Revisiting Test Impact Analysis in Continuous Testing From the

Perspective of Code Dependencies

7i Peng

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of
Master of Applied Science(Software Engineering) at
Concordia University

Montréal, Québec, Canada

September 2020
(©) Zi Peng, 2020

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Zi Peng
Entitled: Revisiting Test Impact Analysis in Continuous Testing From the
Perspective of Code Dependencies

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science(Software Engineering)
complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Weiyi Shang

Examiner
Dr. Weiyi Shang

Examiner
Dr. Olga Ormandjieva

Supervisor
Dr. Tse-Hsun Chen

Supervisor

Dr. Jinqgiu Yang

Approved by

Dr. Leila Kosseim, Graduate Program Director

11 September 2020

Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Revisiting Test Impact Analysis in Continuous Testing From the Perspective of

Code Dependencies

Zi Peng

In continuous testing, developers execute automated test cases once or even several times per day
to ensure the quality of the integrated code. Although continuous testing helps ensure the quality
of the code and reduces maintenance effort, it also significantly increases test execution overhead.
In this thesis, we empirically evaluate the effectiveness of test impact analysis from the perspective
of code dependencies in the continuous testing setting. We first applied test impact analysis to one
year of software development history in 11 large-scale open-source systems. We found that even
though the number of changed files is small in daily commits (median ranges from 3 to 28 files),
around 50% or more of the test cases are still impacted and need to be executed. Motivated by
our finding, we further studied the code dependencies between source code files and test cases, and
among test cases. We found that 1) test cases often focus on testing the integrated behaviour of the
systems; 2) 18% of the test cases have dependencies with other test cases, and test case inheritance is
the most common cause of test case dependencies; 3) We documented four dependency-related test
smells that we uncovered in our manual study. Our study provides the first step towards studying
and understanding the effectiveness of test impact analysis in the continuous testing setting and

provides insights on improving test design and execution.

iii

Statement of Originality

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,including
any required final revisions, as accepted by my examiners. I understand that my thesis may be made

electronically available to the public.

iv

Acknowledgement

First and foremost, I am profoundly grateful to my supervisor, Dr. Tse-Hsun Chen, and Dr. Jingiu
Yang, for their patient guidance, encouragement, and contributive suggestions. They are the best
mentors and supervisors that one can ask for. I am extremely lucky that I have the chance to
work under their supervision and learning not only about knowledge but also the attitudes towards
research. My research would have been impossible to complete without their aid and support, and
I feel extremely lucky to have intelligent and friendly mentors who guide me in exploring innovative
ideas and achieving research goals.

I would also like to show my sincere gratitude to my committee members, Dr. Weiyi Shang and
Dr.Olga Ormandjieva, for taking their precious time to consider my work. Many thanks for their
valuable and insightful feedback.

I would like to send my appreciation to Dr. Weiyi Shang from whom I’ve learned valuable
modeling knowledge which is used in this thesis. Also, I want to thank my fellow lab-mates from
SPEAR and SENSE lab: Zhenhao Li, Anran Chen, Arthur Vitui, Wei Liu, Dong Jae Kim, Steven
Locke, Zehao Wang, Cheng Cheng, Triet Pham, Farbod Farhour, Bo Yang, Mostafa Jangali, Junjie
Li, Jinfu Chen, Maxime Lamothe, Zishuo Ding, Hetong Dai, Lizhi Liao, Sophia Quach, Haonan
Zhang, and Yingjie Xia, for the support and encouragement, also for the best moments we worked
and enjoyed together.

Last but not least, I would like to send my most special thanks to my parents. I can never
achieve what I have now without their love and support, being their child is the proudest thing in

my life.

Related publication

Zi Peng, Jingiu Yang, Tse-Hsun (Peter) Chen, Lei Ma. A First Look at the Integration of Machine
Learning Models in Complex Autonomous Driving Systems - A Case Study on Apollo. The 28th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE), 12 pages. 2020. Accepted.
Zi Peng, Tse-Hsun (Peter) Chen, Jingiu Yang. Revisiting Test Impact Analysis in Continuous

Testing From the Perspective of Code Dependencies. IEEE Transactions on Software Engineering

(TSE), 15 pages. Under major revision.

vi

Contribution of Authors

Revisiting Test Impact Analysis in Continuous Testing From the Perspective of Code
Dependencies

7i Peng: researching background knowledge and related work; implementing the program; conduct-
ing experiments; performing manual analysis; drafting, and polishing the paper.

Tse-Hsun(Peter) Chen: research supervisor; funding; refining the initial ideas; guiding experiments;
manual analysis; editing, writing, polishing, and proofing of the paper.

Jingiu Yang: research supervisor; funding; refining the initial ideas; guiding experiments; manual

analysis; editing, writing, polishing, and proofing of the paper.

A First Look at the Integration of Machine Learning Models in Complex Autonomous
Driving Systems - A Case Study on Apollo

7i Peng: performing experiments; conducting case study; drafting, polishing, proofing of the paper.
Jingiu Yang: research supervisor; guiding case study; writing, editing, polishing, and proofing of the
paper.

Tse-Hsun(Peter) Chen: research supervisor; guiding case study; writing, editing, polishing, and
proofing of the paper.

Lei Ma: researching related work; providing feedback on initial research idea; writing related-work;

polishing and proofing of the paper.

vii

Contents

List of Figures
List of Tables
1 Introduction

2 Background and Related Work
2.1 Continuous Integration and Testing
2.2 Test Case Prioritization and Selection

2.3 Studies on Test Case Dependencies and Quality

3 Experimental Settings and Methodology
3.1 Experimental Settings L
3.2 Uncovering Code Dependency Graph
3.3 Applying Test Impact Analysis

4 Studying Code Dependencies of Test Cases
4.1 RQ1: What is the impact of dependencies from the perspective of test impact analysis
in continuous testing? L
4.1.1 Motivation. L e
4.1.2 Approach. L
4.1.3 Results.o
4.2 RQ2: What is the degree of dependencies between test cases and source code files? .
4.2.1 Motivation. L e e
4.2.2 Approach.
423 Results. e
4.3 RQ3: What is the degree of dependencies among test cases?
4.3.1 Motivation.

viil

xi

= S, B SGT

© o oo 0o

11

4.3.2 Approach.
4.3.3 Results.
4.4 RQ4: What are the dependency-related test smells that may negatively impact test

4.4.2 Approach. e
4.4.3 Results. e e e e e e e e e

Implication and Future Directions

5.1 Adopting test impact analysis in CI settings can reduce accumulated test execution
overhead L.

5.2 Needs for further improving the effectiveness of test impact analysis in a CI setting .

5.3 Needs and future research opportunities for proposing specialized techniques that
reduce code dependencies to improve the effectiveness of test impact analysis

5.4 Needs for revisiting and improving test case design

Threats to validity

6.1 External Validity.
6.2 Construct Validity. L
6.3 Internal Validity. e

7 Conclusion

Bibliography

ix

33

33
33

34
34

36
36
36
37

38

40

List of Figures

1 The distributions of the percentage of test cases that are impacted by the daily code
changes. The red dot illustrates the mean value.
2 The comparison of the percentage of changed files and the percentage of impacted
tests over the one-year period. L
3 The distributions of the reduced test execution time after applying test impact anal-
ysis. The red dot illustrates the mean value.
4 The distributions of the average package distance of the source code files in a test.

5 The distribution of the number of source code files that are called in a test case.

List of Tables

An overview of the studied systems. L.
Median number of daily commits and changed files, excluding the days when there
are no code changes. e e

The details of the collected CI builds for analyzing the execution time of the impacted

Number of test cases, test utility files, and the number of test cases that have depen-
dencies with more than one test cases. Med. dep. and Mazx. dep. shows the median
and the maximum number of dependencies between one test case and other test cases.
We exclude the test cases that do not have any dependencies with other test cases
when calculating the median. o
An overview of the manually derived reasons for dependencies among test cases.

Number of test cases extending other classes. Med. DIT shows the median DIT
number of all test cases with non-zero inheritance. Maz. inherit layer shows the

maximum DIT number among all test cases in one system.

X1

Chapter 1

Introduction

Continuous integration (CI) is widely used in modern software development. The CI practice inte-
grates developers’ code changes to a central code repository once or even several times per day. Such
frequent code integration reduces software maintenance overheads and allows developers to provide
the latest working software to customers.

To ensure the quality of the integrated code, developers need to run a set of test cases for each
code integration (i.e., CI build) in a continuous fashion — which is called continuous testing. However,
running test cases is time-consuming and requires a significant amount of computing resources. To
reduce testing overhead, prior studies have proposed techniques to reduce the test cases that need
to be executed [15, 46, 50, 57, 60, 62]. In particular, Orso et al. [39] and Legunsen et al. [23] found
that, by analyzing the static class dependencies between test cases and source code files, we can
effectively identify and only execute the test cases that are “impacted” by the code changes (i.e.,
have dependencies with the changed code) to reduce testing overhead. In this thesis, we call such
techniques test impact analysis [35].

Although prior studies have shed light on the potential of test impact analysis, its effectiveness is
closely related to the design of test cases, and in particular, code dependencies. Due to the frequent
code changes and increased system complexity, the maintenance and quality of CI test cases may
degrade. There may be a certain degree of dependencies between test cases and source code files, or
among test cases. We define the degree of dependencies as the number of dependencies between a test
case and other source code files, among test cases, or between a source code file and other test cases
(e.g., a source code file is tested by multiple test cases). Unlike traditional software development
where test cases are executed once in a while, having a high degree of code dependency may have
a larger accumulated testing overhead in CI due to frequent code integration and testing. A high

degree of dependencies (e.g., a test case has dependencies with multiple source code files or other

test cases, or a source code file is tested by multiple test cases) may reduce the effectiveness of test

impact analysis and increase the difficulty of test maintenance.

Study the impact of code dependencies on test impact analysis in CI settings and the degree of

code dependencies in test case design can help in improving test impact analysis effectiveness

and reducing maintenance effort, which previous research rarely considered.

To better understand the effectiveness of test impact analysis in CI settings and provide insights
on improving the modularity of test case design, we study CI test cases by analyzing the code
dependencies in 11 large-scale open-source systems. We study code dependencies from two different
perspectives: CI execution in relation to test impact analysis, and CI test case design. To study
the effect of code dependencies on test impact analysis, we follow prior studies on static test impact
analysis [23, 39] to uncover the class dependency graph and identify the percentage of test cases
that are impacted (i.e., need to be executed) by the changed code. If there is a high degree of
dependencies between test cases and source code files, the number of impacted test cases would be
high; and thus, the effectiveness of test impact analysis will be impacted. We analyze the daily
code changes (i.e., commits) in the studied systems for a period of 12 months. We found that daily
changes on a relatively small number of files (median values range from 3 to 28 files per day) can
impact (i.e., have dependencies with) around 50% or more of the test cases.

To study code dependencies in relation to test case design, we analyze the dependencies between
test cases and source code files (and vice versa), and the dependencies among test cases. We found
that most test cases cover the integrated behaviour of the software (i.e., 75% to 97% of the test
cases cover multiple source code files), and there exists a certain degree of dependencies among test
cases (i.e., 18% of the test cases have dependencies with other test cases). Finally, we conducted a
qualitative study on the reasons that cause the dependencies among test cases. We uncovered four
dependency-related test smells that may negatively affect test maintenance and execution.

The thesis makes the following contributions:

e We found that the number of daily changed files is often small (median range values range
from 3 to 28 classes across the studied systems). However, most of the test cases (around 50%
or more) have dependencies with the modified files and may need to be re-executed in every

build.

e The studied test cases often focus on testing the integrated behaviour of the system. On
average, 15% of the test cases have dependencies with 20 or more source code files. We also
found that the source code files in a test case often belong to different packages (i.e., cover

various business logics).

e We found that, on average, 18% of the test cases have dependencies with other test cases. Our
manual study found that most dependencies are caused by four reasons: inheritance between
test cases, test cases containing public test utility methods, shared variables among test cases,

and test cases creating instances of other test cases or using the instances as parameters.

e We documented four dependency-related test smells that we manually uncovered. We reported

some instances of each test smell to developers, and the instances are confirmed and fixed.

The thesis provides an important first step to study and understand the design of CI test cases
in terms of code dependencies and their impact on the effectiveness of test impact analysis. Our
findings can help developers improve test case design by refactoring unneeded code dependencies
(e.g., the test smells that we identified), and may inspire future software testing research to further
improve test design and test execution efficiency in continuous testing. We release the replication
package of this thesis, including the studied data, code, and the results of the manual studies
(https://sites.google.com /view/codedependencies).

Thesis organization. Chapter 2 introduces the background and related work of CI testing. Chap-
ter 3 describes our studied systems and the methodology to study code dependency and test impact
analysis. Chapter 4 presents the result of test impact analysis and further shows the results of our
dependency analysis between test cases and source code classes, and among test cases. Chapter 5
summarizes the key findings and their implications. Chapter 6 discusses the threats to validity.

Finally, Chapter 7 concludes the thesis.

Chapter 2

Background and Related Work

In this chapter, we discuss background and related work of continuous integration and testing, test

dependency, and test case prioritization and selection.

2.1 Continuous Integration and Testing

Continuous integration (CI) is the practice of frequently integrating and merging developers’ code
changes to a central code repository. To reduce the manual effort in the CI process, developers
often use automation tools such as Jenkins [21] for automated code integration, compilation, and
testing. The CI process can be triggered by the automation tools based on a customized schedule
to integrate the most recent code changes. As part of the CI process, continuous testing is to verify
the quality of the integrated code by automatically executing test cases. A common practice is
to run the test cases either after a fixed period of time (e.g., once per day in Hadoop), or after a
consecutive number of commits (e.g., 8 commits in Ericsson [38]). A prior study [59] found that
CI improves software development productivity and helps reveal more bugs. Developers often use
different build systems, such as Maven, to manage the test execution. In each build, Maven would
automatically execute all the test cases specified in its build script and generate a final test report.
The concept of continuous testing was introduced by Saff et al. [48] as a way to help developers
rapidly identify regression errors at an early stage and to reduce development waste. Muslu et
al. [37] discussed about the benefit of leveraging continuous testing process to detect system errors
caused by incorrect data. Their research illustrates that continuous data testing can be used to
address important data debugging problems. Chen et al. [8] documented their industrial experience
on how they integrate non-functional (i.e., performance) tests into CI automation pipeline.

Despite the success, practitioners are faced with challenges when deploying continuous testing

in practice due to the high overhead. A recent study by Memon et al. [33] describes techniques

adopted by Google to scale up continuous testing (i.e., 2 billion LOC and 150 millions of test runs
per day). On the core of the scalability problem is the code dependency, i.e., between source code
and test, and among test cases. In this work, we study continuous testing from the aspect of code
dependencies (between source code classes and test cases, and among test cases) in 11 large-scale
open source systems. We study code dependencies from two different perspectives: CI execution in
relation to test impact analysis, and CI test case design. Our study provides a different perspective

and presents an important step towards understanding and improving test case execution and design.

2.2 Test Case Prioritization and Selection

There exist many prior studies on test case prioritization (TCP) and selection (TCS) techniques.
TCP techniques prioritize the executions of test cases that are likely to fail (i.e., developers can
work on resolving the failing test cases as soon as possible) [7, 26, 32, 47, 49, 55, 61, 63]. On
the other hand, TCS techniques select a subset of test cases to significantly reduce the execution
time [15, 46, 50, 57, 60, 62]. Recently, researchers proposed to perform test case prioritization and
selection in continuous testing for better efficiency. Elbaum et al. [11] adapt a combination of test
case prioritization and selection techniques in practice to make continuous testing more cost-effective.
Memon et al. [33] aimed to provide more prompt feedback from continuous testing (i.e., reducing
waiting time) for developers after a commit is submitted. They proposed an approach that leverages
factors on test breakages or fixes to improve test case prioritization. Marijan et al. [31] present a
case study of using test case prioritization in industry. Zhu et al. [65] propose to re-prioritize the
test cases that are more likely to fail based on historical test executions in continuous testing. Luo
et al. [29] compared four static TCP techniques with the state-of-the-arts dynamic-based approach.
Their evaluation of 58 Java systems shows that static techniques can be very effective in terms of
fault detection and its cost cognizant.

Companies such as Microsoft [35] use test case select and test impact analysis to select only the
impacted test cases (i.e., test cases that have dependencies with the changed code) to reduce test
execution overhead and make continuous testing scalable to large codebases. Engstrom et al. [12]
studied 28 test case selection techniques and classified them according to properties such as software
language, test selection approach, and test selection granularity. The study highlights that there
are no strong differences between these techniques and no technique was found to be definitely
superior to others. Legunsen et al. [23] compared class-level and method-level static TCS techniques
with Ekastazi (a dynamic TCS technique) in 985 revisions of 22 Java systems. Their result showed
that static TCS at the class-level shows promising results and have comparable performance with

dynamic-based techniques. They also found that method-level analysis contains too many false

positives. They suggested that researchers should continue to improve static TCS techniques at a
coarser granularity.

Prior studies on TCP and TCS are evaluated in a non-CI setting. Unlike traditional software
development where test cases are executed once in a while, having a high degree of code dependency
may have a larger accumulated testing overhead in CI due to frequent code integration and testing.
Hence, better modularity will not only help improve test maintenance but will also benefit the
effectiveness of test case prioritization/selection. To better understand the effectiveness of test
impact analysis in CI settings and provide insights on improving the modularity of test case design,
we study CI test cases by analyzing the code dependencies in 11 large-scale open source systems.
We first study the effect of code dependencies on test impact analysis in CI settings, then we zoom
in and further study test case design from the perspective of the dependencies between test cases
and source code files, and among test cases. We also discuss some dependency-related test smells

that we manually uncovered.

2.3 Studies on Test Case Dependencies and Quality

There exist a few studies related to dependencies among test cases from different perspectives.
Zhang et al. [64] empirically studied the assumption of test independence, which is required by
many test case prioritization (TCP) and test case selection (TCS) techniques. They found that
the dependencies between test cases may cause TCP and TCS techniques to fail. Gambi et al. [13]
presented an approach named PRADET to detect test dependency through a systematic and data-
driven process. Mocking practices may also reduce test case dependencies. Spadini et al. [52]
conducted an empirical study on the mocking practices in unit tests. Their study showed that
developers often mock external dependencies (e.g., web services), and maintaining mocking code
introduces additional overhead. Pinto et al. [42] studied the evolution of test cases. They found that
developers often refactor and modify/delete test cases in addition to repairing test cases. There are
also many studies that focus on studying the test quality concerns, e.g., flaky tests. Luo et al. [28]
empirically identified the root causes of flaky tests, i.e., a test sometimes fail and sometimes pass.
They found that flaky tests are commonly caused by test orders, concurrency, and asynchronous
waits. Vahabzadeh et al. [56] empirically studied bugs in test code and they found that flaky,
semantic, and environment-related bugs are common problems. Palomba et al. [40] found that more
than 50% of the flaky tests contain test smells, and removing the smells can help improve software
design and test flakiness.

Different from prior studies, we first study the effectiveness of test impact analysis. We find that,

even though the number of changed files is often small, the number of impacted test cases is high.

Our study on code dependency shows that most test cases are related to system integration, which
have a higher degree of dependencies. For the dependencies among test cases, we find that most
dependencies are caused by test case inheritance. Our qualitative study further reveals several test
smells in which unnecessary dependencies could be removed. Such test smells may cost additional
maintenance effort, increase maintenance difficulty, cause unstable test environments and test results

(i.e., flaky tests), and reduce the effectiveness of test impact analysis.

Chapter 3

Experimental Settings and

Methodology

In this chapter, we introduce the studied systems and the common methodologies of how we construct

the code dependency graph and identify the dependencies.

3.1 Experimental Settings

In this thesis, we conduct our case study on 11 open source Java systems. Table 1 shows an overview
of the studied systems in this thesis. The domain of the studied systems ranges from databases,
distributed computing, and cloud computing to communication and web services, etc. We analyze
all the Java files in the 11 studied systems. We choose these systems because they are large in scale,
follow the continuous testing practice, actively maintained, and commonly used in the industry.
The studied systems strictly follow the continuous integration (CI) practices and use Jenkins for
test automation and code integration [21]. They all schedule daily builds on Jenkins or TravisCI

that compile the system and run the test cases.

3.2 Uncovering Code Dependency Graph

We use JavaParser [20] to statically uncover the dependencies in the studied systems. JavaParser
is an open source Java static analysis framework that supports the latest version of Java. We first
construct a class-level dependency graph that includes both the test cases and source code files. The
dependency graph stores the information about whether there exists a dependency between two files

(i.e., either a test case or source code file). We identify a Java file as a test case if it uses APIs from

Table 1: An overview of the studied systems.

System Version Release LOC in LOC in Num. files Num. files Class Coverage
date source test in source in test
CXF 3.3.0 Jan. 2019 694K 413K 3.9K 3.2K 46%
Flink 1.7.1 Dec. 2018 483K 492K 3.9K 2.6K 64%
Hadoop 3.2.0 Jan. 2019 1,097K 896K 6.4K 3.5K 76%
HBase 2.1.2 Jan. 2019 554K 327K 2.2K 1.5K 68%
jclouds 2.1.2 Feb. 2019 332K 237K 3.6K 2.2K 89%
Kafka 2.1.0 Nov. 2018 181K 136K 1.3K 0.6K 83%
BookKeeper 4.9.0 Feb. 2019 193K 114K 1.5K 0.5K 67%
Hive 3.1.0 Jul. 2018 1,221K 327K 4.6K 1.3K 60%
Jetty 10.0.0.beta0 May. 2020 307K 237K 1.6K 1.3K 53%
Cucumber-JVM 6.2.2 Jul. 2020 29K 31k 0.4k 04K 54%
Californium 2.3.0 Jun. 2020 88K 46K 0.6K 0.2K 52%

testing frameworks such as JUnit or TestNG (i.e., using the @Test annotation). Similar to the work
by Orso et al. [39], we also consider the inheritance relationships when constructing the dependency
graph. For each class, we consider its dependency with the related classes that are on the same
inheritance hierarchy. In addition, we exclude binaries and only analyze the dependency if we can
find a corresponding source code file (i.e., only analyze the system source code and exclude external

libraries).

3.3 Applying Test Impact Analysis

Similar to prior studies [15, 23, 39, 50], we consider a test case is impacted by a given commit
if the test case may need to be executed due to having dependencies with the changed files (i.e.,
either source code or test files). Our test impact analysis follows the technique proposed by Orso
et al. [39], which can be understood as a conservative static coverage analysis at the class-level.
Prior studies [23, 29] found that static test impact analysis techniques achieve a similar level of
performance compared to dynamic-based techniques, and class-level dependency gives better results
compared to method-level dependency. As a result, we perform the impact analysis by analyzing the
static dependencies at the class level between test cases (i.e., test classes) and the changed source
code files. In particular, we identify the impacted test cases based on the two following criteria: 1)
the test case directly or indirectly calls the changed file; or 2) the changed file directly or indirectly
calls the test case (e.g., the changed file is a test case that calls another test case). To formalize our
approach using the dependency graph, we call that node A (i.e., represents either a test or a source

code class) is an ancestor of node B if there exists a path from node A to node B (i.e., node A

directly or indirectly calls node B). From the dependency graph, we first collect all the ancestor
nodes of the nodes that represent the changed files in one commit, named all_ancestors. Then, the
set of all_descendants is inferred by taking the union of all the descendant nodes of every node in
all _ancestors. Finally, we only consider the nodes that represent test cases in all descendants as

impacted test cases that have dependencies with the changed files.

10

Chapter 4

Studying Code Dependencies of Test

Cases

In this chapter, we study code dependencies in test cases from two different perspectives, CI execution
in relation to test impact analysis, and CI test case design, by answering four research questions
(RQs). In RQ1, we study the effectiveness of test impact analysis in the CI setting and study the
accumulated test execution overhead that is related to code dependencies. In RQ2 and RQ3, we
zoom in to study test design from the perspective of code dependencies: between source code files
and test cases (RQ2) and among test cases (RQ3). Finally, in RQ4, we manually explore potential
dependency-related test smells that may help reduce code dependencies in test cases and inspire

future testing research. For each RQ, we provide the motivation, approach, and results.

4.1 RQ1: What is the impact of dependencies from the per-

spective of test impact analysis in continuous testing?

4.1.1 Motivation.

Due to the high frequency of test executions in CI settings (e.g., at least once or even several times
on a daily basis), there may be a larger accumulated testing overhead if there is a high degree of
dependencies between source code and tests, and among test cases. In this RQ, we study the impact
of code dependencies on CI test execution in relation to test impact analysis. In particular, we
seek to study, for each run of continuous testing triggered by code integration, how many test cases
are impacted (i.e., have dependencies with the changed code and need to be executed). We also

investigate the test execution time that can be potentially saved if developers apply test impact

11

analysis.

4.1.2 Approach.

Our studied systems run continuous testing on a daily basis. We use the same frequency (i.e., every
day) to analyze the impacted test cases in each run of continuous testing (i.e., by applying the test
impact analysis approach described in Chapter 3). We consider the code changes in the past year
(i.e., 365 days) prior to the release of the studied version of the systems (see Table 1). For each day,
we construct the dependency graph, collect all the commits on that day, and identify which files (i.e.,
either test cases or source code files) are changed in the commits. Finally, based on the dependency
graph (Chapter 3) and the list of changed files, we calculate the percentage of test cases that was
impacted in each day.

Furthermore, we analyze the potential reduced time that continuous testing can benefit from
test impact analysis. We crawl the readily-available execution logs from the CI platforms of the
studied systems (i.e., Jenkins and Travis CI). Although the format of the log may be different in
each CI platform or system, the logs generally contain information such as the name of the test case,
test execution result (i.e., pass or fail), and test execution time. We analyze the execution time of
the test cases that are not impacted by the code change (i.e., potentially saved time) and compare
that with the actual execution time (i.e., the time to run all the test cases). To obtain enough data
for analysis, we monitored the CI platforms for 30 days (i.e., from 2020-06-07 to 2020-07-05) and
collected the generated execution logs. Note that some systems configure the CI platform to keep
almost one month of test execution logs, while some systems only store the logs for a few days. In
addition, some systems did not execute the test cases due to having no code changes. Hence, the

number of collected execution logs varies across the studied systems.

4.1.3 Results.

Although the median number of changed files is less than 10 in most studied systems, the median
percentage of impacted test cases may go up to 72%. Table 2 shows the median number of daily
commits and changed files. Note that we exclude the days when there are no code changes. We
find that developers usually only change a small number of files in a day. As shown in Table 2, the
median number of changed files is less than 10 in 7 out of 11 studied systems. Considering the total
number of both source code and test files in the studied systems (Table 1), developers, on average,
make changes to less than 0.5% of the files per day. We also find that the median number of daily
commits is less than 10 in all studied systems.

Figure 1 shows the distributions of the percentage of test cases that are impacted by the daily

commits. In general, the median percentage of impacted test cases goes up to 72%. For Flink,

12

_ 100 . .
o : ‘
)
c
2 .
o 751 . .
S — :
o)
o
5 .
3
‘g 501 . -
= T
= .
D ° °
- ° L]
S 251 .
m L]
=)
8 ° H ® .
C L]
@ . .
o ‘ .
Gq.) 0 | $ | |]
Qé Q R QQ} : \)6\ L
\ & &S N & @
oF F 9 > & & & & For

Figure 1: The distributions of the percentage of test cases that are impacted by the daily code

changes. The red dot illustrates the mean value.

13

Table 2: Median number of daily commits and changed files, excluding the days when there are no

code changes.

System Med. num. of commits Med. num. of changed files
CXF 3 5
Flink 7.5 17
Hadoop 8 28
HBase 3 8
jclouds 1 3
Kafka 3 8
Hive 6 22
BookKeeper 2 7
Jetty 6 12
Cucumber-JVM 2 3
Californium 3 6

Hadoop, Kafka, Hive, Jetty, and BookKeeper, the median percentage of impacted test cases is
around 40% to 63%. Californium and Kafka have a median percentage of around 26% and 33%.
Among all the studied systems, HBase’s test cases are impacted the most (median percentage of
impacted test cases is 72%). In other words, developers still need to execute most test cases even
if they apply test impact analysis to reduce test execution overhead. We find that the number
of impacted test cases is smaller for CXF, Cucumber, and jclouds: the median percentage of the
impacted test cases is less than 10%. After some investigation, we find that the median number of
daily changed files is also small for CXF, Cucumber, and jclouds (i.e., 5, 3, and 3 files, respectively),
so the number of impacted test cases is lower than that of the other studied systems. Nevertheless,
the average number of impacted test cases is still high for CXF and Cucumber (e.g., over 20%).
Figure 2 visualizes the relationship between the percentage of changed files (i.e., the upper part of
each plot) and the percentage of the impacted test cases (i.e., the lower part of each plot) of each daily
build in the one-year time period. We can see that the studied systems had experienced different
levels of development activities over the studied period. In general, we see that if there are more
changed files, more test cases are impacted. We further compute the Spearman correlation between
the percentage of changed files and impacted test cases, and we find that there is a moderate positive
correlation (i.e., correlation ranges from 0.43 to 0.68) except for Cucumber (i.e., the correlation is

0.88). Our finding shows that, even though there is a certain degree of correlation, the correlation is

14

Table 3: The details of the collected CI builds for analyzing the execution time of the impacted

tests.

System Num. of collected Ave. test execution

CI builds time (in seconds)
CXF 19 39,301.00
Flink 31 4,828.30
Hadoop 59 13,595.00
HBase 116 34,510.00
jclouds 40 571.49
Kafka 7 10,886.90
Hive 46 7,598.84
BookKeeper 45 64,406.00
Jetty 41 2,188.00
Cucumber-JVM 100 60.31
Californium 30 401.00
Total 604 178,346.84

not very strong. Namely, changes to some source code files may have a larger effect on the number
of impacted test cases. In RQ2 and RQ3, we conduct further analysis to study the dependencies
between source code files and test cases, and among test cases.

The effectiveness of test impact analysis may vary across systems, depending on the test execution
overhead. The median percentage of saved test execution time is around 50% for most of the studied
systems. Table 3 lists the details of the collected CI builds for the analysis on the test execution.
We find that the average test execution time varies significantly across the studied systems, where
for larger systems such as BookKeeper, one run of continuous testing (i.e., executing all test cases)
takes over 17 hours to complete. For smaller systems such as Cucumber, the test cases only take one
minute to run. The results indicate that the benefit of test impact analysis is significantly higher
for larger or more complex systems compared to smaller systems. Reducing the accumulated test
execution overhead may further reduce the needed resources for testing and increase test execution
frequency. Figure 3 shows the distribution of the percentage of test execution time that can be
potentially saved after applying test impact analysis. Each data point represents one CI build that
we collected (Table 3). For CXF, jclouds, Kafka, Cucumber, and Jetty, over 80% (median) of the
test execution time may be saved after applying test impact analysis. For the remaining systems,
namely BookKeeper, HBase, Californium, Flink, Hadoop, and Hive, a median of 50% or less of

test execution time may be saved after applying test impact analysis. Among the studied systems,

15

B changed_file(%) [l selected_test(%)

BookKeeper
40
0
5
date
Cucumber
40
0 0
5
10
15
date
Jetty
80
40 mmuwm
0 0
2
4
date
Hadoop
80
40
0 0
]
2
3
date

Californium
80
40
0 0
5
10
date
Hbase
80
{ umum%
: 2
4
6
date
Hive
40
0 0
1
2
date
jclouds
80
1 L4l
O | gl ohiipe 0
S L ¢ 5

date

Kafka
80
“ NWWWW :
5
date
CXF
40 llﬂhlJJlillLM,ll.JLUIthN‘ .
date
Flink
80
48 (1)
3
date

Figure 2: The comparison of the percentage of changed files and the percentage of impacted tests

over the one-year period.

16

we find that the median percentage of reduced test execution time is very small for HBase. After
some investigation, we find that for the analyzed CI builds, developers modified some files that are
highly depended on, which causes many test cases to be selected. For example, developers modified
HBaseTestingUtility 13 times in the analyzed CI builds, and this class has dependencies with more
than 760 test cases. Therefore, such files that have many dependencies with other files may greatly
reduce the effectiveness of test impact analysis, even worse if such files are changed frequently.

Our finding shows that, although the number of daily changed files is often small in the studied
systems, the percentage of the impacted test cases can be large (median around 50% for 6 out of 11
studied systems). We also concluded a similar finding in terms of execution time of the impacted
tests, and the corresponding percentage of saved time, i.e., for 6 out of the 11 studied systems,
the impacted test cases may consume over 50% of the total test execution, meaning considering
test impact analysis, only less than 50% of the total test execution time can be saved. The result
indicates that there is a high degree of dependencies among test cases or between test cases and
source code files, which affect the effectiveness of test impact analysis. To further understand the
reasons for such dependencies and provide insights on reducing test execution overheads, we conduct

detailed analysis on code dependencies in RQ2 and RQ3.

Although the number of daily changed files is small, most test cases (around 50% or more)
are impacted. Such a high degree of dependencies affects the effectiveness of using test impact
analysis to reduce testing overheads. Future research should consider more specialized tech-

niques (e.g., through refactoring) that can reduce certain code dependencies, to improve the

effectiveness of test impact analysis.

4.2 RQ2: What is the degree of dependencies between test

cases and source code files?

4.2.1 Motivation.

To reduce test execution overheads, developers may need to find a subset of the test cases that are
impacted by the given code changes. However, as we found in Chapter 4.1, even though the number
of changed files is small in each test execution, many test cases are still impacted. In this RQ, we
further study test design from the perspective of the dependency between the test cases and source
code files. The findings will provide an overview of how the systems are tested and may provide

insights on how to help improve the current testing practices and inspire future research.

17

?<_/ 100 * ' i . .
|: []
s :
'c | _%,
g 75 _
= o | —o— .
C
.
2 |
(&)
b
é []
— 5 0 T
7]
e
o °
] | ‘ .
(&)
E :] —
b
o 251 .
e
() ® °
[@)]
I
1< . .
S .
E 0 i T ® ° °
Qé Q R QQ} : \)6\ L
\ & &S N & @
oF F 9 > & & & & For

Figure 3: The distributions of the reduced test execution time after applying test impact analysis.

The red dot illustrates the mean value.

18

4.2.2 Approach.

To answer this RQ, we statically identify test cases and uncover their dependencies with source code
files. In continuous testing, developers leverage build systems, such as Maven, to execute all the test
cases under the test directory or the directory specified in the build script. However, there may be
other non-test files, such as utility or helper files, in test directories. Therefore, the first step is to
identify true test cases. As discussed in Chapter 3, we identify a file as a test case if it contains the
@Test annotation (i.e., regardless of the directory where the file is located). We identify a file as a
source code file (i.e., code related to the actual business logic) if the file is located outside of the test
directory (i.e., the directory path does not contain the word “test” to avoid including test utility files)
and does not contain any testing related APIs. Note that we only consider the direct dependency
between a test case and its corresponding source code files in this RQ. Direct dependency better
reflects test design, so focusing on direct dependencies allows us to analyze the composition of CI
tests and CI test design: When developers design a test case for Class A, developers may not care
much about the dependencies of Class A (i.e., the indirect dependencies), but only Class A itself
(i.e., the direct dependency of the test case).

The second step is to analyze how many source code files a test case tests. If a test case depends
on multiple source code files, we further investigate the average package distance among the source
code files [18]. The average package distance gives us insights on the semantic similarity of the source
code files covered by the same test case based on the structural closeness (e.g., whether a test case
is testing the interaction of various components in the system) [16, 17, 18]. If two source code files
are used to implement the same or similar functionality, they are more likely to be located in the
same or nearby package; thus, have a low package distance. Considering the fact that the package
structure is closely associated with the directory structure, we implement the following three steps
to calculate the average package distance among source code files. This is an iterative process based

on pairwise package distance calculations.

1. We build a directory tree (i.e., each node in the tree represents a directory name in the path)

for all the source code files that are invoked by a test case and calculate the depth of the tree

(V).

2. For every pair of source code files, from the top to bottom in the built directory tree, we find
their last common parent node at depth M. The package distance of the two source code files

equals to N-M-1.

3. We iteratively compare every pair of the source code files and calculate the average package

distance among the source code files.

19

As an example, test case TestNamenodeResolver.java in Hadoop calls three source code files be-
low. The paths are simplified for illustration.
ClassA: ./hadoop-common/src/java/hadoop/conf/ Configuration.java
ClassB: . /hadoop-hdfs-rbf/src/java/hadoop/hdfs/ server/federation/ store/MembershipState.java
ClassC: ./hadoop-hdfs-rbf/src/java/hadoop/hdfs/ server/federation/router/RBFConfigKeys.java.
The paths of the three source code files form a tree with a depth of N=9. ClassB and ClassC have
a common parent at depth M=7. The package distance of ClassB and ClassC is calculated as N-M-
1=1. Similarly, the other pair-wise package distances are calculated as 8 for ClassA and ClassB, and
8 for ClassA and ClassC. Finally, the average package distance is calculated as (8 +8+1)/3 = 5.67.

Mocking, as a common testing practice, may introduce false dependencies. To avoid counting
mocked objects as dependencies, we automatically check whether a dependent class is a mocked
object or not. Mockito, EasyMock, PowerMock, and MockWebServer of OkHttp are the four mocking
frameworks that are used in our studied systems. These mocking frameworks follow a similar way
of creating mock objects: 1) using annotations (e.g. @Mock) and 2) invoking mocking methods (e.g.
Mockito.mock()). To exclude the dependencies of mocked objects, we follow a similar approach
that is proposed in a prior study [53]. We first identify the mocking frameworks used in each studied
system. Then, if a test case mocks the implementation of an object, we mark the corresponding

class as mocked and exclude the dependency of the mocked object.

4.2.3 Results.

Most test cases focus on testing the integrated behavior of the system. Figure 5 shows the number of
source code files that are tested in a test case (after removing source code files that are called due to
mocking). Even though many prior studies [10, 19, 22| focus on studying unit tests, and help reduce
unit test execution overheads [6, 10, 14, 19, 22, 24, 25, 44|, we find that most test cases focus on
testing multiple source code files. In all the studied systems, only 6%-24% of the test cases focus on
testing a single source code file, and all other test cases test multiple source code files. In general,
most test cases (16% to 34%) in the studied systems test 5 to 10 source code files. We also find
that a large number of test cases test more than 20 source code files in HBase and jclouds (20.9%,
29.4%, respectively). Figure 4 further illustrates the average package distance of the source code
files in each test case. The majority of the studied systems have a median package distance that is
larger than five. Such a large package distance shows that many test cases cover a wide variety of
functionality. In short, our findings highlight that developers spend a significant amount of efforts
on testing the integrated behaviour of the system. Based on our finding, a potential way to improve
the effectiveness of test impact analysis in continuous testing is to prioritize the test cases based on

their degree of dependencies. Inspired by the principle of fail-fast [51], if the basic functionality of

20

0
[
B 15
o
o
8 []
=)
o)
o
©
¢ 10
O
[
8
0
S
o
o)
g
=
o
o
o)
©
g
<
N | | |
X SOREIR\S
3 > R eQ we W X e
CIS’ .\0\0\) \(&\V‘ \(\%’é %00\(3(‘6 3‘3@ C\)G\)«\ C&\’\O‘(\ A Y\a(’)O S\

Figure 4: The distributions of the average package distance of the source code files in a test.

a source code file cannot even pass the test cases, developers may then consider skipping executing
other more complicated test cases that test the integrated behaviour of the system (i.e., test cases

that cover more than one source code file).

Most test cases executed in continuous testing cover multiple source code files in different
packages, and many test cases even cover more than 20 files. Future studies should consider

the peculiarity of the focus in continuous testing when designing approaches to help developers

reduce test execution overheads.

21

30.0% BookKeeper HBase
30.0% 30.0%
19.95% 25.0%
20.6% 20.0% 18826 17 5195 16.55% 16.10% 20.4% 20.9%
20.0% 20.0% 15.6%

11.5% 13.4% 13.1% . 11.56% : 11.6%
el | [|] . [] o | | [
0.0% 0.0% 0.0% -

1 [2,5) [5,10)[10,15)[15,20)[20;Inf) 1 [2,5) [5,10)[10,15)[15,20)[20;Inf) 1 [2,5) [5,10)[10,15)[15,20)[20;Inf)

Num. source code files called in a test Num. source code files called in a test Num. source code files called in a test

jclouds Kafka 60.0% Cucumber

20.4% 51.1%

30.0% 25.3% - 30.0% o, 27:3%

; 24.3% 40.0%
20.0% 20.0%

© 16.1% 16.8% ° 15.8% 14.0% 19.0%
0, o 0
- 2.8% 1.4%
1 [2)5) [5,10)[10,15)[15,20)[20,Inf) [2:5) [5,10) [10,15)[15,20)[20,Inf) 1 [2)5) [5,10)[10,15)[15,20)[20,Inf)

Num. source code files called in a test Num. source code files called in a test Num. source code files called in a test

40.0% Californium 40.0% Jetty Flink
34.3% 31.4% .
30.0% 30.0% ; 30.0% 24.2%
19.09 20.3% 19.1%
20.0% 20.0% 20.0% 20.3% 17.0% s 200% 20% s
o o, 12.1% - 11.0%

0.0% 0.0% - 0.0% -

[2:5) [5,10) [10,15)[15,20)[20,Inf) [2:5) [5,10) [10,15)[15,20)[20,Inf) 1 [2,5) [5,10)[10,15)[15,20)[20;Inf)

Num. source code files called in a test Num. source code files called in a test Num. source code files called in a test

Hive Hadoop

300 30.4%
30.0% 30.0% .
20.0% 220 20.0%

.0% .0% 17.2% 14.8%
11.6% 10.8% 3%

10.0% . 6.0% . 10.0%7 6.5% -
0.0% - 0.0% -

[2:5) [5,10) [10,15)[15,20)[20,Inf) 1 [2)5) [5,10)[10,15)[15,20)[20,Inf)

Num. source code files called in a test Num. source code files called in a test

Figure 5: The distribution of the number of source code files that are called in a test case.

22

4.3 RQ3: What is the degree of dependencies among test

cases?

4.3.1 Motivation.

Test cases should be independent of each other to ensure the quality of individual source code file
or module. As systems evolve, there may be a certain degree of dependencies among test cases [64],
which can increase the difficulty of test maintenance and reduce the effectiveness of test impact

analysis. Therefore, in this RQ, we empirically study the degree of dependencies among test cases.

4.3.2 Approach.

We conduct both quantitative and qualitative studies on the dependencies among test cases. For
the quantitative study, we study the degree of dependencies among test cases (i.e., how many test
cases call other test cases) using the dependency that we uncovered (Chapter 3). Similar to RQ2, we
analyze the direct dependency among these test cases. For the qualitative study, we take a statistical
sample to understand the reasons of the dependency. In total, we studied 326 sampled test cases
out of 2,160 in the studied systems (based on a 95% confidence level and 5% confidence interval [5])
that have direct dependencies with other test cases (identified in the quantitative study step).

The process of our manual study contains three phases:

e Phase I: Al derives a list of 326 randomly sampled test cases that have code dependencies with

other test cases. The sample is based on a 95% confidence level and 5% confidence interval.

e Phase II: Al studies 100 randomly sampled test cases and studies the reason for the depen-
dency. Al derives a draft list of categories based on the observation. The three authors then
collaboratively label the 100 test cases using the draft list of categories. During the process,

the categories are revised and refined.

e Phase III: A1 , A2, and A3 independently apply the derived categories to the remaining
sampled test cases. Any disagreement is discussed until a consensus is reached. In this phase,

no new categories were derived.

4.3.3 Results.

On average, 18% of the test cases have dependencies with other test cases. Table 4 shows the number
of test cases, test utility files (i.e., non-test files in the test directory), and the number of test cases

that have dependencies with other test cases. We find that there are many test utility files in the

23

Table 4: Number of test cases, test utility files, and the number of test cases that have dependencies
with more than one test cases. Med. dep. and Maz. dep. shows the median and the maximum
number of dependencies between one test case and other test cases. We exclude the test cases that

do not have any dependencies with other test cases when calculating the median.

System No. test No. test No. test cases Med. dep. Max. dep.
cases utils. with dep.
BookKeeper 449 76 16 (3.6%) 1 1
CXF 1,226 2,039 127 (10.4%) 1 5
Flink 1,946 641 463 (23.8%) 1 4
Hadoop 2,823 619 509 (18.0%) 1 6
Hive 819 437 104 (12.7%) 1 3
HBase 1,177 287 164 (13.9%) 1 2
jclouds 2,063 119 867 (42.0%) 2 13
Kafka 437 124 17 (3.9%) 1 1
Jetty 711 580 51(7.2%) 1 2
Cucumber-JVM 149 230 6(4.0%) 1 1
Californium 143 65 0(0%) 0 0

studied systems. However, even though developers may be using test utility files to refactor test
code and assist in writing test cases, we still find that 3.6% to 42% of the test cases (an average of
15%) have dependencies with other test cases. Table 4 also shows the median and the maximum
number of dependencies among test cases (we exclude the test cases that do not have dependencies
with other test cases when calculating the median). We find that most of the test cases only have
a direct dependency with one other test case (median is 1 in most systems), but some test cases
may have dependencies with up to 13 other test cases. In short, our finding shows that even though
dependencies between test cases may increase test maintenance difficulties [34, 64], such dependencies
are still common in the studied systems.

Most test case dependencies are caused by test case inheritance and having public test utility
methods in test cases. Table 5 shows the five manually-uncovered reasons for dependencies among
test cases and the corresponding distribution. Inheritance is the most common reason and accounts
for 79.4% of the dependencies among the studied test cases. We also find that 13.2% of the depen-
dencies is caused by a test case calling other test utility methods that are declared in another test
case. Namely, some test cases have public test utility methods that are used by other test cases.
However, such design creates unnecessary dependencies and should be refactored. A better design
that may help improve test code comprehension is to create a separate test utility file instead of

having the utility method implemented in a test case [34]. 2.1% of the dependencies among test cases

24

Table 5: An overview of the manually derived reasons for dependencies among test cases.

Reason Definition Percentage
Inheritance Test cases extend another test case. 79.4%
Test cases contain test utility methods which are 13.2%

Test cases contain test utilities
also used by other test cases.

Variables are accessed by more than one test 2.1%
Shared variables

cases.

Test cases use instances of other test cases as 4.6%
Shared test case parameters or create objects of other test cases.

Other reasons such as returning an instance of a 1.2%

Others
logger that refers to another test case class.

are caused by having more than one test cases that access a static class field (e.g., static instance
variable). As shown in a prior study [64], such dependency may cause flaky tests and reduce the
reliability of the test result. 4.6% of the dependencies among test cases are caused by an instance of
a test case being created in another test case or being passed as a parameter to another test case. In
such cases, the assumption of test case independence may be violated and the test cases should be
refactored [64]. Finally, we find that 1.2% of the dependencies belong to the “Other” category. For
example, developers may be mistakenly using the class of TestCaseB to create a logger in TestCaseA,
which may cause difficulties when using logs for debugging [27].

Since inheritance is the most dominating reason for dependencies among test cases, we further
study the inheritance relationship in the test cases (Table 6). We find that inheritance is widely used
in the test cases: 4.7% to 71.4% of the test cases extend other classes (an average of 46.91%). We
use DIT (i.e., depth of inheritance) that is proposed by Chidamber and Kemerer [9] to study class
inheritance. DIT is a classic metric in object-oriented design to quantify the level of inheritance, and
is calculated as the length of the maximum path from a class to the root of the inheritance tree. For
most of the studied systems, the average DIT of all test cases is either two or three. The maximum
DIT ranges from 1 to 13 in the studied systems. Even though developers may use inheritance to share
common test setup and tear down code across test cases [34], such complex inheritances (i.e., a large
DIT) may increase the dependencies among test cases and increase maintenance difficulty [2, 36, 43].
Our findings reveal common types of test case coupling in continuous testing. Future studies may
build upon our findings and help developers refactor the test cases, and reduce test maintenance

and execution overhead.

25

Table 6: Number of test cases extending other classes. Med. DIT shows the median DIT number
of all test cases with non-zero inheritance. Max. inherit layer shows the maximum DIT number

among all test cases in one system.

System No. tests inherit Med. DIT Max. DIT

other classes layer layer
BookKeeper 224 (49.9%) 1 10
Hadoop 1,071 (37.9%) 2 13
HBase 383 (32.5%) 1 8
CXF 629 (51.6%) 2 9
Flink 1,390 (71.4%) 2 11
jclouds 1,375 (66.7%) 3 11
Kafka 56 (12.8%) 1 6
Hive 189 (23.1%) 1 6
Jetty 257(36.1%) 1 9
Californium 21(14.7%) 1 2
Cucumber-JVM 7(4.7%) 1 1

On average, 18% of the test cases have dependencies with other test cases. Most dependencies

are caused by test case inheritance and accessing utility methods in test cases.

4.4 RQ4: What are the dependency-related test smells that

may negatively impact test case design?

4.4.1 Motivation.

Dependencies may introduce spaghetti code and increase the difficulty of test maintenance. For
example, the independence assumption of test cases may be violated due to unnecessary code de-
pendencies [64]. RQ3 shows that there exists a non-trivial code dependencies among test cases. In
this RQ, we further conduct a qualitative analysis on the sampled test cases to identify dependency-
related test smells and recommend how to fix them. Identifying common patterns of excessive and
even problematic dependencies will shed the light to reduce code dependencies among test cases;

and hence, improve the effectiveness of test impact analysis and test quality [41, 54, 58].

26

4.4.2 Approach.

Similar to RQ3, we manually examine the design of each test case in a randomly sampled set of 326
test cases based 95% confidence level and 5% confidence interval (the same set as the one that we
used in RQ3). Two of the authors examine the design of each test case, the dependencies with other
test cases, and potential negative effects caused by the identified dependencies. If there are some

disagreements, the two authors discussed until a consensus is reached.

4.4.3 Results.

In total, we uncovered four dependency-related test smells (26 instances in the 326 manually studied
test cases. We reported at least one instance for each type of the test smell, and all of the reported

instances are either confirmed'? or fixed by developers®4®

. Below, we discuss the test smells that we
uncovered during our manual analysis. For each test smell, we provide a description and an example,

and discuss the negative effect and possible solutions.

Test Smell 1: Duplicate test runs caused by inheritance.

Description. We find that in some situations, the inherited test methods may be executed twice:
once in the parent test case (i.e., a non-abstract class) and once in the child test case. The test
methods from the base test case will be executed when running the base test case. Then, the
inherited test methods will be executed again when running the child test case. Note that the child
test case may inherit the test fixture from the parent test case; thus, the same test methods are
executed multiple times in the same test environment.

Ezxzample. In CXF, 14 test methods inherited by test AssociatedManagedConnectionFactoryImplTest
from the non-abstract base test case ManagedConnectionFactoryImplTest. These 14 test methods will
be executed twice, once by each of the two test cases. In total, we found 8 instances of this test
smell in the manually studied test cases.

Negative Effect. Duplicate test runs will waste testing resources and increase test overhead. The
frequent executions of continuous testing (i.e., due to frequent code changes), exaggerate the negative
effect of this test smell. Moreover, the base test case and its child test cases may fail together due to
the same issue, which increases the challenge of failure diagnostic, especially in continuous testing.
The severity of the test smell may also be increased when more test methods are inherited by child

test cases, or more test cases inherit the same base test case.

Ihttps://issues.apache.org/jira/browse/HBASE-22814
?https://issues.apache.org/jira/browse/JCLOUDS- 1508
Shttps://issues.apache.org/jira/browse/CXF-8092
4https://issues.apache.org/jira/browse/CXF-8086
Shttps://issues.apache.org/jira/browse/CXF-8087

27

https://issues.apache.org/jira/browse/HBASE-22814
https://issues.apache.org/jira/browse/JCLOUDS-1508
https://issues.apache.org/jira/browse/CXF-8092
https://issues.apache.org/jira/browse/CXF-8086
https://issues.apache.org/jira/browse/CXF-8087

Possible Solutions. Developers should try to avoid inheritance from non-abstract test cases. If
two test cases share many test methods, a better solution would be to either create a test utility

class or refactor the common test methods to a separate test case.

Test Smell 2: Scattered test fixtures caused by inheritance.

Description. Test fixtures are defined in test cases to set up the environment for test execution.
A base test case may define a general test fixture (i.e., a method annotated by @BeforeClass or
@Before). When a child test case inherits a base test case, the child test case may define its own
test fixture, but may also call the test fixture of the base test case. In multi-level inheritance, when
each child test case has its own test fixture, the test fixture code becomes scattered and difficult to
maintain.

Example. In HBase, the test case TestWALReplay extends AbstractTestWALReplay and implements
the test fixture using the @BeforeClass annotation. The test fixture method also calls the test
fixture of the base test case (i.e., setUpBeforeClass() on line 6). TestWALReplay is further extended
by TestWALReplayBoundedLogWriterCreation and it adds specific test fixtures and invokes the test
fixture of the parent test case on lines 12-16. In total, we found 12 instances of this test smell in

the studied test cases.

public class TestWALReplay extends AbstractTestWALReplay {

N}

@BeforeClass

;| public static void setUpBeforeClass() throws Exception {

5| conf .set (WALFactory.WAL_PROVIDER, "filesystem");
6| AbstractTestWALReplay.setUpBeforeClass() ;

10| public class TestWALReplayBoundedLogWriterCreation extends TestWALReplay {
11| @BeforeClass

12| public static void setUpBeforeClass() throws Exception {

13| TEST_UTIL.getConfiguration() .setBoolean();

14| // invoke parent’s fixture

15| TestWALReplay.setUpBeforeClass () ;

6]}

15|}

Negative Effect. Test fixture methods are either executed before each test method (e.g., @Be-
fore), or before each test case (e.g., @BeforeClass). Scattered test fixtures in multi-level inheritance
may introduce extra test overhead, such as reducing the understandability of test design and makes
test case evolution more error-prone in continuous testing. In our manual analysis, we even found
several inconsistencies when developers implement test fixtures through multi-level inheritance. For

instance, in HBase, the test case TestSecureWALReplay extends TestWALReplay (defined on line 1 in

28

the above-mentioned code snippet). However, in contrast to the sibling test case shown in the
above code snippet (TestWALReplayBoundedLogWriterCreation, line 10), the overridden test fixture in
TestSecureWALReplay does not call the test fixture method from the base class (TestWALReplay) while
the test fixture in the all other sibling test case do (e.g., TestWALReplayBoundedLogWriterCreation,
line 14). Such inconsistency may introduce insufficient setup in the subclass. We also find a few
cases where the test fixture method is overridden, but the implementation in the test fixture meth-
ods are the same. Such unnecessary code clones may increase test maintenance difficulties. Finally,
the inheritance hierarchy of test fixtures may violate the assumption of test case independence, i.e.,
there exists an anticipated order of calling different test fixture methods in one inheritance tree.
Conflicting configurations in test fixtures of different sibling test cases may result in unanticipated
test behaviours and unstable test results. Such negative effects introduce additional diagnosis chal-
lenges when relevant test cases are deployed in continuous testing. One example of such consequence
is flaky tests, which are often ignored by practitioners and lead to negligence of true test failures.

Possible Solutions. Developers should maintain the independence of test fixtures in one inheri-
tance tree. Developers may use test utility classes to manage test fixtures instead of using inheri-
tance. Another possible solution is to manage test fixtures individually and independently in each
test case (i.e., including set-up and tear-down test environment), so the dependencies of test fixture
between base test case and child test cases can be removed. Developers may also use JUnit’s @Rule

annotation to refactor the code that needs to be executed before and after a test.

Test Smell 3: Using test case inheritance to test source code polymorphism.

Description. Developers may implement inheritance in test cases to test source code polymorphism
so that code duplication of common test methods can be reduced (i.e., following the DRY principle
— “Don’t Repeat Yourself"). However, sometimes the unnecessary inheritance relationship in test
cases may increase the difficulty of test maintenance and make test evolution more error-prone.

Exzample. In jclouds project, there are 49 test cases extend from one parent test case (i.e.,
BaseProviderMetadataTest). All the 49 test cases inherit all the test methods from the parent test
case. On line 3 and line 9 in the code snippet below, the two child test cases call the construc-
tor of the parent test case with arguments of different types. However, the arguments (e.g., Class
SkaliCloudMalaysiaProviderMetadata on line 3, and class GleSYSProviderMetadata on line 9) inherit
the same parent class. In this example, developers test the source code polymorphism through the
constructors in the inheritance tree: the constructor of each child test case will pass arguments of
different types to the constructor of the parent test case. The arguments of different types either
extend or implement the argument types of the parent test case’s constructor. Such test design may

introduce unnecessary inheritances that may result in more scattered code (e.g., having 49 separate

29

child test cases that do not implement any other test methods). In total, we found four instances of

this test smell in the studied test cases.

public class SkaliCloudMalaysiaProviderTest extends BaseProviderMetadataTest {
2| public SkaliCloudMalaysiaProviderTest() {
3| super (new SkaliCloudMalaysiaProviderMetadata(),new ElasticStackApiMetadata());

7| public class GleSYSProviderTest extends BaseProviderMetadataTest {
3| public GleSYSProviderTest() {

o | super (new GleSYSProviderMetadata(), new GleSYSApiMetadata());

0]}

11|}

Negative Effect. Such test design requires extra maintenance effort and might introduce errors
due to the low maintainability. First, if the parent test case is modified (e.g., add additional test
methods), developers would need to review all the child test cases to make sure the modification is
valid to all of the child test cases (49 in total in the above-mentioned example). Second, if the parent
test case is problematic (i.e., some test methods are buggy or flaky), many child test cases may also
be affected and developers would need to spend extra time to isolate the issue. Third, insufficient
testing might be overlooked in such a test design. If only using the common test methods from the
parent test case, developers might neglect to test the unique aspects of each child test case. Due
to rapid development cycle and more frequent code changes, modern software development heavily
rely on automated test execution (e.g., continuous testing) for quality assurance purpose. Failing to
test certain aspects may lead to insufficient quality assurance in continuous testing.

Possible Solutions. Such coupling can be reduced by utilizing features commonly provided by
testing frameworks. For example, parameterized tests from JUnit [1] can be used to run one test case
multiple times with different parameters in one code location (i.e., no need for multiple copies of the
code or using inheritance). Compared to the scattered locations using inheritance, parameterized
tests provide better maintainability by centralizing the code; and are thus, easier to maintain. More
importantly, to improve the test efficiency and coverage, developers would also need tooling support
to visualize the coupling among test cases and to highlight the coupling among the tested classes.
Future research may study automated techniques that help developers verify whether source code

polymorphism is well tested by existing test cases.

Test Smell 4: Flaky tests caused by accessing shared resources or variables.

Description. Test cases may be flaky in different test runs because of accessing shared resources
or variables.

Exzample. The test case JAXRSclientServerWebSocketTest in CXF defines some test methods and is

30

extended by several child test cases. One of the child test cases (the code is shown below) will modify
a system property (i.e., System.setProperty) before running the test methods inherited from the base
test case (line 4 and 5). However, the child test case does not reset the modified system property
after the completion of a test run (lines 9-11). Hence, the system property may be changed when
running other test cases, resulting in unstable test environments. In total, we found three instances

of this test smell.

public class JAXRSClientServerWebSocketNoAtmosphereTest extends JAXRSClientServerWebSocketTest {

N

@BeforeClass

public static void startServers() throws Exception {

System.setProperty("org.apache.cxf.transport." + \

5| "websocket.atmosphere.disabled", "true");

7|}
8| @AfterClass

o| public static void cleanup() {
10| //this method is empty.

11|}

12}

Negative Effect. Accessing shared variables violates the assumption of test case independence [64].
In the above-mentioned code snippet, the system property is shared among test cases (e.g., the base
and the child test cases). Modifying the system property and failing to reset it in the child test
case may result in having different test environments when the order of test case execution changes.
Thus, the test results may become flaky and unstable, which introduce additional challenges for
understanding and performing diagnosis in continuous testing.

Possible Solutions. Tooling support is needed to improve developers’ awareness of the usage and
consequence of shared variables. Once developers know the existence of shared variable access, they
can take actions to eliminate the side-effects of such accesses. In the above-mentioned code example,
developers can clean up the test environment and reset the modified system property in the cleanup
method (lines 9-11, annotated by @A fterClass).

We also analyze the time when the dependency was introduced for the 26 test smell instances
that we uncovered. We find that three test smell instances were introduced during the development
of new features, one was introduced in a bug fixing commit, and the remaining were introduced at
the beginning when source code files were created. Based on our preliminary analysis, developers
may need to pay more attention to dependency-related test smells when they initially design and
implement the test cases. To further show the generalizability of the uncovered test smells, we
implemented a static checker and applied it on the studied systems. In total, the preliminary static
checker detects 924 test smell instances. Our static checker is publicly available. Future studies

should further investigate the impact of these test smell instances.

31

We uncover and document four dependency-related test smells through a manual analysis.
We reported instances of the test smells and they are either confirmed or fixed by developers.

Fixing such test smells may reduce excessive dependencies and improve test case design.

32

Chapter 5

Implication and Future Directions

In this chapter, we discuss our key findings and their implications. We also highlight future research

opportunities, and provide recommendations on the adoption of test impact analysis in a CI setting.

5.1 Adopting test impact analysis in CI settings can reduce
accumulated test execution overhead

Our test impact analysis results in CI settings demonstrate potential in reducing the accumulated
testing overhead in CI setting. Even for the least-effective case in our studied systems, an average of
over 20% of the test execution time can be saved for each run of continuous testing triggered by code
integration. Across all the studied systems, the median percentage of saved time is around 50%.
With the increasing test execution frequency, test impact analysis, with its current effectiveness,

already shows some benefits if integrated into CI practices.

5.2 Needs for further improving the effectiveness of test im-
pact analysis in a CI setting

Despite the non-trivial test execution time saved by test impact analysis, we believe the effectiveness
of test impact analysis can be further improved. Our study reveals that there exists a high degree
of dependencies between source code and test cases, and among test cases: on average, 15% of
the test case have dependencies with over 20 source code files. As code dependencies play a pivot
role in the effectiveness of test impact analysis, reducing code dependencies can unleash the full
potential of test impact analysis in reducing test overhead in the CI setting. Practitioners can adopt

common approaches that can reduce code dependencies concerning test cases, such as refactoring

33

and mocking. Moreover, in this work, we took a closer look at the dependencies among test cases and
concluded four dependency-related test smells. Such test smells negatively impact test quality and
introduce unneeded dependencies. We implemented and released a prototype tool that detects these
test smells. Future studies and practitioners may leverage the tool to help maintain test quality on

a regular basis.

5.3 Needs and future research opportunities for proposing spe-
cialized techniques that reduce code dependencies to im-
prove the effectiveness of test impact analysis

Our findings highlight the need for more specialized techniques that can reduce code dependencies
in a more targeted way. We find that the number of changed files only has a moderate positive
correlation with the percentage of the impacted test cases. This indicates that some changed files may
have a larger impact than the others. For example, we uncovered that the file HBaseTestingUtility
in HBase has direct and indirect dependencies with 760 test cases and was frequently modified.
Such files reduce the effectiveness of test impact analysis and cause significant accumulated test
execution overhead. Future research on test impact analysis should consider various properties of
a changed file, such as its change-proneness and the importance in the dependency graph (e.g., the
number of direct dependencies may be small but the propagation scope may be large). In addition,
such specialized techniques can be integrated in a just-in-time fashion which provides more prompt
feedback to developers. For example, techniques that detect and reduce unneeded dependencies (such
as our implemented test smell detection) can be deployed to check every code integration, and seeks
for early resolution of unneeded dependencies, before which may degrade the effectiveness of test
impact analysis. Moreover, future techniques may examine the possibility of providing an interactive
development environment that allows developers to exclude files that have high dependencies but

the changes are less error-prone.

5.4 Needs for revisiting and improving test case design

Our manual analysis reveals that inheritance and utility methods are the two major causes of de-
pendencies among test cases (inheritance: 79.4%, utilities: 13.2%). While inheritance and utilities
are standard in improving code maintenance, modularization, and usability, the necessity and neg-
ative impacts of such code reuse in test cases should be revisited more thoroughly by future work.

Intuitively, inheritance and sharing utility code may violate the test independence assumption, and

34

inheritance may even reduce test code readability and increase test execution overhead [? |. Our
manually-uncovered dependency-related test smells confirm such intuition to some extent: Code
reuse through inheritance and utility may cause hard-to-maintain test fixtures (Test Smell #3),
unstable test environments (Test Smell #2), and flaky tests (Test Smell #4). In short, our work
calls for future research efforts to revisit current test design and its impact on test quality, and the
effectiveness of test impact analysis. Moreover, automated approaches are needed to refactor test

cases for better design and improved effectiveness of test impact analysis.

35

Chapter 6

Threats to validity

In this chapter, we discuss the threats to validity of this thesis.

6.1 External Validity.

We conduct our study on eleven large-scale open source systems in different domains. We find that
the overall findings hold in all the studied systems. Our studied systems are all implemented in Java
so the results may not be generalizable to systems in other programming languages. Future studies
should validate the generalizability of our findings in systems that are implemented in other pro-
gramming languages. Although the studied systems have different levels of development activities,
our test impact analysis in CI is limited to a one-year period and does not cover the very beginning
of the system development. Future studies can more thoroughly perform test impact analysis and

expand it to the entire development lifecycle of software systems.

6.2 Construct Validity.

In this thesis, we use static analysis to uncover the dependencies between test cases and other source
code files. During our manual study, we did not find any false positives that are caused by our static
analysis approach. We choose static analysis over dynamic analysis for recovering dependencies at
the class-level because of the three following reasons: 1) Prior studies [23, 29] found that static
test impact analysis have similar performance compared to dynamic-based techniques, and class-
level dependency gives better results compared to method-level dependency. 2) A large number
of test cases suffer from flakiness [3]. Flaky tests expose different behaviors among multiple runs
and may result in differences in code coverage. 3) In each CI execution, there may exist many test

cases not being executed due to various reasons (e.g., failures of preceding test cases) [4, 45]. 4)

36

Using static analysis is shown to have high accuracy on identifying class dependencies [30]. Future
studies may use dynamic analysis to re-evaluate our findings. We identify a file as a test case if
it contains calls to testing frameworks such as JUnit or TestNG (i.e., contain @Test annotation).
Although we did not find any false positives during our manual study, some of the identified test
cases may be skipped by developers during the build process. Future studies are needed to verify
the accuracy of our test identification approach. Note that, older versions of the testing frameworks
(e.g., JUnit 3) use inheritance to define a test case (i.e., by calling extends TestCase) and not @Test
annotation. In such cases, our test identification approach may not work properly. However, the
studied systems are using newer versions of the testing frameworks, which use @7est annotation
to define test cases. Our study focuses on studying Java source code and test cases. Although
the majority of the studied systems are written in Java, some of them may contain code that is
written in different programming languages. For example, Flink contains 25% non-Java tests, Kafka
contains 27% non-Java tests, Hadoop contains 0.8% C++ tests, and Hbase contains 4.2% JavaScript
and 1.5% Ruby tests. After some manual investigation of the build script and the executed tests in
the CI process, we find that these non-Java tests are either excluded in the daily CI build, or are
executed in a separate CI job (i.e., does not affect the CI process of the Java components). Future
studies are needed to evaluate the effect of the polyglot nature of a system on its test design and

execution.

6.3 Internal Validity.

In this thesis, we use static analysis to uncover the class dependencies. However, there may be some
limitations in the static analysis (e.g., difficult to analyze reflection) that cause inaccurate results.
Even though we did not find such cases in our manual study, future studies should validate our

findings on other systems.

37

Chapter 7

Conclusion

To reduce test execution overhead, prior studies have proposed and evaluated techniques such as test
impact analysis in the traditional software development settings. However, the effectiveness of test
impact analysis remains unknown in the continuous integration setting, where developers continu-
ously run test cases daily to ensure the quality of the integrated code. The complexity of modern
software systems and the frequent code integration may introduce additional code dependencies that
affect the effectiveness of test impact analysis. In this thesis, we first study the effectiveness of static
test impact analysis on eleven open-source systems in the continuous testing setting. We analyzed
one year of software development history. We found that most test cases (around 50% or more)
are impacted in the daily test execution due to high code dependencies, although the number of
changed files is small. Motivated by our finding, we further studied the code dependencies between
the source code files and test cases, and among test cases. We found that most test cases cover the
integrated behavior of the system, and many test cases cover more than 20 source code files. We also
found that 18% of the test cases have dependencies with other test cases. Finally, we documented
four dependency-related test smells that we manually uncovered. In short, our study highlights the
needs and provides insights on reducing test execution overheads and improving test design.
Future studies should propose specialized techniques to lessen code dependencies. In particular,
they should consider the unique test focus in the continuous integration environment and various
properties of changed files to improve test impact analysis effectiveness. We provide four practical
guidelines for practitioners and the research community: 1) encouraging using test impact analysis in
large-scale projects as these systems have a higher benefit of test impact analysis than smaller systems
due to longer test execution time; 2) improving test impact analysis by reducing dependencies
between tests and source code and by designing modularized tests; 3) refactoring and removing

unnecessary inheritance to maintain test independence; 4) utilizing automatic approaches (e.g., the

38

proposed test smell detection approach in the thesis) to review test design in order to avoid negative

effects caused by test smells.

39

Bibliography

[1] (2019). Parameterized tests in JUnit. https://github.com/junit-team/junitd/wiki/

parameterized-tests. Last accessed May 2019.

[2] (2019). Three reasons why we should mnot wuse inheritance in our
tests. https://www.petrikainulainen.net/programming/unit-testing/
3-reasons-why-we-should-not-use-inheritance-in-our-tests/. Last accessed May
2019.

[3] Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., and Marinov, D. (2018). Deflaker: Au-
tomatically detecting flaky tests. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), ICSE ’18, pages 433-444.

[4] Beller, M., Gousios, G., and Zaidman, A. (2017). Oops, my tests broke the build: An explorative
analysis of travis ci with github. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), MSR ’17, pages 356-367.

[5] Boslaugh, S. and Watters, P. (2008). Statistics in a Nutshell: A Desktop Quick Reference. In a
Nutshell (O’Reilly).

[6] Bouillon, P., Krinke, J., Meyer, N.; and Steimann, F. (2007). Ezunit: A framework for associating
failed unit tests with potential programming errors. In International Conference on Extreme

Programming and Agile Processes in Software Engineering, XP'07, pages 101-104.

[7] Chen, J., Bai, Y., Hao, D., Xiong, Y., Zhang, H., and Xie, B. (2017a). Learning to prioritize test
programs for compiler testing. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), ICSE 17, pages 700-711.

[8] Chen, T.-H., Syer, M. D., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., and Flora,
P. (2017b). Analytics-driven load testing: An industrial experience report on load testing of
large-scale systems. In 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 243-252.

40

https://github.com/junit-team/junit4/wiki/parameterized-tests
https://github.com/junit-team/junit4/wiki/parameterized-tests
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests/
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests/

[9] Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEFE
Transactions on Software Engineering, 20(6), 476-493.

[10] Daka, E. and Fraser, G. (2014). A survey on unit testing practices and problems. In 201/ IEEE
25th International Symposium on Software Reliability Engineering, ISSRE 14, pages 201-211.

[11] Elbaum, S., Rothermel, G., and Penix, J. (2014). Techniques for improving regression testing
in continuous integration development environments. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pages 235-245.

[12] Engstrom, E., Runeson, P., and Skoglund, M. (2010). A systematic review on regression test
selection techniques. Information and Software Technology, 52(1), 14-30.

[13] Gambi, A., Bell, J., and Zeller, A. (2018). Practical test dependency detection. In 2018 IEEFE
11th International Conference on Software Testing, Verification and Validation (ICST), pages
1-11.

[14] Ghafari, M., Ghezzi, C., and Rubinov, K. (2015). Automatically identifying focal methods
under test in unit test cases. In 2015 IEEE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 61-70.

[15] Gligoric, M., Eloussi, L., and Marinov, D. (2015). Practical regression test selection with
dynamic file dependencies. In Proceedings of the 2015 International Symposium on Software

Testing and Analysis, pages 211-222.

[16] Grant, S., Cordy, J. R., and Skillicorn, D. B. (2012). Using topic models to support software
maintenance. In 16th Furopean Conference on Software Maintenance and Reengineering, pages

403-408.

[17] Grant, S., Cordy, J. R., and Skillicorn, D. B. (2013). Using heuristics to estimate an appropriate
number of latent topics in source code analysis. Science of Computer Programming, 78(9), 1663

- 1678.

[18] Hautus, E. (2002). Improving java software through package structure analysis. In The 6th
TASTED International Conference Software Engineering and Applications.

[19] Janzen, D. and Saiedian, H. (2005). Test-driven development: Concepts, taxonomy, and future
direction. Computer, 38(9), 43-50.

[20] JavaParser (2019). https://javaparser.org/. Last accessed Feb 1 2019.

[21] Jenkins, A. (2019). Apache Jenkins CI test results. https://builds.apache.org/. Last
accessed Nov 2019.

41

https://javaparser.org/
https://builds.apache.org/

[22] LaToza, T. D., Venolia, G., and DeLine, R. (2006). Maintaining mental models: A study of de-
veloper work habits. In Proceedings of the 28th International Conference on Software Engineering,

ICSE ’06, pages 492-501.

[23] Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., and Marinov, D. (2016). An extensive
study of static regression test selection in modern software evolution. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
583-594.

[24] Lei, Y. and Andrews, J. H. (2005). Minimization of randomized unit test cases. In 16th IEEE
International Symposium on Software Reliability Engineering (ISSRE’05), ISSRE ’05, pages 267—
276.

[25] Leitner, A., Oriol, M., Zeller, A., Ciupa, L., and Meyer, B. (2007). Efficient unit test case
minimization. In Proceedings of the Twenty-second IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 07, pages 417-420.

[26] Li, Z., Harman, M., and Hierons, R. M. (2007). Search algorithms for regression test case
prioritization. IEEE Transactions on Software Engineering, 33(4), 225-237.

[27] Li, Z., Chen, T.-H. P., Yang, J., and Shang, W. (2019). DLFinder: Characterizing and detecting
duplicate logging code smells. In Proceedings of the 41th International Conference on Software

Engineering, ICSE 19, pages 1-1.

[28] Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. (2014). An empirical analysis of flaky tests.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 643-653.

[29] Luo, Q., Moran, K., Zhang, L., and Poshyvanyk, D. (2019). How do static and dynamic test
case prioritization techniques perform on modern software systems? an extensive study on github

projects. IEEE Transactions on Software Engineering, 45(11), 1054-1080.

[30] Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidovi¢, N., and Kroeger, R.
(2018). Measuring the impact of code dependencies on software architecture recovery techniques.

IEEFE Transactions on Software Engineering, 44(2), 159-181.

[31] Marijan, D., Gotlieb, A., and Sen, S. (2013). Test case prioritization for continuous regression
testing: An industrial case study. In 2013 IEEE International Conference on Software Mainte-
nance, ICSM, pages 540-543.

[32] Mei, H., Hao, D., Zhang, L., Zhang, L., Zhou, J., and Rothermel, G. (2012). A static approach
to prioritizing junit test cases. IEEE Transactions on Software Engineering, 38(6), 1258-1275.

42

[33] Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., and Micco, J. (2017).
Taming google-scale continuous testing. In Proceedings of the 39th International Conference on

Software Engineering: Software Engineering in Practice Track, ICSE-SEIP 17, pages 233-242.
[34] Meszaros, G. (2007). XUnit Test Patterns: Refactoring Test Code. Pearson Education.

[35] Microsoft (2019). Test impact analysis in visual studio test. https://docs.microsoft.com/
en-us/azure/devops/pipelines/test/test-impact-analysis?view=azure-devops. Last ac-

cessed May 2019.

[36] Moonen, L. and Yamashita, A. (2012). Do code smells reflect important maintainability aspects?
In 2012 28th IEEFE international conference on software maintenance (ICSM), pages 306-315.

[37] Muslu, K., Brun, Y., and Meliou, A. (2013). Data debugging with continuous testing. In Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, pages 631-634.

[38] Najafi, A., Shang, W., and Rigby, P. C. (2019). Improving test effectiveness using test executions
history: an industrial experience report. In 2019 IEEE/ACM /1st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 213-222.

[39] Orso, A., Shi, N., and Harrold, M. J. (2004). Scaling regression testing to large software systems.
In Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on Foundations of
Software Engineering, FSE'12, pages 241-251.

[40] Palomba, F. and Zaidman, A. (2017). Does refactoring of test smells induce fixing flaky tests? In
Proceedings of the 2017 IEEFE International Conference on Software Maintenance and Evolution,

ICSME 2017, pages 1-12.

[41] Palomba, F. and Zaidman, A. (2019). The smell of fear: on the relation between test smells
and flaky tests. Empirical Software Engineering, 24(5), 2907-2946.

[42] Pinto, L. S., Sinha, S., and Orso, A. (2012). Understanding myths and realities of test-suite
evolution. In Proceedings of the ACM SIGSOF'T 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 33:1-33:11.

[43] Prechelt, L., Unger, B., Philippsen, M., and Tichy, W. F. (2003). A controlled experiment on
inheritance depth as a cost factor for code maintenance. Journal of Systems and Software, 65(2),

115 - 126.

43

https://docs.microsoft.com/en-us/azure/devops/pipelines/test/test-impact-analysis?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/test/test-impact-analysis?view=azure-devops

[44] Qusef, A., Oliveto, R., and De Lucia, A. (2010). Recovering traceability links between unit
tests and classes under test: An improved method. In 2010 IEEE International Conference on

Software Maintenance, pages 1-10.

[45] Rausch, T., Hummer, W., Leitner, P., and Schulte, S. (2017). An empirical analysis of build
failures in the continuous integration workflows of java-based open-source software. In Proceedings

of the 14th International Conference on Mining Software Repositories, MSR, ’17, pages 345-355.

[46] Rothermel, G. and Harrold, M. J. (1997). A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering Methodology, 6(2), 173-210.

[47] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (2001). Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering, 27(10), 929-948.

[48] Saff, D. and Ernst, M. D. (2003). Reducing wasted development time via continuous testing.
In 14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003., pages
281-292.

[49] Saha, R. K., Zhang, L., Khurshid, S., and Perry, D. E. (2015). An information retrieval
approach for regression test prioritization based on program changes. In Proceedings of the 37th

International Conference on Software Engineering, ICSE ’15, pages 268-279.

[50] Shi, A., Yung, T., Gyori, A., and Marinov, D. (2015). Comparing and combining test-suite
reduction and regression test selection. In Proceedings of the 10th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2015, pages 237-247.
[51] Shore, J. (2004). Fail fast [software debugging]. IEEFE Software, 21(5), 21-25.

[52] Spadini, D., Aniche, M., Bruntink, M., and Bacchelli, A. (2017). To mock or not to mock?:
An empirical study on mocking practices. In Proceedings of the 14th International Conference on

Mining Software Repositories, MSR, 17, pages 402—412.

[53] Spadini, D., Aniche, M., Bruntink, M., and Bacchelli, A. (2018). Mock objects for testing java
systems. Empirical Software Engineering, 24(3), 1461-1498.

[54] Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and Bacchelli, A. (2018). On the relation
of test smells to software code quality. In Proceedings of the International Conference on Software

Maintenance and Evolution, ICSM ’18, pages 1-12.

[55] Thomas, S. W., Hemmati, H., Hassan, A. E., and Blostein, D. (2014). Static test case prioriti-

zation using topic models. Empirical Software Engineering, 19(1), 182-212.

44

[56] Vahabzadeh, A., Fard, A. M., and Mesbah, A. (2015). An empirical study of bugs in test
code. In Proceedings of the 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), ICSME ’15, pages 101-110.

[57] Vahabzadeh, A., Stocco, A., and Mesbah, A. (2018). Fine-grained test minimization. In Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE ’18, pages 210-221.

[58] Van Deursen, A., Moonen, L., Van Den Bergh, A., and Kok, G. (2001). Refactoring test code.
In Proceedings of the 2nd international conference on extreme programming and flexible processes

in software engineering (XP), pages 92-95.

[59] Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., and Filkov, V. (2015). Quality and productivity
outcomes relating to continuous integration in github. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 805-816.

[60] Yoo, S. and Harman, M. (2012). Regression testing minimization, selection and prioritization:

A survey. Software Testing, Verification and Reliability, 22(2), 67-120.

[61] Yoo, S., Harman, M., and Clark, D. (2013). Fault localization prioritization: Comparing
information-theoretic and coverage-based approaches. ACM Transactions on Software Engineer-

ing Methodology, 22(3), 19:1-19:29.

[62] Zhang, L., Marinov, D., Zhang, L., and Khurshid, S. (2011). An empirical study of junit test-
suite reduction. In Proceedings of the IEEE 22nd International Symposium on Software Reliability
Engineering, ISSRE 11, pages 170-179.

[63] Zhang, L., Hao, D., Zhang, L., Rothermel, G., and Mei, H. (2013). Bridging the gap between
the total and additional test-case prioritization strategies. In Proceedings of the 2013 International

Conference on Software Engineering, ICSE ’13, pages 192-201.

[64] Zhang, S., Jalali, D., Wuttke, J., Muslu, K., Lam, W., Ernst, M. D., and Notkin, D. (2014).
Empirically revisiting the test independence assumption. In Proceedings of the 2014 International

Symposium on Software Testing and Analysis, ISSTA 2014, pages 385-396.

[65] Zhu, Y., Shihab, E., and Rigby, P. C. (2018). Test re-prioritization in continuous testing
environments. In 2018 IEEFE International Conference on Software Maintenance and FEvolution

(ICSME), pages 69-79.

45

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Continuous Integration and Testing
	Test Case Prioritization and Selection
	Studies on Test Case Dependencies and Quality

	Experimental Settings and Methodology
	Experimental Settings
	Uncovering Code Dependency Graph
	Applying Test Impact Analysis

	Studying Code Dependencies of Test Cases
	RQ1: What is the impact of dependencies from the perspective of test impact analysis in continuous testing?
	Motivation.
	Approach.
	Results.

	RQ2: What is the degree of dependencies between test cases and source code files?
	Motivation.
	Approach.
	Results.

	RQ3: What is the degree of dependencies among test cases?
	Motivation.
	Approach.
	Results.

	RQ4: What are the dependency-related test smells that may negatively impact test case design?
	Motivation.
	Approach.
	Results.

	Implication and Future Directions
	Adopting test impact analysis in CI settings can reduce accumulated test execution overhead
	Needs for further improving the effectiveness of test impact analysis in a CI setting
	Needs and future research opportunities for proposing specialized techniques that reduce code dependencies to improve the effectiveness of test impact analysis
	Needs for revisiting and improving test case design

	Threats to validity
	External Validity.
	Construct Validity.
	Internal Validity.

	Conclusion
	Bibliography

