

delay time rises from 7.4ms to 7.7ms at the next controller selection.

Figure 55: Average Controller-Switch delay time of Bell Canada topology
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Figure 55 shows that our strategy follows the same behavior with Bell Canada topology. We

notice that the delay time for our approach and the comparative approach started at 11.4ms at the

first controller. At the second controller, the delay time for both approaches decreased, but at a

different rate, as it decreased from 11.4 to 8.21ms in our approach, while it decreased further to

4.5ms in the HDIDS approach.

It can be seen that, according to our approach in the first and second topologies, there was a jump

period between the controllers (i.e., between the controller 4 and 5 in the Figure 53, and between

the controller 2 and the 3 in the Figure 54). But it was not repeated in the following topologies.

Furthermore, in the first three topologies (Figures 53 to 55), the average delay time achieved by our

approach at the maximum number of controllers is almost matched to HDIDS.

Figure 56: Average Controller-Switch delay time of Germany50 topology

As illustrated in Figure 56, in Germany50 topology, with the last found controller (13 controllers),

the controller-switch delay time is 4.9ms compared to 4.36ms by HDIDS.
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6.6 Conclusions

In this chapter, we proposed a new technique based on connected dominant set CDS. We aimed

to determine the number of controllers and their placement with the goal of minimizing the inter-

controller delay time in SDN networks. Our experimental results showed that our proposed strategy

outperforms effectively compared to HDIDS. Our approach has achieved better results in terms

of reducing the delay time between the controllers while maintaining nearly the same delay time

between the controller and the switches compared to the HDIDS approach.

Even though the CDS strategy is an efficient approach in order to diminish the communica-

tion cost between SDN controllers, some aspects still require further investigation to gain the best

outcomes. For instance, in the event of a controller’s failure, all the switches associated with it

are affected, and consequently, they are migrated to another controller. Therefore, the delay time

between the affected nodes and the new controller is significant, especially for those switches located

away from the new controller. As future work, we strive to study this scenario and find an adequate

method to deploy the controllers in SDN networks considering the failure-based scenario and switch

migration solution. Moreover, we conducted a single comparison of our approach with HDIDS,

since HDIDS is the only approach that deals with the controllers’ placement problem in SDN using

dominating sets identification. Therefore, in terms of future work, we aim to future investigate the

characteristics of our algorithms, and variants, by expanding the comparison of different metrics

while including other vertex cover algorithms.

93



Chapter 7

Conclusions and Future Work

7.1 Summary

In large SDN networks, it is very hard to manage the entire network with one controller unit

due to the increased number of forwarding nodes and increased number of routes that must be

managed as well. Geographically, with larger SDNs, there is increased lag between the forwarding

nodes and their controller. As a result, the controller units are no longer able to provide optimal

network performance or QoS. Hence, using a certain number of controllers to handle this issue is

desirable. In this thesis, we investigate the problem of the controller placement in SDN, and we

study different related-aspects such as resilience, availability, scalability, and the control connection

scheme as well. Various approaches have been proposed to tackle these issues. In the beginning,

we propose a new technique named HDIDS to deal with the multi-controller placement problem

with regards to minimizing the average and worst response time between the controllers and their

assigned forwarding nodes.

Our approach in HDIDS is based on selecting the available controller with the highest connection

degree and then exploiting the independent dominating set method to automatically form clusters

of forwarding nodes associated with each controller in the network. We conducted experiments

under many different metrics and topologies sized from medium to large. Compared with previously

published work, experimental results showed that our approach provides better results, especially in

large networks, in minimizing response time and maximal response time reduction as well.

As networks grow today, managing networks with a single controller is very hard due to the

increasing number of switches that need a large number of paths through which data is routed to

all components of the network. On one hand, increasing the number of forwarding nodes may force

some of them to stay away from the control unit and thus increase the communication and response
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time between the switches and the controller. As a result, the controller is no longer able to provide

optimal network performance or Quality of Service. On the other hand, preserving a network of a

large number of switches from the failure requires an efficient mechanism to deal with the placement

of primary controllers and at the same time make network controllers robust enough to handle sudden

failures, maintain availability within a permissible time frame. In this context and to improve the

network’s trustworthiness and its robustness under failure circumstances and ensure the stability

of the network. We proposed a survivable backup controller placement approach that enhances

the performance and throughput of the network. We evaluated our algorithms comprehensively by

conducting several simulation practices using real topologies.

The outcomes showed that our backup strategy improved the network availability principle and

reduced network breakdown opportunities. The requirements of network survivability have been

altered by SDN, where maintaining the connectivity between the controller and switches becomes a

major challenge during disruptions in the network. In this sense, as the third stage of this thesis,

we investigate in-band control channel failure in SDN networks, and we propose a module approach

be integrated into forwarding components in the network. A bypass and non-intervention backup

recovery technique has been employed in this work to recover from switch failure in an SDN. When-

ever a particular switch fails, the objective is to handle the switch failure especially if it is related

to a switch group-based. If the failure affects a group of dependent switches, the action is taken

such that all control traffic of the affected switches is re-routed to an alternative recovery path.

Significantly, this helped in reducing the amount of dropped packets that would occur during failure

and minimize the recovery time of affected switches.

Simulation results show that our solution has better performance in decreasing the packet drop-

ping rate and recovery time. The inter-controller delay time is a significant part to be taking into

account in SDN multiple controllers’ environment construction. Therefore, in the last part of the the-

sis, we conducted a study on the problem of controller placement by minimizing the inter-controller

delay time and the delay time among the switches. We proposed a new technique based on connected

dominant set CDS aiming to determine the number of controllers and their placement within the

SDN networks. Our experiment results showed that our proposed technique achieved better results

in terms of reducing the delay time between the controllers while maintaining nearly the same delay

time between the controller and the switches.
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7.2 Future Work

The problem of SDN controller placement has several aspects that still need to be understood and

requires further investigation. Different aspects are varied depends on the objective of the network.

Regarding future work and directions beyond this research, in the following, we highlight a few

interesting challenges that concern SDN:

7.2.1 Multiple controllers Failure

In a multi-controller SDN architecture, the controller plays a major role in the management and

coordination of all components in the network. Therefore, the effect of the failure of one controller

may be addressed and managed, unlike the failure of more than one controller simultaneously for

any reason that may expose the entire network to collapse.

Hence, the study of this aspect needs to take into account all the possibilities that may cause this

type of failure.

7.2.2 Switch Migration under Failure Event

Although, multiple distributed controllers are a promising approach to solve the problem of sin-

gle controller failure. However, with the increasing network complexity, the switches’ migration

should be improved efficiency to enhance network performance under the failure scenarios. Different

mechanisms to deal with the switches migration have been proposed. Yet, learning how to improve

migration efficiency remains a difficult problem that needs more investigation.

7.2.3 Bypass-hop on multiple SDN control environments

The bypass-hop strategy is one of the efficient ways to tackle alternative pathfinding in the SDN

networks. However, this mechanism can provide more reliable and trustworthy networks especially

within dynamic SDN networks where the traffic pattern changes over time.

7.2.4 In-band and Out-of-band combination

Selecting the best control plane strategy in SDN networks still a key challenge, it requires efficient

decision-making by taking into account several key considerations such as security, failure, and

network bootstrapping time. The incorporation of in-band and out-of-band control scheme in SDN

architecture can help to improve the network throughput and performance, and it should be handled

as a multi-objective optimization model to solve this problem.
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