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Abstract

Electric Vehicles Mass Integration: Impact on the Power Grid and Charging Infrastructure
Availability

Joseph Antoun

Electric Vehicles (EV) are gaining large popularity in the transportation sector, and that raises

numerous concerns for the power sector. The repercussions of such increased demand are notable

at the distribution side with different aspects of EV usage. To accommodate this increased number,

multiple Charging Stations (CS) are being deployed to assist users in enhancing their charging ex-

perience. However, public stations are underutilized due to lack of useful performance information,

such as waiting time, and outlet availability. Therefore, users will favor home charging over public

charging. This behavior will come with a drastic increase in power demand on the residential net-

work. In addition, various behaviors of EV users, such as mass charging and preconditioning, can

deteriorate the network’s Quality-of-Service (QoS). Therefore, the impact of an elevated number of

EVs and increased number of level 2 chargers on the residential distribution network is analyzed.

Subsequently, the competency of dynamic pricing in handling this such elevated load in investi-

gated. Afterwards, the repercussions from users preconditioning their vehicles during winter is

inspected. In addition, we assess the competency of network reconfiguration in holding the network

performance within operational range during preconditioning window. The performance of net-

work reconfiguration will degrade when presented with high number of EVs; therefore this elevated

number is leveraged through Vehicle-to-Grid (V2G) technology to assist network reconfiguration in

balancing the preconditioning load. Finally, a data-driven performance model for public charging

stations is derived to gain more knowledge on its operation. Metrics such as waiting time, reneg-

ing probability and blocking probability are derived and analyzed to assist users in their charging

processes and operators enhancing the station deployment.
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Chapter 1

Introduction

1.1 Overview

Recently, the auto industry has seen a paradigm shift towards electric vehicles (EVs) and its

production of EVs has accelerated at unprecedented rates. This escalated number of EVs will in-

troduce a colossal changes not only into the transportation sector but also in the power generation

and distribution sectors. Consumers’ transition to EVs is gaining momentum. The major drivers

for this acceleration are the rising awareness by the public for maintaining a clean environment,

reducing pollutant emissions, breaking dependencies on oil, as well as tapping into cleaner energy

sources. Governments’ initiatives to accelerate this transition range from major tax exemptions,

lower insurance payments, to convenient parking and fast lanes usage. These numbers reached 7

million passenger EVs in 2019 and are expected to reach 30 million in 2030 [2]. In order to assist

globally achieving such ambitious goal, governments are stepping in and pushing their own EV ad-

dition targets. For example, the government of Quebec, in Canada expects to reach 1 millions EVs

by 2030 [3].

Wistfully, EV adoption is hindered by the driving range anxiety as well as small battery capacities

which leads to EV requiring frequent charging. In order to tackle those concerns, governments and

power operators are expanding their charging network infrastructure by accelerating the deployment

of public Charging Stations (CS) at strategic locations that attract EV users without affecting the

performance of the distribution network. Fast DC chargers are being widely considered due to their
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beneficial low charging time. Unfortunately, people are still indifferent to using public CSs. For

example, Ontario’s government of Canada launched a $500 M project to deploy a DC fast charging

network in the province. However, after attaining 51% of their objective, it was discovered that

most of those stations remain under-utilized [4]. This reluctance in public CS usage is due to users

trying to avoid long waiting times and high uncertainty of vacant charging outlet [5].This lead to

users favoring private CSs over public ones [5]. Currently, Voltage in Alternating Current (VAC)

level 1 and level 2 chargers are available to install at residences and they operate at 120 and 240

VAC with useful power ranging between 1.4 kW and 19.2 kW respectively [6]. EV manufacturers

also provide an on-board level 1 charger with each sold EV; hence, level 1 chargers are still the most

commonly used in home charging. However, the recent price declination of level 2 chargers [7] [8]

has increased its popularity among EV users for daily usage to experience a faster charging rate.

As a ramification, within a short period of time, it is expected that a remarkable number of level 1

chargers will be replaced by level 2 chargers at home premises. This increased number of level 2

chargers will come with a remarkable increase in the load on the distribution network, which might

result in the network’s Quality-of-Service (QoS) degradation. This elevated number of EVs will

come with various users’ behaviors. Those behaviors will come with various uncertainty and dif-

ficult situations for the grid. Mass charging will increase the load dramatically during peak times.

Another behavior occurs during cold season to aid users enhancing their EV performance which is

preconditioning. Preconditioning will bring additional load during off-peak time. Therefore, EVs’

new behaviors such as mass charging and preconditioning that will in turn affect the networks’ QoS

and power losses which incur monetary losses for the operators.

Accordingly, in this thesis, an extensive study and analysis on the impact of elevated number of EVs

and level 2 chargers on the distribution network alongside different behaviors (i.e., mass charging

and preconditioning) is performed. Subsequently, a performance analysis of public charging sta-

tions with real data is realized, in addition, necessary performance metric are derived to assist EV

users in enhancing charging processes.
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1.2 Contributions

Multiple concerns arise from the increased number of EVs in today’s market coupled with the

popularity of home charging using a level 2 charger. The deterioration of the QoS of the power

distribution network cause by various users’ behaviors still highlight the effects evoked by this shift

in the transportation sector. Accordingly, the impact of the increased number of EVs alongside high

number of level 2 chargers on the power grid is studied. Extensive analysis and simulations are

conducted to examine the effects of mass EV charging coupled with level 2 chargers on the distribu-

tion network. Furthermore, the competency of dynamic pricing in holding the network performance

metric within operational range is investigated with various charging behaviors.

With the introduction of EVs in such a large number, a new behavior has been observed that can

negatively impact the performance of the distribution network that is EV preconditioning. This

behavior is coupled with various difficult aspect to the network operators. Hence, the impact of

EV preconditioning on the distribution network is studied. Additionally, the capability of network

reconfiguration in assisting the network performance is analyzed. Moreover, the elevated number

of EVs is leveraged to aid reconfiguration by applying vehicle to grid (V2G) technology in a hybrid

method to enhance the network QoS.

The lack of popularity of public CSs led to it being under-utilized. This reluctance is due to not hav-

ing a proper check-in or reservation system deployed in practice. Therefore, without resorting to

approximations, in collaboration with Hydro-Quebec, a data driven charging power and time model

is derived that take into consideration the decreasing nature of charging rate during a charging ses-

sion. Afterwards, the performance of our model is verified with real CS usage data. In order to

assist operator enhancing their CS deployment and utilization, based on queuing analysis several

CS performance metrics (waiting time, reneging probability and blocking probability) are derived.

We verify those metrics by building a discrete event simulators based on parameter from the data

to imitate the operation of a CS. In addition, these metrics will also assist users enhancing their

charging experience by decreasing the total time spent at such stations and enhance the deployment

of stations by operators.
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Chapter 2

Impact Analysis of Level 2 EV Chargers

on Residential Power Distribution Grids

2.1 Introduction

The transition from level 1 to level 2 may have a drastic turnaround in the distribution grid’s load

profile, which may result in disturbances and in worst cases a blackout. As reported by a study in

Lisbon, Portugal, 10% of the total EVs’ penetration to the power grid is enough to drop its voltage

level significantly if charged at peak times [9]. Hence, with the target of 1 million EVs by 2030 in

Quebec [3], a large number of level 2 chargers will be deployed and will dominate the residential

load profile. As a ramification, the existing power distribution network may fail to serve peak

demand. In this work, we will conduct extensive analysis and simulations to evaluate the impact

of this increased number of level 2 chargers, and have a better understanding of the forthcoming

consequences. Moreover, we will evaluate the proposed dynamic pricing solution in presence of

high number of level 2 chargers and a randomized EV charging behavior. In our work, we simulate

real-life scenarios, where EVs are categorized according to their battery size. In addition, we study

the effect of multiple penetration rates of level 2 chargers along with an expected penetration growth

of EVs, with implementing a ToU and ToP (Time-of-Peak) pricing technique with different EV

charging behavior (i.e., charging behavior may be influenced by different pricing techniques). We

use power-flow equations to measure the voltage level of different buses of the residential power
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distribution network and hence, analyze the effect of EV charging. Based on the charging behavior,

we investigate the competency of different pricing techniques to mitigate this impact. Our goal is to

illustrate the upcoming complications to the power distribution network caused by increased number

of EVs and level 2 chargers, as well as assess the competency of suggested countermeasures.1. The

remainder of this chapter is organized as follows. Section 2.2 presents related work. The EV

charging system is covered in Section 2.3. Section 2.5 details our simulation’s environment. We

present our simulation results in section 2.6. In Section 2.7 we conclude this chapter.

2.2 Related work

The impact of large scale EV penetration has also caught the attention of both academia and

energy provider companies. Several studies have been conducted to enhance the experience of

owning and charging EVs without disturbing the electrical grid. The authors in [11] studied the

impact of charging Plug-In Hybrid Electric Vehicles (PHEV) on a residential distribution grid in

terms of power losses and voltage deviations. In addition, they showed the difference between

coordinated and uncoordinated charging of PHEV. However, they only considered PHEV in their

analysis. The authors in [11] did not take into consideration Battery Electric Vehicle (BEV) that have

larger batteries compared to PHEV. On the other hand, the work of [12] revolved around the concept

of understanding how does residential EVs affect the distribution system voltages. The authors only

considered level 1 chargers in their simulation in addition to assuming constant battery size for

EVs. They proposed a controlled charging scheme with Time of Use (ToU) pricing techniques

to mitigate the effect of mass charging. In [13], the authors studied the impact of single-phase

charging strategies on the residential grid, disregarding the elevated number of level 2 chargers.

While the authors in [14] studied the repercussion of elevated number of EVs in a residential area

and their effect on the distribution grid. In their work, the authors assumed only level 1 chargers

and a constant charging time for all EVs. Furthermore, they evaluated ToU pricing technique as a

solution to avoid elevated peak caused by the increased number of EVs, assuming all EVs will adapt

the proposed pricing scheme. The performed studies in the literature agree that an elevated number

1This work has been presented at the IEEE CPE Power Engineering Conference 2020 [10]
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Figure 2.1: An example of a private CS.

of EVs can disturb the power distribution network especially with the shift towards the use of level

2 chargers.

2.3 EV Charging System

At present, EV charging systems can be categorized in two categories: public and private charg-

ing stations (CS). Public CS include parking lots at work spaces and shopping malls equipped with

an EVSE (Electric Vehicle Supply Equipment) to offer charging services to employees and visitors.

On a regular basis, employee and shopping center visitors spend enough time to conduct a long

charging procedure or discharge to offer ancillary services for the grid. Furthermore, commercial

operators or power distributors are installing dedicated charging stations on public roads and lands,

similar to petrol stations, to offer charging services for EV users on the go.

Private CSs are the ones deployed at residential premises. Those consist of an EVSE connected to

the house’s smart meter. EVSEs can be enabled with a smart controller to allow user connection

through the Internet or a mobile application. This facilitates the management of the charging and

billing process. A sketch of a private CS is presented in Fig. 2.1 where several parameters are

exchanged between the entities to start/stop the charging process. Currently, the market offers three

levels of chargers: levels 1, 2 are AC chargers while level 3 is a DC fast charger. AC chargers

are usually used for private CS. In this work, we only consider residence charging scenarios with

level 1 and 2 chargers, since these are the ones that might degrade the voltage level of residential

distribution grid [6].
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Figure 2.2: An example of residential distribution network.

2.4 System Model

The aim of this work is to have a better understanding of the impact imposed by the elevated

adoption rate of EVs with an increased deployment of level 2 chargers on the residential distribution

network. For that purpose, we will build our system around the IEEE-33 bus radial distribution

standard as shown in Fig.2.2.

The residences are assumed to be uniformly distributed among the buses. EV charging requests can

be initiated at every residence depending on the penetration rate of EVs. The arrival of one charging

request does not provide any information about future requests, as a result, due to it’s memory-less

property, the exponential distribution serves as a best model for the inter-arrival time of requests

following Equation 2.1. Respectively, the request arrival follows a Poisson arrival process.

f (x,λ ) =


λe−λx if x≥ 0

0 if x < 0
(2.1)

We model our system over 24hrs and each hour is considered as a single time slot. The request

arrival rate (λ ) is assumed to have a certain distribution according to the type of day, for example,

in weekdays λ is higher during peak time where users comes back from work as depicted in Fig.

2.3 [15]. Each request has different charging rate depending on whether it is attached to a level 1

or level 2 charger, where each level has a penetration rate that each request is going to be assigned

according to this rate.
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Table 2.1: Electric Vehicles Categories.

Category X-Small Battery Large Battery Medium Battery Small Battery

Max Battery size (kWh) 18.8 100 64 35.8

Min Battery size (kWh) 4.4 50 39.2 16.7

Average Battery Size (kWh) 10.8 77 51 26.33

STD Battery size (kWh) 3.8 20 11.9 7.5

Ratio over total EVs (%) 51.7 10.7 25.8 11.8

EVs are divided into four categories based on their battery size: large battery, medium battery, small

battery, and Extra-Small battery (PHEV). Each request is drawn from the distribution of the latter

four categories [16]. Each category of EVs has its own battery size, β (Min, Max, Std, and average)

modeled from the data acquired from [16]. We select the State-of-Charge (SoC) of a charging

request, as the required power to have a full battery, following a truncated normal distribution [17]

using the parameters shown in Table 2.1. Charging time for each request is calculated using equation

2.2:

T =
SoC ∗β

ζ
(2.2)

where ζ represents the charging rate. In our formulation, we consider three different pricing models,

Static, ToU and ToP to assess their competencies over maintaining bus voltage stability based on

the charging behavior of EV users. The static pricing model is independent of time or load where

the consumer is billed according to a flat rate. This model renders the charging behavior of EVs

indifferent. To escape charging during peak load hours, power distributors deploy ToU or ToP

pricing mechanism. In a ToU pricing model, the usage is rated differently according to when the

service was used, during peak or off-peak hours (lower-rate). Through ToU, users are persuaded

to initiate charging procedures during off-peak hours. On the other hand, ToP policy increases the

pricing rate once the user passes a certain load threshold [18] [19]. According to the literature,

[14, 20], implementing ToU is advantageous for demand-side management schemes. Nevertheless,

in our study, we will evaluate both ToU and ToP in the presence of increased EV and level 2 chargers

adoption.
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Figure 2.3: EV’s Charging request percentage distribution.

2.5 Simulation Environment

To analyze the impact of increased level 2 charger adoption in the presence of large scale EV

penetration at power distribution grids, we build a PYTHON base discrete event simulator. We de-

sign the simulator to work in two stages with a slotted timeline of 24 one hour slots. An image of

the IEEE-33 Bus system is built into the simulator [21], and the number of residences is uniformly

divided upon the buses of the network. In addition, each residence has its own base daily load that

is registered without the presence of EV [21].

In the first stage, we establish an arriving process of charging requests with a variable arrival rate

according to the corresponding time slot as depicted in Fig. 2.3. Each arrival is assigned a level

1 or 2 charger following the penetration rate of level 2 chargers at customer residence. Moreover,

EV and SoC are selected as outlined in Section 2.4. Afterwards, we calculate the charging time per

request using equation 3.2.

In order to simulate a real-life scenario, we assign a charging deadline drawn from a truncated

Gaussian distribution [17] to each request. The charging process is terminated as per this deadline

regardless of the SoC. Ultimately, EV load is recorded and added to the base load of the corre-

sponding residence. In the second stage of the simulation, a power-flow equations are solved, using

Newton-Rapson method. These equations utilize the real power, reactive power, and voltage magni-

tude at the sending end of a branch to express the same quantities at the receiving end of the branch.
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Figure 2.4: Flow chart of charging procedure for Eco charging behavior.

This method is utilized to measure the voltage level at each bus of the system following equation

2.3 [22]:

V 2
n+1 =V 2

n −2(rnPn + xnQn)+
(r2

n + x2
n)(P

2
n +Q2

n)

V 2
n

(2.3)

where:

• Vn+1 : Voltage of bus n+1.

• Vn : Voltage of bus n

• Pn : Active power flow from bus n to n+1

• Qn : Reactive power flow from bus n to n+1

• rn : Line resistance between bus n and n+1

• xn : Line reactance between bus n and n+1

Furthermore, three charging behaviors are implemented in the simulation [23]:

• Greedy: where charging requests are immediately initiated upon arrival.
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Figure 2.5: Normalized Buses Voltage (pu.) for static pricing, α = 50%, σ = 50%.

• Eco: where the user observes the pricing of three consecutive slots. If the prices are below

a certain threshold, charging is initialized. If not, the user will shift his observation one slot

forward. The flow chart shown in Fig. 2.4 describes this behavior. The EV user checks first

three consecutive slots (x,y,z) and if all these slots show a price less than a threshold value,

t, the user EV will start charging; otherwise, the user will check (y,z,w) and so on.

• Half-Eco: if deadline is less than the required charging time, the Greedy approach is selected,

otherwise it will follow the Eco approach.

2.6 Results and discussions

In order to study the effect of increasing tendency of using level 2 chargers for EV charging at

residences, we simulate various scenarios for different adoption rates. Furthermore, we evaluate the

competency of two different dynamic pricing mechanisms.

Initially, we set-up the environment described in section 2.5, with constant parameters such as num-

ber of residences, R and EVs adoption rate, α . The EVs adoption rate, α is set with respect to

residence numbers, R (these R number of houses are uniformly distributed among all buses). The

ratio of different types of EVs shown in Table 2.1 is taken as an input to generate the EV arrival

requests. Afterwards, each request is assigned an SoC drawn from a truncated Gaussian distribution

following the given parameters of Table 2.1. For each request, we generate a deadline following a

truncated Gaussian distribution with a maximum of 16 hours and minimum of 4 hours to imitate the
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Figure 2.6: Bus 18 voltage profile with static pricing, α = 50%, σ = 50%.

amount of time spent inside a house. We also consider a level 2 charger adoption rate σ to represent

how many EV users utilize level 2 chargers at their home to charge EVs.

We run our simulation with 10000 residences and a different values of EV penetration (e.g., α =

20%, α = 50%, α = 80% etc.). We also vary σ , the level 2 chargers adoption rate. Each EV charg-

ing request arrival is assigned a category following the ratio presented in Table 2.1.

First, we analyze the impact of level 2 chargers penetration in the presence of a static pricing mech-

anism. As in static pricing the price is not varied with time or consumption, EV users are considered

to have a greedy behavior, and thus each charging process is initiated upon arrival. Originally we

simulate weekdays scenario, Fig. 2.5 depicts the normalized bus voltages for the 24 time slots (each

line represent one time slot [1 hr]) for α = 50% and σ = 50%. We notice that the network fails to

adopt the imposed load on it, since the voltage drop below the acceptable threshold (0.95 pu) for

bus 18 at some time slots. In order to investigate the severity of the elevated load, Fig. 2.6, depicts

the 24 hrs voltage profile for Bus 18 with the static pricing for the same value of α and σ . As

shown in Fig. 2.6, the readings collected from Bus 18 indicate a voltage drop below 0.95 pu during

peak hours. This drop is due to the negative impact of the EV load on the distribution network.

Most power distributors apply static pricing as their current network setting. In order to evaluate

the response of those settings under the stress of elevated EV adoption and high number of level 2,

for that matter, in Fig. 2.7 we depict bus 18’s voltage level for different adoption rate in function of
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Figure 2.7: Normalized voltage level for bus 18 during peak time (16:00).

Figure 2.8: Normalized buses voltage for ToU, α = 50%, σ = 50%.

level 2 switching rate. We notice this setting under-perform when the number of level 2 charger is

high with an elevated EV penetration.

Next we evaluate the competency of ToU to maintain the voltage level over the threshold with

the increased adoption rate of level 2 chargers. As mentioned before, level 2 chargers require a

smaller charging time at a higher rate which may cause a surge on the network. To investigate this

scenario, we assume that 50% of users are adopting half economic behavior while the rest is 25%

Full-Eco and 25% greedy. The outcome of this scenario is shown in Fig. 2.8, where we notice

that ToU is able to decrease the voltage drop of bus 18 by roughly 2% at peak time. However, the

network still experiences a voltage drop below 0.95 pu. Moreover, Fig. 2.9 shows that the voltage

13



Figure 2.9: Bus 18 voltage profile for ToU, α = 50%, σ = 50%.

drop is shifted slightly toward the off-peak times; that means more load is shifted to off-peak time

as illustrated in Fig. 2.10. As utility providers usually forecasts the demand of each area in order to

generate enough power to support this demand, they may face issues when a new load peak arise in

an off-peak time.

Furthermore, we evaluate another comparatively less applied pricing mechanism, ToP, where

each user aims at maintaining a minimum power bill. As a ramification, a large number of users

may initiate their charging at the same time if they are adopting the same charging behavior. To

assess the situation, we assume that 50% of users adopt the Half-eco and 25% Full-eco and 25%

greedy. From Fig. 2.11, we notice that ToP can improve the voltage level of bus 18 by almost

2% at peak time compared to static pricing, but still this is not adequate enough to maintain the

threshold level. On the other hand, Fig. 2.12 shows a load shift to off-peak and may lead to similar

consequences as ToU.

As we expect a different load profile during weekends (comparatively a lower arrival rate is

expected at peak hour), we evaluate the outcome of these three different pricing mechanisms and

their impact on maintaining voltage level. However, even for a weekend, we notice a disturbance

to the grid for the same penetration rate of EVs and level 2 chargers 2.13 (α=50% and σ=50%) as

shown in Fig. 2.13. Finally, we can conclude that though dynamic pricing is able to shift a portion

of load from peak to off-peak time, this is not enough to maintain the minimum voltage level with
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Figure 2.10: Load profile with α = 50%, σ = 50%.

Figure 2.11: Normalized Buses Voltage for ToP, α = 50%, σ = 50%.

the burgeoning tendency of installing level 2 chargers at residential areas.

2.7 Conclusion

In this chapter, we designed and built a discrete event simulator to imitate real-life EV mass

charging in residential areas and assess the impact of the increased adoption rate of level 2 chargers

on bus voltage. The collected results through simulation confirmed that a challenge to accommodate

load from level 2 chargers awaits utilities at the distribution network level. We characterized this

challenge as a failure to maintain a minimum voltage level (0.95 pu), especially at peak times.

Furthermore, we evaluated the applicability of different pricing mechanisms present in the literature
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Figure 2.12: Bus 18 Voltage Profile (pu.) with ToP, α = 50%, σ = 50%.

(a) Static Pricing. (b) ToU. (c) ToP

Figure 2.13: Weekends normalized voltage profile (pu.) for α=50% σ= 50%.

and their impact on maintaining the required voltage level. Our simulations demonstrated that those

mechanisms are not enough to ameliorate the impact of large scale level 2 charger penetration. Thus,

there is a need for more advanced solutions in the form of smart scheduling and dynamic pricing.

We aim at investigating and developing those solutions as part of our future work.
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Chapter 3

Assisting Residential Distribution Grids

in Overcoming Large Scale EV

Preconditioning Load

3.1 Introduction

We demonstrated in chapter 2 that an elevated number of EVs alongside side a high number of

level 2 chargers can have a negative impact on the performance of the distribution network. To al-

leviate the impact (e.g., voltage degradation, power loss, etc) of such expected peak load, operators

can resort to different peak shaving techniques. For example, imposing dynamic pricing to encour-

age EV users to charge during off-peak hours [14], intelligent scheduling of EVs for flattening the

load curve [24] or reconfiguring the network to minimize energy losses [25]. Moreover distributed

energy sources, especially Vehicle-to-Gird (V2G) technology [26] can also be implemented to com-

pensate for the abrupt demand. Regardless of the implemented peak shaving technique, the action is

load shifting from peak to off-peak (e.g., early morning). Consequently, peak shaving methodolo-

gies increase the load during off-peak, and such load can be significantly increased during winter due

to the higher usage of water heaters and heating systems [27]. During winter periods, this off-peak
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load can also start to exhibit inclining behavior due to EV users’ tendency to precondition their ve-

hicles before leaving their residences. Preconditioning process in internal combustion engine (ICE)

vehicle corresponds to heat the passenger cabin and engine block, while in EV paradigm it heats the

cabin and the battery compartment [28]. Since preconditioning enhances the performance of EVs

and increases its range during cold weather [29], most newly manufactured EVs are equipped with

the option of cabin and battery compartment preconditioning to persuade people into purchasing an

EV [28], [30]. A survey over ICE vehicle users in Quebec depicts that 32.9% of daily car users, and

27.4% of frequently car users, warm up their vehicles using remote starters [31]; accordingly, it is

also expected that the upcoming large number of EVs will be engaged in preconditioning process

during winter while plugged in their home chargers to alleviate some of their range anxiety [28].

The capability of simultaneous charging and preconditioning of level 2 charger [28] and its declining

price elevate the number of level 2 chargers in residential premises, which may render precondition-

ing a potential threat to the distribution network. The National Household Travel Survey (NHTS),

conducted by the Federal Highway Administration (FHWA) [32], shows an increment in the daily

trips initiated between 6 AM and 9 AM, the period when people usually leave their houses to work.

Preconditioning takes 20 to 30 minutes [28], [30] before EV users leave their houses during winter

time; thus, a surge of electric demand is expected to be added onto the grid to cater this large number

of EVs and their preconditioning. Compared with EV charging process, EV preconditioning occurs

over a shorter period with a more imminent deadline; hence, existing peak shaving techniques might

not be suitable to maintain the power quality during the mass preconditioning period. Indeed, EV

charging was found to be somewhat troublesome due to the fact that users demand more control

over the process [33], thus with a shorter duration, preconditioning becomes a more challenging

problem. In this chapter, we analyze the impact (i.e., voltage degradation and power loss) of large

scale EV preconditioning on the grid and demonstrate the limitations of load shaving mechanisms

in mitigating this impact. We first apply network reconfiguration and assess its competency to han-

dle the abrupt demand of preconditioning. Though the performance of network reconfiguration in

maintaining threshold voltage level or minimizing power loss is supposed to be degraded with the

increased number of EVs, the large number of EVs offers an opportunity to compensate the abrupt
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demand by discharging energy from EVs via V2G technology. Hence, we also investigate the appli-

cability of V2G, wherein EVs that are not bound to leave the premises shortly (hence, are not part

of the EV preconditioning load) can participate by supplying energy to other EVs, subject to having

their batteries recharged by their own deadlines. Finally, to achieve a better solution, we propose

and evaluate a hybrid model where both techniques, reconfiguration and V2G, can be leveraged to

mitigate the dire consequences of large scale EV preconditioning. 1 The rest of the chapter is orga-

nized as follows: in Section 3.2, we present the literature review while in Section 3.3, we present the

impact of EV preconditioning on the residential distribution network. Section 3.4 presents differ-

ent load balancing techniques and in Section 3.5, we present our simulation results and discussion.

Finally, in Section 3.6, we conclude the chapter.

3.2 Literature Review

As per our knowledge preconditioning has not yet been considered as a potential distribution

network service deterioration, since charging is mainly conducted with level 1 chargers. However,

with the increasing number of level 2 chargers at residential areas, preconditioning renders itself

a probable impairment on the distribution network with an additive load during off-peak times.

Various techniques were studied as an attempt to regulate the load profile and decrease the peak

power demand. Applying dynamic pricing, such as Time-of-Use (ToU), has been investigated as

a promising approach to shape the peak load of distribution networks. The advantages of imple-

menting ToU for demand-side management schemes was inspected by shifting EV charging more

towards off-peak times [14, 20]. A scheduling scheme for demand side management and Home

Energy Management System (HEMS) was devised in [35], where an energy company sends a pric-

ing signal based on a hybrid day ahead real-time pricing and inclines block pricing. Moreover, the

consumption of several appliances was scheduled to ensure lowest tariffs over a period of a single

day. The work of [36] revolved around devising a Mixed Integer Linear Program (MILP) for HEMS

management under different pricing and power-limiting techniques, such as, demand response, PV

1Part of this work [34] is accepted and will be presented at IEEE SmartGridComm’2020.
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operation, distributed generations and Vehicle to Grid (V2G). Radial distribution network reconfigu-

ration was investigated in [25] as a load balancing and loss reduction technique. Generally speaking,

these techniques modify the system topology using tie-switches and sectionalizers to ensure its ra-

dial connectivity as well as achieve an improvement in terms of performance. An extensive review

of the existing literature for network reconfiguration approaches was discussed in [37]. Vehicle to

grid (V2G) transfer capability of EVs might be considered as another auxiliary solution for peak

shaving. The use of batteries in EV structure enables V2G technology and renders EVs charging

and discharging operation a feasible solution to reduce peak load demand. In [38], a feasibility

study for V2G with Plug-in Hybrid Electric Vehicles (PHEV) was conducted to determine the num-

ber and energy capacity and charging operation of PHEV to ensure the best outcome from V2G.

The authors of [26] suggested an adequate approach to utilize EV’s batteries to reduce the peak load

demand using a dynamic discharge rate. The work of [39] revolved around optimizing the PHEV

charging schedule to take advantage of excess wind energy and utilize V2G strategy to keep the

total load demand below certain limit. However, the randomness of EV positions and availability

rendered their usage as a potential peak shaving solution troublesome. In [40] the authors propose

a blockchain-based secure energy trading environment to secure incentive contracts between users

and operators. In addition, their environment is assisted by edge computing offloading to ensure

block creation.

While not too much work addressed the preconditioning process of EVs, the impact of the upcoming

high number of EVs on the Estonian distribution number was analyzed in [41]. In their work, the

authors considers preconditioning as a regular short charging period without considering the nearly

identical deadline for such process on the grid. In this work, we will first analyze the impact (e.g.,

voltage degradation, power loss, etc) of preconditioning on the distribution network under various

penetration rates and different scenarios of EV charging. In addition, we will investigate various

mitigation techniques for load balancing and loss reduction in distribution networks and their ef-

fectiveness on EV preconditioning and finally depicts a hybrid approach to handle this upcoming

load.
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Figure 3.1: An example of residential distribution network.

3.3 Impact Analysis of EV preconditioning

3.3.1 Adopted System Model

EV Charging

We devise our EV charging model following our work in chapter 2, where we use the IEEE-

33 radial bus distribution system [42]. Each bus has a nominal winter residential load [43], and

residences are uniformly distributed over the system as depicted in Fig. 3.1. EV charging requests

are initiated at residence following EV penetration rate α . In addition, we adopt the exponential

distribution to approximate EV charging request inter-arrival time following Eq. (3.1), where λ is

charging requests arrival rate. Respectively, EV charging requests follow a Poisson arrival process.

f (x,λ ) =


λe−λx if x≥ 0

0 if x < 0
(3.1)

We divide the timeline into 24-one-hour time slots. Charging requests arrival rate λ is variable for

each time slot and assumed to follow a certain distribution with higher rates during peak hours as

depicted in Fig. 3.2 [15]. In addition, each request is attached to a level 1 or 2 charger according

to level 2 adoption rate σ , and a battery capacity depending on its category [44]. Finally, we

assume that each arriving EV have a random State-of-Charge (SoC) drawn from a truncated normal
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Figure 3.2: EV arrivals percentage during a weekday.

distribution and require to be charged to reach a 100% SoC. Required charging time for each request

is then calculated following eq. (3.2):

τ =
SoC ∗Φ

ζ
(3.2)

where ζ is the charging rate and Φ is the battery capacity.

EV Preconditioning Model

We assume some EVs attached to a level 2 charger will initiate preconditioning requests during

the morning window (5 to 10 AM). Similar to charging requests, preconditioning requests arrival

are assumed to follow a Poisson arrival process with variable arrival rate π , as shown in Fig. 3.3.

Each request is assigned a duration following the truncated normal distribution, where the power

drawn from the grid during this duration is constant to a level 2 charger rate since preconditioning

is more beneficial with a level 2 charger [45].

Once the load profiles are populated, we need to calculate the voltage level at each node (Bus) of

the system. Therefore, we apply power flow for the generated load profiles in order to obtain bus

voltage level, once the bus voltage is known, we use it to determine the system losses [46].
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Figure 3.3: EV preconditioning Percentage.

3.3.2 Study of the Impact - Results

Figure 3.4: System voltage initial settings.

We first present the performance of our system under normal conditions; therefore, in figure 3.4

we depict the system voltage level without the presence of mass EV charging or preconditioning.

We observe that our system is able to handle the load imposed on it under initial condition.

Subsequently, to demonstrate the consequences that preconditioning may impose on the distribu-

tion network, various simulation scenarios are performed using a python discrete event simulator to
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Figure 3.5: system voltage level comparison: α = 50% & σ = 50% 8 AM.

generate the load profile. In the first step of the simulation, we populate the EV charging requests

on top of a nominal load. Afterwards, we generate preconditioning processes that will be conducted

during the morning hours. In our simulation we adopt static pricing (flat rate) where users will fol-

low a greedy behavior for charging and preconditioning. Once we generate load profiles, we feed

them into a power system analysis software package (MATPOWER) [47] to perform power flow

calculation to get the voltage magnitude and total real system power losses.

We first simulate the scenario where we have 50% EV penetration rate (α) and 50% level 2 switch

rate (σ ) where 80% of those using level 2 will initiate a preconditioning process during the morning

time. In Fig. 3.6 we depict the system voltage level, we notice that during some morning time slots

the voltage level drops below the acceptable operating threshold (0.95 p.u.). In order to compensate

for this voltage drop, operators will inject more power into the network. In Fig. 3.7, we observe

that the during preconditioning window the losses are increased, which will impose monetary losses

for the utility in response to injecting more power into the system [48]. In order to understand the

performance of different systems, we solve for the same scenario of a single time slot the power

flow for an unbalanced phases system architecture. In figure 3.5 we depict the voltage level compar-

ison between balanced and unbalanced systems at 8 AM. We notice that both systems have similar

performance under the stress of EV preconditioning. Therefore, for the rest of the chapter will be
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Figure 3.6: System voltage level: α = 50% & σ = 50%.

only considering balanced system.

In Fig. 3.8, we illustrate the system voltage level for an elevated number of EVs and increased

number of level 2 chargers (both α and σ are 80%). We notice for the forthcoming EV and level

2 load along side preconditioning, the voltage drop is more severe and affect more time slots dur-

ing the preconditioning window. Again Fig. 3.9 depicts the power losses over the system, where

we notice again an increase in the power losses. Hence, from this analysis, it can be deduced that

EV preconditioning is going to add a negative impact in terms of voltage degradation and power

loss on residential grids and these consequences would be more severe with a higher penetration of

EVs and with larger level 2 charger adoption, which is actually inevitable for the sake of curtailing

GHG emission. As a consequence, a set of mitigation methods are investigated to handle these

consequences.

3.4 Mitigation Methods

To minimize the power loss due to the abrupt demand by EV preconditioning and to maintain

the voltage level of each bus of the system over an acceptable threshold (0.95 p.u.), we propose

a combination of network reconfiguration (NR) and energy supply through vehicle to grid (V2G)

processes, which are described in the sequel. Both together can be used as a mitigation for the new
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Figure 3.7: Total real system power loss: α = 50% & σ = 50%.

Figure 3.8: System voltage: α = σ = 80%.
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Figure 3.9: Total real system power loss: α = σ = 80%.

load arising from preconditioning. We consider a preconditioning period (e.g., morning from 6AM-

9AM) and assume a time slotted system where at each one hour time slot, there is a preconditioning

demand. We describe first the reconfiguration and then elaborate our V2G mitigation model.

3.4.1 NR for Mitigating Preconditioning Load

Network reconfiguration has been proposed as a load balancing and power loss reduction tech-

nique for radial distribution systems [25]. The reconfiguration of a distribution grid often refers

to selecting a new radial topology for the system by connecting/disconnecting a set of tie-switches

sectionlizers based on an optimization algorithm. This algorithm can be designed to improve var-

ious characteristics of system operation such as loss reduction, voltage regulation, cost efficiency,

etc. The system power losses is calculated as follows:

Ploss = Pf eeder−
NL

∑
i=1

Pload−
NEV

∑
i=1

PEV (3.3a)

Qloss = Q f eeder−
NL

∑
i=1

Qload−
NEV

∑
i=1

QEV −
NC

∑
i=1

QC (3.3b)

where NEV , NL, and NC are the number of EVs, loads, and capacitor banks, respectively. Ploss and

Qloss represent the loss in the system, and Pf eeder and Q f eeder indicate the active and reactive power
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that enters the distribution system, respectively. Reconfiguration problems are often formulated as

a minimization of an objective function that account for loss, cost, voltage deviation etc. Without

loss of generality, it is assumed that the main aim of the system reconfiguration is to minimize the

loss of the system as:

Min µ(v,w)Z(v,w)|I(v,w)|2 ∀v,w ∈ N µ(v,w) ∈ {1,0} (3.4)

s.t.

V =V0I+[DLF(T )]I (3.5a)

{µ(v,w)} /∈ β (3.5b)

Vmin ≤ ||Vk||2 ≤Vmax (3.5c)

where the connection coefficient (µ(v,w) ∈ {0,1}) determines whether a line is connected between

point v and w (µ(v,w) = 1) or not (µ(v,w) = 0), β is the set of all connection coefficients that provide a

loop in the distribution system, and Vmax and Vmin indicate the maximum and minimum permissible

voltage of MV grid, respectively. In addition, Z(v,w) represent the impedance between point v and

w, V0 is the voltage at the distribution substation multiplied with the eye matrix I. DLF is a matrix

that shows the connectivity and impedance of the nodes together, T represent the topology of the

system that we are on. Finally, ||Vk||2 is the voltage magnitude [49].

3.4.2 V2G for Mitigating Preconditioning Load

Another mitigation technique is to rely on EVs that may be willing to cooperate in aiding the

network by discharging through V2G technology. V2G has shown to be a good potential load bal-

ancing assistant scheme [50]. However, users’ might be hesitant to allow V2G on their vehicles due

to fear of leaving with low SoC, battery degradation and security and privacy concerns [51].There-

fore, we assume that operator may offer appealing incentives to encourage users to participate in

V2G. In addition, we would like to ensure that each EV participating in V2G will depart with the

desired SoC. Furthermore, more security measures can be deployed to enhance the security in V2G

information and power exchange [40].
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One way to leverage V2G is to control the total power load (conventional base load, preconditioning

load, minus V2G). Therefore, we design and solve an optimized schedule for EVs which partici-

pate in V2G. We consider a slotted time horizon and the objective is to minimize the load on each

bus for every time slot by discharging energy from EVs. Each EV which would be discharged to

compensate the demand of preconditioning should be charged on subsequent time slots to regain a

declared level of SoC inside its predefined deadline.

System model and formulation

We devise a Mixed Integer Linear Problem (MILP) to optimize V2G schedule within the desired

preconditioning period. We base our model on a scheduling stretch T which is by itself slotted into

smaller time slots n. During T , EVs which are connected to the grid are categorized into two sets

I and J. An EV j ∈ J is going to initiate a pre-conditioning process during T , while EV i ∈ I is

willing to participate in V2G during T within its availability window [δi,∆i]. δi represents the time

slot from where EV i is available for discharging having its full SoC (SoC f
i ), and ∆i is EV i departure

time slot. Once ∆i is reached EV i must have its desired SoC (SoCd
i ). Any EV of those two sets are

considered to be attached with the grid through a bus b ∈ B = [1,k] where k is the number of buses

in the system.

We intend to reduce the total load on each bus for all time slots. Therefore, we define γn
b to be

the available load bound at bus b during time-slot n. To reduce our multi objective problem we

introduce γmax as the maximum available load bound over all the buses and time slots. We seek

to lower the maximum load γmax while making sure the total bus load Pb(n) does not exceed its

corresponding bus bound γn
b . Our mathematical formulation is as follows:

We define the following input parameters:

an
j =


1 if EV j is preconditioning during time slot n

0 otherwise
(3.6)
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ξ
b
j =


1 if EV j is connected to bus b

0 otherwise
(3.7)

ρ
b
i =


1 if EVi is connected to bus b

0 otherwise
(3.8)

We characterize two decision variables, xn
i to decide if EV i is being charged during time slot n (as

Eq. 3.9), while yn
i to decide if EV i is being discharged during time slot n (as Eq. 3.10).

xn
i =


1 if EV i is charging during time slot n

0 otherwise
(3.9)

yn
i =


1 if EV i is discharging during time slot n

0 otherwise
(3.10)

To make sure that EV i is being only charged or discharged during time slot n, we define the follow-

ing constraint.

(xn
i + yn

i )≤ 1∀n; i ∈ I (3.11)

To calculate the bus total load at time period n:

Pb(n) = Lb(n)+Cn(n)−Db(n); ∀b ∈ B ;∀n; (3.12)

Lb(n) =

(
∑

j

(
an

j ∗ p∗ξ
b
j

))
+Hb(n); ∀b ∈ B ∀n; (3.13)

Cb(n) = ∑
i

(
xn

i ∗ζ ∗ρ
b
i

)
; ∀b ∈ B ∀n; (3.14)

Db(n) = ∑
i

(
yn

i ∗d ∗ρ
b
i

)
; ∀b ∈ B ∀n; (3.15)

Eq. (3.13) is the amount of power presented on bus b from conventional household power load in

addition to preconditioning load during slot n.

Eq.(3.14) is the amount of power drawn from the grid to charge EV i during time slot n on bus b.
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Eq. (3.15) is the amount of power fed to the grid from discharging EV i during time slot n on bus b.

To ensure that the total bus load Lb does not exceed the bound γn
b for all time slots in period T , we

demonstrate Eq. (3.16) as:

Pb(n)≤ γ
b
n ;∀i ∈ I;∀b ∈ B;∀n; (3.16)

Our objective will be to minimize γmax.

min γmax (3.17)

γ
b
n ≤ γmax;∀i ∈ I;∀b ∈ B;∀n; (3.18)

Eq. (3.18) ensure that the individual bus bound γb
n does not exceed γmax. Once EV i’s deadline is

reached, its SoC should be equal or greater that the desired SoC according to Eq. (3.19).

SoC f
i +

(
∑
n

xn
i ∗ c

)
−
(

∑
n

yn
i ∗d

)
≥ SoCd

i ;

∀i ∈ I;∀n ∈ [δi,∆i] (3.19)

In addition, EV i’s schedule should not exceed its deadline.

(n−δi)(n−∆i)xn
i ≤ 0;∀i ∈ I;∀n (3.20)

(n−δi)(n−∆i)yn
i ≤ 0;∀i ∈ I;∀n (3.21)

Eq. (3.20) and Eq. (3.21) ensure that neither charging nor discharging will occur outside the avail-

ability window of EV i.

3.4.3 Hybrid Solution

Under a lofty power load demand, network reconfiguration might be unsuccessful in alleviating

the impact of this high load on the network voltage level [21]. Consequently, some might deploy

other methods, such as distributed generations, to enhance the network’s voltage level [21]. In addi-

tion, after applying V2G, the load supplied by those EVs is considered as negative demand to reduce
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Figure 3.10: The flow chart of the hybrid solution

the bus load. However, the randomness attached to EVs positioning and availability renders V2G

somewhat less beneficial by itself. We hence propose a hybrid methodology to use the capabilities

of network reconfiguration alongside V2G. In this method, we leverage the load supplied by V2G

into the network to reduce the bus load and aid network reconfiguration in compensating the voltage

drop in the system. This hybrid solution works in two steps, where in step one we generate new load

profile with V2G scheduling, where V2G reduces the load profile of each bus. Afterwards, in the

second step, we reconfigure the network at the beginning of each hour of the scheduling period. We

will illustrate the operation; we assume we have a number X of EVs willing to participate in V2G,

where X is uniformly distributed along all the system buses. We run our scheduler to obtain the

optimal V2G process timetable during period T; then we calculate the newly load profiles imposed

on each system bus. Subsequently, we apply network reconfiguration (if required) at the beginning

of each time slot of period T, where the duration of this time slot is assumed to be one hour. The

described method is presented as a flowchart in Fig. 3.10.

3.5 Simulations and Results

We conduct our simulations based on the IEEE-33 bus radial distribution system, where we have

the set of vehicles J to have 1623 EVs participating in preconditioning, and set I to have 1650 EVs

willing to participate in V2G. For both those sets we only consider level 2 chargers with a charging

and discharging rate of 7.2 kW. Each EV in I has a deadline following a truncated normal distribution

with a minimum of 10 AM and maximum 12 AM. In addition, each EV in set I has a desired SoC

32



(a) 8AM. (b) 9AM.

Figure 3.11: System voltage profile before and after reconfiguration for α = σ = 50%.

to be acquired with a truncated normal distribution with maximum of 90% and minimum 80%.

3.5.1 Network Reconfiguration

To assess the competency of network reconfiguration in improving the performance of the dis-

tribution network within operational range, we apply network reconfiguration decided by a Binary

Particle Swarm Optimization (BPSO) algorithm [37]. Using this method, we desire to find the op-

timal network configuration where the losses are minimized and calculate the voltage level of the

newly configured buses in the system. In a smart grid we assume reconfiguration can be made in a

hourly manner. Therefore, we conduct reconfiguration at the beginning of the time slot.

Fig. 3.11 depicts the voltage profile before and after reconfiguration with 50% EV penetration rate,

while level 2 adoption rate is also 50%. Fig. 3.11 shows that reconfiguration improves the voltage

drop. In Table 3.1, we represent the optimal configuration for the network and the system quality

metrics. We notice that reconfiguration profitably enhances the system metrics where the losses are

reduced by an average of 50%, in addition the minimum system voltage is above the operational

threshold (0.95 p.u.).

Succeeding, to evaluate the performance of reconfiguration under the stress of a high number of

EVs and level 2 charger, we apply reconfiguration for the load profiles generated with α =σ = 80%.

Fig. 3.12 depicts the system voltage level for each time slot we applied reconfiguration, for both
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Table 3.1: Reconfiguration results for α = σ = 50%.

Hour Data Before After

8AM

Tie Switches 33 34 35 36 37 7 11 16 28 34

Power Loss 117.8636 kW 58.1857 kW

Power Loss Reduction *********** 50.63%

Minimum Voltage 0.92097 pu 0.96634 pu

9AM

Tie Switches 33 34 35 36 37 7 9 13 15 28

Power Loss 117.148 kW 57.9038 kW

Power Loss Reduction *********** 50.57%

Minimum Voltage 0.91993 pu 0.9632 pu

(a) 7AM. (b) 8AM. (c) 9AM.

Figure 3.12: System voltage profile before and after reconfiguration for α = σ = 80%.

before and after the process. In this case, we notice that reconfiguration cannot maintain the per-

formance metrics within operational range, as the voltage drop below the acceptable threshold

(0.95pu). However, in Table 3.2 the power loss reduction is almost 55%, while the minimum volt-

age level fails to attain values higher than 0.95 pu. Since, under a high number of EVs and level 2

chargers, reconfiguration fails to assist the network in maintaining an acceptable voltage, we attempt

to exploit a number of EVs (i.e., set I) to compensate the large preconditioning demand.

3.5.2 Vehicle-to-Grid Solution

To determine the optimal scheduling for V2G (devised in subsection 3.4.2), we solve the model

using a CPLEX solver run on an Intel(R) Core(TM) i7-8750h CPU equipped machine. After ob-

taining the optimal schedule, we calculate the resultant load profile during the scheduled period.

34



Table 3.2: Reconfiguration results for α = σ = 80%.

Hour Data Before After

7AM

Tie Switches 33 34 35 36 37 7 10 14 17 28

Power Loss 127.50 kW 65.66 kW

Power Loss Reduction *********** 48.5%

Minimum Voltage 0.916 pu 0.958 pu

8AM

Tie Switches 33 34 35 36 37 6 11 14 15 28

Power Loss 295.65 kW 143.49 kW

Power Loss Reduction *********** 51.46%

Minimum Voltage 0.873 pu 0.9472 pu

9AM

Tie Switches 33 34 35 36 37 7 11 15 28 34

Power Loss 243.55 kW 111.84 kW

Power Loss Reduction *********** 54.07%

Minimum Voltage 0.884 pu 0.951 pu

Figure 3.13: Time elapsed for solving the V2G schedule.
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Figure 3.14: Load profile during preconditioning period whit α = 80%.

Afterwards, we feed those profiles to MATPOWER and perform power flow analysis to procure the

voltage level on each bus and the system total power losses. Since, reconfiguration fails to provide

a satisfactory solution for a higher number of EVs and a higher adoption rate of level 2 chargers,

we conduct the scheduling process for the case, where both α and σ are 80%. In our work the

purpose of V2G is to reduce the load imposed by preconditioning to assist network reconfiguration

in reducing the power losses and enhance the voltage level.

Fig. 3.14 depicts the load profile during preconditioning period for both before and after schedul-

ing of V2G operation, while Fig. 3.15 represents the system voltage level after scheduling EVs

for V2G. We notice that V2G reduced the peak load observed during preconditioning period, and

enhanced the voltage level and power losses. However, the voltage level did not reach a value above

the operational threshold. Therefore, we want to find a way to leverage the reduced load to enhance

the network performance. In addition, from Fig. 3.13, it is evident that the computation time of

this V2G operation is very small, hence, it is scalable even for a large number of EVs, where for a

value of 90 EVs per bus (i.e I=90*33=2970) and high load profile J=1623 we obtained the optimal

schedule in 50 seconds.
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Figure 3.15: System voltage level after V2G for α = 80%.

(a) 7AM. (b) 8AM. (c) 9AM.

Figure 3.16: System voltage profile for hybrid solution on static pricing.

3.5.3 Hybrid Methodology

Since, both mitigation techniques (network reconfiguration and V2G solution) failed to stabilize

the network performance for a higher number of EVs and level 2 chargers, we propose and apply a

hybrid solution to assist the network performance. First, we deploy V2G scheduler for α =σ = 80%

and use this schedule to generate the newly reduced load profiles. Afterwards, we reconfigure the

network at the beginning of each one hour time slot.

Fig. 3.16 depicts the system voltage level after reconfiguration with V2G generated load profiles.

We notice that our hybrid solution successfully enhanced the voltage level to reach a value above

operational threshold (0.95 pu). Therefore, the system voltage stability is increased since no bus fail

to attain a value higher than 0.95 pu. Table 3.3 represents the optimal network configuration and

its performance metrics. We observe that the hybrid solution attained on average 50% power losses
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Table 3.3: Reconfiguration results after V2G for α = σ = 80%.

Hour Data Reconfiguration V2G Hybrid

7AM

Tie Switches 7 10 14 17 28 33 34 35 36 37 6 9 13 16 28

Power Loss 65.66 kW 167.85 kW 85.73 kW

Power Loss Reduction 48.5% *********** 48.92%

Minimum Voltage 0.958 pu 0.906 pu 0.957 pu

8AM

Tie Switches 6 11 14 15 28 33 34 35 36 37 7 10 13 16 28

Power Loss 143.49 kW 243.08 kW 120.29 kW

Power Loss Reduction 51.46% *********** 50.51%

Minimum Voltage 0.9472 pu 0.884 pu 0.951 pu

9AM

Tie Switches 7 11 15 28 34 33 34 35 36 37 7 10 1316 28

Power Loss 111.84 kW 206.18 kW 97.38 kW

Power Loss Reduction 54.07% *********** 52.76%

Minimum Voltage 0.951 pu 0.89 pu 0.953 pu

reduction and elevated the system’s minimum voltage level above 0.95 pu. Hence, we can report

that the proposed hybrid solution performs well when there exists a high number of EVs and level

2 chargers with mass EV preconditioning. As attaining a solution from network reconfiguration is

almost instantaneous and V2G schedule requires very small time (as shown in Fig. 3.13), the hybrid

solution is capable to provide a quick solution to being applicable.

3.6 Conclusion

In this chapter we highlighted the impact of EV preconditioning during winter on the residential

radial distribution network. The results showed that preconditioning poses challenges on the dis-

tribution network when the number of EVs increases. We observed that alongside elevated winter

load demand and EV preconditioning the network could not maintain its voltage level within an

operational range, in addition to a high total system power losses. Furthermore, we observed the

capability of network reconfiguration and V2G in assisting the network facing those challenges. We

realized that reconfiguration can aid the network with the average anticipated EV penetration and
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preconditioning, while it failed when this number attains higher rates. Therefore, leveraging this

high number of EVs to assist the network, we studied the effects of deploying V2G technology to

reduce or shape the high demand profiles, which it reduced the load during preconditioning period

but failed to maintain the voltage above 0.95 pu. Accordingly, we proposed a hybrid method to

apply V2G scheduling along with network reconfiguration. We observed that reducing the load de-

mand with V2G and reconfiguring the network alleviated the impact of EV preconditioning during

winter.
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Chapter 4

A Data Driven Performance Analysis

Approach for Enhancing the QoS of

Public Charging Stations

4.1 Introduction

The newly deployed charging infrastructure is under utilized by users [4]. Indeed, this hesitation

in public charging is due to users wanting to avoid long waiting times and outlet uncertainty [5].

This is due to the lack of a practical reservation or a check-in system which keeps track of the

waiting times prior to charging as well as the availability of the infrastructure and its utilization.

As a consequence, operators resort to approximate the waiting time based on assumptions, such as

constant charging rate and constant battery capacity. In addition, their approximations are driven

toward specific goals [52] [53] [54] (citing, sizing, profit). Therefore, to estimate the waiting period

of an EV at a CS more realistically, this chapter attempts to derive a model for the waiting which is

driven by realistic data. Besides the waiting time, we will analyze other CS performance metrics,

such as the reneging and blocking probability (rate at which EVs depart from the system prior to

charging), which may be used by operators to enhance their deployment of CSs and hence better

assist users to minimize their waiting times and improve their experience.
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Figure 4.1: System Model.

To enhance the Quality-of-Service (QoS) of public stations and increase its utilisation, we are target-

ing the following key metrics: average waiting time, reneging probability and blocking probability.

This will lead users to have a better understanding of their waiting time and decide on a CS that min-

imizes that metric. In addition, using the previously mentioned metrics, operators will be able to

properly plan the citing and sizing of their CS. Therefore in our work, we will assume a metropoli-

tan area as depicted in figure 4.1, where each CS is modeled as a queuing system with a waiting

area (queue) and charging outlets (servers). Figure 4.2 depicts the operational flow which we will

follow in our analysis. Initially, we will analyze and extract useful metrics (initial SoC, target SoC,

Battery capacity, charging time) from the real usage data acquired. Since there is no available infor-

mation about the waiting time, we will study the likelihood of an EV waiting in a CS from the time

gap between two consecutive charging session start times. Subsequently, we will devise a charging

model guided by real experiments and real CS usage data. After deriving the charging time model,

we would like to leverage various variations of the M/G/k queuing system, which compared to the

widely used M/M/k in such studies provides a better and more generalized approximation. Finally,

we will simulate the operation of the CS. The simulation leverages certain parameters extracted

from the real data to verify the waiting time, reneging probability and blocking probability.

The rest of the chapter is organized as follows: in Section 4.2, we present the literature review

while in Section 4.3, we analyze the acquired data. Section 4.4 represent our charging model. In

Section 4.5, we present our queuing model and in Section 4.6, we present our simulation results.
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Finally, in Section 4.7, we conclude the chapter.

4.2 Literature Review

Over the past several years, research efforts have intensified to advance the technology of elec-

tric vehicles and its (public and private) charging infrastructure, with the purpose of accelerating

the adoption of this technology. Relevant to this work, a thread of research on analytical work has

focused on increasing the utilization of the charging infrastructure among EV users by enhancing

their performance while maximizing the operators’ revenue. The authors in [55] applied a M/M/c

queuing model to generate statistical analysis to fit a suitable distribution for the charging demand

for Plug-In Hybrid Electric Vehicles (PHEV) at a public charging station and at residences they

applied M/M/c/k/Nmax. In their work they utilized a queuing model to fit a distribution for PHEV

charging demand. The work of [56] revolve around creating a recommendation system for EV

taxis, taking into consideration their time and energy demand. In this work they utilized a general

queuing model to assist taxis acquire the longer service time with the shorter waiting time while

considering a constant charging rate that result in a unrealistic charging time. In [57] they resort to

a predefined charging time distribution to model a charging station with a general queuing model

to assist EV on scheduling their sessions in a dual charging modes stations. They utilize a log-

normal distribution to describe the charging time. The authors of [58] utilize a general queuing

model to create a contract based scheduling scheme. This lead to a specific approximation of the

times needed tailored to fit the contract in use. In [59], the authors resorted to M/M/c queue model

in order to forecast EV charging demand at rapid charging stations. Afterwards, they generated a

spatial and temporal model for EV charging load at those stations using fluid dynamic traffic model

to predict EV arrival process. However, their work lacked a generic service time, where they as-

sumed an exponential distribution for such metric. An approach for load balancing among multiple

charging stations is proposed in [53], where the objective is to optimize EV charging times. The

authors used an M/M/c queue to model EV behavior at public CSs. In their work, they considered

that EVs communicate with the grid to share their charging information to allow optimized oper-

ation by the grid operators. In [54], a data driven approach is proposed to analyze EV charging

42



Figure 4.2: System flow chart.

congestion at a CS. Using M/M/c/k queuing techniques, the authors modeled and analyzed the

charging congestion at a public CS considering a finite waiting area for the CS. Again, they utilized

the exponential distribution for approximating the service time, which lacks the realistic aspect of

an EV charging time. In [52] and [60], authors built around citing and sizing CSs. They devised

a placement problem around c (M/M/1) queuing models, and they solve the CS sizing problem

with M/M/c queuing approach. Again, in this work an exponential service time is used, which

is unrealistic. The work of [61] revolved around maximizing the profit from operating a fast CS.

Following experimental measurements, they modeled the charging rate as a random variable with

a constant battery demand. They modeled the CS as a M/G/c/k queue with a finite waiting area,

their goal is to maximize the revenue by deciding the allowed reachable state of charge (SoC) for

every admitted EV. Despite using a general charging time distribution, in this work they limit the

target SoC and battery size, which is tailored to fit their profit model.

In our work however, we will be devising a real data driven model that can be used for different

type of CSs and EVs, in addition to analyze performance metrics with real CS usage data.
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4.3 Analytics on Data Set

In order to study and analyze the performance of public charging stations and come up with re-

alistic models which will assist users and operators, we will investigate the CS usage data acquired

from our partner (Hydro-Quebec) to get realistic distributions of the operational parameters. The

data set at hand is drawn from the charging sessions of 2174 outlets and 68115 members from 2018

till early 2020 over the area of Quebec, and contains multiple key metrics such as charging time,

start time and charging demand (i.e., Initial SoC and Final SoC). In addition, the data set contains

the utilization metrics of a CS, such as the total charging time for a particular day with the total

energy supplied.

Our goal here is to analyze and have a better understanding of the waiting times (i.e., the amount

of time an EV will wait before it initiates a charging session). Often, operators are unaware of the

times EV users wait at charging poles before accessing the infrastructure and indeed having some

information about the statistics of these times can be used by operators to better size and dimension

their infrastructure. This can also be fed back to users to make more informed decision about the

selection of their charging points. Therefore, using the data set, we would like to estimate the like-

lihood that an EV has waited before commencing a charging session by studying the inter sessions

gap time distribution (i.e., time between start of session k+1 and end of session k). In other words,

intuitively, if the inter session gap time is relatively small, we can assume that an EV waited before

it started its charging. In figure 4.3 we depict the distribution of the inter session gap time. We

observe that the distribution is highly shifted toward the left (small gap values), which indicates a

high likelihood that an arriving EV may have waited when another is being charged. However, this

assumption cannot give any information about the waiting time.

Another key metric for our analysis is the charging demand. We represent in figure 4.4 the distribu-

tion and best fit of the charging demand extracted from the data set. We observe that the charging

demand follows a normal distribution, which will be used in our charging model in the coming sec-

tions.

Finally, we analyze the inter arrival to the server time distribution. In figure 4.5 we depict this distri-

bution for the extracted parameters from the data. We can observe that this inter arrival time follows
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Figure 4.3: PDF of Time Gap between two consecutive sessions.

an exponential distribution.

After completing the previously mentioned data analysis, the necessary initial SoC, target SoC and

battery capacity distribution become available to verify the charging model’s performance later on.

4.4 EV Charging Model

In this section, we derive a power model based on the work of [1] where the authors conducted

several experiments and charging measurements for a 16kWh battery capacity using ABB’s 50kW

fast DC charger. In our work, we will differ from the assumption that during a charging session a

constant charging rate is maintained and a varying charging rate is adopted which is guided by real-

istic data extracted from experiments. Each experiment was conducted following different criteria

including but not limited to initial SoC, final SoC and battery temperature. Figure 4.6 describes

the charger’s rate during each charging session. Each curve in this figure represents a different

measurement configuration. We adopt the red curve to devise our charging power model since it

represents the measurements under normal configuration. We observe from the red curve that the

charging power starts as constant and after a certain threshold starts to decrease. We recognize that

this decrease can be approximated using a linear model.
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Figure 4.4: PDF of the EV demand.

Figure 4.5: Inter-Arrival time distribution from real data.
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Figure 4.6: Charging rate during battery charging [1]
.

Accordingly, we devise our power model as follows:

P(β ) =


Pmax if β < βt

−m(β )+b if β ≥ βt

(4.1)

Where P is the charging power (rate) delivered by the charger and β is the energy available inside the

battery (battery capacity), βmax is the maximum battery capacity, βt is the threshold battery capacity,

m and b are the line component and they are chosen in relation to charger and battery characteristics

as follows: m = Pmax
(1−c)βmax

and b = Pmax
(1−c) where c is the threshold SoC value (mostly used is 80%). As

an example, we depict in figure 4.7 our devised charging model with βmax = 20kWh, Pmax = 30kW ,

and βt = 0.8.

Subsequently, we want to devise a charging time model which will account for the region where

the charging rate is decreasing. In addition, the charging time model is a function of the target SoC,

in other words, if the user’s target SoC is less than the threshold SoC, the user will be served with

a constant maximum charging rate. However, if a user decides to go over the threshold SoC, the

charging time will consist of two phases, first when the charging rate is constant and second when

the rate is decreasing, it is noticeable in [1] that the charging time follows a logarithmic behavior.

Thus, our charging time T is expressed as:

T =


βr−βi
Pmax

if βr < βt

δ t1 +δ t2 if βr ≥ βt

(4.2)
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Figure 4.7: Charging model with βmax = 20kWh and Pmax = 30kW .

With:

δ t1 =
βt −βi

Pmax
(4.3)

δ t2 =
1
m

log
(

b−mβt

b−mβr

)
(4.4)

In order to verify our model, we compare our formulations with the real charging time data. Fol-

lowing the technical specifications of the DC fast chargers from [6] and [62], we observe that the

charging rate differs depending on the type of EV. Some EVs are not compatible with 50kW charg-

ing rate and can only operate with 7.2kW. Therefore, in our verification we set Pmax in the theoretical

part to be equal to 30kW. We depict in figures 4.8, 4.9 and 4.10, the theoretical and real charging

time distributions for various CSs with different utilization factors. The utilization factor is the

amount of time a charger is being used during the amount of time it was plugged. In our study

we define high utilization as the highest utilization in the data, the threshold utilization in the data

is 60% as medium utilization, and the low utilization as 30%. From figures 4.8, 4.9 and 4.10, we

observe high similarity between the distribution of our model and the real data. The similarity in-

dicates that our model can approximate real CS charging time distributions. In addition, we notice

that the similarity extends for various utilization factors which in its way describes different EV user

behavior and operation modes of CSs.

Now, after deriving the charging time expression, we still require the expectation and variance of
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Figure 4.8: Charging Time PDF comparison for high utilization station.

the charging time t in order to utilize this metric as the service time in our upcoming analysis of

the M/G/k model. Here, we derive these parameters (expectation and variance) to assist operators

which do not have real data to visualize the expected charging time in order to better deploy their

charging infrastructure. The derivation of these parameters allows us to finally derive the opera-

tional performance metrics such as average waiting time, reneging and blocking probabilities from

the queuing model that shall be explained in the coming section.

4.5 Queuing Analysis of a CS

In this section we will derive the expectation and variance of the charging time at a CS. After-

wards, we will leverage a variation of the M/G/k queuing system to analyse the average waiting

time, reneging probability and blocking probability.

4.5.1 Derivation of parameters

Initially, we should derive an expression for the expectation (E[t]) and variance (V [t]) of the

charging time model.

Let X , Y and Z denote the random variables characterizing the battery capacity, the initial SoC and

the requested SoC, respectively. Hence, we get: m = b
X , b = Pmax

(1−c) , βt = c.X , βi =Y.X and βr = Z.X .
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Figure 4.9: Charging Time PDF comparison for average utilization station.

Figure 4.10: Charging Time PDF comparison for low utilization station.
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Therefore, we can express t as

T =


(Z−Y )X

Pmax
if Z < c

(c−Y )X
Pmax

+ (1−c) log(1−c)
Pmax

X− (1−c) log(1−Z)
Pmax

X if Z ≥ c
(4.5)

with:

G1(X ,Y,Z) =
(Z−Y )X

Pmax

and:

G2(X ,Y,Z) =
(c−Y )X

Pmax
+

(1− c) log(1− c)
Pmax

X − (1− c) log(1−Z)
Pmax

X

Where the expectation of E[t] can be found by:

E[t] =∫ Xmax

Xmin

∫ Ymax

Ymin

∫ Zmax

Zmin

fX(x) fY (y) fZ(z)t(x,y,z)dxdydz

=
∫ Xmax

Xmin

∫ Ymax

Ymin

∫ c

Zmin

fX(x) fY (y) fZ(z)G1(x,y,z)dxdydz

+
∫ Xmax

Xmin

∫ Ymax

Ymin

∫ Zmax

c
fX(x) fY (y) fZ(z)G2(x,y,z)dxdydz

(4.6)

Accordingly, we get:

E[T ] =
(E1[Z]−E[Y ])E[X ]

Pmax
+

(c−E[Y ])E[X ]

Pmax
+

(1− c) log(1− c)E[X ]

Pmax
− (1− c)

Pmax
E[X ]E2[log(1−Z)]

(4.7)

where E1[Z] =
∫ c

Zmin
z fZ(z)dz. Now, using Taylor expectation approximation, the expectation E [log(1−Z)],

can be approximated as

E2 [log(1−Z)]≈ log(1−E2[Z])−
V2[Z]

2(1−E2[Z])2 (4.8)

Where:

E2[Z] =
∫ Zmax

c
z fZ(z)dz
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and

V2[Z] =
∫ Zmax

c
(z−E2[Z])

2 fZ(z)dz

On the other hand, considering the variance of T , it can be expressed as:

V [T ] =∫ Xmax

Xmin

∫ Ymax

Ymin

∫ Zmax

Zmin

H(x,y,z) fX(x) fY (y) fZ(z)dxdydz

=
∫ Xmax

Xmin

∫ Ymax

Ymin

∫ c

Zmin

H1(x,y,z)fX(x) fY (y) fZ(z)dxdydz

+
∫ Xmax

Xmin

∫ Ymax

Ymin

∫ Zmax

c
H2(x,y,z)fX(x) fY (y) fZ(z)dxdydz

(4.9)

where the functions H, H1 and H2 are given, respectively, as


H(x,y,z) = (t(x,y,z)−E[T ])2

H1(x,y,z) = (G1(x,y,z)−E[T ])2

H2(x,y,z) = (G2(x,y,z)−E[T ])2

(4.10)

The above integration (9) will lead to the term E2

[
log(1−Z)2

]
. Using Taylor approximation, the

expectation E[log(1−Z)2] can be approximated as

E2[log(1 − Z)2] = log(1 − E2[Z])2 − 2(log(1−E2[Z])−1)V2[Z]
(1−E[Z])2 (4.11)

4.5.2 The Average Waiting time

We observe in Figure 4.5 that the inter-server arrival time follows an exponential distribution.

In addition, it is clear that the arrival of an EV does not give any information about the next arrival.

Therefore, due to its memory-less property the exponential distribution serves as a best approxima-

tion for the inter arrival time of the EVs to a CS. Accordingly, in order to study the average waiting

time, we model our CS as an M/G/k queuing system.

In the following, we utilize the expressions derived for E[T ] and V [T ] of the charging time T

as the parameter for the service time. We apply different queuing systems to acquire expressions
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for the average queuing time (i.e. EVs waiting time). Initially, we model our CS as a single server

queuing system, with arrival rate λ and service rate µ . We can approximate the waiting time in the

queue following the Pollazcek-Khintichine formula (4.12).

Lq =
λ 2σ2

s +ρ2

2(1−ρ)
(4.12)

such that Lq is the mean number of costumers (EVs) in the system and ρ = λ

k(µ) where k is the

number of servers. Using Little’s Rule, we can calculate the mean waiting time in the queue as

Wq = Lq
λ

.

Afterwards, we model our CS as a multi server queuing system using M/G/k queue with k servers.

We apply the Whitt, 1976 and Medhi, 2003 approximation for the average queuing time using

(4.13).

W G/G/k
q ≈W M/M/k

q
C2

a +C2
s

2
(4.13)

with:

W M/M/k
q =

P0

(
λ

µ

)k
ρ

k!(1−ρ)2 (4.14a)

P0 =
1[

∑
k−1
i=0

(kρ)i

i! + (kρ)k

k!(1−ρ)

] (4.14b)

where C2
a =

σ2
a

( 1
λ
)2 and C2

s =
σ2

s
( 1

µ
)2 are the squared coefficient of variation of the arrival time and service

time.

4.5.3 Reneging Probability

In this section, we study the reneging effect of EV users on the queuing system. Reneging

behavior is defined as the premature departure from a queue without reaching a server. In our case,

reneging or loss is defined as an EV departing from a queue after a specific time threshold τ without

initiating a charging session. We follow the reneging model in [63] where the authors studied the

reneging effect in an M/G/k queuing system and derived a two moment approximation for the

loss probability (i.e. reneging probability). Let pl denote the reneging probability which can be
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approximated as follows:

pl = (1−C2
s )pdet

l +C2
S pexp

l (4.15)

where pdet
l and pexp

l are the reneging probability when the service time is deterministic and expo-

nential respectively and these probabilities can be calculated as follows:

pdet
l =

rk

k! e−µτ(k−r)

∑
k−1
i=0

ki

i! +
rk

k!
re−µτ(k−r)−k

r−k

(4.16a)

pexp
l =

(1− r)eµτ(r−1)

1− reµτ(r−1) (4.16b)

with r = λ

µ
and τ is the time limit that an EV is willing to wait before deciding to leave the queue

without getting service.

4.5.4 Blocking Probability

A useful performance metric for operators of charging infrastructure is the system blocking,

which will help is better dimensioning and for EV drivers for better making informed decision.

A blocking or deny of service is faced with a limited size parking (waiting) area. An EV will be

denied entry to the CS if all the outlets are full and the parking area is full as well. Therefore,

in order to model the behavior of a CS with limited parking area, we utilize the M/G/k/l queuing

system where k is the number of service channels (outlets) and l is the length of the queue. Since the

blocking probability for the latter system does not have a closed form, we follow the approximations

for the blocking probability in [64] [65], where p j is the probability of having j customers in the

system, p j can be approximated as:

p j =



(kρ) j

j! p′0 for j = 0, ...,k−1

(kρ)k

k!
1−γ

1−ρ
γ j−k p′0 for j = k, ...k+ l−1

(kρ)k

j! γ l p′0 for j = k+ l

(4.17)
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where:

p′0 =
1

∑
k−1
i=0

(kρ)i

i! + (kρ)k

k!
1−ργ l

1−ρ

(4.18)

and:

γ =
ρRG

1−ρ +ρRG

RG =
W M/G/k

q

W M/M/k
q

=
(1+C2

S)

(2RD−1)C2
S +1

Where a detailed derivation of RD can be found in [65] and the blocking probability is the probability

of having the system full; in other words, the probability of having k+ l customers in the system.

Finally, we utilize the derived E[T ] and V [T ] in section 4.4 to calculate µ = 1
E[T ] and σ2

s =V [T ].

At this stage, we will have obtained the necessary expressions for the average waiting time, reneging

probability and blocking probability. Next, we will verify and analyze the performance of these

developed models and expressions through a variety of simulations as presented in the coming

section.

4.6 Simulation and Numerical Evaluation

Table 4.1: Simulation parameters.

Minimum Maximum Standard Average
Deviation

Battery Capacity (kWh) 20 100 20 60

Initial SoC ratio 0.1 0.7 0.05 0.4

Target SoC ratio 0.5 0.99 0.05 0.75

Our objective here is to evaluate our derived models. Accordingly, we developed a python based

discrete event simulator to verify the performance metrics we derived of the CS queuing model. In

our simulation, we extract the input parameters from the data set we have in such a way to imitate
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Figure 4.11: Average Waiting time for M/G/1 Queuing system.

the performance of the real CSs that the data corresponds to. In our simulations, the demand and

battery capacity follows a truncated normal distribution with parameters extracted from the data as

shown in table 4.1. In addition, we utilize our derived charging time model to calculate the charging

time of each EV. We run our simulation for 100000 EVs with various arrival rates λ keeping λ

kµ
< 1

to maintain the system’s stability. Finally, we set the maximum charging rate Pmax = 30kW which

is the average rate from the EV data and from [6, 62].

We start by analyzing the average waiting time metric; since the data we have does not contain any

information about this metric, we rely on the verified simulation to evaluate its theoretical analysis.

In figure 4.11, we depict the average time for the M/G/1 queuing system from both theoretical

studies and preformed simulations. We can observe the increasing nature of this metric with higher

arrival rates. Furthermore, we represent in figure 4.12 the same metric for an M/G/2 system. The

average waiting time shows an increasing trend with increasing arrival rates. The later systems rep-

resent a curb-side charger where it can have one or two plugs. We observe from figures 4.11 and

4.12 that the average waiting time decreases when we increase the number of outlets. Therefore,

operators can leverage this metric in order to increase their stations’ QoS by setting the number of

outlets that minimizes the waiting time. Subsequently, we increase the arrival rate range. In figure

4.13, we represent the average waiting time for an M/G/6 system that can represent a dedicated

public charging station with multiple outlets. The waiting time also increases with higher arrival
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Figure 4.12: Average Waiting time for M/G/2 Queuing system.

rates. It should be noted that the maximum arrival rate in a range should not exceed kµ to keep the

system stable. Hence, we can deduce that our model functions as an acceptable approximation for

the average waiting time in a public charging station.

Next, we analyze the reneging probability (loss probability) for both M/G/1 and M/G/2 sys-

tems. As mentioned before, reneging probability is the metric to analyze the system when we have

impatient customers that decide to prematurely depart before their service starts. We would like to

analyze the behavior of these impatient users who depart after a certain threshold τ . Therefore, we

calculate the reneging probability for a range of waiting time thresholds τ and various arrival rates

λ . In figure 4.14 we depict the reneging probability for an M/G/1 system, we notice that the reneg-

ing probability decreases when τ increases. Which means that if the users are more patient with

waiting the probability of them departing without service decreases. In addition, when the arrival

rate increases (i.e more customers in the system) the reneging probability increases as well. After-

wards, we analyze the same metric for an M/G/2 system. In figure 4.15, we represent the reneging

probability of that system. We observe the similar behavior between the reneging probability and τ

as well as between probability and λ . However, for more servers we notice that the probability is

decreased compared to M/G/1. We notice that operators can limit the charging time in their stations

in order to increase the number of served EV by decreasing the reneging probability. However, this
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Figure 4.13: Average Waiting time for M/G/6 Queuing system.

Figure 4.14: Reneging probability for M/G/1 Queuing system.
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Figure 4.15: Reneging probability for M/G/2 Queuing system.

creates a trade-off in the operation of a CS and its scheduling.

Operators might utilize this metric to enhance the deployment process of their charging infrastruc-

ture. Indeed, this newly acquired information with a user profiling will give the operators an insight

on how to deploy their stations and attain maximum utilization. User profiling consist on surveying

the area and have a better understanding about the EV users in that particular area where the CS will

be deployed. Information, like size of the family, average waiting time expected among other, will

assist operator in determining the size and placement of the deployed CS.

Afterwards, we want to analyze when a CS has a limited parking area. Therefore, we model a

CS as an M/G/1/l and M/G/2/l in order to study the blocking probability. Where the blocking

probability signifies the probability that a user will arrive to a full CS and will be denied service.

In figures 4.16 and 4.17 we depict the blocking probability for the M/G/1/l and M/G/2/l respec-

tively. We notice that with higher arrival rates λ the blocking probability increases. However, we

can also notice that with larger parking area the blocking probability tend to decrease. Such type

of analysis may help a CS operator to determine the parking capacity based on the arrival rate. By

doing so, the operator increases the utilization factor by minimizing the blocking probability.
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Figure 4.16: Blocking probability for M/G/1/1+ l Queuing system.

Figure 4.17: Blocking probability for M/G/2/2+ l Queuing system.
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4.7 Conclusion

In this chapter, we devised a charging time model to study and analyze the performance of an

EV public charging station. Afterwards, we utilize our time model into different variations of the

M/G/k queuing system to approximate the EV’s waiting time, reneging probability and blocking

probability at a certain CS. The purpose of our model is to be adaptive to any type or issue that can

face a CS in order to find a better solution such as increasing the utilization or enhancing the users’

experience. However, since there is a notable and hindering scarcity of real data concerning the

waiting time, in future work, we would like for this model to be utilized with intelligent operation

models such as smart decisive algorithm to minimize waiting time and increase CS utilization.

Additionally, this model can be deployed alongside algorithms to assist operators with placement

and sizing of CSs to improve their operation.
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Chapter 5

Conclusion and Future Work

In this work various aspects and behavior of mass EV integration were studied. Multiple sim-

ulations were conducted to evaluate the impact imposed on the distribution network. From the

collected simulations it is noticeable that mass EV charging will create difficult situations to handle

for the power network operators. This is categorized by the voltage drop presented in the system

when high of EV and level 2 chargers are presented. Additionally, during winter, preconditioning in

EV paradigm will bring an elevated load during preconditioning window that mostly occur during

off peak times. With strict deadlines preconditioning rendered traditional peak shaping technique,

that shift load from peak to off peak obsolete. In order to alleviate the load imposed more adequate

mitigation should be utilized or the merger of multiple one to create an potent solution to balance

the load and enhance the system voltage level.

Ultimately to increase the number of EVs and work toward a green transportation sector to enhance

the environment, it was shown that relying solely on the residential grid will be troublesome since it

is noticeable that it might fail when presented with high number of EVs and level 2 chargers. There-

fore, the popularity of public dc fast chargers should be increased in order to enhance its utilization

and assist users in performing there charging session at those stations. In this work the performance

of public CS was studied and an operational model was devised to create a better knowledge on the

operation of such CS. Accordingly, with this enhanced information about the operation of public

CS user will be able to chose the stations that minimize their overall spent time charging their EVs.

In addition, operators will be able to enhance the deployment of their stations to maximize their
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utilization and profit.

To enable intelligent and controlled charging ecosystem, it is required to have an interconnected

charging infrastructure. This ecosystem is facilitated by two way data sharing. However, this will

create more opportunity and attack vectors for adversary users to take advantage and disturb the

operation of either the charging infrastructure or the power grid. In [66] a survey over different

security aspects of this infrastructure was conducted to analyze the available gaps. In future work,

the security aspect of this infrastructure will be studied and effective mitigation will be presented

and investigated in securing the charging ecosystem.
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