

July 13th 2020

Debbie Arless

Prof. Pascale Sicotte

Contents
1 Introduction 1

2 Producing explicit configurations 2
2.1 Introduction . 2
2.2 The 2-sphere . 2

2.2.1 The algorithm . 2
2.2.2 First results . 3
2.2.3 Proving coverage . 3
2.2.4 Two improvements and results of final algorithm 4

2.3 The unit disc in the Euclidean and the Hyperbolic plane 6

3 Homological criterion for verifying coverage 8
3.1 Introduction . 8
3.2 Main lemma and the nerve theorem . 8
3.3 Computation through persistent homology 9

4 Gradient flow 11
4.1 Introduction . 11
4.2 Method . 11
4.3 Results . 13

5 Reference list 14

6 Appendix A 15

iv

1 Introduction
The covering problem is a classical type of problem that appears in not only geometry and
applied mathematics, but also combinatorics and computer science. The problem is generally
concerned with finding the smallest collection of a certain structure, so that the collection
covers a larger structure. It has a dual problem called the packing problem, which is more
well-studied and is concerned with packing structures together in the most efficient way
without them overlapping.

The covering problem itself also has many different formulations and settings, and has in-
spired experimentation with methods based in varying fields of mathematics trying to yield
optimal results [3] [4] [10]. In this thesis, we focus on a few intuitive examples that can be
described by the following goal: Given a connected set X on a manifold and a fixed
r > 0, find the smallest set of points P such that ⋃p∈P Br(p) covers X. Here we focus
on the local covering problem; good algorithms found in the local setting have immediate
implications on questions of global covering using expansion methods.

We first explore the problem by picking a few easier settings and constructing an algorithm
that can explicitly produce coverings of a certain set. We want this algorithm to guarantee
coverage, but the collections of points it outputs to be as small as possible. We then discuss
a result in algebraic topology based on the construction of the nerve of a covering, which
allows us to certify that a given collection of opens provides a covering of the set. This
inherently interesting result allows us to finally improve on the results of our algorithm. We
do this by removing some points from its output configurations and applying gradient flow to
move them around such that they repel each other. We then apply the homological criterion
to verify that the points give a covering after gradient flow, in which case we have improved
our results.

1

2 Producing explicit configurations

2.1 Introduction
We started out by constructing an algorithm able to produce an explicit covering of some
standard domains for any given covering radius r. We came up with the idea for this
algorithm in the setting of the 2-sphere, one of the more intuitive examples. The resulting
algorithm was then adapted to work in the case of a domain with a boundary (the unit disc
in R2) and the case where the global vector space is not Euclidean (the unit disc in the
hyperbolic plane H2). The ideas used in the algorithm could be applied to many different
cases, and adapting it to work in for example a higher dimensional space would be very
intuitive (conceptually at least; computational issues could arise in a high global dimension).

2.2 The 2-sphere
2.2.1 The algorithm

The algorithm starts with the spherical cap S0 = {x ≥ 1− r2

2 , x
2 + y2 + z2 = 1} cut off by a

sphere of radius r centered at (1, 0, 0), and enlarges this spherical cap at every step by adding
points with a fixed x-coordinate. The number of new points and their location are chosen
in such a way that they cover a "slab" (spherical segment) which glues to the spherical cap
covered thus far to create a larger spherical cap. We then choose a new x-coordinate for the
next step, and continue in this way until we have covered the whole sphere.

Let us describe a step of this procedure in detail. Suppose we have so far covered the
spherical cap Si = {x ≥ ei, x

2 + y2 + z2 = 1} cut off by the plane {x = ei}. We
let Ci be the circle {x = ei} ∩ S, i.e. the boundary of Si. We now want to choose
an x-coordinate xi for the next layer of points. We require xi < ei, but we also need
to make sure that the spheres of radius r centred at points with x-coordinate xi inter-
sect Ci, so that we can glue the spheres to Si and get a new spherical cap. We there-
fore calculate the minimum x-value xi,lower such that Br

(
xi,lower,

√
1− x2

i,lower, 0
)
∩ Ci 6= ∅.(

This turns out to be xi,lower := 2ei−eir
2−r
√

(e2
i−1)(r2−4)

2

)
.

We now have to make some choice for xi with xi,lower < xi < xi,upper(:= ei). There are
different ways to do so and we will see in later discussion that this choice strongly impacts
the size of the resulting covering, but for now we will just set xi = xi,lower+xi,upper

2 .

The next step is to determine the amount of points on {x = xi} ∩ S we need (evenly
spaced), such that the spheres of radius r centred at these points cover the slab of S between
{x = xi}∩S and Ci. Explicitly, we find the smallest natural number n so that the n spheres
of radius r with centres: (

xi,
√

1− x2
i cos(k2π

n
),
√

1− x2
i sin(k2π

n
)
)

for k = 0, . . . , n−1 cover the aforementioned slab of S. To do this, note that by construction
each of these spheres cuts off an equally sized piece of Ci. If we take the corresponding angle

2

of this piece on the circle Ci to be θ, then taking n =
⌈

2π
θ

⌉
will satisfy our condition, since

the piece of the "new" circle {x = xi} ∩ S cut off by one of the spheres will have a larger
corresponding angle θ′. This last claim will be proven explicitly on the next page.

Finally, we note that our new collection of spheres will cover a slab larger than the one be-
tween {x = xi}∩S and Ci. To calculate the size of the slab we intersect S with two adjacent
spheres in our new collection (e.g. Br(xi,

√
1− x2

i , 0) andBr(xi,
√

1− x2
i cos(2π

n
),
√

1− x2
i sin(2π

n
))

and take ei+1 to be the smaller of the x-values of the two intersection points. The new spheres
combined with Si then cover a spherical cap Si+1 = {x ≥ ei+1, x

2 + y2 + z2 = 1}.

If the resulting collection of spheres covers S, i.e. if
∣∣∣∣(−1, 0, 0)− (xi,

√
1− x2

i , 0)
∣∣∣∣ ≤ r, we

terminate the algorithm. If adding one more sphere centered at (−1, 0, 0) completes the
covering, i.e. if

∣∣∣(−1, 0, 0)− (ei+1,
√

1− e2
i+1, 0)

∣∣∣ ≤ r, we add this last sphere and terminate
the algorithm there. Else, we repeat the same procedure with our new spherical cap Si+1.

The pseudocode can be found in appendix A. Here P is the collection of points and α defines
our choice of xi at every step; as mentioned before, we will take different values of α later.

2.2.2 First results

The following table lists the amount of spheres in the coverings this algorithm produces for
a few values of r. We can compare these amounts to the volume bound 4π

r2π
= 4

r2 , which is
the surface area of the sphere divided by the surface area of one spherical cap corresponding
to a sphere of radius r. Therefore the volume bound is a (strict) lower bound on the amount
of spheres a covering can contain, and a good point of reference to compare the quality of
our results. We see that our algorithm consistently produces coverings of around 1.8 times
the volume bound.
Radius # of spheres in covering Vol. bound
1
2 28 16
1
3 68 36
1
4 119 64
1
5 184 100
1
6 263 144

2.2.3 Proving coverage

The proof that this algorithm covers is based on the following claim:

Lemma 2.1. Let C = {x = c, y2 + z2 =
√

1− c2} and D = {x = d, y2 + z2 =
√

1− d2}
be two circles on the sphere of radius 1 with −1 < d < c < 1. Let S be a sphere of radius
0 < r < 1 centered at a point on D, and suppose that this sphere intersects C at the points
a± and the sphere D at the points b±. Then the angle between b+ and b− (on D) is greater
than the angle between a+ and a− (on C).

Our algorithm satisfies these assumptions for every sphere at every step by construction. We
then place the next sphere (again, centered at a point on D) in such a way that the a+ of the

3

previous sphere aligns with the a− of the new sphere. Using the claim, on D this new sphere
will therefore leave no gap between the old b+ and the new b− either. Since we place the
spheres exactly so that C is covered, the claim therefore implies that D is also covered. To
see that the area in between C and D is covered, consider the parallelogram on the geometry
of the sphere with vertices a± and b± and the fact that the smaller spheres are convex.

Proof. Without loss of generality, S is centered at the point (d, 0,
√

1− d2).

S : {(x− d)2 + y2 + (z −
√

1− d2)2 = r2}.

We have for (x,±y, z) = a± = C ∩ S :

(c− d)2 + (z −
√

1− d2)2 − r2 = z2 − 1 + c2 =⇒ z =
1− c− r2

2√
1− d2

=
√

1− c2 cos(θ)

So the angle between a+ and a− is 2 arccos
(

1−cd− r2
2√

1−c2
√

1−d2

)
.

Similarly, the angle between b+ and b− is 2 arccos
(

1−d2− r2
2

1−d2

)
. Since arccos is a decreasing

function, we want to show that 1−cd− r2
2√

1−d2
√

1−c2 >
1−d2− r2

2
1−d2 under our assumptions (0 < r < 1 and

−1 < d < c < 1). This inequality holds in general for −1 < d < 1− r2

2 , which is always the
case since the first ei we consider is e0 = 1− r2

2 .

2.2.4 Two improvements and results of final algorithm

Upon reviewing the first version of the algorithm for the 2-sphere we found two small possible
improvements.

First, letting the amount of points at every step equal ni =
⌈

2π
θi

⌉
(with θi as described before)

means that the angle between Pi,0 and Pi,ni−1 will be smaller than the other pairwise angles;
in other words, there is more overlap between the two spheres centered at these points than
there is between the other spheres at the same step.

We can use this as follows: we first compute ni as before and then lower xi as far as we
can while still requiring ni regularly spaced spheres to cover the slab between {x = xi} and
Ci. This is as easy as reverse engineering the procedure in the algorithm; after finding ni,
let Θi := 2π

ni
and calculate the x-value x′i such that the angle between the two points in

Br(x′i,
√

1− x′2i , 0) ∩ Ci on Ci is exactly Θi, then proceed with the algorithm as usual.

As a result we have the same amount of spheres added per step, but the total amount of
spheres is lower since we move further down on the x-axis at every step. The result has
been summarized in the following table, together with the improvement over the original
algorithm and the volume bound.

4

Radius # of spheres Improvement Vol. bound
1
2 27 1 16
1
3 66 2 36
1
4 115 4 64
1
5 174 10 100
1
6 252 11 144

The second improvement comes in the form of choosing α correctly. As mentioned before, at
every step we take an x-value xi for our next layer of points, which can be chosen anywhere
between xi,lower and xi,upper, which guarantee that the spheres centered at these points will
intersect Si, the spherical cap covered so far. We express this choice as the ratio α ∈ (0, 1),
where we take xi = α · xi,upper + (1− α)xi,lower at every step.

An example (for r = 1
3) of a graph plotting α against the total number of spheres.

The way to think about this choice is that for larger values of α, we will need more steps in
total since we advance less far along the x-axis, but we will need less spheres at every step
since the new spheres lie closer to Ci and therefore less of them are needed to cover the slab
between {x = xi} ∩ S and Ci. Alternatively, smaller values of α will take less steps in total
but more spheres per step (for α → 0, the amount of spheres needed per step goes to ∞
since each sphere will cover an extremely small part of Ci). For each value of r, the above
graph is an example of possible values of α plotted against the total amount of spheres in
the resulting covering. From these graphs we can read the optimal value of α; it is clear
that different covering radii r require different values of α for optimal results, although the
optimal value usually ends up in the interval [0.2, 0.4].

Intuitively it looks like we could choose α differently at every step of the algorithm and get
better results than for any fixed value of α throughout. After running some tests however,
randomizing the value of α at every step and looking at the minimal covering out of N >
10, 000 iterations, we found that this method struggles to perform as well as the previous
best result for fixed α, and none of the randomized configurations was smaller than those
found before. We were therefore satisfied with finding the best value of α for every r, and
the following results are the best that this algorithm could produce on its own, around 1.6
times the volume bound.

5

Radius # of spheres Vol. bound
1
2 25 16
1
3 57 36
1
4 102 64
1
5 158 100
1
6 227 144

Result for r = 1
2

Result for r = 1
6

These coverings, while surprisingly small, are by no means optimal. In fact, R. H. Hardin,
N. J. A. Sloane and W. D. Smith provide putatively optimal coverings [4] which outperform
our results, and it is clear that our algorithm could never achieve these configurations due to
its "slice-by-slice" construction, since the optimal coverings given by Sloane et. al. contain
spheres that are spaced much more regularly. This is something we will try to overcome in
the last chapter, after we study the necessary tools to improve on the results of our algorithm.

2.3 The unit disc in the Euclidean and the Hyperbolic plane
The algorithm constructed for the 2-sphere was fairly easy to adapt to the unit disc in R2. In
this case, we started with the circle of radius r centred at the origin, and placed the centres
of the next step of circles at a fixed radius r0 from the origin, continuing the algorithm
as usual. The optimizations made for the 2-sphere were also translated directly, and the
resulting coverings performed about as well as the coverings for the 2-sphere did, at least
below 2 times the volume bound.

Similarly, in the hyperbolic plane, after adjusting all the formulas to correspond to hyperbolic
geometry the same algorithm worked perfectly fine, and in fact gave very similar results
(comparing results to the volume bound in hyperbolic geometry). Computations were done
in the hyperboloid model, although the results are presented in the Poincaré disc model for
visualization purposes.

6

R2 H2

Radius # of circles Vol. bound # of circles Vol. bound
1
2 8 4 9 5
1
3 16 9 18 10
1
4 26 16 31 18
1
5 41 25 48 28

Result for r = 1
5 in R2 Result for r = 1

5 in H2

In the picture of the resulting configuration in H2, the circles lie in the Poincaré disc model
and therefore have differing size depending on how far from the origin their center lies.
Looking closely one can see a blue dot, which corresponds to the hyperbolic center, and a
red dot, representing their "Euclidean" center corresponding to the circle in the Poincaré disc
model. As mentioned before, the circles do all have the same size in hyperbolic geometry,
something that is more intuitive but harder to visualize in the hyperboloid model where the
computations were done.

7

3 Homological criterion for verifying coverage

3.1 Introduction
In the previous chapter we familiarized ourselves with the setting and possible approaches
to the local covering problem, by constructing an explicit algorithm that creates coverings
of certain domains. The algorithm is however heavily restricted by the fact that the output
should guarantee coverage, and the actual minimal covering is unlikely to be achieved by
such an explicit and direct method. One can imagine methods that would theoretically be
able to produce a minimal covering (e.g. just randomly placing a fixed amount of points in
the domain until we find a covering) but the problem lies in verifying (in an automated way)
if a certain collection of opens actually covers. For this, we found an unexpected solution in
the field of algebraic topology, inspired by a set of articles by Vin de Silva and Robert Ghrist
[8][9]. Specifically we claim that for a d-dimensional manifold M the d-degree homology of a
submanifold is non-zero if and only if it is equal to M . We then combine this fact with the
so called nerve theorem, which states that a certain abstract simplicial complex constructed
from a set of opens in a topological space has the same homology groups as the union of the
opens. Therefore, checking if the homology of this complex is non-zero tells us if the opens
cover the space.

3.2 Main lemma and the nerve theorem
Lemma 3.1. Let M be a d-dimensional oriented closed manifold, U ⊆M an open subman-

ifold and F a field. Then we have Hd(U, F) '
{

0 if U (M
F if U = M

.

Proof. The case U = M is immediate from the existence of a fundamental class, which
corresponds to the generator of Hd(M,F) ' F .

Suppose that U 6= M , so that U is a non-compact submanifold. Since F is a field, Poincaré
duality gives us Hd(U, F) ' H0

c (U, F), where we have to be careful to use cohomology with
compact support in the statement of Poincaré duality since U is non-compact.

As a reminder, if we let Ci
c(U, F) be the subgroup of Ci(U, F) consisting of those cochains

φ : Ci(U)→ F for which there exists a compact K ⊂ U such that φ is zero on all chains in
U \K, then H0

c (U, F) = ker (d0 : C0
c (U, F)→ C1

c (U, F)). However, for any 1-chain [a, b] and
φ ∈ C0

c (U, F) we have (d0φ)([a, b]) = φ(b) − φ(a). Therefore φ ∈ H0
c (U, F) implies that φ

is compactly supported and constant on points, and since U is non-compact the only such
function is the zero function. We conclude that Hd(U, F) ' H0

c (U, F) ' 0.

Definition 3.1. For a topological space X and a set of opens U = {Ui}i∈I in X, the nerve
of U is the set N (U) consisting of the subsets J ⊆ I for which the intersection ⋂

j∈J Uj is
non-empty. Since all subsets of a set J ∈ N (U) are also in N (U), the nerve is an abstract
simplicial complex.

Therefore we have a vertex for every open set Ui, and a face between vertices if the corre-
sponding opens have non-empty intersection. The nerve theorem now gives us the desired

8

result and lets us compute the homology of a collection of opens only by its nerve.

Theorem 3.2 (Nerve theorem). Let X be a topological space and U = {Ui}i∈I a collection
of open sets in X such that for every J ∈ N (U), the (non-empty) intersection ⋂

j∈J Uj is
contractible. Then N (U) is homotopy equivalent to ⋃i∈I Ui.
An abstract proof can be found in Hatchers Algebraic Topology [5], but a more direct proof
is given in an excellent paper by Kathryn Heal [6] where she gives the explicit homotopy
equivalences and makes the theorem very intuitive.

It is easy to see why the condition of non-empty intersections being contractible is necessary.
To give an example, let X = S1 be the circle with two open arcs on S1 that cover it.
These opens would have to have non-empty non-contractible intersection, one contractible
intersection on either end of the arcs. The nerve of these opens would then look like two
connected vertices and would therefore be contractible, unlike their union S1, so the nerve
theorem would not hold. If we instead had three opens covering the circle, so that every
intersection is contractible, we would get a nerve that reflects the homology of S1 correctly.

3.3 Computation through persistent homology
It is common in for example topological data analysis to want to capture topological infor-
mation about a set of points P in a metric space X [1] [8] [9]. In this context the term Cech
complex is commonly used. By definition this is just the nerve of the collection of r-balls
{Br(p)}p∈P for some fixed r > 0, and the resulting simplicial complex is denoted Cr(P) (so
for Q ⊆ P we have a simplex Q ∈ Cr(P) ⇐⇒ ⋂

q∈QBr(q) 6= ∅). By the nerve theorem,⋃
p∈P Br(p) is homotopy equivalent to Cr(P) for any r > 0.

In our situation we would like to compute the Cech complex of a set of points and check if
its top degree homology is non-zero, in which case we have a covering by the nerve theorem
and lemma 3.1. Computing the Cech complex of a large number of points can however be
challenging, since we have to check for every combination of balls whether they have non-
empty intersection. We solve this by working instead with a similar but more manageable
construction called the Rips complex (sometimes Vietoris-Rips complex).

Definition 3.2. For a metric space X, a set of points P in X and r > 0, the Rips complex
Rr(P) of P is the abstract simplicial complex consisting of the subsets Q ⊆ P for which
Br(q) ∩Br(q′) 6= ∅ for all q, q′ ∈ Q.

The Rips complex is a modification the Cech complex where one only considers pairwise
intersection, and the computational advantages are clear since to compute it one only has to
check if d(p, p′) ≤ 2r for all pairs of points p, p′ ∈ P . We now restrict ourselves to Euclidean
space so that we can make the following chain of inclusions, relating the Rips complex to
the Cech complex in a strong enough way to compute the homology of the latter using the
former. Similar bounds are likely to exist in non-euclidean spaces, but for the remainder of
the paper we will restrict ourselves to Euclidean space so that we can apply this theorem.

Theorem 3.3. For a set of points P in Rd and any r, r′ > 0 with r′ ≤ r
√

d+1
2d , we have the

chain of inclusions Rr′(P) ⊆ Cr(P) ⊆ Rr(P).

9

Proof. The second inclusion is trivial since any simplex in Cr(P) comes from a set of balls
with non-empty intersection, whose pairwise intersection is then non-empty as well which
means the simplex lies in Rr(P). For the first inclusion it is enough to show that for any
set of n ≤ d + 1 points with pairwise distance between them at most r′, the balls of radius
r centered at these points have non-empty intersection. The bound on r′ was in fact chosen
to satisfy this claim, which is shown in the article by V. de Silva and R. Ghrist [8]. The
inclusion follows the following basic result known as Helly’s theorem: if for any m > d + 1
convex subsets {Xi}mi=1 in Rd the intersection of every d+ 1 of these sets is nonempty, then
also ⋂mi=1 Xi 6= ∅.

We now use this inclusion to state the desired criterion for verifying coverage.

Theorem 3.4. For P a set of points in a domain X ⊆ Rd, let Ur = ⋃
p∈P Br(p). Then, if for

some r′ ≤ r
√

d+1
2d the homomorphism ι∗ : Hd(Rr′(P))→ Hd(Rr(P)) induced by the inclusion

ι : Rr′(P) ↪→ Rr(P) is non-zero, Ur contains X.

Proof. Suppose we have an element [α] ∈ Hd(Rr′) such that ι∗([α]) 6= 0. Then since ι∗ factors
through j∗ : Hd(Rr′)→ Hd(Cr), we also have j∗([α]) 6= 0. This implies that Hd(Cr) 6= 0, and
by the nerve theorem, Hd(Ur) 6= 0. Now apply lemma 3.1.

As mentioned before, the Rips complexes in the theorem are much easier to compute than the
corresponding Cech complex, and in fact even computing if a map on the homology of Rips
complexes is non-zero is fairly common in topological data analysis and is called persisent
homology. We used the software Perseus [7] for this computation in the next chapter, where
we apply the theorem to improve on our results for the covering problem.

10

4 Gradient flow

4.1 Introduction
Now that we have a rigorous way of certifying that a collection of points gives a covering,
we have many new options of generating good configurations. We decided to try a method
based on gradient flow, inspired by a paper by Simanta Gautam and Dmitry Vaintob [2].
This method gives us a way of moving points on the 2-sphere around in such a way that they
repel each other. We use this by removing points from the configurations generated by our
algorithm and moving the remaining points around until we find a new covering (verified by
theorem 3.4), therefore immediately improving on our results.

4.2 Method
The method of gradient flow starts with a configuration of points on the 2-sphere and defines
some global energy function on the set of points that takes a high value when points are
close together. A simple example is the function

E((x1, . . . , xn)) =
n∑
i<j

1
|x1 − xn|

which we took as the global energy function in our setting. We calculate the gradient on
each vector, given by

∇E(xi) := ∇
n∑
j 6=i

1
|xi − xj|

=
n∑
j 6=i

−(xi − xj)
|xi − xj|3

(here the xi are vectors) which gives a new vector that points towards a maximum of the
energy function on xi. We then move the points around by mapping, for ε small, xi 7→
xi − ε · ∇E(xi) and scale the result back to norm 1 so that it lies on the 2-sphere. This
should move the points closer towards a local or global minimum of the energy function
which corresponds to a well spaced configuration.

The gradient flow method: configuration for r = 1/3 after removing points, after 100 steps
of gradient flow and after 200 steps.

One choice to consider is the value of ε. In the paper [2] a value of ε = 0.001 is suggested, and
the tradeoff of taking a higher value is clear: a higher value of ε will move the configuration

11

towards a minimum of the energy function faster, but taking ε too large can result in the
points "skipping over" their optimal position, and can cause configurations that cover to be
broken after more iterations. This is demonstrated in the following table. Here, we show the
total energy of a configuration (taken from our algorithm for r = 1

3 after removing two fixed
points) after a number of steps for different values of ε. Here, E is the total energy minus
1200 and a star indicates that the corresponding configuration covers the 2-sphere, something
we can verify using Perseus and theorem 3.4. We can see directly that a lower total energy is
reached faster for higher values of ε, but taking it too high results in undesirable behaviour
like coverings getting broken up after more iterations. These differences were even more
apparant for smaller values of r; already for r = 1

5 , taking a value of ε > 0.01 resulted in the
overall energy going up instead of down. For our final results we have applied the gradient
flow method for appropiate choices of ε per case.
of iterations 150 175 200 250
E, ε = 0.05 88.0260 87.9156∗
E, ε = 0.1 87.9748 87.9097∗ ∗

E, ε = 0.2 87.9807 87.9056∗ 87.8576∗
E, ε = 0.4 87.9404 87.8743 87.8379∗
E, ε = 0.8 87.9200∗ 87.8607 87.8295∗
E, ε = 1 87.9160∗ 87.8582 87.8280∗

Another choice worth mentioning lies in the removal of points from the collection generated
by our algorithm. It is clear that removing different points will result in different global
energy values, and while in theory the gradient flow method should eventually converge to
the same global minimum, picking the points that we remove intelligently will improve the
speed of our method. After some testing, we concluded that removing points that are in
some sense symmetrically located on the sphere gives the best results, as one would expect.
In the following table, the gradient flow method was applied to a configuration with two
random points removed, as well as the same configuration with two opposite points removed
(namely the points with the highest and lowest z-coordinates). The configuration used was
generated by our algorithm for r = 1

3 , and again we denote the total energy minus 1200 by
E.
Opposite points
k 0 10 20 30 40 50
E 93.1577 90.0420 89.8718 89.7812 89.7044 89.6240
Random points
k 0 10 20 30 40 50
E 93.6620 91.7094 91.6555 91.5863 91.4669 91.2019
Therefore, for our final results we made sure to remove points that were symmetrically placed
on the configuration we were trying to improve on. Usually this meant removing the points
with the maximum and minimum coordinates on each of the three coordinate axes.

12

4.3 Results
For our final results, we started out with the optimal configuration our algorithm could
provide, removed a reasonable number of points and applied the gradient flow method for
up to 7000 steps. Afterwards, we used Perseus [7] and theorem 3.4 to verify that the resulting
configuration provided a covering. If it did, we tried to remove more points, and if it didn’t,
we went back and tried to remove less points from the original covering. In this way we
found optimal coverings for this method and in fact the size of the final configurations were
under 1.5 times the volume bound, which is a very satisfying result.

Radius Volume bound # of spheres, algorithm # of spheres after gradient flow
1/2 16 25 21
1/3 36 57 52
1/4 64 102 90
1/5 100 158 148

13

5 Reference list
[1] G. Carlsson, "Topology and Data" in Bulletin of the American mathematical society,

vol. 46, no.2, pp. 255-308, 2009.

[2] S. Gautam and D. Vaintrob, "A Novel Approach to the Spherical Codes Problem",
Massachusetts Institute of Technology, 2012.

[3] J. Hamkins and K. Zeger, "Asymptotically dense spherical codes" in IEEE Transactions
on information theory, vol. 34, no. 6, pp. 1774-1798, 1997.

[4] R. H. Hardin, N. J. A. Sloane and W. D. Smith, "Spherical codes", book in preperation.
http://neilsloane.com/coverings/index.html, 1994.

[5] A. Hatcher, "Algebraic Topology". Cambridge University Press, 2001.

[6] K. Heal, "Variations on the Nerve Theorem". kathrynheal-
com.files.wordpress.com/2017/03/final.pdf, 2017.

[7] V. Nanda. Perseus, the Persistent Homology Software.
http://www.sas.upenn.edu/ vnanda/perseus, accessed April 2020.

[8] V. de Silva and R. Ghrist, "Coverage in sensor networks via persistent homology," in
Algebraic & Geometric Topology, 7, pp. 339-358, 2007.

[9] V. de Silva and R. Ghrist, "Coordinate-free coverage in sensor networks with controlled
boundaries via homology" in The International Journal of Robotics Research, vol. 25,
no. 12, pp. 1205–1222, 2006.

[10] T. Tarnai and Z. Gaspar, "Covering a sphere by equal circles, and the rigidity of its
graph" in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 110,
no. 71, pp. 71-89, 1991.

14

6 Appendix A
The following is the pseudocode of our original algorithm, as described in section 2.2.1. The
adjustments to the algorithm described in 2.2.4 are easy to implement by adjusting the value
of α to be optimal and taking x′i as described at every step instead of xi after calculating ni.

Initialization
P = {(1, 0, 0)}
e0 = 1− r2

2
cover = 0
α = 1

2
i = 0
while cover=0 do

xi,upper = ei

xi,lower = 2ei−eir
2−r
√

(e2
i−1)(r2−4)

2
xi = α · xi,upper + (1− α) · xi,lower
if
∣∣∣∣(−1, 0, 0)− (xi,

√
1− x2

i , 0)
∣∣∣∣ ≤ r then

cover = 1

Let θi be the angle between the two points in Br(xi,
√

1− x2
i , 0) ∩ Ci on Ci

ni =
⌈

2π
θi

⌉
Pi,k =

(
xi,
√

1− x2
i cos(k 2π

ni
),
√

1− x2
i sin(k 2π

ni
)
)
for k = 0, . . . , ni − 1

P = P ∪ {Pi,k}ni−1
k=0

Let ei+1 be the smaller x-value of the two points in Br (Pi,0) ∩Br (Pi,1) ∩ S
if cover = 0 and

∣∣∣(−1, 0, 0)− (ei+1,
√

1− e2
i+1, 0)

∣∣∣ ≤ r then
P = P ∪ {(−1, 0, 0)}
cover = 1

i=i+1

15

