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Abstract

Shafarevich-Tate groups for some Modular Abelian Varieties

Casper M. Barendrecht

Let f = > >, anq™ be a weight 2 newform of level IV, and let A be the associated modular
abelian variety. Let K be an imaginary quadratic field of discriminant D # —3, —4, and let p be a
prime of the endomorphism ring O 4 of A outside a finite set S. If A admits a principal polarization,
and the Heegner point yx has infinite order in A(K), then the Shafarevich-Tate group is finite and
its p-primary part is a perfect square. Generalizing the work of Kolyvagin and McCallum, we give

an explicit structure of the p-primary part of the Shafarevich-Tate group,

ordy [ITI(A/K)| = 2(My — m),

where My = [A(K) : Oyk] and m is the minimum of a decreasing sequence of positive integers.
This thesis aims to provide an accessible proof of this statement for those with restricted knowledge
on the subject.

The first three chapters offer an introduction to the basic notion of arithmetic geometry. Chapters
4 and 5 expand on the theory spefic to the thesis. Finally chapter 6 combines the developed theory

to proof this structure theorem for Shafarevich-Tate groups.
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Introduction

Let A be an abelian variety defined over a number field K. A significant group that
naturally arises in the study of the arithmetic of A is the Shafarevich-Tate group, given
by

II(A/K) = ker <H1(K, A) = [[H (Ko, A).) :

where v ranges over all places of K. It is widely conjectured that the Shafarevich-Tate
group II(A/K) is finite. While currently unproven, the finiteness of the Shafarevich-
Tate group guarantees that generators for the group A(K) can be computed effectively.

Let E be a modular elliptic curve, whose conductor N is split in a quadratic imaginary
field K. In 1984, Benedict Gross and Don Zagier showed that the Heegner point yg
has infinite order if and only if the L-series of E' over K has order at most 1 at 1, that
is L'(E/K,1) # 0 (Gross 1991). Victor Kolyvagin later showed that any such elliptic
curve has analytic rank at most one, and moreover has a finite Shafarevich-Tate group
over K.

In his 1991 paper, William McCallum, elaborates on some of the later work by Kolyvagin
and gives an explicit description of the p-primary part of the Shafarevich-Tate group of
FE over K in terms of derived Heegner points P, as defined in chapter 5. Let p > 11
be a prime number and let M > 0 be an integer. An M -Kolyvagin prime is a rational
prime [ whose Frobenius symbol Frob(l) in the extension K (A, )/Q coincides with the
symbol of complex conjugation on K. For a non-negative integer r, define S, (M) to be
the collection collection of products of r distinct M-Kolyvagin primes, and let

M, = min{ord,(P,) | n € Sy(ord,(Py,) + 1)}

Using these integers, McCallum gave the following description of the Shafarvich-Tate
group

Theorem (McCallum 1991). Let p > 11 be an integer and assume that yx has infinite
order in E(K). Then the integers M, are decreasing and My = [E(K) : Zyk]|. Moreover,
the p-primary part of the Shafarevich-Tate group, decomposes as

II(A/K )y = ﬁZ/erfl—MTZ.

r=1

This thesis aims to generalize the results of McCallum to modular abelian varieties
associated to weight 2 newforms whose conductor is split in the field K. We aim to
provide accessible Lemmas and proofs for people with limited knowledge of the subject.
The reader is expected to be familiar with the theory of elliptic curves, for example the
book The arithmetic of elliptic curves by Joseph Silverman.

The first three chapters serve as an introduction to the general theory of arithemtic
geometry and modular forms, most theory found in these chapters is widely available



from other sources. The first chapter serves as an introduction to the Shafarevich-
Tate group and ideal torsion groups. The second chapter constructs several important
pairings in the groups to abelian varieties and remarks several important properties. The
third chapter is an introduction to the theory of Hecke operators and newforms, based
on the book A first course in modular forms by Fred Diamond and Jerry Shurman.
In Section 3.3, we moreover construct the abelian varieties that will be considered in
this thesis. Chapter 4 provides some technical consequences of the Chebotérev Density
Theorem. Chapter 5 introduces the notion of Heegner points and construct the classes
associated to them. It lays the ground work for the proof of the structure theorem in
Chapter 6 (Theorem 6.3). Moreover, Chapter 5 offers a proof of an important theorem
by Kolyvagin (Theorem 5.5), and illustrates several important consequences.



Chapter 1

The Shafarevich-Tate group

This first chapter serves as an introduction to the basic principles in the study of the
arithemtic of abelian varieties. The first section defines the Shafarevich-Tate group
associated to an abelian variety A, as well as justifies its significance in the study of the
variety. The second section generalizes the results of the first section for non-principal
prime ideals.

1.1 Selmer groups and the Hasse principle

Let A be any abelian variety over Q such that its ring of Q-rational endomorphism is
an order @4 in a number field F', and let K be another number field. For any place v
of K, denote by K, the completion of K with respect to this valuation. If v = vy for a
prime A of K, we denote K for K,,.

We wish to determine the structure of the algebraic group A(K). One of the most
fundamental results in determining this structure is the Mordell-Weil theorem which
states that A(K) is finitely generated. In order to find those generators or give a bound
on the rank of A(K), more work needs to be done. Let o € O4 be an endomorphism of
A, and consider the short exact sequence of group schemes

0> Ay > AS A0,

where A, denote the a-torsion points of A. A direct consequence of the Mordell-Weil
theorem is that the corresponding sequence of K-rational points will never be exact
when « is not a unit. The extent to which this sequence fails to be exact, is determined
by the corresponding cohomology groups, which fit in a short exact sequence

0 Ao(K) 5 A(K) S A(K) S HY(K, Ag) 25 HY(K, A) 25 HY(K, A) — H*(K, Ay)
where ¢ denotes the Kummer map. This sequence in turn gives rise to an exact sequence

0— AK)/aA(K) 2 HYK, Ay) = HY(K, A)o — 0. (1.1)



This sequence is of particular interest, as it can be shown that generators for A(K) can
be computed effectively if given a finite set of points in A(K) generating A(K)/nA(K)
for some n € Z (see Silverman 2009, Remark VIIL.3.2). Currently there is no effective
way of constructing generators for A(K)/nA(K). The Hasse principle asserts that one
can construct such generators given generators for A(K,)/nA(K,) for all valuations v
of K. By Hensel’s lemma, finding such generators is equivalent to determining whether
a given principal homogenous space admits a point over some finite ring (see Silverman
2009, Chapter X.4). Hence determining the structure of A(K) reduces to determining
where the Hasse principle fails. Hence consider the commutative diagram

0 —— A(K)/aA(K) —— HY(K, Ay) —>— HY(K,A)y — 0

l ! 1 i

0 — [I, A(K,)/aA(K,) 2 T, HY(Ky, Aa) 25 T], H(Ky, A)a — 0.

There are two natural groups associated to this diagram.

Definition 1.1. Let A be an abelian variety over K and let « be an endomorphism of
A.
The a-Selmer group of A over K is given by

So(A/K) = ker (Hl(K, A) = [[H (K., A)a> :
The Shafarevich-Tate group of A over K is given by

III(A/K) = ker (Hl(fg A) = [[H (K., A).> .

Note that the product coincides with the direct sum in this definition as any d €
H'(K,A) vanishes in H'(K,, A) for all but finitely many v. The non-zero elements
of the Shafarevich-Tate group correspond to those principal homogenous spaces of A
that posess a K, -rational point for all places v, but no K-rational point. Equivalently,
they correspond to classes of H'(K, A) where the Hasse principle fails to hold. By the
snake lemma, the Selmer group and the Shafarevich-Tate group fit in the a-descent
sequence

0 = A(K)/aA(K) = Sa(A/K) — TI(A/K)q — 0.

The Selmer group is finite and can be computed effectively, thus it remains to determine
the image of A(K)/aA(K) inside this group. For a rational prime p, Milne 2006b,
Remark 5.2 shows that generators of A(K)/pA(K) can be constructed effectively if the
the p-primary part of the Shavarevich-Tate group is finite. The p-primary part of this
group decomposes as the product of the p-primary parts, where p are the primes of O4
extending p, as described in the following section.



1.2 p-adic torsion points

Let p be a prime number that is unramified in F' and invertible in O 4, and let p be any
prime extending p. Define for any M > 0, the group of pM-torsion points of A as

A ={P€Ala-P=0, forall a € pM}.

This group carries a natural structure of a torsion-free O 4 /p™-module. Let fp denote
the inertia degree of p over p. As O4/pM is a finite Z/p™ Z-algebra with additive group
isomorphic to (Z/pMZ)/, these modules carry a natural structure of Z/p™ Z-module as
well. This gives rise to a decomposition of Z/pM Z-modules

Apn = HAPM. (1.3)

plp

Multiplication by p™ is an isogeny of degree p*™ on A, hence the p™-torsion group of
A is free of rank 2g over Z/p™Z. Notice that A,m moreover carries the structure of an
O4/pMO g-module. As O4/pM O 4 has rank g as a Z/pM Z-module, that Apm is free of
degree 2 as a O /p™O-module. In particular, by the structure of the decomposition
of this module, it follows that Ay is free of rank 2 over O4 /M.

For any m < M, restriction of scalars equips Apm with a Oy /pM-module structure.
Under this structure, multiplication by p gives rise to a short exact sequence of O 4/p™-
modules

0— Ap — ApM £> Aprl — 0.

Remark. If p is a principal ideal with generator 7, there exists another natural short
exact sequence
0— A, — ApM 5 Aprl — 0.

While the maps 7 and p are not the same in general, they induce the same map up to
composition with an automorphism of Ay .

Analogously to the rational case, the p-adic Tate- odule is defined as T, (A) = 1&1 o Apm,
and by the same argument, this is a free Op-module of rank 2. Here O, denotes the
completion of O4 at p. Since p is invertible and unramified in O 4, this is the ring of
integers of a finite, unramified extension of Q,. As the tate module is free of degree 2,
its automorphism group is naturally isomorphic to GL2(Oj). The absolute Galois group
Gal(Q/Q) acts on Ty, and hence the p-adic Tate module gives rise to a representation

po * Gal(@/Q) — GLa(O).

It follows from Ribet 1992, Lemma 3.1 that the determinant of this representation is in
fact the p-th cyclotomic character

xp : Gal(Q/Q) — L.



The Shaferevich-Tate group of A carries a natural structure of a O4-module. When it
is is finite, it is a torsion module and hence the structure of this group can be analyzed
by analyzing its p-primary parts, where p ranges over the primes of O4. To this end,
we aim to generalize the construction of (1.2) to prime ideals. When Q4 is a principal
ideal domain, this is immediate, but this is not the case in general. Similar to the
decomposition in (1.3), there is a natural decomposition of Z/pM Z-modules

AK) /M AK) = [ A(K) /p™ A(K).
plp

As taking cohomology commutes with direct sums, we can define the kummer map for
a prime p by taking the composition

AK) JpM A(K) — A(K) /pMAK) % HY(K, Ajr) =2 Pl (K, Apnr)

Explicitly, let P € A(K) and consider its reduction modulo p™ A(K). By the decomposi-
tion above, there exists a @ € A(K) such that Q = P modulo p A(K) and Q € ¢ A(K)
for all other primes q dividing p. The image of P under the kummer map is then the
class generated by o — o(Q/p™) — Q/p™. For any o € Gal(K/K) this is indeed a
pM_torsion point, and the class is independent of a choice of Q. This map therefore
gives rise to the short exact sequence

0 — A(K)/pMA(K) & H'(K, A ) — H'(K, A)yr — 0. (1.4)

We define the p™-Selmer group as

Spr(A/K) = ker (Hl(K, Agn) > P HN (K, A))

and retain the short exact sequence
0— A(K)/pMA(K) = Spar(A/K) = TI(A/K ) — 0.
Let
H' (K, Ay ) = lim H' (K, Agwr), and Spee (A/K) = lim Sy (4/ K),

where the direct limit is taken over all M. They carry a natural structure of Op-modules
and we obtain a p>°-descent sequence of Op-modules

0 — A(K) @0, Fy/Op — Spoe (A/K) — TI(A/K)poe — 0, (1.5)

where Fj, is the field of fractions of O,.



Chapter 2

Pairings on abelian varieties

Pairing on abelian varieties lie at the heart of arithmetic geometry and the study of
Shafarevich-Tate groups. Two pairings of particular interest are the Tate pairing and
the Cassels-Tate pairing. This chapter is dedicated to constructing these pairings as well
as providing the connection between them. A more in depth exposition can be found in
Milne 2006a. In this section K will always denote a number field, and v will denote a
place of K.

2.1 The Weil pairing

The most well-known example of a pairing on an abelian variety is the Weil pairing. Let
FE be an elliptic curve defined over K and let n be an integer. The Weil e,,-pairing is the
pairing

en: By X By — un
as constructed in Silverman 2009, Chapter II1.8. Here u, denotes the collection of n-th
roots of unity. This pairing is non-degenerate, alternating and Galois-invariant. Central
to the construction of this pairing is the group isomorphism

®: F — Pic'(E), (2.1)
P (P)—(0).
While this isomorphism is well-defined for elliptic curves, a generalization to abelian

varieties of dimension g > 1 does not usually exist. In order to generalize the e,-pairing
to abelian varieties we introduce the notion of dual abelian varieties.

Definition 2.1. Let A/K be an abelian variety of dimension g. The dual abelian variety
AY of A is the connected component Pic?(A) of the Picard scheme Pic(A).

The Picard scheme should be considered as the scheme-theoretic equivalent of the Picard
group HY(X, 0%) of a scheme X. If X is a smooth projective variety, its connected



component Pic’(X) is indeed an abelian variety. Its dimension as a variety is equal to
the arithmetic genus of the variety X.

The map in (2.1) is not only an isomorphism of groups, it is also a degree 1 isogeny
between an abelian variety and its dual. An isogeny ¢ : A — A" from an abelian variety
to its dual is called a polarization on A. If ¢ is a degree 1 isogeny, it is called a principal
polarization and A is said to admit a principal polarization. It can be shown that every
polarization arises from an ample line bundle on A (see Conrad 2005, Corollary 5.1.5.).
If A has multiplication by an order in a number field then AV has multiplication by the
same order. To generalize the e,-pairing to abelian varieties the natural question arises
whether every abelian variety admits a principal polarization. This is not the case in
general, however it is still possible to construct a natural generalization of the e,-pairing
to abelian varieties. With the concession of replacing A with its dual, there exists a
pairing
en An X AY — 1.

Following Milne 2008, the pairing is constructed as follows. Assume for simplicity that
K is algebraically closed and let a € A,(K), and b € A)(K). Using the identification
AY(K) = Pic’(A)(K), let D € Div’(A) be a divisor on A corresponding to b. If n4
denotes multiplication by n on A, then multiplication by n on Pic’(A) coincides with
the map n%. Hence n’ D is linearly equivalent to nD, which is linearly equivalent to
zero as b is m-torsion. In particular, there exist rational functions f and g such that
n% D = div(g) and nD = div(f). Using the equality

div(fona) =nidiv(f) =ninD =nnyD = n - div(g) = div(g")
we conclude that ¢"/(f ona) = ¢ is constant on A. As a is n-torsion it follows that
9(x)"
f(nX)

Hence g(X)/g(X +a) is a function in the field K (A) whose n-th power is 1. It is therefore
an n-th root of unity and is contained in K. The e,-pairing is now defined by sending
a and b to this root. For abelian varieties whose endomorphism ring is an order in a
number field the e,-pairing naturally generalizes to an e m-pairing as follows:

g X +a)" =cf(nX 4+ na) =

f(nX) = g(X)".

Lemma 2.2. For any abelian variety A/K whose endomorphism ring is an order O4 in
a finite extension F//Q, and for any unramified, invertible prime p of O 4, the restriction
of the e,m-pairing to the pM-torsion of A defines a non-degenerate pairing

epM : APM X A;/M — Mpnl.
Moreover, if A admits a principal polarization, this pairing is alternating.

Proof. Let A be an abelian variety as above, let p be an invertible prime of O4, and
let M > 0 be an integer. Denote by p the characteristic of its residue field and let q be
any another prime extending p. The g*-torsion points of AV carry the structure of an



O 4-module and an O 4/qM-module. By the Chinese remainder theorem, there exists an
x € pM such that x reduces to 1 modulo q™. In particular, = acts as trivially on A;/M.

Let a € Aynr and b € A;/M. Since the e,u-pairing is O 4-bilinear, it follows that

epn (a,b) = ey (a, xb) = ey (xa,b) = 1.

P p

This shows that the p™-torsion points of A are orthogonal to the q™-torsion points of
AY for all primes p # p. Hence the ef,\/l pairing restricts to a pairing as described in the
Lemma. As the e,n pairing is non-degenerate and alternating when A admits a principal
polarization, this shows that its restriction to A, is non-degenerate as well. O

If a finite abelian group G admits a non-degenerate pairing o : G x G — Q/Z, we can
define the orthogonal complement H+ of any subgroup H of G, as the collection of
elements of G that are orthogonal to all elements of H under this pairing. This group
fits in a natural short exact sequence

0> H"—>G— H" =0,

where H* denotes the Pontryagin dual of H, and the second map is given by evaluation.
If in addition, the pairing is alternating, and H is generated by a set of pairwise orthog-
onal elements, there is a natural inclusion H C H+. Subgroups satisfying this inclusion
are called isotropic subgroups of G. Because G is finite, all of its subgroups are isomor-
phic to their duals. Hence if H is an isotropic subgroup, we must have |H| < |G|Y/2.
Consequently, a mazimal isotropic subgroup is an isotropic subgroup of maximal order,
or equivalently a subgroup satifying H = H+. If G contains a maximal isotropic sub-
group, its order is necessarily a perfect square. It can be shown that such a subgroup
always exists, and in fact the following stronger statement holds.

Lemma 2.3. (Lemma 5.2 Davydov 2007) Let G be a finite group admitting an alter-
nating, non-degenerate pairing. Then GG contains a maximal isotropic subgroup H such
that the sequence

0—-H—-G—>H" —0

splits. In particular, the order of G is a perfect square.

2.2 Cup products

Cup products are a method of connecting two cohomology classes of degree p and r
together to construct a new cohomology class of degree p 4+ r. They are integral to the
construction of dualities in Galois cohomology and various other cohomological topics.

Let G be a group and let M and N be two G-modules. The cup product is then defined
as the pairing
HP(G,M) x H"(G,N) — HP*"(G,M ® N),

((,OZ)HC\—/O[,



where
(C—a)(o1,..c;Tpir) = C(O15 .o, 0p) @ A(Tpi1s -y Opr)s
with o1, ...,0p4r € G. The cup product satisfies the following properties
1. (a—b)—c=a—(b—c),
2. a— b= (—1)desl@)des®)(p _ g),
3. inf(a — b) = inf(a) — inf(b),
4. res(a — b) = res(a) — res(b).

Here res and inf denote the usual inflation and restriction maps. Recall that giving
a bilinear pairing of G-modules e : M x N — P is equivalent to giving a linear map
e M ®N — P. If the pairing e is G-equivariant, that is e(ga, gb) = g(e(a,b)) for all
g € G, one can compose € with the cup product to create a new family of cup products

HP(G,M) x H"(G,N) — H"*"(G, P).

This observation has important consequences; Given an A be an abelian variety over a
number field K, an integer n, and a non-archimedean valuation v of K. One can view
ln as a group subscheme of the multiplicative group G,,, and consider the e,-pairing
(resp. e,m-pairing) as a pairing

Ap x AY = Gy
Taking Galois cohomology, gives a pairing
HY Ky, Ap) x HY (K, AY) — H*(K,,Gy,).

The latter group is occasionally referred to as the Brauer group of K, and is denoted
Br(K,)!. Since K, is a non-archimedean local field, the Hasse-invariant determines an
isomorphism

inv, : H*(K,,G,,) = Q/Z.
And we obtain an alternating pairing
HY(K,,A,) x HY(K,, AY) — Q/Z. (2.2)

It can be shown that this pairing is non-degenerate (see Poonen et al. 1999). The Brauer
group of K fits in a short exact sequence

0 — Br(K) — Br(K,) - Q/Z — 0.

1The Brauer group itself is in fact defined as the set of Morita equivalence classes of central simple
K-algebras endowed with a group structure via the tensor product. It can however be shown that these
groups are isomorphic for any field K.
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In this direct sum, v ranges over all places of K and the second map is given by taking
the sum of the Hasse invariants. The completions at the archimedean primes correspond
to either R or C, for the real numbers we have that Br(R) = %Z /Z and the Brauer group
of the complex numbers is trivial. From the exact sequence we deduce the following for
ce HY(K,A,) and ¢ € HY(K, A))

Zinvv(cv —d)=0.

Assume that A has multiplication by an order Q4 in a finite extension F'/Q. Assume
moreover that A admits a principal polarization. The cup product in (2.2) then becomes
a pairing on H' (K, Ayu), which by (1.4) acts on A(K)/pMA(K).

Proposition 2.4. Assume that A admits a principal polarization, and let v be a non-
archimdean place of K, coprime to p, such that A has good reduction at v. Then the
image of A(K,)/pM A(K,) under ¢ is a maximal isotropic subgroup of H'(K,, Agumr). In
particular, it gives rise to a non-degenerate pairing

()t HY Ky, A)par x A(Ky) /pMA(K,) — Q/Z. (2.3)

Proof. Let v be such a place of K. By Silverman 2009, Lemma VIII.2.1, the image of ¢
is unramified. In particular, the sequence in (1.4) reduces to

0— A(K,)/pMA(K,) S HY (K™K, Apnr) = HY (K /Ky, A)prr — 0,

where H'(K)"/K,, Ayn) is embedded into H'(K,, Ayu) via the inflation map. As A
has good reduction at v, the group H'(KY/K,, A) vanishes (see Milne 2006a, Chapter
1, Lemma 3.8), and hence ¢ is an isomorphism. We claim that this inflated group is
isotropic. As the cup product commutes with inflation, the restriction of the cup pairing
to HY (KW /K,, Aynm) is given by a pairing

HYKY Ky, Agn) x HY (KX /Ky, Agnr) = H? (K Ky, ppn).

But as v is coprime to p, it can be deduced from the Hochschild-Serre spectral sequence,
that latter group vanishes (see Milne 2006a, Lemma 2.9). It follows that the inflated
group us isotropic and hence so §(A(K,)/pM A(K,)).

To prove maximality, it suffices to show that H'(K,, A),u is isomorphic to

A(K) pMA(K,). As HY(KY/K,, A) vanishes, it follows from inflation-restriction that
restriction induces an isomorphism H!(K,, A)pm = HY KM, A)gM, where G denotes the
Galois group of K'/ K,,. Moreover, as A(K}'") is p-divisible, the sequence in (1.4) induces
an isomorphism H' (K}, Apwr) = H'(KJ", A),x, and hence an isomorphism of their G-
invariant subgroups. Since the p*-torsion points of A are unramified over K,, the action
of the inertia group I of K, on A,u is trivial. This gives rise to the natural identification

HY Ky, Apr) = Hom(I, Apr). Let | denote the characteristic of the residue field of

v
K,. It follows from ramification theory that the wild ramification group IV of K,

11



is a maximal pro-/ subgroup of I, and since | # p any homomorphism f : I — Ayum
must therefore vanish on ™4, Serre showed that the quotient I/I"!¢ is canonically
isomorphic to the product [], ; Z¢(1), where Zy(1) := @uq As any homomorphism

f as above factors through this group, we conclude that H'(K,, A)pM is isomorphic to
the group Hom(upM ApM)g The group of p™-roots of unity is cyclic, hence this group
of homomorphisms is naturally isomorphic to A, (K,), and since multiplication by p is
an isomorphism on O,, it follows from Milne 2006a Lemma 3.3 that A(K,)/pM A(K,) is

isomorphic to Aya (Ky) as well. Tt follows that §(A(K,)/ pM A(K,)) is maximal isotropic.

Since it is maximal isotropic, it fits in a short exact sequence
0 = S(A(K,) (5 A(KL)) = (K, Agr) <5 5 (A(K) oV A(K) ) =0,
Hence consider the diagram
0 —— A(K,) /pM A(K,) —— HY(K,, Agu) ——— H'(K,, A)yut ————0

0 —— A(K,)/pMA(K,) —2 HY(K,, Ajr) — § (A(Kv)/pMA(Kv)>* — 0.

@

’ a~

Here ¢ is the map making this diagram commutative. It is given by the composition
tw o ev— ! which is well-defined by exactness. Because all groups are finite, ¢ is an
isomorphism. For any y € A(K,)/p™MA(K,) and d € Hl(Kv,A)pM, the pairing is now
defined as

(d.y)v =0~ (d)(3(y)).
The non-degneracy of the pairing follows immediately from the fact that ¢ is an isomor-
phism. The pairing is alternating as it is induced by the cup product. ]

The pairing in equation (2.3) is also known as the Tate-pairing. In proving Proposition
2.4, we have also shown the following useful relation between the cup-product and the
Tate pairing:

(Lys(€), )y = ¢ — 6(x) (2.4)

Remark. In Chapter I, Section 3 of his book ”Arithmetic Duality Theorems”, Milne
provides a more profound argument to show that maximality of A(K,)/p™ A(K ) Any
triple (M, N, P) of Gal(K,/K,)-modules comes equipped with a canonical family of
Ext-pairings. For an abelian variety A, the group Ext}. (Z, A) is simply the cohomology
group H"(K,, A). Hence for the triple (A,Z, G,,) these pairings are given by

Extfe (A,Gp) x H* " (K, A) — H*(K,, Gp,).

The latter is isomorphic to Q/Z, and it can be shown that these pairings are in fact
perfect. The Ext-groups of an abelian variety are closely related to the dual abelian
variety by the isomorphisms

H"(K,, AY) = ExtiF (A, Gp).
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For » = 1, this isomorphism along with the pairing above, add up to an isomorphism of
compact groups
AY(K,) = HY(K,, A)*.

The group of p-torsion of H'(K,, A) is isomorphic to the group of p™-torsion of its
Pontryagin dual, and since A admits a principal polarization, this module is therefore
isomorphic to the group Aym (/). As multiplication by p is an isomorphism on O, this
module has the same rank as A(K,)/p™M A(K,).

This construction by Milne allows a more universal definition of the Tate pairing. Since
the Ext-pairing and the isomorphisms above only depend on the fact that v is non-
archimidean, they give rise to a canonical perfect pairing

(-, HY(K,, A) x AY(K,) = Q/Z.

This definition can be extended to the archimedean places (see Milne 2006a, Remark
3.7).

2.3 The Cassels-Tate pairing

The Tate pairing allows us to construct a pairing on the Shafarevich-Tate groups, known
as the Cassels-Tate pairing. The Cassels-Tate pairing is fundamental in understanding
the structure of the Shafarevich-Tate group and hence the the structure of the abelian
variety A itself. They were first introduced by Cassels for elliptic curves and were later
generalized by Tate to a pairing

() s MI(A/K) x II(AY/K) — Q/Z

We will define the pairing only on the p-primary part of the Shafarevich-Tate group.
The construction for arbitrary integers m and n is identical.

Let M and M’ be two positive integers, and let d € III(A/K),m and d’ € II(AY/K)
be two cohomology classes. Let ¢’ € SpM/ (AY/K) be a lift of d’ to the Selmer group of
AY. By definition of the Shafarevich-Tate group, the reduction of d’ modulo v vanishes
at every place of K. Hence via the Kummer sequence (1.4), we can choose a set {y, €
A(K,)} such that

8(yy) = ¢4
Next assume that there exists a d; € H! (K, A)pM+M/ such that pM/dl = d. Multiplication

by pM " sends pM+M "_torsion elements to pM_torsion elements. Since the reduction of d
vanishes at every place of K, the reduction d, must necessarily be a p™'_torsion point
of HY(K,, A). The Cassels-Tate pairing is now defined as

<d7 d,> = Z<d1,v, y;>v

v

13



To see that this pairing is well-defined, let v be a valuation of K and assume that
Yy € A(K,) is another point such that d(y,) = ¢,. Then y] — y, vanishes under ¢ and
is therefore contained in p* /A(KU). Write y), — y, = aP, as the pairing commutes with
the action of Oy4, it follows that

<d1,vay1/] - yv>v = <d1,vaap>v = <a : dl,vaP>v =0,

since dj , is pM "_torsion. Hence this definition is independent of the choice of y,,. To see
that it is independent of the choice of d; consider another point do € H 1 (K, A)p M
in the pre-image of d. The difference d; — do is contained in H'(K, A)yarr, and hence
originates from a global cocycle ¢ € H (K, Apr). Using the relation described in (2.4),
this implies that

<d1,v - d2,va y;>v = Cy —~ Ci}'

But this implies that the Cassels-Tate pairing vanishes here as the sum of Hasse invari-
ants of a global class is zero.

Remark. It is not generally known if such a d; exists. By the clever use of cochains,
the use of such a d; can be avoided, without altering the pairing. This as well as other
interpretations are illustrated in Milne 2006a, Proposition 6.9 and the corresponding
remarks. Other constructions can also be found in Poonen et al. 1999. For the classes d
considered in this thesis, such a d; always exists.

For elliptic curves, Cassels showed that this pairing is non-degenerate and alternating
after dividing by maximal divisible subgroups (see Poonen et al. 1999). In particular, if
the Shafarevich-Tate group is finite, its order must be a perfect square. This was later
generalized by Tate for abelian varieties over K, who showed that the pairing is non-
degenerate after dividing by maximal divisible subgroups. Note that any polarization ¢
on A gives rise to a pairing

()¢ TI(A/K) x II(A/K) — Q/Z,
(d,d')y = (d, ¢d)

Tate also showed that this pairing is alternating if ¢ was a polarization arising from K-
rational divisor. Such a polarization need not exist in general, and one can find examples
where the order of the Shafarevich-Tate group is not a perfect square (see Poonen et
al. 1999). Flach later showed that such a pairing is anti-symmetric if ¢ is a principal
polarization. Note that anti-symmetry and skew-symmetry are equivalent whenever
2 # 0. Hence for principally polarized abelian varieties A with finite Shafarevich-Tate
group, the order of its p-primary part will always be a perfect square when p is an odd
prime, and the order of the entire group will either be a perfect square or twice a perfect
square. In their 1999 paper, Poonen and Stoll associated a class ¢ € H'(K, A) to any
principal polarization, and showed that the order of III(A/K ) is a perfect square if
and only if (¢,c) = 0. Moreover, by using this ¢ they constructed a modified pairing
(+,-)¢ which is non-degenerate and alternating if and only if (c,c) = 0.

14



Chapter 3

Modular abelian varieties

This chapter serves as a brief introduction to modular forms, Hecke operators, newforms
and the abelian varieties associated to newforms. Additionally notation is introduced at
the end of the section, and several propositions are formulated which will prove fruitfull
in later sections. Most propositions and proofs originate from Diamond et al. 2005, and
the reader is encouraged to read this book for a broader exposition of the topic.

3.1 Modular forms
Consider the complex upper half plane
H={z € C|Im(z) >0}

with the natural topology. Define an action of SLs(Z) on H, by letting

a b at +b a b
(c d>Tc7'—i—df0r all (c d)GSLQ(Z)

For any 7 € H, define the lattice A; = Z + 77, and consider the corresponding elliptic
curve B = C/A;. Then 71,7 € H give rise to C-isomorphic elliptic curves if and only
if there exists a v € SLy(Z) such that y71 = 72 (see Silverman 1994, Lemma 1.2) . As
—1I acts trivally on H, we can further impose that v € T'g(1) = SLo(Z)/{%I}, and we
define Yj(1) = Tp(1)\H. In greater generality, for integers N > 1, define the congruence
subgroup

T'o(N) = <Z Z)eSLQ(Z) c=0 mod N},

and let Yo(N) = T'o(N)\H. This space is Hausdorff, and can be compactified by adding
a finite number of points of P!(Q), known as the cusps of I'g(N). This compactification
is called the classic modular curve of level N and is denoted Xo(NN). It carries the
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structure of a Riemann Surface. Let {ai,...,a,} be a set of coset representatives of
I'o(N) in SLa(Z). The cusps of I'g(N) are then given by the orbits of a,(c0) under the
action of I'g(N). It can occur that two corepresentatives correspond to the same cusp
of Fo(N) .

Intuitively, the classical modular curve parametrizes isogenies between elliptic curves
with cyclic kernel isomorphic to Z/NZ; Any point in Yy(N) corresponds to an isomor-
phism class of elliptic curves, together with a finite cyclic subgroup of order N. Consider

the matrix
N 0
0o 1)°

It acts as multiplication by N on H. For any 7 € H, the lattices Ay, and %Z + 7%
are homothetic, hence they give rise to C-isomorphic elliptic curves. The second lattice
contains A, as a sublattice of index N, and therefore gives rise to an isogeny of degree
N. Hence to any 7 € H, we associate the short exact sequence of algebraic groups

0— (%Z”Z)/(ZMZ) ~C /(z+2) %@/(}VZMZ) — 0.

Two points 71,72 are then equivalent if there exists some v € SLg(Z) inducing an iso-
morphism between the elliptic curves in this sequence, and this holds if and only if
v €Ty (N)

Let f : H — C be a continuous function, for any integer £ > 0 and v € GL;(Q), the
weight 2k operator is defined as

Fl2u(r) = det(1)* (e +d) 7 (),
where ¢ = ()21 and d = ()22 are the coeffcients of .

Definition 3.1. Let £ > 0 be an integer. A weakly modular function of weight 2k
and level N is a meromorphic function f : H — C that f remains meromorphic when
extended to all the cusps of T'g(N) and satisfies the level N modularity condition:

f (aT—i_b) = (er + d)*! f(7) for all (CCL 2) € I'o(N).

ct+d

A modular form is a weakly modular function that is holomorphic on H and all the cusps
of I'g(IV). If it moreover vanishes at all the cusps of I'g(N), it is said to be a cusp form.

A modular form can eqivalently be defined as a holomorphic function that is weight
2k invariant for all v € T'o(N), that is f[y]sx = f. Consider the matrix given by
a=b=d=1and ¢ =0. It is contained in T'y(N) and acts on H by addition of 1. Hence
by the modularity condition any modular form f must be periodic. In particular, it can
be expressed as a Fourier series

[e.e]

[ = Z anq"
n=0
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where ¢" = €2™7. A modular form then vanishes at infinity, if and only if ag = 0.
Consider the set of coset representatives {aq,...,a,} of T'o(IN) in SLg(Z). Since f is a
modular form with respect to T'o(V), its weight 2k conjugates f; = flo;]ox are modular
forms with respect to the groups a;lI‘O(N)aj. Moreover they satisfy fj(co) = f(y;),
where y; is the cusp corresponding to a;;. Hence f is a cusp form if and only if ag = 0 in
the fourier expansion of f; for all j. A typical example of a modular form is the modular
discriminant

Am)=q ][ -q"*
n=1

which sends 7 to the discriminant of the Weirestrafl equation of the elliptic curve as-
sociated to 7. The collection of cusp forms of weight 2k carry a natural structure of a
C-vector space and is denoted Soi (V). This space admits the following inner product.

Definition 3.2. Let N > 1 andk > 0 be two positive integers. The Petersson inner
product is defined as the pairing

(-7 > : SQk(N) X SQk(N) — (C,

1 N 2k
(1:9) = ST o] Jay o F I 0,
_dx

where dv(x + iy) = ygy denotes the hyperbolic volume.

Since Xo(/NV) carries the structure of a Riemann-Surface, the notion of holomorphy is
well-defined on it, and we can fix an atlas {V}};cs on it. Let 7; € V; and let v € T'o(IV)
be given. Letting dr; denote the standard differential of 7, simple computation shows
that d(yr;) = (et + d)~2drj. Thus, for a modular form f = (g;); of weight 2k, the
object (g; (Tj)dTJk)jeJ is I'g(IN)-invariant, and hence a differential k-form wy on Xo(V).
It follows from the theory of automorphic forms that this wy is a holomorphic k-form if
and only if f vanishes at all the cusps of Xo(/N) (see Diamond et al. 2005, Chapter 3).
Moreover, any holomorphic k-form is induced by a weight 2k cusp form, and as distinct
modular forms give rise to distinct differentials, this proves that the map

Sau(N) = H (Xo(N), U,y ) (3.1)
f=wr

is an isomorphism of C-vector spaces.

3.2 Hecke operators

Since the set of modular forms is a C-vector space, one can speak of operators on this
space. A type of operator that is of particular interest in the theory of modular forms
is the Hecke operator. Let p be a prime number and consider the matrix

p_(g) g).
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This matrix acts as division by p on H, and therefore gives rise to a degree p isogeny
E; — E.,, for any 7 € H. In particular, it shows that the point 7 /p is p-isogenous to
7 on Yg(N). Let v € I'g(N) be any matrix, as v does not necessarily commute with P,
the points y7/p and 7/p need not be congruent modulo I'y(N') and hence correspond to
different points on Yy(N). In this case the composition E; — E., — E.;/p is another
isogeny of degree p, and hence gives rise to another p-isogenous point on Yp(V). In fact
all p-isogenous points of Yy(N) are realized by such a composition. This leads to the
study of the distinct points of Yy(N) are p-isogenous to 7.

Any p-isogeny respecting the level N structure is given by an element of PTo(N). Two
points in H are in the same class of Yy (V) if they are in the same I'g(N) orbit. Hence the
distinct p-isogeny classes given a certain point in Yy(N) are in one to one correspondence
with the orbits of T'o(N)\Io(N)PLo(N).

Definition 3.3. Let f be a weakly modular function of weight 2k and level N, and
let p a prime number. Let {f;};cs be a set of coset representatives of the orbits of
Lo(N)\Io(N)PTo(N). The p-th Hecke operator acting on f is defined as

To(f) =Y f1Bilas-

JjeJ

The Hecke operators can be described explicitly if given a set of orbit representatives
{B;} as in Definition 3.3. By Diamond et al. 2005, Lemma 5.1.2, giving such a set is
equivalent to giving a set of orbit representatives {;} for the action I'3s\I'g(N), where
[ = (P7To(N)P)NTo(N), via the identification 8; = Pv;. Observe that

PITG(N)P = (“ Zb) € SLy(Q) (Z Z) € To(N)

Do

Hence

Ty = (Z Z)eSLQ(Z) c=0 mod N, b=0 mod p

Hence T's is given by all matrices of I'g(N) subject to the addtional condition that b = 0
mod p. Consequently, a natural choice of coset representatives would be given by

1 .
%’Z(O ‘i>,0§]<p'

Clearly the ~; are in distinct I's orbits. Let v € I'g(NV), then  is contained in the orbit
of v; if and only if fyfy;l € I's. Observe that

1 _[a b—aj
T (c jc+d>’
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hence v is contained in the 7; orbit if and only if b —aj = 0 mod p. Such a j exists if
and only if p { a, since p cannot divide a and b simultaneously. If p | N, then p divides
c and by the same argument, it follows that p t a. In this case it follows that {v;} is a
complete set of orbit representatives for I's\I'o(N). If p t N, there exist m,n € Z such
that mp — nN = 1. Define the matrix

_[mp n

and assume that p | a. Then

1 _ [a—bN bmp—an
Voo _<c—dN dmp—cn)eFS’

and hence {v; | 0 < j < p}U{ys} is a complete set of orbit representatives. By applying
Diamond et al. 2005, Lemma 5.1.2, it follows that

forms a complete set of orbit representatives for I'o(IN)\To(N)PTo(N). Note that 5. can
be replaced with the multiplication by p-matrix S, as the first matrix in the product
is contained in I'o(N). Hence, the p-th Hecke operator admits the following explicit
description

1222 /r4\ 1
p;}f( » )‘i‘pf(pT)a ptN

1 ! T+
! f( ) p|N
p="\»p

Working recursively, Hecke operators can be defined for any n > 0.

Tof(r) = (3:2)

=S

<

\

Definition 3.4. The n-th Hecke operator for any n > 0 is defined by the relations
1. Th=1
2. Ton =TTy, if (myn) =1
5 T, = Ty —p* T2, piN
TpTyr—, p| N

Since Hecke operators are sums of weight 2k-operators, they preserve the space of mod-
ular forms and the space of cusp forms. Of particular interest are those forms that are
eigenvectors for all Hecke operators simultaneously. Such forms are called Hecke eigen-
forms. Hecke operators play an integral role in determining the structure of modular
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form. In fact, the fourier transform of a modular form can be described entirely in terms
of the fourier transforms of the Hecke operators. Hecke eigenforms allow an even more
explicit description.

Theorem 3.5. Let f = > >° jan(f)¢" be a modular form of level N and weight 2k.
Then for any n > 0, we have the equality

an(f) = ar(Tnf).

If f is an eigenform for 7T;, with eigenvalues A,, then
an(f) = ar(Tuf) = Mar(f)-

Proof. A more universal statement and proof can be found in Diamond et al. 2005, most
notably Proposition 5.3.1. O

If f is an eigenform for all n coprime to N such that a;(f) = 0, then Theorem 3.5 shows
that an,(f) = 0 for all n coprime to N. The main lemma of Atkin-Lehner theory states
that any such cusp form can be expressed as a sum

f(r) = ng(pT), for some g, € Sar(N/p).
pIN

These kinds of cusp forms are examples of old forms.

Definition 3.6. The old subspace Sop(N)°' is the subspace of level N cusp forms
spanned by all

f(r) = g(dr),

where ¢ is a level M cusp form with M a proper divisor of N and d | N/M. An
oldform is an element in the old subspace. The new subspace S (N )"V is the orthogonal
complement of the old subspace in the space of cusp forms under the Petersson inner
product . A level N newform is a Hecke eigenform in the new subspace such that a1 = 1.

Both spaces are preserved by the Hecke operators (see Diamond et al. 2005, Proposition
5.6.2) Notice that an eigenform can be a newform at atmost one level. This level is
called the conductor of f. A strong theorem states that any modular form in the new
subspace that is an eigenform for all Hecke operators away from the level, is in fact an
eigenform for all Hecke operators (see Diamond et al. 2005, Theorem 5.8.2) This thesis
will focus primarily on weight 2 newforms as they retain strong algebraic properties.

Proposition 3.7. Let f = > | ang" be a level N newform of weight 2. Then a, is a
real algebraic integer for all n.

Proof. Recall that the Jacobian of X((N) is given by
0 1 *
To(N) = HY (Xo(N). %) /1, (0 (3), 2.
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Hence the isomorphism in (3.1) allows us to identify

Jo(N) = S2(N)* /HI(XO(N),Z)- (3.3)

Note that the Hecke operators acts on So(N)* by composition. By Diamond et al. 2005,
Proposition 6.3.2, this action of Hecke operators induces an action on the Jacobian of
Xo(N). In particular it acts on the finitely generated abelian group H;(Xo(N),Z). This
shows that the characteristical polynomial of 7;, has integer coefficients, and as it is
monic, all of its eigenvalues are algebraic integers. Hence by Theorem 3.5, a, is an
algebraic integer for all n. The Hecke operators T}, for n coprime to N are self adjoint
with respect to the Petersson inner product (Diamond et al. 2005, Theorem 5.5.3).
Consequently, their eigenvalues are real and hence so is ay, for n coprime to N. It now
follows from the Strong Multiplicity One theorem that a, is real for all n. O

3.3 Abelian varieties associated to newforms

Proposition 3.7 shows that all coefficients of a weight 2 newform f are real algebraic
integers. In particular, the field of coefficients of f is a real, algebraic extension of Q.
Since the Hecke operators act on the finitely generated abelian group Hi(Xo(NV),Z), this
field satisfies even stronger properties.

Definition 3.8. The Hecke algebra of level N is the endomorphism ring of Sa(N) gen-
erated by the Hecke operators,

Ty = Z[T, | n € N].

As the Hecke algebra acts on Hi(Xo(NV),Z), this ring is a finitely generated Z-module
of rank at most 4gy, where gy is the genus of Xo(N). Let f be a weight 2 newform of
level N, and consider the map

)\f : TN — @,
T, — al(Tnf)'

Denote its kernel by Z¢. This homomorphism surjects onto the coefficient ring of f and
hence induces an isomorphism

As:Tn/Zy = Zlay, | n € N].

In particular, this ring is a finitely generated Z-module and its field of fractions is hence
a real number field. Moreover, Gal(Q/Q) acts on the space of cusp forms by acting
on the coefficients of the fourier expansion of a cusp form. Since this action commutes
with the action of the Hecke operators, f7 is again a newform for any o € Gal(Q/Q). In
particular all its coefficients are real, and hence the field of coefficients F' = Q(a,, | n € N)
is a totally real number field.
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It follows from the construction of Hecke operators that their action on Jy (V) is given by
regular maps. Moreover, as the Hecke operators respect the group law on Jy(IN), they are
morphisms of abelian varieties. Hence Ty can be realized as a subring of End(Jo(N)).
The image of a morphism « : A — B between abelian varieties is an abelian subvariety
of B. Hence for any a € Zy, a(Jo(NN) is an abelian subvariety of Jo(V), and since Zy is
finitely generated, it now follows that

Tr(Jo(N)) =Y a(Jo(N)) C Jo(N)
aEZf

is an abelian subvariety of Jo(NN) as well. This obervation together with the following
proposition allows us to construct the abelian variety Ay associated to f.

Proposition 3.9. Let A be an abelian variety and let B be an abelian subvariety of
A. Then there exists a unique abelian variety C' together with a surjective morphism
of abelian varieties ¢ : A — C such that ker(y¢) = B, satisfying the following universal
property: For any surjective morphism of abelian varieties g : A — D, with B C ker(g)
there exists a unique morphism ¢’ : C — D such that the following diagram commutes.

A5 D
l“”%
C

Moreover, dim A = dim B + dim C.

Proof. A proof can be found in Perret-Gentil 2014, Proposition 1.56 and Polishchuk
2003, Section 9.5. O

Thus for any newform f of weight 2 and level N we define the abelian variety Ay as
Ag = Jo(N)/Z; (Jo(NV)): (3.4)

As Jy(N) is defined over Q, so is Ay. An abelian variety A defined over Q admitting a
surjective morphism oy : Jo(N) — A is called a modular abelian variety. In fact it can
be shown that any modular abelian variety is isogenous to a product of abelian variety
Ay associated to newforms f (Ribet 1992, Theorem 4.4). The modularity of Ay gives a
strong insight in its structure. An immediate concequence is that Ay has conductor N.

Proposition 3.10. Let A = Ay be an abelian variety associated to a weight 2 newform
f of level N, and let F = Q(a, | n € N) be the field of coefficients of A The following
statements hold.

1. A has dimension g = [F': Q).
2. A has real multiplication by the order O = Z[a, | n € NJ.

3. All real multiplications a € O4 of A are defined over Q.
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Proof. Let gy denote the dimension of Jy(N). By Proposition 3.9, the first statement
is equivalent to the condition that dimZ¢(Jo(N)) = gy — [F : Q]. Consider the short
exact sequence of free Z-modules

0—7Z; =Ty — Zan | n € N] = 0.
Extension of scalars gives rise to an exact sequence of C-vector spaces
0—=Z;®C— Ty ®C — CFU 0.
Denote T¢c = Ty ® C and consider the pairing
Te x S2(N) — C, (T,9) — a1(Tyg).

This pairing is non-degenerate and hence induces an isomorphism h : T¢c — Sy(V)*.
In particular its dimension as a C-vector space coincides with the dimension of Jo(V)
as well as the rank of Ty (by equation (3.3)). Hence by the exact sequence above,
dimZy ® C = gy — [F : Q]. This vector space acts on Sa(N)* by composition on the
right. On the other hand, as Z; ® C is an ideal in T¢, and since h is an isomorphism, this
action coincides with ideal action of Zy®C on T¢. Hence the image of this action is simply
Z¢(S2(N)*) ® C, which allows the identification Z; ® C = Z¢(S2(N)*) ® C. By linearity,
this is the same space as the space generated by the action of Zy on Sy(NV)*, whose
dimension as a C-vector space coincides with the dimension of the variety Z;(Jo(V)).
We conclude that dimc Zy ® C = gy — [F' : Q] as required.

The action of the Hecke algebra Ty on Jy(IN) decends to an action on Af. The kernel
of this action is precisely the group Ty and hence the quotient Tx /Zy acts faithfully on
Ay. As this ring is naturally isomorphic to Z[a, | n € N|, we conclude that this order
acts on Ay. In particular, this gives an injection F' — Q ® Endg(A). Any number field
L acting faithfully on Ay, must act faithfully on Lie(A/Q) by functoriality. As this is a
Q-vector space of dimension dim Ay = [F : Q], the dimension of L is bounded by [F' : Q).
Hence F is the largest field that can act faithfully on Ay, and we conclude that A; has
totally real multiplication by the order Z[a,, | n € N]. This proves property the second
statement.

The third statement follows directly from the fact that the Hecke operators are defined
over Q. O
In proving Proposition 3.10, the following useful proposition was also proved.

Proposition 3.11. Let A = A; be a modular abelian variety associated to a newform
[ =721 anq" of conductor N Then for any p{ N, the following diagram commutes:

Jo(N) —2= Jo(N)
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For the rest of this thesis, unless otherwise stated, A will always be a modular abelian
variety of the type constructed above, and N will denote its conductor which will hence-
forth be assumed to be square-free. The notations O4 and F' are used to denote the
order and number field as described in Proposition 3.10. Moreover, we a ssume that A
admits a principal polarization.

3.4 The Eichler-Shimura relation

Let p be a prime number not dividing N. Since Xy(N) is a projective curve of conductor
N, it has good reduction modulo p. Denote the reduced curve by Xo(N), and define the
Frobenius map Fr,, : XO(N ) — XO(N ), raising all coefficients of a point P to the p-th
power. Since Xo(N) is a curve, its divisors are generated by the points on Xo(N), hence
the Frobenius map induces a forward map Fr, , on the set of divisors via

(P) = (Frp(P)).
It also defines a reverse map Frj, via
(P)= Y eq(fn)(Q),
QeFr, 1(P)

where eg(Fr,) denotes the ramification degree of Fr, at Q. As the Frobenius map is
bijective and ramified of degree p everywhere, the second expression can be simplified to

(P) = p(Fr, ' (P)).

Both maps reduce to a map on Pic’(Xo(N)). Since the Picard group is canonically
isomorphic to the Jacobian Jo(N), these two maps give rise to endomorphisms of Jy (V).
In particular, the composition satisfies

Fr; oFrp.=p- 1End(jo(N))

Furthermore, the Eichler-Shimura relation states that the diagram

Jo(N) —2 Jo(N)

(3.5)

~ Fr;;—‘,—Frp#* ~
Jo(N) —— Jo(N)

commutes (see Diamond et al. 2005, Theorem 8.7.2). Finally Proposition 3.11 gives the
relation
ap O O f :afoTp.

By abuse of notation, write Fr,, for the composition oy oFry, .. Using the Eichler-Shimura
relation and composing with Fry, ., now gives the following relation in End(A(F}))

Frf, — aiFr, +p =0. (3.6)
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Fix an extension p of p in Q, and denote by Frob(p) its Frobenius element. Observe
that its action on A(F,) coincides with the action of Fr, and therefore satisfies the same
characteristical polynomial in End(A(F,)). Henceforth, we will refer to Frob(p) as the
Frobenius symbol of p in @ and its natural restrictions to all subfields.

3.5 The Fricke involution

(o -1
UN=AN o

It gives rise to the degree 2 map 7 +— K,—i on Xo(N), known as the Fricke involution.
The associated weight 2 operator [wy]2 acting on the space of cusp forms S3(IN) has
degree 2, hence its characteristical polynomial is given by X2 — 1. As this operator acts
non-trivially, its minimum polynomial coincides with its characteristical polynomial, and

its eigenvalues are +1.

Consider the matrix

Proposition 3.12. The Fricke involution [wy]e commutes with Hecke operators T, for
any n coprime to V.

Proof. Let p{ N be a prime number. Recall that the Hecke operator T}, can be described
explicitly in terms of the coset representatives j;, as described in (3.2). Hence it suffices
to show that conjugation by wy permutes the orbits of the 8;. A direct computation
shows that w;,l Bocwn = By, and as w&l = —Nlwy, the converse equation holds as
well. Hence conjugation by wy permutes the orbits of Sy and B,. For j,j’ # 0,00, a
direct computation shows that the equation wyf5; = Afjwy has a solution A € I'g(N)
if and only if p | 1 + Njj'. Hence for any j # 0,00, conjugation by wy maps the
orbit of 8; onto the orbit of 8;/, where j/= —(Nj)~! mod p. It follows that the Hecke
operator T}, commutes with the Fricke involution. The statement now follows for general
n coprime to N as every Hecke operator can be written uniquely as a composition of
Hecke operators of prime degree. O

Let f € S2(N) be a newform. Since [wy]s commutes with the Hecke operators T,
coprime to N, the cusp form f[wy,]s is again an eigenform for these operators with the
same eigenvalues as f. It therefore follows by Diamond et al. 2005, Theorem 5.8.2.b)
that flwy]a = cf for some constant ¢ € C, and hence that f is an eigenform for the
Fricke involution, and ¢ = 4+1. The Fricke involution plays an important role in the
structure of L-functions associated to newforms. In fact, the eigenvalue € of a newform
f is the negative of the sign of the L function of f at 1 (see Ribet and Stein 2011,
Theorem 16.1.4) .
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Chapter 4

Chebotarev Density Theorem

This short, technical chapter introduces several lemmas, necessary for later chapters.
Of particular interest is Corollary 4.3.1 which plays an integral role in the proof of
Proposition 6.6.

From now on assume that K is an imaginary quadratic number field of discriminant
D # 3,4 and that N splits completely in K. Let p be rational prime such that

L. pt6DNp(N),
2. p is unramified in F' and invertible in O 4,

3. For all p extending p in O4, the map p, : Gal(Q/Q) — GL2(Oy) surjects onto the
subgroup
{9 € GL2(Oy) | det(g) € Z,}.

Note that these conditions hold for all but finitely many primes p, (see Longo et al.
2013, Lemma 3.7). Let p be any prime of Q4 extending p and let M > 0 be an integer.
Denote L = K(Ayu), and Oy = Oq/pM.

Lemma 4.1. There is a natural injection of Gal(L/Q)-modules
HY(K, Apr) < H'(L, Apn) = Hom(Gal(Q/L), Ay ).

Proof. Let p be the rational prime below p. As N splits completely in K, it is neces-
sarily coprime to D. As by assumption p is coprime to D as well, the fields K and
Q(Ay) are disjoint over Q, hence so are the fields K and Q(A,). We obtain that
Gal(K(Ay)/K) = Gal(Q(Ay)/Q). This group naturally injects in § = Gal(L/K),
and contains the cyclic subgroup F; of order p — 1. As p — 1 is coprime to p it
naturally follows that H™(F,, Ajm) = 0 for all n > 1. For n = 0, we have that
HO(F3, Agu) = (APM)F; = 0. Inflation-restriction, now gives an exact sequence

0 = H"(G/Fy, (Ag)'7) = H™(G, Apwr) — H(Fy, Agr).
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By the above, the last term vanishes and as (ApM)]F; = 0 the first term vanishes as well,
hence H"(G, Ayn) = 0 for all n > 1. Using inflation-restriction again, we obtain an
exact sequence

0— Hl(g, Ap]\/j) — HI(K, Ap]\/l) — HI(L, ApM)g — HQ(Q, ApM)
The vanishing of the outer terms now induces an isomorphism
HY(K, Apv) = HY(L, Ayn )Y,

which concludes the proof. O

Proposition 4.2. Let C' C Hom(Gal(Q/L), A,u) be a finite G-submodule, free of rank
r over Oys. Then there exists a finite Galois extension Lo /L such that there is a natural
isomorphism

Gal(L¢/L) = Homg(C, Ayar),
o (a— alo)).

Proof. Let C be given as in the proposition, let az, ..., a, generate C' as an Op;-module,
and let H = Nker(a;). As each of the kernels in the intersection is an open normal
subgroup of Gal(Q/L) of finite index, so is its intersection. Hence LY is Galois over L,
and we have a natural injection Gal(L* /L) — Homg/(C, Aga). Thus it remains to show
that the map

Gal(@/L) — Homg(c, APM)

is surjective. We proceed by induction on r. Observe that there is a natural isomorphism
of free Ops-modules of rank 2r

HOIng(C7 Ap]\/[) 1> HOng(C/<0q>, ApM) X Homg(<a1>, APJW)7
¢ = (¢1, P2)

Where ¢ and ¢9 are the natural projection and restriction. Consider the fields Lo (q,)
and L,,). By the induction hypothesis, their Galois groups over L can be viewed
as subgroups of Gal(L¢/L) and they carry the structure of free Op-modules. Hence
so does the Galois group G of the intersection Lcy(q,) N La,). We claim that G is
trivial. The fact that the intersection is a subfield of L), shows that the group G is
a submodule of Gal(L,,)/L). Consequently the image of G under the evaluation map
is contained in the (a1) component of Homg(C, Ayu). Since G is also a submodule of
Gal(L¢/(a,)/ L), it follows from the same argument that the image of G is contained in
the C'/(a1) component of this group. The intersection of these components is trivial,
hence by injectivity of the evaluation map, so is G. In particular, the fields have trivial
intersection and are therefore linearly disjoint over L.

Let ¢ € Homg(C, Ayar). By the induction hypothesis, there exist o, 7 € Gal(Q/L) such
that ¢1 = ¢, and ¢2 = ¢,. Since the fields are linearly disjoint, we can impose that
o € ker(a) and 7 € N;>1 ker(qy). It follows that ¢ = ¢or, and thus the map is surjective.
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To prove the statement for » = 1, we observe that evaluation at « induces an isomorphism

Homg ({a), ApM) = ApM.

Hence, let R € Aym, and consider the exact sequence

M—1
0— Aprl — ApM r, Ap — 0.

As a has order pM | there must exist a o € Gal(Q/L)) whose image has order pM. Let Q
denote the image of this 0. Without loss of generality we may assume that R has order
pM. As A, is a simple G-module, there exists an 1 € G such that

n*prlQ :prlR.

As the action of G commutes with addition, it follows that R — a(n x o) € Agm-1.
Surjectivity now follows inductively by repeating this procedure for Ay 1. O

Let C be a free Ops-submodule of H'(K, Ay ) of rank 7. We can identify C' as a subgroup
of Hom(Gal(Q/ L), Aym) by Lemma 4.1, and hence find a Galois extension L¢/L with
Galois group isomorphic to Homg(C, Ayn). Remark that these homomorphisms are in
fact Ops-linear homomorphisms. Write ¢ = ¢, for ¢ € Homg(C, APIW) and let A\ be

any prime of K. Fix an extension Az, of A to L and denote its decomposition group in
Gal(L¢c/L) by G(AL, L¢). Then for any ¢ € C,

ey =04 ¢y(c) =0 for all 0 € G(Ar, L¢) (4.1)

Fix 7 € Frob(co), as its action on A, satisfies the equation 72 =1, its eigenvalues are
+1, and as the order of Ay is odd, Ay,m decomposes as a sum of its T-eigenspaces,

APM = (ApM)+ D (ApM)_.

As pis odd, the e, pairing is non-degenerate, alternating, and preserved by 7. It is easy
to verify that (Ayw)™ and (A, )~ are isotropic subgroups with respect to e,u. Observe
that Aym = (On)? as a module. As the order of an isotropic subgroup is bounded
by the square root of the order of the group, it follows from the above decomposition
that the eigenspaces must both be isomorphic to Oys. Consider the group of T-invariant
Ops-linear maps h : HY(K, Agm) — Apum. As the image of any such function must be

T-invariant, it is valued in the +1 eigenspace of 7. Hence we obtain
Homo,, (H' (K, Ayn), Ay )™ 22 Homo,, (H' (K, Agn), Onr).
On the other hand, we can identify

HY(K, Ap)* = Homg(H' (K, Aym), Q/Z)
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as a Opr-module. A simple counting argument shows that both modules are isomorphic
to HY(K, Agn) as modules. As both are modules of 7-invariant functions, this allows
for a natural identification

Homo,, (H' (K, Agn ), Apar )™ =2 HY (K, Agn)*

This identification allows us to associate a ¢ € Gal(L¢/L) to any ¢ € C*, and hence a
collection of primes of Q. This is illustrated in the following proposition.

Proposition 4.3. Let M > 1 be an integer. Let C be a finite submodule of H*! (K, Agnr),
identify C* with Hom(C, ApM)M, and let ¢ € C*. There exist infinitely many prime
numbers [, unramified in L such that

1. Frob(l) = Frob(co) in Gal(L/Q),

2. ¢ = drrob(n) for some prime N of L extending I.

Proof. Note that the second condition is sound as the extension L¢/L is abelian. Let
o € Gal(L¢/L) be the automorphism such that ¢ = ¢,. Since the order of Gal(L¢c/L)
is odd, and since o is contained in the +1 eigenspace of 7, there exists a unique p €
Gal(L¢/L) such that o = p”p. Notice that 7 acts by conjugation and is its own inverse,
hence the expression simplifies to ¢ = (7p)2. By the Chebotarev Density Theorem there
exist infinitely many unramified primes [ such that 7p € Frob(l). As 7p|r, = 7, condition
1 is satisfied. In particular, [ has degree two in L/Q. Thus, for any prime X of L above
I, there exists a n € Frob(l) such that n? = Frob(\). Thus, for appropriate choice of X,
we conclude that Frob(\') = o. O

Corollary 4.3.1. Let c1,....,c, € H'(K, Agnm) be independent elements of order pMi
respectively. Then for all 0 < N; < M; there exist infinitely many prime numbers ! such
that

1. Frob(l) = Frob(co) in Gal(L/Q),

2. For A the unique prime of K extending [ we have
ord ¢; \ = pNi for all 1 <i <n.

Proof. Let C = {(cq,...,¢.), as the ¢; are independent, there exists a ¢ = ¢, € C*
such that ord ¢(c;) = p™i. By Proposition 4.3, there exist infinitely many [ such that
Frob(l) = Frob(oo) in Gal(L/Q) and o = Frob()') for some X\’ extending . By condition
1, [ is inert in K, hence ) extends X as well. Choose [ outside the finitely many prime
numbers that ramify in Lo, The decomposition group G(N, L¢) is then cyclic and
generated by . Thus we conclude from (4.1) that ord ¢;, = ord ¢, (c;) = p™¢ which
concludes the proof. O
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Chapter 5

Heegner points

Since K is an imaginary quadratic field and N is split in K, the abelian variety A comes
equipped with a family of Heegner points defined over the ring class fields of K. The
Heegner points give rise to a family of cohomology classes cpr(n), which will later be
shown to generate the Sharaevich-Tate group.

In the first section the construction of Heegner points is illustrated as well as the coho-
mology classes associated to them. Moreover, it provides an explicit description of these
cohomology classes (Lemma 5.3), and gives an upper bound on the order of said classes.
The second section provides a proof of a theorem by Kolyvagin (Theorem 5.5), which
expresses strong relations between the cohomology classes cps(n). This theorem lays the
groundwork for the structure theorem in Chapter 6.

5.1 Cohomology classes associated to Heegner points

Let n be a positive square-free integer whose prime factors are inert in K. Let O, =
Z + nOg be the order of conductor n, and let K,, be the corresponding ring class field.
Recall from class field theory that for coprime [ and m as above, the ring class fields
K; and K,, are linearly disjoint over K7 and satisfy K;K,, = K,,. Consequently let
Gpn = Gal(K, /K1), then G, =[], Gi where [ runs over all primes dividing n. The
group G is cyclic of order [+ 1, and there is a natural isomorphism G; = Gal(K,, /K, ).
Henceforth these groups will be regarded as the same object.

As N splits completely in K, there exists an ideal N C O such that O /N =2 Z/NZ.
For n as above consider the ideal N,, = N N O,,. Since (N,n) = 1, all prime factors of
N,, are invertible, and the residue is given by O,,/N,, = Z/NZ. This yields an inclusion

O, cN;'cc
and hence a short exact sequence of algebraic groups

0N, 10, = C/O0, I C/N; L = 0.
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Notice that r, : C/O, — C/N, ! is an isogeny of elliptic curves with kernel isomorphic
to Z/NZ. Hence 1, induces a point z, € X(N)(C). In fact, since C/O,, has complex
multiplication by O,, the pointz, is defined over K,. Define the Heegner point of
conductor n on A as

Yn = ap((zy) — (00)) € A(Ky).

Define the Heegner point associated to K as

yr = Trg, /i (y1)-

For a prime [ let o; be a generator for G, and denote by Tr; the object ZaeGl o € Z[Gy).
Let D; € Z[G)] be given by

l
§ . %
Dl: 10
i=1

It satisfies the equation
(Jl—l)~Dl=l+1—TI‘l. (51)

For n as above define D,, = [[ D;. Let G, = Gal(K,,/K), and let S be a set of coset
representatives of G, in G,. Observe that there is a bijection S <> Cl(Of). Finally
define the derived Heegner point of conductor n, to be the point

P, = Z U(Dnyn) € A(Kn)
oesS

Observe that

Pr=>Y o) =Trg, k() = yx.
ceS

Definition 5.1. Let M > 1 be an integer. An M-Kolyvagin prime is a prime number [
such that

1. [ is inert in K,
2. q;=1+1=0 mod pM.

Further, define S(M) to be the collection of square-free products of such primes. For
integers r, let S.(M) be the subset of S(M) consisting of integers with exactly r prime
factors.

An equivalent definition of an M-Kolyvagin prime is any prime number [ such that
Frob(l) = Frob(oo) C Gal(K (A,um)/Q).

To see this, notice that two elements 0,1 € Gal(Q(A,x)/Q) are in the same conjugacy
class if and only if their characteristical polynomials in GLa(Ayum) are equal. As Agm
injects into A(F;), it follows from (3.6) that the characteristical polynomial of Frob(l) is
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given by T? — ;T + I, whereas the characteristical polynomial of Frob(co) is known to
be T2 — 1. We hence conclude that condition 2 is equivalent to

Frob(l) = Frob(oo) C Gal(Q(A,n)/Q)

The property that [ is inert in K implies that Frob(l)|x = 7, proving the equivalence.
While it follows from the condtions above, it is useful to point out that N, D and p are
pairwise coprime and that any prime [ as above will never divide the product N Dp.
Further notice that there are inclusions S, (M + 1) C S, (M).

Proposition 5.2 (Gross 1991, Proposition 3.6). Let n € S(M), then A, (K,) = 0 and

P, € (A(Ky) /p™ A(K,)) "

Proof. The first statement follows directly from Longo et al. 2013, Proposition 3.9 as the
Galois group Gal(K,/Q) is solvable. To prove the second statement, it suffices to show
that Dy, € (A(K,)/pMA(K,))%". Let [ be a prime dividing n, and write n = mi.
Using the equality D,, = D;D,, and (5.1) we obtain

(07— 1) Dpyn = (1 +1 = Tr;)Dpyn, (5.2)

It follows from Kolyvagin and Logachév 1989, Equation 2.1.4 and Proposition 3.10 that
Tri(yn) = a; - Yym € A(Ky,). Hence it follows from 2 that

(01 = 1)Dyyn = 0 € A(Ky) /pM A(K)

and thus o;Dpyn = Dpyn € A(Kn)/pMA(Kn). Since G, is generated by these o7 we
conclude that

Dy € <A(Kn)/pMA(Kn)>Gn

d

Using these points, Kolyvagin was able to construct cohomology classes in H!(K, Apnr)
in the following manner. Consider the diagram:

0 —— A(K)/pMA(K) ——— HY(K, Apn) —— H'(K, A)yjy — 0

| n e

0 —— (A(K) /pM A(K))9" — HY (I, Apaa)9 =2 HY (K, A,

Notice that restriction is indeed an isomorphism since H'(K,/K, A,n) = 0 as a con-
sequence of Proposition 5.2. Define cys(n) € H'(K, Aya) to be the unique class such
that

res(car(n)) = 0n(Pr) (5.3)
and let dps(n) be the image of cj/(n) in HY(K, A).
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Lemma 5.3 (McCallum 1991). Let @, € A(K,,) be any point congruent to P, modulo

p™ and congruent to 0 modulo g for all other primes q lying above p. Then the cocycle
(0 — 1)Qn Qn Qn
O ———F— + 00— — =~
pM pM o pM

is a representant for cps(n), where (U;BQ” is the unique p-division point of (¢ — 1)@,

in A(Kp).

Proof. Let Q,, be any such point, and observe that §,(P,) € H' (K, Ayar) is represented
by the cocycle

The existence of the pM-division point of (¢ — 1)@, follows from the second statement
of Proposition 5.2 and the fact that Q,, € g™ A(K,,) for all other primes q | p. Since two
distinct p™-division points differ by a p™-torsion point, the first statement of Proposition
5.2 guarantees the uniqueness of the point. The term o — —% is a cocycle. The
expression given in the lemma is therefore a cocycle as well and it is easy to see that this
cocycle takes values in ApM. As the first term vanishes for all o € G, its restriction to
K, is precisely the representative of d,(P,) describe above. It follows that this cocycle

is a representative of cjr(n) by (5.3). O

Corollary 5.3.1. The class dy;(n) is represented by the cocycle

-1

yos T=1Q
p

Proof. The map o +— al% — 1% is a coboundary in H'(K, A). O

Corollary 5.3.2. For all integers M > 2 and n € S(M) we have

p-cp(n) = cep—1(n).

Proof. Let @, be a point as described in Lemma 5.3, and write cps(n) for the associated
cocycle. As (o — 1)@, has a unique p™-division point in A(K,), it has a unique p™—!-
division point. As multiplication commutes with the action of o € Gal(Q/K), we obtain

- 1 Qn Qn Qn
<pqmm»=—“wﬂl+mw%M—%m

(c-1@Q Q Q
T M-l - +JpM7i1 - pM: = em-1(n)o-
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Write p™ | P, if P, € pM A(K,,), and define
ordy(P,) = max{M : pM | P, }.
Observe that cpr(n) = 0 if pM | B,. In fact for M > ord,(P,) we have
ord ¢pr(n) = pM—orde(Fn) (5.4)
whenever ¢y (n) exists. Using this define
M, = min{ord,(P,) | n € Sy(ordy(FP,) +1)}.

Equivalently M, is the smallest integer M such that there exists an n € S,.(M + 1) for
which the associated class cps41(n) is non-trivial. These numbers will later shown to be
bounded and decreasing, allowing us to give an explicit descripition of the Shafarevich-
Tate group (see Corollary 6.3.2).

5.2 Kolyvagin’s Theorem

Let n € S(M), let I be a prime such that n = ml, and let A denote its extension to
K. As )\ is principal in K it splits completely in K,, by class field theory. Recall
that an extension X' of X in K,,, induces a local field extension K, /K of degree
f(N/X) = 1. Tt therefore induces an embedding K,,, < K. This observation allows us
to embed P, in A(K))/p™ A(K)), and by Proposition 5.2 the class of P, is independent
of the choice of the embedding. Recall that the Hilbert Class field K is the maximal
unramified extension of K. In particular since A is the only prime of K that ramifies
in Kj, any prime of K lying above A\ must be totally ramified in the extension K;/Kj.
Consequently, any ) extending A\ in K, must be totally ramified in K,, = K,,K; by
linear disjointness.

Let v be a prime of K dividing N (hence a prime where A has bad reduction), and
denote by Ag the collection of K *-rational smooth points of A. This subgroup is of
finite index in A(K}"), and by abuse of notation, we denote A/Ay for the quotient of
these groups. We impose that A and p satisfy one of the following conditions

1. The prime p is principal.

2. If v is a finite place of K where A has bad reduction then v satisfies one of the
following conditions:

(a) v is a principal of K,
(b) pt[A: Ag).

Notice that the second condition fails to hold for only finitely many primes p since there
are only finitely many places of K where A has bad reduction and the component group
is finite for any such place.
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Lemma 5.4 (Gross 1991). Let n € S(M), and let v be a valuation of K prime to n,
then cpr(n)y, € 6,(A(Ky)). Moreover, if v = vy for some prime [ inert in K, we have

CM(TL),\ = (5)\(Pn)

Proof. Notice that the first statement is equivalent to the vanishing of dys(n),. Clearly
if v = 0o, we have K, = C, and hence H'(K,, A,x) = 0, thus da(n), = 0. Next assume
v is finite, it follows from the construction of djs(n) that it vanishes when restricted to
H'(K,,A). Tt is therefore inflated from a class in H'(K,/K,A). As v does not divide
n, it is unramified in K,. This implies that dp;(n), acts trivially on the inertia group
I, of K,, and is therefore contained in the group H*(KY/K,, A). It follows from Milne
2006a, Proposition 3.8 that this group is trivial if v has good reduction.

Assume that A has bad reduction modulo v.

By the same lemma we have H'(KY/K,, A) = H' (K*/K,, A/Ap), where Ay denotes
the open subscheme of smooth points of A. Consider the Heegner point (x,) — (c0) on
the Jacobian Jy(NN), and let w be a valuation of K,, extending v. Then Gross and Zagier
1986, Proposition 3.1 states that either (x,) — (c0) or (z,,) — (0) is a smooth point of
Jo(N)(Kp ). Manin showed that the cusps of X (V) reduce to rational torsion points
in Jo(V), hence y, is a smooth point of A(K!") up to addition by a rational torsion
point Q. In particular, as A(Q) has no p-torsion, y, and hence P, is contained in a
group A’ containing Ay with index [A" : Ag] coprime to p. If p is principal and generated
by 7, then multiplication by 7 is an isomorphism on A’/Ag and dj;(n) is represented by

a cocycle
(c —1)P,

o= i

™

Since this cocycle is valued in A’/Aq and the class dys(n) is killed by 7, this shows that
dpr(n), vanishes. Alternatively, if v is not principal, then p does not divide the index
[A: Ag]. As the order of dys(n) is a power of p, its restriction to H'(KY/K,, A/Aq)
vanishes.

Finally, let A be an inert prime of K. By class field theory A is totally split in K.
Hence K, injects into K, and therefore P, € A(K))/pMA(K)). Its image 65(P,) is

represented by the cocycle o — Jz% — 1%’ and cps(n) is represented by

(U - 1)Qn Qn Qn

o —T + JpT/I — p—M
As @, is defined over K, the first term of this expression is determined solely by its
restriction to Gal(K,/K). As a cocycle over K, it is therefore determined uniquely
by its action on the decomposition group of A in K,,. But as A splits completely, its
decompostion group is trivial and hence the term vanishes. The statement is therefore
proved. ]

This lemma allows us to prove the following strong relation between the constructed
cohomology classes
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Theorem 5.5 (Kolyvagin 2007, Theorem 3). Let [ € S1(M), with extension A in K.
There exists a homomorphism

xi P A(Ky) = H' (K, Apur)
such that

1. for all m € S(M) coprime to | we have

CM(ml>/\ = Xl(Pm)7

2. kery; = pM A(K)) and

Xit(A(KN) /pM A(K))F) € HY (K, Ap) T,

3. x¢ induces an isomorphism

A(KR) /oM A(KY) = H' (Ky, A)pr.

Moreover, we have

ord dps(ml)y = ord cpr(ml)y = ord epr(m)y.

Proof. Let | € S1(M), with extension A in K and fix an extension A € K. Recall that
F, has degree 2 over F;. In particular, Frob(l)> = 1 in End(A(F))). Consequently it
follows that

a; — (14 1)Frob(l) = —Frob(l)(Frob(l)? — a;Frob(l) + ). (5.5)

As this is divisible by the characteristical polynomial of Frob(l), this endomorphism
must vanish on A(F)). Notice that A splits completely in K(A,n) as [ has degree two
in the extension K (A,n)/Q. In particular the extension Ky(Aya)/K)y has degree 1 and
therefore A,n can be injected into A(K)). As A has good reduction modulo A and [ is
coprime to p, reduction modulo A acts injectively on A . Let P € A(K)) be any point,
since A,u injects into A(FFy) and since the expression in (5.5) vanishes, there exists a
unique Tp € Apm such that

a; — (I + 1)Frob(l)

Al P=Tp mod A\

Denote its pM -torsion component by Tp and observe that it is K-rational. Let \; denote
the restriction of A to K;. As A is principal in K it splits completely in K7, and hence
K\, = K). In particular, the extension K, /K is totally ramified with cyclic Galois
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group generated by o;. Given P as above, define x;(P) to be the inflation of the unique
cocycle on Gal(K),/K)) defined by sending o; to Tp. It is clear from its construction
that x; is a homomorphism.

To verify the first property, let n = ml € S(M), let A, be the restriction of X to K, and
let A, be its restriction to K,,. As A splits completely in K,,, it follows that K, = K)
and that K, = K),. We claim that P, € pMA(K),). As the extension K, /K) is
totally ramified and generated by oy, this automorphism acts trivially on ), hence
Dy acts on A(Fy,) as (I +1)/2. As pM divides [ + 1, so does pM and it follows that
P, € pMA(F,,). In particular there exists a Q € A(K),) such that p Q = P, mod A,
and therefore p™@Q — P, € A;(K),,). Here A; denotes the kernel of the reduction map
to the residue field. This group is naturally isomorphic to A()\n), the formal group
associated to A over the maximal ideal of K),. As p is coprime to [, multiplication
by p is an isomorphism on this group, and hence on A;(K), ) as well. It follows that
pMQ — P, € pM A(K),,), and thus that P, € p A(K),) proving the claim.

Consider the p™-torsion point
(o7 —1)P, P, P,

n n
T L gt S e A(K). 5.6
.Y AT T (Kx,) (5.6)

The extension K, /K) is totally ramified, hence o; acts trivially on A(F), ). The reduc-

tion of ths point modulo X is therefore congruent to —(C”;#. Recall from (5.2) and
Gross 1991, Proposition 3.7.1 that

a;DmYm — (l + I)Dmyn = _(Ul - 1) “Dnyn.

Applying the second part of the same proposition shows that

a;— (I + l)Frob(l)P _ (a—=1)P mod X,
p

M m = M
This shows that x;(P,,) is defined to be the inflation of the cocycle determined by

p
~ 1P, P, P
U“%<_Wl)n+gn_n> ,
PM

pM pM  pM

Recall that cps(n) is represented by
(U — 1)Qn Qn Qn

o e d _p7M + O'piM - Z)W,
where @, is any point as in Lemma 5.3. As P, € pMA(K,,) so is Q,. Hence this
cocycle vanishes when restricted to H'(K),, Ay,n). The class cpr(n) and is therefore
inflated from a class in H'(K), /Ky, Ayn). In particular, using the same cocycle as
representative, we see that the class cps(n)y is defined uniquely by
(0' 1 — 1)Qn Qn Qn

D S An AR, MR ALS . A
pM pM  pM
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But as this p™-torsion point is precisely the p*-component (5.6), we conclude that
Xi(Pm) = cpr(ml) .

The first part of property (2) follows directly from the uniqueness of the point Tp. In
order to prove the second part of property (2) it suffices to show that

Xi(TP)g, = =x1(P)o-

As oy is in the —1 eigenspace of T and o acts trivially on Ayn, the former is equal
to —7xi(7P)s,. Since the natural action of 7 coincides with the action of Frob(l), on
[Fy, it follows that 77» = T.p. But as x;(P),, = Tp, this proves the property. Recall
that A(K))/pM A(K)) and H(K), A)pu are isomorphic as Op-modules. To see that x;
induces such an isomorphism, it suffices to show that im x; Nim §y = 0. But this follows
directly as ) maps onto unramified cocycles and x; maps onto ramified cocycles.

Finally, using (1) and (3), we see that P,, maps to dys(ml)y via cpr(ml)y hence they
must all have the same order, (here P, is viewed as an element of A(K))/p™ A(K))).
By Lemma 5.4 this order is equal to ord cps(m)y. O

Theorem 5.5 allows us to relate the classes cps(n) with the classes of the divisors of n.
In particular, for any m,l € S(M) such that (m,l) =1 define

ordy (P )x = max{M : P, € pM A(K)}.

Notice that this definition is sound as it is indeed possible to inject K, into K whenever
[+ m. This enables us to formulate several useful consequences of Theorem 5.5.

Corollary 5.5.1. Let n € S(M). The following statements hold.

1. For all primes [ | n we have
ordy(Py,) < ord, (Pn/l))\,
with equality if and only if ord cpr(n) = ord cpr(n)y. Consequently

if P, ¢ pMA(K)), then P, ¢ pMA(K,).

2. For any M >0

dy(n) € HI(A/K), if and only if, M < minordy (P, /;)x-

lln

3. If n € S, (M,_1), then
dm,_,(n) € II(A/K).

38



Proof. The second part of the first statement is a direct consequence of the first. When-
ever M > ordy(P,/)x, the order of P, in A(Ky)/pM A(K)) is naturally given by

pM=ordp(Pa/)x By Theorem 5.5 this order is equal to ord cpr(n)y. Hence

M—ordy(Pr 1) M—ordy(Pn)

P A =ord ep(n)y <ord ey (n) =p ,

which proves the first statement. By Lemma 5.4, dj;(n) vanishes at all valuations prime
to n. For the valuations dividing n, we have

ord dM(TL))\ = max{lva_OrdP(Pn/l)A}’

which vanishes if and only if M < ordy(Py)s. Applying this condition to all primes
dividing n gives the desired conclusion. Finally, let n € S, (M,_;) be given. It follows
from the definition of M, 1 that M, 1 < ordy(F,;) < ordy(P, /) for all [ | n. The
conclusion now follows from the second statement. O

In light of Corollary 5.5.1 we can prove a notable property of the M, defined earlier.

Corollary 5.5.2. Assume that yx has infinite order in A(K).
Then My = ordy[A(K) : Oayk] and M, > M, for all » > 0. In particular M, is finite
for all

Proof. Assume that yx has infinite order, then by Howard 2004, Theorem A, O4yk is
of finite index in A(K). Since Sp = {1} and P; = yx, we have

My = ordy (yr) = max{M : yx € p" A(K1)}.
Simultaneously
ordp[A(K) : Oayk] = max{M : yr € pM A(K)}.
And as A(K7) has no pM-torsion, A(K)/p™ A(K) injects into A(K7)/p™ A(K7), hence
these numbers are equal. To prove the second statement, let m € S, (M). By Corollary

4.3.1, there exists a prime [ { m such that [ € S;(M) and ord cpr(m)y = ord cpr(m). In
particular, this implies that

ordy (Py,) = ordy(Pp)x > ordy(Pry)

by Corollary 5.5.1. Hence for any m € S,(M), there exists an n € S,41(M) such that
ordy(P,) > ordy(P,). Which conludes the proof. O

Corollary 5.5.2 allows the formulation of the following simple but important consequence
of Theorem 5.5.
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Proposition 5.6 (McCallum 1991). Let M and M’ be two positive integers. Let n €
S(M + M') and n’ € S(M') be two integers such that dys(n),dyr(n') € III(A/K). Then
the Cassels pairing is given by

(dar(n),dap (') = ) {dyrenrr(n), Pa)a.
ln
(l,;n)=1

Proof. Recall the construction of the Cassels pairing in Chapter 2. Indeed dy;yp(n) is
a suitable choice for d; as pM'dysia(n) = dys(n). By Lemma 5.4, it vanishes for all
valuations v prime to n. Hence this sum can be restricted to the primes dividing n. By
the same lemma, P, is a suitable choice for those y,, for each of those [ { n/. If I | n’, then
dpyr(n’)y = 0 as it is contained in HI(A/K). Hence by Theorem 5.5, cpr(n')y = 0, and
hence there is no contribution to the pairing for this prime. Summing up the remaining
terms gives the desired conclusion. O
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Chapter 6

Structure of the Shafarevich-Tate
group

In this final chapter we generalize McCallum’s result for modular elliptic curves to mod-
ular abelian varieties arising from weight 2 newforms (Theorem 6.3). Throughout this
chapter, p is a prime of O4 satisfying the properties described in Chapters 4 and 5,
and yg is assumed to have infinite order in A(K). In the first section, the Fricke in-
volution (see Section 3.5), and its application to the Shafarevich-Tate group are briefly
revisited. The second and final section combines the results from all previous chapters
to formulate Theorem 6.3 as well as the provide the lemmas needed to proof it. The
chapter concludes with the proof of this theorem, which provides an explicit structure
of the p-primary part of the Shafarevich-Tate group in terms of the M, introduced in
the previous chapter.

6.1 An application of the Fricke involution

Let f be the newform associated to A, and let e = 41 be its eigenvalue under the Fricke
involution. For a positive integer r, define ¢, = (—1)"e.

Lemma 6.1 (Gross 1991). For all integers n € S,(M), there exists a ¢ € G, =
Gal(K,,/K) such that
TYn = € 0Yn + Q,

for some Q-rational torsion point Q). In particular, P, is contained in the e,.-eigenspace
of (A(K,)/pM A(K,))o.

Proof. On Xo(N) we have the identity

Txy, = wy(oTy)
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for some o € G, (see Gross 1984, Section 5). Hence on Jy(IN) we have
7((#n) = (00)) = wn((o@n) — (00)) + (wy0) = (0).

Observe that wyoo is the cusp 0 on Xo(N) and that the class of (0 — c0) is torsion on
the Jacobian. Hence after applying a ¢, we obtain 7y, = a¢((wy o 0)(z, —0)) + Q, on
A. But as wy acts as € on f, we obtain the desired conclusion.

To prove the second statement, recall that P, = Y ¢'D,y,, where D, = H”n D; and
D, € Z|G)] is an element satisfying

(O'l _1)Dl =1l4+1-"Tr.

Notice that D; is determined uniquely up to addition by multiples of Tr;. As {4+ 1 —Tr;
is invariant under conjugation by 7, we find that

(o7 —1)DyT =71(07 — 1) Dy
= (o; ' = 1)rDy
= (o7 — 1)(—o; ")7Dy

Hence D;7+o0, 17Dy vanishes under (o; — 1) and is therefore a multiple of Tr;. Applying
T to P, yields

TP, = Z TO'/Dnyn

o’'eS

Y o [ D
o’'eS ln

=Y o [[ (~o1Du(ryn) + ki Triyn)
o'eS lln

Recall that Tr;y, = a;ym, and that a; vanishes modulo p. Hence modulo pM A(K,) we

obtain
TP, = (—-1)" Z o1 Hal HDlTyn

o'eS ln ln
Y [ D o I Dirym
lln o'eS lln

By the first statement of the lemma, Ty, is equal to € - oy, + @, for some Q-rational
torsion point (). By Proposition 5.2 A,(Q) = 0, hence @ vanishes when restricted to
pMA(K,). Observe that {o'~1 | o/ € S} is another set of representatives of G,,, and as
P, is defined independent of the choice of representatives, it follows that

TP, = (—1)T6HO'ZO'PH modulo pMA(Kn).

lin

Finally since the class of P, is G,-invariant we conclude that 7P, = €, P,. O
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The Fricke involution plays an integral role in analyzing the structure of the Shafarevich-
Tate group; Lemma 6.1 shows that it determines the eigenvalues of the Heegner points,
which in turn determine the eigenvalues of cps(n) and dps(n). Apart from this it also
imposes conditions on the groups the groups A(K)/p™ A(K). This is ilustrated in the
following Lemma.

Lemma 6.2. For all integers M, the group A(K)/p™ A(K)~¢ vanishes. In particular
the map
Spee(A/K)™ — HI(A/K )y

is an isomorphism.

Proof. Notice that the submodule O yx C A(K) is of finite index k. For any integer
M, yix = P is contained in the e-eigenspace of A(K)/pM A(K) by Lemma 6.1. The
decomposition into eigenspaces

A(K) oM A(K) 2 (A(K) /M AK)) & (AGK) /oM A(K))

shows that the order of the —e-eigenspace equals the index of the e-eigenspace in this
group. As this index is bounded by the index of O yx in A(K), the order of the —e-
eigenspace is bounded independently of M. Hence A(K)™¢ is a finite group and therefore
a torsion group. Since A,(K) = 0 by Proposition 5.2, it follows that A(K)/pM A(K)~¢ =
0. Consequently A(K)™¢® F,/O, vanishes and thus we obtain the desired isomorphism
by the p>°-descent sequence (1.5). O

6.2 The Structure Theorem

As the Shafarevich-Tate group is finite, the Cassels-Tate pairing is non-degenerate and
alternating on III(A/K )y~ for all primes of odd characteristic. Hence the order of
III(A/K) is either a perfect square or twice a perfect square. Recall that the Tate
pairing is T-equivariant, hence so is the Cassels-Tate pairing. In particular, the e and —e
eigenspaces of III(A/K )y~ are orthogonal and must therefore both be perfect squares
as well. Let

N1 > N3 > N5 >---

be the integers such that
I(A/K)p = (0a/p™)? x (0a/p™)? x -

and let
No > Ny > Ng > -+

be the integers such that

II(A/ K)o 2 (O4/p™2)% x (Oa/p™1)? x -
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By Lemma 2.3 the groups HI(A/K );too admit maximal isotropic subgroups D* inducing
split exact sequences

0— D* - II(A/K)j — D** — 0.

Notice that D™ can be decomposed as D¢ = Dy X D3 X - - - where D; is a cyclic OA/pNi—
module. Analgously, D¢ admits a decomposition D¢ = Dy x Dy X ---. As the p-primary
part of the Shafarevich-Tate group decomposes as a sum of its 7-eigenspaces we conclude
that III(A/K )y~ admits a maximal isotropoic subgroup D = D x Dy x D3 X - -- such
that the exact sequence

0— D — HI(A/K)pe — D* =0 (6.1)

is split. The rest of this thesis will be dedicated to proving the following relation between
the N, and the earlier defined M,..

Theorem 6.3. Assume that yx has infinite order. Then
N, = M, — M, (6.2)
for all » > 1.
Before proving Theorem 6.3 we mention a few direct corollaries.
Corollary 6.3.1. We have that
M, — M1 > My — M,13, Vr >0,
Moreover if M, = M, 2, then M, = M; for all j > r.

Notice that while increments M, — M, decrease if we increase r by 2, there need not
be the case if we increase r by 1. Additionally, Theorem 6.3 allows us to give an explicit
description of the p-torsion order of the Shafarevich-Tate group.

Corollary 6.3.2. Let m = min{M,,r > 0}. Then
ordy|II(A/K)| = 2(Mo —m).

In order to prove Theorem 6.3 several lemmas are needed.
Lemma 6.4. Let [ € S1(M) be a prime number, then im y; is a maximal isotropic
subgroup of H' (K, Ay ).
Proof. Let z,y € im x;. Recall from the proof of Theorem 5.5 that z and y are inflated
from cocycles in H'({0}), Agn). As the Tate-pairing is a cup-product, it satisfies

r — y = Inf(z") — Inf(y/) = Inf(2’ — v/).

As oy is totally ramified, its second cohomology group injects in the group H?(1, [LpM),
where [ is the inertia group of K. But this group is trivial as [ # p (see Milne 20064,
Lemma 1.2.9). Hence z — y = 0. Maximality follows from the second statement of
Theorem 5.5. O
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Lemma 6.5. Let [ € S;(M) and let S C S1(M) be a finite set not containing /. Then
there exists a ¢ € H(K, ApM)i such that

1. ¢#0,
2. ¢, € 0(A(K,)) for all valuations v prime to S U {l},

3. ¢y, €im x4 forall g € S.

Proof. Let T be the union of S, [, the primes of K extending p, the infinite primes and
the primes where A has bad reduction. Let K7 be the maximal extension of K that
is ramified only at the primes in 7. Tate global duality (Milne 2006a, Theorem 1.4.10)
gives a self dual exact sequence

HY(Kr/K, Apn) = @ H' (Ko, Agw) — H' (Kp/K, Agn ).
veT

Let G denote the intermediate group. Due to exactness, the image of H!(Kr/K, APM)
is an isotropic subgroup of GG, and by self duality it must be maximal isotropic. As the
exponent of every group divides p™, all groups can be decomposed as a sum of their
T-eigenspaces. Since the pairing giving rise to this duality arises from the Tate-pairing,
the pairing is 7-equivariant and hence the eigenspaces are orthogonal. Consequently,
the image of H'(Kr/K, ApM)i is a maximal isotropic subgroup of G*. For all ¢ € S,
let H,, = Im x,. For all other places v € T\{l}, let H, = §(A(K,)). Notice that
for all places v # [ there is an inequality |H,| > \Hl(Kv,ApM)\l/Q. Hence the group
HY(Kr/K, Apm)i is a strictly larger subgroup of G than the group

D

veT\{I}

HY(Ky, Apu)®
Hi '

In particular H'(Kr/K, ApM) cannot map injectively into this group. Hence we can
choose a ¢ € H'(Kr/K, Apnr) satisfying properties 1 and 3. It also satisfies 2; By
construction of Kp, ¢ is unramified outside T'. It follows from Milne 2006a, Proposition
3.8 that H'(K}"/K,, A) = 0. Consequently, the map 6, : A(K,) = H* (K /K,, Ayr)
is surjective. ]

The strategy for proving Theorem 6.3 is the following: Let r be an integer and assume
M,_1 > M,. Let n € S,(M,_1), Corollary 5.5.1 imposes that dp;._,(n) € IHI(A/K). As
ordy(P,) > M,, it follows from (5.4) that the order of dy;, ,(n) is at most pMr-1=Mr,
For properly chosen n,, it will be shown that dy. , (n,) attains this order. Proceeding
inductively, and choosing the n, independent of ng,s < r, we will show that N, =
M,_1 — M, which will complete the proof. In order to guarantee the independence of
the n,., we need the following proposition.
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Proposition 6.6 (McCallum 1991). Let 7 be a positive integer and let C' C Spee (A/K)"
be a sub 04 p-module generated by r independent elements. Let M > M, be a square-
free integer. Then there exists an n € S,.(M) such that ord cpr(n) = pM~Mr and

(cpr(n))y N C = {0}.

Proof. As pM'ear(n) = epr—pr(n) for all M’ < M. Tt suffices to show that the statement
holds for all M large enough. Hence let M be such that

p™ > max{exponent of C,p*r-1}.

Let n € Sy(M; +1) be an integer such that ord,(F,) = M;, and let L = K(A,um). Recall
from Chapter 4 that there exists a Galois extension L¢/L such that Gal(L¢c/L) = C*.
Let S be the set of primes dividing n. For every [ € S, fix an extension Ay, in L. Let
X C C* denote the submodule generated by the characters of all { € SN S(M), and let
k denote the rank of the image of X in C*/pC*. Assume that k < r, then there exists
an [y in S such that the primes in S N S(M)\{lo} generate the image of X, and we can
choose a ¥ € C* such that
¢ X +pC™.

If epr.41(n) € C, we can impose the additional condition that ¢ (cps.+1(n)) # 0, as a
finite group cannot be the union of two proper subgroups. By replacing [y with a carefully
chosen prime I, 9 can be added to X. Using Lemma 6.5, we choose a ¢ € H(K, A,)~¢
such that

c#0,
ey € 0p(A(KY)), for all v ¢ S, (6.3)
ey € im Xy, . for all 1 € S\{lo}

Let (C,car,+1(n)) denote the subgroup of H'(K, Aym) generated by C and cpr,41(n).
As both are contained in the ¢,.-eigenspace and c¢ is not, the intersection of this group
and (c) is trivial. Thus, we can define ¢ € (C,cps,4+1(n), c)* such that

lc =1,
p(em,+1(n)) # 0,
(c) # 0.

By Proposition 4.3, there exists an I’ € S1(M) such that ¢ = @pyon( x,)» and hence that
Y = Yprob( N, ) Moreover, observe that the sum

%

<

Z e, +1(nl')y — .
v

vanishes as the sum of invariants of a global class is 0. Let us consider the cup products
for the valuations v not contained in SU{\'}. In this case it follows from Lemma 5.4 that
er+1(nl')y € 6,(A(Ky)). Equation (6.3) guarantees that ¢, € §,(A(K,)) as well. Since
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this is an isotropic subgroup, the cup product vanishes. For the primes [ € S\{lp}, it
follows from Theorem 5.5 that cys,11(nl")x = Xx1(Ppny1). By construction cy is contained
in im x; as well. Since this group is again isotropic, the cup product vanishes here as
well. Hence the only remaining terms are the cup products at the primes X and \g, and
we conclude that

e, 1 () — e = =1 (nl)n, — e,

For X, it follows from (2.4) and (6.3) that

e 1(nd )y — v = (da41(nl) v, @),

for some 2 € A(K)/). Theorem 5.5 gives the equality

ord dpg,+1(nl")y = ord cpg 1 (nl')y = ord epr1(n)

The choice of ¢, now guarantees that this cocycle is non-zero by (4.1), and since
ordy(P,) = M,, (5.4) shows that ord cps,+1(n) = p, and hence that dp,11(nl’) €
H'(K, A), “". By the choice of ¢, cy has order at most p, and as ¢(c) = PFrob(x; ) (€) # 0,
we conclude that cy/ is non-zero as well. As cy is in the —e,-eigenspace of H! (K, Ay, x
is determined uniquely in (A(Ky)/pA(Ky))~¢. As both eigenspaces are cyclic O 4/p*-
modules, it follows from the non-degeneracy of the Tate pairing that

crtr1(nl' )y — ex # 0.

It follows that cpr,+1(nl')x, # 0, and by Theorem 5.5 that P, ¢ pMTTA(K),). By
the definition of M, we must therefore have that ord,(P,/,) = M,. Thus by replacing
n with n’ = nl’/ng, we can add 1 to X and increase the rank of its image by 1.

If & = r, we have that X = C*. In particular we have that S C S1(M), hence cpr(n)
exists and has order p™ =M Observe that

{ceC| ex=0forallleS}=
{C eC | gf)FrOb()\L)(C) =0forallle S} =
{ce C| ¢(c) =0 forall p € C*} ={0}.

On the other hand since ord,(P, ;) > M,_1, it follows that
ord cpr_,(n)y =ord ¢y, (n/l)y =1

for all [ € S. Hence
CN{ep,_ (n)) =0.

Since cys,_,(n) is a multiple of cpr(n) of order pMr—1=Mr_ the statement is proved if

M,_1 > M,. Hence assume M,_1; = M,. By relaxing the condition that C has rank
r, it is easily shown that the lemma holds for C' = {0}. In particular, there exists an
m € S._1(M) such that ord cys(m) = pM~Mr—1. By Proposition 4.3, there exists an [ €
S1(M) such that cpr.+1(m)y # 0. By Theorem 5.5, we hence have that das, 11 (ml)y # 0.
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In particular this means that das,+1(ml) ¢ II(A/K) and hence cpg, 1(ml) ¢ Sy (A/K).
As C is contained in this group, we conclude

C m <CMT+1(n)> = 07
and thus the proposition is proved. O

In the process of proving Proposition 6.6, the following weaker statement has been proven
as well.

Corollary 6.6.1. Let r be a square-free integer and let M’ > M be two integers
such that M > M,. Then for all n € S,(M), there exists an n’ € S,.(M’) such that
ord cppr(n’) > ord cpr(n).

Using this, let r be an odd number and let n € S,(M,_1) be such that cps,_,(n) has
order pMr-1=Mr_ By Corollary 5.5.1 we have that dy,_,(n) € II(A/K),x, and hence
that cpy,_, (n) € Spo(A/K). By Lemma 6.2 dyy, , (n) has order pMr—1=Mr in this group.
As the Cassels-pairing is alternating on the p-primary part, we conclude that IIT(A/K )I;fo
has a submodule isomorphic to (O4/pMr—1=Mr)2
natural generators of this module.

. We let ¢y, , and ¢py, , denote the

By proceeding inductively on r = 2m + 1, and imposing by Proposition 6.6 that cps,_,
is chosen independent of {car,,,¢n,, | & < m}, it follows that III(A/K),< contains a
submodule isomorphic to

(Oa/pMom M) (O fpM2=Mo)2 5
Let us prove the main theorem.

Proof of Theorem 6.3. We proceed by induction on r. By applying Proposition 6.6
to C' = {0} and r = 1, it is shown above that there exists an [ € S1(My — M7) such that
dnty—nry (1) € HI(A/K) s has order pMo=Mi_ By the definition of N; we conclude that
My — M; < Ny.
Conversely recall that IIT(A/K)p~ admits a maximal isotropic subgroup
D=D1 XDy xDs3gx---,

where D; is a cyclic O4/p™i-module contained in the e;-eigenspace of III(A/K)ye. Let
d; be a generator for D;. As yx has infinite order, the sequence in (1.5) is split. For
every 14, let ¢; denote the lift of d; to Sy (A/K) under this splitting. For any valuation
v, let yi, € A(K,) be an element such that d,(y;,) = ¢;. It follows from the definition
of My = ordy(yx) that ord cpry+n, (1) = p™. Hence by Corollary 4.3.1, there exists a
prime number [; such that

ord CM0+N1(1)>\1 = lev
ord ¢1y, = p™, (6.4)
cin, =0, forall ¢ > 2.
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The first condition of Corollary 4.3.1 is equivalent to the property that I; € S1(Mo+Ny).
Therefore by Corollary 5.5.1, it follows that das, (1) € HI(A/K). Thus for all ¢ and for
any 0 < M < N; — 1 we have that

<dM0 (ll)vadi> = <dM0*M(l1)’di> = <dM0*M+N¢(l1)>\1)yi,)\1>)\1’ (65)

To see that the last equality holds, observe that dpg,—ar+n,(l1) satisfies the properties
of dy in the definition of the Cassels-Tate pairing. Moreover, all other terms in this sum
vanish by Lemma 5.4. By (2.4) and the choice of [, this term vanishes for i > 2. For
1 =1, recall that this pairing on

A(K ) /oM A(K ) x HYNK, A),w,

is non-degenerate and 7-invariant. In particular the T-eigenspaces are cyclic submod-
ules. As y; 5, has order p™1, it is a generator for A(K))/pV1 A(K,)~¢. By Theorem 5.5
ord dprg+n,—m (1) x, = ord eprgn,—m (1), = pN1=M > 1. Tt therefore follows from the
non-degeneracy of this pairing that (6.5) is non-trivial for all 0 < M < N; — 1. We
conclude that the character

Xyt des (dy (L), d) € D’

vanishes on Dy x D3 x ---. Observe that this character is the image of dj,(l1) in D*
under the map in (6.1). As Dy is a cyclic O4/p™-module, so is D}, and since X; does
not vanish anywhere on D1, we conclude that it must be a generator for D}. In particular
dnr, (1) has order at least p™V. But as its order is bounded by p™0~M1 we conclude that

Ny < My — My,

and hence that
Ny = My — M;.

Proceeding inductively, let » > 1 be an integer and assume for all 1 < j < r that
N; = M;_1 — Mj. Moreover assume that there exist {1, ...,l,—1 € S1(M’) such that

¢y = 0 for all i > j,
and that the characters
Xjrdw (dy,_y (ng),d), 1<j<r

vanish on D, x D,y; X --- and form a diagonal basis for (D; x --- x D,_1)*, where
n; = [li<;li, and M’ is chosen sufficiently large. Let hi and hy € A(K) be two
elements forming a O4/p™’ for A(K)/pM A(K) and let

C = <(5(h1), (5<h2), Cly..eyCp—1, CMO (nl), s CM,_o (nr_1)>6k.

This module is generated by at most r independent elements. Using Proposition 6.6,
choose any n € S,.(M’) such that ord cyy,_, (n) = pM—1=Mr and CN{cps,_,(n)) = 0. As-
sume that ord dps._, (n) > N,. As the sequence in (6.1) splits, we observe that dy;._, (n)
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is contained in the submodule generated by di,...,dr—1,dn (1), ... dar, 5 (nr—1). Let
¢ denote the lift of dys,_,(n) to Spe(A/K). If r is odd, the lift is unique and must
therefore equal ¢y, , (n), which gives a contradiction as the lift is contained in C'. Oth-
erwise, cpr,_,(n) — c is contained in the image of A(K)¢ ® F,/O,. After multplying by
a power of p if necessary, one can assume that ¢y, (n) — ¢ € §(A(K)/pM A(K)). As
this module is generated by d(h1) and 0(hg), we conclude that cps, ,(n) € C. This gives
a contradiction, hence ord dys,_,(n) < N,. Notice that multiplying cps._,(n) with the
order of dys, ,(n) gives an element in (6(h1),d(h2)). By construction this must be 0,
hence ¢y, (n) has the same order as dyy, , (n) and therefore

Mrfl - Mr < Nr-
Conversely, by Corollary 4.3.1 there exists a prime number [, € S1(M’) such that

ord eu,_y N, (Rr-1)x, = P,
ord ¢, = pNT,
¢y, =0 forall i >r.
Letting n, = l,n,—1 and 0 < M < N; — 1, we observe

T

(Ant,_y (), P i) = (dag,_y—nr (), diy = (dit, - ari, (70) 3, Uik, ) o, -
j=1

Notice that this sum vanishes for ¢ > r by the choice of /;. By the same argument,
for i = r, the [; term vanishes for all j < r. Notice that y, ). has order pVr in
A(Ky)/p™Nr A(Ky)er. Likewise

Ord dM'rfl‘i‘Nr_M(nr))\r = Ord CM’!‘*IJ'—NT‘_M(TLT))\T‘
= Ord CM7'71+NT*M(TLT71)>\T
=pr M > 1.

Hence by the non-degeneracy of the Tate pairing described in Proposition 2.4, we con-
clude that this pairing is non-trivial for ¢ = r and all 0 < M < N, — 1. Therefore the
character

Xy d v (dy,_, (ny),d)

generates D when restricted to D, and vanishes when restricted to D; for ¢ > r. Hence
the set {X; | j < r} vanishes on D,41 X D;yo X --- and forms a diagonal basis for
(D1 x --- x D;)*. The character X, has order at least p’*, and as it is induced by
dnr,_, (ny) we conclude that dps,_, (n,) has order at least p™¥. As its order is bounded
by pMr—1=Mr we conclude that

Ny < My—1 — M,

and hence that
N, = M,_1 — M,.
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