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Abstract

Lagrangian-on-Lagrangian Garment Design

Juan Sebastián Montes Maestre, Ph.D.

Concordia University, 2020

Since the discovery of elastomeric materials, such as spandex or lycra, skintight cloth-

ing has revolutionized many different areas of the clothing industry, such as body-shaping

clothing, athletic wear, and medical garments, among others. Often, this kind of clothing

is designed to fulfill a given purpose, such as providing comfort, mobility, or improving re-

covery in the case of an athlete, provide support or exert some desired pressure in the case of

medical garments, or actively deform the body to acquire some desired shape. Additionally,

some designs aim to improve the life of the garment by, for example, minimizing tractions

across the seams. While many tight-skin garments are sold in the market for generic body

shapes, many of the purposes here mentioned are only achievable through a personalized

fitting. To this end, we introduce a novel model, where the cloth is modeled as a membrane,

parameterized as a function of the body. The cloth, is then able to slide on the body and

deform it while staying always in contact. We call this model Lagrangian-on-Lagrangian.

Based on this model, we develop an optimization framework, based on sensitivity analysis,

capable of developing sewable patterns such that, when worn by a person, satisfy a given

design target. With the framework, we include several design targets such as, body shape,

stretch, pressure, sliding under motion, and seam traction. We evaluate our method on a

variety of applications, as well as body shapes.
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Chapter 1

Introduction

Whether as casual clothing, functional sportswear, or medical compression garments—

skintight clothing has many applications, and fit is of central importance to all of them. The

fit of a garment is determined by its design which, from a technical perspective, consists

of two components: (1) a layout that determines the number of patterns and how they

connect to each other and (2) the shape of the individual patterns. When fitting a design to

a given body shape, the layout is typically kept fix, whereas the pattern shapes are adjusted

in order to accommodate different body shapes and sizes. This task of pattern grading is

a challenging problem, since the designer has to simultaneously consider multiple criteria

that relate to the state of the garment once worn.

Although shape is largely determined by the underlying body, there is often substantial

room for shape control within the limits of comfort and physics. The shape and location

of the seams on the body is another design consideration, important for both aesthetic and

functional goals. Apart from these visual criteria, there are several objectives relating to the

deformations induced in clothing and body. For example, excessive tensile deformations

will affect comfort and may cause fabric and seams to deteriorate prematurely. Compres-

sions, on the other hand, induce wrinkles that are typically perceived as design flaws in

tight-fitting clothing. Designing pattern shapes that strike an ideal balance between these
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criteria requires time and expertise, both of which are important cost factors. With the in-

creased demand for personally fitted clothing for multiple purposes requiring higher levels

of precision, such as medical pressure therapy masks, athlete sportswear or diabetic cloth-

ing, systems that design skintight clothing automatically could prove beneficial in reducing

production costs and improving accuracy.

Designing an automated system for skintight clothing requires combining knowledge

from multiple fields. Skintight clothing is seen as a coupled system where the cloth

interacts with the body. While some challenges involved in simulating these kinds of

coupled systems have been addressed, optimizing for some desired properties in such

systems introduces new challenges. For instance, existing coupled simulation frameworks,

which being discontinuous, are incompatible with continuous optimization frameworks.

Also, some behavior of the cloth such as wrinkling introduces discontinuities of its own.

In this work, we present an automated, optimization-driven fitting approach for skintight

clothing. In general terms, we propose a unified simulation model that represents cloth as a

two-dimensional elastic membrane embedded in the surface of the deformable body mesh.

This Lagrangian-on-Lagrangian approach removes the need for detecting and handling

collisions between body and cloth. Our approach supports continuous tangential motion

(i.e., sliding) of cloth on smooth body meshes during simulation and optimization, allowing

us to take advantage of efficient continuous optimization methods. We introduce a set of

design objectives that model various design goals related to shape, comfort, and function.

In particular, our method allows for minimizing traction forces on the seams, for enforcing

lower and upper bounds on deformations to prevent wrinkles and material failure, for

controlling pressure forces exerted on the body, and formodelling body shapes and contours.

From a technical perspective, we introduce the following novel contributions:

1. A complex optimization system based on sensitivity analysis that automatically de-

signs cloth patterns based on some user-defined objectives.
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2. A coupled cloth-body simulation model based on subdivision surfaces that considers

deformation of the body and that can be used with continuous optimization frame-

works.

3. A cloth model capable of generating proper physical response to wrinkling while

being apt for use with continuous optimization frameworks.

4. A compactness regularizer, capable of maintaining proper pattern shapes during

optimization, regardless of the objective target.

5. A method to compute pressure that is accurate and reliable on common general linear

triangle meshes.

We demonstrate our method on a set of designs that are representative of different

use cases for skintight clothing. We show examples from casual clothing, personalized

sportswear, and patient-specific compression garments.

This thesis is divided in 8 chapters where 2, 3 and 4 cover the required background

theory, chapter 5 covers the related research work, and chapters 6, 7 and 8 include our

contributions.
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Chapter 2

Numerical Optimization

In recent years, we have seen a rise in the complexity of the problems requiring solutions

in fields across engineering and science. Thanks to modern algorithms, problems such as,

finding the trajectory of a rocket, estimating the right amount of product to manufacture

or finding the equilibrium of a complex physical system, are not only solvable but allow

for the inclusion of complex constraints. All these problems have one thing in common

in that they can be framed as the minimization of a mathematical function with respect to

some design parameters. We focus solely on continuously differentiable, convex functions.

That is to say, given a function f (x), where x are its design parameters, the gradient df
dx is

continuous.

In general, minimizing a function f (x) can be done by finding the roots of its derivative
df
dx = 0. For a small set of functions, the roots of the derivative can be found analytically, such

as quadratic functions. For the vast majority of cases, analytical solutions are impossible or

impractical, so wemust resort to numerical algorithms that exploit properties of the gradient

to find its roots. Problems that do not specify any constraints on its design parameters are

known as unconstrained problems. However, very few real-world problems are devoid of

any constraints. For example, in a physical system, a common constraint is that the system

is at equilibrium at all times, that is to say, the sum of its forces be 0. In this case the
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constrained optimization problem is established as finding the minimum of f (x), subject to

c = [F(x) = 0]. The constraint c is known as an equality constraint.

In this chapter, we explore some of the most popular algorithms used in unconstrained

numerical optimization such as gradient descent, Newton and L-BFGS, and constrained

numerical optimization such as merit functions, KKT systems, and sensitivity analysis.

The content of this chapter is based on the work of Nocedal and Wright [38].

2.1 Unconstrained Optimization

In this section, we cover the most common algorithms used to solve unconstrained opti-

mization problems: Gradient descent, Newton, and L-BFGS. All three have in common

that they exploit low degree polynomial approximations of the function to iteratively find

better solutions for the design parameters. Given a current solution xi, an approximation to

the function at the point xi can be found by performing a Taylor series expansion, defined

as

f =
∞∑

n=0

f (n)(xi)

n!
(x − xi)

n, (1)

where n is the degree of the polynomial approximation and f (n) is the n-th derivative of the

function. It can be seen then that approximating a linear function requires just the gradient

of the function and approximating a quadratic function requires the second derivative. As

the degree of the polynomial increases, the approximated function approaches the original.

With this information in mind, we move on to the methods.

2.1.1 Gradient Descent

The gradient of a function can be geometrically interpreted as the direction at which a

function increases the most, and its magnitude by how much. So, as its name implies,
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Gradient Descent consists of calculating the gradient at a non-optimal point xi and taking a

step in the direction opposite to it. A function is then minimized by taking consecutive steps

until a minimum is reached. If the gradient is greater than 0, given a step h = −α df
dx (xi), an

α > 0 is guaranteed to exist such that f (xi + h) < f (xi). If we take an infinite number of

infinitesimal steps, we are guaranteed to eventually land on a point xo where df
dx (xo) = 0,

thus finding a solution to the problem. However, taking an infinite number of steps is not

practical for computers with limited resources, so gradient descent is coupled with strategies

to estimate good step lengths that help the method converge faster. One of such strategies

is the Line Search method.

Line Search Given a descent step h = −α df
dx (xi), the objective of the Line Search method

is to find an α such that, ideally, the function is minimized the most. This is done by

evaluating the function f (xi +h) for different α and choosing the one which shows the most

improvement. One can improve the efficacy of the line search method by using information

of the function and its gradient at the different sampled points. For instance, given two

sampled values of α, α1 and α2, we obtain two evaluations for the function f1 = f (xi + h1)

and f2 = f (xi + h2) with their respective gradients g1 and g2, we can interpolate a one

dimensional function which can approximate the cross-section between the two points along

the step. In practice, a cubic function of the form f (α) ≈ p(α) = a1α
3 + a2α

2 + a3α + a4

is often used and the coefficients a1, a2, a3, a4 are found by solving a linear system using

the the function and gradient information at the two sampled points. This method is known

as inexact Line Search with cubic interpolation, and the next α is found by minimizing the

function p(α).

Convergence Despite its simplicity and the use of a good Line Search method to improve

the performance of Gradient Descent, it is generally outperformed by most modern smooth

convex optimization methods. Gradient Descent is known to converge linearly, making it
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the slowest of the methods presented here.

2.1.2 Newton

The minimum of a multivariate quadratic function can be found directly by solving a system

of linear equations. Suppose a quadratic expression 1
2 x

T Ax + xT b + c = 0, where x is

a vector of unknowns, A is a matrix of coefficients, b is a vector of coefficients and c is

just a scalar. By taking the derivative of that expression, its minimum can be obtained by

solving the linear system Ax + b = 0. Such a system can be solved using a proper computer

algorithm known today depending on the properties of A (e.g., Cholesky factorization for

symmetric definite matrices).

The idea behind Newton is simple. We want to approximate a quadratic function at

a current iteration xi and take a step towards its minimum assuming it is a good approx-

imation of the original function. Using Taylor series expansion, we find that a degree 2

approximation of a function f (x) at a point xi with step h is given by the expression

f (xi + h) ≈ f (xi) + hT g(xi) +
1
2
hTH(xi)h, (2)

where g is the gradient of the function and H is a symmetric matrix that represents the

Hessian (the second derivative) of the function. The optimal step h is then found by solving

the linear system

Hh = −g. (3)

If the original function is quadratic on the unknowns, Newton finds its minimum in a

single step. However, for general non-linear convex functions, Newton requires multiple

steps like Gradient Descent.
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Hessian Definiteness Solving Eq. 3 implies the Hessian H is invertible (has full rank /

all positive eigenvalues). Unfortunately, cases, where the Hessian is not invertible, can be

common. Geometrically, the Hessian may have zeroes in its eigenvalues in regions with

zero curvature (e.g., a straight line) or negative in saddle points. To account for these cases,

the Newton step is usually complemented by an enrichment which regularizes the Hessian,

allowing us to take a step in a descent direction, despite having an ill-defined Hessian. The

updated step enrichment is defined as

(H + αI )h = −g, (4)

where I is the identity matrix and α is a scalar representing a damping parameter. This step

is known as a damped Newton step. Note that for a large enough α, the step h goes more in

the direction of the negative gradient (making it approach a Gradient Descent step), while

an α close to 0 means the Hessian is full rank and need not be regularized. In practice, α is

large at the start of the optimization, when far from the solution, and it becomes 0 towards

the end.

Damped Newton step We start with an initial choice of α > 0. We increase α exponen-

tially for every attempt the combined matrix H + αI is not full rank. Otherwise, we take a

candidate step hc. If f (xi + hc) > f (xi), the step is not a descent direction, so we increase

α and try again. If hc is a descent direction, we can estimate how good the step is. Recall

the quadratic model we built in Eq. 2. We can define a step quality measure as

δ =
f (xi + hc) − f (xi)

hT
c g(xi) +

1
2h

T
c H(xi)hc

, (5)

where the denominator represents an improvement of the function per the quadratic model

and the numerator is the actual improvement. As the ratio gets closer to 1, the function

resembles a quadratic one, thus enabling us to adapt α accordingly.
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Convergence It is well known that Newton converges quadratically, which is much faster

than Gradient Descent (for a function that converges in 10 iterations with Newton, converges

in around 100 iterations for Gradient Descent). It does, however, include the additional cost

of having to compute the Hessian, which can be expensive depending on the function. For

this reason, Newton is usually preferred for functions with a small number of unknowns, or

mostly, for functions with sparse Hessians.

2.1.3 BFGS

In the previous two sections, we introduced two numerical optimization methods, Gradient

Descent, and Newton. We observe that Gradient Descent is fast to compute but slow to

converge and Newton can be fast to converge but requires the computation of a Hessian.

However, there is a way to speed up Gradient Descent using concepts of Newton. Known

as BroydenâĂŞFletcherâĂŞGoldfarbâĂŞShanno algorithms, this optimizer requires only

the gradient while approximating the Hessian after each iteration. For this reason, it is also

known as quasi-Newton methods. Each iteration of BFGS is defined as

Bh = −g, (6)

where B is the accumulated approximation of the Hessian. The approximation of the

Hessian is based on backward finite differences of the gradient as

B(xi+1 − xi) = g(xi+1) − g(xi). (7)

Updating the Hessian We start from an initial approximation B0 which can be the

identity, and for each iteration we update the approximation as Bi+1 = Bi + V , where V is

a matrix. Other desired properties we want for the Hessian is for it to be positive definite

and symmetric. To achieve symmetry, we can have V = αuuT + βvvT , where u, v, α and

9



β are defined as

α =
1

yT
i si

, (8)

β = −
1

sT
i Bi s

, (9)

u = yi, and (10)

v = Bi si, (11)

where si = xi+1 − xi and yi = g(xi+1) − g(xi). In order to achieve positive definiteness,

each step must satisfy constraints known as the Wolfe conditions.

Wolfe Conditions In general, we may be tempted to accept all steps that improve the

function, such that given a step h, f (xi + h) ≤ f (xi). However, to guarantee convergence,

a stronger version of this rule is used, the expression f (xi + h) < f (xi)+ c1g(xi)
Th, where

c1 is a parameter of sufficient decrease between 0 and 1. This rule is known as the Armijo

condition. A condition is also placed on the curvature hT g(xi + h) ≥ c2h
T g(xi), where c2

is a parameter of sufficient decrease for the gradient (hT g(xi) being negative), similar to c1.

Together with the Armijo condition, these 2 are called the Wolfe conditions.

Convergence It can be observed that BFGS starts with a Gradient Descent step, slowly

transitioning into Newton as the optimization progresses. While the method is not as fast as

Newton in terms of the number of iterations required, it is a vast improvement over Gradient

Descent, while only requiring the gradient to operate.
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2.2 Constrained Optimization

In the previous section, we analyzed methods for optimizing functions f (x) without any

given constraints. In this section, we explore optimization methods used to find minima of

functions subjected to equality constraints of the form

argminx f (x) s.t. c(x) = 0, (12)

where c(x) = 0 is the constraint we wish to satisfy. Here, we explore three methods of

enforcing these types of constraints which allow the use of unconstrained optimization

methods.

2.2.1 Merit Functions

Merit functions work by adding penalty terms to the original function when a constraint

c(x) is violated. More specifically, we obtain the minimization problem

argminx r(x) = f (x) + αc(x), (13)

where α is a fixed weight representing the strength of the penalty term. While this method

may bring down the measure of the violation, it does not guarantee the constraint will be

fully enforced. In some cases, this is even desired behavior, such as the case of regularizers,

but in some other cases, more complex solutions are needed.

2.2.2 Lagrange Multipliers

To minimize functions where we want the constraints to be fully satisfied, a commonly used

method is that of Lagrange multipliers, where the function is enriched with an additional
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variable λ. It results in the minimization problem

argminx r(x) = f (x) + λc(x), (14)

whose derivatives with respect to x and λ are

∂ f
∂x
= g(x) + λ

∂c(x)
∂x

, and (15)

∂ f
∂λ
= c(x), (16)

where it is clear that for a λ , 0 that minimizes r(x), also satisfies the constraint c(x) = 0.

This method may be easily generalized to multiple equality constraints r(x) = f (x) +

λ1c1(x) + λ2c2(x) . . . λncn(x) and can be used along with Newton, if the constraints are

convex. The Newton step is defined as

©­­«
H(x) ∂c(x)

∂x

∂c(x)
∂x 0

ª®®¬
©­­«
x

λ

ª®®¬ =
©­­«
−g(x) − ∂c(x)

∂x

−c(x)

ª®®¬ . (17)

2.2.3 Sensitivity Analysis

In the previous two methods, we assumed that the constraints may be violated anytime

during the optimization. An alternative approach is to explore the space of solutions

where the constraint is already satisfied. In this section, we present the sensitivity analysis

(Spivak [54]) method, and more specifically, sensitivity analysis by the implicit function

theorem (IFT) for equality constraints. IFT states, that for a function f (x, p) (x and p both

variables) with equality constraints c(x, p) = 0, there must exist a function x(p) where the

constraint is satisfied. The Jacobian ∂x
∂ p is known as the sensitivity matrix.

While the explicit function x(p) is often hard to find, the sensitivity matrix can be found
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numerically from the fact that dc
d p = 0, given that c(x, p) = 0 is always satisfied. If we take

the full derivative of the constraint c with respect to p we have that

dc
d p
=
∂c

∂ p
+
∂c

∂x

∂x

∂ p
, (18)

which results in the expression for the sensitivity matrix

∂x

∂ p
= −

∂c

∂x

−1 ∂c

∂ p
. (19)

With this in mind, we look at the minimization problem

argminx,p f (x, p) s.t. c(x, p) = 0. (20)

At any iteration, for any given pi we can find xk such that c(xk, pi) = 0. Such a problem

can be solved using any unconstrained optimization method mentioned here. Given that

changes of x are attached to changes of p, we minimize the function f with respect to p.

The gradient of f with respect to p is therefore defined as

df
d p
=
∂ f
∂ p
+
∂x

∂ p

T ∂ f
∂x
, (21)

where the matrix ∂x
∂ p is the one from Eq. 19.
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Chapter 3

Finite Element Method

The Finite Element Method is a popular choice for numerically solving systems of partial

differential equations, such as elasticity. It generally works by approximating the system

into a set of smaller, simpler elements for which the solution is known. In this chapter, we

provide an overview on how to handle these elements, and how to use them to simulate

elastic objects.

In order to approximate finite elements to a space, we first need to define methods to

approximate a set of functions to another continuous functions, and also to partial differential

equations. These methods are explored in Sec. 3.1. In Sec. 3.2, we explore how these finite

elements can be used to approximate elastic objects and deformations (as in Zienkiewicz et

al. [70]).

3.1 Approximation of Functions

In this section we explore how to approximate continuous functions by a set of different

functions. Two equivalent ways to do this, known as the Least-Squares approximation, and

the Galerkin projection method, are presented in Sec. 3.1.1 (Rencher [45]), and Sec. 3.1.2

respectively. In Sec. 3.1.3 we explore how to approximate a function using finite elements
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with the method exposed in Sec. 3.1.2. In Sec. 3.1.4, we show how to transform a PDE

problem into an energy minimization problem (Farlow [21]), to solve it with finite elements.

3.1.1 Least-Squares method

The least-squares approximation method is commonly used to fit a polynomial function

to a set of data points. Given a set of data points p1, p2...pm ∈ R
2, we want to find the

coefficients a1...ak of a polynomial of the form f (x) = a1 f1(x) + a2 f2(x) + ... + ak fk(x)

such that the sum of the squared errors between the function and the points is minimized.

We define the error function as

e =
m∑

i=1
( f (pix ) − piy )

2, (22)

where pix and piy are the x and y coordinates for the i-eth point respectively. To minimize

this function, we take its first derivative with respect to the vector of coefficients x and make

it equal to 0. Since e is a quadratic function the derivative results in a set of linear functions

of the form Ax = b with dimensions m × k,

©­­­­­«
f1(p1x ) . . . fk(p1x )

...
. . .

...

f1(pmx ) . . . fk(pmx )

ª®®®®®¬
©­­­­­«
a1
...

ak

ª®®®®®¬
=

©­­­­­«
p1y
...

pmy

ª®®®®®¬
. (23)

In practice, m > k most of the time, which results in an over-constrained system. The

coefficients can be obtained using the pseudo-inverse a = (AT A)−1AT r.

For example, let’s say we want to find the function of the form f (x) = a1x2 + a2x

that best fits the points p = (0, 0), (0.5, 0.4794), (1, 0.8414) which were generated using the
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Figure 1: Optimized quadratic function f (x) = −0.2348x2 + 1.0762x that interpolates the
points (0, 0), (0.5, 0.4794), (1, 0.8414).

function sin(x). We obtain the system

©­­­­­«
02 0

0.52 0.5

12 1

ª®®®®®¬
©­­«
a1

a2

ª®®¬ =
©­­­­­«

0

0.4794

0.8414

ª®®®®®¬
. (24)

Solving for the coefficients, we get a1 = −0.2348, a2 = 1.0762 resulting in the optimized

function f (x) = −0.2348x2 + 1.0762x (Fig. 1).

The method presented above can be described as a least-squares approximation of

discrete functions. However, we are more interested in the approximation of continuous

functions. To achieve this, the discrete least-squares formulation is turned into the more

general

e =
∫ x1

x0

( f (x) − g(x))2dx, (25)
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(a) Quadratic function approximated to the
function g(x) = sin(x) between the interval
[0..1].

(b) Quadratic function approximated to the
function g(x) = sin(x) between the interval
[0..2].

Figure 2: Least-squares continuous approximation within two different intervals.

where we want to find the coefficients a = a1..ak of the function f that best approximates

the function g within the intervals x0 and x1.

In this case, we take the partial derivatives and set them to 0 giving a linear system of k

equations for k unknowns.

For example, let’s approximate the function g(x) = sin(x) by the function f (x) =

a1x2 + a2x between two different intervals, [0..1] and [0..2].

We obtain two different linear systems for the two intervals

©­­«
∂
∫ 1

0 (a1 x2+a2 x−sin(x))2dx
∂a1

∂
∫ 1

0 (a1 x2+a2 x−sin(x))2dx
∂a2

ª®®¬ =
©­­«
0

0

ª®®¬ , and
©­­«
∂
∫ 2

0 (a1 x2+a2(x)−sin(x))2dx
∂a1

∂
∫ 2

0 (a1 x2+a2(x)−sin(x))2dx
∂a2

ª®®¬ =
©­­«
0

0

ª®®¬ . (26)

Solving for the coefficients, we get for the interval x = [0..1], a1 = −0.2105, a2 =

1.06144 which are almost the same as in the discrete setting with the 3 points. In the case

of the second interval x = [0..2] we get the coefficients a1 = −0.357262, a2 = 1.1889 (Fig:

2).
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3.1.2 Galerkin Method

To better understand the Galerkin or projection method for functions, it is helpful to look

first at how it works with vectors.

Let’s say we want to find the closest point of a point p ∈ R3 to the plane spanned by

the vectors b1, b2 ∈ R
3. One way to solve this problem is to find the shortest distance

using the least-squares method. In that sense, we want to find coefficients a1, a2 such that

e = ‖a1b1 + a2b2 − p‖22 is minimized. From the previous section, we knowwe can compute

the derivatives and find a solution.

However, it can be easily observed that the shortest distance from p to the plane is

the one that goes in the orthogonal direction from the plane. This also means that the

direction which is the shortest is orthogonal to both b1 and b2. With this information, we

can reformulate this problem.

Find the coefficients a1 and a2 such that:

(p − a1b1 − a2b2) · b1 = 0, (27)

and

(p − a1b1 − a2b2) · b2 = 0, (28)

where we are asking the projected point on the plane p − a1b1 − a2b2 to be orthogonal

to both the bases of the plane b1 and b2 by making the dot product be 0. This results in

a system of 2 equations with 2 unknowns which is linear. This method is known as the

Galerkin approximation or the projection method.

For example, let’s try to find the projection of the point p = (1, 1, 1) to the plane spanned

by the vectors b1 = (0, 1, 1), b2 = (1,−1, 0). We set the systems of equations and solve for
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Figure 3: Projection of the point p = (1, 1, 1) onto the plane spanned by the vectors
b1 = (0, 1, 1) and b2 = (1,−1, 0).

a1 and a2 as described by

©­­­­­«
1 − 0a1 − 1a2

1 − 1a1 − (−1)a2

1 − 1a1 − 0a2

ª®®®®®¬
·

©­­­­­«
0

1

1

ª®®®®®¬
= 0, (29)

and

©­­­­­«
1 − 0a1 − 1a2

1 − 1a1 − (−1)a2

1 − 1a1 − 0a2

ª®®®®®¬
·

©­­­­­«
1

−1

0

ª®®®®®¬
= 0. (30)

This gives the linear system of equations

©­­«
−2 1

1 −2

ª®®¬
©­­«
a1

a2

ª®®¬ =
©­­«
−2

0

ª®®¬ , (31)

which can be easily solved to give the coefficients a1 =
4
3, a2 =

2
3 and the optimal projected

point pb =
4
3 (0, 1, 1) +

2
3 (1,−1, 0) = (23,

2
3,

4
3 ) (Fig. 3).

There is a couple of things to say about this example. First, we can think of the

coefficients a1, a2 as a parameterization in the space of the basis vectors.

19



Second, notice that the basis vectors are not orthonormal among them. Even though

we can find a valid solution, it is often desired to have orthonormality among the bases

for numerical stability. For example, suppose we have bases b1 and b2 that define the

same plane but are very close to each other. If we desire to define a plane point using the

coefficients a1, a2 it can be observed that small perturbations of the point in 3D can result

in big changes for the coefficients.

In our above example, we can achieve orthonormality by simply normalizing the basis

vectors b̂1 =
b1
‖b1‖

, b̂2 =
b2
‖b2‖

and replacing the second one with a vector lying on the same

plane but orthogonal to b1 by using the cross-product b̂3 = b̂1 × b̂2 × b̂1, giving the new set

of basis vectors (b̂1, b̂3).

Galerkin approximation for functions

From the vector case, we can see that we need an equivalent version of the dot product for

the case of functions. This is called the inner product and is defined as

∫ b

a
f (x)g(x)dx, (32)

where a, b represent the boundary of the domain, and f (x) and g(x) are the functions. Then,

if we have a function f (x) and a set of basis functions (g1(x), g2(x), ..., gn(x)) we can define

the Galerkin approximation as the system of equations
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∫ b

a
( f (x) −

n∑
i

aigi(x))(g1(x))dx = 0, (33)∫ b

a
( f (x) −

n∑
i

aigi(x))(g2(x))dx = 0, (34)

.., (35)∫ b

a
( f (x) −

n∑
i

aigi(x))(gn(x))dx = 0, (36)

where we have the approximated function
∑n

i aigi(x) and the residual ( f (x) −
∑n

i aigi(x))

to be orthogonal to every basis function gi(x). This is the same as projecting the function

f (x) to the space spanned by the functions g(1)..g(n).

As an example, we can approximate the function f (x) = sin(x) again with the functions

g1(x) = x2 and g2(x) = x between the interval [0..2] as in the least-squares example.

The approximated function then would be g(x) = a1x2 + a2x and the residual r(x) =

sin(x) − a1x2 − a2x. Projecting using the Galerkin method gives the equations

∫ 2

0
(sin(x) − a1x2 − a2x)x2dx = 0, and (37)∫ 2

0
(sin(x) − a1x2 − a2x)xdx = 0. (38)

Rearranged, this gives us the linear system

©­­«
∫ 2

0 x4dx
∫ 2

0 x3dx∫ 2
0 x3dx

∫ 2
0 x2dx

ª®®¬
©­­«
a1

a2

ª®®¬ =
©­­«
∫ 2

0 x2sin(x)dx∫ 2
0 xsin(x)dx.

ª®®¬ (39)

Solving this system gives the coefficients a1 = −0.357262, a2 = 1.1889, which is

the same result as the least-squares method. The least-squares method and the Galerkin
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approximation are equivalent, however, it can be seen that the second is easier to compute.

As in the vector approximation, to obtain stable approximations of functions it is prefer-

able to use orthogonal bases. In this case, x and x2 are not orthogonal in the domain

0..2.

3.1.3 Lagrange Polynomials and Finite Elements

Up until now, we have considered approximations of functions by a single continuous

function. While this is fine for simple functions, real-world problems are often defined by

more complex functions. One may be tempted to use higher-order polynomials to solve

these kinds of problems but it usually results in unwanted oscillations. In practice, it is

often preferred to use polynomials with degrees as low as possible and achieve complexity

differently.

Lagrange interpolating polynomials are polynomials of degree n which interpolates a

given set of n + 1 points. It is defined as

L(x) =
∑

i

Ni(x)yi, (40)

where the group of Ni are known as Lagrangian bases defined as

Ni(x) =
∏

0≤ j≤i,i, j

x − x j

xi − x j
, (41)

where each pair of (xi, yi) represents a point the polynomial interpolates.

Linear Lagrange polynomials

The simplest Lagrange polynomial is the linear interpolation function L(x) = (1−N)y0+Ny1

which interpolates two points (x0, y0), (x1, y1) with a linear basis function N = x−x0
x1−x0

.

For example, finding the a line that goes through the points (0, 0), (1, 2) can be found
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Figure 4: Approximating the sine function with three linear Lagrange polynomials.

by replacing the corresponding values in L(x) which gives us the expression L(x) =

0(1 − x−0
1−0 ) + 2 x−0

1−0 . Simplified, we obtain the expected trivial function L(x) = 2x.

On its own, a single Lagrange polynomial is as powerful as a standard polynomial,

but the ability to control the interpolating points opens the possibility of stitching multiple

polynomials together in a piece-wise manner to approximate more complex functions. This

segmentation of a function intomultiple low degree polynomials is known as finite elements.

For instance, consider the example f (x) = sin(x) again within the range 0..2. Let’s say

wewant to approximate that function using three equally spaced piece-wise linear functions,

thus obtaining the samples x0 = 0, x1 =
2
3, x2 =

4
3, x3 = 2. With these samples, we can

generate the interpolating points p = {(x0, f (x0)), (x1, f (x1)), (x2, f (x2)), (x3, f (x3))} and fit

each segment with the polynomials

L1(x) =
(
1 −

x − x0
x1 − x0

)
f (x0) +

x − x0
x1 − x0

f (x1), (42)

L2(x) =
(
1 −

x − x1
x2 − x1

)
f (x1) +

x − x1
x2 − x1

f (x2), and (43)

L3(x) =
(
1 −

x − x2
x3 − x2

)
f (x2) +

x − x2
x3 − x2

f (x3). (44)
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Alternatively, the function can also be approximated using the Galerkin method. Let’s

say we divide the function into two equally spaced segments L1 which ranges from 0 to 1

and L2 that ranges from 1 to 2. We obtain the expressions

N0 =

(
1 −

x − x0
x1 − x0

)
, (45)

N1 =
x − x0
x1 − x0

, (46)

N2 =

(
1 −

x − x1
x2 − x1

)
, (47)

N3 =
x − x1
x2 − x1

, (48)

L1(x) = N0y0 + N1y1, and (49)

L2(x) = N2y1 + N3y2, (50)

as seen in Fig. 4.

Notice we no longer interpolate through the function points f (x0), f (x1), f (x2). Instead,

we are going use those weights y0, y1, y2 as unknowns to find a fit that best approximates

the function in a least-squares sense. It should also be noted that the weight y1 shares two

basis functions N1, N2. If we project using the Galerkin method on the bases N0, N1, N2, N3,

we obtain in matrix form the expression

©­­­­­«
∫ 1

0 N0N0
∫ 1

0 N0N1 0∫ 1
0 N1N0

∫ 1
0 N1N1 +

∫ 2
1 N2N2

∫ 2
1 N2N3

0
∫ 1

0 N3N2
∫ 2

1 N3N3

ª®®®®®¬
©­­­­­«
y0

y1

y2

ª®®®®®¬
=

©­­­­­«
∫ 1

0 N0sin(x)∫ 1
0 N1sin(x) +

∫ 2
1 N2sin(x)∫ 2

1 N3sin(x)

ª®®®®®¬
, (51)

which can be easily solved for the unknowns giving the result exposed in Fig. 5.
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Figure 5: Approximating the sine function with two linear Lagrange polynomials using the
Galerkin method.

Lagrange Polynomials in higher dimensions

Hardly any real-world problem is 1-dimensional. Problems that concern us are mostly

3-dimensional and sometimes 2-dimensional. 1-dimensional definitions while not useful in

practice, often help clarify concepts.

Fortunately, Lagrange polynomials are easily extensible to support multiple dimensions.

Consider the line segment we have defined with a single function x =
∑

i Ni xi. If we add in

an additional function y =
∑

i Niyi, where y is orthogonal to x with the same basis function,

suddenly we have a 2-dimensional line segment with the same bases. If we add yet another

function z =
∑

i Nizi, z orthogonal to both x and y, we have a 3-dimensional line expressed

as a parametric vector

p3D(N) =

©­­­­­«
(1 − N)x0 + N x1

(1 − N)y0 + Ny1

(1 − N)z0 + Nz1

ª®®®®®¬
, (52)

with 0 ≤ N ≤ 1.

Representing lines in 2D and 3D, while useful, is still not sufficient to completely

represent objects geometrically in higher dimensions as they only allow us to interpolate

25



(a) Linear Triangle. (b) Linear Tetrahedron.

Figure 6: Visualization of a linear triangle and a linear tetrahedron.

length. A complete definition would allow us to interpolate areas and volumes in 2D and

3D respectively.

The linear triangle

To interpolate areas we can rely on the linear triangle (Fig. 6a), which is the equivalent of

Lagrange polynomials in 2D.Where lines had one basis function and interpolated two points,

a triangle has two and interpolates three points. A linear triangle is defined parametrically

as


X

Y

1


=


p0x p1x p2x

p0y p1y p2y

1 1 1




N1

N2

1 − N1 − N2


, (53)

where N1 and N2 are independent variables such that 0 ≤ N1, N2 ≤ 1 and N1 + N2 = 1. If

the triangle is well formed (points are not co-linear and distinct) the matrix is invertible and

there is a 1-to-1 relationship between N and p.
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The interpolation variables are also commonly expressed as barycentric coordinates and

setting them to N1 =
1
2, N2 =

1
2 results in the barycenter of the triangle. The determinant of

the matrix is twice the area of the triangle.

Notice that the third row is full of ones. This is to ensure that the barycentric coordinates

add up to one and allows the triangle to be represented in homogeneous coordinates. If we

translate the triangle to the origin, we get the simplified expression


X

Y

 =


p1x − p0x p2x − p0x

p1y − p0y p2y − p0y




N1

N2

 , (54)

which gives the same mapping.

It is also possible to extend the triangle basis functions to 3D as done with the line. It

is enough just to add the additional linear function at the last row of the system as


X

Y

Z


=


p1x − p0x p2x − p0x

p1y − p0y p2y − p0y

p1z − p0z p2z − p0z




N1

N2

 . (55)

Notice that while we can map any barycentric coordinate to a unique point in 3D, the

inverse is not true. With this system, any point lying on a line perpendicular to the plane of

the triangle gets mapped to the same set of barycentric coordinates.

The linear tetrahedron

To interpolate volumes, we may use the linear tetrahedron (Fig. 6b), which consists of three

parametric variables and interpolates four points linearly in space.

The basis functions of the tetrahedron are expressed in non-homogeneous coordinates
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as


X

Y

Z


=


p1x − p0x p2x − p0x p3x − p0x

p1y − p0y p2y − p0y p3y − p0y

p1z − p0z p2z − p0z p3z − p0z




N1

N2

N3


, (56)

where N1, N2, N3 are the barycentric coordinates of the tetrahedron and N1 + N2 + N3 = 1.

The matrix is invertible as long as the four points are not co-planar.

The barycenter of the tetrahedron is obtained by setting the barycentric coordinates to

N1 =
1
3, N2 =

1
3, N3 =

1
3 . Its volume is one twelfth of the determinant of the matrix.

3.1.4 Solving PDEs

Partial differential equations are expressions that combine functions with multiple variables

and their derivatives. The order of a PDE is determined by the degree of the highest

derivative. For example ∇u = 0 (where ∇ = ∂
∂x ), is a first-order differential equation while

∇ · ∇u + ∇u = 0 is a second-order differential equation. Solving a PDE means finding an

expression of the form u(x), where x is the variable.

PDEs with a single variable are usually referred to as ordinary differential equations

(ODE) and are sometimes easier to solve than PDEs.

Examples of ODEs include the Laplace equation∆u = ∇2u = 0 and the Poisson equation

∆u = ∇2u = b. These equations are often used to model complex physical phenomena such

as the behavior of fluids or elasticity in solids.

An ODE becomes a PDE once additional independent variables are added to the system.

For example, the Laplace equation becomes a PDE if additional spatial variables are added.

Thus, the PDE ∂2u
∂x2 +

∂2u
∂y2 = 0 represents the Laplacian equation for two dimensions. To

facilitate notation of PDEs, derivatives of u are often represented as subscripts, so the

previous equation becomes uxx + uyy = 0.
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Let’s say we want to solve the ODE uxx = 0. As it can be observed, any linear equation

of the form u(x) = ax + b satisfies the constraints. However, if we want to further restrain

the space of solutions, we can do it through the enforcement of boundary conditions. These

conditions may be applied to the function itself u(a) = b, in which case it is called a

Dirichlet boundary condition or to its derivative u′(a) = b, in which case it is called a

Neumann boundary condition. There exist more, but we will focus on these two.

Suppose now we want to find now the solution to the ODE uxx = 0 subject to the

Neumann boundary condition u′(0) = 2 and the Dirichlet boundary condition u(0) = 1. If

the expression is integrated once, we obtain the expression ux = c1, where c1 is a constant.

To enforce the first boundary condition, it suffices to set c1 = 2. Integrating once again,

we obatin the expression u(x) = 2x + c2. Setting c2 = 1 satisfies the second boundary

condition, which leaves u(x) = 2x + 1 as the unique solution to the ODE.

While the previous differential equation was easy to solve, it is hardly the case for most

of the ODEs and even less for PDEs where analytical solutions may not even be possible.

This is where finite element approximation becomes particularly useful.

Weak form

Consider the ODE uxx = −sin(x), with x = [0..2] and with Dirichlet boundary conditions

u(0) = sin(0), u(2) = sin(2), which has the obvious solution u(x) = sin(x), but whose

solution we want to find using linear finite elements.

The first obstacle to finding a solution comes right away since linear finite elements’

second derivative is always 0, which means we can not solve the ODE in this form.

A common technique consists in transforming the high order differential equation into a

lower one by multiplying the expression by so called "test functions" (v(x)) and integrating
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in the domain, the ODE becomes
∫
Ω
v(x)uxx = −

∫
Ω
v(x)sin(x). Integrating by parts gives

v(x)ux |Ω =

∫
Ω

vxux +

∫
Ω

v(x)uxx, (57)

which rearranged reads

∫
Ω

v(x)uxx = v(x)ux |Ω −

∫
Ω

vxux . (58)

In the resulting expression v(x)ux |Ω −
∫
Ω
vxux = −

∫
Ω
v(x)sin(x) we have successfully

transformed a second-order ODE into a first-order ODE. This expression is known as the

weak form, as the initial requirement for a second-order ODE (strong form) has been

weakened to a first-order ODE.

It can also be observed that the expression looks familiar to a Galerkin projection,

which means that we have transformed a constrained problem into an energy minimization

problem. It should also be noted that both forms, strong and weak are equivalent and the

weak form provides exact solutions for specific functions.

Now, that the problem only requires first derivatives, we can define our approximation

of u(x) using finite elements. Thus, u(x) ≈
∑

i Ni(x)ûi. While many choices for v(x) exist,

the most common one is simply to use the Lagrangian basis functions. Notice also, that

under this approximation ux ≈
∂N
∂x û since û is just some set of weights independent of x.

In the literature, B = ∂N
∂x is used to simplify notation. Finally, the expression v(x)ux |Ω

vanishes and replacing the values in the ODE, we are left with the simplified expression in

matrix form

−

∫
Ω

BTBû = −

∫
Ω

N sin(x), (59)

where we can solve for the weights û, now considered nodes. In this specific case, since we

are using linear elements, the left matrix of this equation is constant on x, and the solution
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Figure 7: Linear lagrangian basis functions for nodes 2 and 3. The red lines correspond to
the basis functions where it is 1 for node 2 and the blue lines where the functions are 1 for
node 3.

is found just by solving a system of the type Ax = b. For non-linear elements, an iterative

procedure can be used, such as Newton.

Boundary constraints can be enforced either by using an Augmented Lagrangian model

or a combination of hard constraints and soft constraints.

Vanishing boundary integral

To understand how the expression v(x)ux |Ω vanishes, it is necessary to look at how the

Lagrange basis functions work. If we consider the value of the Lagrangian bases at the

nodes, we can observe that two basis functions meet at the value of 1 for a node, taking the

value of 0 for all the other nodes. This behavior is illustrated in Fig. 7.

For example, the basis functions N21 =
x−p1
p2−p1

and N22 = 1− x−p2
p3−p2

are the two contributors

to node 2. If we sum their contributions we get

v(x)ux |Ω ≈ ux v̂
x − p1
p2 − p1

�����p2

p1

+ ux v̂

(
1 −

x − p2
p3 − p2

)�����p3

p2

, (60)

where after replacing the integral limits we get the simplified expression

v(x)ux |Ω ≈ ux v̂ − ux v̂ = 0. (61)
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(a) Approximation of the ODE ∆x = −sin(x)
with 2 elements compared to the analytical
solution sin(x).

(b) Comparison of the derivative of each ele-
ment to the analytical derivative cos(x).

Figure 8: Finite element solution with 2 elements.

(a) Approximation of the ODE ∆u = −sin(x)
with 5 elements compared to the analytical
solution sin(x).

(b) Comparison of the derivative of each ele-
ment to the analytical derivative cos(x).

Figure 9: Finite element solution with 5 elements.

Numerical examples

In this section, we offer two numerical examples for the ODE with 2 and 5 elements.

For 2 elements we obtain the system

©­­­­­«
1 0 0

−1 2 −1

0 0 1

ª®®®®®¬
©­­­­­«
y0

y1

y2

ª®®®®®¬
=

©­­­­­«
0

0.841471

0.909297

ª®®®®®¬
, (62)

where the first row and last row of the matrix are set to identity, with the first row and last

row of the right side set to sin(0) and sin(2) respectively to enforce the boundary conditions.

Essentially, we are looking for the missing value of y1. The result is illustrated in Fig. 8.

If we approximate the ODE with 5 elements, we obtain
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©­­­­­­­­­­­­­­­«

1 0 0 0 0 0

−2.5 5 −2.5 0 0 0

0 −2.5 5 −2.5 0 0

0 0 −2.5 5 −2.5 0

0 0 0 −2.5 5 −2.5

0 0 0 0 0 1

ª®®®®®®®®®®®®®®®¬

©­­­­­­­­­­­­­­­«

y0

y1

y2

y3

y4

y5

ª®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­«

0

0.389418

0.717356

0.932039

0.999574

0.909297

ª®®®®®®®®®®®®®®®¬

, (63)

where again the first and last rows are constrained to enforce the boundary constraints.

By looking at this example, we can see a pattern starts to emerge. Each row of the non-

constrained nodes has exactly 3 elements, in fact, it is a tridiagonal matrix. If we increase

the number of elements, this pattern would still be maintained.

A better way of enforcing the boundary constraints is to eliminate the rows and columns

of the fixed nodes and modifying the right side accordingly. In this way, we can keep a

symmetric PSD matrix on the left side and use a sparse solver such as Cholesky for a large

number of elements.

The solution to this system is illustrated in Fig. 9.

Notice how increasing the number of elements, increases the accuracy of the solution.

3.2 Elasticity

Elasticity is the ability of an object to keep its original shape under external pressure. The

most basic mathematical definition of elasticity is given by Hooke’s Law, which establishes

a linear relationship between the deformation of a body and the forces acting on it. It is

mostly known for describing the behavior of springs with the expression

F = −k∆x, (64)
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where F is the force acting on the spring, ∆x is the deformation suffered by the spring and

k is a stiffness constant. See that for ∆x = 0 the force vanishes as there is no deformation.

We can say then that the force on a spring depends on a deformed configuration x and some

undeformed configuration X unique to a spring such that F = −k(x − X).

The stiffness constant depends on both the length and the material of the spring. For

instance, if we take two springs of different lengths but same material, and extend each one

by 10%, we should expect to have the same resulting force for both springs. However, this

does not hold if both springs have the same stiffness constant. A better way of representing

the stiffness of the spring is by replacing the constant with the expression k = E
l0
, where E

is known as the Young modulus, which represents the true stiffness of the material and l0 is

the initial length of the spring. We get the expression

F =
E
l0
(x − X). (65)

There is still a couple of issues with that last expression. First, it assumes the spring does

not have a mass and the forces only affect the endpoint of the spring. It is very common to

find basic physics examples where a mass is attached to the end of the spring and the student

is asked to find the deformation of the spring under gravity, disregarding the mass of the

spring. However, it is in our interest to study the deformation of the spring on its entirety as

a continuous mechanical body. For that purpose, the field of continuum mechanics exists.

Continuum mechanics

To find the deformation of the massless spring with a mass of attached to its end, we can

just compute using mg = E
l0
∆x, where m is the mass of the attached object and g is a

constant representing gravity. Now, if we change the problem and say we want to find the

deformation of a spring with total mass equal to that of the attached object and let it hang by

itself under gravity. We need a different expression, which is given in the form of a known
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ODE

−E∆u = −E
∂2u
∂X2 = b, (66)

where E is the Young modulus (keeping in mind we are still in 1D), u is a displacement field

(x − X given that x and X are continuous quantities) and b is a force field. So, in continuum

mechanics, Hooke’s law of elasticity takes the form of a Poisson equation multiplied by a

constant.

Now, if we want to find the solution to our problem, we have gravity as the force field

and we get the expression

E∆u = ρg. (67)

Notice that since we are dealing with infinitesimal values, instead of considering the

total mass of the spring, we consider the density at a point of the spring ρ.

Let’s now compare the result of a massless spring with an attached mass of m = 1, with

that of a heavy spring (Essen and Nordmark [19]) with a total mass of m = 1 (uniform

density), both deformed under gravity and with E = 1 and length l0 = 1.

For the first case, we get simply ∆x = g, meaning the total deformation is equal to the

gravity. In the second case, solving the ODE gives u(X) = ρgl0X − ρgX2

2 |
l0
0 =

g
2 (enforcing

the boundary condition du
dX (l0) = 0), which is half as much as the spring with the mass

attached.

Strain

The second issue is how deformation is measured. At first glance, x− X may seem a logical

choice, but consider what would happen if we want to translate the deformed spring to a

different point in space. Applying the current formula would count that translation to be
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part of the deformation. This is of course unwanted behavior. A better choice consists on

expressing the deformed configuration as a function of the undeformed configuration x(X)

and let the deformation be ε = ∂x
∂X − 1, or in terms of the displacements as ε = ∂u

∂X . This

newly introduced value ε is known as strain, which quantifies the deformation of a body.

The quantity ∂x
∂X is known as the deformation gradient.

If we move to higher dimensions, we find new kinds of deformations that are not the

result of elongation nor compression. For example, in 2D we may change the shape of an

object in a way that its area does not change. Such deformations are known as shear strain.

A material that only experiences shear deformation without affecting its area or volume is

said to be incompressible.

In addition to shear deformations, it can be observed that elongation can happen in

different directions. For this reason strain in higher dimensions is expressed as a tensor

rather than a value.

In 2D the strain tensor can be expressed in two ways, as a 2 × 2 matrix or as a 3-

dimensional vector

ε =


εxx εxy

εyx εyy

 , or ε =

εxx

εyy

2εxy


, (68)

where εxx and εyy are the directional strains, and εxy and εyx are the shear strains.

Observe that the tensor assumes that εxy = εyx making the tensor symmetric. This is a

requirement to guarantee force equilibrium.

It can also be observed that having the strain be ε = ∂u
∂X does not satisfy the symmetry

requirement. In order to have a symmetric tensor, we may use Cauchy’s strain tensor,
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(a) Undeformed configuration (X,Y ).
(b) Deformed configuration (x = X + Y, y =
Y ).

Figure 10: A 2-dimensional square experiencing simple shear deformation.

defined as

ε =
1
2

(
∂u

∂X
+
∂u

∂X

T )
, (69)

which is a linear truncation of the quadratic strain tensor whose properties will be exposed

in section 3.2.2.

For example consider the case of a square under simple shear deformation (x = X+Y, y =

Y ) as illustrated in Fig. 10. If we compute the strain as ε = ∂u
∂X =

∂x
∂X − I2, where I2 is the

2 × 2 identity matrix, we obtain the tensor

ε =


0 0

1 0

 , (70)

which properly captures the shear deformation but is not symmetric. Using the linear

Cauchy’s strain tensor we get

ε =


0 1

2

1
2 0

 , (71)

which captures shear deformation and is symmetric.
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In 3D, the tensor takes the form of a 3 × 3 matrix or a 6-dimensional vector

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


, or ε =



εxx

εyy

εzz

2εxy

2εxz

2εyz



, (72)

where we have the directional strains εxx, εyy, εzz and the shear strains εxy, εxz, εyz. The tensor

is also symmetric in this case as it is in 2D and therefore εxy = εyx, εxz = εzx, εyz = εzy.

Stress

While strain quantifies the deformation, stress is the force generated by such deformation

and is represented by the Greek letter σ.

We saw that Hooke’s Law establishes a linear relationship between stress and strain

where the rate of change is the Young modulus. Under the new terminology, Hooke’s Law

is defined as

σ = Eε, (73)

where E is the Young modulus.

Moving to 2D, we have to introduce the concept of anisotropy. A material may expe-

rience forces of different magnitudes for the same stretch applied in different directions.

Consider for example woven fabric; The material is stiffer in the direction the fabric was

woven.

Isotropic materials define the simplest form of anisotropy. They encompass all the

materials that react with the same force for the same stretch regardless of the direction. So,
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for example, if we have the two directional stresses σxx = Exεxx and σyy = Eyεyy, it is clear

that for an isotropic material Ex = Ey.

Another behavior to be considered is the effect of stretching in one direction has in the

other directions. Many materials, when stretched tend to compensate by compressing in

the other directions.

This behavior is captured mathematically by the Poisson’s ratio ν, which takes values

between −1 and 1
2 . A negative value means that if a material is compressed in one direction,

it will also compress in the other directions; this is common in certain types of foams. If

it takes a positive value, tensile forces are experienced in the other directions for a given

compressive force in one direction. Finally, there is the special case of 1
2 which means the

material is completely incompressible. If the material is compressed in one direction it will

stretch in the other directions in a way that the object conserves its volume.

In vector form, Hooke’s Law for isotropic materials in 2D is expressed as

σ =
E

1 − ν2


1 −ν 0

−ν 1 0

0 0 1−ν
2



εxx

εyy

2εxy


. (74)

As is the case with strain, the stress tensor is also a symmetric matrix.

In 3D, Hooke’s Law for isotropic materials is given by

σ =
E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1
2 − ν 0 0

0 0 0 0 1
2 − ν 0

0 0 0 0 0 1
2 − ν





εxx

εyy

εzz

2εxy

2εxz

2εyz



. (75)
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For orthotropic and anisotropic cases a corresponding 3×3 material matrix for 2D and a

6× 6 material for 3D can be formulated with their corresponding material parameters given

the level of anisotropy. For simplicity, we only consider isotropic materials for Hooke’s

Law.

3.2.1 Linear Elasticity Weak Form

In section 3.1.4 we saw how to obtain the weak form for the Poisson PDE. Given that the

continuous version of Hooke’s Law in 1D is a Poisson PDE multiplied by a constant E , its

weak force derivation is straightforward and expressed for a single segment by

∫
Ω

BT EBû =

∫
Ω

Nb, (76)

where û are the weights representing the discrete node displacements, N are the shape

operators interpolating the displacements (u(X) ≈
∑

i Ni(X)ûi), B is thematrix of derivatives

of the shape functions with respect to the undeformed configuration X , E is the Young

modulus and b are the continuous forces.

To interpolate the displacements in 2D, we can use the linear triangle. Remember that

a linear triangle has 3 interpolation nodes. We need to formulate our strain in a way that is

compatible with our material matrix E of size 3 × 3.

We interpolate the displacement through nodes using the expressions u(X) ≈ N1û1x +

N2û2x + (1−N1−N2)û3x and u(Y ) ≈ N1û1y +N2û2y + (1−N1−N2)û3y where u1, u2 and u3

are the displacements experienced by nodes 1, 2 and 3 respectively. Using Cauchy’s linear

strain tensor
[
ε = 1

2

(
∂u
∂X +

∂u
∂X

T
)]
, we obtain

εxx =
∂ux

∂X
=

[
∂N1
∂X

∂N2
∂X −

∂N1
∂X −

∂N2
∂X

] 
û1x

û2x

û3x


, (77)
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εyy =
∂uy

∂Y
=

[
∂N1
∂Y

∂N2
∂Y −

∂N1
∂Y −

∂N2
∂Y

] 
û1y

û2y

û3y


, (78)

and

εxy =
1
2

(
∂ux

∂Y
+
∂uy

∂X

)
=

1
2

[
∂N1
∂Y

∂N2
∂Y −

∂N1
∂Y −

∂N2
∂Y

] 
û1x

û2x

û3x


+

[
∂N1
∂X

∂N2
∂X −

∂N1
∂X −

∂N2
∂X

] 
û1y

û2y

û3y



(79)

We can rearrange these values as a single system as

ε = Bû =


∂N1
∂X 0 ∂N2

∂X 0 −
∂N1
∂X −

∂N2
∂X 0

0 ∂N1
∂Y 0 ∂N2

∂Y 0 −
∂N1
∂Y −

∂N2
∂Y

∂N1
∂Y

∂N1
∂X

∂N2
∂Y

∂N2
∂X −

∂N1
∂Y −

∂N2
∂Y −

∂N1
∂X −

∂N2
∂X





û1x

û1y

û2x

û2y

û3x

û3y



. (80)

With which we can get the stress vector using the material matrix E.

σ = Eε = EBû (81)

The right part of the equation (
∫
Ω
Nb) is computed as usual. Remember that the shape

functions are linear on X and Y , which means that the strain is constant over the element.
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Figure 11: Mesh with two linear triangles sharing one edge.

With this information, and knowing that
∫
Ω

1 = A, where A is the area of the undeformed

element, we have

ABTEBû =

∫
Ω

Nb. (82)

The resulting 6×6 matrix BTEB is also known as the stiffness matrix (similar definition

to the stiffness coefficient k for springs) and is represented by the symbol K .

A single node may belong to multiple elements since they share edges. Every contribu-

tion of every individual element is added to a global stiffness matrix for every corresponding

shared node.

For example, consider the mesh with two elements in Fig. 11. It contains a total of 4

nodes with the elements e1, e2 sharing a common edge p1, p2. Consider the two stiffness

matrices K1 and K2 for element q and 2 respectively. The matrix K1 has the nodes p0, p1, p2

and K2 the nodes p2, p3, p1.

If we were to divide each stiffness matrix in 9 blocks of 2× 2 for each pair of nodes they
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represent, we would get

K e ûe =


K p0,p0 K p0,p1 K p0,p2

K p1,p0 K p1,p1 K p1,p2

K p2,p0 K p2,p1 K p2,p2



ûp1

ûp2

ûp3


. (83)

And adding all contributions, we get a global stiffness matrix of 8x8 (2 times the number

of nodes) with the structure

K û =



K e1,p0,p0 K e1,p0,p1 K e1,p0,p2 0

K e1,p1,p0 K e1,p1,p1 + K e2,p1,p1 K e1,p1,p2 + K e2,p1,p2 K e2,p1,p3

K e1,p2,p0 K e1,p2,p1 + K e2,p2,p1 K e1,p2,p2 + K e2,p2,p2 K e2,p2,p3

0 K e2,p3,p1 K e2,p3,p2 K e2,p3,p3





ûp0

ûp1

ûp2

ûp3


. (84)

Notice how the blocks that reference only p1 and p2 have each two contributions, while

a block containing p0 and p3 has only one contribution or 0 if they are mutually related,

since element-wise there is no relationship between p0 and p3.

This structure can be expanded to a mesh with multiple elements. If the mesh is highly

regular it can be seen that each node is shared on average by 6 elements. This means the

stiffness matrix is sparse as each row, regardless of size, has on average contributions on 6

blocks of 2 × 2.

Moving on to 3D, we have linear interpolation between the 4 nodes of a tetrahedron.

This gives a stiffness matrix of 12 × 12 (4 nodes x 3 dimensions). With the same process

we used to obtain the strain for the linear triangle, we can get the strain vector for a linear
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tetrahedron which is defined as

Bû =



a1 0 0 a2 0 0 a3 0 0 a4 0 0

0 b1 0 0 b2 0 0 b3 0 0 b4 0

0 0 c1 0 0 c2 0 0 c3 0 0 c4

b1 a1 0 b2 a2 0 b3 a3 0 b4 a4 0

0 c1 b1 0 c2 b2 0 c3 b3 0 c4 b4

c1 0 a1 c2 0 a2 c3 0 a3 c4 0 a4





û1x

û1y

û1z

û2x

û2y

û2z

û3x

û3y

û3z

û4x

û4y

û4z



, (85)

where

a1 =
∂N1
∂X

, a2 =
∂N2
∂X

, a3 =
∂N3
∂X

, a4 = −
∂N1
∂X
−
∂N2
∂X
−
∂N3
∂X

, (86)

b1 =
∂N1
∂Y

, b2 =
∂N2
∂Y

, b3 =
∂N3
∂Y

, b4 = −
∂N1
∂Y
−
∂N2
∂Y
−
∂N3
∂Y

, (87)

and

c1 =
∂N1
∂Z

, c2 =
∂N2
∂Z

, c3 =
∂N3
∂Z

, c4 = −
∂N1
∂Z
−
∂N2
∂Z
−
∂N3
∂Z

. (88)

As was the case with the linear triangle, the left side of the equation is also constant

on the domain for the linear tetrahedron, only in this case we are not interpolating area but
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volume. Our expression for the linear tetrahedron then becomes:

VBTEBû =

∫
Ω

Nb (89)

whereV is the volume of the tetrahedron in the undeformed configuration. The resulting

expression is of the form Ax = b where A = K , where the matrix is symmetric. If

appropriate boundary conditions are enforced, the matrix is also non-singular. Since in this

particular case K does not depend on the weights û, it can be solved in a single step.

In the case of shape functions of higher-order or non-linear stress-strain relationships,

the system can be solved iteratively using Newton-Rhapson or similar.

3.2.2 Strain Measures

In section 3.2.1, we focused on Cauchy’s linear strain tensor to obtain a weak formulation

of the elastic PDE. This strain tensor also receives the name of infinitesimal strain tensor

for the reason that it is only accurate for very small displacements.

Consider the relationship between the undeformed configuration of an object X and its

deformed configuration x. If we use linear shape functions, we obtain the expression

x = FX, (90)

where F is the deformation gradient. This serves to illustrate that the relationship

between the configurations is just a linear function, whichmay include affine transformations

such as rotations, shearing, and scaling. The last two are clear transformations we want to

consider as deformations, but rotation is not one of them. This leads to the main problem

with the infinitesimal strain tensor; it considers rotations to be deformations.

For example, consider the deformation given in Fig. 12. With the undeformed nodes

being p0 = (0, 0), p1 = (1, 0), p2 = (0, 1) and the deformed nodes q0 = (0, 0), q1 =
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(a) Undeformed configuration X .

(b) Deformed configuration x.

Figure 12: A linear triangle where the deformed configuration is a rotation of 90◦ counter-
clockwise.

(0, 2), q2 = (−1, 0) we obtain the deformation gradient

F =


cos 90◦ − sin 90◦

2 sin 90◦ cos 90◦

 =


0 −1

2 0

 , (91)

which is clearly the rotation matrix with the node p1 elongated in one direction. If we

compute the infinitesimal strain tensor from this deformation gradient we get

F =


−1 1

2

1
2 −1

 , (92)

which is inaccurate. The strains εxx and εyy are negative and we also obtain non-zero shear

stress. The expected strain is εxx = 1 and 0 everywhere else.

The question is then, why is the infinitesimal strain tensor useful, to which the answer

is simplicity. Since this tensor is linear, the solution for the displacement weights can

be obtained through a single linear system, therefore it is commonly used in structural

mechanics where deformations are very tiny, such as loading on heavymetals. For materials
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that undergo heavy deformations, finite strain tensors are used instead.

To analyze finite strain tensors it is often useful to separate rotations from the deformation

gradient. This gives the expression

x = Fx = RδX, (93)

where R is a rotation matrix and δ is the actual deformation.

Corotated strain

One way to extract this rotation is by using SVD, which is a method for decomposing a

matrix into its singular values and eigenvectors such that

F = UΣVT, (94)

where U and V are the normalized eigenvectors of F in columns and Σ is a matrix where

the diagonal are the eigenvalues of F. The rigid rotation of F is then defined as

R = VUT . (95)

With this information we can compute a modified deformation gradient which has no

rotation by multiplying the inverse of the rotation matrix

F∗ = RTF, (96)

and compute the linear strain tensor with the new deformation gradient F∗. The resulting

tensor is known as the co-rotated strain tensor.
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In the example above, the rotation matrix is given by

R =


cos 90◦ − sin 90◦

sin 90◦ cos 90◦

 =


0 −1

1 0

 , (97)

which gives the co-rotated deformation gradient

F∗ = RTF =


2 0

0 1

 , (98)

which leads to the wanted strain values.

Green-Lagrange strain tensor

While the co-rotated strain tensor is accurate for finite strains and maintains a linear rela-

tionship between strain and deformation, it is very expensive to compute.

For cases of finite deformations where we are willing to sacrifice the linear relationship

between strain and deformation for computational speed, we can resort to the Green-

Lagrange strain tensor. It is defined as

ε =
1
2

(
FTF − I

)
. (99)

It exploits the fact that rotations of a matrix are eliminated when it is squared, which

can be easily proven.

FTF = (Rδ)T (Rδ) = δTRTRδ = δTδ. (100)

The clear drawback is that the deformation terms are now squared, which is usually

acceptable for common material models.
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If we compute the Green-Lagrange strain from the example above we can see that

FTF =


4 0

0 1

 , (101)

which effectively gets rid of the rotation and the strain tensor:

ε =


3
2 0

0 0

 , (102)

which is not exactly what is expected for εxx assuming a linear strain-deformation relation-

ship but is acceptable for more complex relationships.

3.2.3 Hyper-Elasticity

Until this section, we have only considered materials with linear stress-strain relationships

with the elastic weak form. For problems with complex stress-strain relationships, the use

of a hyper-elastic constitutive model is preferred. The idea is to derive the stress-strain

relationship from a scalar strain energy density function (Holzapfel [25]) per element

ψ =

∫
σdε . (103)

For Hooke’s Law, this expression simplifies to:

ψ =
1
2
εTσ. (104)

The total energy of the element is evaluated as the integral of the strain density over the

domain Ω as

U =
∫
Ω

ψdA. (105)
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With this formulation, the weak form of elasticity can be solved as an energy mini-

mization problem as opposed to solving a system of linear equations. The nodal force is

computed as the derivative of the energy with respect to the deformed nodal vertices q̂ as

f =
∂U
∂ q̂

. (106)

Using the weak form notation, Hooke’s Law hyper-elastic material using linear elements

can be expressed as

U =
1
2
ΩεTσ =

1
2
ΩûTBTEBû, (107)

where Ω is the area or volume of the element in case we are using 2D or 3D elements.

If we obtain the forces from Eq. 107 for the 2D case, the weak form of Eq. 82 is

obtained. That is to say,

f =
∂U
∂ q̂
= ABTEBû, (108)

keeping in mind that the nodal displacements are computed as û = q̂ − p̂.

Hooke’s Law can also be expressed in terms of the strain tensor in what is known as the

Saint-Venant Kirchhoff (StVK) hyper-elastic material, whose strain energy density function

is defined as

ψ =
1
2
λtr(ε )2 + µtr(ε2), (109)

where ε is a strain tensor (e.g. Green-Lagrange tensor). This last equation introduces two

new material parameters λ and µ. They are known as the Lame parameters. A direct

relationship exists between these parameters and the known Young and Poisson’s ratio
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(E, ν). This relationship is expressed as

λ = Eν
(1+ν)(1−2ν)

µ = E
2(1+ν)

. (110)

3.2.4 Stress Measures

With the definition of the hyper-elastic energy, we saw that we could compute the nodal

forces as the derivative of the strain energy. However, we can also compute per-element

measures that help analyze internal stresses. These measures are expressed in the form of

tensors. Given a direction vector in a given frame of reference, the stress tensor relates a

traction vector in a certain frame of reference to the given direction.

The most commonly used measure is the Cauchy stress tensor. This tensor relates trac-

tions in the deformed configuration to a direction also given in the deformed configuration.

Since we are usually interested in analyzing stresses in the deformed configuration, this

tensor is also known as true stress σ. This tensor is derived from the strain energy density

function with respect to the deformation gradient as

σ =
1
J
∂ψ

∂F
FT, (111)

where J = det(F). This tensor is equivalent to the one defined in Eq. 81 for Hooke’s Law.

Other stress measures exist, such as the First Piola-Kirchhoff P stress tensor, which

relates a traction in the deformed configuration to a direction in the undeformed configuration

as

P =
∂ψ

∂F
, (112)

or the Second Piola-Kirchhoff stress tensor S, which relates tractions in the undeformed
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configuration to directions in the undeformed configuration as

S = F−1 ∂ψ

∂F
. (113)

A direction or a traction can be brought to the undeformed or deformed configurations

using the deformation gradient. For example, the expression

dd = Fdu (114)

brings a direction in the undeformed configuration du to the deformed configuration dd .

A traction is computed from the stress tensor and a direction in the right frame of

reference as

τd = σdd . (115)

As is the case with the direction, the traction can be brought back and forth to the desired

configuration. Also, notice that as the traction is a vector, it has a normal and a tangential

component to the direction. These components are known as normal and shear tractions.
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Chapter 4

Related Work

We divide the related works into four sections: 3D shape decomposition for 2D parameter-

ization, modeling coupled physical systems, garment modeling, and tight-fitting clothing

design.

4.1 3D Shape Decomposition for 2D Parameterization

Decomposing an arbitrary 3D shape into 2D patches is a fundamental problem in graphics

at the confluence of a large number of practical applications. Early solutions, such as

Sander et al. [48], Lévy et al. [29], Sorkine et al. [53], Zhou et al. [69], Julius et al. [26],

and Yamauchi et al. [67], use a bottom-up approach to grow quasi-developable regions

until a certain developability threshold is reached. While these methods offer little control

over the patch boundaries (i.e. seams) or the number of patches to be used, more recent

works, such as Poranne et al. [44] and Li et al. [32], overcome these limitations through

joint optimization of the seams and distortion of the parameterization. All these methods

focus on geometric criteria that are insufficient for fabrication where additional physical

reasoning needs to be incorporated in the model.
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Quasi-developable object decomposition for fabrication adds additional layers of com-

plexity to the problem: the physical shape obtained through the manufacturing process

embedded in the physical world needs to conform to the virtual target shape. Mori et

al. [35] developed a system for plush toys, and Skouras et al. [52] developed a system for

fabrication of inflatable structures. Sharp et al. [49] frame the problem of mesh decom-

position as a 3D boundary optimization over a continuous domain. While each of these

methods is effective for the specific application they pursue, none of them extends to the

tightly-coupled mechanics of clothing and body that we target with our work.

We add additional information about these applications in the following subsections.

4.1.1 2D Parameterization

The process of cutting a 3D surface and flattening it in a 2D embedding where the cuts

become the embedding boundary is known as 2D parameterization, which is often used in

applications such as remeshing, texturing among others. These kinds of parameterizations

focus onminimizing distortion based on twomeasures: angles and areas. Parameterizations

that minimize the angle difference are called conformal. Given a pre-defined set of cuts,

LSCM by Lévy et al. [29] (Fig. 13) can achieve such maps by minimizing an energy

function based on the difference in angles between the 3D surface and its map. A common

example of a conformal map is the Mercator projection of Earth, which is commonly used

for navigational purposes, as paths traced on the map have the same angles as those traced

on the globe. In contrast, parameterizations that minimize areas, often do so by dropping

the conformal property. In instances where a 2D map can be found such that both areas and

angles can be preserved, the surface is said to be developable and their parameterization

is said to be isometric. Such surfaces are limited in number (examples include a cube or

an open cylinder), and finding a 2D parameterization involves often a compromise between

minimizing total angle or area distortion. Methods such as Sorkine et al. [53] and Zhou et
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Figure 13: Least-Squares Conformal Maps. Angles traced in these maps are the same as
the ones traced on the 3D surface (Left: Parameterization on the 3D surface. Middle: 2D
parameterization. Right: Textured 3D surface.). Figure taken from Lévy et al. [29]

Figure 14: Bounded distortion parameterizations. This method tries to keep distortion
below a threshold. (Left: 3D surface with cuts. Center and right: 2D parameterization.)
Figure taken from Sorkine et al. [53].

al. [69] try to keep the area distortion to a minimum (Fig. 14).

4.1.2 Mesh Segmentation

In the previous subsection, we focused on methods that found a 2D parameterization based

on a pre-defined set of cuts. However, we can turn that around and find a set of cuts, such

that when flattened, result in a set of quasi-isometric patterns. Works, such as Julius et

al. [26] and Yamauchi et al. [67] focus on this direction. The work done by Dong et al. [18]

can generate quasi-isometric rectangular patterns based on a spectral decomposition of the

Laplace function of the surface (Fig. 15). These quasi-isometric patterns play a fundamental

part in a Eulerian-on-Lagrangian coupling of skin and body done by Li et al. [30] which

will be presented in Sec. 4.2.2.
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Figure 15: Spectral Surface Decomposition. 3D surface is cut in quasi-developable regions.
(Left: Eigenfunctions of the Laplacian, Center left: Morse-Smale Complex of one eigen-
vector of the Laplacian, Center right: Spectral decomposition, Right: Remeshed surface).
Figure taken from Dong et al. [18].

4.1.3 Physically-based 2D Parameterization

While distortion methods generated 2D parameterizations based on geometric constraints,

physically-based methods can find 2D parameterizations that satisfy physical constraints on

the 3D surface. In Skouras et al. [52], they propose a framework for inflatable balloons to

match a desired shape by optimizing a set of 2D patterns. They achieve this by introducing a

simulation framework where the patterns are inflated by being exposed to uniform pressure.

Changes to the patterns naturally introduce changes to the simulation. Through optimiza-

tion, they minimize the distance from the simulation to the desired target shape. While they

can find generally good patterns for most shapes, they do not prevent self-intersections in

the patterns during optimization. In their process, while the seams are not static, the patch

layout is pre-defined and cannot be altered.

4.2 Modeling Coupled Physical Systems

We are surrounded by objects that are naturally in close physical contact with each other,

with garment-body interaction being a prime example. Methods that simulate independently

the objects typically either solve the contact problem in a local domain, such as Baraff et
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Figure 16: Inflatable Balloons. Framework to design inflatable balloons based on a shape
objective.

al. [3] and Volino et al. [59], or use penalty forces, such as Baraff and Witkin [2], Bridson

et al. [10], and Harmon et al. [24], or use explicit constraints, such as Otaduy et al. [40],

Müller et al. [36], and Li et al. [31]. These models are both complex and cannot handle

very well sliding effects between the objects in contact.

Due to these challenges, many proposed solutions use a coupled computational model

of the two objects where the contact is modeled explicitly by a reduced model where one

object is embedded in the space of the other, such as Sueda et al. [56], Li et al. [30], Fan et

al. [20], Cirio et al. [14, 15], and Weidner et al. [66], commonly referred to as Eulerian-on-

Lagrangian methods. The main advantage of such a model is that the contact, one of the

most complex aspects of coupled physical systems, is implicitly handled.

A natural way to approach this coupling is the Lagrangian view that explicitly embeds

one object into another. For instance, in a garment-body coupling, the garment vertices can

be represented as points on the 3D body mesh. A fundamental limitation of this approach

stems from the piece-wise linear discretization of the models, which creates problems

especially when the cloth slides on the body. One solution for this is to use a smooth

underlying surface such as a Loop subdivision surface as in Zehnder et al. [68]. Another

is to use a Eulerian-on-Lagrangian view for the embedding. The first does not account for

two-way elasticity between the coupled systems, and the Eulerian-on-Lagrangian view does
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not account for cloth with arbitrary 2D patterns. We further elaborate on the Eulerian-on-

Lagrangian methods in the following subsections.

4.2.1 Eulerian Methods

In solid mechanics, we normally discretize the object, apply boundary conditions to vertices

of the resulting mesh, and solve for a set of equations. This is known as a Lagrangian

embedding. However, we could alternatively discretize the space instead, and treat the

object as flowing through the resulting mesh. This is known as a Eulerian embedding and

it is traditionally used to simulate fluids, where the lack of a clearly defined structure can

often discourage the use of Lagrangian embeddings.

In recent years, interest has grown for the use of Eulerian embeddings for solids to

handle collisions, such as Levin et al. [28]. From a traditional Lagrangian perspective,

detecting colliding objects involve solving expensive node-node, edge-edge, face-face col-

lision queries or combinations of them. From a Eulerian perspective, contact can be easily

detected if multiple objects share a single spatial element (Fig. 17). However, applying

boundary conditions in Eulerian embeddings can be cumbersome, and simulating thin ob-

jects requires dense discretizations of the space. Also, space between objects needs to be

discretized as well which often leads to a waste of memory. Some of these problems are

addressed in Eulerian-on-Lagrangian embeddings.

4.2.2 Eulerian-on-Lagrangian Methods

Eulerian-on-Lagrangian (EoL) embeddings have seen increasing number of research works

in recent years. Fan et al. [20] addressed some of the problems of raw Eulerian solid

simulation by embedding the surrounding Eulerian space of an object into a Lagrangian

embedding (Fig. 18). Colliding objects then first go through the process of detecting

collisions in their Lagrangian embeddings before detecting collisions the Eulerian way, at
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Figure 17: Eulerian solid simulation with contacts. Space is discretized instead of the solid.
The solid flows through the mesh. Figure taken from Fan et al. [20].

Figure 18: Eulerian-on-Lagrangian simulation. Each object has its own Eulerian space
embedded in a Lagrangian mesh. (Top: Traditional Eulerian simulation. Bottom: EoL
simulation.) Figure taken from Fan et al. [20].

the cost of some additional computation. However, Eulerian-on-Lagrangian has more a

more diverse set of applications, including skin simulation.

The work done by Li et al. [30] is perhaps the most relevant to study for our Lagrangian-

on-Lagrangian embedding (Fig. 19). They introduce a coupled system between body and

skin, where the skin can slide on the body regardless of body motion. They do so by

modeling the body as a Lagrangian mesh, which also serves as an Eulerian embedding for

the skin. That is to say, the skin flows through the body mesh. The body is parameterized

in 2D using the quasi-isometric patterns from Dong et al. [18]. The skin is then set in

texture space where the Eulerian body nodes are mapped. To properly set the Eulerian
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Figure 19: EoL (Eulerian-on-Lagrangian) Skin Simulation. Left: Unstretched skin on the
body. Center: Body motion with skin not properly stretched. Right: Result of EoL skin.
Figure taken from Li et al. [30].

Figure 20: Quasi-Isometric patches. Tracing distances between patterns can be done with
a straight line by stacking them together. Figure taken from Li et al. [30].

embedding, distances should be easily mapped in texture space which is precisely what the

quasi-isometric patterns accomplish. These rectangular patterns may be stacked next to

each other (Fig. 20) and the distances between body nodes can be traced as straight lines.

Such an embedding could not be achieved as easily for arbitrary patterns.
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4.2.3 The Case for an Eulerian-on-Lagrangian Optimization Frame-

work

Given its virtues, the Eulerian-on-Lagrangian embedding by Li et al. [30] seems like the

perfect candidate to use for our optimization scheme. In this section, we enumerate the unre-

solved problems with the this embedding for optimization. We divide these problems in the

following categories: simulating cloth with deformable bodies, moving cloth boundaries,

complex cloth patterns, and optimizing the patterns.

Simulating Cloth with Deformable Bodies In their original work, the EoL embedding

did not consider the deformation of the body. However, it is very easy to extend their

scheme to incorporate it without the need of a smooth body surface, which again, is why

their embedding is so attractive. Under the EoL embedding, there is only one mesh for

the body. Each vertex of the body contains information about its position in 3D (y), and

coordinates (x̄) that map to a point of the patterns in texture space. Notice that the cloth

as a discretized mesh does not exist, and the patterns are a continuous space, where each

vertex of the body is mapped. The energy of the system is then defined as

U = Ucloth(y, x̄) +Ubody(y, ȳ). (116)

From the equation above, we can see that the cloth and the body share the same deformed

configuration y. The cloth slides on the body by changing the texture coordinates x̄. To

add in the deformation of the body, we just have the contribution of the energy of the cloth

with respect to the deformed body configuration y, leading to the equilibrium

∂Ucloth
∂ x̄

= 0, and
∂Ucloth
∂y

+
∂Ubody

∂y
= 0, (117)

which is an elegant formulation. However, as we move in deeper, some problems start
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to arise.

Moving Cloth Boundaries In their original work, the skin (cloth) covered the entirety

of the body, which means that every vertex of the body (y) is mapped to a point of the

patterns (x̄) that is considered to be skin. Suppose we relax that constraint, and assume

that there are sections of the body not covered by cloth. Even more, let’s say the boundary

of the cloth is allowed to move on the body. To incorporate these changes, a seemingly

straightforward solution is to divide the pattern space into sections of cloth and no-cloth.

This simple addition results in some interesting conceptual challenges.

Under a Lagrangian-on-Lagrangian embedding, every deformed vertex of the cloth is

mapped to a correponding undeformed vertex. But now, under the Eulerian-on-Lagrangian

embedding, it is possible for areas of the cloth not to be mapped by any vertex of the body.

As an example, consider the simple case of every body vertex mapping to no-cloth points

of the patterns. At first, it may seem like this problem can be avoided by having a good

initial configuration. However, there is nothing enforcing that all the area of the cloth must

be covered during the simulation. What is more, some numerical anomalies start to appear.

Consider the case of a body surface triangle, where one vertex is in a cloth section of the

patterns, and the other two are in no-cloth sections. The position of the boundary on the

triangle can be inferred from its location on pattern space. The cloth energy of that triangle

is

Ue
cloth =

∫
Ωe
cloth

ψe
clothdΩe

cloth, (118)

whereΩe
cloth corresponds to the area of the triangle covered by cloth, as no-cloth sections

have 0 energy density. This area on a Lagrangian-on-Lagrangian embedding is constant, so

the energy depended entirely on the energy density, and therefore the only way to minimize

its energy was to minimize its strain. Here, we have two options; one, we can minimize
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its strain, or two, we can minimize the area covered by cloth. If we push the vertex in a

cloth section towards the boundary, the strain may increase, but the area covered by cloth

decreases, thus reducing the energy. This results in an energy per triangle with a local

maximum and two local minima (one of which is undesired), and therefore unsuitable for

simulation.

Complex Cloth Patterns In their work, the body was segmented into quasi-developable,

rectangular patterns, which were easy to align and form elements in pattern space. Cloth

patterns are seldom developable. While, vertices at the interior of the same patterns are

easy to connect, vertices that lie on different patterns are a different problem. To compute

the cloth energy of the triangle, one must find the three points of the cloth in pattern space

x̄, and create a triangle to act as the undeformed configuration. If the patterns are not

developable, they cannot be aligned to consistently create this triangle, as the borders of

these patterns can only be aligned in 3D.

Optimizing the patterns Finally, we saw that under the Eulerian-on-Lagrangian embed-

ding, there is no cloth mesh, and the patterns are a continuous space. Therefore, defining

the design parameters in this case is an open problem, as the body references to the cloth in

pattern space does not depend directly on the pattern borders.

4.3 Garment Modeling

Garment modeling is a time-intensive process that requires highly trained professionals.

The automation of garment design roughly falls into two categories: sketch-based methods

and adaptation methods. In sketch-based methods, sketching is typically used on top of the

3D character to generate a garment, such as in Turquin et al. [58], Wang et al. [63], Decaudin

et al. [17], and Robson et al. [46]. Adaptation methods adapt existing garment designs to
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bodies of different shapes and sizes, such as in Meng et al. [34], Brouet et al. [11], and

Bartle et al. [6]. For example, Chen et al. [13] propose a method for adapting a garment

using the 3D body geometry obtained from a depth camera. The method by Berthouzoz et

al. [8] parses patterns made by professional designers, automatically identifies the seams,

and adapts them to virtual characters. Guan et al. [23] propose a method that uses deep

learning to generate the animation of a garment worn by a virtual character of arbitrary

shape.

4.4 Tight-fitting Clothing Design

Tight-fitting clothing is widely used for casual fashion, functional sportswear, medical

compression garments, and many other applications. Kwok et al.[27] present a method for

full-body skintight clothing design, focusing on optimal patch configuration that minimizes

fitness energy based on heuristic distortion measures. Wang et al. [61, 62] present methods

to optimize for the 2D patterns that achieve prescribed pressure distributions. However,

their method considers only the 2D pattern shapes during the design, and not the location

of the 3D seams. Furthermore, it does not take into account the deformation of the body

under the garment, which is an important limitation.

The design and modeling of tight-fitting clothing as an optimization problem is nec-

essarily holistic. It has to account for the size and shapes of the 2D patches, the material

properties of the fabrics, the elastic behavior along the seams, the deformable 3D shape of

the body, position of the seams on the 3D body, and the physical interaction between body

and garment. In this work, we present a method that incorporates all of these components

in one unified framework, enabling the optimization of advanced design objectives related

to shape, comfort, and mechanical function.
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Chapter 5

Cloth Body Model

Soft body dynamics is probably one of the most researched areas in computer graphics.

Today, most systems are based on the finite element method, which compared to particle

systems, are superior in terms of physical accuracy due to their capacity to model the soft

body as a continuum (Bargteil and Shinar [5]).

This advantage has been exploited in a diverse set of applications, such as real-time

animation of generic bodies (Barbič and Doug [4], and Müller and Gross [37]), and simu-

lation of human flesh through geometric design (Teran et al. [57]) or through data-driven

acquisition (Pons-Moll et al. [43]), among others. Finite element methods have also dom-

inated cloth simulation. Focus has been given to simulating anisotropic fabrics (Volino et

al. [60]), wrinkling (Rohmer et al. [47]), virtual try-ons and coupling with the human body.

In these two latest areas, considerable effort has been given to detecting collisions, while

modeling the body as a rigid body (Baraff and Witkin [2]). Modeling body deformations

is important in the fashion industry, where some garments are designed to shape the body.

A try-on physical model also allows for the design of clothing based on physical quantities,

such as desired pressure or stretch.

In this chapter, we present a physically-based method that accurately couples the cloth

to the body, where the body experiences deformation due to cloth stretch.
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5.1 Representation

Clothes, in general, are fabricated by tracing a set of patterns on a fabric sheet, which is

later cut and sewn together along the seams. The cloth is then worn by a person which

deforms it by stretching it. The body in turn experiences deformation under the influence

of the cloth. We introduce undeformed and deformed configurations for the cloth and the

body to model this behavior.

For the cloth, we use a 3D membrane discretized by linear triangular elements where

the undeformed configuration is a 2D mesh. This approach is commonplace nowadays,

not only for cloth simulation but also for all kinds of thin shells such as rubber balloons

(Skouras et al. [51]) or biological membranes (Massabò and Gambarotta [33]).

We use x (Fig. 21b) and p̂ (Fig. 21a) to represent the deformed and undeformed

configurations of the cloth respectively. The mesh is composed of n elements, where x̄ is a

planar mesh that shares the same number of elements as x. This planar mesh x̄ represents

the cloth patterns.

For the body, we use a standard volumetric mesh discretized by linear tetrahedra. This

is a standard model frequently used in soft body dynamics.

We use y (Fig. 21d) and ȳ (Fig. 21c) to represent the deformed and undeformed

configurations of the body respectively. The mesh is composed of m elements and both

configurations share the same connectivity.

While for each vertex in ȳ there exists a vertex in y, the same does not hold true for x̄

and x. The existence of seams means that for every vertex in x, there may be 2 vertices in x̄

if it belongs to a seam or more than 2 if it belongs to a seam intersection. For every vertex

in x̄, there exists only one vertex in x.

Next, we want to establish a coupling between the cloth and the body. Since we are

focusing on skintight clothing, we can avoid complex collision detection and response by

having the cloth be always in contact with the body. That is to say, each deformed cloth
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(a) Undeformed cloth configuration x̄. (b) Deformed cloth configuration x.

(c) Undeformed body configuration ȳ. (d) Deformed body configuration y.

Figure 21: Representation of the cloth and the body.

vertex lies somewhere on a deformed body element, and therefore can be expressed as a

function of some barycentric coordinates s ∈ R2, s1 + s2 ≤ 1 and body vertices as x(s, y).

To simplify notation, we choose the symbol χ to represent the set including the 3 values

{s, y}. Therefore, for each cloth vertex x, we have q = {s, y} and x(q).

The choice of the function q → x is an important one. The simplest choice is to simply

use linear barycentric interpolation, which means that each cloth vertex depends only on

the three body vertices (Fig. 22) of the element as:

x = s1y1 + s2y2 + (1 − s1 − s2)y3 (119)

Overall, each cloth triangle depends on a total of 9 body vertices (3 body vertices for

each cloth vertex) .

While it is convenient and easy to implement, it has a problem. We want the cloth to be
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Figure 22: Linear coupling for a cloth element (in magenta) to the body. The cloth vertices
are defined by q1 = {s1, y1, y2, y3}, q2 = {s2, y2, y4, y3}, q3 = {s3, y4, y5, y3}

able to slide on the body, thus a smooth body surface is ideal for this purpose. Sliding on a

linear triangular mesh implies sharp changes in the trajectory of the cloth vertex.

A continuous approach is to have the body surface mesh be a subdivision surface

(Appendix A). Since each point on the limit surface depends on an average of 12 vertices,

under this scheme each cloth triangle depends on average on a total of 36 elements. The

coupling between the body and the cloth using Loop subdivision surfaces is 4 times as

stiff when compared to linear barycentric interpolation, but in return, we obtain continuity

across the surface.

5.2 Cloth Physics

Given that the undeformed configuration of the cloth x̄ belongs in R2 = (X,Y ) and the

deformed configuration x belongs in R3 = (x, y, z) we interpolate the deformed space in
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terms of the undeformed space

(x, y, z) =
∑

i

Ni(X,Y )xi, (120)

where Ni are the linear shape functions of the triangle in the undeformed configuration.

This gives us a 3 × 2 deformation gradient

F =


∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

∂z
∂X

∂z
∂Y


, (121)

which results in a symmetric 2 × 2 right Cauchy strain tensor C = FTF.

We start by defining our cloth energy based on the Saint-Venant Kirchhoff strain energy

density function per element as

ψcloth,e =
1
2
λtr(E)2 + µtr(E2), (122)

where λ, µ are the first Lame parameter and shear modulus respectively, and E is the non-

linear Green-Lagrange strain tensor E = 1
2 (C − I2) where I2 is the 2-dimensional identity

matrix.

The elastic energy per element is then

Ucloth,e = t
∫
Ω

ψcloth,edA = t Aψ, (123)

where A is the area of the undeformed element and t is its thickness. We assume that the

thickness of the element remains constant regardless of deformation.

This energy is normally the hyperelastic isotropic version of Hooke’s Law, however,

since we are using the non-linear Green-Lagrange strain tensor, the energy is quartic on the

principal strains of the deformation gradient F instead of quadratic.
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If we express C in terms of its principal stretches we get

C = λ1MMT + λ2NNT, (124)

where M, N are orthonormal bases, and λ1, λ2, λ2 ≤ λ1 are the principal stretches of C,

which are the squared principal stretches of F.

This definition of C allows us to rewrite the Saint-Venant Kirchhoff strain density

function in terms of the principal stretches of C as

ψcloth,e =
1
2
λ(λ1 + λ2 − 2)2 + µ((λ1 − 1)2 + (λ2 − 1)2), (125)

where the relationship between ψ and the principal stretches of C becomes more evident.

We want to use this definition to make an important observation: If both principal stretches

are 1, the energy is of course 0. However, if one or both of the principal stretches is lesser

than 1, there is compression resulting in a positive energy outcome, which translates to

compressive forces.

In solid mechanics, objects can be compressed under external forces and compressive

forces are a natural response. Cloth, as other membranes, do not experience this behavior.

Suppose a piece of cloth is stretched beyond the tolerance of its Poisson’s ratio. To

compensate for this deformation, cloth experiences an out-of-plane deformation devoid of

any compressive forces where a solid would just compress. This out of plane deformation

is known as wrinkling.

To have an accurate representation of the cloth forces, we need a model that is capable

of representing wrinkling.
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Tension Field Theory

Whilewrinkling in itself is a complex behavior, tension field theory [42] offers an acceptable,

simplified alternative for isotropic materials. The idea is simple; we want to divide the

energy into 3 regimes depending on the state of the principal stretches: taut, wrinkled, and

slack.

The unchanged definition of our energy assumes that both principal stretches are tensile

and becomes our definition for the taut energy.

If the smallest principal stretch becomes smaller than the cloth’s tolerance to the stretch

experienced by the biggest principal stretch (λ1 ≥ 1), the cloth is considered wrinkled and

the energy has to be changed accordingly.

The tolerance point of the smallest principal stretch can be found by simply finding the

energetic minimum of λ2 with respect to λ1. More specifically, λ̄2(λ1) = argminλ2
ψ, where

λ̄2 is the energetic minimum.

For the case of the Saint-Venant Kirchhoff (StVK) energy density we have

λ̄2(λ1) = −
λλ1 − 2λ − 2µ

λ + 2µ
, (126)

and replacing this expression into our strain energy density function, we get the wrinkled

energy density function

ψwrinkled =
µ(λ + µ)

2λ + 4µ
(λ1 − 1)2. (127)

Notice that this energy only depends on λ1 and therefore the compression experienced

in λ2 is completely ignored.

In the slack case, both principal stretches are smaller than 1 and therefore the cloth does
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not experience any force. Then

ψslack = 0. (128)

Unifying the 3 regimes we obtain the tension field compliant piecewise strain energy

density function for Saint-Venant Kirchhoff as

ψcloth,e =



ψtaut =
λ
8 (λ1 + λ2 − 2)2 + µ

4 ((λ1 − 1)2 + (λ2 − 1)2) λ1 ≥ 1, λ2 ≥ λ̄2(λ1)

ψwrinkled =
µ(λ+µ)
2λ+4µ (λ1 − 1)2 λ1 ≥ 1, λ2 ≤ λ̄2(λ1)

ψslack = 0 λ1 ≤ 1

.

(129)

This piecewise energy is C1 continuous on the principal stretches, which means that the

forces are continuous but the Hessian is not. This behavior is shown in Fig. 23.

Given that the energy is defined in terms of the principal stretches, the forces per element

may be computed using the chain rule as

f e = −
dUe

dx
= −

∂Ue

∂λ1

∂λ1
∂x
−
∂Ue

∂λ2

∂λ2
∂x

. (130)

Since C is a 2× 2 matrix, its eigenvalues (principal stretches) can be found analytically,

and the relationship between λ1, λ2 and x can be expressed through C as

λ1 =
1
2

tr(C) +
√

1
4

tr(C)2 − det(C), and (131)

λ2 =
1
2

tr(C) −
√

1
4

tr(C)2 − det(C), (132)

where λ1 is always going to be the biggest principal stretch and λ2 the smallest.
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(a) Relaxed Stvk energy. It shows the
three regimes (red=slack, blue=wrinkled,
black=taut).

(b) Standard StVK, it shows non-zero energy
under compression.

(c) The gradient for the three regimes. It is
shown to be piece-wise continuous.

(d) Gradient for standard StVK. Under com-
pression the gradient becomes negative

(e) The second derivative of the relaxed en-
ergy. It is discontinuous and each regime is a
constant.

(f) The second derivative is a constant for
StVK with respect to the principal stretches.

Figure 23: Energy and derivatives of the energy with respect to the biggest principal stretch
where the smallest principal stretch is 1

2 .
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The total energy of the cloth is

Ucloth =
∑

e

Ucloth,e. (133)

5.3 Coupled Simulation

We set the strain energy density of the body per tetrahedron as an isotropic compressible

Neo-Hookean material, defined per element as

ψbody,e =
µ

2
(Ī1 − 3) +

λ

2
(J − 1)2, (134)

where λ, µ are the first Lame parameter and shear modulus respectively, Ī1 = J−
2
3 I1, I1

is the first invariant of the right Cauchy stress tensor C and J is the determinant of the

deformation gradient.

For the bodyweuse a straightforward volumetric definition and therefore the deformation

gradient F and the right Cauchy tensor C are 3 × 3 matrices. The energy per element is

then defined as

Ubody,e =

∫
Ω

ψbody,edV = Vψbody,e, (135)

where V is the volume of the undeformed tetrahedron.

The total energy of the body is

Ubody =
∑

e

Ubody,e. (136)

If treated separately, the body and cloth would have as forces
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f body = −
dUbody

dy
, and (137)

f cloth = −
dUcloth

dx
, (138)

where the cloth forces are computed as shown in section 5.2. In section 5.1, we introduced

the assumption that the cloth vertices never separate from the body, and a representation

where the cloth vertices depend on the body vertices x(q = {s, y}). If we redefine our cloth

forces in terms of this new definition we get

f cloth = −
dUcloth

dq
=

{
−

dUcloth

d s
,−

dUcloth

dy

}
, (139)

which gives a set of two types of forces, one for the barycentric coordinates s and another

one for the body vertices y.

These forces can be derived from the Cartesian forces using the chain rule:

dUcloth

dq
=
∂x

∂q

T ∂Ucloth

∂x
, (140)

where ∂x
∂q is known as the surface derivative.

The force − dUcloth

dy is self-explanatory. It is the force that the cloth exerts on the body

causing it to deform, while− dUcloth

d s are the tangential forces of the cloth on the body, causing

it to slide. The projection of the cartesian cloth force to the plane with normal nbody, where

nbody is the normal of the body at that point.

With forces for the body and cloth defined, we can set our equilibrium conditions.

Consider a stretched piece of cloth surrounding an elastic body, currently undeformed.

Given the deformation of the cloth, it will exert forces on the body attempting to regain its

original shape. But as the body is compressed, it will generate forces of its own trying to

75



keep its shape until the two opposing forces come to an equilibrium. This relationship is

expressed in the equation

−
dUbody

dy
−

dUcloth

dy
= 0. (141)

If left like that, the body would experience tangential forces from the cloth. Assuming

there is no friction between the body and the cloth, the cloth will slide freely on the body

until it reaches an equilibrium configuration. In this case, all the cloth forces exerted on the

body are normal to the body surface. This equilibrium condition is expressed as

−
dUcloth

d s
= 0. (142)

Equations 141 and 142 are the two desired equilibrium conditions. The strength of this

approach is that the physical coupling of the body and the cloth can be achieved through

merely applying the chain rule.

Solving for the equilibrium configuration

Having set our framework, we now focus on obtaining an equilibrium configuration given

a set of cloth patterns x̄, known material parameters λ, µ for both the cloth and the body, an

undeformed body y and an initial guess for the coupled system x and y.

Assuming that the cloth vertices of the initial guess are sufficiently close to the deformed

body vertices, we can find their parameterization q in the following manner. First, we

retrieve the body vertex whose distance is closer to our cloth vertex and select its faces as

potential candidates. Then we find barycentric coordinates of our cloth vertex for each face
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candidate by solving the system


y2x − y1x y3x − y1x

y2y − y1y y3y − y1y

y2z − y1z y3z − y1z




s1

s2

 = x, (143)

which being a 3 × 2 system, can be solved through QR decomposition. If the solution to

this system gives barycentric coordinates such that 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1, 1 − s1, s2 ≤ 1,

then the cloth vertex projection to the body triangle lies within its boundaries and is chosen

to contain the cloth vertex with the barycentric coordinates s = (s1, s2). If not, we search in

the other candidates until an appropriate one is found. A closed body mesh guarantees at

least one viable candidate.

Now, we have all the ingredients necessary to find the equilibrium configuration. Given

the definition of our equilibrium conditions we can frame our problem as an energy mini-

mization problem

qm = argminq(Ubody +Ucloth), (144)

where qm is the deformed configuration where the system is at equilibrium.

This system can be solved using a gradient based optimization method. Since, we

are able to compute sparse second order derivatives for this problem, we choose damped

Newton to solve it. The Newton iteration system is defined as

(
d2Ucloth

dq2 +
d2Ubody

dq2 + αI

)
∆q = −

dUbody

dq
−

dUcloth

dq
. (145)

Keeping in mind that the portion of the derivatives of Ubody with respect to s is 0,

since the energy of the body only depends on the body vertices y, the right part are the

equilibrium conditions, and the system is considered converged when it is 0.

The reason behind using damped Newton is to regulate the Hessian. When the current
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guess is far away from the solution, the Hessian may become indefinite, thus we must force

the system to take a descent direction by following the gradient. It can be seen that by

increasing the damping parameter α, the Hessian becomes less relevant and the step ∆q

is tilted towards the direction opposite to that of the gradient. The damping parameter is

adjusted after every iteration following the rules specified in section 2.1.2.

Taking the Newton step

Next is the problem of advancing the current guess qi to qi+1. For the body vertices, it is

enough to just add the current step to the current guess

yi+1 = yi + ∆y. (146)

In the case of the barycentric coordinates s, where the vertex is traveling across the

elements of a piece-wise mesh, we must adopt a different strategy.

Suppose a cloth vertex has barycentric coordinates si at the beginning of the step and

has a current step of ∆s.

First, we apply the step as usual and we get a new set of coordinates

si+1 = si + ∆s. (147)

If the conditions 0 ≤ si,1, 0 ≤ si,2 and 0 ≤ 1 − si,1 − si,2 are sustained, it means that the

resulting coordinates remain within the boundaries of the current body face and accept it

as the result of applying the step (Note that we do not check for the coordinates being less

than 1, as that condition is implicitly checked in the third condition).

If a condition is violated, it means the cloth vertexmust cross the boundary of the current

face to a neighboring face across an edge. If more than one condition are violated at the

same time, we must identify which one is violated first as the first edge the vertex crosses
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on its path. To identify the closest edge, we use the expressions

d1 = −
si,1

∆si,1
, (148)

d2 = −
si,2

∆si,2
, and (149)

d3 =
1 − si,1 − si,2

∆si,1 + ∆si,2
. (150)

It is clear that if a current path never crosses an edge, d is negative. If d is bigger

than 1, it means the path is not long enough to cross the edge. Therefore we choose the

smallest positive d and bring the current vertex to the closest edge. This is achieved by the

expression

sn = s +min(d1, d2, d3)∆s. (151)

So far, we have taken the step clamped up to a bordering edge. We want to take the

full step by following the path on the neighboring triangles as well. First, we subtract the

distance already traveled from our initial position to the border as

∆sn = (1 −min(d1, d2, d3))∆s. (152)

Now, it is convenient to remember that this step is not taken in Cartesian coordinates,

but in barycentric coordinates specific to the current body face. In order to continue the

path we must transform both the current coordinates sn, and the current shortened step ∆sn

to the new face. This is done by solving the system
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dx
d snew

sm =
dx

d sold
sn (153)

dx
d snew

∆sm =
dx

d sold
∆sn, (154)

where sm and ∆sm are the current position and step in coordinates of the new face, and dx
d s is

the surface derivative as introduced in section 5.1. The surface derivative is a 3 × 2 matrix

and the system can be solved using QR decomposition.

With the new step and new step direction, we proceed to repeat the process from Eq.

147 until all the barycentric coordinates are properly bounded, and the step has been taken

in full.

5.3.1 Derivatives

The computation of the derivatives of the body elastic energy with respect to the body

vertices is straightforward. For the case of the energy of the cloth, we first need to compute

the derivatives with respect to the Cartesian cloth coordinates x. Then we compute the

derivatives of x with respect to q (the surface derivative). The final derivatives of the cloth

energy with respect to q can be computed using the chain rule per cloth element as

dUcloth,e

dqe
=
∂xe

∂qe

T ∂Ue

∂xe
, (155)

and

d2Ucloth,e

dq2
e
=
∂xe

∂qe

T ∂2Ue

∂x2
e

∂xe

∂qe
+

∑
i

∂2xe

∂q2
e i

∂Ue

∂xe i
, (156)

where Eq. 155 is the gradient and 156 is the Hessian.
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The per-element surface gradient ∂xe∂qe
is constructed as

∂xe

∂qe
=


∂xe,1
∂ se,1

0 0 ∂xe,1
∂ye,1

0 0

0 ∂xe,2
∂ se,2

0 0 ∂xe,2
∂ye,2

0

0 0 ∂xe,3
∂ se,3

0 0 ∂xe,3
∂ye,3


, (157)

where each row corresponds to an element vertex. Each block ∂xe,i
∂ se,i

is of size 3 × 2, and

each ∂xe,i
∂ye,i

is of size 3×9 for linear barycentric interpolation, 3×36 for a Loop regular patch

with the size for irregular patches changed accordingly. So, for a cloth element lying on 3

regular patches, the size of the surface derivative is 9 × 114.

For the Hessian, we need to compute the second surface derivative ∂2xe
∂q2

e
which is a 3rd

order tensor. For this reason, it is more convenient to slice it and add each contribution per

cloth-vertex-component as it is shown in Eq. 156. Each i corresponds to a cloth vertex

times 3 for each dimension x, y, z for a total of 9 additions. Since the surface function is

linear on the body vertices, the Hessian computation can be simplified as ∂2xe
∂y2

e
= 0. The

resulting Hessian has a size of 114 × 114 for regular patches.

The global gradient and Hessian are constructed from these element derivatives using

the standard finite element method.

5.3.2 Results

In this section, we provide some simulation results along with its convergence for several

examples.
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Figure 24: Initial guess for the cylinder deformation

(a) Deformation of the body with the cloth
with all cloth boundaries fixed.

(b) Deformation of the body with all cloth
boundaries fixed.

(c) Energy progression per iteration. (d) Gradient progression per iteration.

Figure 25: Result for a cylinder with a tight cloth with all boundaries fixed using the initial
guess of Fig. 24.
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(a) Deformation of the body with the cloth
with 4 cloth vertices fixed.

(b) Deformation of the body with 4 cloth ver-
tices fixed.

(c) Energy progression per iteration. (d) Gradient progression per iteration.

Figure 26: Result for a cylinder with a tight cloth with 4 vertices fixed using the initial guess
of Fig. 24.
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(a) Initial guess for the body. (b) Initial guess for the cloth.

Figure 27: Initial guess of a fully covered sphere.

(a) Deformed body. (b) Deformed cloth.

(c) Energy progression per iteration. (d) Gradient progression per iteration.

Figure 28: Result for a sphere with a tight cloth and stiff seams using the initial guess of
Fig. 27.
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(a) Deformed body. (b) Deformed cloth.

(c) Energy progression per iteration. (d) Gradient progression per iteration.

Figure 29: Result for a sphere with a tight cloth twice as small as the one in Fig. 28 and
stiff seams using the initial guess of Fig. 27.
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Chapter 6

Optimization

In the simulation, the goal was to compute y and x, but we can turn the tables and select

other variables that we would like to solve for, allowing for complex modeling queries that

can be used for a range of interesting applications in a single elegant numerical framework.

For instance, we can optimize for the 2D patterns (x̄) and the embedding of the cloth on

the 3D mesh that would effectively provide the locations of the seams (x) assuming a ȳ

and y. Or we can optimize for the x̄ and x assuming any number of stretch constraints on

the cloth. In general, given an arbitrary objective T , we frame the system as a constrained

optimization problem:

Minimize T(x(y, s), p) (158)

s.t.
dUcloth

dy
+

dUbody

dy
= 0, and

dUcloth

d s
= 0, (159)

where p is a set of design parameters which controls the shape of the patterns x̄.

We optimize x̄ using L-BFGS [1, 39] and simulate q for force equilibrium at each

iteration. L-BFGS is a quasi-Newton optimization method that requires only the gradient
dT
d x̄ . Additional to the partial gradient with respect to x̄ we need to take also into account

the change induced by the simulation to the deformed cloth and body. This results in the
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gradient

dT
d p
=
∂T
∂ p
+
∂q

∂ p

T ∂T
∂q

. (160)

The matrix ∂q
∂ p is found using sensitivity analysis (Sec. 2.2.3). Since at each iteration

the force is at equilibrium f = dU
dq = 0, we get that d f q

d p = 0, and

d f

d p
=
∂ f q

∂ p
+
∂ f q

∂q

∂q

∂ p
= 0, (161)

which rearranged gives

∂q

∂ p
= −

∂ f q

∂q

−1 ∂ f q

∂ p
. (162)

This expression requires solving dim(p) linear systems. However, using the self-adjoint

method, we can simplify this to the single linear system

dT
d p
=
∂T
∂ p
−
∂ f

∂ p

T ∂ f q

∂q

−1
∂T
∂q

. (163)

Finally, we add each target or regularizer contributions to the two partial gradients ∂T
∂ p

and ∂T
∂q , and compute the full gradient dT

d p .
∂ f x
∂ x̄ is obtained using symbolic differentiation software and is then later set in terms of

q using the chain rule with the surface derivatives.

∂ f q

∂ p
=
∂x

∂q

T ∂ f x
∂ p

. (164)

Pattern Parameterization The shapes of the cloth patterns are defined completely

through their boundaries, which in turn are controlled by the design parameters p. Nev-

ertheless, evaluating elastic energies and their derivatives requires triangle meshes and we

must therefore determine the position of interior vertices as a function of the boundary
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shape. For this purpose, we use bi-harmonic coordinates [65] and express the location of

the pattern mesh vertices x̄ as a linear function of the design parameters p given by the

matrix W of bi-harmonic weights, x̄ = W p.

Under extreme deformations of the path boundary, the optimizer may fail to find a next

iteration were the elements are well-shaped. When this happens, we resample the boundary

and isotropically remesh the patches.

6.1 C2-continuous Relaxed Cloth Energy

In section 5.2, we introduced a relaxed energy model based on the Saint-Venant Kirchhoff

hyper-elastic strain density function. For the optimization to converge, the sensitivity matrix
∂x
∂ p must be continuous, which implies that the cloth energy must be at least C2 continuous.

Unfortunately, as it is, the relaxed Stvk energy is onlyC1 continuous. In our case, we choose

to smooth the discontinuities.

A quick solution is to smooth the forces with respect to the principal stretches λ1, λ2 of

the Cauchy strain tensor C. We can identify three discontinuous transitions (Fig. 30): The

jump from slack to wrinkled and from wrinkled to taut by the first principal stretch ∂ψ
∂λ1

,

and the jump from slack to wrinkled by the second principal stretch ∂ψ
∂λ2

. Therefore, we can

smooth the transitions from the perspective of each principal stretch.

Smoothing the forces We provide the procedure to smooth the forces with respect to the

first principal stretch as an example. As mentioned, this force presents two discontinuities:

The jump from slack to wrinkled, which meet at λ1 = 1 and wrinkled to taut, which meet

at λ1 =
2λ+2µ−λλ2−2µλ2

λ (obtained by clearing λ1 from the energetic minimum of λ2). We

choose a smoothing epsilon ε and fit a quadratic function between the two regimes between

the interval [λ1 − ε, λ1 + ε] of the form aλ2
1 + bλ1 + c. We solve for the coefficients (a, b, c)

for the two transitions by solving a linear system. We give the transition from slack to
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wrinkled as an example.

We find

∂ψ

∂λ1 sl→wr
= aλ2

1 + bλ1 + c , such that (165)

a(1 − ε)2 + b(1 − ε) + c =
∂ψ

∂λ1 slack
, (166)

a(1 + ε)2 + b(1 + ε) + c =
∂ψ

∂λ1 wrinkled
, and (167)

2a(1 − ε) + b =
∂2ψ

∂λ2
1 slack

. (168)

Notice that the 3 equations represent endpoints of the transitions for the forces and its

derivatives. It can be seen that the endpoint for the wrinkled derivative is missing. Since

we only have 3 degrees of freedom, 3 equations are needed for the system. Fortunately,

the missing derivative is guaranteed and no further action is necessary. Notice also that the

3 regimes meet at the point (λ1, λ2) = (1, 1). For this reason, we need a shrinking ε that

vanishes at the point (1, 1). Given that the transition from slack to wrinkled only depends on

λ1, we choose εsl→wr =
1
2δ(λ1 − 1), where δ is a small constant. For the transition between

wrinkled and taut, we have to be careful to incorporate the special case where the Poisson

ratio is 0. In such a case, the discontinuity is equal to the λ2 = 1 line. Considering this,

we choose the ε for that transition to be εwr→ta =
1
2δ(1 − λ2). A small value of δ should be

chosen so the smoothed regions do not overlap each other. The point (1, 1) is, unfortunately,

left as a discontinuity.

Smoothing the energy In some cases, just smoothing the forces is not enough. In our

case, we would like to use the energy as well, to take advantage of Newton. One quick

attempt to obtain the energy, may be to integrate the transitions with respect to λ1 or λ2
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Figure 30: Discontinuities in the relaxed energy model and their smoothed regions. The
black line represents the λ1 = λ2 line. The red lines represent the discontinuities. The blue
area is the smoothed transition between slack and wrinkled. The green area is the smoothed
transition between wrinkled and taut.
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to obtain their respective energies. Unfortunately, it is not enough. By interpreting the

energy as the area below the curve made by the force function (work), one can notice that

the smoothed forces generate more work than the original un-smoothed ones. If we were to

obtain the energy by integration, we would find that it does not coincide with the endpoints

of the interpolated regimes. We introduce additional terms to the energy, to account for

these discrepancies. These additions result in the modified energy regimes

Wtaut,shi f ted = Wtaut + s1(λ1 − 1)2 + s1(λ2 − 1)2, and (169)

Wwrinkled,shi f ted = Wwrinkled + s1(λ2 − 1)2 + s2(λ1 − 1)2, (170)

where s1 and s2 are the additional terms meant to represent the shift caused by the interpo-

latory smoothing function. These additions satisfy that the taut energy remains symmetric

with respect to the line λ1 = λ2. Such a property is important to maintain in the case

the principal stretches switch places. Another important detail, is the dependence of the

wrinkled energy to λ1. While inconvenient, it is necessary to properly smooth the energy

transitions. With these additions, now it is possible to smooth the energies, using themethod

to smooth the forces with the additional degrees of freedom s1 and s2.

6.2 Objectives

Our optimization framework allows for a wide range of objectives, we showcase our method

using objectives inspired from fashion, medical garment and athletic garment industries.

While on-line sales gain dominance in most industries, the fashion industry lags behind

primarily because of two main reasons: no tools to predict look and fit of a garment

on a specific body. Due to the complex shape space of our bodies it is very difficult to

find a proper fit without a physical try-on, and due to lack of a realistic virtual mirror,
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the customers cannot have a realistic preview before purchasing. Therefore, the fashion

industry experiences a very large rate of return for on-line purchases. Our model can be

used to optimize the patterns and the seam in order to achieve a comfortable fit as well

as a specific shape of the body. We demonstrate our approach by automatically grading

a given pattern layout to optimally fit diverse body shapes, computing patterns that shape

body contours and minimize traction on seams.

In the case of medical garments the goal may be different such as minimize overall

pressure as it is the case in diabetic wear or create a constant uniform pressure as it is the

case in cosmetic surgery masks. In some sports-ware design such as running, cycling or

swimming, the goal may be to produce the most aerodynamic or hydrodynamic shape of the

body while wearing the garment. The remainder of this section goes over all the different

objective examples.

6.2.1 Shape Objective

Within the limits set by physics and comfort, skintight clothing often provides room for

shaping the underlying body. Our coupled model allows us to exploit this ability in our

automated pattern design framework. For this purpose, we introduce a shape objective that

measures the distance between the current deformed cloth and a given target shape. For

better shape approximation, we avoid restrictive per-vertex correspondence and instead use

a distance-field approach based on implicit moving least squares (IMLS) surfaces [41]. The

corresponding objective is defined as

Tshape =
∑

i

∑
k

(∑
k nk · (xi − ck)φ(‖xi − ck ‖)

φ(‖xi − ck ‖)

)2
, (171)
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where ck are the vertices of the target shape and φ is a locally supported kernel function,

φ(r) =
(
1 −

r2

h2

)4

, (172)

that vanishes beyond the cut-off distance h.

6.2.2 Stretch Objective

The amount of stretch that a garment experiences once worn is an important design consid-

eration for skintight clothing. For instance, a tight fit can improve aerodynamic efficiency

by reducing wind resistance in applications such as cycling. Then again, excessive stretch

can cause material fatigue and reduce the lifetime of a garment. We therefore introduce an

objective that allows designers to impose target values for minimum and maximum stretch.

To this end, we first define a per-element objective as

T e
stretch(λ

e
i ) =



Ae(λe
i − λmin)

2 λe
i < λmin ,

Ae(λe
i − λmax)

2 λe
i > λmax ,

0 λmin < λe
i < λmax ,

(173)

where are λe
i with i = {1, 2} are the eigenvalues of the element’s right Cauchy-Green tensor

CC, λmin ≤ λ
e
i ≤ λmax is the range of admissible stretch and Ae is the area of the undeformed

element. The total objective simply sums up all per-element contributions as

Tstretch =
∑

e

∑
i∈{1,2}

[
T e

stretch(λ
e
i )

]
.

It should be noted that, since CC is a 2 × 2 matrix, its eigenvalues and their derivatives can

be determined analytically.

In addition to defining the range of preferred stretch values, this objective also serves the
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purpose of penalizing wrinkled and slack elements. The latter are particularly troublesome

as they can induce ill-conditioning in the Hessian at equilibrium, which causes problems

for both simulation and optimization. To avoid these degenerate cases, we use the stretch

objective for bounding the minimum stretch in all our examples.

6.2.3 Pressure Objective

Controlling the garment pressure on the body is an important feature for medical garments

such as diabetic wear or post-surgery pressure masks used especially in cosmetic surgery.

Therefore, we propose a design objective that allows the user a prescribed pressure range.

Pressure is defined as F
A where F is the perpendicular force applied to a surface and

A is the area on which that force is applied. In the context of a finite element simulation,

pressure can be computed as the normal force acting on a vertex over the area that "belongs"

to that vertex.

In our case, the resulting forces are known to be normal to the subdivision surface due

to our requirement that the tangential forces be zero at equilibrium. However, computing

accurately the area of a vertex in a piece-wise linear trianglemesh is less trivial. The obvious

choice of having the area be the sum of a third of the area of its surrounding elements leads

to often inaccurate and mesh-dependent behaviour. A better approach is given by using

cotangent weights which alleviates some of the problems. But one should be restricted to

using regular meshes as cotangent weights can lead to big variations for irregular vertices.

A better solution is achievable from fluids, in which the change of pressure is given

by the Young-Laplace equation ∆p = γH, where H is the mean normal curvature of the

surface and γ is the surface tension. This expression assumes that the interface is devoid

of any shear stresses, which is true for fluids but not for membranes. The Young-Laplace
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equation is then generalized [64] for membranes by the expression

p = dtr(σΛ), (174)

where σ is the surface stress tensor, Λ is the shape operator and d is the thickness of the

membrane. Then, we can compute the interface pressure per cloth element where σ is the

Cauchy stress tensor and Λ is the mid-edge normal shape operator [22], defined as

Λ =
∑

i=1,2,3

θi
2 + siφi

Ali
ti ⊗ ti, (175)

where i is each edge of the element, li is the length of the edge, ti is the normal vector to

the edge with length li, Ai is the area of the element, θi is the average signed angle between

the normals of the faces shared by the edge (known as the mid-edge normal). si is 1 for

a half-edge and −1 for the opposite half-edge, φi are additional degrees of freedom that

represent corrections to the angles that represent the mid-edge normals.

The φ are obtained through minimizing the energy

ψ =
∑

i

Aitr(Λ2
i ), (176)

which is quadratic on the φ and can therefore be optimized by solving a single linear system
∂2ψ

∂φ2∆φ = −
∂ψ
∂φ where ∂2ψ

∂φ2 is unique and therefore non-singular for a sufficiently refined

mesh.

Given the interface pressure, we can define a per element pressure objective for opti-

mization as

TPressure =
∑

i

Āi(p − T)2, (177)

where Ā is the area of the undeformed element and T is a user specified target pressure.

The gradient of this objective with respect to the undeformed vertices x̄ considering the
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additional degrees of freedom φ is

dT
d x̄
=
∂T
∂ x̄
+
∂x

∂ x̄

T (
∂T
∂x
+
∂φ

∂x

T ∂T
∂φ

)
, (178)

where ∂x
∂ x̄ and ∂φ

∂x are obtained through sensitivity analysis as

∂x

∂ x̄
= −

∂ f

∂x

−1 ∂ f

∂ x̄
, (179)

where

∂φ

∂x
= −

∂2ψ

∂φ2

−1
∂2ψ

∂φ∂x
. (180)

Instead of evaluating the entire sensitivity matrices ∂x
∂ x̄ and

∂φ
∂x , we use adjoint sensitivity

analysis for both corresponding terms, which amounts to an additional linear solve per

gradient evaluation.

Unlike the discrete pressures based on per-vertex areas, our new approach leads to

accurate pressure distributions even for unstructured meshes with many irregular vertices

and a wide range of element aspect ratios; see Fig. 31 for a comparison.

6.2.4 Seam Stress Objective

The most vulnerable areas of sewn garments are typically along the seams. It is therefore a

natural goal to optimize for patterns that minimize seam stress and thus increase garment

life span and reliability.

For each cloth element adjacent to a seam, we evaluate the second Piola-Kirchhoff stress

tensor Si [9], which relates traction forces to areas in the undeformed configuration, and

compute the traction in the direction n, perpendicular to the seam. We then penalize seam
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Figure 31: Estimated pressure error on a cylindrical cloth stretched around the circumference
of a cylinder of radius 1 with a Poisson’s ratio equal to 0. For such an example, the pressure
is constant everywhere. a) Pressure error estimated on elements stretched by 33% using
F
A (left) and Young-Laplace with the midedge normal operator (right). b) Pressure error
estimated on elements stretched by 100% using F

A (left) andYoung-Laplacewith themidedge
normal operator (right). It can be observed that the shape of the elements influences the
accuracy of the pressure computed with F

A while pressure computed with Young-Laplace
with the midedge normal operator remains accurate.
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traction as

TSeam =
∑
i∈T

li
0dSini · ni , with Si = 2

∂φi
cloth

∂CC
, (181)

where T is the set of all seam-adjacent elements, li
0 is the length of the seam in the

undeformed configuration, and d is the thickness of the fabric.

6.2.5 Multiple Poses Sliding Objective

While the objectives introduced so far all refer to a single body pose, they can readily be

extended to incorporate multiple poses. However, an additional aspect that arises when

considering a range of motion instead of a single pose is garment sliding. Running and

cycling, for instance, are applications where sustained tangential motion of the garment

relative to the body can lead to discomfort and even injury.

Motivated by this example, we introduce a design objective that aims at minimizing

garment sliding for a given range of motion. To this end, we start by defining a neutral

body pose y0 and a set of target poses (y1, . . . , yn) that represent the range of motion to be

considered. We first compute the equilibrium configuration q0 for the main pose and use the

resulting local coordinates x0 to determine deformed cloth positions (x1, . . . , xn) for each

target pose. In the absence of friction, these configurations are generally not in equilibrium

and would lead to cloth sliding over the body. By accounting for friction, however, we can

determine whether the unbalanced tangential forces can be compensated by friction forces.

To this end, we implement a simple, isotropic Coulomb-type friction model and define

tangential and friction forces magnitudes for each cloth vertex j and each pose i as

f t
i, j = | | f i, j − ( f i, j · ni, j)ni, j | | , and f c

i, j = µ f i, j · ni, j ,

respectively, where f i, j is the elastic force from the cloth, ni, j is the normal given by the

subdivision surface and µ is the friction coefficient. To penalize excessive tangential forces
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that would lead to sliding, we define the objective

T i
Sliding =

∑
i

(Ti, j)
2 , Ti, j =


f t
i, j − f c

i, j f t
i, j ≥ f c

i, j

0 otherwise .
(182)

The gradient for this objective depends only on the local coordinates of the neutral pose and

is obtained as
dTSliding

d p
=

∑
i

∂T i
Sliding

∂ p
+

(
∂xi

∂x0

∂x0
∂ p

)T ∂T i
Sliding

∂xi
, (183)

where ∂x0
∂ p is the sensitivity matrix of the neutral pose, and ∂xi

∂x0
maps changes in local

coordinates for the neutral pose to corresponding world-space changes for the target poses.

6.3 Regularizers

In addition to the design goals that we describe in Sec. 6.2, the objective function T in Eq.

(158) also includes several regularizers that ensure well-shaped patterns and manufactura-

bility.

Seam Compatibility Connecting two patches in a given seam requires the corresponding

patch boundaries to have the same length. To enforce this compatibility condition during

optimization, we penalize length deviations for corresponding edges eleft and eright from

different sides of the seam have as

RSeamLen =
∑

i

[(

ei
left




2 −




ei
right





2

)2
]
. (184)

Patch Boundary We generally prefer patch boundaries that are smooth and, excepting

corners, discourage sharp features with a penalty term based on the discrete bending energy
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from [7] as

RSmooth =
∑
(i, j)∈B

κ2
i j

‖ei‖ +


e j



 , (185)

where B is the set of pairs of consecutive edges on the pattern boundary with integrated

curvature

κi j =
2ei ⊥ e j

‖ei‖


e j



 + ei · e j
.

To prevent too close approach between neighboring boundary vertices, we furthermore use

the energy defined in Eq. (184) to penalize differences in length between two consecutive

edges.

Patch Compactness To prevent patterns from becoming arbitrarily thin during opti-

mization, we introduce a compactness term that penalizes small ratios of Euclidean and

on-boundary distance between two boundary vertices. Since for any pair of boundary ver-

tices there are two possible on-boundary paths, we choose the initially shortest one and

keep it for the remainder of the optimization. For two given boundary vertices pi, p j we

compute this ratio as

ρi j =



pi − p j




2∑k= j

k=i+1 ‖pk − pk−1‖2

, (186)

where pk represent vertices in the path from pi to p j . The corresponding penalty term is

defined as RComp =
∑

i
∑

j Ri j
Comp, where

Ri j
Comp =


(
ρi j − rD

)4
ρi j ≤ rD

0 ρi j > rD

, (187)

where rD is a threshold modeling the minimum admissible ratio.

Forces on Boundary When designing skintight clothing, it is often desirable to prescribe

the location of the garment boundaries relative to the body. Examples include the top of the
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waistband for a pair of pants, or the boundaries of a wet-suit close to the knee. To implement

these constraints, we fix vertices on the boundary of the garment to corresponding target

locations on the body. However, doing so can lead to large tangential forces on the garment

boundary. We therefore encourage traction-free boundaries through the penalty term

RFixed =
∑
i∈F

‖bi‖
2
2 where bi =

dU
d si

, (188)

and F is the index set of fixed boundary vertices.
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Chapter 7

Results and Discussion

Wedemonstrate our optimization-driven pattern designmethod on a set of examples inspired

from fashion, sportswear, and medical garment applications. We start with examples that

highlight the impact of individual design objectives, then proceed to further evaluation and

performance data.

7.1 Impact of Design Objectives

The design objectives can be combined arbitrarily as required by the application. All our

examples use the principal stretch objective in order to discourage the formation of slack

elements. However, we choose to activate only one additional objective per example in

order to provide a clearer impression of their individual impact.

Shape Objective We demonstrate our shape objective on two examples. The first one,

shown in Fig. 32, uses a cylindrical shape as the initial body pose (Fig. 32a-top) and two

target shapes: a conically tapered cylinder (Fig. 32b) and an hourglass shape (Fig. 32c).

For both of these examples the cloth is composed of two rectangular patches (Fig. 32a-

bottom) which conform to the surface of the cylinder. The optimized patterns are shown
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Figure 32: Pattern optimization for a deformable cylinder based on shape targets. a) Rest
shape of the cylinder with two patterns. b) Optimization result for a tapered target. c)
Optimization result for a hourglass target.
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Figure 33: Pattern optimization for a pair of tight pants with a given target shape. a)
Comparison before optimization (left) and after optimization (right). b) Silhouette before
optimization (blue), after optimization (red), compared to the target (black). c) Patterns after
optimization. d) Comparison between two individual patches before and after optimization

in Fig. 32b,c-bottom, and the corresponding simulation results indicate that optimizing

patterns with our shape objective is an effective means of controlling body deformations. It

should be noted, however, that the space of physically-feasible body deformations is fairly

constrained as, e.g., volume changes cannot be achieved in this way. Nevertheless, our

method is able to approximate mostly feasible target shapes with good accuracy.

The second example for the shape objective inspired by shapewear applications. Fig. 33

shows a pair of pants with its pattern atlas before and after optimization. The difference

between the target shape, initial simulation result, and simulation result after optimization
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Figure 34: Cylindrical cloth stretched in the direction of the cylinder. The image shows
the initial cloth with its patterns (left) and its optimized version using the seam traction
objective (right).

Figure 35: Pants stretched in the direction of the circumference of the legs. The image
shows the initial cloth with its patterns (left) and its optimized version using the seam
traction objective (right).

is show in Fig. 33b. While the changes in geometry are perhaps less obvious than in

the previous example, the changes in pattern shape are substantial and the corresponding

simulation result closely approximates the target shape.

Seam Traction Objective To demonstrate the impact of our seam traction objective, we

first show it on a cloth cylinder stretched around the circumference. Since the seam is

completely orthogonal to the direction of the stretch, the optimization tries to find patterns

in a way that balances the length of the seam (the longer the seam, the stronger the total

seam traction), and the angle between the direction of stretch and the orientation of the
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Figure 36: Patterns on a sphere change dramatically while optimizating for uniform pressure
(Target pressure is set to 1000 N

m2 ).

seam (the more parallel the seam is to the stretch direction, the weaker the traction). We

show the result in Fig. 34

In a more practical example, we use it for optimizing the patterns of a pair of long pants

as shown in Fig. 35. We start with an initial pattern set that leads to about 30% stretch along

the circumference of the legs. Since the seams are initially perpendicular to the direction of

maximum stretch, they experience excessive traction forces. We then optimize the patterns

using our seam-traction objective as well as the stretch objective in order to maintain the

initial deformation. The optimization yields a pattern layout that leads to helical seams

spiraling around the legs. The increased length and changed orientation leads to an overall

improvement of 13% in traction force density. The optimized design thus reduces the risk

of material failure while offering an aesthetically-interesting seam layout.

Pressure Objective To evaluate the effectiveness of our pressure objective, we start with

a simple example in which we optimize the patterns for a sphere such that the resulting

pressure is as close as possible to 1000N/m2 everywhere.

As can be seen in Fig. 36, the patterns change drastically during optimization and

converge to elongated, winding shapes whose seams form a complex interlocking pattern

on the 3D surface. Interestingly, this result is very similar to the one obtained by Skouras
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Figure 37: Pressure on the sphere before optimization and after optimization.

et al. [52], who optimized patterns such that the inflated shape is as spherical as possible.

It is not surprising then that optimizing for constant pressure yields patterns that result in

an almost spherical shape. The resulting pressure is sown in Fig. 37.

Our second example for the pressure objective is a post-surgery compression mask

consisting of two patterns. We set the admissible range of pressure to 1250 − 3000 N/m2,

which is consistent with the target pressure of medical surgery masks. As shown in Fig. 38,

the simulation result for the initial patterns exhibits excessive pressure for high-curvature

regions such as the chin or the top of the head. Furthermore, there are many elements

around the neck that exhibit negative pressure (shown in black), which occurs when cloth is

stretching in concave regions. It should be noted that negative pressure is an artefact of our

model and, rather than pulling on the body, the fabric would lift off the surface in reality.

Nevertheless, it is an effective indicator for this problem and by penalizing negative pressure

during optimization, we can prevent undesirable fabric lift-off. This effect can be observed

in Fig. 38-right, where the optimized patterns achieve pressure values for sensitive areas

within the desired range. While some elements with negative pressure remain in concave

regions such as the temples or the hollows of the cheeks, their number is largely reduced.
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Figure 38: Optimization of a pressure mask to a given interval [1250-3000]. a) Patterns of
the mask in 3D, b) Patches before optimization, c) Patches after optimization, d) Pressure
distribution before optimization, e) Pressure distribution after optimization

Figure 39: Running sequence used to optimize a pair of pants (left), Patterns before
optimization (middle), patterns after optimization (right)
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Figure 40: Unbalanced tangential forces before optimization (left) and after optimization
(right)

Sliding Objective We demonstrate the effectiveness of our sliding objective on a pair of

long pants and four poses selected from a running sequence as seen in Fig. 39. We again

prescribe a stretch target in the circumferential direction of the legs of 30% and set the

friction coefficient to µ = 0.3. As can be seen in Fig. 40, the pelvic area exhibits substantial

tangential forces which would translate into unwelcome sliding during the motion. The

optimized patterns lead to greatly reduced unbalanced tangential forces.

7.2 Additional Evaluation

Impact of Seams By accounting for seam stiffening in simulation, our method can an-

ticipate the corresponding effects during pattern optimization. We demonstrate the impact

of seams the example shown in Fig. 41. We simulate an initial pattern set (Fig. 41c) on a

deformable sphere without seam stiffening, resulting in a shrunk version of the sphere (Fig.

41a). However, when the same patches are simulated again with added seam stiffness, the

resulting shape exhibits clearly visible deformations around the seams (Fig. 41b). When

optimizing the patterns with seam stiffness, using the initially deformed sphere as target

(Fig. 41d), our method adjusts the patterns such that the resulting shape approximates well
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Figure 41: Example of optimizing a set of patterns on a compressible sphere. An initial
simulation without seam stiffening produces the result shown in a). After taking seam
stiffening into consideration, we obtain the result shown in b). The simulations presented
in a) and b) use the patterns shown in c). After optimizing to obtain the same result of a)
considering seam stiffening, we obtain the simulation shown in d), with the patterns shown
in e).

the target (Fig. 41e).

Automatic Grading & Body Shape Variety One central advantage offered by our

optimization-driven approach over manual pattern design is that a given pattern layout

can be automatically customized to a variety of body shapes. We demonstrate this ability

by optimizing the patterns of wet-suit design, shown in Fig. 42, for four different body

shapes using the same objective (30% target stretch) in all cases. Our method automatically

grades the patterns for each body shape such that the target stretch is maintained (Fig. 43).

Impact of Regularizers So far, we have shown results that focus solely on the design

objectives. To achieve some of these results, the regularizers played a crucial role. In this

section we demonstrate how two of these particular regularizers, curvature (Eq. 185) and

compactness (Eq. 187), influenced the final results in two of the examples whose patterns

experienced the most drastic deformations: the pressure sphere (Fig. 36) and the seam

traction pants (Fig. 35).
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Figure 42: A wetsuit adapted for different body meshes (Optimized patterns shown for the
body to the left)

Figure 43: Resulting stretch after optimization for each body shape (streamlines represent
direction of the stretch)
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Figure 44: Patterns without the compactness regularizer tend to collapse on themselves.
Patterns presented for a failed optimization for the sphere (left) and for the pants (right)

Figure 45: Sphere pressure optimization with varying ratios for the compactness term. Left:
10%, Middle 5%, Right 2.5%

We start by underlying the importance of the compactness term to even get a converged a

result. Without it, there is not an incentive for the patterns borders to collapse on themselves.

An example of this artefact is shown in Fig. 44. The compactness term not only allows

us to avoid these kinds of collisions, but also allows us to specify arbitrary thinness for the

patterns without compromising robustness. This is shown in Fig. 45. In a similar way, for

high values for the curvature regularizer, the patterns tend to prefer straighter seams, while

low curvature penalizations tend to allow more freedom in the designs. An example of this

behaviour is found in Fig. 46, where the seam traction optimization example for the pants

is run with different curvature penalization weights.
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Figure 46: Seam traction optimization for the pants under two different curvature penaliza-
tion weights. High curvature weight (Left) against Low curvature weight (Right).

Performance and Statistics In all our results, we start from an initial guess obtained by

scaling down the patterns computed with a geometric flattening method [50]. By scaling

down patterns, we avoid slack elements at the start of the optimization. Each simulation

is considered converged once the norm of the unbalanced forces falls below 10−6. The

optimization is considered converged once the norm of the objective gradient falls below

10−3. We ran our examples on a machine with an Intel Core i7-5820k processor and 8GB

of RAM. In terms of material parameters, we use a Young modulus of 24.78KPa and a

Poisson’s ratio of 0.49 for the body. For the cloth, we chose a thickness of 0.1mm and a

Young modulus of 30MPa for the mask, 5.4MPa for the pants with a Poisson’s ratio of

0.33 for all examples. Statistics for selected experiments are listed in Table 1. Additionally,

we include convergence graphs (objective and gradient) for two selected experiments.
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Figure 47: Convergence graphs for the tapered cylinder.
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Figure 48: Convergence graphs for the pressure sphere (Example with multiple remeshing
steps).
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Table 1: Summary of parameters and performance for all our experiments. From left to
right: Model, Number of Patterns, Number of Remeshing Steps, Number of Iterations,
Time per Iteration [s], Initial Objective Value, Final Objective Value.

Cylinder tapered (Fig. 32b) 2 0 346 12.2 5433.58 106.95
Cylinder hourglass (Fig. 32c) 2 0 386 10.1 2241.66 222.64
Pants stretch (Fig. 35-left) 4 0 903 6.34 133.06 5.70
Pants traction (Fig. 35-right) 4 1 4160 5.87 38.62 28.45
Pants shape (Fig. 33) 8 0 1408 19.2 66.91 14.40
Sphere pressure (Fig. 36) 3 5 2714 4.66 9547.41 205.54
Sphere shape (Fig. 41) 3 0 1001 22.3 22524.6 217.66
Mask pressure (Fig. 38) 2 0 849 6.40 55.44 1.55
Sliding pants (Fig. 39) 4 0 914 7.48 120.57 5.23
Wetsuit regular (Fig. 42) 12 0 1629 5.84 130.22 19.70
Wetsuit athletic (Fig. 42) 12 0 1735 5.57 139.74 21.15
Wetsuit overweight (Fig. 42) 12 0 1353 6.60 177.55 25.81
Wetsuit kid (Fig. 42) 12 0 1561 5.72 115.96 18.35
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Chapter 8

Conclusions, limitations and future work

Wepresented an optimization-driven approach to automatically generate patterns for skintight

clothing. As the core of our method, we proposed a computational model that captures

the mechanics of the clothing, the underlying body, and their mutual interaction within a

unified approach. We furthermore described a set of design objectives that encode shape,

comfort, and mechanical aspects of the garments. Our results indicate that our approach is

able to reliably compute optimal patterns for a broad range of garments and body shapes,

even when substantial design changes are required.

Our current approach has several limitations, most of which indicate promising direc-

tions for future work. Embedding the garment in the surface of the body simplifies both

simulation and optimization. Nevertheless, it comes at the cost of introducing incorrect

behaviour for concave surfaces: whereas real cloth will lift off the body when stretched

over a concave region, in our model it generates traction forces that pull the body outwards

as illustrated in Fig. 49. While we can detect these situations and optimize patterns to

avoid negative pressure, not all cases can be resolved in this way. In the future, it would

interesting to combine our approach with a conventional cloth model that is activated for

regions in which the cloth separates from the body.

All our examples use a single isotropic cloth material for all patterns. Natural extensions
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Figure 49: Stretched cloth on a concave surface (left) results in pulling forces that can
produce artifacts in the body (right).

include accounting for material anisotropy, and to combine patterns with different materials

for shaping and reinforcement.

We use subdivision surfaces to convert the piece-wise linear boundary of the body

mesh into a continuous surface. While the improved smoothness facilitates simulation

and optimization, we do currently not use the same representation for simulating the body.

Increasing the resolution of the body mesh decreases the discrepancy between these rep-

resentations, but a more elegant solution would be to use subdivision finite elements [12].

As a related limitation, the cloth mesh should have a higher resolution than the body mesh,

since it could otherwise lead to body vertices not experiencing any coupling force.

Finally, while our method allows for bounding the maximum stretch in a garment once

worn, we do not take into account deformations that occur during dressing. Especially for

tight-fitting garments made of stiffer fabrics, this question can have an important impact

on the design. Integrating dressing simulation into the design process is an interesting

direction, and the work of Clegg et al. [16] seems a good starting point.
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Appendix A

Loop Subdivision Surfaces

Loop is a method of approximating subdivision surfaces to a linear triangular mesh. It

works by recursively adding vertices to the middle all the edges of the mesh, creating 4 new

faces for each face in the process. Each original vertex is then smoothed as the average of

the surrounding new vertices. It is said to be approximating, as the resulting subdivided

surface does not interpolate the original surface.

If this process is carried indefinitely, it will eventually reach a converged mesh which is

known as the limit surface. It is possible to evaluate a given point on the limit surface along

with its derivatives as long as the triangle containing the point has at most one irregular

neighbour [55].

The evaluation of the limit surface of a point lying on an element depends on the

regularity of the 3 vertices of the element. A vertex in a triangular mesh is said to be regular

if it has exactly 6 neighbours. If all vertices in an element are regular, the limit point can be

computed directly from the 3 triangle vertices and the 9 (fig. 1) direct neighbours of those
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Figure 1: Regular patch with ordering for a limit point lying on the triangle made by vertices
{y4, y7, y8}.

vertices as

xT =
1

12
bT



y1x y1y y1z

y2x y2y y2z

y3x y3y y3z

· · ·

y12x y12y y12z


, (189)

where b is a vector of basis functions defined as
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3 + 2s3
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where s3 = 1 − s1 − s2. Compared to linear barycentric interpolation, we observe that

the function remains linear on the surface vertices, but now is quartic on the barycentric

coordinates s.

For the case an element has one irregular vertex, the number of control points the limit

point relies on depends on the valence of the irregular vertex and is defined by K = N + 6,

where N is the valence of the irregular vertex. The limit surface and its derivatives can
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then be evaluated numerically using the algorithm proposed by Stam in Evaluation of Loop

Subdivision Surfaces.

If one body element has more than one irregular vertex, it has to be preprocessed by

manually subdividing it once.

This scheme results in a C2 continuous surface with the exceptions of irregular vertices

where it is C1.
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