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Abstract

Computationally Efficient Robust Model Predictive Control Strategies for

Linear Constrained Systems

Maryam Bagherzadeh

This thesis deals with control problem of designing low computationally demanding ro-

bust model predictive controllers (MPC) for constrained systems subject to states/input

limitations and bounded disturbances. In particular, the proposed solutions are based

on a dual-mode control paradigm known as Set-Theoretic MPC (ST-MPC). This control

schemes are particularly appealing for their capability of reducing the typical computation

burden of robust MPC controllers. The latter is obtained by moving most of the required

computations into an off-line phase, while leaving a simple and real-time affordable com-

putational algorithm in the on-line phase. In this work, such a paradigm has been properly

extended to deal with regulation and tracking problems appearing in two different control

applications, namely transient stability regulation in smart grid and reference tracking in

multi autonomous vehicles.

In the transient stability control problem, we consider an operative scenario where a

physical fault or a cyber-attack produces an impulsive state perturbation, and a controller

must be designed to robustly recover, in a finite-time, transient stability despite initial

perturbation and uncertainties. In such scenario, first we have used the standard feed-

back linearizion technicalities to linearize the smart grid model, then, we have applied a

set-theoretic MPC scheme to robustly regulate the state trajectory towards the transient

stability region. Moreover, to validate the proposed theory, a simulation campaign has

been performed to contrast the proposed solution with a state-of-the-art competitor. Sim-

ulation results has shown that the proposed strategy outperforms the competitor scheme

both in terms of settling time and robustness.
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In the multi-vehicle control problem, we exploit set-theoretic arguments to solve the

reference tracking problem when the vehicles have different dynamics and/or constraints

and/or disturbance, and each vehicle must follow uncoordinated reference trajectories.

More in specific, we propose a novel control architecture where robust collision-free refer-

ence tracking is ensured by jointly using the set-theoretic control scheme and graph theory.

To better clarify the potential and effectiveness of the proposed architecture, a simulation

example involving 5 heterogeneous vehicles has been conducted.
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is selected to be stopped according to the procedure (P1)-(P3) and condition

(63). Subplot (b) shows that in the second iteration of (P1)-(P3), the node
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Chapter 1

Introduction

1.1 Literature review and motivation

Model predictive control is a Multi-Input Multi-Output (MIMO) model-based control

strategy which is intrinsically capable of dealing, in the design stage, with constraints on

both input command and state variables [1]. This is essential to avoid loss of performance

due to the saturation effect which might occur in practical scenarios. Using the dynamic

model of a plant and the available measurements, MPC predicts the future evolution of the

system over a finite prediction horizon, and it solves a constrained optimization problem

to select the best admissible control action that minimizes a given cost function (see

Fig. 1.1.1). In simply words, MPC aims at achieving optimal performance and stability

while satisfying given constraints. Fig. 1.1.2 summarizes the MPC algorithm where at each

time instant k the constrained optimization problem is solved over a finite future horizon

of N steps. The solution provides a sequence of N-1 optimal control actions where only

the first control move u∗(k|k) is applied to the system. At the next time steps, according

to the receding horizon paradigm, such optimization is repeated on the updated state

measurements.

In the MPC literature [2], it is possible to distinguish the following main classes of

MPC according to the nature of the plant model, the constraints and the cost function:
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Model-Based Optimizer Plant

Mesurements

Reference Control input Output

Figure 1.1.1: Basic structure of Model Predictive Control

Past Future

k k+1 k+2 . . . k+N

Prediction Horizon

Sample Time

Reference Trajectory

Predicted Output

Measured Output

Predicted Control Input

Figure 1.1.2: A discrete MPC scheme

linear MPC [3–5], non-linear MPC [6,7], stochastic MPC [8], hybrid MPC [9], distributed

MPC [10,11], explicit MPC [12] and robust MPC [13,14].

Of interest in this thesis are Robust MPC Solutions. Robust MPC strategies are used

in the control problems where the objective is to maintain the stability and satisfy the

performance properties of the system regardless of a specified range of model uncertainties

and bounded disturbances [14]. In particular, the objective is to design at each time step

an optimal state-feedback control action that minimizes a cost associated to the worst-

case realization of the uncertainties and disturbances for systems subject to input and

state constraints. The above mentioned min-max optimization problem is non-convex
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and therefore difficult to solve [15]. Hence, many solutions have been proposed to recast

the min-max optimization problem into a convex optimization involving Linear Matrix

Inequalities (LMIs) see e.g. [3], [13], [15–18] and references therein. The tractable formu-

lation of the min-max optimization problem was first proposed in [13], where the online

min-max optimization was approximately formulated as a Linear Program (LP) for un-

certainty descriptions w.r.t. the system’s impulse response. Along similar lines is [17],

in which the authors developed a LP problem with a reduced number of constraints, and

simple for on-line implementation. In [16] the proposed solution described the uncertainty

as lower and upper bounds on impulse response coefficients, as a result the optimization

problem has been cast into a LP of moderate size. Moreover, in [3] the authors optimized

robust performance for polytopic/ multi-model and structured feedback uncertainties us-

ing linear programming. Polytopic uncertainty description was also used in [18] where an

approximated convex formulation for optimizing the dynamic feedback control laws for

constrained linear systems subject to polytopic uncertainty was presented. However, it

is worth mentioning that by modeling uncertainties and disturbances as bounded polyhe-

dron, the resulting on-line computation complexity exponentially grows with the number

of vertices of the uncertainty set [3].

Indeed, the on-line computational demand for synthesizing a robust MPC algorithm

limits its applicability to relatively slow and/or small problems which makes the aforemen-

tioned solutions not doable in strict real-time applications. In such regard, in the literature,

different contributions have been appeared to mitigate the computational cost of robust

MPC solutions. A possible way to mitigate such drawback is to completely move into an

off-line phase all the required computations. Such idea is well-known as explicit MPC in

which we rely on the pre-calculated solutions of the optimization for all possible problem

instances which can then be used as a control look-up table on-line see e.g. [12, 19–22]

and references therein. In [19] the authors obtained a piecewise linear feedback controller

defined over a partition of the set of states into simplicial cones, by computing a feasible
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input sequence for each vertex via linear programming. In [20] properties of the polyhedral

partition of the state space has been studied which is induced by the Multi-Parametric

(MP) piecewise affine solution and new MP-Quadratic Programming (QP) solver is pro-

posed. In [21] the authors have exploited explicit MPC to deal with linear discrete-time

constrained hybrid systems where the solution to the optimization problem is based on

quadratic or linear performance criteria. Moreover, a new stage cost is introduced in [22]

which allows one to approximate a min–max model predictive control problem with a

single linear program where the authors have shown that the obtained optimal control

law is piecewise affine and can be explicitly pre-computed so that the linear program does

not require on-line solution. It is worth mentioning that explicit MPC approaches work

well for systems with small state and input dimensions, few constraints, and short time

horizons [23]. Moreover, the resulting control action might be excessively conservative.

Therefore a novel MPC solution that is based on set-theoretic arguments has been

proposed as a trade off between completely on-line and completely off-line architecture

[24–26]. The set-theoretic MPC reduces the typical computation burden of robust MPC

controllers [27]. This is obtained by moving most of the required computations into an

off-line phase, while leaving a simple and real-time affordable computational algorithm in

the on-line phase.

In this thesis we have extended the ST-MPC in order to deal with two main control

problems: set point regulation and reference tracking. The former is faced as a transiant

stability problem in smart grid systems while the latter is addressed for Multi Unmanned

Vehicles (MUVs) moving in a shared planar environment where collisions must be avoided.

1.1.1 Transient Stability Control Problem

In the last decade, smart grid systems have received increasing attention. Smart grids, in

general, can take advantage of bidirectional and high speed communication channels [28]

as well as computation capabilities to improve performance, efficiency and reliability of

4



traditional power systems [29].

Power systems need to fast mitigate unexpected events such as faults and distur-

bances. Smart grids still face the same issues, however the available communication and

computation resources allow designing novel control schemes that can outperform legacy

controllers. In this contest, the transient stability control problem represents a typical

case scenario where a cyber/physical attack/fault produces an impulsive perturbation in

the grid.

In such circumstances, efficient control strategies are needed to fast recover stability

[30], [31]. To solve such a regulation problem different solutions have been proposed in

the related literature, see e.g. [32–36], and references therein.

In [32], a minimum time bang-bang controller has been proposed. In [33] the authors

have proposed a distributed nonlinear controller capable of dealing with communication

delays and disturbances. In [34] a parametric feedback linearization technique has been

used to decouple the generator’s dynamics leading to the design of simple state feedback

controllers which ensure closed-loop stability and phase cohesiveness. Along similar lines

is also [35], where a delay-adaptive parametric feedback linearization technique has been

used to design a delay-resilient control framework capable of contrasting Denial of Service

(DoS) cyber-attacks and communication latency. Finally, in [36] a nonlinear model-free

controller is proposed to address the transient stability problem in presence of delays,

unmodeled dynamics and time-varying plant parameters.

It is a matter of fact that available transient stability models, as any model of physical

phenomena, can only approximately describe the grid behavior. Moreover, measurement

errors and disturbances can also play a significant role. Hence, control systems need to

be designed to be robust against such uncertainties ensuring the satisfaction of minimum

performance requirements. Furthermore, control logic should be designed taking into

account limited power available for the control action, see for example the fast acting

energy storage systems considered in [34]. On the basis of this reasoning and existing

5



state-of-the art solutions, we believe that physical limitations of smart grid subsystems

and modeling errors are often underestimated. Indeed, in the controller’s design stage it

is extremely important to take care of limited resources and inaccurate models to avoid

performance deterioration or unexpected results caused by saturation effects [37], [38].

Moreover, to address the transient stability regulation problem in presence of distur-

bances, modeling errors and constraints robust MPC approaches, see e.g. [39], represent a

natural solution. Nevertheless, the fast dynamics of generators might render such scheme

not doable. Indeed, classical robust solutions suffer from a notable computational com-

plexity which might prevent their applicability in fast real-time contests [1,27]. Therefore,

there exists the need for computationally efficient and real-time affordable control algo-

rithms capable of fast recovering the transient stability of the smart grid system while

satisfying physical constraints on the state and/or inputs regardless of the admissible

disturbances.

1.1.2 Reference tracking in Multi Unmanned Vehicle systems

As the world’s cities become more congested and polluted, new intelligent transportation

models and technologies are emerging to solve the mobility challenge. One of the major

technological trends is converging to autonomous driving. As a result, Unmanned Vehicles

(UVs) have attracted significant attention because they have the potential to improve the

traditional transportation systems in terms of congestion, emissions, and safety [40,41].

To obtain a fully automated transportation system, different issues must be addressed

[42]. To name a few: each vehicle must be able to track a reference signal and reach the

desired goal [43, 44]; formation control tools are needed to guarantee coordination among

vehicles [45–48]; and absence of collisions must be ensured [49–51].

Of particular interest for this application are control solutions capable of addressing

the collision-free reference tracking control problem for multi unmanned vehicles moving in
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a shared environment. Formation control approaches have been largely applied to multi-

vehicle systems to address such a problem, see e.g. [45], [52–57] and references therein.

However, the agents’ dynamics are often modeled as single or double integrators, and the

problem is solved at a kinematic level where state and input constraints are not taken into

account. Therefore, although the proposed solutions are efficient and effective, they cannot

be straightforwardly adapted to deal with MUVs physical limitations or disturbances. As

a result, collision avoidance cannot be guaranteed.

To address the collision avoidance problem, different strategies have been proposed. In

[49], collision-free movements and deadlock-avoidance for multi-robot systems are achieved

by proposing a nominal controller capable of formally fulfilling safety constraints. The

safety controller is designed by defining a proper quadratic programming problem based

on a mixture of relaxed control barrier factions, hybrid braking controllers, and con-

sistent perturbations. In [58–63], different Mixed Integer Linear Programming (MILP)

approaches, and model predictive control techniques have been investigated. In [58], the

collision avoidance problem for a group of vehicles is formulated as an MILP optimization

problem where each vehicle has an apriori known fixed number of possible trajectories.

Along similar lines is also the work in [59] in which collision avoidance is ensured for a team

of three vehicles, and where the exponential complexity of the obtained Hamilton-Jacobi

(HJ) and MILP problems is reduced using a combinational technique based on (HJ) reach-

ability and MILP programming concepts. In [60], a formation for a group of heterogeneous

vehicles with nonlinear dynamics is achieved by applying a distributed Receding Horizon

Control (RHC) strategy. The proposed solution ensures the string stability of a leader-

follower platoon yet the collision avoidance problem is not explicitly considered. In [61],

an MPC strategy is used to guarantee the absence of collision for a robot formation. First,

feedback linearization and MPC controllers are used to recast the problem in terms of a

mixed integer quadratic programming problem. Then, a branch and bound algorithm is

used to reduce the complexity of the resulting optimization problem. In [62], the authors
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have implemented a robust Decentralized Model Predictive Controller (DMPC) for a team

of cooperating UVs where possibilities of collisions are modeled as coupling constraints.

The resulting optimization problem is solved as an integer programming problem. Fi-

nally, in [63], a theoretical framework based on an MPC control paradigm is developed to

methodologically ensure collision-free urban traffic by formally deriving constraints that

guarantee the absence of collisions. The provided solution, although interesting, results

to be conservative.

We can summarize the above state-of-art discussion as follows. Collision free-reference

tracking movements cannot be assured if the trajectory planner/formation control schemes

take into account only the kinematic unconstrained models of the vehicles. On the other

hand, to provide a complete control solution capable of ensuring vehicles’ constraints

fulfillment as well as the absence of collisions, then MPC schemes represent a natural

choice. Nevertheless, the resulting control approaches might be either conservative or

computationally demanding.

1.2 Thesis Contribution

In this thesis the ST-MPC control paradigm is used to solve a robust regulation problem

in smart grid and robust tracking problem with collision avoidance in multi unmanned

vehicle systems. The proposed control schemes are capable of ensuring the desired control

objectives while satisfying input/ state constraints regardless of admissible disturbance

realizations.

For the transient stability control problem, we have proposed a MPC controller [64]

which can robustly cope with model uncertainties and physical limitations. In a nutshell,

the proposed controller consists of two feedback actions: the first performs a partial feed-

back compensation of the nonlinear dynamical coupling among generators, while the sec-

ond exploits set-theoretic arguments to robustly achieve transient stability in spite of non

perfect decoupling, disturbances and physical limitations of the fast acting energy storage
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system. In what follows we have proved that the robust transient stability is guaranteed

and the worst-case time to transient stability is finite and a-priori known. Moreover, to

better highlight the capabilities of the proposed scheme, we have contrasted the proposed

solution with a competior scheme presented in [34] by means of a solid simulation example.

In the multi-vehicle application, we have extended the ST-MPC to deal with the ref-

erence tracking control problem for a system of heterogeneous MUVs moving in a shared

environment [65]. We have considered a scenario where each vehicle follows a trajectory

imposed by a local planner and where each UV can have different linear dynamics as well

as different constraints and disturbances. In this contest, we have designed a novel control

architecture where a centralized traffic manager, in conjunction with ad-hoc designed local

vehicle controllers, is capable of ensuring the absence of collisions. The proposed solution

has been obtained by exploiting, for the local vehicles’ controllers, a dual-mode MPC and,

for the traffic manager, the set-theoretic and controllability properties. Moreover, after

modeling the potential vehicle collisions with a graph, connectivity arguments have been

used to obtain an optimal collision avoidance resolution which minimizes the number of

vehicles that need to be stopped. We have proved that, regardless of the local reference

signals, the resulting control scheme ensures collision-free signal tracking. Simulation re-

sults, conducted on a system of five vehicles, have been shown to provide tangible evidence

of the features of the proposed framework.

It is worth mentioning that in both examples, the controllers are capable of reducing

the computational burden of the typical MPC schemes since most of the required compu-

tations are moved into an offline phase leaving into the online phase a simple and real-time

affordable optimization problem.

1.3 Thesis Layout

The manuscript is organized as follows:
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� Chapter 2: First, the main concepts and definitions used along the thesis are defined.

Then, the basic ST-MPC control paradigm is summarized.

� Chapter 3: A Set-Theoretic Model Predictive Control Approach for Transient Sta-

bility in Smart Grid is presented.

� Chapter 4: A Guaranteed Collision Free Reference Tracking in Constrained Multi

Vehicle Systems is designed.

� Chapter 5: The conclusions as well as the possible directions for future work are

presented.

1.4 Publications

� Maryam Bagherzadeh, Shima Savehshemshaki and Walter Lucia. “Guaranteed

Collision-Free Reference Tracking in Constrained Multi Unmanned Vehicle Sys-

tems”, Under review for Automatica journal.

� [66] Maryam Bagherzadeh and Walter Lucia. “A Model Predictive Set-Theoretic

Control Approach for Transient Stability in Smart Grid”, 2019 IET Control Theory

and Applications journal.

� [65] Maryam Bagherzadeh and Walter Lucia. “Multi-Vehicle Reference Tracking

with Guaranteed Collision Avoidance” 2019 IEEE European Control Conference

(ECC).

� [64] Lucia Walter, Kian Gheitasi, and Maryam Bagherzadeh. “A Low Com-

putationally Demanding Model Predictive Control Strategy for Robust Transient

Stability in Smart Grid” 2018 IEEE Conference on Decision and Control (CDC).
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Chapter 2

Background on Set-Theoretic MPC

The intent of this chapter is to provide the necessary background material for the under-

standing of the rest of the manuscript. In particular, the basic ingredients (one-step con-

trollable sets, positively invariant region, etc.) needed to design a dual-mode set-theoretic

MPC controller are revised. Then, the off-line and online phases of the set-theoretic MPC

are summarized and the main properties of set-theoretic control paradigm are highlighted.

Finally, the chapter ends summarizing the computational algorithm.

2.1 Preliminaries and Definitions

We consider systems described by the discrete-time linear time-invariant (LTI) represen-

tation

x(t+ 1) = Ax(t) +Bu(t) + d(t) (1)

subject to input and state constraints:

u(t) ∈ U , x(t) ∈ X , ∀t ≥ 0, (2)
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with additive bounded exogenous disturbances:

d(t) ∈ D ⊂ IRd, 0d ∈ D (3)

where t ∈ ZZ+ := {0, 1, ...} is the sampling time instants, u ∈ IRm the control input, x ∈ IRn

the state space vector, and A and B are matrices of suitable dimensions characterizing

the system’s dynamical behavior. Moreover, U ⊆ IRm and X ⊆ IRn are compact subsets

with 0m ∈ U and 0n ∈ X , respectively. It is worth noticing that sets U , X and D are

polyhedra.

Definition 1. (RCI) A set T ⊆ X is said robust control Invariant set for the linear

constrained system (1)-(3) if

∀x ∈ T → ∃u ∈ U s.t. Ax+Bu+ d ∈ T , ∀d ∈ D, ∀t ∈ ZZ+ (4)

Definition 2. For the linear constrained system (1) under disturbance realization (3) the

robust one-step controllable set to the set T is defined as:

Pre(T ) = {x ∈ IRn : ∃u ∈ U s.t. Ax(t) +Bu+ d(t) ∈ T , ∀d ∈ D} (5)

Pre(T ) is the set of states which evolve into the target set T in one time step regardless

of admissible disturbances.

Definition 3. For a given target set T ⊆ X , the N-step controllable set (T N) of the

system (1) subject to the constraints (2) is defined recursively as:

T l = Pre(T l−1) ∩ X , T 0 = T , l = {1, 2, .., N} (6)

Based on Definition.3, the set T 0, defines all the initial conditions, x(0), that can

be steered in at most N steps within T 0 by applying a suitable control sequence, while

satisfying input and state constraints.

12



Definition 4. Given two sets P ⊆ IRn and Q ⊆ IRn, the Pontryagin/ Minkowski Set

Difference P ∼ Q and Set Sum P ⊕Q are defined as

P ∼ Q := {x ∈ IRn : x+ q ∈ P , ∀q ∈ Q}

P ⊕Q := {p+ q | p ∈ P , q ∈ Q}
(7)

Definition 5. [24] (Uniformly Ultimately Bounded) Let Q ⊂ IRn be a neighborhood

region of the origin. The closed-loop trajectory of (1), is said to be Uniformly Ultimately

Bounded (UUB) in Q if for all µ > 0, there exists T (µ) > 0 such that ∀‖x(0)‖ ≤ µ →

x(t) ∈ Q ∀di(t) ∈ Di and ∀ t ≥ T (µ).

2.2 Set-Theoretic Model Predictive Control (ST-MPC)

Given an equilibrium pair (xeq, ueq) for the disturbance-free plant (1), we design a dual-

mode robust MPC controller which is capable of stabilizing the state trajectory x(t) in a

neighborhood of xeq regardless of disturbances (3) and constraints (2). The off-line and

online steps needed to design the controller are summarized.

In the off-line phase the following 3 steps must be performed:

Off-line:

Step 1: Considering the unconstrained disturbance-free model of (1), we design a

stabilizing state-feedback control law,

u(t) := K(x− xeq) + ueq (8)

to asymptotically steer the plant state trajectory to the equilibrium xeq [67]. Such

a controller is hereafter referred as the terminal controller.

Step 2: The smallest RCI region, namely T 0, associated to the terminal controller

13



Figure 2.2.1: N-step controllable family set

is computed as proposed in [68] under the requirement:

T 0 ⊆ X , u(t) ∈ U , ∀t. (9)

The region T 0 is hereafter referred as the terminal region (see the green region in

Fig. 2.2.1).

Step 3: The controller computed in Steps 1-2 might have a very small domain. To

ensure that any initial state x(0) belongs to the controller admissible region, we

can enlarge the domain by computing a family of robust one-step controllable sets,

namely {T l}Nl=0, N ≥ 1, by applying the following recursive definition [24]:

T l := {x ∈ X : ∃u ∈ U : ∀d∈D, Ax+Bu+ d∈T l−1}

= {x ∈ X : ∃u ∈ U : Ax+Bu ∈ T̃ l−1}
(10)

where T̃ l−1 := T l−1 ∼ D and N is the number of computed sets. The set union
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⋃N
l=0{T l} defines the final controller domain of attraction, namely DoA. Fig. 2.2.1

shows e.g. the family of one-step controllable sets built for a LTI system with two

states where
⋃N
l=0{T l} presents the DoA of the controller.

In the online phase, the off-line built family of one-step controllable set, is exploited

to compute the control action u to minimize the desired cost function J(x(t), u). In

particular,

Online:

Step 1: Find the smallest set index l(t) containing x(t), i.e.

l(t) := min{l ≤ N : x(t) ∈ T l}

Step 2: If l(t) = 0 i.e. x(t) ∈ T 0, apply the control action given by terminal

controller (8), otherwise apply the control input obtained from the solution of the

following optimization problem:

u(t) = arg min
u
J(x(t), u) s.t.

Ax(t) +Bu ∈ T̃ l(t)−1

(11)

It is worth mentioning that for varied control problems J(x(t), u) can be chosen to

minimize different performance indices such as (i) time to converge to the equilibrium

point or (ii) control effort. In particular, if fast convergence is of interest then J(x(t), u) =

||Ax(t) +Bu||22, if control effort is preferred then J(x(t), u) = ||u||22. If both objectives (i)-

(ii) are of interest then any convex combination of the above can be considered.

2.2.1 Properties

It is possible to prove that the described set-theoretic control paradigm enjoys the following

properties:
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� For all x0 in the family of one-step controllable sets
⋃N
l=0{T l}, the plant’s state

vector evolution, x(t), converges to the terminal region T 0 in maximum N steps.

� The trajectory is Uniformly Ultimately Bounded (UUB) in T 0 regardless of any

disturbance realization d(t).

� In the absence of disturbance the equilibrium xeq will be asymptotically reached in

virtue of the stabilizing nature of the control laws associated to the terminal region.

2.3 ST-MPC Computation Algorithms

The above developments are collected into the following computational algorithm.

Set-Theoretic MPC (ST-MPC)

———— off-line phase ————

Output:
⋃N
l=0 T l

1: Compute an RCI region T 0 and the associated control function see (8).

2: Compute a family of N robust one-step controllable sets according to the recursion

(10).

3: Store {T l}Nl=0

———— online phase ————

Input: {T l}Nl=0, x(0) ∈
⋃N
l=0 T l

Output: u(t)

1: Find the smallest set index l(t) containing x(t), i.e.

l(t) := min
l∈{0,...,N}

l s.t. x(t) ∈ T l

16



2: if l(t) = 0 then . We are in RCI.

Compute u(t) := K(x− xeq).

3: else Solve the convex optimization problem

u(t) = arg min
u
J(x(t), u) s.t. (12)

Ax(t) +Bu ∈ T̃ l(t)−1, u ∈ U (13)

4: end if

5: Apply to (1) the control action u(t).

6: t← t+ 1 goto Step 1

17



Chapter 3

A Set-Theoretic Model Predictive

Control Approach for Transient

Stability in Smart Grid

In this chapter, an ST-MPC based control technique is designed to address the transient

stability control problem in Smart Grid systems. The proposed MPC controller is capa-

ble of robustly recovering the effect of physical/ cyber state perturbation of the linear

constrained system.

This work is published in IET Control Theory and Applications journal and is partially

published in the IEEE Conference on Decision and Control (CDC), 2018 [64], [66].

3.1 Problem Formulation

We consider a smart grid consisting of L agents [69] organized as in Fig. 3.1.1. Each agent

has four main components:

� A Generator;

� A Phasor Measurement Unit (PMU) that measures generator rotor angle and its

18
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Figure 3.1.1: New England 10 generator 39 bus power system

angular speed;

� A Controller which receives PMU data and computes control signal that applies to

the generator;

� A Fast-acting energy storage which injects/absorbs real power according to the de-

sired control action (e.g. battery storage devices or flywheels).

Within the entire grid, we assume that communication channels exist to allow local and

remote exchange of data among PMUs and controllers. By resorting to the Kron reduction,

the rotor dynamics of the i − th synchronous generator can be represented by means of

the following nonlinear continuous-time state space representation [70,71] centered around

the nominal electrical frequency ω0:

δ̇i(t) = ωi(t)

ω̇i(t) = ω0

2Hi
[−Di

ω0
ωi + P a

i (t) + ui(t)]
(14)
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with δi(t) the rotor angle, ωi(t) = (ωacti − ω0) the angular speed deviation of the angular

rotor speed ωacti w.r.t. the nominal speed ω0, Hi the generator inertia, Di the damping

coefficient, and ui(t) the control input provided by an external power source. Moreover,

P a
i = Pm

i − P e
i (15)

is defined as the difference between the mechanical Pm
i and electrical P e

i power of the

generator i, and P e
i is computed as

P e
i =

N∑
k=1

|Ei||Ek|Gik[cos(δi − δk) +Bik sin(δi − δk)] (16)

where Gik and Bik are the transfer conductance and susceptance between generators i and

k. Furthermore, Ei is the internal voltage of the generator i which is obtained from the

solution of the differential equation

Ėi = − 1

Ti
[Ei + (Xdi −X ′di)idi − Efi] (17)

where Xdi is the direct-axis reactance of the generator, X ′di is the direct-axis transient reac-

tance of the generator and Ti is the open circuit transient time constants. To ensure phase

cohesiveness, each generator needs to work around a nominal equilibrium configuration,

namely xeqi = [δ∗i , 0]T , which satisfies the following requirement

|δ∗i − δ∗j | ≤ 100, ∀ (i, j), s.t. i 6= j.

In addition, the power system is considered transiently stable when starting from a post-

fault initial state xi(0), the state of the i-th generator converges to the equilibrium point

xeqi [72], [73]. By considering disturbances and model uncertainties, transient stability is

considered achieved when for each i-th generator, the state variable ωi becomes confined

withing a polytope Ξts
i shaping an admissible error region around the desired equilibrium
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0

Figure 3.1.2: Generator i :Transient Stability Region.

[36] (see the light blue rectangular region in Fig. 3.1.2). The transient stability region is

modeled as follows

Ξts
i := {ωi ∈ IR : |ωi| ≤ εω%} (18)

where εω > 0 is the tolerance level.

In order to model the dynamics of the generators properly, we need to take into account ex-

isting physical limitations on the external power source, modeling errors and disturbances.

In particular, the following are defined:

� Maximum deliverable power P̄ s
i <∞ on ui(k) :

|ui(k)| < P̄ s
i , ∀ k (19)

� Measurement errors on the state variables δi and ωi and imperfect dynamical cou-

pling on P a
i : δi(k)

ωi(k)

 =

δ∗i (k)

ω∗i (k)

 + dmi (k)

P a
i = P a∗

i (k) + ePa
i
(k)

(20)
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where δ∗i (t), ω
∗
i (t) and P a∗

i are the actual values and

dmi (k) :=

eδi(k)

eωi
(k)

 ∈ Dmi , ∀ k, and ePa
i
(k) ∈ DPa

i ,∀ k (21)

defines the measurement error vectors constrained within the bounded polyhedral

set Dmi ⊆ IR2, 02 ∈ Dmi and DPa
i ⊆ IR, 01 ∈ DPa

i , characterizing the component-wise

bounds

|eδi(k)| ≤ ēδi , |eωi
(k)| ≤ ēωi

, |ePa
i
(k)| ≤ ēPa

i
, ∀ k (22)

� Dynamical model (14) errors:

 δ̇i(k)

ω̇i(k)

 =

 δ̇∗i (k)

ω̇∗i (k)

 + dpi (k) (23)

where δ̇∗i (t) and ω̇∗i (t) describe the ideal dynamical model and

dpi (k) ∈ Dpi , ∀ k (24)

with 02 ∈ Dpi ⊂ IR2 a bounded polyhedral disturbance set.

Without loss of generality, we discretize the agents model (14) and we describe the

i− th agent dynamics (14)-(22) with the following uncertain discrete-time representation:

xi(k + 1) =Aixi(k)+Bi(ui(k)+P a∗
i (k))+Gpd

p
i (k)

yi(k) = xi(k) + dmi (k)
(25)

subject to the input constraint

|ui(k)| ≤ P̄ s
i (26)

and disturbances

dpi (k) ∈ Dpi , dmi (k) ∈ Dmi , ePa
i
(k) ∈ DPa

i (27)
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where xi(k) = [δi, ωi]
T is the state vector and y(k) = [δi, ωi]

T the measurement vector. In

addition,

Ai = eAiTs , Bi = (
∫ Ts

0
eAi(Ts−τ)dτ)Bi, and Gp = TsI2 (28)

and Ts is the sampling time.

Remark 1. It is worth mentioning that, due to the digital nature of PMU, sensors mea-

surements need to be sampled prior to communication. Hence, the Partial Feedback Lin-

earization (PFL) controller receives further frequent updates on the generator states xi(t)

as the value of Ts is decreased. In order to take into account the effect of the value of Ts,

the control action ui is implemented in a step-wise manner. In particular, it is possible

to assume it as a function of δ(nTs) and ω(nTs) for the time interval t = [nTs, (n+ 1)Ts]

when n ∈ N+ = {1, 2, ...} [34]. Nevertheless, any discretization model is accepted and is

practical while considering appropriate sampling time that matches the selected method.

In this chapter, the discrete model is obtained using Zero Order Hold (ZOH) method.

The control problem addressed in this chapter can be formally stated as follows:

Robust Transient Stability in Smart Grid: Given the Smart Grid architecture

shown in Fig. 3.1.1, the constrained uncertain generators’ model (25)-(27), the post-fault

initial state xi(0), the desired equilibrium configurations xeqi = [δ∗i , 0]T , and the transient

stability admissible regions Ξts
i . Design a distributed state feedback control law

ui(k) := ηi(yi(k), xeqi ), ∀i (29)

capable of achieving the following objective:

� (O1)-Robust and Predictable Transient Stability: In a finite number of steps,

ts < ∞, each generator i must be robustly confined withing the transient stability

region Ξts
i regardless of any admissible disturbance realization (27) while preserving

the constraints (26). Moreover, in the absence of disturbances, asymptotic stability

of the equilibrium state xeqi must be ensured.
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3.2 Proposed Controller

Traditionally, in Smart Grid systems, synchronous generators are controlled by resorting

to the governor control paradigm [74] to ensure that undesired state perturbations (e.g.

the effect of an impulsive state disturbance) will be rejected. However, the resulting closed-

loop system usually exhibits a slow stabilization settling time and, as a consequence, it

cannot efficiently deal with large perturbations [34].

In this chapter, we propose a novel distributed MPC-based controller capable of en-

suring robust and fast transient stability in spite of model uncertainties and disturbances.

The proposed control action is given by the sum of two contributions, i.e.

ui(k) := ufi (k) + uci(k) (30)

where:

� ufi (k) performs a partial feedback compensation of the dynamical coupling term P a∗
i

among the agents;

� uci(k) ensures robust post-fault transient stability in spite of non perfect cancellation

of the coupling term, disturbances and measurement noise, see (20)-(23).

In what follows, for feasibility reasons, we assume that the fast-acting generators can

provide a power P̄ s
i greater than P̄ a

i , i.e.

P̄ s
i >:= P̄ a

i , P̄ a
i := max |P a

i | (31)

The latter is instrumental for ensuring that the control action ui(k) is sufficiently strong

to contrast the coupling effect between generators.

In the next sections, first the control actions ufi (k) and uci(k) will be justified and

designed, and then the complete computational control algorithm is summarized.
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3.2.1 Controller for Partial Coupling Compensation (ufi )

In smart grid systems we can take advantage of the existing communication infrastructure

(Fig. 3.1.1) and phasor measurement units (PMUs) to partially compensate the coupling

terms P a∗
i so rendering the closed-loop dynamical model (25) decoupled [34]. This strategy

recalls the well-known feedback linearization technique [75] which, over the last three

decades, has been widely used for excitation control in smart grid applications, see e.g.

[71,76–78] and references therein.

We design the control action ufi (k) as:

ufi (k) = −P a
i (32)

where P a∗
i is the best available estimation of P a

i , see (20). As a consequence, ufi (k)

performs a partial imperfect cancellation of the coupling term between generators. By

substituting ufi (k) into (25) we obtain an uncertain dynamical model where the effect of

the coupling term consists of the measurement error ePa
i
(k), i.e.

xi(k + 1) = Aixi(k) +Biu
c
i(k) +BiePa

i
(k) +Gpd

p
i (k) (33)

where

|uci(k)| ≤ Ū ci (34)

and Ū ci := P̄ s
i − P̄ a

i .

3.2.2 Set-theoretic controller for Robust Transient Stability (uci)

The objective of the control action uci can be stated as follows: given the constrained and

uncertain generator model (33)-(34), design a state-feedback control action uci(k) capable

of achieving transient stability (O1) in spite of imperfect coupling cancellation (32) and

disturbance realizations (27).
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Figure 3.2.1: Transient stability region Ξts
i (blue rectangular region), RCI terminal region

T 0
i (purple polyhedron), Family of robust one-step controllable sets {T ji }Nj=1 (blue poly-

hedra). Moreover, xi(0) is the initial perturbation and the black arrows show the state
trajectory obtained from the proposed controller.

We here propose a robust controller which is based on the low computationally com-

plex set-theoretic MPC control scheme [25], [26]. In particular, the proposed controller is

a dual-mode set-theoretic controller [25] which consists of: (i) a terminal robust control

invariant (RCI) region (see Definition 1) and (ii) a family of robust one-step control-

lable sets (see Definition 2). Please refer to Fig. 3.2.1 for a graphical illustration of the

RCI region (purple polyhedron) and one-step controllable sets (family of blue polyhedron).

(i)-Robust Control Invariant Region. We would like to recall that transient stability is

achieved when the state trajectory is confined within Ξts
i , i.e.

x(k) ∈ Ξts
i , ∀t ≥ t̄, k̄ ≤ ∞ (35)

Therefore, it would be desirable to have a control action uci(k) for (33)-(34) capable of
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confining the generator state trajectory within an RCI region contained in (18) regard-

less of any admissible disturbance (27) realization, see e.g. the region T 0
i in Fig. 3.2.1.

The latter can be achieved by first designing a state feedback stabilizing control law

uci(k) = g(xi(k), xeqi ) on the disturbance-free dynamical model (33) and then computing

the associated minimal RCI region as proposed in [39] under the requirement

T 0
i ⊆ Ξts

i , uc(k) ∈ Ū ci (36)

Therefore, by construction, for any xi(0) ∈ T 0
i , the controller uci(k) = g(xi(k), xeqi ) fulfills

the objective (O1).

Remark 2. A simple way to design the state-feedback controller uci(k) = g(xi(k), xeqi ) is

by resorting to the well-known Linear Quadratic Regulator (LQR):

uci(k) = Ki(xi(k)− xeqi ) + ueqi (37)

where Ki ∈ IRm×n is the LQR gain and the pair (ueqi , x
eq
i ) represents the desired equilibrium

configuration.

Remark 3. It is worth noticing that the designed controller has a limited domain of attrac-

tion (DoA). Therefore, we need to enlarge its operation region in order to deal with severe

transient stability perturbations xi(0) /∈ T 0
i . In what follows, we increase the controller

DoA by resorting to robust one-step controllable sets. 2

(ii)-Family of Robust One-Step Controllable Sets

By exploiting the concept of one-step robust controllable sets (see Definition 2), we

can enlarge the RCI region T 0
i by means of a family {T ji }Nj=1 of N < ∞ robust one-step

controllable sets computed recursively applying the following definition (see Fig. 3.2.1):

T ji := {yi ∈ IRn : ∃u ∈ Ū ci s.t. Aiyi +Biu
i
c +BiePa

i
+Gpd

p
i ∈ T

j−1
i ,

∀ ePa
i
∈ DPa

i , d
a
i ∈ Dai }

(38)
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It is important to underline that the use of the measurement vector y(k) (instead of xi(t))

is instrumental to take care of unavoidable sensor measurement errors (20), i.e.

T ji := {xi ∈ IRn : ∃u ∈ Ū ci s.t. Ai(xi + dmi ) +Biu
i
c +BiePa

i
+Gpd

p
i ∈ T

j−1
i ,

∀ ePa
i
∈ DPa

i , d
a
i ∈ Dai , dmi ∈ Dmi }

(39)

By taking advantage of the Pontragin/Minkowski difference and sum operators we can

remove the worst case realization of the uncertainties from T j−1
i and obtain

T ji ={x ∈ IRn :∃uci ∈ Ū ci s.t. Aixi +Biu
i
c ∈ T̃

j−1
i } (40)

where T̃ j−1
i := T j−1

i ∼ (GpDpi ⊕BiDPa
i ⊕ AiDmi ).

Remark 4. In the literature, different algorithms [24] and toolboxes [79] have been devel-

oped to numerically compute exact [80] or approximated [81] robust one-step controllable

sets (40). 2

Given a family of robust one-step controllable sets, the following result holds true:

Proposition 1. The set union
N⋃
j=0

T ji (41)

defines an RCI region for (33)-(34) regardless of any admissible disturbance realization.

Proof. Let us consider an initial post-fault state xi ∈ IRn such that xi ∈
⋃N
j=0 T

j
i . Then,

there exists j̄ ≤ N such that xi ∈ T j̄i . Moreover, according to (40) there exists an admis-

sible command input uci ∈ Ū ci capable of steering the predicted one-step system evolution,

namely x+
i , within the successor set T̃ j̄−1

i . As a consequence, the following logical impli-

cation, by construction, holds true:

x+
i ∈ T̃

j̄−1
i =⇒ xi(t+ 1) ∈ T j̄−1

i , ∀ ePa
i
∈ DPa

i , dai ∈ Dai , dmi ∈ Dmi (42)
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According to Definition 1, this is sufficient to guarantee that
⋃N
j=0 T

j
i is an RCI region for

(33)-(34).

Finally, at each time instant k, the control law associated to the RCI region (41) is

obtained from the solution of the following convex optimization problem:

uci = arg min
u
J(yi(k), u) s.t. (43)

Aiyi(k) +Biu ∈ T̃ j̄−1
i , u ∈ Ū ci (44)

where J(yi(k), u) is a convex cost function.

Remark 5. For transient stability purposes, J(yi(k), u) can be chosen to minimize dif-

ferent performance indices such as (i) the time to achieve transiant stability or (ii) the

control effort. In particular, if fast transient stability is of interest then J(yi(k), u) =

||Ay(k)i + Bu||22, if the control effort is preferred then J(yi(k), u) = ||u||22. If both indices

(i)-(ii) are of interest then any convex combination of the above can be considered, e.g.

J(yi(k), u) = α||Ayi(k) + Bu||22 + β||u||22, with α + β = 1, α > 0, β > 0. It is important

to notice that, regardless of the chosen performance index J(yi(k), u), condition (42) is

always fulfilled.

3.2.3 Computational Algorithm and Controller Properties

In this section, first all the above developments are collected into a computational algo-

rithm, then the controller effectiveness and properties are stated.

Generator i, Set-Theoretic MPC (ST-MPC)

————— off-line phase —————

Output:
⋃N
j=0 T

j
i
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1: Compute an RCI region T 0
i satisfying (36) and the associated control function uci(k) =

g(xi(k), xeqi ), see (58).

2: Compute a family of N robust one-step controllable sets according to the recursion

(40), see Remark 4.

3: Store

{T ji }Nj=0

————— online phase —————

Input: {T ji }Nj=0, yi(0) ∈
⋃N
j=0 T

j
i

Output: ui(k)

1: Compute ufi (k) according to (32)

2: Find the smallest set index j(k) containing yi(k), i.e.

j(k) := min
j∈{0,...,N}

j s.t. yi(k) ∈ T ji

3: if j(k) = 0 then . terminal region

4: Compute uci(k) = Ki(yi(k)− xeqi ) + ueqi

5: else Solve the convex optimization problem

uci(k) = arg min
u
J(yi(k), u) s.t. (45)

Aiyi(k) +Biu ∈ T̃ j(k)−1
i , u ∈ Ū ci (46)

6: end if

7: Apply

ui(k) = ufi (k) + uci(k)

8: k ← k + 1 goto Step 1
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Proposition 2. Given the generator uncertain models (25)-(27), the families of one-

step controllable sets
⋃Ni

j=1{T
j
i },∀i, computed according to (40), and an initial generator

perturbation xi(0) ∈
⋃N
j=0 T

j
i , ∀i, then the ST-MPC algorithm achieves the objective

(O1). In particular:

� xi(k) ∈ Ξts
i , ∀k ≥ k̄ with k̄ ≤ N <∞;

� In the absence of disturbances (dmi ≡ 0, dpi ≡ 0, ePa
i
≡ 0), xeqi is an asymptotically

stable equilibrium point;

� The resulting online control algorithm requires the solution of simple and real-time

affordable convex quadratic programming problem under linear constraints.

Proof. First, it is important to notice that, by construction, the presence of the feedback

compensation term ufi assures that each generator locally behaves according to the model

(33)-(34). Therefore, Proposition 1 guarantees that the state trajectory of each generator

is, in the worst case, confined within the controller domain of attractions, i.e. xi(k) ∈⋃N
j=0 T

j
i , ∀ k. This ensures that we can always find a controllable set containing the current

state vector xi(k), see j(k) in Step 2 of the ST-MPC-online phase. As a consequence,

the optimization problem (45)-(46) always admits a solution and the index set j(k) must

exhibit, over time, a monotonically decreasing behavior which guarantees that the terminal

region T 0
i is reached in at most N < ∞ time steps irrespective of any admissible initial

perturbation x(0) and disturbance realization. Therefore, since T 0
i ∀ i are RCI regions

contained within the transient stability and phase cohesiveness regions Ξts
i , i.e. T 0

i ⊆

Ξts
i , ∀ i, we have that

∀ i =⇒ xi(k +N) ∈ Ξts
i , ∀ k ≥ 0

In the time domain, the above translates in the fact that the time to transient stability is

upper bounded by the worst case tworsts defined as

tworsts := NTs (47)
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Moreover, in the absence of disturbances, dmi ≡ 0, dpi ≡ 0, ePa
i
≡ 0 the equilibria

xeqi will be asymptotically reached in virtue of the stabilizing nature of the control laws

associated to the terminal region, see Step 4 of the ST-MPC-online phase.

Finally, it is worth to notice that most of the required computations have been moved

into the off-line phase of the ST-MPC, leaving into the online phase a simple and real-

time affordable control algorithm. Indeed, the main computational complexity of the

online phase is represented by the convex Quadratic Programming (QP) optimization

problem (45) over the linear constraints (46).

3.3 Simulation

In this section, the effectiveness of the proposed solution is shown. Furthermore, the

achieved control performance are compared, both in terms of robustness and time required

to achieve transient stability, with the solution in [34]. The New England 10-generator

39-bus smart grid shown in Fig.3.1.1 has been used as the test-bed system. The system

has been emulated within the Matlab environment using the grid parameters in [69]. In

addition, the MPT3 toolbox [79] has been used to implement the ST-MPC algorithm.

Based on Remark.1, the stability time of the system generators increases if the value

of Ts increases. In the simulation examples it is shown that the proposed control strategy

is capable of stabilizing the generators within few seconds even when the sampling time

is selected as large as 0.2 sec. Therefore, the dynamical model of each generator has

been discretized using a sampling time of Ts = 0.2 sec . According to the system model

description (25).

Ai =

 1 0.200

0 0.997

 , Bi =

 0.0075

0.0755


We assume that the available fast action storage system imposes the following con-

straint on the maximum available power uci :
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|uci | ≤ 6 p.u. (48)

Hereafter, for sake of simplicity and to better understand the properties of the pro-

posed controller, only the performance of a single generator, namely i, is shown. By

considering the generator model centered around the equilibrium configuration xeqi , the

transient stability problem reduces to a simple regulation to zero. According to the robust

one-step controllable set definition (40), we can define different levels of uncertainties by

considering their cumulative effect d(k) given by the following Minkowski set sum:

d(t) ∈ D ⊆ IR2, with D := GpDpi ⊕BiDPa
i ⊕ AiDmi

The following bounds are considered on the disturbance level d(t)

|d1(t)| ≤ 0.50 |d2(t)| ≤ 0.60, ∀ t

The transient stability region is chosen to be

Ξts
i := {ω ∈ IR : |ωi| ≤ 0.8},

which correspond to a normalized rotor speed within the range of 0.2%.

We have performed an intensive simulation campaign to contrast the controller in

[34] with the proposed ST-MPC for different initial perturbation xi(0) and different

disturbance realizations. However, to better underline the modus operandi of the proposed

solution, the simulation results for a single generator are depicted .

According to the ST-MPC off-line phase, first an RCI region (T 0
i ) has been computed

exploiting the algorithm developed in [68], then a family of one-step controllable set has
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been obtained to cover the region of admissible initial perturbations.

DoA :=
219⋃
j=0

{T ji }

Please refer to Fig. 3.3.3 for a graphical representation of the controller’s DoA.

The proposed ST-MPC controller is contrasted with the solution in [34] for which the

following design parameters have been chosen

αi = 2.5, βi = 0.8

and a saturation effect, capable of imposing the actuator constraint (48), has been added.

The two strategies are compared in Figs. 3.3.1-3.3.4 both in terms of time to transient

stability and robustness. In Fig. 3.3.1, a comparison based on a single run is shown. In

particular, we consider an initial perturbation equal to xi(0) = [−50, 15]T ∈ T 92
i , on the

i− th generator where the rotor angle δi, if expressed in the range [−π, +π], corresponds

to −5π/36 rad. The resulting generator state trajectories are depicted in Fig. 3.3.1. It is

possible to appreciate that the ST-MPC controller is capable of steering the state trajec-

tories within the transient stability region Ξts
i ⊃ T 0

i in 6.3 sec while the control strategy

proposed in [34] requires 12.8 sec . The main advantage of the ST-MPC controller be-

come clearer in Fig. 3.3.2 where also the control signal uci(t) in shown. In particular, it

is possible to notice that the proposed controller is capable of better using the constraint

on the maximum deliverable power (48). This is testified by the fact that control com-

mands in ST-MPC saturate at an earlier stage w.r.t the ones of [34]. This experimental

result confirms that, differently from [34], the ST-MPC controller has been conceived to

explicitly and optimally take care of the generator constraints and disturbances.

In Table 3.3.1, we compare the two strategies according to the following performance

indices:

� Worst case transient stability time tworsts . In each run, the transient stability time ts
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is defined as:

ts := min
t∈ZZ+

t s.t. x(t) ∈ Ξts
i ∀ t ≥ tworsts

� Worst case average transient stability error eworsts . In each run, the average transient

stability error es is defined as:

es :=

∑Np

k=0 |(xi(k)− xeqi )|
NP

where Np = 800 is the number of steps used in the simulation.

In particular, we have considered 500 runs with random disturbance realizations and

initial conditions. The numerical results in Table 3.3.1 show that the proposed controller

is capable of achieving transient stability with a time and an error that are, in the worst

case, roughly half of the one obtained by [34]. Moreover, for ST-MPC, the worst case

time t̄worsts = 29.2 sec, validate the theoretical bound defined in (47), i.e. tworsts = Ts∗219 =

43.8 sec .

Finally, in Figs. 3.3.3 and 3.3.4 the results are shown for 10 selected initial perturbations

lying on the border of the controller domain of attraction (see Fig. 3.3.3).

Fig. 3.3.3 shows the generator state trajectories obtained for ST-MPC while Fig. 3.3.4

contrast ST-MPC with [34] showing the worst case time to transient stability. Moreover,

in Fig. 3.3.4 it is possible to appreciate that using the algorithm in [34], trajectory over-

shoots are possible for some initial conditions. On the other hand, the ST-MPC controller

avoid this undesired phenomena by design. This last consideration justifies why the time

to transient stability are notably reduced with the ST-MPC controller.

3.4 Conclusion

In this chapter, we have proposed a novel set-theoretic MPC controller that can optimally

and robustly deal with the transient stability control problem in Smart Grid. We have
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Figure 3.3.3: ST-MPC Domain of Attraction (DoA) and i− th generator state trajectories
xi(t) for 10 different initial perturbations on the border of the DoA.

formally proved that a worst-case bound on the recovery time exists and it can be guaran-

teed using the proposed ST-MPC controller. Finally, by means of simulation experiment,

we have shown that the proposed controller can achieve better performance with respect

to a recent competitor scheme. As future work, the authors would like to extend the

proposed scheme to deal with more severe cyber-attack scenarios that might affect in a

more persistent way the communication channels.

Worst Case ST-MPC [34]

Transient stability time tworsts [sec] 29.2 51.5

Transient stability avg. error es 146.9 338.8

Table 3.3.1: Worst case time to transient stability (tworsts ) and error for 500 simulation
runs involving different initial conditions xi(0) ∈ DoA and disturbance d(t) realizations.
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Chapter 4

Guaranteed Collision Free Reference

Tracking in Constrained Multi

Vehicle Systems

In this chapter, the ST-MPC based controller is extended to deal with the reference track-

ing with collision avoidance control problem for a system of heterogeneous Multi Un-

manned Vehicles (MUVs) moving in a shared environment [65]. The vehicles are required

to follow a trajectory imposed by a local planner and each UV can have different linear

dynamics as well as different constraints and disturbances.

This work is currently under review in the Automatica journal and is partially pub-

lished as a conference paper in the IEEE European Control Conference CC, 2019 [65].

4.1 Preliminaries and definitions

Definition 6. (Absence of Collisions) Let’s consider a pair (i, j) of UVs. In what

follows, we assume absence of collisions between the vehicles i and j if

||pi(t)− pj(t)||2 > 0, ∀t ∈ ZZ+ (49)
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Definition 7. [82] (Graph) An undirected graph is an ordered pair G = (V , E) where

V is the vertex (or node) set and E is edge set which is defined as a finite subset of all

admissible unordered pairs in V , i.e. E ⊂ {euv := {u, v} : u, v ∈ V}.

Definition 8. [82] (Adjacency Matrix) Given an undirected graph G = (V , E), the

adjacency matrix A[G] is a squared symmetric matrix such that

A[G]ij =

 1 if euv ∈ E

0 otherwise
(50)

Definition 9. [82] (Degree Matrix) Given an undirected graph G, the adjacency degree

of each vertex vi ∈ V , namely d(vi), is given by the number of vertices vj ∈ V connected to

vi with an edge, i.e. (vi, vj) ∈ E . The degree matrix ∆[G] is defined as the diagonal matrix

containing the adjacency degrees for all the vertices, i.e.

∆[G] =



d(v1) 0 · · · 0

0 d(v2) · · · 0

...
...

. . .
...

0 · · · 0 d(vn)


(51)

Definition 10. [82] (Completely Disconnected Graph ) A graph G is said completely

disconnected when each element in the degree matrix ∆[G] is zero.

4.2 Problem Formulation

In this section, first, the considered scenario and assumptions are explained, then the

problem formulation is stated.

Considered Scenario: We suppose a set I := {1, 2, . . . , S} of S heterogeneous unnamed

vehicles moving in a two-dimensional planar environment of coordinates pi = [pxi , p
y
i ]
T and

described by the class of constrained discrete-time linear time-invariant (LTI) systems
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with additive bounded exogenous disturbances. Each i − th UV must follow a reference

trajectory, namely ri ∈ IR2, provided by a high-level reference generator.

Assumption 1. We assume that the dynamical model of each i − th UV is described by

(1)-(2) indexed by i. Where xi = [pTi , z
T
i ]T ∈ IRni is the state space vector with zi ∈ IRni−2

the vector of non-spatial state-space variables (e.g., vehicle velocities). Ai, Bi are matrices

of suitable dimensions characterizing the UVi dynamical behavior, Ci is a matrix which

selects the spatial components pi from the state-vector xi. However, UVs can have different

dynamical behaviors (Ai, Bi, Ci) and/or different constraints and disturbance levels (Xi,

Ui, Di). Ui ⊆ IRmi and Xi = IR2×Zi where Zi ⊆ IRni−2.

Assumption 2. We assume that the UVs reference generators modules are decoupled and

that the trajectory planning is done at a kinematic level without taking into account the

complete vehicles’ model, constraints, and disturbances. Moreover, the reference generators

provide the trajectories ri to the vehicles as a sequence of waypoints ri(ki) ∈ IR2 indexed

by ki ∈ ZZ+, see Fig 4.2.1. We assume there exists a maximum distance δi > 0 between

two successive points, i.e. ||ri(ki + 1)− ri(ki)||2 ≤ δi.

Assumption 3. We assume that there are no communications among vehicles, but each

vehicle is able to share information with a common centralized unit hereafter referred to

as the traffic manager.

Remark 6. In the sequel, we use the discrete index t to denote the discrete-time evolution

of the vehicles’ variable, e.g. xi(t), ui(t), and pi(t), while we use the index ki to denote

the ki − th waypoint ri(ki) generated by the reference generator.

The control problem addressed in this chapter can be stated as follows:

UVs Reference Tracking with Guaranteed Collision Avoidance : Given a set I

of S heterogeneous unnamed vehicles which models are described by (1)-(2):

� (O1) Design decentralized state-feedback controllers

ui(t) := fi(xi(t), ri(ki)) (52)
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Figure 4.2.1: Example of Reference Trajectories ri and rj for UVi and UVj.

fulfilling constraints (2) despite disturbance realizations (3) and able to sequentially

track the waypoints ri(ki), ∀ki, with a tracking error that, for each waypoint, is UUB

in a finite number of steps.

� (O2) Design a centralized traffic manger module capable of guaranteeing absence of

collisions among vehicles, i.e.

||pi(t)− pj(t)||2 > 0, ∀t ∈ ZZ+, ∀(i, j), i 6= j, i, j ∈ I (53)

regardless of the reference trajectories ri, i ∈ I

4.3 Proposed Solution

In this section, a solution to the control problems (O1)-(O2) is presented. The proposed

control architecture illustrated in Fig. 4.3.1 consists of:

� A set of S set-theoretic model predictive controllers (ST-MPC) which take care of

the tracking problem (O1);

� A centralized Traffic Manager (TM) that solves the collision avoidance problem

(O2).
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Figure 4.3.1: Proposed Control Architecture

4.3.1 Set-Theoretic MPC Tracking Controller

In this subsection, we provide a solution to the control objective (O1). Our approach is

based on the dual-mode set-theoretic MPC paradigm inspired by the works done in [25],

and [26]. The choice for such a scheme is mainly motivated by the willing to use an

MPC algorithm which is at the same time robust, computationally efficient, and real-time

affordable. Indeed, set-theoretic control is well-known for being able to move most of

the required computations into an offline phase leaving into the online phase a simple

computational algorithm, see [24].

The proposed tracking control strategy consists of two main actions: (i) regulation

towards the current waypoint ri(ki) and (ii) waypoint update ri(ki)→ ri(ki + 1).

(i) Regulation towards the current waypoint : Let’s first consider the i− th UV and

a waypoint ri(ki). In the absence of disturbances acting on (1), for any point ri(ki) ∈ IR2, we

can find the corresponding state and input equilibrium pair (xeqri(ki) = [rTi (ki), 0ni−2]T , ueqri(ki) =

0). A robust-state feedback controller stabilizing the vehicle state trajectory xi(t) in a

neighborhood of xeqri (ki) while taking care of disturbances (3) and constraints (2), can be
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built along the same line of the dual-mode controller proposed in [25]. The control policy

is built offline and then online exploited to compute at each sampling time the control

actions. The offline and online steps are here summarized:

Offline:

(Off-1) By considering the unconstrained disturbance-free model of (1), design a

stabilizing state-feedback control law,

ui(t) := f 0
i (xi(t), x

eq
ri(ki)

) (54)

to asymptotically bring the plant state trajectory to the equilibrium xeqri(ki). Such a

controller is hereafter referred to as the terminal controller.

(Off-2) The smallest RCI region, namely T 0
i (ri(ki)), associated to the terminal

controller is computed as proposed in [68] under the requirements T 0
i (ri(ki)) ⊆

Xi, ui(t) ∈ Ui,∀t. The region T 0
i is hereafter referred to either as the terminal

region or as the domain of attraction of the terminal controller, namely DoA0
i .

(Off-3) The controller computed in Steps 1-2 might have a very small domain. To

ensure that any initial state xi(t) belongs to the controller admissible region, the

DoAi must be enlarged. The latter is here achieved by computing a family of Ni

robust one-step controllable sets, namely {T li }
Ni
l=0, Ni ≥ 1, by applying the following

recursive definition [24]:

T li := {xi ∈ Xi :∃ui∈ Ui :∀di∈Di, Aixi +Biui + di∈T l−1
i }

= {xi ∈ Xi : ∃ui∈ Ui : Aixi +Biui ∈ T̃ l−1
i }

(55)

where T̃ l−1
i := T l−1

i ∼ Di and Ni is the number of computed sets. The set union⋃Ni

l=0{T li } defines the final controller domain of attraction, namely DoAi

Online:
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(On-1) Let xi(t) be the current vehicle i’s state space vector, find the smallest set

index li(t) containing xi(t), i.e.

li(t) := min{l : xi(t) ∈ T li (ri(ki))} (56)

(On-2) If li(t) = 0 (i.e. xi(t) ∈ T 0
i ) apply the control action given by terminal

controller (54), otherwise apply the control action give by the solution of the following

quadratic programming (QP) optimization problem:

ui(t) = arg min
ui∈Ui

||Aixi(k) +Biui − xeqri(ki)||
2
2 s.t.

Aixi(t) +Biui ∈ T̃ li(t)−1
i (ri(ki))

(57)

By construction, it can be straightforwardly proved that the above controller, is capable

of robustly steering, in a finite number of steps, the state trajectory in the terminal region

T 0
i , while fulfilling state and input constraints. Moreover, T 0

i is the RCI region where the

tracking error is UUB confined, and its size represents the maximum tracking error we can

commit while tracking the waypoints ri(ki). Further details and properties of set-theoretic

control can be found in [25]. In what follows, a remark is given to clarify, from a practical

point of view, how the steps (Off-1) and (Off-3) can be computed.

Remark 7. In step (Off-1), the only requirement for the state-feedback controller u0
i (t) :=

f 0
i (xi(t), x

eq
ri(ki)

) is to ensure asymptotic stability for the disturbance and constraint free

vehicle dynamical model (1). As a consequence, any existing state-feedback controller can

be employed. In the computation algorithm shown in Section 4.3.3, we have used a linear

state-feedback controller where the controller gain K0
i is the optimal gain given by the

Linear Quadratic Regulator (LQR):

ui(t) = K0
i (xi(t)− xeqri(ki)) (58)
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In step (Off-3), the robust one-step controllable sets (55) can be built using the capability

offered by the MPT Matlab toolbox [79]. Nevertheless, in the literature, different algorithms

exist to compute exact or approximated robust one-step controllable sets, see e.g. [24,80,81],

and references therein. 2

(ii) Waypoint update

Let’s consider ri(ki) as the current waypoint for the i − th UV and let’s assume that

the previously presented set-theoretic controller has terminal region and robust one-step

controllable sets centered in ri(ki), namely {T li (ri(ki))}Ni
l=0. We assume that it is possible

to switch to the next waypoint ri(ki+1) if and only if the terminal of the current waypoint

has been reached. This assumption is without loss of generality, and it is made only to

assure that the vehicle could track each waypoint with an error which is UUB bounded.

Let denote with t̄ ∈ ZZ+ the generic time instant when we want to switch to the

successive waypoint ri(ki + 1). In principle, for linearity, we can switch waypoint and

controller’s DoA by simply re-centering the terminal region T 0
i (ri(ki)) and the family of

robust one-step controllable sets around the new equilibrium point xeqri(ki+1) associated

to ri(ki + 1). Nevertheless, to guaranty that this operation is doable and preserves the

vehicles’ constraints (2), the following condition must be satisfied

xi(t̄) ∈
Ni⋃
l=0

T li (ri(ki + 1)), ∀xi(t̄) ∈ T 0
i (ri(ki)) (59)

Indeed, condition (59) ensures that any state inside the current terminal region belongs

to the DoAi of the shifted controller. Therefore, to assure waypoint switching feasibility

we need to investigate the minimum domain DoAi(ri(ki + 1) =
⋃Ni

l=0 T li (ri(ki + 1)) that

satisfies the condition (59).

Proposition 3. Let’s consider the i− th vehicle model (1)-(2), the maximum distance δi

between two successive waypoints ri(ki) and ri(ki+1), the terminal RCI regions T 0
i (ri(ki))

and T 0
i (ri(ki + 1)), and the switching time instant t̄ ∈ ZZ+ . A controller, with domain of
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Figure 4.3.2: Feasibility Condition for Waypoint Switches

attraction DoAi(ri(ki + 1)) guarantees condition (59) if the following set-inclusion holds

true:

DoAi(ri(ki + 1)) ⊇ Bδi(ri(ki + 1))⊕T 0
i (02) :=Wi (60)

Proof. First, to better clarify the proof, we shall refer to Fig. 4.3.2 where the considered

situation is illustrated. According to Assumption 2, the maximum distance between two

successive waypoints ri(ki) and ri(ki + 1) is bounded by the ball Bδi . Moreover, since

T 0
i (ri(ki)) is an RCI region, if xi(t) ∈ T 0

i (ri(ki)) then the state trajectory is confined

withing the terminal region ∀t̄ > t. As a consequence, DoAi(ri(ki + 1)) must cover the

state-space region shaped by Bδi , i.e. Bδi(ri(ki + 1)) plus T 0
i (02). Therefore, the condition

∀xi(t̄) ∈ T 0
i (ri(ki))→ xi(t̄) ∈ DoAi(ri(ki + 1)) is trivially satisfied if the DoAi(ri(ki + 1))

is bigger or equal of the subset Wi ⊂ IRn, defined as follows:

Wi := Bδi(ri(ki + 1))⊕T 0
i (02)
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From the above result, we can conclude that the dual-mode controller can be used for

tracking purpose as long as we can increase its DoAi to satisfy condition (60). The latter

can be simply achieved by using (60) as the stopping criteria for the recursion (55).

At this point, by collecting all the results in this section, we can claim that the derived

tracking controller satisfies the control objective (O1). Please notice that the final and

complete computational algorithm related to the tracking controller is provided in Section

4.3.3 where it is denoted as ST-MPC-i.

4.3.2 Traffic Manager (TM) and Collision Avoidance

In this subsection, the traffic manager logic and the collision avoidance strategy solving

the control objective (O2) are presented.

First, it is important to clarify which exchange of data is assumed between the local

vehicles’ controllers and the TM. This allows us to understand which information the TM

can leverage to avoid collisions.

Data exchange over time:

� At t = 0: each i−th vehicle transmits to TM the computed family of robust one-step

controllable sets centered in the first waypoint ri(0), {T li (ri(0))}Ni
l=0.

� At t ≥ 0 :

Each i− th vehicle sends to TM:

– The current set-membership index li(t) (see (On-1)).

– The waypoint r̄i, where r̄i = ri(ki + 1) (next waypoint) if the i− th UV is in a

terminal region, r̄i = ri(ki) (current waypoint), otherwise. Hereafter, we denote

with Isw(t) ⊆ I, the set of UVs making request to switch waypoint at time t.

TM sends to each i− th vehicle a binary variable which values are “Stop” or “Go”.

The next proposition states the fundamental set-theoretic condition under which a
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Figure 4.3.3: Possibility of collision between UVi and UVj. The possibility of collision is

represented by the non-empty intersection (yellow area) between
⋃li(t)−1
l=0 {T li (r̄i)} (purple

region) and
⋃lj(t)−1
l=0 {T lj (r̄j)} (pink region), see condition (61).

collision between two UVs might happen. Please refer to Fig. 4.3.3 for a graphical illus-

tration.

Proposition 4. Let’s consider two UVs, namely UVi and UVj modeled as (1)-(2). Let

{T li (r̄i)}Ni
l=0 and {T lj (r̄j)}

Nj

l=0 be the families of one-step controllable sets currently used by

the ST-MPC controllers to track the waypoints r̄i and r̄j, respectively. If li(t) and lj(t) are

the set-membership indices at t, then a necessary condition for the existence of collisions

at t+ 1 is:

Cr̄ir̄j(li(t), lj(t)) :=

max(li(t)−1,0)⋃
l=0

{T li (r̄i)}
⋂max(lj(t)−1,0)⋃

l=0

{T lj (r̄j)} 6= ∅ (61)

Proof. According to the ST-MPC online algorithm (see Steps (On-1 )-(On-2 )), the one-

step evolution of each vehicle is confined within a set which set-membership index is less

or equal to the current one. In particular, if UVi is currently outside of the terminal region

(li(t) > 0), then li(t+ 1) < li(t), otherwise li(t+ 1) = li(t). The same arguments apply to

UVj. As a consequence, condition (61) represents a necessary but not sufficient condition

for collisions at the next time instant.

Corollary 1. If the waypoints r̄i and r̄j are kept constant, the vehicle’s state trajectories
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Figure 4.3.4: The subplot (a) shows the starting connectivity graph where the node ī = 1
is selected to be stopped according to the procedure (P1)-(P3) and condition (63). Subplot
(b) shows that in the second iteration of (P1)-(P3), the node ī = 3 is stopped. Finally,
subplot (c), shows the final disconnected graph that guarantees absence of collisions.

xi(t) and xj(t) are UUB in
⋃li(t)
l=0 {T li (r̄i)} and

⋃lj(t)
l=0 {T lj (r̄j)}, respectively. As a conse-

quence, if no collisions are predicted at t̄, then no collisions can occur for any t > t̄.

2

Given the result in Proposition 4, we want to design a conservative but effective traffic

manager capable of ensuring that, for any pair (i, j) of UVs in I, the potential collision

condition (61) is never reached. To this end, first, a connectivity graph modeling all the

possible intersections is built, and then a collision avoidance strategy capable of minimizing

the number of vehicles to be stopped is illustrated.

For feasibility reasons, we assume that at t = 0 the condition (61), ∀ pair (i, j) in I,

is not satisfied (no initial collisions). Therefore until no vehicle make a request to update

the current waypoints, namely ri(ki), ∀ i , no collisions are possible (see Corollary 1).

As soon as the first vehicle make the request to switch waypoint (i.e. the vehicle has

reached the current terminal region), a connectivity graph, modeling potential collisions,

i.e. G(t) = (V , E(t)), is built as follows:

� V = I

�

eij(t) =

 1 if i ∈ Isw and Cr̄ir̄j(li(t), lj(t)) 6= ∅

0 otherwise
(62)

where r̄p = rp(kp + 1) if p ∈ Isw, r̄p = rp(kp) otherwise, p = i, j.
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If at the time t, ∃ eij(t) 6= 0, a collision avoidance strategy must be activated. In the

sequel, we denote with Istop ⊆ I the set of vehicles that need to be stopped. It is important

to remark that all the UVis making a switching request, i ∈ Isw, are already withing RCI

regions, i.e. xi(t) ∈ T 0
i (ri(ki)). Therefore, if needed, they can be stopped for an indefinitely

long time period without causing collisions (see Corollary 1). Moreover, UVi not making

any request of waypoint switch cannot be stopped (they are not in a terminal RCI region).

In order to stop the minimum number of UVs, the following procedure is applied:

(P1 ) Find the vehicle ī ∈ Isw with the highest degree, i.e.

ī = arg max
i∈Isw

∆[G] (63)

(P2 ) Add ī to Istop and set to zero all the edges connected to the node ī, i.e. eīj = 0

∀ j ∈ I

(P3 ) If ∃ eij(t) ∈ E(t) : eij(t) 6= 0, goto Step (P1)

For the sake of clarity, we explain the rationale behind the above algorithm by referring

to Fig. 4.3.4. Let’s consider a set of 5 vehicles, e.g. I = {1, . . . , 5} where UV1, UV2 and

UV3 request a waypoint switch, i.e. Isw = {1, 2, 3}. The connectivity graph G is the one

shown in Fig. 4.3.4.a. The described (P1)-(P3) algorithm searches and stops the vehicle

with the highest degree. The latter ensures that at each iteration, we remove the vehicle

with the greatest number of possible collisions. In the first iteration, according to (63), the

vehicle UV1 is stopped and the edges e12, e14 and e15 are removed (such collisions are not

possible anymore). The resulting connectivity graph is shown in Fig. 4.3.4.b from which

the second iteration starts and stops UV3. By removing the edges connected to UV3, i.e.

e32 and e34, the final disconnected graph in Fig. 4.3.4.c is obtained where no collisions

are possible, and the (P1)-(P3) procedure is ended. Finally, the outcome is the set Istop
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of vehicles that need to be stopped in the current terminal region, which in the specific

example are Istop = {1, 3}.

4.3.3 Computation Algorithms

This section first summarizes all the above developments in two computation algorithms

describing the logic of the local ST-MPC controllers and Traffic Manager. Then, a final

concluding proposition is given to prove that the proposed control architecture ensures

the absence of collisions regardless of the UVs reference trajectories (objective (O2)).

Traffic Manager (TM)

Input:

� At t = 0 : {T li (ri(0))}Ni
l=0, ∀ i ∈ I;

� ∀ t : Isw, li(t), r̄i ∀ i ∈ I

Output: “{Go, Stop}” for each i ∈ I

−∀ t :

1: if Isw = ∅ then Istop = ∅

2: else

3: Build G(t) = (V(t), E(t)) as in (62)

4: if ∃ eij(t) 6= 0 then

5: Compute Istop by using (P1)-(P3)

6: else Istop = ∅

7: end if

8: end if

9: ∀ i ∈ I, if i ∈ Istop, send “Stop”, otherwise send “Go”
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Set-Theoretic MPC i (ST-MPC-i)

Input: Off-line computations: ∀ i : {T li (ri(0))}Ni
l=0, see (54)-(55)

Output: ui(t)

−∀ t :

1: Use (56) to find the smallest set index li(t) containing xi(t)

2: if li(t) == 0 then

3: r̄i ← ri(ki + 1) . attempt to switch waypoint

4: else

5: r̄i ← ri(ki) . keep the same waypoint

6: end if

7: Send to TM: li(t), r̄i

8: if li(t) == 0 & TM==“Go” then . switch authorized

9: ri(ki)← ri(ki + 1), ki ← ki + 1;

10: Update li(t) by using (56)

11: end if

12: if li(t) == 0 then ui(t) = K0
i (xi(t)− xeqri (ki))

13: else Find ui(t) by solving opt. (57)

14: end if

15: Apply ui(t), t← t+ 1 and goto Step 1

Remark 8. The computational complexity of the proposed TM algorithm is mainly related

to the construction of G(t) in Step 2. In particular, to test if between two vehicles i

and j there is a collision possibility (i.e., eij(t) = 1), then a set-membership test must

be performed. Assuming a polyhedral representation for the robust one-step controllable

sets T li , each test requires the solution of a simple linear programming (LP) optimization
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problem solvable in polynomial time. Therefore, to completely build G(t), the number of

LP problems that must be solved is equal to |Isw(t)|(S − 1)| where |Isw| is the number

of vehicles making a waypoint switch request at the time t and S is the total number of

vehicles. On the other hand, the local ST-MPC-i is mainly related to the solution of

the QP optimization problem defined in (57). Therefore, contrary to the existing DMPC

solutions, the proposed approach does not requires inter-vehicles communications and non-

convex optimizations. As an example, at each iteration, the distributed approach in [62]

requires the computation of S MILPs while the proposed solution requires S(S − 1) LPs

(worst-case) and 1 QP per vehicle.

Task Solved Proposed Sol. [62]

Collision
Avoidance

S(S − 1) LPs

(S) MILPs
Reference
Tracking

(1) QP per
vehicle

Proposition 5. Let’s consider a set I of UVs modeled as in (1)-(2) where each i− th UV

is equipped with the ST-MPC-i local controller and the vehicles waypoint switches are

coordinated by a centralized traffic manager which logic is described by the TM algorithm.

If the UVs start from a feasible collision-free initial condition, i.e.

∃ li(0) ≥ 0 : xi(0) ∈
li(0)⋃
l=0

T li (ri(0)), ∀i ∈ I (64)

li(0)⋃
l=0

T li (ri(0)) ∩
lj(0)⋃
l=0

T lj (rj(0)) = ∅, ∀(i, j), i 6= j, i, j ∈ I (65)

then, TM guarantees the absence of collisions, i.e. ||pi(t)−pj(t)||2 > 0, ∀t ∈ ZZ+, ∀i, j ∈

I, i 6= j regardless of the UVs trajectories ri, ∀ i ∈ I.

Proof. If each i − th UV starts from a feasible collision-free initial condition, see (64)-

(65), then ST-MPC-i controller is capable of steering each UV state trajectory within
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the current terminal RCI region in a finite number of steps (see ST-MPC-i, Steps 12-15)

where it can be confined for an arbitrarily long time interval. Moreover, according to

the results in Proposition 4 and Corollary 1, until no waypoint switch occurs, collisions

among vehicles are not possible. In Proposition 3 it has been proved that starting from a

terminal region, e.g. T 0
i (ri(ki)) waypoint switches ri(ki) → ri(ki + 1) are always feasible

and preserve vehicle constraints (2). On the other hand, to avoid collisions among the

vehicles, switches can be accomplished only if the collision avoidance condition (61) is

preserved between any pair of vehicles. To this end, each vehicle, before switching, asks

permission to the TM (see ST-MPC-i, Step 8) who collects all the requests. The TM, by

building the connectivity graph (see TM, Step 3), checks if any of the requested waypoint

switches do not preserve (61) (see TM, Step. 4). If collisions are detected, then the

procedure (P1)-(P3) is activated (see TM, Steps. 5) to deny the waypoint switch to the

minimum number of vehicles. The latter is sufficient to maintain the vehicles controllers’

domain mutually disjointed, i.e.

li(t)⋃
l=0

T li (ri(k)i)) ∩
lj(t)⋃
l=0

T lj (rj(kj)) = ∅, ∀(i, j), i 6= j, i, j ∈ I

and ensure absence of collisions, concluding the proof.

4.4 Simulation

In this section, the effectiveness of the proposed control architecture is testified by means

of a simulation example involving five vehicles. The whole system has been emulated

within the MATLAB environment and the MPT3 toolbox [79], which has been used to

implement the ST-MPC-i and TM algorithms.

We consider a family of 5 UVs, I = {1, . . . , 5} whose dynamics are described by

means of a double integrator model [83] which state space vector x ∈ IR4 includes the

positions (px, py) and velocities (vx, vy). The input signals u ∈ IR2 are the two accelerations
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(ax, ay) and the discrete-time LTI system matrices (1), obtained by using a sampling time

Ts = 0.1 sec, are:

Ai =



1 0 0.1 0

0 1 0 0.1

0 0 1 0

0 0 0 1


, Bi =



0.005 0

0 0.005

0.1 0

0 0.1


, ∀ i ∈ I

We assume that the vehicles are subject to the following state and input constraints and

disturbances:

|ux1 | ≤ 20, |uy1| ≤ 15, |ux3 | ≤ 10, |uy3| ≤ 12

|ux5 | ≤ 25, |uy5| ≤ 22

where, |ux2 | = |ux3 |, |u
y
2| = |u

y
3|, |ux4 | = |ux5 |, |u

y
4| = |u

y
5| and,

D1 = {d ∈ IR4 : −0.07 ≤ di ≤ 0.07, i = 1, . . . , 4}

D2 = D3 = {d ∈ IR4 : −0.08 ≤ di ≤ 0.08, i = 1, . . . , 4}

D4 = D5 = {d ∈ IR4 : −0.05 ≤ di ≤ 0.05, i = 1, . . . , 4}

It is worth noticing that the above bounds are not the same for all vehicles. This has been

done to model the presence of vehicles with different performances and/or capabilities.

We assume that the vehicles’ trajectories are uncoordinated and have possible intersec-

tion points. In particular, each vehicle’s reference generator provides the waypoints ri(ki)

obtained from the following discrete functions



r1(k)T

r2(k)T

r3(k)T

r4(k)T

r5(k)T


=



10 sin(0.09k) 5k

10 sin(0.25k) 5k

10 sin(−0.45k) 5k

10 sin(−0.18k) 5k

10 sin(−0.23k) 5k


(66)
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Figure 4.4.1: Vehicles’ trajectories for t ∈ [0, 100]s
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Figure 4.4.2: Potential collision at t = 1.5s. Subplot [a] shows the existing intersections
between the families of one-step controllable sets and the corresponding connectivity graph
G(1.5). Subplot [b] shows the remaining collisions when UV5 is stopped. Subplot [c] shows
the absence of collision when both UV3 and UV5 are stopped.
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where the maximum distance δi, ∀ i ∈ I between two successive waypoints are: δ1 =

2.56, δ2 = δ3 = 2.61, δ4 = δ5 = 3.89, According to the proposed ST-MPC strategy, for

each vehicle, a terminal controller and a family of RCI sets have been offline computed as

prescribed in (54)-(55). The used LQ terminal controllers gain is

K0
i =

−27.3037 0 −7.6377 0

0 −27.3037 0 −7.6377

 , ∀ i
On the other hand, to assure that the vehicles’ controller domains satisfy the waypoint

switching feasibility condition (59), the following families of robust controllable sets have

been computed

{T l1 }20
l=0, {T l2,3}22

l=0, {T l4,5}23
l=0

By assigning to each vehicle the following initial conditions



x1(0)T

x2(0)T

x3(0)T

x4(0)T

x5(0)T


=



2 −25 0 0

−2 −20 0 0

−3 −23 0 0

20 −25 0 0

3 −23 0 0


the simulation results provided in Figs. 4.4.1-4.4.3 are obtained.

In Fig. 4.4.1, the vehicle’s trajectories are depicted for the time interval [0, 100]s.

The trajectories show how the vehicles’ local ST-MPC-i controllers are able to track the

switching waypoints (66) despite constraints and disturbances. Moreover, it is possible

to notice that the obtained paths have potential collision points. Therefore, it is worth

to investigate how the traffic manager actions are essential to avoid collisions. To better

understand the TM modus operandi, we shall refer to Fig. 4.4.2 where the simulation

has been paused at t = 1.5s. Specifically, at the considered screenshot, the vehicle’s set

membership scenario is the following:
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x1(1.5) ∈ T 7
1 (r1(3)), UV2 ∈ T 0

2 (r2(1))

x3(1.5) ∈ T 0
3 (r3(2)), UV4 ∈ T 3

4 (r4(3))

x5(1.5) ∈ T 0
5 (r5(1))

The TM, first collects all the waypoint switch requests and set-membership indices. At

t = 1.5s, UV2, UV3, UV5 are within a terminal region (i.e. l2(1.5) = l3(1.5) = l5(1.5) = 0)

while UV1, UV4 are inside one-step controllable sets (i.e. l1(1.5) = 7 and l4(1.5) = 3). By

construction, the waypoint switch feasibility condition (59) ensures that the vehicles in

the terminal region also belong to the family of the one-step controllable set associated

with the successive waypoint. In particular:

x2(1.5) ∈ T 10
2 (r2(2)), x3(1.5) ∈ T 9

3 (r3(3)), x5(1.5) ∈ T 7
5 (r5(2))

As a consequence, the set of vehicles candidate for a switch request is Isw = {2, 3, 5}.

Given the collected information, the TM builds the connectivity graph G(1.5) accord-

ing to (62). In Fig. 4.4.2.a, the current vehicles’ positions are shown with small colored

circles and the rectangular areas (matched by color) represent the region where the one-

step evolution (at t = 1.6s) of each agent will be confined, i.e.

x1(1.6) ∈
6⋃
l=0

T l1 (r1(3)), x2(1.6) ∈
9⋃
l=0

T l2 (r2(2)),

x3(1.6) ∈
8⋃
l=0

T l3 (r3(3), x4(1.6) ∈
2⋃
l=0

T l4 (r4(3)),

x5(1.6) ∈
6⋃
l=0

T l5 (r5(2))

(67)

Since the constructed families of one-step controllable sets are nested, in Fig. 4.4.2, we

show only the last sets, which are equivalent to the unions in (67). The connectivity graph

shown in the top-right corner of Fig. 4.4.2.a. summarizes all the possible collisions between

the regions in (67), see (61). The graph presents potential collisions among the agents 1, 2,
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3 and 5. Therefore, according to the TM algorithm (see step 5) the (P1)-(P3) procedure

is activated to avoid collisions by stopping the minimum number of vehicles among the

ones making a waypoint switch request. First, the UV5 (the node with the highest degree)

is stopped and added to Istop. As a consequence, all the edges connected to UV5 are also

removed. The resulting novel connectivity graph and remaining intersections are shown

in Fig. 4.4.2.b. Since a collision is still possible between UV2 and UV3, i.e.

T 9
2 (r2(2)) ∩ T 8

3 (r3(3)) 6= ∅

a second iteration of (P1)-(P3) is executed and the vehicle UV3 is added to Istop. At this

point, with

Istop = {3, 5} (68)

the completely disconnected graph in Fig. 4.4.2.c results where no collisions are possible.

Therefore, the TM operations are concluded: UV3 and UV5 are stopped while UV2 is

allowed to switch waypoint.

In Fig. 4.4.3, the vehicles set-membership index signal is shown for the time interval

[0, 25]s, (the time interval has been shortened to improve the figure’s readability). The

latter allows us to better clarify the stop and go commands received by each vehicle

according to the TM operations previously described. In the absence of collisions, the

signals li(t), by construction, have a reverse sawtooth shape. The wave ramps downward

while the vehicles move within the family of computed one-step controllable sets, and

sharply rises when a waypoint switch occurs. On the other hand, when the signal li(t)

holds constant for more than one sampling time, then it means that the vehicle i has

received a STOP command. It is worth noticing in Fig. 4.4.3 that, according to the

developed theory, a STOP signal can be received only by the vehicles making switch

request, i.e. from the vehicles within a terminal region (li(t) = 0). As an example, in the

previously described potential collision happening at t = 1.5s, the TM imposes a stop
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Figure 4.4.3: Vehicles’ set membership indices in the time interval [0− 25]s (left side) and
zoom-in in the time interval [0− 3.5]s (right side).

on two of the three vehicles making a switch request, i.e. UV3 and UV5 (see (68)). As a

consequence in the zoom-in subplot in Fig. 4.4.3, it is possible to appreciate what follows:

the signal l3(1.5) and l5(1.5) stays constant to zero, meaning that the waypoint switch

has been denied for UV3 and UV5; the index l2 jumps from 0 to l2 = 10, testifying that

the waypoint switch has been granted to UV2; the signals l1(t) and l4(t) keep decreasing

showing that both UV1 and UV4 keep moving closer to the current waypoint.

4.5 Conclusion

In this chapter, we have presented a novel solution to deal with the collision avoidance

problem for heterogeneous constrained vehicles moving in a shared environment. We

have proposed a control architecture where each vehicle is equipped with a local set-

theoretic MPC tracking controller and a centralized traffic manager, exploiting simple

set-membership arguments, guarantees absence of collisions. We have proved that the
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proposed solution is sufficient to guarantee collision avoidance despite vehicle constraints,

disturbance realization and desired vehicle’s trajectories. The latter has been achieved by

assuring that during the waypoint switches a specific set-theoretic absence of collisions

condition is a system invariant. Moreover, by modeling the potential collisions as a con-

nectivity graph, we have proposed a strategy that minimizes, at each time, the number of

vehicles that need to be stopped. Finally, we have shown the effectiveness and potential

of the proposed technology by means of a simulation campaign involving five vehicles.
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Chapter 5

Conclusion

In this thesis, we have extended the set-theoretic MPC paradigm to deal with two differ-

ent control problems, namely transient stability in smart grid systems (regulation) and

collision-free reference tracking of multi unmanned vehicles (reference tracking).

In the transient stability problem, a controller consisting of two feedback actions is

proposed, where the first partially compensates the effect of nonlinear dynamical coupling

among generators, and the second exploits set-theoretic arguments to robustly guarantee

transient stability despite non perfect decoupling, disturbances and physical limitations

of the fast acting energy storage system. Moreover, the robust nature of the proposed

controller is formally proved and it is shown that a worst-case time to transient stability

recovery can be formally assured. To better highlight the properties of the controller, its

performance has been contrasted with the recent solution given in [34] by means of a solid

simulation example.

In the multi-UV system, a control architecture has been presented where each vehicle

is equipped with a local set-theoretic MPC tracking controller and a centralized traffic

manager that guarantees optimal collision avoidance by exploiting simple set-membership

arguments and resorting to graph connectivity theory. It is considered that each vehicle

is equipped with a reference generator module where the vehicles’ reference trajectories

might not be coordinated. Differently from the discussed state-of-the-art, it is proved
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that the solution here presented is capable of managing heterogeneous constrained MUVs

subject to bounded disturbances, and collision-free movements are, by design, ensured

regardless of the trajectory followed by the vehicles. Simulation results, conducted on a

system of five vehicles, has been provided to provide tangible evidence of the features of

the proposed framework.

In both applications, the resulting control schemes have been characterized for their

peculiar capability of reducing the typical computation burden of robust MPC controllers.

In particular, the latter has been achieved by moving most of the algorithm into an off-line

phase. In the online phase, the control action computation cost is modest and it requires

the solution of a simple convex optimization problem.
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[39] S. Raković, “Robust model-predictive control,” Encyclopedia of Systems and Control,

pp. 1225–1233, 2015.

[40] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of

distributed multi-agent coordination,” IEEE Transactions on Industrial informatics,

vol. 9, no. 1, pp. 427–438, 2013.

[41] J.-C. Latombe, Robot motion planning. Springer Science & Business Media, 2012,

vol. 124.
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