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Abstract

Shafarevich-Tate groups for some Modular Abelian Varieties

Casper M. Barendrecht

Let f =
∑∞

n=1 anq
n be a weight 2 newform of level N , and let A be the associated modular

abelian variety. Let K be an imaginary quadratic field of discriminant D 6= −3,−4, and let p be a

prime of the endomorphism ringOA ofA outside a finite set S. IfA admits a principal polarization,

and the Heegner point yK has infinite order in A(K), then the Shafarevich-Tate group is finite and

its p-primary part is a perfect square. Generalizing the work of Kolyvagin and McCallum, we give

an explicit structure of the p-primary part of the Shafarevich-Tate group,

ordp|X(A/K)| = 2(M0 −m),

where M0 = [A(K) : OAyK ] and m is the minimum of a decreasing sequence of positive integers.

This thesis aims to provide an accessible proof of this statement for those with restricted knowledge

on the subject.

The first three chapters offer an introduction to the basic notion of arithmetic geometry. Chapters

4 and 5 expand on the theory spefic to the thesis. Finally chapter 6 combines the developed theory

to proof this structure theorem for Shafarevich-Tate groups.
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4 Chebotärev Density Theorem 26

5 Heegner points 30
5.1 Cohomology classes associated to Heegner points . . . . . . . . . . . . . . 30
5.2 Kolyvagin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Structure of the Shafarevich-Tate group 41
6.1 An application of the Fricke involution . . . . . . . . . . . . . . . . . . . . 41
6.2 The Structure Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



Introduction

Let A be an abelian variety defined over a number field K. A significant group that
naturally arises in the study of the arithmetic of A is the Shafarevich-Tate group, given
by

X(A/K) = ker

(
H1(K,A)→

∏
v

H1(Kv, A).

)
,

where v ranges over all places of K. It is widely conjectured that the Shafarevich-Tate
group X(A/K) is finite. While currently unproven, the finiteness of the Shafarevich-
Tate group guarantees that generators for the group A(K) can be computed effectively.

Let E be a modular elliptic curve, whose conductor N is split in a quadratic imaginary
field K. In 1984, Benedict Gross and Don Zagier showed that the Heegner point yK
has infinite order if and only if the L-series of E over K has order at most 1 at 1, that
is L′(E/K, 1) 6= 0 (Gross 1991). Victor Kolyvagin later showed that any such elliptic
curve has analytic rank at most one, and moreover has a finite Shafarevich-Tate group
over K.

In his 1991 paper, William McCallum, elaborates on some of the later work by Kolyvagin
and gives an explicit description of the p-primary part of the Shafarevich-Tate group of
E over K in terms of derived Heegner points Pn as defined in chapter 5. Let p ≥ 11
be a prime number and let M > 0 be an integer. An M -Kolyvagin prime is a rational
prime l whose Frobenius symbol Frob(l) in the extension K(ApM )/Q coincides with the
symbol of complex conjugation on K. For a non-negative integer r, define Sr(M) to be
the collection collection of products of r distinct M -Kolyvagin primes, and let

Mr = min{ordp(Pn) | n ∈ Sr(ordp(Pn) + 1)}.

Using these integers, McCallum gave the following description of the Shafarvich-Tate
group

Theorem (McCallum 1991). Let p ≥ 11 be an integer and assume that yK has infinite
order in E(K). Then the integers Mr are decreasing and M0 = [E(K) : ZyK ]. Moreover,
the p-primary part of the Shafarevich-Tate group, decomposes as

X(A/K)p∞ =
∞∏
r=1

Z/pMr−1−MrZ.

This thesis aims to generalize the results of McCallum to modular abelian varieties
associated to weight 2 newforms whose conductor is split in the field K. We aim to
provide accessible Lemmas and proofs for people with limited knowledge of the subject.
The reader is expected to be familiar with the theory of elliptic curves, for example the
book The arithmetic of elliptic curves by Joseph Silverman.

The first three chapters serve as an introduction to the general theory of arithemtic
geometry and modular forms, most theory found in these chapters is widely available
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from other sources. The first chapter serves as an introduction to the Shafarevich-
Tate group and ideal torsion groups. The second chapter constructs several important
pairings in the groups to abelian varieties and remarks several important properties. The
third chapter is an introduction to the theory of Hecke operators and newforms, based
on the book A first course in modular forms by Fred Diamond and Jerry Shurman.
In Section 3.3, we moreover construct the abelian varieties that will be considered in
this thesis. Chapter 4 provides some technical consequences of the Chebotärev Density
Theorem. Chapter 5 introduces the notion of Heegner points and construct the classes
associated to them. It lays the ground work for the proof of the structure theorem in
Chapter 6 (Theorem 6.3). Moreover, Chapter 5 offers a proof of an important theorem
by Kolyvagin (Theorem 5.5), and illustrates several important consequences.
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Chapter 1

The Shafarevich-Tate group

This first chapter serves as an introduction to the basic principles in the study of the
arithemtic of abelian varieties. The first section defines the Shafarevich-Tate group
associated to an abelian variety A, as well as justifies its significance in the study of the
variety. The second section generalizes the results of the first section for non-principal
prime ideals.

1.1 Selmer groups and the Hasse principle

Let A be any abelian variety over Q such that its ring of Q-rational endomorphism is
an order OA in a number field F , and let K be another number field. For any place v
of K, denote by Kv the completion of K with respect to this valuation. If v = vλ for a
prime λ of K, we denote Kλ for Kvλ .

We wish to determine the structure of the algebraic group A(K). One of the most
fundamental results in determining this structure is the Mordell-Weil theorem which
states that A(K) is finitely generated. In order to find those generators or give a bound
on the rank of A(K), more work needs to be done. Let α ∈ OA be an endomorphism of
A, and consider the short exact sequence of group schemes

0→ Aα
ι−→ A

α−→ A→ 0,

where Aα denote the α-torsion points of A. A direct consequence of the Mordell-Weil
theorem is that the corresponding sequence of K-rational points will never be exact
when α is not a unit. The extent to which this sequence fails to be exact, is determined
by the corresponding cohomology groups, which fit in a short exact sequence

0→ Aα(K)
ι−→ A(K)

α−→ A(K)
δ−→ H1(K,Aα)

ι∗−→ H1(K,A)
α∗−→ H1(K,A)→ H2(K,Aα)

where δ denotes the Kummer map. This sequence in turn gives rise to an exact sequence

0→ A(K)/αA(K)
δ−→ H1(K,Aα)→ H1(K,A)α → 0. (1.1)

3



This sequence is of particular interest, as it can be shown that generators for A(K) can
be computed effectively if given a finite set of points in A(K) generating A(K)/nA(K)
for some n ∈ Z (see Silverman 2009, Remark VIII.3.2). Currently there is no effective
way of constructing generators for A(K)/nA(K). The Hasse principle asserts that one
can construct such generators given generators for A(Kv)/nA(Kv) for all valuations v
of K. By Hensel’s lemma, finding such generators is equivalent to determining whether
a given principal homogenous space admits a point over some finite ring (see Silverman
2009, Chapter X.4). Hence determining the structure of A(K) reduces to determining
where the Hasse principle fails. Hence consider the commutative diagram

0 A(K)/αA(K) H1(K,Aα) H1(K,A)α 0

0
∏
v A(Kv)/αA(Kv)

∏
vH

1(Kv, Aα)
∏
vH

1(Kv, A)α 0.

δ ι∗

δv ιv∗

(1.2)

There are two natural groups associated to this diagram.

Definition 1.1. Let A be an abelian variety over K and let α be an endomorphism of
A.
The α-Selmer group of A over K is given by

Sα(A/K) = ker

(
H1(K,Aα)→

∏
v

H1(Kv, A)α

)
.

The Shafarevich-Tate group of A over K is given by

X(A/K) = ker

(
H1(K,A)→

∏
v

H1(Kv, A).

)
.

Note that the product coincides with the direct sum in this definition as any d ∈
H1(K,A) vanishes in H1(Kv, A) for all but finitely many v. The non-zero elements
of the Shafarevich-Tate group correspond to those principal homogenous spaces of A
that posess a Kv-rational point for all places v, but no K-rational point. Equivalently,
they correspond to classes of H1(K,A) where the Hasse principle fails to hold. By the
snake lemma, the Selmer group and the Shafarevich-Tate group fit in the α-descent
sequence

0→ A(K)/αA(K)→ Sα(A/K)→X(A/K)α → 0.

The Selmer group is finite and can be computed effectively, thus it remains to determine
the image of A(K)/αA(K) inside this group. For a rational prime p, Milne 2006b,
Remark 5.2 shows that generators of A(K)/pA(K) can be constructed effectively if the
the p-primary part of the Shavarevich-Tate group is finite. The p-primary part of this
group decomposes as the product of the p-primary parts, where p are the primes of OA
extending p, as described in the following section.
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1.2 p-adic torsion points

Let p be a prime number that is unramified in F and invertible in OA, and let p be any
prime extending p. Define for any M > 0, the group of pM -torsion points of A as

ApM = {P ∈ A | α · P = 0, for all α ∈ pM}.

This group carries a natural structure of a torsion-free OA/pM -module. Let fp denote
the inertia degree of p over p. As OA/pM is a finite Z/pMZ-algebra with additive group
isomorphic to (Z/pMZ)fp , these modules carry a natural structure of Z/pMZ-module as
well. This gives rise to a decomposition of Z/pMZ-modules

ApM =
∏
p|p

ApM . (1.3)

Multiplication by pM is an isogeny of degree p2gM on A, hence the pM -torsion group of
A is free of rank 2g over Z/pMZ. Notice that ApM moreover carries the structure of an

OA/pMOA-module. As OA/pMOA has rank g as a Z/pMZ-module, that ApM is free of

degree 2 as a OA/pMOA-module. In particular, by the structure of the decomposition
of this module, it follows that ApM is free of rank 2 over OA/pM .

For any m < M , restriction of scalars equips Apm with a OA/pM -module structure.
Under this structure, multiplication by p gives rise to a short exact sequence of OA/pM -
modules

0→ Ap → ApM
p−→ ApM−1 → 0.

Remark. If p is a principal ideal with generator π, there exists another natural short
exact sequence

0→ Ap → ApM
π−→ ApM−1 → 0.

While the maps π and p are not the same in general, they induce the same map up to
composition with an automorphism of ApM .

Analogously to the rational case, the p-adic Tate- odule is defined as Tp(A) = lim←−M ApM ,
and by the same argument, this is a free Op-module of rank 2. Here Op denotes the
completion of OA at p. Since p is invertible and unramified in OA, this is the ring of
integers of a finite, unramified extension of Qp. As the tate module is free of degree 2,
its automorphism group is naturally isomorphic to GL2(Op). The absolute Galois group
Gal(Q/Q) acts on Tp, and hence the p-adic Tate module gives rise to a representation

ρp : Gal(Q/Q)→ GL2(Op).

It follows from Ribet 1992, Lemma 3.1 that the determinant of this representation is in
fact the p-th cyclotomic character

χp : Gal(Q/Q)→ Z∗p.
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The Shaferevich-Tate group of A carries a natural structure of a OA-module. When it
is is finite, it is a torsion module and hence the structure of this group can be analyzed
by analyzing its p-primary parts, where p ranges over the primes of OA. To this end,
we aim to generalize the construction of (1.2) to prime ideals. When OA is a principal
ideal domain, this is immediate, but this is not the case in general. Similar to the
decomposition in (1.3), there is a natural decomposition of Z/pMZ-modules

A(K)/pMA(K) ∼=
∏
p|p

A(K)/pMA(K).

As taking cohomology commutes with direct sums, we can define the kummer map for
a prime p by taking the composition

A(K)/pMA(K) ↪→ A(K)/pMA(K)
δ−→ H1(K,ApM )

proj−−→ H1(K,ApM )

Explicitly, let P ∈ A(K) and consider its reduction modulo pMA(K). By the decomposi-
tion above, there exists a Q ∈ A(K) such that Q ≡ P modulo pMA(K) and Q ∈ qMA(K)
for all other primes q dividing p. The image of P under the kummer map is then the
class generated by σ → σ(Q/pM ) − Q/pM . For any σ ∈ Gal(K/K) this is indeed a
pM -torsion point, and the class is independent of a choice of Q. This map therefore
gives rise to the short exact sequence

0→ A(K)/pMA(K)
δ−→ H1(K,ApM )→ H1(K,A)pM → 0. (1.4)

We define the pM -Selmer group as

SpM (A/K) = ker

(
H1(K,ApM )→

⊕
v

H1(K,A)

)

and retain the short exact sequence

0→ A(K)/pMA(K)→ SpM (A/K)→X(A/K)pM → 0.

Let

H1(K,Ap∞) = lim−→H1(K,ApM ), and Sp∞(A/K) = lim−→SpM (A/K),

where the direct limit is taken over all M . They carry a natural structure of Op-modules
and we obtain a p∞-descent sequence of Op-modules

0→ A(K)⊗OA Fp/Op → Sp∞(A/K)→X(A/K)p∞ → 0, (1.5)

where Fp is the field of fractions of Op.

6



Chapter 2

Pairings on abelian varieties

Pairing on abelian varieties lie at the heart of arithmetic geometry and the study of
Shafarevich-Tate groups. Two pairings of particular interest are the Tate pairing and
the Cassels-Tate pairing. This chapter is dedicated to constructing these pairings as well
as providing the connection between them. A more in depth exposition can be found in
Milne 2006a. In this section K will always denote a number field, and v will denote a
place of K.

2.1 The Weil pairing

The most well-known example of a pairing on an abelian variety is the Weil pairing. Let
E be an elliptic curve defined over K and let n be an integer. The Weil en-pairing is the
pairing

en : En × En → µn

as constructed in Silverman 2009, Chapter III.8. Here µn denotes the collection of n-th
roots of unity. This pairing is non-degenerate, alternating and Galois-invariant. Central
to the construction of this pairing is the group isomorphism

Φ : E → Pic0(E), (2.1)

P 7→ (P )− (0).

While this isomorphism is well-defined for elliptic curves, a generalization to abelian
varieties of dimension g > 1 does not usually exist. In order to generalize the en-pairing
to abelian varieties we introduce the notion of dual abelian varieties.

Definition 2.1. Let A/K be an abelian variety of dimension g. The dual abelian variety
A∨ of A is the connected component Pic0(A) of the Picard scheme Pic(A).

The Picard scheme should be considered as the scheme-theoretic equivalent of the Picard
group H1(X,O∗X) of a scheme X. If X is a smooth projective variety, its connected
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component Pic0(X) is indeed an abelian variety. Its dimension as a variety is equal to
the arithmetic genus of the variety X.

The map in (2.1) is not only an isomorphism of groups, it is also a degree 1 isogeny
between an abelian variety and its dual. An isogeny φ : A→ A∨ from an abelian variety
to its dual is called a polarization on A. If φ is a degree 1 isogeny, it is called a principal
polarization and A is said to admit a principal polarization. It can be shown that every
polarization arises from an ample line bundle on A (see Conrad 2005, Corollary 5.1.5.).
If A has multiplication by an order in a number field then A∨ has multiplication by the
same order. To generalize the en-pairing to abelian varieties the natural question arises
whether every abelian variety admits a principal polarization. This is not the case in
general, however it is still possible to construct a natural generalization of the en-pairing
to abelian varieties. With the concession of replacing A with its dual, there exists a
pairing

en : An ×A∨n → µn.

Following Milne 2008, the pairing is constructed as follows. Assume for simplicity that
K is algebraically closed and let a ∈ An(K), and b ∈ A∨n(K). Using the identification
A∨n(K) = Pic0(A)(K), let D ∈ Div0(A) be a divisor on A corresponding to b. If nA
denotes multiplication by n on A, then multiplication by n on Pic0(A) coincides with
the map n∗A. Hence n∗AD is linearly equivalent to nD, which is linearly equivalent to
zero as b is n-torsion. In particular, there exist rational functions f and g such that
n∗AD = div(g) and nD = div(f). Using the equality

div(f ◦ nA) = n∗Adiv(f) = n∗AnD = nn∗AD = n · div(g) = div(gn)

we conclude that gn/(f ◦ nA) = c is constant on A. As a is n-torsion it follows that

g(X + a)n = cf(nX + na) =
g(X)n

f(nX)
f(nX) = g(X)n.

Hence g(X)/g(X+a) is a function in the field K(A) whose n-th power is 1. It is therefore
an n-th root of unity and is contained in K. The en-pairing is now defined by sending
a and b to this root. For abelian varieties whose endomorphism ring is an order in a
number field the en-pairing naturally generalizes to an epM -pairing as follows:

Lemma 2.2. For any abelian variety A/K whose endomorphism ring is an order OA in
a finite extension F/Q, and for any unramified, invertible prime p of OA, the restriction
of the epM -pairing to the pM -torsion of A defines a non-degenerate pairing

epM : ApM ×A∨pM → µpM .

Moreover, if A admits a principal polarization, this pairing is alternating.

Proof. Let A be an abelian variety as above, let p be an invertible prime of OA, and
let M > 0 be an integer. Denote by p the characteristic of its residue field and let q be
any another prime extending p. The qM -torsion points of A∨ carry the structure of an

8



OA-module and an OA/qM -module. By the Chinese remainder theorem, there exists an
x ∈ pM such that x reduces to 1 modulo qM . In particular, x acts as trivially on A∨

qM
.

Let a ∈ ApM and b ∈ A∨
qM

. Since the epM -pairing is OA-bilinear, it follows that

epM (a, b) = epM (a, xb) = epM (xa, b) = 1.

This shows that the pM -torsion points of A are orthogonal to the qM -torsion points of
A∨ for all primes p 6= p. Hence the eMp pairing restricts to a pairing as described in the
Lemma. As the epM pairing is non-degenerate and alternating when A admits a principal
polarization, this shows that its restriction to ApM is non-degenerate as well.

If a finite abelian group G admits a non-degenerate pairing α : G × G → Q/Z, we can
define the orthogonal complement H⊥ of any subgroup H of G, as the collection of
elements of G that are orthogonal to all elements of H under this pairing. This group
fits in a natural short exact sequence

0→ H⊥ → G→ H∗ → 0,

where H∗ denotes the Pontryagin dual of H, and the second map is given by evaluation.
If in addition, the pairing is alternating, and H is generated by a set of pairwise orthog-
onal elements, there is a natural inclusion H ⊂ H⊥. Subgroups satisfying this inclusion
are called isotropic subgroups of G. Because G is finite, all of its subgroups are isomor-
phic to their duals. Hence if H is an isotropic subgroup, we must have |H| ≤ |G|1/2.
Consequently, a maximal isotropic subgroup is an isotropic subgroup of maximal order,
or equivalently a subgroup satifying H = H⊥. If G contains a maximal isotropic sub-
group, its order is necessarily a perfect square. It can be shown that such a subgroup
always exists, and in fact the following stronger statement holds.

Lemma 2.3. (Lemma 5.2 Davydov 2007) Let G be a finite group admitting an alter-
nating, non-degenerate pairing. Then G contains a maximal isotropic subgroup H such
that the sequence

0→ H → G→ H∗ → 0

splits. In particular, the order of G is a perfect square.

2.2 Cup products

Cup products are a method of connecting two cohomology classes of degree p and r
together to construct a new cohomology class of degree p+ r. They are integral to the
construction of dualities in Galois cohomology and various other cohomological topics.

Let G be a group and let M and N be two G-modules. The cup product is then defined
as the pairing

Hp(G,M)×Hr(G,N)→ Hp+r(G,M ⊗N),

(ζ, α) 7→ ζ ^ α,

9



where
(ζ ^ α)(σ1, ..., σp+r) = ζ(σ1, ..., σp)⊗ α(σp+1, ..., σp+r),

with σ1, ..., σp+r ∈ G. The cup product satisfies the following properties

1. (a ^ b) ^ c = a ^ (b ^ c),

2. a ^ b = (−1)deg(a)deg(b)(b ^ a),

3. inf(a ^ b) = inf(a) ^ inf(b),

4. res(a ^ b) = res(a) ^ res(b).

Here res and inf denote the usual inflation and restriction maps. Recall that giving
a bilinear pairing of G-modules e : M × N → P is equivalent to giving a linear map
e′ : M ⊗ N → P . If the pairing e is G-equivariant, that is e(ga, gb) = g(e(a, b)) for all
g ∈ G, one can compose e′ with the cup product to create a new family of cup products

Hp(G,M)×Hr(G,N)→ Hp+r(G,P ).

This observation has important consequences; Given an A be an abelian variety over a
number field K, an integer n, and a non-archimedean valuation v of K. One can view
µn as a group subscheme of the multiplicative group Gm, and consider the en-pairing
(resp. epM -pairing) as a pairing

An ×A∨n → Gm.

Taking Galois cohomology, gives a pairing

H1(Kv, An)×H1(Kv, A
∨
n)→ H2(Kv,Gm).

The latter group is occasionally referred to as the Brauer group of Kv and is denoted
Br(Kv)

1. Since Kv is a non-archimedean local field, the Hasse-invariant determines an
isomorphism

invv : H2(Kv,Gm)
∼−→ Q/Z.

And we obtain an alternating pairing

H1(Kv, An)×H1(Kv, A
∨
n)→ Q/Z. (2.2)

It can be shown that this pairing is non-degenerate (see Poonen et al. 1999). The Brauer
group of K fits in a short exact sequence

0→ Br(K)→
⊕
v

Br(Kv)→ Q/Z→ 0.

1The Brauer group itself is in fact defined as the set of Morita equivalence classes of central simple
K-algebras endowed with a group structure via the tensor product. It can however be shown that these
groups are isomorphic for any field K.

10



In this direct sum, v ranges over all places of K and the second map is given by taking
the sum of the Hasse invariants. The completions at the archimedean primes correspond
to either R or C, for the real numbers we have that Br(R) = 1

2Z/Z and the Brauer group
of the complex numbers is trivial. From the exact sequence we deduce the following for
c ∈ H1(K,An) and c′ ∈ H1(K,A∨n)∑

v

invv(cv ^ c′v) = 0.

Assume that A has multiplication by an order OA in a finite extension F/Q. Assume
moreover that A admits a principal polarization. The cup product in (2.2) then becomes
a pairing on H1(K,ApM ), which by (1.4) acts on A(K)/pMA(K).

Proposition 2.4. Assume that A admits a principal polarization, and let v be a non-
archimdean place of K, coprime to p, such that A has good reduction at v. Then the
image of A(Kv)/p

MA(Kv) under δ is a maximal isotropic subgroup of H1(Kv, ApM ). In
particular, it gives rise to a non-degenerate pairing

〈·, ·〉v : H1(Kv, A)pM ×A(Kv)/p
MA(Kv)→ Q/Z. (2.3)

Proof. Let v be such a place of K. By Silverman 2009, Lemma VIII.2.1, the image of δ
is unramified. In particular, the sequence in (1.4) reduces to

0→ A(Kv)/p
MA(Kv)

δ−→ H1(Kur
v /Kv, ApM )→ H1(Kur

v /Kv, A)pM → 0,

where H1(Kur
v /Kv, ApM ) is embedded into H1(Kv, ApM ) via the inflation map. As A

has good reduction at v, the group H1(Kur
v /Kv, A) vanishes (see Milne 2006a, Chapter

1, Lemma 3.8), and hence δ is an isomorphism. We claim that this inflated group is
isotropic. As the cup product commutes with inflation, the restriction of the cup pairing
to H1(Kur

v /Kv, ApM ) is given by a pairing

H1(Kur
v /Kv, ApM )×H1(Kur

v /Kv, ApM )→ H2(Kur
v /Kv, µpM ).

But as v is coprime to p, it can be deduced from the Hochschild-Serre spectral sequence,
that latter group vanishes (see Milne 2006a, Lemma 2.9). It follows that the inflated
group us isotropic and hence so δ(A(Kv)/p

MA(Kv)).

To prove maximality, it suffices to show that H1(Kv, A)pM is isomorphic to
A(Kv)/p

MA(Kv). As H1(Kur
v /Kv, A) vanishes, it follows from inflation-restriction that

restriction induces an isomorphism H1(Kv, A)pM
∼−→ H1(Kur

v , A)G
pM

, where G denotes the

Galois group ofKur
v /Kv. Moreover, as A(Kur

v ) is p-divisible, the sequence in (1.4) induces
an isomorphism H1(Kur

v , ApM ) ∼= H1(Kur
v , A)pM , and hence an isomorphism of their G-

invariant subgroups. Since the pM -torsion points of A are unramified over Kv, the action
of the inertia group I of Kv on ApM is trivial. This gives rise to the natural identification
H1(Kur

v , ApM ) = Hom(I, ApM ). Let l denote the characteristic of the residue field of

Kv. It follows from ramification theory that the wild ramification group Iwild of Kv
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is a maximal pro-l subgroup of I, and since l 6= p any homomorphism f : I → ApM

must therefore vanish on Iwild. Serre showed that the quotient I/Iwild is canonically
isomorphic to the product

∏
q 6=l Zq(1), where Zq(1) := lim←−µqn . As any homomorphism

f as above factors through this group, we conclude that H1(Kv, A)pM is isomorphic to
the group Hom(µpM , ApM )G . The group of pM -roots of unity is cyclic, hence this group
of homomorphisms is naturally isomorphic to ApM (Kv), and since multiplication by p is
an isomorphism on Ov, it follows from Milne 2006a, Lemma 3.3 that A(Kv)/p

MA(Kv) is
isomorphic to ApM (Kv) as well. It follows that δ(A(Kv)/p

MA(Kv)) is maximal isotropic.

Since it is maximal isotropic, it fits in a short exact sequence

0→ δ(A(Kv)/p
MA(Kv))→ H1(Kv, ApM )

ev−→ δ
(
A(Kv)/p

MA(Kv)
)∗
→ 0.

Hence consider the diagram

0 A(Kv)/p
MA(Kv) H1(Kv, ApM ) H1(Kv, A)pM 0

0 A(Kv)/p
MA(Kv) H1(Kv, ApM ) δ

(
A(Kv)/p

MA(Kv)
)∗

0.

δ ι∗

δ ev

ϕ

Here ϕ is the map making this diagram commutative. It is given by the composition
ι∗ ◦ ev−1, which is well-defined by exactness. Because all groups are finite, ϕ is an
isomorphism. For any y ∈ A(Kv)/p

MA(Kv) and d ∈ H1(Kv, A)pM , the pairing is now
defined as

〈d, y〉v = ϕ−1(d)(δ(y)).

The non-degneracy of the pairing follows immediately from the fact that ϕ is an isomor-
phism. The pairing is alternating as it is induced by the cup product.

The pairing in equation (2.3) is also known as the Tate-pairing. In proving Proposition
2.4, we have also shown the following useful relation between the cup-product and the
Tate pairing:

〈ιv∗(c), x〉v = c ^ δ(x) (2.4)

Remark. In Chapter I, Section 3 of his book ”Arithmetic Duality Theorems”, Milne
provides a more profound argument to show that maximality of A(Kv)/p

MA(Kv). Any
triple (M,N,P ) of Gal(Kv/Kv)-modules comes equipped with a canonical family of
Ext-pairings. For an abelian variety A, the group ExtrKv(Z, A) is simply the cohomology
group Hr(Kv, A). Hence for the triple (A,Z,Gm) these pairings are given by

ExtrKv(A,Gm)×H2−r(Kv, A)→ H2(Kv,Gm).

The latter is isomorphic to Q/Z, and it can be shown that these pairings are in fact
perfect. The Ext-groups of an abelian variety are closely related to the dual abelian
variety by the isomorphisms

Hr(Kv, A
∨)
∼−→ Extr+1

Kv
(A,Gm).

12



For r = 1, this isomorphism along with the pairing above, add up to an isomorphism of
compact groups

A∨(Kv)
∼−→ H1(Kv, A)∗.

The group of pM -torsion of H1(Kv, A) is isomorphic to the group of pM -torsion of its
Pontryagin dual, and since A admits a principal polarization, this module is therefore
isomorphic to the group ApM (Kv). As multiplication by p is an isomorphism on Ov, this
module has the same rank as A(Kv)/p

MA(Kv).

This construction by Milne allows a more universal definition of the Tate pairing. Since
the Ext-pairing and the isomorphisms above only depend on the fact that v is non-
archimidean, they give rise to a canonical perfect pairing

〈·, ·〉v : H1(Kv, A)×A∨(Kv)→ Q/Z.

This definition can be extended to the archimedean places (see Milne 2006a, Remark
3.7).

2.3 The Cassels-Tate pairing

The Tate pairing allows us to construct a pairing on the Shafarevich-Tate groups, known
as the Cassels-Tate pairing. The Cassels-Tate pairing is fundamental in understanding
the structure of the Shafarevich-Tate group and hence the the structure of the abelian
variety A itself. They were first introduced by Cassels for elliptic curves and were later
generalized by Tate to a pairing

〈·, ·〉 : X(A/K)×X(A∨/K)→ Q/Z

We will define the pairing only on the p-primary part of the Shafarevich-Tate group.
The construction for arbitrary integers m and n is identical.

Let M and M ′ be two positive integers, and let d ∈X(A/K)pM and d′ ∈X(A∨/K)pM′

be two cohomology classes. Let c′ ∈ SpM′ (A
∨/K) be a lift of d′ to the Selmer group of

A∨. By definition of the Shafarevich-Tate group, the reduction of d′ modulo v vanishes
at every place of K. Hence via the Kummer sequence (1.4), we can choose a set {y′v ∈
A(Kv)} such that

δ(y′v) = c′v.

Next assume that there exists a d1 ∈ H1(K,A)pM+M′ such that pM
′
d1 = d. Multiplication

by pM
′

sends pM+M ′-torsion elements to pM -torsion elements. Since the reduction of d
vanishes at every place of K, the reduction d1,v must necessarily be a pM

′
-torsion point

of H1(Kv, A). The Cassels-Tate pairing is now defined as

〈d, d′〉 =
∑
v

〈d1,v, y
′
v〉v.

13



To see that this pairing is well-defined, let v be a valuation of K and assume that
yv ∈ A(Kv) is another point such that δ(yv) = c′v. Then y′v − yv vanishes under δ and
is therefore contained in pM

′
A(Kv). Write y′v − yv = αP , as the pairing commutes with

the action of OA, it follows that

〈d1,v, y
′
v − yv〉v = 〈d1,v, αP 〉v = 〈α · d1,v, P 〉v = 0,

since d1,v is pM
′
-torsion. Hence this definition is independent of the choice of y′v. To see

that it is independent of the choice of d1 consider another point d2 ∈ H1(K,A)pM+M′

in the pre-image of d. The difference d1 − d2 is contained in H1(K,A)pM′ , and hence

originates from a global cocycle c ∈ H1(K,ApM
′ ). Using the relation described in (2.4),

this implies that
〈d1,v − d2,v, y

′
v〉v = cv ^ c′v.

But this implies that the Cassels-Tate pairing vanishes here as the sum of Hasse invari-
ants of a global class is zero.

Remark. It is not generally known if such a d1 exists. By the clever use of cochains,
the use of such a d1 can be avoided, without altering the pairing. This as well as other
interpretations are illustrated in Milne 2006a, Proposition 6.9 and the corresponding
remarks. Other constructions can also be found in Poonen et al. 1999. For the classes d
considered in this thesis, such a d1 always exists.

For elliptic curves, Cassels showed that this pairing is non-degenerate and alternating
after dividing by maximal divisible subgroups (see Poonen et al. 1999). In particular, if
the Shafarevich-Tate group is finite, its order must be a perfect square. This was later
generalized by Tate for abelian varieties over K, who showed that the pairing is non-
degenerate after dividing by maximal divisible subgroups. Note that any polarization φ
on A gives rise to a pairing

〈·, ·〉φ : X(A/K)×X(A/K)→ Q/Z,
〈d, d′〉φ = 〈d, φd′〉

Tate also showed that this pairing is alternating if φ was a polarization arising from K-
rational divisor. Such a polarization need not exist in general, and one can find examples
where the order of the Shafarevich-Tate group is not a perfect square (see Poonen et
al. 1999). Flach later showed that such a pairing is anti-symmetric if φ is a principal
polarization. Note that anti-symmetry and skew-symmetry are equivalent whenever
2 6= 0. Hence for principally polarized abelian varieties A with finite Shafarevich-Tate
group, the order of its p-primary part will always be a perfect square when p is an odd
prime, and the order of the entire group will either be a perfect square or twice a perfect
square. In their 1999 paper, Poonen and Stoll associated a class c ∈ H1(K,A) to any
principal polarization, and showed that the order of X(A/K)2∞ is a perfect square if
and only if 〈c, c〉 = 0. Moreover, by using this c they constructed a modified pairing
〈·, ·〉c which is non-degenerate and alternating if and only if 〈c, c〉 = 0.
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Chapter 3

Modular abelian varieties

This chapter serves as a brief introduction to modular forms, Hecke operators, newforms
and the abelian varieties associated to newforms. Additionally notation is introduced at
the end of the section, and several propositions are formulated which will prove fruitfull
in later sections. Most propositions and proofs originate from Diamond et al. 2005, and
the reader is encouraged to read this book for a broader exposition of the topic.

3.1 Modular forms

Consider the complex upper half plane

H = {z ∈ C | Im(z) > 0}

with the natural topology. Define an action of SL2(Z) on H, by letting(
a b
c d

)
τ =

aτ + b

cτ + d
for all

(
a b
c d

)
∈ SL2(Z)

For any τ ∈ H, define the lattice Λτ = Z + τZ, and consider the corresponding elliptic
curve Eτ = C/Λτ . Then τ1, τ2 ∈ H give rise to C-isomorphic elliptic curves if and only
if there exists a γ ∈ SL2(Z) such that γτ1 = τ2 (see Silverman 1994, Lemma 1.2) . As
−I acts trivally on H, we can further impose that γ ∈ Γ0(1) = SL2(Z)/{±I}, and we
define Y0(1) = Γ0(1)\H. In greater generality, for integers N > 1, define the congruence
subgroup

Γ0(N) =


(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ c ≡ 0 mod N

 ,

and let Y0(N) = Γ0(N)\H. This space is Hausdorff, and can be compactified by adding
a finite number of points of P1(Q), known as the cusps of Γ0(N). This compactification
is called the classic modular curve of level N and is denoted X0(N). It carries the
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structure of a Riemann Surface. Let {α1, ..., αr} be a set of coset representatives of
Γ0(N) in SL2(Z). The cusps of Γ0(N) are then given by the orbits of αr(∞) under the
action of Γ0(N). It can occur that two corepresentatives correspond to the same cusp
of Γ0(N).

Intuitively, the classical modular curve parametrizes isogenies between elliptic curves
with cyclic kernel isomorphic to Z/NZ; Any point in Y0(N) corresponds to an isomor-
phism class of elliptic curves, together with a finite cyclic subgroup of order N . Consider
the matrix (

N 0
0 1

)
.

It acts as multiplication by N on H. For any τ ∈ H, the lattices ΛNτ and 1
NZ + τZ

are homothetic, hence they give rise to C-isomorphic elliptic curves. The second lattice
contains Λτ as a sublattice of index N , and therefore gives rise to an isogeny of degree
N . Hence to any τ ∈ H, we associate the short exact sequence of algebraic groups

0→
(

1
NZ + τZ

)/
(Z + τZ) → C

/
(Z + τZ) → C

/(
1
NZ + τZ

)
→ 0.

Two points τ1, τ2 are then equivalent if there exists some γ ∈ SL2(Z) inducing an iso-
morphism between the elliptic curves in this sequence, and this holds if and only if
γ ∈ Γ0(N).

Let f : H → C be a continuous function, for any integer k ≥ 0 and γ ∈ GL+
2 (Q), the

weight 2k operator is defined as

f [γ]2k(τ) = det(γ)2k−1(cτ + d)−2kf(γτ),

where c = (γ)21 and d = (γ)22 are the coeffcients of γ.

Definition 3.1. Let k ≥ 0 be an integer. A weakly modular function of weight 2k
and level N is a meromorphic function f : H → C that f remains meromorphic when
extended to all the cusps of Γ0(N) and satisfies the level N modularity condition:

f

(
aτ + b

cτ + d

)
= (cτ + d)2kf(τ) for all

(
a b
c d

)
∈ Γ0(N).

A modular form is a weakly modular function that is holomorphic on H and all the cusps
of Γ0(N). If it moreover vanishes at all the cusps of Γ0(N), it is said to be a cusp form.

A modular form can eqivalently be defined as a holomorphic function that is weight
2k invariant for all γ ∈ Γ0(N), that is f [γ]2k = f . Consider the matrix given by
a = b = d = 1 and c = 0. It is contained in Γ0(N) and acts on H by addition of 1. Hence
by the modularity condition any modular form f must be periodic. In particular, it can
be expressed as a Fourier series

f =
∞∑
n=0

anq
n
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where qn = e2πiτ . A modular form then vanishes at infinity, if and only if a0 = 0.
Consider the set of coset representatives {α1, ..., αr} of Γ0(N) in SL2(Z). Since f is a
modular form with respect to Γ0(N), its weight 2k conjugates fj = f [αj ]2k are modular
forms with respect to the groups α−1

j Γ0(N)αj . Moreover they satisfy fj(∞) = f(yj),
where yj is the cusp corresponding to αj . Hence f is a cusp form if and only if a0 = 0 in
the fourier expansion of fj for all j. A typical example of a modular form is the modular
discriminant

∆(τ) = q
∞∏
n=1

(1− qn)24

which sends τ to the discriminant of the Weirestraß equation of the elliptic curve as-
sociated to τ . The collection of cusp forms of weight 2k carry a natural structure of a
C-vector space and is denoted S2k(N). This space admits the following inner product.

Definition 3.2. Let N ≥ 1 andk ≥ 0 be two positive integers. The Petersson inner
product is defined as the pairing

〈·, ·〉 : S2k(N)× S2k(N)→ C,

(f, g) 7→ 1

[SL2(Z) : Γ0(N)]

∫
X0(N)

f(τ)g(τ)Im(τ)2kdν(τ),

where dν(x+ iy) = dxdy
y2

denotes the hyperbolic volume.

Since X0(N) carries the structure of a Riemann-Surface, the notion of holomorphy is
well-defined on it, and we can fix an atlas {Vj}j∈J on it. Let τj ∈ Vj and let γ ∈ Γ0(N)
be given. Letting dτj denote the standard differential of τ , simple computation shows
that d(γτj) = (cτ + d)−2dτj . Thus, for a modular form f = (gj)j of weight 2k, the
object (gj(τj)dτ

k
j )j∈J is Γ0(N)-invariant, and hence a differential k-form ωf on X0(N).

It follows from the theory of automorphic forms that this ωf is a holomorphic k-form if
and only if f vanishes at all the cusps of X0(N) (see Diamond et al. 2005, Chapter 3).
Moreover, any holomorphic k-form is induced by a weight 2k cusp form, and as distinct
modular forms give rise to distinct differentials, this proves that the map

S2k(N)→ H0
(
X0(N),Ωk

X0(N)

)
,

f 7→ ωf
(3.1)

is an isomorphism of C-vector spaces.

3.2 Hecke operators

Since the set of modular forms is a C-vector space, one can speak of operators on this
space. A type of operator that is of particular interest in the theory of modular forms
is the Hecke operator. Let p be a prime number and consider the matrix

P =

(
1 0
0 p

)
.
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This matrix acts as division by p on H, and therefore gives rise to a degree p isogeny
Eτ → Eτ/p, for any τ ∈ H. In particular, it shows that the point τ/p is p-isogenous to
τ on Y0(N). Let γ ∈ Γ0(N) be any matrix, as γ does not necessarily commute with P ,
the points γτ/p and τ/p need not be congruent modulo Γ0(N) and hence correspond to
different points on Y0(N). In this case the composition Eτ → Eγτ → Eγτ/p is another
isogeny of degree p, and hence gives rise to another p-isogenous point on Y0(N). In fact
all p-isogenous points of Y0(N) are realized by such a composition. This leads to the
study of the distinct points of Y0(N) are p-isogenous to τ .

Any p-isogeny respecting the level N structure is given by an element of PΓ0(N). Two
points in H are in the same class of Y0(N) if they are in the same Γ0(N) orbit. Hence the
distinct p-isogeny classes given a certain point in Y0(N) are in one to one correspondence
with the orbits of Γ0(N)\Γ0(N)PΓ0(N).

Definition 3.3. Let f be a weakly modular function of weight 2k and level N , and
let p a prime number. Let {βj}j∈J be a set of coset representatives of the orbits of
Γ0(N)\Γ0(N)PΓ0(N). The p-th Hecke operator acting on f is defined as

Tp(f) =
∑
j∈J

f [βj ]2k.

The Hecke operators can be described explicitly if given a set of orbit representatives
{βj} as in Definition 3.3. By Diamond et al. 2005, Lemma 5.1.2, giving such a set is
equivalent to giving a set of orbit representatives {γj} for the action Γ3\Γ0(N), where
Γ3 = (P−1Γ0(N)P ) ∩ Γ0(N), via the identification βj = Pγj . Observe that

P−1Γ0(N)P =


(
a pb
c
p d

)
∈ SL2(Q)

∣∣∣∣∣∣
(
a b
c d

)
∈ Γ0(N)

 .

Hence

Γ3 =


(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ c ≡ 0 mod N, b ≡ 0 mod p

 .

Hence Γ3 is given by all matrices of Γ0(N) subject to the addtional condition that b ≡ 0
mod p. Consequently, a natural choice of coset representatives would be given by

γj =

(
1 j
0 1

)
, 0 ≤ j < p.

Clearly the γj are in distinct Γ3 orbits. Let γ ∈ Γ0(N), then γ is contained in the orbit
of γj if and only if γγ−1

j ∈ Γ3. Observe that

γγ−1
j =

(
a b− aj
c jc+ d

)
,
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hence γ is contained in the γj orbit if and only if b − aj ≡ 0 mod p. Such a j exists if
and only if p - a, since p cannot divide a and b simultaneously. If p | N , then p divides
c and by the same argument, it follows that p - a. In this case it follows that {γj} is a
complete set of orbit representatives for Γ3\Γ0(N). If p - N , there exist m,n ∈ Z such
that mp− nN = 1. Define the matrix

γ∞ =

(
mp n
N 1

)
∈ Γ0(N),

and assume that p | a. Then

γγ−1
∞ =

(
a− bN bmp− an
c− dN dmp− cn

)
∈ Γ3,

and hence {γj | 0 ≤ j < p}∪{γ∞} is a complete set of orbit representatives. By applying
Diamond et al. 2005, Lemma 5.1.2, it follows that

βj =

(
1 j
0 p

)
, 0 ≤ j < p, β′∞ =

(
m n
N p

)(
p 0
0 1

)
,

forms a complete set of orbit representatives for Γ0(N)\Γ0(N)PΓ0(N). Note that β′∞ can
be replaced with the multiplication by p-matrix β∞ as the first matrix in the product
is contained in Γ0(N). Hence, the p-th Hecke operator admits the following explicit
description

Tpf(τ) =



1

p

p−1∑
j=0

f

(
τ + j

p

)
+

1

p
f(pτ), p - N

1

p

p−1∑
j=0

f

(
τ + j

p

)
, p | N

(3.2)

Working recursively, Hecke operators can be defined for any n > 0.

Definition 3.4. The n-th Hecke operator for any n > 0 is defined by the relations

1. T1 = 1

2. Tmn = TmTn if (m,n) = 1

3. Tpr =

{
TpTpr−1 − p2k−1Tpr−2 , p - N
TpTpr−1 , p | N

Since Hecke operators are sums of weight 2k-operators, they preserve the space of mod-
ular forms and the space of cusp forms. Of particular interest are those forms that are
eigenvectors for all Hecke operators simultaneously. Such forms are called Hecke eigen-
forms. Hecke operators play an integral role in determining the structure of modular
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form. In fact, the fourier transform of a modular form can be described entirely in terms
of the fourier transforms of the Hecke operators. Hecke eigenforms allow an even more
explicit description.

Theorem 3.5. Let f =
∑∞

n=0 an(f)qn be a modular form of level N and weight 2k.
Then for any n ≥ 0, we have the equality

an(f) = a1(Tnf).

If f is an eigenform for Tn with eigenvalues λn, then

an(f) = a1(Tnf) = λna1(f).

Proof. A more universal statement and proof can be found in Diamond et al. 2005, most
notably Proposition 5.3.1.

If f is an eigenform for all n coprime to N such that a1(f) = 0, then Theorem 3.5 shows
that an(f) = 0 for all n coprime to N . The main lemma of Atkin-Lehner theory states
that any such cusp form can be expressed as a sum

f(τ) =
∑
p|N

gp(pτ), for some gp ∈ S2k(N/p).

These kinds of cusp forms are examples of old forms.

Definition 3.6. The old subspace S2k(N)old is the subspace of level N cusp forms
spanned by all

f(τ) = g(dτ),

where g is a level M cusp form with M a proper divisor of N and d | N/M . An
oldform is an element in the old subspace. The new subspace S2k(N)new is the orthogonal
complement of the old subspace in the space of cusp forms under the Petersson inner
product . A level N newform is a Hecke eigenform in the new subspace such that a1 = 1.

Both spaces are preserved by the Hecke operators (see Diamond et al. 2005, Proposition
5.6.2) Notice that an eigenform can be a newform at atmost one level. This level is
called the conductor of f . A strong theorem states that any modular form in the new
subspace that is an eigenform for all Hecke operators away from the level, is in fact an
eigenform for all Hecke operators (see Diamond et al. 2005, Theorem 5.8.2) This thesis
will focus primarily on weight 2 newforms as they retain strong algebraic properties.

Proposition 3.7. Let f =
∑n

i=1 anq
n be a level N newform of weight 2. Then an is a

real algebraic integer for all n.

Proof. Recall that the Jacobian of X0(N) is given by

J0(N) = H0
(
X0(N),Ω1

X0(N)

)∗/
H1(X0(N),Z) .
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Hence the isomorphism in (3.1) allows us to identify

J0(N) = S2(N)∗
/
H1(X0(N),Z) . (3.3)

Note that the Hecke operators acts on S2(N)∗ by composition. By Diamond et al. 2005,
Proposition 6.3.2, this action of Hecke operators induces an action on the Jacobian of
X0(N). In particular it acts on the finitely generated abelian group H1(X0(N),Z). This
shows that the characteristical polynomial of Tn has integer coefficients, and as it is
monic, all of its eigenvalues are algebraic integers. Hence by Theorem 3.5, an is an
algebraic integer for all n. The Hecke operators Tn for n coprime to N are self adjoint
with respect to the Petersson inner product (Diamond et al. 2005, Theorem 5.5.3).
Consequently, their eigenvalues are real and hence so is an, for n coprime to N . It now
follows from the Strong Multiplicity One theorem that an is real for all n.

3.3 Abelian varieties associated to newforms

Proposition 3.7 shows that all coefficients of a weight 2 newform f are real algebraic
integers. In particular, the field of coefficients of f is a real, algebraic extension of Q.
Since the Hecke operators act on the finitely generated abelian group H1(X0(N),Z), this
field satisfies even stronger properties.

Definition 3.8. The Hecke algebra of level N is the endomorphism ring of S2(N) gen-
erated by the Hecke operators,

TN = Z[Tn | n ∈ N].

As the Hecke algebra acts on H1(X0(N),Z), this ring is a finitely generated Z-module
of rank at most 4gN , where gN is the genus of X0(N). Let f be a weight 2 newform of
level N , and consider the map

λf : TN → Q,
Tn 7→ a1(Tnf).

Denote its kernel by If . This homomorphism surjects onto the coefficient ring of f and
hence induces an isomorphism

λf : TN/If
∼−→ Z[an | n ∈ N].

In particular, this ring is a finitely generated Z-module and its field of fractions is hence
a real number field. Moreover, Gal(Q/Q) acts on the space of cusp forms by acting
on the coefficients of the fourier expansion of a cusp form. Since this action commutes
with the action of the Hecke operators, fσ is again a newform for any σ ∈ Gal(Q/Q). In
particular all its coefficients are real, and hence the field of coefficients F = Q(an | n ∈ N)
is a totally real number field.
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It follows from the construction of Hecke operators that their action on J0(N) is given by
regular maps. Moreover, as the Hecke operators respect the group law on J0(N), they are
morphisms of abelian varieties. Hence TN can be realized as a subring of End(J0(N)).
The image of a morphism α : A→ B between abelian varieties is an abelian subvariety
of B. Hence for any α ∈ If , α(J0(N) is an abelian subvariety of J0(N), and since If is
finitely generated, it now follows that

If (J0(N)) :=
∑
α∈If

α(J0(N)) ⊂ J0(N)

is an abelian subvariety of J0(N) as well. This obervation together with the following
proposition allows us to construct the abelian variety Af associated to f .

Proposition 3.9. Let A be an abelian variety and let B be an abelian subvariety of
A. Then there exists a unique abelian variety C together with a surjective morphism
of abelian varieties ϕ : A → C such that ker(ϕ) = B, satisfying the following universal
property: For any surjective morphism of abelian varieties g : A→ D, with B ⊂ ker(g)
there exists a unique morphism g′ : C → D such that the following diagram commutes.

A D

C

g

ϕ
g′

Moreover, dimA = dimB + dimC.

Proof. A proof can be found in Perret-Gentil 2014, Proposition 1.56 and Polishchuk
2003, Section 9.5.

Thus for any newform f of weight 2 and level N we define the abelian variety Af as

Af := J0(N)/If (J0(N)). (3.4)

As J0(N) is defined over Q, so is Af . An abelian variety A defined over Q admitting a
surjective morphism αf : J0(N) → A is called a modular abelian variety. In fact it can
be shown that any modular abelian variety is isogenous to a product of abelian variety
Af associated to newforms f (Ribet 1992, Theorem 4.4). The modularity of Af gives a
strong insight in its structure. An immediate concequence is that Af has conductor N .

Proposition 3.10. Let A = Af be an abelian variety associated to a weight 2 newform
f of level N , and let F = Q(an | n ∈ N) be the field of coefficients of A The following
statements hold.

1. A has dimension g = [F : Q].

2. A has real multiplication by the order OA = Z[an | n ∈ N].

3. All real multiplications α ∈ OA of A are defined over Q.
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Proof. Let gN denote the dimension of J0(N). By Proposition 3.9, the first statement
is equivalent to the condition that dim If (J0(N)) = gN − [F : Q]. Consider the short
exact sequence of free Z-modules

0→ If → TN → Z[an | n ∈ N]→ 0.

Extension of scalars gives rise to an exact sequence of C-vector spaces

0→ If ⊗ C→ TN ⊗ C→ C[F :Q] → 0.

Denote TC = TN ⊗ C and consider the pairing

TC × S2(N)→ C, (T, g) 7→ a1(Tg).

This pairing is non-degenerate and hence induces an isomorphism h : TC → S2(N)∗.
In particular its dimension as a C-vector space coincides with the dimension of J0(N)
as well as the rank of TN (by equation (3.3)). Hence by the exact sequence above,
dim If ⊗ C = gN − [F : Q]. This vector space acts on S2(N)∗ by composition on the
right. On the other hand, as If ⊗C is an ideal in TC, and since h is an isomorphism, this
action coincides with ideal action of If⊗C on TC. Hence the image of this action is simply
If (S2(N)∗)⊗C, which allows the identification If ⊗C = If (S2(N)∗)⊗C. By linearity,
this is the same space as the space generated by the action of If on S2(N)∗, whose
dimension as a C-vector space coincides with the dimension of the variety If (J0(N)).
We conclude that dimC If ⊗ C = gN − [F : Q] as required.

The action of the Hecke algebra TN on J0(N) decends to an action on Af . The kernel
of this action is precisely the group If and hence the quotient TN/If acts faithfully on
Af . As this ring is naturally isomorphic to Z[an | n ∈ N], we conclude that this order
acts on Af . In particular, this gives an injection F ↪→ Q⊗ EndQ(A). Any number field
L acting faithfully on Af , must act faithfully on Lie(A/Q) by functoriality. As this is a
Q-vector space of dimension dimAf = [F : Q], the dimension of L is bounded by [F : Q].
Hence F is the largest field that can act faithfully on Af , and we conclude that Af has
totally real multiplication by the order Z[an | n ∈ N]. This proves property the second
statement.

The third statement follows directly from the fact that the Hecke operators are defined
over Q.

In proving Proposition 3.10, the following useful proposition was also proved.

Proposition 3.11. Let A = Af be a modular abelian variety associated to a newform
f =

∑∞
n=1 anq

n of conductor N Then for any p - N , the following diagram commutes:

J0(N) J0(N)

Af Af

Tp

αf αf

ap
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For the rest of this thesis, unless otherwise stated, A will always be a modular abelian
variety of the type constructed above, and N will denote its conductor which will hence-
forth be assumed to be square-free. The notations OA and F are used to denote the
order and number field as described in Proposition 3.10. Moreover, we a ssume that A
admits a principal polarization.

3.4 The Eichler-Shimura relation

Let p be a prime number not dividing N . Since X0(N) is a projective curve of conductor
N , it has good reduction modulo p. Denote the reduced curve by X̃0(N), and define the
Frobenius map Frp : X̃0(N) → X̃0(N), raising all coefficients of a point P to the p-th
power. Since X̃0(N) is a curve, its divisors are generated by the points on X̃0(N), hence
the Frobenius map induces a forward map Frp,∗ on the set of divisors via

(P ) 7→ (Frp(P )).

It also defines a reverse map Fr∗p via

(P ) 7→
∑

Q∈Fr−1
p (P )

eQ(Frp)(Q),

where eQ(Frp) denotes the ramification degree of Frp at Q. As the Frobenius map is
bijective and ramified of degree p everywhere, the second expression can be simplified to

(P ) 7→ p(Fr−1
p (P )).

Both maps reduce to a map on Pic0(X̃0(N)). Since the Picard group is canonically
isomorphic to the Jacobian J̃0(N), these two maps give rise to endomorphisms of J̃0(N).
In particular, the composition satisfies

Fr∗p ◦ Frp,∗ = p · 1End(J̃0(N))

Furthermore, the Eichler-Shimura relation states that the diagram

J0(N) J0(N)

J̃0(N) J̃0(N)

Tp

Fr∗p+Frp,∗

(3.5)

commutes (see Diamond et al. 2005, Theorem 8.7.2). Finally Proposition 3.11 gives the
relation

ap ◦ αf = αf ◦ Tp.

By abuse of notation, write Frp for the composition αf ◦Frp,∗. Using the Eichler-Shimura
relation and composing with Frp,∗, now gives the following relation in End(A(Fp))

Fr2
p − alFrp + p = 0. (3.6)
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Fix an extension p of p in Q, and denote by Frob(p) its Frobenius element. Observe
that its action on A(Fp) coincides with the action of Frp and therefore satisfies the same
characteristical polynomial in End(A(Fp)). Henceforth, we will refer to Frob(p) as the
Frobenius symbol of p in Q and its natural restrictions to all subfields.

3.5 The Fricke involution

Consider the matrix

wN =

(
0 −1
N 0

)
It gives rise to the degree 2 map τ 7→ −1

Nτ on X0(N), known as the Fricke involution.
The associated weight 2 operator [wN ]2 acting on the space of cusp forms S2(N) has
degree 2, hence its characteristical polynomial is given by X2 − 1. As this operator acts
non-trivially, its minimum polynomial coincides with its characteristical polynomial, and
its eigenvalues are ±1.

Proposition 3.12. The Fricke involution [wN ]2 commutes with Hecke operators Tn for
any n coprime to N .

Proof. Let p - N be a prime number. Recall that the Hecke operator Tp can be described
explicitly in terms of the coset representatives βj , as described in (3.2). Hence it suffices
to show that conjugation by wN permutes the orbits of the βj . A direct computation
shows that w−1

N β∞wN = β0, and as w−1
N = −N−1wN , the converse equation holds as

well. Hence conjugation by wN permutes the orbits of β0 and β∞. For j, j′ 6= 0,∞, a
direct computation shows that the equation wNβj = Aβj′wN has a solution A ∈ Γ0(N)
if and only if p | 1 + Njj′. Hence for any j 6= 0,∞, conjugation by wN maps the
orbit of βj onto the orbit of βj′ , where j′ ≡ −(Nj)−1 mod p. It follows that the Hecke
operator Tp commutes with the Fricke involution. The statement now follows for general
n coprime to N as every Hecke operator can be written uniquely as a composition of
Hecke operators of prime degree.

Let f ∈ S2(N) be a newform. Since [wN ]2 commutes with the Hecke operators Tn
coprime to N , the cusp form f [wn]2 is again an eigenform for these operators with the
same eigenvalues as f . It therefore follows by Diamond et al. 2005, Theorem 5.8.2.b)
that f [wN ]2 = cf for some constant c ∈ C, and hence that f is an eigenform for the
Fricke involution, and c = ±1. The Fricke involution plays an important role in the
structure of L-functions associated to newforms. In fact, the eigenvalue ε of a newform
f is the negative of the sign of the L function of f at 1 (see Ribet and Stein 2011,
Theorem 16.1.4) .
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Chapter 4

Chebotärev Density Theorem

This short, technical chapter introduces several lemmas, necessary for later chapters.
Of particular interest is Corollary 4.3.1 which plays an integral role in the proof of
Proposition 6.6.

From now on assume that K is an imaginary quadratic number field of discriminant
D 6= 3, 4 and that N splits completely in K. Let p be rational prime such that

1. p - 6DNϕ(N),

2. p is unramified in F and invertible in OA,

3. For all p extending p in OA, the map ρp : Gal(Q/Q)→ GL2(Op) surjects onto the
subgroup

{g ∈ GL2(Op) | det(g) ∈ Z∗p}.

Note that these conditions hold for all but finitely many primes p, (see Longo et al.
2013, Lemma 3.7). Let p be any prime of OA extending p and let M > 0 be an integer.
Denote L = K(ApM ), and OM = OA/pM .

Lemma 4.1. There is a natural injection of Gal(L/Q)-modules

H1(K,ApM ) ↪→ H1(L,ApM ) = Hom(Gal(Q/L), ApM ).

Proof. Let p be the rational prime below p. As N splits completely in K, it is neces-
sarily coprime to D. As by assumption p is coprime to D as well, the fields K and
Q(Ap) are disjoint over Q, hence so are the fields K and Q(Ap). We obtain that
Gal(K(Ap)/K) ∼= Gal(Q(Ap)/Q). This group naturally injects in G = Gal(L/K),
and contains the cyclic subgroup F∗p of order p − 1. As p − 1 is coprime to p it
naturally follows that Hn(F∗p, ApM ) = 0 for all n ≥ 1. For n = 0, we have that

H0(F∗p, ApM ) = (ApM )F
∗
p = 0. Inflation-restriction, now gives an exact sequence

0→ Hn(G/F∗p, (ApM )F
∗
p)→ Hn(G, ApM )→ Hn(F∗p, ApM ).
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By the above, the last term vanishes and as (ApM )F
∗
p = 0 the first term vanishes as well,

hence Hn(G, ApM ) = 0 for all n ≥ 1. Using inflation-restriction again, we obtain an
exact sequence

0→ H1(G, ApM )→ H1(K,ApM )→ H1(L,ApM )G → H2(G, ApM )

The vanishing of the outer terms now induces an isomorphism

H1(K,ApM ) ∼= H1(L,ApM )G ,

which concludes the proof.

Proposition 4.2. Let C ⊂ Hom(Gal(Q/L), ApM ) be a finite G-submodule, free of rank
r over OM . Then there exists a finite Galois extension LC/L such that there is a natural
isomorphism

Gal(LC/L)
∼−→ HomG(C,ApM ),

σ 7→ (α 7→ α(σ)).

Proof. Let C be given as in the proposition, let α1, ..., αr generate C as an OM -module,
and let H = ∩ ker(αi). As each of the kernels in the intersection is an open normal
subgroup of Gal(Q/L) of finite index, so is its intersection. Hence LH is Galois over L,
and we have a natural injection Gal(LH/L) ↪→ HomG(C,ApM ). Thus it remains to show
that the map

Gal(Q/L)→ HomG(C,ApM )

is surjective. We proceed by induction on r. Observe that there is a natural isomorphism
of free OM -modules of rank 2r

HomG(C,ApM )
∼−→ HomG(C/〈α1〉, ApM )×HomG(〈α1〉, ApM ),

φ 7→ (φ1, φ2)

Where φ1 and φ2 are the natural projection and restriction. Consider the fields LC/〈α1〉
and L〈α1〉. By the induction hypothesis, their Galois groups over L can be viewed
as subgroups of Gal(LC/L) and they carry the structure of free OM -modules. Hence
so does the Galois group G of the intersection LC/〈α1〉 ∩ L〈α1〉. We claim that G is
trivial. The fact that the intersection is a subfield of L〈α1〉, shows that the group G is
a submodule of Gal(L〈α1〉/L). Consequently the image of G under the evaluation map
is contained in the 〈α1〉 component of HomG(C,ApM ). Since G is also a submodule of
Gal(LC/〈α1〉/L), it follows from the same argument that the image of G is contained in
the C/〈α1〉 component of this group. The intersection of these components is trivial,
hence by injectivity of the evaluation map, so is G. In particular, the fields have trivial
intersection and are therefore linearly disjoint over L.

Let φ ∈ HomG(C,ApM ). By the induction hypothesis, there exist σ, τ ∈ Gal(Q/L) such
that φ1 = φσ and φ2 = φτ . Since the fields are linearly disjoint, we can impose that
σ ∈ ker(α) and τ ∈ ∩i>1 ker(αi). It follows that φ = φστ , and thus the map is surjective.
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To prove the statement for r = 1, we observe that evaluation at α induces an isomorphism

HomG(〈α〉, ApM ) ∼= ApM .

Hence, let R ∈ ApM , and consider the exact sequence

0→ ApM−1 → ApM
pM−1

−−−→ Ap → 0.

As α has order pM , there must exist a σ ∈ Gal(Q/L)) whose image has order pM . Let Q
denote the image of this σ. Without loss of generality we may assume that R has order
pM . As Ap is a simple G-module, there exists an η ∈ G such that

η ∗ pM−1Q = pM−1R.

As the action of G commutes with addition, it follows that R − α(η ∗ σ) ∈ ApM−1 .
Surjectivity now follows inductively by repeating this procedure for ApM−1 .

Let C be a freeOM -submodule ofH1(K,ApM ) of rank r. We can identify C as a subgroup

of Hom(Gal(Q/L), ApM ) by Lemma 4.1, and hence find a Galois extension LC/L with
Galois group isomorphic to HomG(C,ApM ). Remark that these homomorphisms are in
fact OM -linear homomorphisms. Write φ = φσ for φ ∈ HomG(C,ApM ) and let λ be
any prime of K. Fix an extension λL of λ to L and denote its decomposition group in
Gal(LC/L) by G(λL, LC). Then for any c ∈ C,

cλ = 0⇔ φσ(c) = 0 for all σ ∈ G(λL, LC) (4.1)

Fix τ ∈ Frob(∞), as its action on ApM satisfies the equation τ2 = 1, its eigenvalues are
±1, and as the order of ApM is odd, ApM decomposes as a sum of its τ -eigenspaces,

ApM
∼= (ApM )+ ⊕ (ApM )−.

As p is odd, the epM pairing is non-degenerate, alternating, and preserved by τ . It is easy
to verify that (ApM )+ and (ApM )− are isotropic subgroups with respect to epM . Observe
that ApM

∼= (OM )2 as a module. As the order of an isotropic subgroup is bounded
by the square root of the order of the group, it follows from the above decomposition
that the eigenspaces must both be isomorphic to OM . Consider the group of τ -invariant
OM -linear maps h : H1(K,ApM ) → ApM . As the image of any such function must be
τ -invariant, it is valued in the +1 eigenspace of τ . Hence we obtain

HomOM (H1(K,ApM ), ApM )〈τ〉 ∼= HomOM (H1(K,ApM ),OM ).

On the other hand, we can identify

H1(K,ApM )∗ = HomZ(H1(K,ApM ),Q/Z)

28



as a OM -module. A simple counting argument shows that both modules are isomorphic
to H1(K,ApM ) as modules. As both are modules of τ -invariant functions, this allows
for a natural identification

HomOM (H1(K,ApM ), ApM )〈τ〉 ∼= H1(K,ApM )∗

This identification allows us to associate a σ ∈ Gal(LC/L) to any φ ∈ C∗, and hence a
collection of primes of Q. This is illustrated in the following proposition.

Proposition 4.3. Let M > 1 be an integer. Let C be a finite submodule of H1(K,ApM ),

identify C∗ with Hom(C,ApM )〈τ〉, and let φ ∈ C∗. There exist infinitely many prime
numbers l, unramified in L such that

1. Frob(l) = Frob(∞) in Gal(L/Q),

2. φ = φFrob(λ′) for some prime λ′ of L extending l.

Proof. Note that the second condition is sound as the extension LC/L is abelian. Let
σ ∈ Gal(LC/L) be the automorphism such that φ = φσ. Since the order of Gal(LC/L)
is odd, and since σ is contained in the +1 eigenspace of τ , there exists a unique ρ ∈
Gal(LC/L) such that σ = ρτρ. Notice that τ acts by conjugation and is its own inverse,
hence the expression simplifies to σ = (τρ)2. By the Čhebotarev Density Theorem there
exist infinitely many unramified primes l such that τρ ∈ Frob(l). As τρ|L = τ , condition
1 is satisfied. In particular, l has degree two in L/Q. Thus, for any prime λ′ of L above
l, there exists a η ∈ Frob(l) such that η2 = Frob(λ̃). Thus, for appropriate choice of λ′,
we conclude that Frob(λ′) = σ.

Corollary 4.3.1. Let c1, ...., cn ∈ H1(K,ApM ) be independent elements of order pMi

respectively. Then for all 0 ≤ Ni ≤Mi there exist infinitely many prime numbers l such
that

1. Frob(l) = Frob(∞) in Gal(L/Q),

2. For λ the unique prime of K extending l we have

ord ci,λ = pNi for all 1 ≤ i ≤ n.

Proof. Let C = 〈c1, ..., cr〉, as the ci are independent, there exists a φ = φσ ∈ C∗

such that ord φ(ci) = pNi . By Proposition 4.3, there exist infinitely many l such that
Frob(l) = Frob(∞) in Gal(L/Q) and σ = Frob(λ′) for some λ′ extending l. By condition
1, l is inert in K, hence λ′ extends λ as well. Choose l outside the finitely many prime
numbers that ramify in LC . The decomposition group G(λ′, LC) is then cyclic and
generated by σ. Thus we conclude from (4.1) that ord ci,λ = ord φσ(ci) = pNi which
concludes the proof.
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Chapter 5

Heegner points

Since K is an imaginary quadratic field and N is split in K, the abelian variety A comes
equipped with a family of Heegner points defined over the ring class fields of K. The
Heegner points give rise to a family of cohomology classes cM (n), which will later be
shown to generate the Sharaevich-Tate group.

In the first section the construction of Heegner points is illustrated as well as the coho-
mology classes associated to them. Moreover, it provides an explicit description of these
cohomology classes (Lemma 5.3), and gives an upper bound on the order of said classes.
The second section provides a proof of a theorem by Kolyvagin (Theorem 5.5), which
expresses strong relations between the cohomology classes cM (n). This theorem lays the
groundwork for the structure theorem in Chapter 6.

5.1 Cohomology classes associated to Heegner points

Let n be a positive square-free integer whose prime factors are inert in K. Let On =
Z + nOK be the order of conductor n, and let Kn be the corresponding ring class field.
Recall from class field theory that for coprime l and m as above, the ring class fields
Kl and Km are linearly disjoint over K1 and satisfy KlKm = Kml. Consequently let
Gn = Gal(Kn/K1), then Gn ∼=

∏
l|nGl where l runs over all primes dividing n. The

group Gl is cyclic of order l+1, and there is a natural isomorphism Gl ∼= Gal(Kn/Kn/l).
Henceforth these groups will be regarded as the same object.

As N splits completely in K, there exists an ideal N ⊂ OK such that OK/N ∼= Z/NZ.
For n as above consider the ideal Nn = N ∩ On. Since (N,n) = 1, all prime factors of
Nn are invertible, and the residue is given by On/Nn ∼= Z/NZ. This yields an inclusion

On ⊂ N−1
n ⊂ C

and hence a short exact sequence of algebraic groups

0→ N−1
n /On → C/On

rn−→ C/N−1
n → 0.
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Notice that rn : C/On → C/N−1
n is an isogeny of elliptic curves with kernel isomorphic

to Z/NZ. Hence rn induces a point xn ∈ X0(N)(C). In fact, since C/On has complex
multiplication by On, the pointxn is defined over Kn. Define the Heegner point of
conductor n on A as

yn = αf ((xn)− (∞)) ∈ A(Kn).

Define the Heegner point associated to K as

yK = TrK1/K(y1).

For a prime l let σl be a generator for Gl, and denote by Trl the object
∑

σ∈Gl σ ∈ Z[Gl].
Let Dl ∈ Z[Gl] be given by

Dl =

l∑
i=1

i · σil

It satisfies the equation

(σl − 1) ·Dl = l + 1− Trl. (5.1)

For n as above define Dn =
∏
Dl. Let Gn = Gal(Kn/K), and let S be a set of coset

representatives of Gn in Gn. Observe that there is a bijection S ↔ Cl(OK). Finally
define the derived Heegner point of conductor n, to be the point

Pn =
∑
σ∈S

σ(Dnyn) ∈ A(Kn).

Observe that
P1 =

∑
σ∈S

σ(y1) = TrK1/K(y1) = yK .

Definition 5.1. Let M ≥ 1 be an integer. An M -Kolyvagin prime is a prime number l
such that

1. l is inert in K,

2. al ≡ l + 1 ≡ 0 mod pM .

Further, define S(M) to be the collection of square-free products of such primes. For
integers r, let Sr(M) be the subset of S(M) consisting of integers with exactly r prime
factors.

An equivalent definition of an M -Kolyvagin prime is any prime number l such that

Frob(l) = Frob(∞) ⊂ Gal(K(ApM )/Q).

To see this, notice that two elements σ, η ∈ Gal(Q(ApM )/Q) are in the same conjugacy
class if and only if their characteristical polynomials in GL2(ApM ) are equal. As ApM

injects into A(Fl), it follows from (3.6) that the characteristical polynomial of Frob(l) is
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given by T 2 − alT + l, whereas the characteristical polynomial of Frob(∞) is known to
be T 2 − 1. We hence conclude that condition 2 is equivalent to

Frob(l) = Frob(∞) ⊂ Gal(Q(ApM )/Q)

The property that l is inert in K implies that Frob(l)|K = τ , proving the equivalence.
While it follows from the condtions above, it is useful to point out that N,D and p are
pairwise coprime and that any prime l as above will never divide the product NDp.
Further notice that there are inclusions Sr(M + 1) ⊂ Sr(M).

Proposition 5.2 (Gross 1991, Proposition 3.6). Let n ∈ S(M), then ApM (Kn) = 0 and

Pn ∈ (A(Kn)/pMA(Kn))Gn

Proof. The first statement follows directly from Longo et al. 2013, Proposition 3.9 as the
Galois group Gal(Kn/Q) is solvable. To prove the second statement, it suffices to show
that Dnyn ∈ (A(Kn)/pMA(Kn))Gn . Let l be a prime dividing n, and write n = ml.
Using the equality Dn = DlDm and (5.1) we obtain

(σl − 1) ·Dnyn = (l + 1− Trl)Dmyn (5.2)

It follows from Kolyvagin and Logachëv 1989, Equation 2.1.4 and Proposition 3.10 that
Trl(yn) = al · ym ∈ A(Km). Hence it follows from 2 that

(σl − 1)Dnyn ≡ 0 ∈ A(Kn)/pMA(Kn)

and thus σlDnyn = Dnyn ∈ A(Kn)/pMA(Kn). Since Gn is generated by these σl we
conclude that

Dnyn ∈
(
A(Kn)

/
pMA(Kn)

)Gn

Using these points, Kolyvagin was able to construct cohomology classes in H1(K,ApM )
in the following manner. Consider the diagram:

0 A(K)/pMA(K) H1(K,ApM ) H1(K,A)pM 0

0 (A(Kn)/pMA(Kn))Gn H1(Kn, ApM )Gn H1(Kn, A)Gn
pM

δ ι∗

∼ res res

δn ιn∗

Notice that restriction is indeed an isomorphism since H1(Kn/K,ApM ) = 0 as a con-
sequence of Proposition 5.2. Define cM (n) ∈ H1(K,ApM ) to be the unique class such
that

res(cM (n)) = δn(Pn) (5.3)

and let dM (n) be the image of cM (n) in H1(K,A).
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Lemma 5.3 (McCallum 1991). Let Qn ∈ A(Kn) be any point congruent to Pn modulo
pM and congruent to 0 modulo qM for all other primes q lying above p. Then the cocycle

σ 7→ −(σ − 1)Qn
pM

+ σ
Qn
pM
− Qn
pM

is a representant for cM (n), where (σ−1)Qn
pM

is the unique pM -division point of (σ− 1)Qn
in A(Kn).

Proof. Let Qn be any such point, and observe that δn(Pn) ∈ H1(Kn, ApM ) is represented
by the cocycle

σ 7→ σ
Qn
pM
− Qn
pM

.

The existence of the pM -division point of (σ − 1)Qn follows from the second statement
of Proposition 5.2 and the fact that Qn ∈ qMA(Kn) for all other primes q | p. Since two
distinct pM -division points differ by a pM -torsion point, the first statement of Proposition
5.2 guarantees the uniqueness of the point. The term σ 7→ − (σ−1)Qn

pM
is a cocycle. The

expression given in the lemma is therefore a cocycle as well and it is easy to see that this
cocycle takes values in ApM . As the first term vanishes for all σ ∈ Gn, its restriction to
Kn is precisely the representative of δn(Pn) describe above. It follows that this cocycle
is a representative of cM (n) by (5.3).

Corollary 5.3.1. The class dM (n) is represented by the cocycle

σ 7→ −(σ − 1)Qn
pM

.

Proof. The map σ 7→ σQn
pM
− Qn

pM
is a coboundary in H1(K,A).

Corollary 5.3.2. For all integers M ≥ 2 and n ∈ S(M) we have

p · cM (n) = cM−1(n).

Proof. Let Qn be a point as described in Lemma 5.3, and write cM (n) for the associated
cocycle. As (σ − 1)Qn has a unique pM -division point in A(Kn), it has a unique pM−1-
division point. As multiplication commutes with the action of σ ∈ Gal(Q/K), we obtain

(p · cM (n))σ = −(σ − 1)Qn
pM−1

+ p · σQn
pM
− pQn

pM

= −(σ − 1)Qn
pM−1

+ σ
Qn
pM−1

− Qn
pM−1

= cM−1(n)σ.
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Write pM | Pn if Pn ∈ pMA(Kn), and define

ordp(Pn) = max{M : pM | Pn}.

Observe that cM (n) = 0 if pM | Pn. In fact for M > ordp(Pn) we have

ord cM (n) = pM−ordp(Pn) (5.4)

whenever cM (n) exists. Using this define

Mr = min{ordp(Pn) | n ∈ Sr(ordp(Pn) + 1)}.

Equivalently Mr is the smallest integer M such that there exists an n ∈ Sr(M + 1) for
which the associated class cM+1(n) is non-trivial. These numbers will later shown to be
bounded and decreasing, allowing us to give an explicit descripition of the Shafarevich-
Tate group (see Corollary 6.3.2).

5.2 Kolyvagin’s Theorem

Let n ∈ S(M), let l be a prime such that n = ml, and let λ denote its extension to
K. As λ is principal in K it splits completely in Km by class field theory. Recall
that an extension λ′ of λ in Km, induces a local field extension Km,λ′/Kλ of degree
f(λ′/λ) = 1. It therefore induces an embedding Km ↪→ Kλ. This observation allows us
to embed Pm in A(Kλ)/pMA(Kλ), and by Proposition 5.2 the class of Pm is independent
of the choice of the embedding. Recall that the Hilbert Class field K1 is the maximal
unramified extension of K. In particular since λ is the only prime of K that ramifies
in Kl, any prime of K1 lying above λ must be totally ramified in the extension Kl/K1.
Consequently, any λ′ extending λ in Km must be totally ramified in Kn = KmKl by
linear disjointness.

Let v be a prime of K dividing N (hence a prime where A has bad reduction), and
denote by A0 the collection of Kur

v -rational smooth points of A. This subgroup is of
finite index in A(Kur

v ), and by abuse of notation, we denote A/A0 for the quotient of
these groups. We impose that A and p satisfy one of the following conditions

1. The prime p is principal.

2. If v is a finite place of K where A has bad reduction then v satisfies one of the
following conditions:

(a) v is a principal of K,

(b) p - [A : A0].

Notice that the second condition fails to hold for only finitely many primes p since there
are only finitely many places of K where A has bad reduction and the component group
is finite for any such place.
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Lemma 5.4 (Gross 1991). Let n ∈ S(M), and let v be a valuation of K prime to n,
then cM (n)v ∈ δv(A(Kv)). Moreover, if v = vλ for some prime l inert in K, we have
cM (n)λ = δλ(Pn).

Proof. Notice that the first statement is equivalent to the vanishing of dM (n)v. Clearly
if v =∞, we have Kv = C, and hence H1(Kv, ApM ) = 0, thus dM (n)v = 0. Next assume
v is finite, it follows from the construction of dM (n) that it vanishes when restricted to
H1(Kn, A). It is therefore inflated from a class in H1(Kn/K,A). As v does not divide
n, it is unramified in Kn. This implies that dM (n)v acts trivially on the inertia group
Iv of Kv, and is therefore contained in the group H1(Kur

v /Kv, A). It follows from Milne
2006a, Proposition 3.8 that this group is trivial if v has good reduction.

Assume that A has bad reduction modulo v.
By the same lemma we have H1(Kur

v /Kv, A) = H1(Kur
v /Kv, A/A0), where A0 denotes

the open subscheme of smooth points of A. Consider the Heegner point (xn)− (∞) on
the Jacobian J0(N), and let w be a valuation of Kn extending v. Then Gross and Zagier
1986, Proposition 3.1 states that either (xn) − (∞) or (xn) − (0) is a smooth point of
J0(N)(Kn,w). Manin showed that the cusps of X0(N) reduce to rational torsion points
in J0(N), hence yn is a smooth point of A(Kur

v ) up to addition by a rational torsion
point Q. In particular, as A(Q) has no p-torsion, yn and hence Pn is contained in a
group A′ containing A0 with index [A′ : A0] coprime to p. If p is principal and generated
by π, then multiplication by π is an isomorphism on A′/A0 and dM (n) is represented by
a cocycle

σ 7→ (σ − 1)Pn
πM

.

Since this cocycle is valued in A′/A0 and the class dM (n) is killed by πM , this shows that
dM (n)v vanishes. Alternatively, if v is not principal, then p does not divide the index
[A : A0]. As the order of dM (n) is a power of p, its restriction to H1(Kur

v /Kv, A/A0)
vanishes.

Finally, let λ be an inert prime of K. By class field theory λ is totally split in Kn.
Hence Kn injects into Kλ, and therefore Pn ∈ A(Kλ)/pMA(Kλ). Its image δλ(Pn) is
represented by the cocycle σ 7→ σQn

pM
− Qn

pM
, and cM (n) is represented by

σ 7→ −(σ − 1)Qn
pM

+ σ
Qn
pM
− Qn
pM

.

As Qn is defined over Kn, the first term of this expression is determined solely by its
restriction to Gal(Kn/K). As a cocycle over Kλ it is therefore determined uniquely
by its action on the decomposition group of λ in Kn. But as λ splits completely, its
decompostion group is trivial and hence the term vanishes. The statement is therefore
proved.

This lemma allows us to prove the following strong relation between the constructed
cohomology classes
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Theorem 5.5 (Kolyvagin 2007, Theorem 3). Let l ∈ S1(M), with extension λ in K.
There exists a homomorphism

χl : A(Kλ)→ H1(Kλ, ApM )

such that

1. for all m ∈ S(M) coprime to l we have

cM (ml)λ = χl(Pm),

2. kerχl = pMA(Kλ) and

χl(A(Kλ)/pMA(Kλ)±) ⊂ H1(Kλ, ApM )∓,

3. χl induces an isomorphism

A(Kλ)/pMA(Kλ)
∼−→ H1(Kλ, A)pM .

Moreover, we have

ord dM (ml)λ = ord cM (ml)λ = ord cM (m)λ.

Proof. Let l ∈ S1(M), with extension λ in K and fix an extension λ ∈ K. Recall that
Fλ has degree 2 over Fl. In particular, Frob(l)2 = 1 in End(A(Fλ)). Consequently it
follows that

al − (l + 1)Frob(l) = −Frob(l)(Frob(l)2 − alFrob(l) + l). (5.5)

As this is divisible by the characteristical polynomial of Frob(l), this endomorphism
must vanish on A(Fλ). Notice that λ splits completely in K(ApM ) as l has degree two
in the extension K(ApM )/Q. In particular the extension Kλ(ApM )/Kλ has degree 1 and
therefore ApM can be injected into A(Kλ). As A has good reduction modulo λ and l is
coprime to p, reduction modulo λ acts injectively on ApM . Let P ∈ A(Kλ) be any point,
since ApM injects into A(Fλ̄) and since the expression in (5.5) vanishes, there exists a

unique T̃P ∈ ApM such that

al − (l + 1)Frob(l)

pM
P ≡ T̃P mod λ.

Denote its pM -torsion component by TP and observe that it is Kλ-rational. Let λl denote
the restriction of λ to Kl. As λ is principal in K it splits completely in K1, and hence
Kλ1 = Kλ. In particular, the extension Kλl/Kλ is totally ramified with cyclic Galois
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group generated by σl. Given P as above, define χl(P ) to be the inflation of the unique
cocycle on Gal(Kλl/Kλ) defined by sending σl to TP . It is clear from its construction
that χl is a homomorphism.

To verify the first property, let n = ml ∈ S(M), let λn be the restriction of λ to Kn, and
let λm be its restriction to Km. As λ splits completely in Km, it follows that Kλm = Kλ

and that Kλn = Kλl . We claim that Pn ∈ pMA(Kλn). As the extension Kλn/Kλ is
totally ramified and generated by σl, this automorphism acts trivially on Fλn , hence
Dl acts on A(Fλn) as l(l + 1)/2. As pM divides l + 1, so does pM and it follows that
Pn ∈ pMA(Fλn). In particular there exists a Q ∈ A(Kλn) such that pMQ ≡ Pn mod λn,
and therefore pMQ − Pn ∈ A1(Kλn). Here A1 denotes the kernel of the reduction map
to the residue field. This group is naturally isomorphic to Â(λn), the formal group
associated to A over the maximal ideal of Kλn . As p is coprime to l, multiplication
by p is an isomorphism on this group, and hence on A1(Kλn) as well. It follows that
pMQ− Pn ∈ pMA(Kλn), and thus that Pn ∈ pMA(Kλn) proving the claim.

Consider the pM -torsion point

−(σl − 1)Pn
pM

+ σl
Pn
pM
− Pn
pM
∈ A(Kλn). (5.6)

The extension Kλn/Kλ is totally ramified, hence σl acts trivially on A(Fλn). The reduc-

tion of ths point modulo λ is therefore congruent to − (σl−1)Pn
pM

. Recall from (5.2) and
Gross 1991, Proposition 3.7.1 that

alDmym − (l + 1)Dmyn = −(σl − 1) ·Dnyn.

Applying the second part of the same proposition shows that

al − (l + 1)Frob(l)

pM
Pm ≡ −

(σl − 1)Pn
pM

mod λ,

This shows that χl(Pm) is defined to be the inflation of the cocycle determined by

σl 7→
(
−(σl − 1)Pn

pM
+ σ

Pn
pM
− Pn
pM

)
pM

.

Recall that cM (n) is represented by

σ 7→ −(σ − 1)Qn
pM

+ σ
Qn
pM
− Qn
pM

,

where Qn is any point as in Lemma 5.3. As Pn ∈ pMA(Kλn) so is Qn. Hence this
cocycle vanishes when restricted to H1(Kλn , ApM ). The class cM (n) and is therefore
inflated from a class in H1(Kλn/Kλ, ApM ). In particular, using the same cocycle as
representative, we see that the class cM (n)λ is defined uniquely by

σl 7→ −
(σl − 1)Qn

pM
+ σl

Qn
pM
− Qn
pM

.
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But as this pM -torsion point is precisely the pM -component (5.6), we conclude that
χl(Pm) = cM (ml)λ.

The first part of property (2) follows directly from the uniqueness of the point TP . In
order to prove the second part of property (2) it suffices to show that

χl(τP )τσl = −χl(P )σl .

As σl is in the −1 eigenspace of τ and σl acts trivially on ApM , the former is equal
to −τχl(τP )σl . Since the natural action of τ coincides with the action of Frob(l), on
Fλ, it follows that τTP = TτP . But as χl(P )σl = TP , this proves the property. Recall
that A(Kλ)/pMA(Kλ) and H1(Kλ, A)pM are isomorphic as OM -modules. To see that χl
induces such an isomorphism, it suffices to show that im χl∩ im δλ = 0. But this follows
directly as δλ maps onto unramified cocycles and χl maps onto ramified cocycles.

Finally, using (1) and (3), we see that Pm maps to dM (ml)λ via cM (ml)λ hence they
must all have the same order, (here Pm is viewed as an element of A(Kλ)/pMA(Kλ)).
By Lemma 5.4 this order is equal to ord cM (m)λ.

Theorem 5.5 allows us to relate the classes cM (n) with the classes of the divisors of n.
In particular, for any m, l ∈ S(M) such that (m, l) = 1 define

ordp(Pm)λ = max{M : Pm ∈ pMA(Kλ)}.

Notice that this definition is sound as it is indeed possible to inject Km into Kλ whenever
l - m. This enables us to formulate several useful consequences of Theorem 5.5.

Corollary 5.5.1. Let n ∈ S(M). The following statements hold.

1. For all primes l | n we have

ordp(Pn) ≤ ordp(Pn/l)λ,

with equality if and only if ord cM (n) = ord cM (n)λ. Consequently

if Pn/l /∈ pMA(Kλ), then Pn /∈ pMA(Kn).

2. For any M > 0

dM (n) ∈X(A/K), if and only if, M ≤ min
l|n

ordp(Pn/l)λ.

3. If n ∈ Sr(Mr−1), then
dMr−1(n) ∈X(A/K).
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Proof. The second part of the first statement is a direct consequence of the first. When-
ever M ≥ ordp(Pn/l)λ, the order of Pn/l in A(Kλ)/pMA(Kλ) is naturally given by

pM−ordp(Pn/l)λ . By Theorem 5.5 this order is equal to ord cM (n)λ. Hence

pM−ordp(Pn/l)λ = ord cM (n)λ ≤ ord cM (n) = pM−ordp(Pn),

which proves the first statement. By Lemma 5.4, dM (n) vanishes at all valuations prime
to n. For the valuations dividing n, we have

ord dM (n)λ = max{1, pM−ordp(Pn/l)λ},

which vanishes if and only if M ≤ ordp(Pm)λ. Applying this condition to all primes
dividing n gives the desired conclusion. Finally, let n ∈ Sr(Mr−1) be given. It follows
from the definition of Mr−1 that Mr−1 ≤ ordp(Pn/l) ≤ ordp(Pn/l)λ for all l | n. The
conclusion now follows from the second statement.

In light of Corollary 5.5.1 we can prove a notable property of the Mr defined earlier.

Corollary 5.5.2. Assume that yK has infinite order in A(K).
Then M0 = ordp[A(K) : OAyK ] and Mr ≥Mr+1 for all r ≥ 0. In particular Mr is finite
for all r

Proof. Assume that yK has infinite order, then by Howard 2004, Theorem A, OAyK is
of finite index in A(K). Since S0 = {1} and P1 = yK , we have

M0 = ordp(yK) = max{M : yK ∈ pMA(K1)}.

Simultaneously

ordp[A(K) : OAyK ] = max{M : yK ∈ pMA(K)}.

And as A(K1) has no pM -torsion, A(K)/pMA(K) injects into A(K1)/pMA(K1), hence
these numbers are equal. To prove the second statement, let m ∈ Sr(M). By Corollary
4.3.1, there exists a prime l - m such that l ∈ S1(M) and ord cM (m)λ = ord cM (m). In
particular, this implies that

ordp(Pm) = ordp(Pm)λ ≥ ordp(Pml)

by Corollary 5.5.1. Hence for any m ∈ Sr(M), there exists an n ∈ Sr+1(M) such that
ordp(Pm) ≥ ordp(Pn). Which conludes the proof.

Corollary 5.5.2 allows the formulation of the following simple but important consequence
of Theorem 5.5.
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Proposition 5.6 (McCallum 1991). Let M and M ′ be two positive integers. Let n ∈
S(M +M ′) and n′ ∈ S(M ′) be two integers such that dM (n), dM ′(n

′) ∈X(A/K). Then
the Cassels pairing is given by

〈dM (n), dM ′(n
′)〉 =

∑
l|n

(l,n′)=1

〈dM+M ′(n), Pn′〉λ.

Proof. Recall the construction of the Cassels pairing in Chapter 2. Indeed dM+M ′(n) is
a suitable choice for d1 as pM

′
dM+M ′(n) = dM (n). By Lemma 5.4, it vanishes for all

valuations v prime to n. Hence this sum can be restricted to the primes dividing n. By
the same lemma, Pn′ is a suitable choice for those yλ, for each of those l - n′. If l | n′, then
dM ′(n

′)λ = 0 as it is contained in X(A/K). Hence by Theorem 5.5, cM ′(n
′)λ = 0, and

hence there is no contribution to the pairing for this prime. Summing up the remaining
terms gives the desired conclusion.
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Chapter 6

Structure of the Shafarevich-Tate
group

In this final chapter we generalize McCallum’s result for modular elliptic curves to mod-
ular abelian varieties arising from weight 2 newforms (Theorem 6.3). Throughout this
chapter, p is a prime of OA satisfying the properties described in Chapters 4 and 5,
and yK is assumed to have infinite order in A(K). In the first section, the Fricke in-
volution (see Section 3.5), and its application to the Shafarevich-Tate group are briefly
revisited. The second and final section combines the results from all previous chapters
to formulate Theorem 6.3 as well as the provide the lemmas needed to proof it. The
chapter concludes with the proof of this theorem, which provides an explicit structure
of the p-primary part of the Shafarevich-Tate group in terms of the Mr introduced in
the previous chapter.

6.1 An application of the Fricke involution

Let f be the newform associated to A, and let ε = ±1 be its eigenvalue under the Fricke
involution. For a positive integer r, define εr = (−1)rε.

Lemma 6.1 (Gross 1991). For all integers n ∈ Sr(M), there exists a σ ∈ Gn =
Gal(Kn/K) such that

τyn = ε · σyn +Q,

for some Q-rational torsion point Q. In particular, Pn is contained in the εr-eigenspace
of (A(Kn)/pMA(Kn))Gn .

Proof. On X0(N) we have the identity

τxn = wN (σxn)
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for some σ ∈ Gn (see Gross 1984, Section 5). Hence on J0(N) we have

τ((xn)− (∞)) = wN ((σxn)− (∞)) + (wN∞)− (∞).

Observe that wN∞ is the cusp 0 on X0(N) and that the class of (0 −∞) is torsion on
the Jacobian. Hence after applying αf , we obtain τyn = αf ((wN ◦ σ)(xn −∞)) +Q, on
A. But as wN acts as ε on f , we obtain the desired conclusion.

To prove the second statement, recall that Pn =
∑
σ′Dnyn, where Dn =

∏
l|nDl and

Dl ∈ Z[Gl] is an element satisfying

(σl − 1)Dl = l + 1− Trl.

Notice that Dl is determined uniquely up to addition by multiples of Trl. As l+ 1−Trl
is invariant under conjugation by τ , we find that

(σl − 1)Dlτ = τ(σl − 1)Dl

= (σ−1
l − 1)τDl

= (σl − 1)(−σ−1
l )τDl

Hence Dlτ +σ−1
l τDl vanishes under (σl−1) and is therefore a multiple of Trl. Applying

τ to Pn yields

τPn =
∑
σ′∈S

τσ′Dnyn

=
∑
σ′∈S

σ′−1τ
∏
l|n

Dlyn

=
∑
σ′∈S

σ′−1
∏
l|n

(
−σlDl(τyn) + klTrlyn

)
Recall that Trlyn = alym and that al vanishes modulo pM . Hence modulo pMA(Kn) we
obtain

τPn = (−1)r
∑
σ′∈S

σ′−1
∏
l|n

σl
∏
l|n

Dlτyn

= (−1)r
∏
l|n

σl
∑
σ′∈S

σ′−1
∏
l|n

Dlτyn

By the first statement of the lemma, τyn is equal to ε · σyn + Q, for some Q-rational
torsion point Q. By Proposition 5.2 Ap(Q) = 0, hence Q vanishes when restricted to
pMA(Kn). Observe that {σ′−1 | σ′ ∈ S} is another set of representatives of Gn, and as
Pn is defined independent of the choice of representatives, it follows that

τPn = (−1)rε
∏
l|n

σlσPn modulo pMA(Kn).

Finally since the class of Pn is Gn-invariant we conclude that τPn = εrPn.
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The Fricke involution plays an integral role in analyzing the structure of the Shafarevich-
Tate group; Lemma 6.1 shows that it determines the eigenvalues of the Heegner points,
which in turn determine the eigenvalues of cM (n) and dM (n). Apart from this it also
imposes conditions on the groups the groups A(K)/pMA(K). This is ilustrated in the
following Lemma.

Lemma 6.2. For all integers M , the group A(K)/pMA(K)−ε vanishes. In particular
the map

Sp∞(A/K)−ε →X(A/K)−εp∞

is an isomorphism.

Proof. Notice that the submodule OAyK ⊂ A(K) is of finite index k. For any integer
M , yK = P1 is contained in the ε-eigenspace of A(K)/pMA(K) by Lemma 6.1. The
decomposition into eigenspaces

A(K)/pMA(K) ∼=
(
A(K)/pMA(K)

)ε
⊕
(
A(K)/pMA(K)

)−ε
,

shows that the order of the −ε-eigenspace equals the index of the ε-eigenspace in this
group. As this index is bounded by the index of OAyK in A(K), the order of the −ε-
eigenspace is bounded independently of M . Hence A(K)−ε is a finite group and therefore
a torsion group. Since Ap(K) = 0 by Proposition 5.2, it follows that A(K)/pMA(K)−ε =
0. Consequently A(K)−ε⊗Fp/Op vanishes and thus we obtain the desired isomorphism
by the p∞-descent sequence (1.5).

6.2 The Structure Theorem

As the Shafarevich-Tate group is finite, the Cassels-Tate pairing is non-degenerate and
alternating on X(A/K)p∞ for all primes of odd characteristic. Hence the order of
X(A/K) is either a perfect square or twice a perfect square. Recall that the Tate
pairing is τ -equivariant, hence so is the Cassels-Tate pairing. In particular, the ε and −ε
eigenspaces of X(A/K)p∞ are orthogonal and must therefore both be perfect squares
as well. Let

N1 ≥ N3 ≥ N5 ≥ · · ·

be the integers such that

X(A/K)−εp∞
∼= (OA/pN1)2 × (OA/pN3)2 × · · ·

and let
N2 ≥ N4 ≥ N6 ≥ · · ·

be the integers such that

X(A/K)εp∞
∼= (OA/pN2)2 × (OA/pN4)2 × · · ·
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By Lemma 2.3 the groups X(A/K)±p∞ admit maximal isotropic subgroups D± inducing
split exact sequences

0→ D± →X(A/K)±p∞ → D∗± → 0.

Notice that D−ε can be decomposed as D−ε = D1×D3×· · · where Di is a cyclic OA/pNi-
module. Analgously, Dε admits a decomposition Dε = D2 ×D4 × · · ·. As the p-primary
part of the Shafarevich-Tate group decomposes as a sum of its τ -eigenspaces we conclude
that X(A/K)p∞ admits a maximal isotropoic subgroup D = D1 ×D2 ×D3 × · · · such
that the exact sequence

0→ D →X(A/K)p∞ → D∗ → 0 (6.1)

is split. The rest of this thesis will be dedicated to proving the following relation between
the Nr and the earlier defined Mr.

Theorem 6.3. Assume that yK has infinite order. Then

Nr = Mr−1 −Mr (6.2)

for all r ≥ 1.

Before proving Theorem 6.3 we mention a few direct corollaries.

Corollary 6.3.1. We have that

Mr −Mr+1 ≥Mr+2 −Mr+3, ∀r ≥ 0,

Moreover if Mr = Mr+2, then Mr = Mj for all j ≥ r.

Notice that while increments Mr −Mr+1 decrease if we increase r by 2, there need not
be the case if we increase r by 1. Additionally, Theorem 6.3 allows us to give an explicit
description of the p-torsion order of the Shafarevich-Tate group.

Corollary 6.3.2. Let m = min{Mr, r ≥ 0}. Then

ordp|X(A/K)| = 2(M0 −m).

In order to prove Theorem 6.3 several lemmas are needed.

Lemma 6.4. Let l ∈ S1(M) be a prime number, then im χl is a maximal isotropic
subgroup of H1(Kλ, ApM ).

Proof. Let x, y ∈ im χl. Recall from the proof of Theorem 5.5 that x and y are inflated
from cocycles in H1(〈σl〉, ApM ). As the Tate-pairing is a cup-product, it satisfies

x ^ y = Inf(x′) ^ Inf(y′) = Inf(x′ ^ y′).

As σl is totally ramified, its second cohomology group injects in the group H2(I, µpM ),
where I is the inertia group of Kλ. But this group is trivial as l 6= p (see Milne 2006a,
Lemma 1.2.9). Hence x ^ y = 0. Maximality follows from the second statement of
Theorem 5.5.
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Lemma 6.5. Let l ∈ S1(M) and let S ⊂ S1(M) be a finite set not containing l. Then
there exists a c ∈ H1(K,ApM )± such that

1. c 6= 0,

2. cv ∈ δ(A(Kv)) for all valuations v prime to S ∪ {l},

3. cvλ ∈ im χq for all q ∈ S.

Proof. Let T be the union of S, l, the primes of K extending p, the infinite primes and
the primes where A has bad reduction. Let KT be the maximal extension of K that
is ramified only at the primes in T . Tate global duality (Milne 2006a, Theorem I.4.10)
gives a self dual exact sequence

H1(KT /K,ApM )→
⊕
v∈T

H1(Kv, ApM )→ H1(KT /K,ApM )∗.

Let G denote the intermediate group. Due to exactness, the image of H1(KT /K,ApM )
is an isotropic subgroup of G, and by self duality it must be maximal isotropic. As the
exponent of every group divides pM , all groups can be decomposed as a sum of their
τ -eigenspaces. Since the pairing giving rise to this duality arises from the Tate-pairing,
the pairing is τ -equivariant and hence the eigenspaces are orthogonal. Consequently,
the image of H1(KT /K,ApM )± is a maximal isotropic subgroup of G±. For all q ∈ S,
let Hvq = Im χq. For all other places v ∈ T\{l}, let Hv = δ(A(Kv)). Notice that

for all places v 6= l there is an inequality |Hv| ≥ |H1(Kv, ApM )|1/2. Hence the group
H1(KT /K,ApM )± is a strictly larger subgroup of G than the group

⊕
v∈T\{l}

H1(Kv, ApM )±

H±v
.

In particular H1(KT /K,ApM ) cannot map injectively into this group. Hence we can
choose a c ∈ H1(KT /K,ApM ) satisfying properties 1 and 3. It also satisfies 2; By
construction of KT , c is unramified outside T . It follows from Milne 2006a, Proposition
3.8 that H1(Kur

v /Kv, A) = 0. Consequently, the map δv : A(Kv) → H1(Kur
v /Kv, ApM )

is surjective.

The strategy for proving Theorem 6.3 is the following: Let r be an integer and assume
Mr−1 > Mr. Let n ∈ Sr(Mr−1), Corollary 5.5.1 imposes that dMr−1(n) ∈X(A/K). As
ordp(Pn) ≥ Mr, it follows from (5.4) that the order of dMr−1(n) is at most pMr−1−Mr .
For properly chosen nr, it will be shown that dMr−1(nr) attains this order. Proceeding
inductively, and choosing the nr independent of ns, s ≤ r, we will show that Nr =
Mr−1 −Mr which will complete the proof. In order to guarantee the independence of
the nr, we need the following proposition.
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Proposition 6.6 (McCallum 1991). Let r be a positive integer and let C ⊂ Sp∞(A/K)εr

be a sub OA,p-module generated by r independent elements. Let M > Mr be a square-
free integer. Then there exists an n ∈ Sr(M) such that ord cM (n) = pM−Mr and
〈cM (n)〉 ∩ C = {0}.

Proof. As pM
′
cM (n) = cM−M ′(n) for all M ′ ≤M . It suffices to show that the statement

holds for all M large enough. Hence let M be such that

pM ≥ max{exponent of C, pMr−1}.

Let n ∈ Sr(Mr+1) be an integer such that ordp(Pn) = Mr, and let L = K(ApM ). Recall
from Chapter 4 that there exists a Galois extension LC/L such that Gal(LC/L) ∼= C∗.
Let S be the set of primes dividing n. For every l ∈ S, fix an extension λL in L. Let
X ⊂ C∗ denote the submodule generated by the characters of all l ∈ S ∩ S(M), and let
k denote the rank of the image of X in C∗/pC∗. Assume that k < r, then there exists
an l0 in S such that the primes in S ∩ S(M)\{l0} generate the image of X, and we can
choose a ψ ∈ C∗ such that

ψ /∈ X + pC∗.

If cMr+1(n) ∈ C, we can impose the additional condition that ψ(cMr+1(n)) 6= 0, as a
finite group cannot be the union of two proper subgroups. By replacing l0 with a carefully
chosen prime l′, ψ can be added to X. Using Lemma 6.5, we choose a c ∈ H1(K,Ap)

−εr

such that

c 6= 0,

cv ∈ δv(A(Kv)),

cλ ∈ im χl, .

for all v /∈ S,
for all l ∈ S\{l0}

(6.3)

Let 〈C, cMr+1(n)〉 denote the subgroup of H1(K,ApM ) generated by C and cMr+1(n).
As both are contained in the εr-eigenspace and c is not, the intersection of this group
and 〈c〉 is trivial. Thus, we can define φ ∈ 〈C, cMr+1(n), c〉∗ such that

φ|C = ψ,

φ(cMr+1(n)) 6= 0,

φ(c) 6= 0.

By Proposition 4.3, there exists an l′ ∈ S1(M) such that φ = φFrob(λ′L), and hence that
ψ = ψFrob(λ′L). Moreover, observe that the sum∑

v

cMr+1(nl′)v ^ cv.

vanishes as the sum of invariants of a global class is 0. Let us consider the cup products
for the valuations v not contained in S∪{λ′}. In this case it follows from Lemma 5.4 that
cMr+1(nl′)v ∈ δv(A(Kv)). Equation (6.3) guarantees that cv ∈ δv(A(Kv)) as well. Since
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this is an isotropic subgroup, the cup product vanishes. For the primes l ∈ S\{l0}, it
follows from Theorem 5.5 that cMr+1(nl′)λ = χl(Pnl′/l). By construction cλ is contained
in im χl as well. Since this group is again isotropic, the cup product vanishes here as
well. Hence the only remaining terms are the cup products at the primes λ′ and λ0, and
we conclude that

cMr+1(nl′)λ′ ^ cλ′ = −cMr+1(nl′)λ0 ^ cλ0 .

For λ′, it follows from (2.4) and (6.3) that

cMr+1(nl′)λ′ ^ cλ′ = 〈dMr+1(nl′)λ′ , x〉λ′ ,

for some x ∈ A(Kλ′). Theorem 5.5 gives the equality

ord dMr+1(nl′)λ′ = ord cMr+1(nl′)λ′ = ord cMr+1(n)λ′ .

The choice of φ, now guarantees that this cocycle is non-zero by (4.1), and since
ordp(Pn) = Mr, (5.4) shows that ord cMr+1(n) = p, and hence that dMr+1(nl′) ∈
H1(K,A)−εrp . By the choice of c, cλ′ has order at most p, and as φ(c) = φFrob(λ′L)(c) 6= 0,

we conclude that cλ′ is non-zero as well. As cλ′ is in the −εr-eigenspace of H1(Kλ′ , Ap), x
is determined uniquely in (A(Kλ′)/pA(Kλ′))

−εr . As both eigenspaces are cyclic OA/pM -
modules, it follows from the non-degeneracy of the Tate pairing that

cMr+1(nl′)λ′ ^ cλ′ 6= 0.

It follows that cMr+1(nl′)λ0 6= 0, and by Theorem 5.5 that Pnl′/l0 /∈ pMr+1A(Kλ0). By
the definition of Mr we must therefore have that ordp(Pnl′/l0) = Mr. Thus by replacing
n with n′ = nl′/n0, we can add ψ to X and increase the rank of its image by 1.

If k = r, we have that X = C∗. In particular we have that S ⊂ S1(M), hence cM (n)
exists and has order pM−Mr . Observe that

{c ∈ C | cλ = 0 for all l ∈ S} =

{c ∈ C | φFrob(λL)(c) = 0 for all l ∈ S} =

{c ∈ C | φ(c) = 0 for all φ ∈ C∗} = {0}.

On the other hand since ordp(Pn/l) ≥Mr−1, it follows that

ord cMr−1(n)λ = ord cMr−1(n/l)λ = 1

for all l ∈ S. Hence
C ∩ 〈cMr−1(n)〉 = 0.

Since cMr−1(n) is a multiple of cM (n) of order pMr−1−Mr , the statement is proved if
Mr−1 > Mr. Hence assume Mr−1 = Mr. By relaxing the condition that C has rank
r, it is easily shown that the lemma holds for C = {0}. In particular, there exists an
m ∈ Sr−1(M) such that ord cM (m) = pM−Mr−1 . By Proposition 4.3, there exists an l ∈
S1(M) such that cMr+1(m)λ 6= 0. By Theorem 5.5, we hence have that dMr+1(ml)λ 6= 0.
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In particular this means that dMr+1(ml) /∈X(A/K) and hence cMr+1(ml) /∈ Sp∞(A/K).
As C is contained in this group, we conclude

C ∩ 〈cMr+1(n)〉 = 0,

and thus the proposition is proved.

In the process of proving Proposition 6.6, the following weaker statement has been proven
as well.

Corollary 6.6.1. Let r be a square-free integer and let M ′ ≥ M be two integers
such that M ≥ Mr. Then for all n ∈ Sr(M), there exists an n′ ∈ Sr(M

′) such that
ord cM ′(n

′) ≥ ord cM (n).

Using this, let r be an odd number and let n ∈ Sr(Mr−1) be such that cMr−1(n) has
order pMr−1−Mr . By Corollary 5.5.1 we have that dMr−1(n) ∈ X(A/K)−εp∞ , and hence

that cMr−1(n) ∈ Sp∞(A/K). By Lemma 6.2 dMr−1(n) has order pMr−1−Mr in this group.
As the Cassels-pairing is alternating on the p-primary part, we conclude that X(A/K)−εp∞

has a submodule isomorphic to (OA/pMr−1−Mr)2. We let cMr−1 and c̃Mr−1 denote the
natural generators of this module.

By proceeding inductively on r = 2m + 1, and imposing by Proposition 6.6 that cMr−1

is chosen independent of {cM2k
, c̃M2k

| k < m}, it follows that X(A/K)−εp∞ contains a
submodule isomorphic to

(OA/pM0−M1)2 × (OA/pM2−M3)2 × · · · .

Let us prove the main theorem.

Proof of Theorem 6.3. We proceed by induction on r. By applying Proposition 6.6
to C = {0} and r = 1, it is shown above that there exists an l ∈ S1(M0−M1) such that
dM0−M1(l) ∈X(A/K)−εp∞ has order pM0−M1 . By the definition of N1 we conclude that

M0 −M1 ≤ N1.

Conversely recall that X(A/K)p∞ admits a maximal isotropic subgroup

D = D1 ×D2 ×D3 × · · · ,

where Di is a cyclic OA/pNi-module contained in the εi-eigenspace of X(A/K)p∞ . Let
di be a generator for Di. As yK has infinite order, the sequence in (1.5) is split. For
every i, let ci denote the lift of di to Sp∞(A/K) under this splitting. For any valuation
v, let yi,v ∈ A(Kv) be an element such that δv(yi,v) = ci. It follows from the definition
of M0 = ordp(yK) that ord cM0+N1(1) = pN1 . Hence by Corollary 4.3.1, there exists a
prime number l1 such that

ord cM0+N1(1)λ1 = pN1 ,

ord c1,λ1 = pN1 ,

ci,λ1 = 0, for all i ≥ 2.

(6.4)

48



The first condition of Corollary 4.3.1 is equivalent to the property that l1 ∈ S1(M0 +N1).
Therefore by Corollary 5.5.1, it follows that dM0(l1) ∈X(A/K). Thus for all i and for
any 0 ≤M ≤ Ni − 1 we have that

〈dM0(l1), pMdi〉 = 〈dM0−M (l1), di〉 = 〈dM0−M+Ni(l1)λ1 , yi,λ1〉λ1 , (6.5)

To see that the last equality holds, observe that dM0−M+Ni(l1) satisfies the properties
of d1 in the definition of the Cassels-Tate pairing. Moreover, all other terms in this sum
vanish by Lemma 5.4. By (2.4) and the choice of l1, this term vanishes for i ≥ 2. For
i = 1, recall that this pairing on

A(Kλ1)/pN1A(Kλ1)×H1(K,A)pN1

is non-degenerate and τ -invariant. In particular the τ -eigenspaces are cyclic submod-
ules. As yi,λ1 has order pN1 , it is a generator for A(Kλ)/pN1A(Kλ)−ε. By Theorem 5.5
ord dM0+N1−M (l1)λ1 = ord cM0+N1−M (1)λ1 = pN1−M > 1. It therefore follows from the
non-degeneracy of this pairing that (6.5) is non-trivial for all 0 ≤ M ≤ N1 − 1. We
conclude that the character

X1 : d 7→ 〈dM0(l1), d〉 ∈ D∗

vanishes on D2 × D3 × · · ·. Observe that this character is the image of dM0(l1) in D∗

under the map in (6.1). As D1 is a cyclic OA/pN1-module, so is D∗1, and since X1 does
not vanish anywhere on D1, we conclude that it must be a generator for D∗1. In particular
dM0(l1) has order at least pN1 . But as its order is bounded by pM0−M1 , we conclude that

N1 ≤M0 −M1,

and hence that
N1 = M0 −M1.

Proceeding inductively, let r > 1 be an integer and assume for all 1 ≤ j < r that
Nj = Mj−1 −Mj . Moreover assume that there exist l1, ..., lr−1 ∈ S1(M ′) such that

ci,λj = 0 for all i > j,

and that the characters

Xj : d 7→ 〈dMj−1(nj), d〉, 1 ≤ j < r

vanish on Dr × Dr+1 × · · · and form a diagonal basis for (D1 × · · · × Dr−1)∗, where
nj =

∏
i≤j li, and M ′ is chosen sufficiently large. Let h1 and h2 ∈ A(K)ε be two

elements forming a OA/pM
′

for A(K)/pM
′
A(K) and let

C = 〈δ(h1), δ(h2), c1, ..., cr−1, cM0(n1), ..., cMr−2(nr−1)〉εk .

This module is generated by at most r independent elements. Using Proposition 6.6,
choose any n ∈ Sr(M ′) such that ord cMr−1(n) = pMr−1−Mr and C∩〈cMr−1(n)〉 = 0. As-
sume that ord dMr−1(n) > Nr. As the sequence in (6.1) splits, we observe that dMr−1(n)
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is contained in the submodule generated by d1, ..., dr−1, dM0(n1), ..., dMr−2(nr−1). Let
c denote the lift of dMr−1(n) to Sp∞(A/K). If r is odd, the lift is unique and must
therefore equal cMr−1(n), which gives a contradiction as the lift is contained in C. Oth-
erwise, cMr−1(n) − c is contained in the image of A(K)ε ⊗ Fp/Op. After multplying by

a power of p if necessary, one can assume that cMr−1(n) − c ∈ δ(A(K)/pM
′
A(K)). As

this module is generated by δ(h1) and δ(h2), we conclude that cMr−1(n) ∈ C. This gives
a contradiction, hence ord dMr−1(n) ≤ Nr. Notice that multiplying cMr−1(n) with the
order of dMr−1(n) gives an element in 〈δ(h1), δ(h2)〉. By construction this must be 0,
hence cMr−1(n) has the same order as dMr−1(n) and therefore

Mr−1 −Mr ≤ Nr.

Conversely, by Corollary 4.3.1 there exists a prime number lr ∈ S1(M ′) such that

ord cMr−1+Nr(nr−1)λr = pNr ,

ord cr,λr = pNr ,

ci,λr = 0 for all i > r.

Letting nr = lrnr−1 and 0 ≤M ≤ Ni − 1, we observe

〈dMr−1(nr), p
Mdi〉 = 〈dMr−1−M (nr), di〉 =

r∑
j=1

〈dMr−1−M+Ni(nr)λj , yi,λj 〉λj .

Notice that this sum vanishes for i > r by the choice of lj . By the same argument,
for i = r, the lj term vanishes for all j < r. Notice that yr,λr has order pNr in
A(Kλ)/pNrA(Kλ)εr . Likewise

ord dMr−1+Nr−M (nr)λr = ord cMr−1+Nr−M (nr)λr

= ord cMr−1+Nr−M (nr−1)λr

= pNr−M > 1.

Hence by the non-degeneracy of the Tate pairing described in Proposition 2.4, we con-
clude that this pairing is non-trivial for i = r and all 0 ≤ M ≤ Nr − 1. Therefore the
character

Xr : d 7→ 〈dMr−1(nr), d〉
generates D∗r when restricted to Dr and vanishes when restricted to Di for i > r. Hence
the set {Xj | j ≤ r} vanishes on Dr+1 × Dr+2 × · · · and forms a diagonal basis for
(D1 × · · · × Dr)

∗. The character Xr has order at least pNr , and as it is induced by
dMr−1(nr) we conclude that dMr−1(nr) has order at least pNr . As its order is bounded
by pMr−1−Mr , we conclude that

Nr ≤Mr−1 −Mr

and hence that
Nr = Mr−1 −Mr.
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