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Abstract

Portfolio Allocation with Temporary Price Impact

Thi Hai Yen Phan

This thesis analyzes an investor’s portfolio choice and liquidity premium in the presence of an
illiquid stock. Illiquidity is modelled by means of convex transaction costs which an investor has
to pay for trading a stock. An investor is assumed to trade in the presence of a stochastic
endowment which is used to generate long-term trading demands. I find that the endowment
generates long-term trading incentives only if there exist correlations between the endowment and
stocks returns. These incentives result in the liquidity premium which makes only a fraction of a
percent of the risk premium. The portfolio choice and the conditional liquidity premium can be
determined in a closed form in the case of the absence of these correlations and the main economic

intuition behind the findings is confirmed.
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1. Introduction

The relation between liquidity and prices of financial assets has been studied extensively.
Individual investors are concerned about liquidity due to its effect on their investment’s return in
the way that it costs them more to buy illiquid securities while they receive less when selling them.
This is because a market maker typically increases the bid-ask spread, especially for large trades,
when the market is less than perfectly liquid. As a result, an investor could be more hesitant to
invest in these illiquid assets and tends to allocate their wealth into more liquid ones. The standard
definition of illiquidity refers to the difficulty of trading a large number of financial assets quickly.
There are different kinds of cost contributing to market illiquidity and there exist also various
measures of liquidity. Therefore, the way each cost category is measured may have dissimilar
influences on evaluating the portfolio choices of investors.

One of the most popular ways of modeling illiquidity is through price impact, which
measures how an incoming order to purchase or sell a security affects its price. Empirical
observation suggests that large trades put pressure on prices: large buys (sells) can push them up
(down). But why are these changes typically followed by rapid reversals? This is among several
puzzles regarding market liquidity. This phenomenon appeared in a systemic intraday event — the
Flash Crash — in the U.S. financial markets on May 6, 2010. The Commodity Futures Trading
Commission — Securities Exchange Commission (CFTC-SEC (2010)) joint report describes the
Flash Crash as follows: “On May 6, a wide variety of broad market indices and products displayed
similar behavior — a severe price decline immediately followed by a rapid recovery during a 20-
minute period” (p. 17). This event demonstrates that during financial crises, the price impact can
be significantly nonlinear (Kirilenko et al. (2017)).

According to Foucault et al. (2013), liquidity suppliers require a larger bid-ask spread to
compensate for three kinds of costs: adverse selection costs, order-processing costs, and inventory
holding costs. Adverse selection costs result from a transaction with better-informed investors.
Liquidity suppliers then need to re-estimate the value of the traded asset, and thus the price impact
of this market order is permanent. If, however, it is the real cost of processing orders or the
inventory holding risk that causes the market illiquidity, then the price impact of a market order is
temporary and should wear off over time. They also note that although both order-processing costs

and inventory holding costs generate price reversals, their speeds are different: prices are reversed



immediately with the former while gradually with the latter. Thus, the relative importance of order-
processing costs versus inventory holding costs determines the speed of price reversals.

The literature on the permanent impact of a market order on asset prices is vast. Bagehot
(1971) is among the first to introduce an asymmetric information model in which a market maker’s
behaviors are considered in a scenario with two indistinguishable kinds of traders: liquidity-
motivated (uninformed) and information-motivated (informed) traders. The market maker sets a
bid-ask spread so that his gains from uninformed traders exceed his losses to the informed. Popular
models of trading with asymmetric information have then been developed by Kyle (1985); Glosten
and Milgrom (1985); Easley and O’Hara (1987); Grossman and Miller (1988); Hasbrouck (1991),
and many others.

The existence of temporary price impact was already shown by Kraus and Stoll (1972) when
they study large institutional trades. The theoretical analysis of the impact of inventory holding
costs on the bid-ask spread goes back to Stoll (1978) who defines the cost as an amount to
compensate a dealer for transactions that tend to cause his portfolio to deviate from the target.
Amihud and Mendelson (1980) consider a dynamic model in which a market maker faces
constraints on his long and short inventory positions. They predict that the spread widens as the
market maker’s position strays from his preferred inventory level. Ho and Stoll (1981) also analyze
the optimal dynamic pricing policy for a single dealer in the presence of inventory holding risk
and predict that the dealer will control his inventory position by adjusting his price quotes. Ho and
Stoll (1983) analyze the behavior of competing dealers when they have different inventory
positions in centralized markets. Biais (1993) extends the analysis to fragmented markets and
compares them to centralized markets. In a similar fashion, Yin (2005) introduces liquidity traders’
costs of search into Biais’s model.

Huang and Stoll (1997) decompose the bid-ask spread into three components — order
processing, adverse information, and inventory — and find that on average, the order processing
costs, the inventory costs, and the adverse selection costs account for 61.8%, 28.7%, and 9.6%,
respectively, of the traded spread. They interestingly find that for large trades, the adverse selection
component is even less announced, probably because information typically already leaks out
before the trades. Many other papers have used actual inventory data to empirically study the
behavior of market maker in stock markets (see, e.g., Madhavan and Smidt (1993); Hasbrouck and

Sofianos (1993); Naik and Yadav (2003); Hendershott and Seasholes (2007); Comerton-Forde et



al. (2010); Hendershott and Menkveld (2014)). Although a few studies find a weak relation
between asset prices and inventory (see, e.g., Madhavan and Smidt (1991); Hasbrouck and
Sofianos (1993)), most of them support the inventory mechanism which predicts a strong transitory
price impact of a market trade.

The importance of price impact in financial asset prices and market liquidity makes it critical
for an investor when considering portfolio allocation policies. Merton (1969) develops frictionless
models and recommends strategies with infinite trading volume. Portfolio rules under permanent
price impact have then been extensively studied in which permanent price impact is modeled by
assuming that an investor’s aggregate position affects price dynamics (see, e.g., Cuoco and
Cvitani¢ (1998); Bank and Baum (2004); Huberman and Stanzl (2004); Bank and Kramkov
(2015a, 2015b)). Linear price impact models, in which transaction costs (a measure for temporary
price impact) are fixed or linear in the number of traded shares or dollar value, result in policies
with the order flow proportional to the distance from the current position to the target (see, e.g.,
Guasoni and Weber (2017); Moreau et al. (2017)). However, empirical evidence suggests that
transitory price impact is nonlinear (see, e.g., Lillo et al. (2003); Robert et al. (2012)). The
convexity of transaction costs is intuitive since it becomes more difficult for a market maker to
trade more shares in a short time. In the literature on nonlinear price impact, attention has mainly
focused on the problems of optimal liquidation strategy (see, e.g., Almgren (2003); Vath et al.
(2007); Schied et al. (2010)), optimal trade execution (see, e.g., Almgren and Chriss (2001);
Gatheral and Schied (2011, 2013); Guasoni and Weber (2020)), dynamic portfolio management
(see, e.g., Garleanu and Pedersen (2013, 2016); Grinold (2018)), and hedging problems (see, e.g.,
Rogers and Singh (2010); Bank et al. (2017)).

The literature on portfolio selection problem with multiple risky assets in the presence of
transaction costs is limited. The majority of them study the optimal consumption and investment
when all risky assets subject to fixed or proportional transaction costs. For example, Akian et al.
(1996) consider the optimal consumption and investment strategy for an investor who has constant
relative risk aversion (CRRA) preference in the presence of proportional transaction costs,
assuming that asset returns are uncorrelated. Liu (2004) studies an optimal intertemporal
consumption and investment problem with fixed and proportional transaction costs for a constant
absolute risk aversion (CARA) investor when asset returns are uncorrelated. Muthuraman and

Kumar (2006) provide a computational study of a similar problem for a CRRA investor while



assuming that transaction costs are proportional to the dollar value of the transaction and there are
correlations between the price processes. Lynch and Tan (2010) numerically solve the decision
problem of a multiperiod CRRA investor in the presence of proportional transaction costs when
asset returns are predictable. Chen and Dai (2013) provide a thorough theoretical characterization
of the optimal strategy on multiple correlated assets with proportional transaction costs for a risk-
averse (CARA or CRRA) investor.

It is, however, reasonable to think of the case when there are only some risky assets subject
to transaction costs while others are liquid. If so then, how does the illiquidity of these stocks affect
an investor’s optimal investment policies? Isaenko (2006) provides numerical and approximate
solutions for this question when studying an optimization problem for a CARA investor who
maximizes expected utility from her terminal wealth, assuming that only one risky asset is subject
to nonlinear transaction costs. The thesis is an extension of his analysis in several ways. First, the
optimization problem is considered for an investor who has intermediate consumptions with an
infinite horizon. In addition, the value function is conjectured similar to that in Isaenko (2020).
This, together with other assumptions, enables me to obtain explicit solutions in many cases.
Moreover, a non-tradable risky endowment flow is used to generate long-term trading demands.
Lo et al. (2004) suggest the use of the endowment for the effect of transaction costs on asset prices
to exist.

A portfolio choice problem with convex price impact is studied for a price-taker investor
who has CARA preference and trades in the market with one riskless bond, (n — 1) liquid stocks,
and one illiquid stock. For the sake of tractability, I ignore the permanent price impact entirely and
examine only the transitory price impact on the investor’s portfolio allocation decisions. This can
be done by assuming that when the investor trades an illiquid stock, she is required to pay
transaction costs which are convex in the number of traded shares. The investor invests in both
types of stocks to diversify. I assume that the illiquid stock can experience a temporary price
impact but liquid stocks do not.

Given the presence of transaction costs in only one risky asset, it is of interest to understand
the influence of this illiquid stock’s position on other liquid stocks’ optimal allocations, and thus
the effects of transaction costs on an investor’s optimal consumption and investment strategies.
Isaenko (2006) numerically finds that optimal allocations to liquid stocks depend on the illiquid

stock’s allocation, and the trading rate of this stock is affected by the presence of liquid stocks



even when returns of all stocks are uncorrelated. Different from his findings, the closed-form
solutions of optimal policies indicate the independence between allocations of the illiquid stock
and liquid stocks. Besides, the liquid stocks’ optimal investment policies are the same regardless
of whether transaction costs are present or not. This implies that transaction costs subjected by the
illiquid stock do not affect other liquid stocks’ optimal trading policies. The optimal allocation to
each liquid stock then relies only on their risk premium, the volatility of each stock returns, the
risk-free interest rate, and the investor’s risk tolerance. The separability of the optimal allocation
for each stock makes the computation of the optimal investment policies for a large number of
stocks become easier.

Although the case of uncorrelated stock returns is commonly recommended for efficient
diversification and for tractability of analysis, it is practically oversimplified since the returns
among stocks are typically positively correlated. Therefore, the case of multiple correlated risky
assets is also considered. It is shown that the dependence of liquid stocks’ target allocations on the
illiquid stock’s position is affected by correlations among asset returns. Specifically, the optimal
allocations to liquid stocks are negatively related to the number of illiquid stock shares. The longer
the position that an investor takes in the illiquid risky asset, the less wealth is allocated to liquid
ones. The strength of this relationship increases with the strength of correlations between stock
returns and decreases with the number of liquid stocks in the portfolio. Since the impact of
transaction costs on an investor’s optimal allocations to liquid stocks only exists when asset returns
are correlated, it suggests another advantage of investing in independent stocks in addition to the
benefit from diversification. In the case of uncorrelated risky assets, when a stock becomes illiquid,
there is no need to rebalance her optimal allocations to liquid stocks, assuming that the investor’s
expectation on these stocks’ returns remains unchanged. By contrast, if asset returns are correlated,
the investor needs to readjust not only the illiquid stock’s position but also those of liquid stocks.

Another crucial objective of the thesis is to examine how the holding of the illiquid stock
affects the risk premium that an investor requires for her investment. This goal can be done by
using the liquidity premium. Amihud and Mendelson (1986) are among the first to document the
illiquidity premium for the equity market (see also, e.g., Brennan and Subrahmanyam (1996);
Acharya and Pedersen (2005); Lee (2011)). The behavior of liquidity premium is typically
analyzed in a general equilibrium framework or a partial equilibrium framework. The former has

been developed based on asset supply and demand whose changes affect the asset price in



equilibrium. For example, Vayanos (1998) assumes that trading demand is generated by lifetime
consumption smoothing. Lo et al. (2004) consider heterogeneous agents who trade to hedge their
nontraded risk exposure. On the other hand, the partial equilibrium framework is introduced by
Constantinides (1986) to determine the impact of transaction costs on asset’s mean return (see also,
e.g., He and Mamaysky (2005); Jang et al. (2007)). In this framework, the liquidity premium is
defined as the difference between expected returns of two assets — with and without transaction
costs — that leaves an investor’s expected utility unchanged. For tractability, I analyze the liquidity
premium in a partial equilibrium framework and define it as the additional return to compensate
an investor for holding the illiquid stock.

Lo et al. (2004), however, point out a limitation of the partial equilibrium framework, stating
that partial equilibrium models tend to undervalue the impact of transaction costs on asset returns
because they ignore the price effect of market-clearing motive. Indeed, Constantinides (1986) only
finds a second-order effect of transaction costs on an investor’s expected utility, and hence the
liquidity premium is very small. Because transaction costs prevent the investor from trading
frequently, it is important to generate long-term trading incentives so that the effect of transaction
costs on asset prices and thus on the liquidity premium is better reflected. The long-term trading
demands are typically achieved by using either a short-term unpredictable endowment, or a time-
varying risk premium’, or both. For mathematical tractability, in the light of Lo et al. (2004), and
Isaenko (2020), I include a non-tradable cumulative risky endowment in the economic setting
while considering a constant risk premium. This stochastic endowment may induce an investor to
trade continuously in the long run and thus is expected to reveal a significant effect of transaction
costs on an investor’s optimal portfolio selection.

The market without transaction costs is used as a benchmark in comparison with the illiquid
market to determine the liquidity premium. The presence of illiquid stock in the investor’s portfolio
makes her allocation to this stock a state variable. This implies that the utility function and,
therefore, the conditional liquidity premium will depend on this allocation. The conditional
liquidity premium then can be modeled as a function of the illiquid stock’s position and the
endowment volatility. Especially in the absence of correlations between the endowment flow and

risky assets, a closed-form formula of the liquidity premium can be written in terms of the

! See, e.g., Campbell and Viceira (1999); Campbell et al. (2004); Liu (2010) in which the expected excess return of a
risky asset follows a mean-reverting process.



illiquidity coefficient @ whose magnitude defines the level of illiquidity. The explicit functions
and numerical results show that there is a positive relationship between the level of illiquidity («)
and the liquidity premium, indicating that when the illiquidity of a stock becomes more significant,
an investor demands a higher premium to compensate for holding this stock. However, in the
steady state (as time t approaches infinity), the conditional liquidity premium becomes very small
and even disappears in the case when there is no correlation between the shocks to the endowment
and stocks returns. In this case, the investor tends to stop trading the illiquid stock and the long-
term optimal investment strategies are the same as those in the absence of transaction costs,
suggesting that transaction costs have no effect on the investor’s portfolio choices in the long run.
If the endowment and stocks are correlated, there exist long-term trading incentives. However,
these trading needs seem to be very weak, leading to a negligible liquidity premium. These findings
cast a shadow over the efficiency of the use of a non-tradable risky endowment in generating
dynamical trading demands in the partial equilibrium framework. Despite the insignificant effect
of transaction costs in the long term, they still play an important role in an investor’s short-term
decisions on portfolio selection. Therefore, for an investor who cares about long-term investment,
transaction costs might not be of concern; but for those who have a short-term investment horizon,
transaction costs should be considered.

One critical contribution of the thesis is to derive in closed-form the optimal consumption
and investment policies and the conditional liquidity premium in many cases (when innovations
to stocks and the endowment are uncorrelated). In particular, they enhance the understanding of
how transaction costs affect an investor’s optimal portfolio strategies. The explicit solutions also
provide a better insight of the relationship between fundamental parameters (the coefficient of risk
aversion, correlations between stock returns, the risk-free interest rate, the volatility of stock
returns) and the optimal allocation to each risky asset. In addition, a closed-form function of the
conditional liquidity premium allows me to transparently analyze the impact of these fundamental
parameters on the liquidity premium and obtain some interesting results. Specifically, an increase
in the coefficient of risk aversion, in correlations between stock returns, or in the volatility of the
illiquid stock return decreases the investor’s allocation to this illiquid asset, which in turns reduces
its effects on the investor’s expected utility, resulting in a smaller liquidity premium.

The rest of the thesis is presented as follows. Section 2 and Section 3 describe the basic

models, including the economic setting and the portfolio selection by an investor. The solutions to



the optimization problem can be found in Section 4 in which Subsection 4.1 describes the trading
behaviors of an investor in the market with only three stocks, while Subsection 4.2 does it when
there is a higher number of stocks trading in the economy. Section 5 summarizes all of my findings.
Appendix A presents the Hamilton-Jacobi-Bellman (HJB) equations of the optimization problem
mentioned in Section 3 in the economies with and without transaction costs. Finally, details of

solutions in Section 4 are provided in Appendix B and Appendix C.

2.  Economic Setting

A Markov economy is considered with an infinite horizon. Uncertainty in the model is driven
by a standard (n + 2)-dimensional Brownian motion W = (W;, ..., W,; Wy; Wy ).
A portfolio of (n + 1) securities including a riskless bond and n stocks is assumed. The price

dynamics of the riskless bond B, are:
dBt = BtTdt, (1)

where r denotes a constant interest rate. The other risky assets are assumed to have no dividend

for simplicity and have price dynamics given by:

dslt = (RPl + TSl + All)dt + 0'1dW1t, (2)
dSit = (RPl + TSi)dt + O—idWit' i= 2, ., n,
where conditional dollar risk premium, RP;, and o; of each stock are constant. It is set that only
stock 1 1s illiquid and Ay, is its liquidity premium. The covariance matrix of the stock returns can
be degenerate but just in the circumstance that the degeneracy is caused by the existence of the
illiquid stock. 2
It is assumed that the stock prices have normal distribution. The combination of the normal
distribution of the dollar returns with CARA utility function will allow to separate state variables

and find a closed form solution in most of the cases to be considered. This is contrary to the case

2 According to Isaenko (2006), the presence of illiquid stocks may result in a substantial change in correlations between
stocks when a majority of investors exercise the same allocation strategies. Therefore, I do not rule out the possibility
that the change in correlations could make the covariance matrix to be degenerate if it contains rows or columns which
are proportionally interrelated.



where the stock rates of returns are assumed to be normal and the utility function is CRRA-type
(or CARA-type). The latter will make the trading strategy to depend on the stock price and the
investor's wealth. The separation of variables becomes impossible and a portfolio selection
problem can be only solved numerically. Given a large number of stocks, this solution has been
shown to be very difficult to manage and explain (see, e.g., Isaenko (2006)).

Following Isaenko (2006), the temporary price impact is modeled as the transaction costs
a|u, |2dt that an investor pays for the trading of stock 1 within the time interval dt, where u, is
instantaneous trading rate and the illiquidity coefficient a is positive (a higher a indicates the more
illiquidity of stock 1). The term a|u, |? results from the temporary price impact and does not allow
the trading speed to be infinite due to its convex shape (suggesting that the higher the |u,|, the
more costly it is for an investor to conduct a transaction). The change in the number of illiquid

stock shares is given by:
let = ultdt, (3)

This process suggests that an investor can only purchase or sell shares of stock 1 at a finite rate
and implies that the trading rate u; becomes her control variable.

Similar to Lo et al. (2004) and Isaenko (2020), I assume that an investor is endowed with a
stream of nontraded risky income with cumulative cash flow I, = | Ot Y, dWy,, where W, is a

Brownian motion which has correlation coefficient py; with shock W;. The endowment is assumed
to have a normal distribution. The endowment volatility Y is mean-reverting and follows the

dynamic process:
dY, = ky(Y — Y,)dt + oydWy,, (4)

where ky, Y, and oy are constant and ky, 6y are positive. The parameter ky needs to be positive to
ensure stability around the long-term value Y. The correlation coefficients of Wi, with W; and W,
are constant and given by py; and pyy, respectively. Clearly, an endowment can be negative due
to, for example, a negative shock in business enterprises. A cumulative endowment is typically
modeled without a diffusion term. However, this term is kept here due to its significance for
motivating an investor’s trading and the drift term is dropped for the purpose of tractability. The
term dW, specifies the nontraded risk, and the endowment volatility Y; gives an investor’s

exposure to this nontraded risk at time t. Since process Y is time-varying, the investor has



inducement to continuously trade in stocks (including the illiquid one) to hedge her nontraded risk
as it changes over time. It follows that trading of investors is propelled by the process Y. The
presence of this trading demand is essential to better analyze how transaction costs — which
discourage the investor from trading dynamically in the long run — affect an investor’s optimal

investment policies because their effects only matter when the investor actually trade.

3. The Investor’s Problem

A price-taker investor is assumed to have a CARA preference and obtain her utility from
intermediate consumption ¢ with time discounting. The investor’s problem is then to choose
consumption (c¢) and investment (uq, N,, ..., N;,) strategies to maximize her expected utility
function:

1
c,ul,erl,l.%)A(IHERn Eo _j; (_ y exp(—tt = yct)) dt,

where y > 0 is a coefficient of absolute risk aversion, 7 is a time discount rate. Solving an infinite
horizon with intermediate consumption is often easier than solving an otherwise similar problem
in finite time (see, e.g., Merton (1969)). According to Brandt (2010), an infinite horizon problem
only needs to be solved for a steady-state policy (as t approaches o), whereas a finite time problem
requires the optimal policy to be found for each period.

Let X; denotes the investor’s wealth at time t. Given the intermediate consumption and the
transaction costs in the time interval dt are c,dt and a|u,|?dt, respectively, the dynamic budget

constraint that an investor faces can be derived as:

n
X, = <TXt + Ny (RPy + Ap) + Z NiteRPy — ¢ — a|u1t|1+6> dt + YidWy,
=2

n
+ z tho-dekt'
k=1

10

(5)

(6)



The dynamic programming approach is applied to solve this optimization problem.
Equations (3), (4), and (6) suggest that the state variables should include processes X (an investor’s

wealth), Y (an endowment volatility), and N; (an investor’s allocation to the illiquid stock 1).

The value function at time t is defined as:

VXY, N) =  max E(f7 (—%exp(—rs —ye))ds|[X, =X, Ny =NpY, =Y),  (7)

C,ul,Nz,...,NnERn

Similar to Isaenko (2020), it is conjectured to have the following form:

1
V(t,X,Y,N;) = —;exp[—rt —yrX+g(Y,N;)l.

where g(Y, N;) is assumed to have a quadratic form (8). It is also assumed that V(t,X,Y, N;) is
monotonically increasing in X and continuously differentiable up to the second order in X and Y,
and up to the first order in N; and t.

The value function of an investor must satisfy the HIB equation (A—1) shown in Appendix
A, which then can be reduced to a system of six linear-quadratic equations to simultaneously solve
for six coefficients in the function g(Y,N;). The next two propositions summarize the value

function and the optimal controls in the market with and without transaction costs.

Proposition 1 Assume that the set of equations (A—10) to (A—15) has a solution, then the functions

ﬁl(Y, Nl)’ 6(X, Y, Nl)’ I’V\(Y, Nl) and V(t,X, Y, Nl) = —)l/exp[—’[t - ]/TX + g(Y, Nl)] ) WheT'eZ

1 1
g =Apc + ANy + EAZCNI_Z + (Boc + BicNy)Y + ECOCYZ' (8)
Aic +AycNy + BicY
g, = — e T A2c T Fact 9)
2ayr
1 1 1.
CcC = _; ln(r) + AOC + AICNI + EAZCNl + (BOC + BlCNl)Y + ECOCY + T'X, (10)
N =cov-xaB, (11)
where (COV)l,] = O-i+10-j+1pl'+1,j+1' l,] = 1, e, — 1,

11



_ (0y0i+1Py,i+1Boc + RPiy1) n (0y0i+1Py,i+1B1c — ¥1010i41P1,i+1)
yr yr
n (0y0i+1Py,i+1Coc — YT 0i41P0,i+1)
yr

i

Y i=1,..,n—-1

and all coef ficients in equation (8) are constant with A, > 03, are the optimal controls

and the value function of an investor.

Equations (9), (10), and (11) are derived from the first order conditions of the HIB equation
(A—1) with respect to ¢, uy, and Nj (k = 2,...,n), respectively. It follows that the optimal
strategies of an investor in the illiquid market are specified by these equations. In addition, the

following corollary presents the allocation to the illiquid stock 1 (N;) at time t:

Corollary 1

a cY (ky a c KyY
N,, = —— _— — =1 N. _ —Y —-bt
1t b+(b—rcy)(b )+l1°+b (b—xy)<b °>le

(12)
t
c _ coy
_—— (Y. -V —Kyt_—f —ky(t—s) _ ,—b(t-s) dW- )
B T e ), o)A
where @ = 22 p = Az _ Bic
2ayr 2ayr 2ayr

It follows that the illiquid stock’s allocation is a Gaussian process and its stationary limit is

given by:

lim Ny = — 24— (S 13
fim Mo = =5+ ey (5~ V) a3)

The next proposition addresses an investor’s optimization problem in the economy without
transaction costs. In this market, because all securities are assumed to be liquid, an investor’s
allocation to stock 1, N;, should be excluded from the list of state variables. Thus, the investor’s
problem is to choose consumption (c¢) and investment (Ny, N5, ..., N,,) strategies to maximize her
expected utility function. The state variables include processes X and Y. The value function and

the optimal controls in this liquid market are presented as follows:

3 Following Isaenko (2020), this condition should hold so that Nlirgrl V(t X, Y,N;) = —oo.
1—-to0
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Proposition 2 Assume that the set of equations (A—26) to (A—28) has a solution, then the functions

V(t,XY) = —%exp[—rt —yrX + g1, éX,Y) and N(Y) where:

1
g =40+ BoY +5CoY?, (14)
" 1 1
¢ = = |In() + Ao + BoY + ECOYZ] +7X, (15)
N =cov-'xB, (16)

where (COV)lJ = O'inPi,j , l,] = 1, e, n,

B = oy 0iPy,iCo — YT0iPo; Y+ oy 0;py,iBo + RP; =1
i ]/T yr ) ) ey

and all coefficients in equation (14) are constant, are the value function and the optimal controls

of an investor.

Equations (15), and (16) are derived from the first order conditions of the HJB equation (A—
19) with respect to ¢ and N (k = 1, ...,n), respectively. It follows that an investor’s optimal
policies in the economy without transaction costs are determined by these equations. More details
of proof for Proposition 1, Corollary 1, and Proposition 2 are discussed in Appendix A.

Because n could be large, two cases will be examined: when there are only three stocks in
the stock market (n = 3), and when there are multiple stocks (n > 3). The former analysis is
simple enough to determine the solutions for the optimization problem, and thus provides a better
insight of the topic. In particular, [ am able to estimate not only the effect of the number of illiquid
stock shares held by an investor on her utility function and on the liquidity premium, but also the
impact of correlations between stocks returns on this effect. On the other hand, the analysis of
multiple stocks (n > 3) shows how the findings change when there are arbitrary numbers of liquid
stocks whose returns are correlated. Unfortunately, as n increases, it becomes more difficult to
figure out the covariance matrix (COV 1) in equations (11) and (16). Hence, for simplicity, it is
assumed that while stocks returns are correlated, other correlation coefficients between the

endowment and stocks are zero.
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4. Optimization Solutions

This section presents a few cases to illustrate how temporary transaction costs affect an
investor’s optimal portfolio choice. The economy with no trading costs is considered as a

benchmark case to determine the conditional liquidity premium.

4.1. Three-Stock Market

In this subsection, I examine a portfolio of four securities including a riskless bond and three
risky stocks. The optimization problem is solved in three different cases. Firstly, all stocks are
assumed to be independent. Secondly, it is assumed that there are constant positive correlations
between stocks returns, given that other correlation coefficients are zero. Finally, the optimization
problem is considered when all shocks in the economy are correlated. The detailed analysis is

shown in Appendix B.

4.1.1. Independent stocks

This subsection represents the findings with the assumption that the covariance matrix of
stocks returns is diagonal, and all other correlation coefficients between any pair of Brownian
motions are zero. In this case, the closed-form solutions are available for the optimization problem,
which in turn allows me to derive a closed-form function of liquidity premium in terms of the

number of illiquid stock shares (N;). In particular:

The optimal allocations in the economy without transaction costs are:

— RP,
Nk = K

=— k=123, (17)
yrog

The last result implies that the allocations to stocks in the portfolio are proportional to their
risk premium. On the contrary, the higher the coefficient of risk aversion (a bigger ) and the more

volatile the stock returns (a higher gy ), then the smaller the optimal allocation to each stock.

The optimal strategies in the economy with transaction costs are:

a = _Agc + Aoy (18)
! 2ayr '
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_ RP,
=

=—— k=23, (19)
yrog

where A;c and A, are given by formulas (B-20) and (B-21), respectively.

It follows that both the optimal trading rate of illiquid stock and optimal investment policies
of liquid stocks are independent of the endowment volatility. In addition, the trading rate is
negatively related to the illiquid stock’s position which, otherwise, has no impact on the liquid
stocks’ optimal allocations. Liu (2004), while studying the effect of proportional transaction costs,
also states that the optimal stock trading strategy is separable in individual stocks since their
optimal positions are independent of each other. Thus, given that the only difference across the
two markets is the illiquidity of stock 1, if the investor’s expectation on liquid stocks returns
remains unchanged, then no adjustment is needed for these stocks’ positions. This explains why
their optimal positions are similar in both economies with and without transaction costs, implying
that transaction costs subjected by the illiquid stock have no effect on other liquid stock’s optimal
trading policies. Their optimal allocations then rely only on the risk premium, the volatility of
returns, the risk-free interest rate, and the investor’s risk aversion.

As a market becomes illiquid, expectation of an investor on the illiquid stock’s returns
changes. More specifically, her expected utility would reduce due to the illiquidity. A higher risk
premium would then be required to compensate for this reduction. Therefore, the risk premium in
the economy with transaction costs should be increased by the liquidity premium. Thus, after
arriving at the solutions for optimal portfolio choice of the investor in the economy with and
without transaction costs, I set her utility functions in both economies to be the same to determine

the liquidity premium. The conditional liquidity premium function is then equal to:

(ar+/ar(ar+2yof)>x[J2ay2er ar+ |ar(ar+2yo?)

2ay

+ )Z—Zaerl

2ay(RP1
T g1

A= —RP; + (20)

)

RP;

2
Yrox

It follows that N; should be different than for the liquidity premium to be positive and

RP; . . . . . .
~ is the optimal allocation to stock 1 in the economy with no transaction
1

well-defined, where
yro

RP o . . .
costs. [f N; = ymlz, then the liquidity premium is equal to zero and the investor stops trading stock
1

1 since u; = 0.
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Furthermore, equation (20) describes how the liquidity premium depends on the number of

illiquid stock shares held by an investor (this dependence is illustrated in Panel A Figure 1). It is

shown that the conditional risk premium decreases with N; when N; < ]/Rr%. But if N; > %,
1

1
then a higher allocation to the illiquid stock (N;) results in a higher premium that an investor
requires to compensate for holding this stock.

For a better understanding of these findings, the relation between the trading rate and the

number of illiquid stock shares should be taken into consideration. Following equation (18), u; is

. . RP. . .
negatively related to N; and it is equal to zero when N; = )Tolz Moreover, if N; is smaller than
1

RP. . .. . RP. .
L, then u; is positive; and u; becomes negative when N; gets larger than —. When N; is
ro? yro?

RP;

smaller than 5 since u; 1s positive, an investor keeps buying the illiquid stock until u; = 0.
1

Because this positive trading rate decreases with N;, the conditional liquidity premium also

decreases as N; increases. This is because the lower the |u,|, the less costly it is to trade for an

investor. By contrast, if N; is larger than %, then u; becomes negative, indicating that the
1

investor is selling the illiquid stock. In this case, the higher the N;, the higher the |u, | and the more
costly it is for the investor to trade. The conditional liquidity premium then increases with Nj.

It is shown in equation (20) that the expected value of the conditional liquidity premium A4
relies on the expectation on N; which can be derived from equation (12). To provide a better insight
of the impacts of fundamental parameters on the number of illiquid stock shares held by the
investor, the initial allocation to the illiquid stock 1 (N;,) is set to be zero. This assumption should
not have a crucial effect on the final results. Indeed, since the process N; is stationary, the

stationary limit of liquidity premium does not depend on the initial values. With N;, = 0, then

_p—bt
Ny = (RP1+A)’/1:S c ). The expected value of liquidity premium is given by:
1

2
Yoq

o—2bt [m‘ — \/ar(ar + 2]/012)] + V012’

Allz _RP1+RP1\/ (21)

A
where: b = =2
2ayr

The last result implies that an investor requires a higher liquidity premium for a higher level

of illiquidity (this finding is illustrated in Panel B Figure 1). In addition, a higher coefficient of

16



risk aversion or a lager volatility of the illiquid stock’s return results in a lower liquidity premium.
It is intuitive since an increase in the coefficient of risk aversion or in the volatility of the illiquid
stock’s return decreases an investor’s allocation to this stock (this relation can be seen from the
process Ny.), which in turns reduces its effects on the investor’s expected utility, leading to a
smaller liquidity premium.

However, it is noticeable that in the steady state (as time t approaches infinity), the

conditional liquidity premium is zero (tlim A;; = 0). The liquidity premium disappears in the long

run because the trading rate (u,) is independent of the endowment volatility (Y), which is expected
to generate long-term trading needs, and depends only on the position in the illiquid stock (N;). In
the short term, since N; is not at the optimal position yet, the investor is away from the state that
maximizes her expected utility. She continues to trade with |u;| # 0 to achieve this optimal level.
The liquidity premium, therefore, could be relatively high (as illustrated in Figure 1). When N;
reaches the long-term target allocation which is similar to that in the absence of transaction costs,
the trading rate is equal to zero, and the investor stops trading this stock. Consequently, her utility
function in the presence of transaction costs converges to the utility function when the costs are
absent and the liquidity premium becomes zero. This finding suggests that the effect of transaction

costs on the investor’s optimal portfolio choices does not exist in the long run.
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Figure 1: Panel A and Panel B show the liquidity premium as a function of the number of illiquid
stock shares N; and the illiquidity coefficient a, respectively, when RP; = 0.06, r = 0.02, y =
2, 01 = 0.4, t = 1. In Panel A, the solid line presents the results when @ = 0.05 while the dashed

line shows the findings when a = 0.001.
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Figure 1.A and Figure 1.B describe how the liquidity premium is affected by the allocation
to stock 1 (as shown in equation (20)) and by the illiquidity coefficient a (as shown in equation
(21)), respectively. Because the liquidity premium becomes zero in the long run, I set time t = 1
to get a better view of these relations in the short run. The initial stock price is assumed to be 1$
so that the dollar returns RP; could be related to the rate of returns. Therefore, RP; is set to be
close to the historical average risk premium in the US stock market. In Panel A Figure 1, I consider
the cases when @ = 0.001 and a = 0.05 representing the market with a weak (dashed line) and
very strong (solid line) illiquidity of stock 1, respectively. Following Isaenko (2006), I set the
coefficient of risk aversion y at 2 and the volatility of stock return at 0.4. The risk-free interest rate
is set at 2% similar to Isaenko (2020). This calibration is used onwards unless specified otherwise.
These graphs verify the results that have been analyzed in this section in a visual manner. In
particular, Panel A shows that when N; is small, the liquidity premium slightly decreases with N;.
However, when N; becomes larger, the liquidity premium rises as N; increases. Moreover, when
the illiquidity of stock 1 is weaker, the liquidity premium is accordingly smaller (dashed line). This
is also shown in Panel B which illustrates the positive relation between the level of illiquidity and

the liquidity premium.

4.1.2. Correlated Stocks

This subsection illustrates a case when all Brownian motions W; (i = 1, 2, 3) have the same
constant positive correlation coefficients while the correlations between other Brownian motions
are zero. Thus, p;, = p >0, while py; =0, py; = 0 and ppy = 0. The choice of these
coefficients is for tractability of the results which allow me to better study the impact of
correlations between returns of risky assets on their optimal allocations, and on the liquidity
premium. For simplicity, these stocks are assumed to have the same characteristics, namely

volatility (o) and risk premium (RP).
The optimal allocations in the economy without transaction costs are:

- RP

Ny=——5——— =1,2
K= ro2(1+ 2p) k=123, (22)

This formula shows that correlations among asset returns are a critical determinant in an

investor’s portfolio allocation decision. The stronger the correlations, the lower the optimal
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allocations to these stocks. The comovement of stock returns increases the overall risk of the

portfolio, and thus discourages the investor from investing in these risky assets.

The optimal strategies in the economy with transaction costs are:

a = Agc + AxcNq 23
1 2ayr (23)
. RP —yro?pN,
= k=273 24
“T yror(1+p) (24)

where A;c and A, are determined by formulas (B-39) and (B-40), respectively.

Both the optimal trading rate of stock 1 and the optimal investment policies of liquid stocks
are independent of the endowment volatility while are influenced by the illiquid stock’s position.
Specifically, the optimal allocations to liquid stocks are negatively related to the number of illiquid
stock shares, suggesting that the higher the illiquid stock’s position, the less of wealth that the
investor allocates to other liquid stocks. This is explained by their positive correlations. In addition,
the magnitude of this relationship is affected by the strength of the correlations between stocks
returns. When the correlations between stocks returns are stronger, the coefficient multiplying
process N; becomes larger. Thus, in the case of correlated stocks, transaction costs have impacts
on an investor’s consumption and investment strategies.

The conditional liquidity premium is derived as a function of the number of illiquid stock

shares Nj:

_RPG D) \/Nz(rz_l_Azc) RP2(1 - p)

AZC
= — — 1Ny X (— + 2 )
AR " 2y T2ape@ ez G T

It follows that N; should be different than for the liquidity premium to be positive

R
yro2(1+2p)

and well-defined, where is the optimal allocation to stock 1 in the economy without

R
yro2(1+2p)
RP

transaction costs. If Ny = ————,
yra?(1+2p)

then the investor stops trading since u; = 0, and the liquidity

premium becomes zero.

RP

Similar to the case of independent stocks, if Ny < ——,
yra?(1+2p)

then the conditional liquidity

premium A, slightly decreases as N; increases. By contrast, if N; > then the liquidity

RP
yro2(1+2p)’
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premium A;; increases with N;. These findings are demonstrated in Panel A Figure 2. The reason
behind these results lies in the dependence of the trading rate u; on the process N;. Following

equation (23), u, is negatively related to N;. In addition, u, is positive when N; is smaller than
RP RP

—_— Is to zero when N; = ————; an mes negati hen N; gets larger
ror(irap) t equals to zero when Ny = ——=m-— d u, becomes negative when N; gets large
RP ) .
than ————. When N, is smaller than —————, because the |u;| decreases as N; increases,

yro2(1+2p) yro2(1+2p)

the conditional liquidity premium also decreases as a result. This is because the lower the absolute

value of trading rate |u,|, the less costly it is to trade for an investor. But if N; is larger than

RP

o (1120) the |u,| increases with N;, and thus it becomes more costly for the investor to trade

this illiquid stock. The conditional liquidity premium then increases with N;.
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Figure 2: Panel A and Panel B describe the liquidity premium as a function of the number of
illiquid stock shares N; and the illiquidity coefficient a, respectively, with the parameters: RP =

0.06,r =0.02,y = 2,0 = 0.4,t = 1, when p = 0.2 (solid line) and p = 0.8 (dashed line).

Panel A and Panel B in Figure 2 demonstrate how the liquidity premium is influenced by N;
and by a, respectively, when the correlations between stocks returns are weak (p = 0.2) and
strong (p = 0.8), assuming the previously-mentioned calibration. In Figure 2.A, I only consider
one case of a weak level of illiquidity with « = 0.001 because the focus here is to understand how
the correlations between stocks returns affect the relation between the illiquid stock’s position (N;)
and the liquidity premium (4;,). Figure 2.B presents the results of the liquidity premium when the

level of illiquidity (a) changes. As previously analyzed, Panel A shows that if N; is large
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(> W%f”p)), then the longer the position that an investor is taking in the illiquid stock 1, the

higher the liquidity premium she demands for holding this stock. On the other hand, Panel B
indicates that as stock 1 becomes more illiquid, it is more costly for an investor to trade in this
stock, resulting in a higher liquidity premium. Moreover, it could be noticed that if the correlations
between stocks returns are strong, then the liquidity premium becomes relatively small. A strong
comovement in stocks returns discourages an investor from investing in risky assets (including the
illiquid stock) due to the increasing risk of the portfolio. A smaller weight of the illiquid stock in
the portfolio reduces its influence on the investor’s expected utility function. Therefore, the
liquidity premium is smaller than that in the case of weakly correlated stocks.

However, the stationary limits of the conditional liquidity premium and the trading rate of
stock 1 are zero, suggesting that the investor will stop trading the illiquid stock in the long run.
The long-term allocation to the illiquid stock is then similar to that in the market without
transaction costs. When time t is small, N; is away from its optimal position, transaction costs still
have effect on the investor’s portfolio allocations. The investor then continuously rebalances her
allocations to liquid stocks and the illiquid stock until achieving the long-term optimal strategies
which are the same as those in the absence of transaction costs. As a consequence, her utility
function in the presence of the illiquid stock converges to the utility function in the absence of the
transaction costs and the liquidity premium becomes zero. This again implies that transaction costs
have no effect on the investor’s steady-state optimal investment policies.

So far, two cases have been considered: one with all independent stocks and one with
correlated stocks. In both cases, I assume that all other correlation coefficients (py;, po;, and poy)
are zero. The common point in both instances is that B;- = 0. Consequently, the optimal trading
rate and portfolio choices are independent of an endowment shock (Y), and thus the stationary
limit of liquidity premium equals to zero. To put it differently, the approach of a short-term
unpredictable endowment in the partial equilibrium framework does not work well in these cases
since investors seem to have no incentive to trade in the illiquid stock in the long run. Therefore,
it is important to examine the conditions for B, # 0 and to study how the liquidity premium and
the optimal portfolio allocation change in this situation. I simplify this task by further assuming
that py; = py, Poi = po- Following equation (B—49), if py = p, = 0, then B, = 0. Therefore,
either the condition of py # 0 or py # 0 or both should hold for B, to be different from zero. The

next section will analyze more closely the case when py # 0 and py # 0.
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4.1.3. Numerical Example

In both previous cases, it is assumed that there is no correlation between stocks and the
endowment. In this section, I relax this assumption making the shocks to stock returns and the
endowment are negatively correlated. This choice comes from the intuition that if shocks to the
endowment are negatively correlated with innovations to stock returns, the stocks are potentially
attractive because they give a good hedge against unfavorable shocks in the endowment. The
expected utility loss (gain) resulted from a drop (rise) in the endowment flow then can be balanced
by the financial gain (loss) from stock returns. Unfortunately, I cannot find closed-form solution
for the value function, thus the case has to be solved numerically. The optimal policies is

determined in an analytical manner before a numerical calibration is applied.
The optimal allocations in the economy without transaction costs are:

g oypyCo — Y7 Po RP + goypyB,
KT yre(1 + 2p) yro?(1+ 2p)

k=123, (26)

where By and Cy can be found by solving equations (B—51) and (B-52).

It follows that in the absence of transaction costs, the allocations to stocks are dependent on
the endowment volatility (V).
The optimal strategies in the economy with transaction costs are:

2ayr

ﬁl = ] (27)

g OypyBic —yrop gy pyCoc — Y7TPo v oyopyBoc + RP
T yre@+p) ' yro(l+p) yra?(1+ p)

k=23, (28)

where A,c, B1c and Cyc can be found by solving equations (B—46), (B—48) and (B—49).

In the presence of transaction costs, both liquid stocks’ optimal allocations and the optimal
trading rate of stock 1 depend on the number of illiquid stock shares (N;) and on the endowment
volatility ().

A numerical calibration is then applied to better estimate the dependence of optimal policies
on the illiquid stock’s position (N;) and on the endowment volatility (Y), using the following
parameters: RP = 0.06, r = 0.02, y =2, t = 0.05, 0 = 0.4, Y =1, ky =1, oy =04, py =
—0.4, pg = —0.4, poy = 0.4, p = 0.2, a = 0.001. The time discount rate 7 is set at 0.05 similar
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to Isaenko (2020). Y, ky, and oy are chosen to create dynamic trading incentives for an investor.
Py, Po and pyy are selected with an assumption that there are moderate correlations between the
endowment and stocks returns. The correlations between stock returns are set at 0.2 (weak
correlations) so that the illiquid stock has more effect on an investor’s expected utility, and thus
the liquidity premium is higher. The illiquidity coefficient is set at 0.001 indicating a weak level
of illiquidity of stock 1.

The optimal allocations in the economy without transaction costs are:

N, = 0.7106 X Y + 6.7286 k=1,2,3. (29)

The optimal strategies in the economy with transaction costs are:
1y = 12.0272 — 1.7175 X N; + 0.7744 x Y, (30)
N, = —0.1662 x N; + 0.8287 x Y + 7.8465 k= 2,3. (31D

It follows that an increase in the endowment volatility lifts the target allocation of risky assets
and raises the trading rate. If an investor exposes more to the nontraded risk in the endowment,
then she has incentives to invest more in risky assets due to their negative correlations.

The liquidity premium is then found by setting the utility functions of an investor in both the
economies with and without transaction costs to be the same. The quadratic equation of the

conditional liquidity premium in terms of two state variables N; and Y is:

—165.8748 A% — A;;(0.0230N; + 0.0175Y + 14.7589) + 6.8699 x 107 °N2
—6.1951 x 107°N;Y — 0.0009N; + 1.795 x 107°Y? + 0.0004Y + 0.003 = 0

This equation allows me to estimate the stationary limit (t = o0) of the expected liquidity
premium by simulating the processes of N; and Y. In particular, the time period [0, t] is first
partitioned into equal intervals. The time t is set at 100 which is large enough to find a stationary
value of liquidity premium. The length of each discretization interval is chosen to be 0.1. In other
words, this problem is numerically solved based on 1000 periods. Next, I simulate a path for
Brownian motion W, from which I figure out the value of N; as following equation (12) and Y

from equation (A-18). This process is repeated 100,000 times for a set of A;;, and then by
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calculating the average of this set, I get a long-term expected value of liquidity premium, which is
9.655 X 10764

Because the relation between a and A;; is also of interest, the previous calibration is run
through again for higher values of a. The results of liquidity premium A;; are shown in Panel A
Figure 3. In addition, Panel B Figure 3 displays the findings in the case of strongly correlated
stocks with p = 0.8. It is shown that as the illiquidity of stock 1 becomes stronger, an investor
requires a higher liquidity premium. However, the size of this premium also depends on how strong
the correlations between stocks returns are. The liquidity premium in the case of strongly
correlated stocks is smaller than it is when stocks are weakly correlated. These results are

consistent with the findings from the last two subsections.
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Figure 3: Panel A and Panel B describe the relation between the illiquidity coefficient a and the
conditional liquidity premium A;; when p = 0.2 and p = 0.8, respectively, with the parameters as
follows: RP =0.06, 0 = 0.4, py = —0.4, py = —0.4, poy =04, r=0.02, y=2, Y =1,
oy =04, ky =1, T=10.05 t =100.

There are several points should be noticed from the results here. First, the conditional
liquidity premiums (4;;) are very small even when « is relatively big. The liquidity premium is
typically very small in the partial equilibrium approach, especially in the case when the investment

opportunity set is constant (risk-free interest rate, risk premium and volatility). See, for example,

4 The coefficients in function g(¥) and g(N;,Y) are found to be the following: Ay, = 0.9721, By = —
45022 x 1073, C, = 5.2005 X 107, Ayc = 0.9755, A;c = —9.6218 X 107*, A, = 1.3740 X 107%, By =
—4.0769 X 1073, B = —6.1951 x 107>, and Co = 5.5595 X 10™*,
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Constantinides (1986). According to Lo et al. (2004), partial equilibrium models tend to understate
the impact of transaction costs on asset returns because they ignore the mechanism of market-
clearing motive. Besides, Jang et al. (2007) indicate that the assumption of a constant investment
opportunity set is likely to underestimate the impact of transaction costs on expected return
because transaction costs prevent an investor from trading frequently. Thus, they suggest that the
investment opportunity set is a critical consideration in generating a greater effect of transaction
costs. In this regard, this result is not a surprise. Second, the liquidity premium exists in the long
run because of non-zero correlations between stock returns and endowment shocks. However, its
stationary expected value is negligible, suggesting that the long-term trading is very weak. Since
a short-term unpredictable endowment is utilized to generate long-term trading incentives, a very
small stationary liquidity premium implies that this approach seems to have very limited
applications in the partial equilibrium framework.

In the last three cases, | have analyzed the relation between the illiquidity of a stock caused
by temporary price impact and the corresponding liquidity premium, how the correlations between
returns of stocks affect this relation, and how liquidity premium behaves in the long run if all the
shocks in the economy are correlated. These analyses have been done for a market with three
stocks. The next section provides more general solutions for arbitrary number of stocks in the

portfolio.

4.2. Multiple-Stock Market

In this section, I examine a generalized case in an economy with arbitrary number of liquid
stocks. Unfortunately, the closed-form solutions are not available when n becomes larger.
Therefore, I set py = py = poy = 0 for tractability of results. The detailed analysis is presented in
Appendix C.

The market where all stocks are independent is considered. The results of this analysis are
not shown in detail since they are similar to the findings in the case of three independent stocks.
These findings suggest that no matter how many stocks are available in the economy, the
optimization problem can be solved in a closed form with similar solutions. Thus, the number of
liquid stocks in the market has no impact on the liquidity premium and on the optimal allocation

to each liquid stock.
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The case of correlated stocks are then studied, assuming that any pairs of stocks returns have
the same positive correlation coefficient p, and all stocks have the same characteristics (namely,

risk premium and return volatility).

The optimal allocations in the economy without transaction costs are:

o RP
“Tyro?[1+ (n— 1)p]

k=1,..,n, (33)

If there are more positively correlated stocks in the portfolio, then the optimal allocation to
each stock becomes smaller because the comovement of these stocks increases the overall risk of
the portfolio. In general, the optimal trading policy for each stock relies on the risk premium, the
coefficient of risk aversion, the risk-free interest rate, the volatility of stock return, the correlations

between stock returns, and the number of stocks available in the market.

The optimal strategies in the economy with transaction costs are:

. Aic + ANy
= 2ayr (B4
Iy RP

P k=2 ..m (35)

Ny = — N.
“Tyrat1+(n-2)p] [+ @m-2)p] "
where A,c and A, are determined by formulas (C-16) and (C-17), respectively.

It follows that the optimal allocations to liquid stocks are negatively related to the number
of illiquid stock shares. The strength of this dependence relies on the number of stocks in the
portfolio and on the correlations between these stocks returns. If the number of liquid stocks
available in the market increases or the correlations between stocks returns become weaker, then
the optimal allocation to each liquid stock is less affected by the illiquid stock’s position. As a
result, the transaction costs have less effect on the investor’s optimal investment policies.

The conditional liquidity premium is given by:

_ _(p—1)RP 2 4 A n2 RP2(1-p) _ Azc
All_ [1+(n—2)p] + {\/(T‘ + Zay) N1 T 2ayra?[1+(n—-1)p][1+(n-2)p] er} X (yr + 20!7"). (36)
The last formula shows that liquidity premium is not always a monotonically increasing
function of N;. Similar to the findings in Subsection 4.1.1 and Subsection 4.1.2, the condition of

Ny > kP ] should hold for the liquidity premium to be positive and increasing with N;.

yro?[1+(n—-1)p
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Moreover, based on equation (12), one can arrive at the expected value of the number of illiquid

stock shares N; at time

N = RP [1+ (n—2)pl]A,
a {sz[l T (n—1Dp]  yrof@—pL+ (n— Dp]

} x (1 —e~bt) (37)

Substituting this formula into equation (36), one can arrive at gim A;; = 0, indicating that
—00

the stationary expected value of the liquidity premium is zero. This result is consistent with the
finding in the three-stock market in which an investor stops trading the illiquid stock in the long
run (u; = 0), the long-term target policies are the same as those in the absence of transaction costs.
The investor’s utility function in the presence of transaction costs will eventually be the same as
that when these costs are absent, and the conditional liquidity premium becomes zero. Thus,
transaction costs have no effect on the investor’s long-term optimal portfolio allocation choices.
This suggests an implication that the steady-state optimal allocation can be computed separately
for each stock even if their returns are correlated since transaction costs do not influence the
investor’s optimal choices in the long run. It then becomes feasible to compute the long-term target

investment strategies for a large number of risky assets.
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Figure 4: Panel A and Panel B describe the liquidity premium as a function of the number of
illiquid stock shares N; and the illiquidity coefficient a, respectively, with the parameters: RP =
0.06, r=0.02, y =2, 0 =04, p=0.2, t =1,whenn = 5 (solid line), n = 10 (dashed line),
and n = 25 (dotted line).
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Figure 4.A and 4.B illustrate the relation between A;; and N;, and between A;; and a,
respectively, with different numbers of stocks available in the market (n = 5, 10, 25). It is shown
in Figure 4.A that with the same N;, the liquidity premium becomes bigger if n increases. Because
an investor faces a budget constraint, a constant proportion of illiquid stock in the portfolio affects
her ability to trade other liquid stocks, given that there is an increasing number of liquid stocks
available in the market. This reduces the investor’s expected utility, and therefore a higher liquidity
premium is required to compensate for keeping the illiquid stock’s position unchanged. Similarly,
Figure 4.B demonstrates a decrease in the influence of the level of illiquidity («) on the liquidity
premium as there are more stocks available in the market. An increasing number of available liquid
stocks reduces the weight of the illiquid stock in the portfolio and its influence on the investor’s
utility function. A smaller effect of the illiquid stock on the expected utility function leads to a

smaller liquidity premium.

5. Conclusion

The thesis studies the optimization problem of an investor trading in the economy with
multiple liquid stocks and one illiquid stock. In the short term, transaction costs have no effect on
liquid stocks’ optimal trading strategies in the case of independent stocks. Their impact on optimal
investment polices does exist when stocks returns are correlated. The strength of this impact
depends on how strong the correlations between stocks returns are, and on the number of liquid
stocks in the market. If asset returns are strongly correlated, then the illiquid stock’s position
significantly influences the investor’s decision on optimal allocations to liquid stocks. This
influence, however, becomes less substantial when the illiquid stock accounts for only a small
proportion in the portfolio. In addition, the liquidity premium — measuring the additional return to
compensate an investor for holding the illiquid stock — decreases as the level of illiquidity reduces,
the correlations between stocks returns are stronger, or there is an increasing number of liquid
stocks in the portfolio.

Nevertheless, transaction costs do not have significant effect on the optimal portfolio
allocation in the long run. The stationary liquidity premium is very small and even disappears
because the investor stops trading the illiquid stock in the case when there is no correlation between

the endowment and stocks. Only in the presence of these correlations do the long-term trading
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demands exist, yet they seem to be very weak, leading to a negligible liquidity premium. The long-
term target policies are very close, and similar in some cases, to those in the absence of transaction
costs. The non-tradable risky endowment is used to generate long-term trading needs with the
intuition that an investor facing with uncertainty about future risky income has incentives to
dynamically rebalance her consumption and investment strategies. However, it has very limited
applications in this partial equilibrium analysis. For further research, one can consider modelling
time-varying investment opportunities, for example, by assuming that the risk premium of the
illiquid stock follows a mean-reverting process (see, e.g., Campbell and Viceira (1999); Campbell

et al. (2004); Liu (2010)).
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Appendix A

This appendix shows the HIB equations for the indirect utility function of an investor in the
economy with and without transaction costs. In the economy without trading costs, the investor
can trade one liquid bond and n liquid stocks; while in the market with transaction costs, I assume

that stock 1 is illiquid and (n — 1) remaining stocks are liquid.

Proof of Proposition 1. If stock returns are correlated, the value function V(¢t,X,Y,N;) of an

investor solves the following PDE:

max
c,uq,Ny,..,NpER™

n n n
1
> (Ny01)? + Z(Nkak)z + 2N, 07 Z Nyoppyx + z NiN;oy0ipy; + Y?
= k=2 k,j=2,k#j

n n
1
+ ZYZ: Ny por | Vxkx + 5 0¥ Vyy + oy [Ypoy + z Ny 0k Py

2 ny + ulle
k=1 k=1
. (A1)
+ ky(Y = YV)Vy + [rX + Ny(RP, + Ap) + 2 N RP, —c — au?|Vy + V,
k=2
1
——exp (—tt—yc); = 0.
14
e F.O.C with respect to c:
1
¢=- ” [t + In(Vx)], (A-2)
e F.O.C with respect to uy:
2, =
T (A3)
e F.O.C with respect to N:
N=cov-1xB, (A-4)

where:

(COV)ij = 014105 41Pir1j+1, Li=1..,n—1,
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B = [N101Ui+1p1,i+1 + Y0i+1po,i+1]VXX + 0y 0i41Py,i+1Vxy + RPi41Vyx P21 n—1
i = , =1,...,n— 1.

VX X

I conjecture that V(¢t,X,Y,N;) = — i e TtyrX+9(Y':N1) and find the PDE for g(Y, N;):

—r[ln(r) +gl—t+7r

n n n
1 ~ 2 —~ ~
3 (yr)? [(Ny01)* + Z(Nk‘fk) + 2N;oq Z Nyoyp1x + Z Ny N;oy 0 py
k=2 k=2 klj=21k¢j

n
Ypoy + Z Nkakpyk] gy (A-5)
k=1

n
N 1
+ Y242y Z Nyowpor | + 50'1; (gyy + g%) —voyr
k=1

n
+ gy, + ky(Y = Y)gy — 1y [Ny(RP, + Apy) + Z N.RP, — aafl =0,

k=2
in which
~ In,
= 2ayr’ (A-6)
N=cov-1xB, (A-7)
where:
B = —yr[N:10101 4101141 + Y Ois1P0,i41) + 001410y, i419y + RPiss P21 -1

i yr ) wer) .

PDE (A-5) then is expressed into a system of linear-quadratic equations by assuming that
function g (Y, N;) has a quadratic form (8). Subsequently, equations (9), (10), and (11) follow from
equations (A-2), (A—6) and (A-7), respectively.

It follows from equation (11) that the optimal allocation to each liquid stock Nj can be
represented as a linear function of two state variables N; and Y:

Nie = Gyi + GsicNy + GarY, (A-8)

where coefficients Gy, G3i, G4 can be found from equation (11).

By replacing function g(Y, N;) with quadratic form (8), equation (A—5) becomes:
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1 1
—7|In(r) + Aoc + A1cN; + EAZCNlZ + (Boc + BicNyY + 2 COCYZ] —T+r

n n n
1 Iy 2 —~ ~
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N;(RP; + Apy) + 2 N RP,
k=2

+ ky(Y =Y)(Boc + BicNy + CocY) — 1y

1
— W(Am + AycNy + BicY)? =0,

Equation (A—9) implies the following set of six equations which are solved for the roots of

six unknown variables Ayc, Aic, Azc, Boc, Bic and Cyc in the function g(Y, N;):

n

n n
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Proof of Corollary 1.

. . - Arc+A BicY .
Following Isaenko (2020), since dNy; = uy dt and @, = — 22~ ;S:f £ one can write:
a t
Nlt = Nloe_bt - E (1 - e_bt) - CJ e_b(t_s)YSdS, (A_16)
0
where 22 = q, 22€ — p and 22£ = ¢
2ayr 2ayr 2ayr

By using Ito’s lemma, process Y becomes:
Ky ¥ t t
ebty, = Y, + T(ebt -D+®B- Ky)f ebsY.ds + O-yj ePsdWy,, (A—17)
0 0

Lisolate the term [* e?5Y,ds from this equation, and then arrive at equation (12) by using also:
0 N

t
Y, =Yoe vt + V(1 — e rt) + gy f e (=) qw, (A-18)
0

Proof of Proposition 2. If stock returns are correlated, the value function V(t, X,Y) of an investor

solves the following PDE:

n

n n
1 1
C,Nl,err,l_iﬁnERn > Z(Nkak)z + NiNjoroipy; + Y* + ZYZ Niowpor | Vxx + EO—}gVYY
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1
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1
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(COV)L] = O-io-jpi,j , l,] = 1, e,

_ YoypoVxx + oyoipy iVxy + RP;Vy .
B, =— , i=1,..,n
Vxx

I conjecture that V(t,X,Y) = ye‘ft yrX+9(Y)  Thus, the function g(¥) solves the

following PDE:

n

1
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in which
N=cov-'xB (A-23)
where
B, = —yrYoipo; + T/x;UiPY,igY + RPi‘ i=1..m

By replacing the function g(Y) with quadratic form (14), equation (A—22) becomes:

1 0% _
—r [1n(r) + (AO + B,Y + ECOY2>] —T+7r+ % [Co + (By + CoY)2] — )/rz N.RP,

+ = (yr) Z(Nkak) + z NyN;oyoipyj + Y* + zyz Ny Pok (A-24)
k,j=1k*]j
(BO + C()Y) + Ky(? - Y)(BO + COY) = 0,

—yroy [Ypey + z Ny.oypyi

k=1

In addition, equations (15) and (16) follow from equations (A—20) and (A-23), respectively.

It follows from equation (16) that each optimal allocation N, can be written as a linear

function of variable Y:
Nie = Gox + GyiY, (A-25)

where coefficients Gy, Gyj can be found from equation (16).
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PDE (A—24) can be reduced to the following system of three equations which are solved to

figure out the roots of three unknown variables A,, By and C; in the function g(Y):

n n
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n n n
r 1 2 2 [2 2 1 2 2
—3 Co + > (yr) Z oi G + (1) Z 0k 0jPkjG1kG1j + 5 (yr)<+ (yr) Z Ok Pok G1k
k=2 k,j=2k+j k=2
1 n
+ 501; C¢ — yoyrpoyCo — yoy1Cy Z OkPykGik — KyCo = 0, (A-27)
k=2
n n
1 2 2,2 2 1, 2
—7r[In(r) + Agl —t+7+ 5 (yr) Z oG + (yr) z 010 PijGorGoj + 50V (Co + Bp)
k=2 k,j=2,k%]
n n
—_ }/O'YT'BO Z UkakGOk + KyYBO - Ty RPkGOk = O (A—28)
k=2 k=2

Moreover, | am also interested in determining the conditional expectation value of liquidity
premium. Thus, I set the utility functions of an investor in the markets with and without transaction
costs to be equal, and then solve this equation to obtain the liquidity premium as a function of N;

and Y. In particular, by assuming the wealth is the same in both markets, I arrive at:
1 1
Unaxc = Unax & —]—/exp[—rt —yrX+g(Y,Np)] = —;exp[—rt —yrX + g(¥)],

= g(Y,N,) = g(),
Thus,

1 2 1 2
(Aoc — Ag) + A1y + EAZCNl + (Boc — Bo)Y + BycN.Y + > (Coc — €Y= =0, (A-29)
where the processes Ny and Y are given by equations (12) and (A—18), respectively.
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Appendix B

In this appendix, I solve the optimization problem of an investor trading one liquid bond and

three stocks. I first determine the optimal allocations to liquid stocks in the portfolio. In particular:

In the economy without transaction costs

The PDE (A—24) for the market with three liquid stocks becomes:

2

3
1 0

—r [ln(r) + (AO + B,Y + ECOYZ)] —T4+r+ 7Y [Co+ (By + CoY)?] — yrE N, RP,

k=1

3 3 3
1
+ E(VT)Z Z(Nkak)z + Z NiNjoojprj + Y2 + ZYZ Ny 0y pok (B-1)
k=1 kj=Thk#j k=1

- ]/TO'Y (BO + C()Y) + K:y(? - Y)(BO + C()Y) = 0,

3
Ypoy + z Ny oy pyk
k=1

It follows that each optimal allocation Nk (k =1,2,3) is given by:

N = I(P12 — P13P23)Poz + (P13 — P12P23)Pos — (1 — p33)pos
L=

01(1 + 2p12p13P23 — P12 — Pi3 — P33)
_ oy[(P12 — P13P23)Py2 + (P13 — P12P23)Pys — (1 — ,053),0}’1]
yroy(1 4 2p12p13P23 — Pip — Pis — P33)
_ I(P12 — P13P23)RP,0,03 + (p13 — p12P23)RP30,0, — (1 — P§3)RP10203l
yrofo,03(1 + 2p12p13P23 — Piz — Piz — P33)

Col Y (B-2)

_ oy [py2(p12 — P13P23) + Py3 (P13 — P12P23) — py1 (1 — P%s)] B
yroy (1 + 2p12p13P23 — Piy — P25 — P33) o

N = {P01(Plz — P13P23) + Po3 (P23 — P12P13) — Po2 (1 — Pf3)
2 02(1 + 2p12P13P23 — Pi2 — P13 — P33)

Oy [py1(p12 = p13P23) + Py3(P2s — P12P13) — pr2(1 — pi3)] Co} % (B-3)

yroy(1 + 2p12p13P23 — P12 — P13 — P53)
_ Booy[py1(p12 — p13P23) + Py3 (023 — P12p13) — Py2(1 — pi3)]
yroy(1+ 2p12p13P23 — P32 — Piz — P53)
[RP16,05(p12 — P13p23) + RP3010,(p23 — p12p13) — RPr0105(1 — pis)]
yro10503(1 + 2p12p13P23 — P12 — Piz — P33)

)
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N = {Po1(P13 — P12P23) + Po2(P23 — P12P13) — Po3(1 — P%z)
3 03(1 4 2p12p13P23 — P12 — Piz — P33)

_ oy [py1(p13 — P12P23) + Py2 (P23 — P12P13) — py3(1 — P%z)] c }Y
yro3(1 + 2p12p13P23 — sz - Pfs - P%s) °
_ Booylpy1(p13 — p12P23) + Py2 (P23 — P12P13) — pPy3(1 — sz)]
yros(1+ 2py2p13P23 — Piy — P33 — P33)
[RP10,03(p13 — P12P23) + RP,0103(p23 — p12p13) — RP30,0,(1 — sz)]
yro10,05 (1 + 2p12p13P23 — P32 — Pis — Pa3)

In the economy with transaction costs

The PDE (A-9) for the market with one illiquid stock and two liquid stocks becomes:

1 1
—r ]n(T‘) + AOC + AlCNl + EAZCle + (BOC + BlCNl)Y + ECOCYZ] —T+7r

3 3
1
+ > (yr)*|(Nyo)? + ) (Ngoy)? + 2N,04 Z Ny 0oy p1 + 2N;N30,030;53

k=2 k=2

3
1
+ Y22YN;0yp01 + ZYZ Ny oy por | + Eag[coc + (Boc + BicNy + CocY)?]

k=2

— Yroy (Boc + BicNy + CocY)

3
Ypoy + Nyoypy1 + z Nyoypyi
k=2

+ ky(Y = Y)(Byc + B1cNy + CocY) —ry |Ny(RP; + A) + ) NiRP;

3
=2

k

1
———(Ayc + AycN; + By cY)? =0,
4ayr

It follows that each optimal allocation Nj, (k = 2, 3) is given by:

N = Y’"U1(P1jpz3 - P1k) - UY(PYjP23 - PYk)B1c

N.
* yrop(1— p3s) '

Y

n Y’"(P()jpzs - POk) - UY(PYjP23 - ka)COC
yrog(1 = p33)
_ 0y0,03 (Pyjpzs - ka)BOC + (RPjUkP23 - RPkUj)
yrogo;(1—p3s)

k,j=23;j #k.
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Therefore, equations (17), (22), and (26) follow from equations (B-2), (B-3), and (B—4);
while equations (19), (24), and (28) come from equation (B-6).

Next, I will determine the unknown variables Ag¢, A1ic, A2c, Boc, Bic, Coc for the function
g(Y,N;) and Ay, By, C, for the function g(Y) in three cases shown in Section 4.1 as follows:
Case 1 — Independent Stocks. In this case, I assume that all correlation coefficients are

Z€10.

In the economy without transaction cost:

The system of three equations (A—26) to (A—28) becomes:

—(T + Ky)BO + O’%BOCO + KyYCO = O, (B—7)
0C¢ — (r + 2Ky)Co + (yr)?> =0, (B-8)
3 2
INORPNE 1, 1
—r[In(r) + Ayl —1+71— Ez (0—) + EO'YBO + kyYB, + S0V Co = 0. (B-9)
k
k=1

Solving these three equations, I arrive at the formulas for Ay, By and Cy:

3 _
T 1 RP,\* 1 1 kyYB,
Ay =1-1 ————Z(—) —o0ZBE + —diC \ B-10
0 n(r) " Zrk_l o t o0y Bo + o0yl + —— ( )
where
Ky Y (r + 2Ky) + ky Vo[ (r + 2Ky)2 — 40 (yT)?2
0= — B-11
021 F 04 (r + 2Ky)? — 40 (yr)? ( )
r+ 2ky) 1/ (r + 2Ky)? — 4(yroy)?
Co = ( v) \/( : v) (yroy) . (B-12)
20y
In the economy with transaction cost:
The system of six equations (A—10) to (A—15) becomes:
~1Ayc + 0¢BocBic + kyYBic — 1y (RPy + Ayy) — 2ayr AicAzc =0, (B-13)
5c
—1Ayc + (yroy)? + o¢B3. — Zayr - 0, (B-14)

43



_rB()C + O-YZBOCCOC + KYYCOC - KYBOC - Za‘yr - 0, (B—IS)
B%.
~1Coc + (¥7)? + 07 Cgc — 2Ky Coc — 2a1yr =0, (B-16)
AzcBic
—7By¢ + 0¢B1cCoc — KyBic — 2ayr = (B-17)

2

3
1o (RP\? 1 1 _ A2,
—rIn(r) —rdpc —T+71 — EkZ: ( ) + EG,ECOC + EaﬁBgc + kyYBoc — yy— 0. (B-18)

Solving these six equations, I find that B; = 0, and the formulas for Ay, A1¢, A2¢, Boc, Coc
are given by:

2 Y 2
Agc =1—1In(r) - ; - _Zk =2 (RPk) _UY 7 Coc + GIEB(%C + e (B-19)

T sayr?’

2ayr(RP; + A
Ay = — yr(RP, 1) (B20)
ar + \/ar(ar + 2ya?)

Ay = —ayr? + yr\/ar(ar + 2ya?), (B-21)

Ky Y[(r + 2Ky) £/ (r + 2Ky)2 — 4(yroy)?]

B.. = (B-22)
o o2[r F(r + 2Ky)2 — 4(yroy)?]
2 + 2Ky )2 — 4 2
= (r+2Ky) £/ (r + ZKY) (yroy) . (B-23)
20y
The conditional liquidity premium
With By = By¢, Cy = Cyc, and By = 0, equation (A—29) becomes:
1 2
AOC + AlCNl + _AZCNl = Ao, (B—24)

2
By replacing Ag¢, A1c, Azc, and Ay with the formulas (B-19), (B-20), (B-21) and (B-10),
respectively, in equation (B—24), I arrive at equation (20).
It follows that the conditional liquidity premium A;; is well-defined since «,y,r are all

positive constants, and therefore, the term under the radical is positive. Furthermore, for A;;> 0:
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+mﬂ(&)2 —2ayrN,

T g1

(ar+ ,ar(ar+2ycf%)>xU2ay2er ar+ |ar(ar+2yo?)

2ay

> RP,

2ayrRP;
ar+ ,ar(ar+2y01 ]xyr[ar— ,ar(ar+2y01 ]

\/ ar(ar + 2)/012)] < 0 should be satisfied for the last inequation to occur. To put it differently,

Thus, the two conditions of N; # — and )/r ar —

012 should hold. Because «, y, 1, and gy are all positive
1

the conditions of 2yara? > 0 and N, #
constants, only the latter condition is needed for A;;> 0.
Moreover, to figure out the conditions for a positive relation between A;; and Ny, I solve the

problem of finding the minimum value of A;; with respect to N;. I find that Au gets the minimum

value of 0 when N; = is finding indicates that if N; is larger than 2, then A;; increases

with N;.
The expected value of the liquidity premium can be estimated by replacing N; with the
process Ny, in equation (20). In particular, following equation (12), I find that N;, = N;oe2¢ +

2—1 e Pt — %. Substitute this formula into equation (20), one arrives at:
2 2
—4ayro} (ar +Jar(ar + 2)/012)) N,pe 2Pt + g \/—
(RP, + Ap) = (B-25)
dayol — 4a (ar +Jar(ar + 2)/012)) (e=2bt — 1)
where

¢ = 16(ayr)? (ar +Jar(ar + 2y012)) NZe= 2Pt + 16y (ayr)?of (ar +

2
Jbe 8aRP12<ar+ ,ar(ar+2ycrf)>
0€ +

Jar(ar + 2)/012)) N?

x[y—(ar+

2
rof

Jar(ar + 2)/012)) %}

Equation (21) follows the last result with N;5 = 0.

Case 2 — Correlated Stocks. This part presents the case when all correlations between Brownian
motions W; (i = 1, 2, 3) are the same while the correlations between other Brownian motions are

zero. Thus, p;, = p > 0 while py; = 0, pg; = 0 and pyy = 0.
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In the economy without transaction cost:

The system of three equations (A—26) to (A—28) becomes:
_(T + Ky)BO + U%Boco + KY)_/CO = 0,

02CE — (r + 2K,)Cy + (yr)? = 0,

=2r[In(r) + Ap] — 2T + 2r + 04 Cy + 0¢BZ + 2Ky Y B,

3RP”
o2(1+2p)

Solving these three equations, the formulas for Ay, By and C, are given by:

T 1 1 kyYB
Ay = 1—ln(r)—;+za§Bg+Za§Co+u—

kY (4 26y) + iy Y (r + 2Ky)% — 40 (yr)?
021 F 0Z (r + 2Ky)? — 40 (yr)? '

0

o= (r + 2Ky) £ /(T + 2Ky)2 — 4(yroy)?
0 — .

2
20y

In the economy with transaction cost:

The system of six equations (A—10) to (A—15) becomes:

_ A
—1A;c + 0ZBocBic + kyYBic — 1y (RP + Ap) —

2

(e

2ayr 1+p
AZ pZ
~rAyc + 2 + 0¢B}; — —— — 2(yro)? =0,
rlyc + (yro) Oybic 2ayr (yro) 1+p
= AicBic
—1Byc + 62By:Coc + Ky Y Cor — KyBoc — =0
TDoc T Oy bocloc T Ky Y Loc YDoc 2ayr
—1Cor + (y7)% + 02C2. — 2Ky Cop — Bic =
0cC )4 Y Loc vloc 2ayr
AzcBic
—1Bic + 02B1Cor — KyByc — =0
rDyic T Oy bicloc — KyDi1c 2ayr
A3, RP?

1 1 _
—-Tr ln(T‘) - TAOC —T+71r+ EO-%COC + EU%BSC + KYYBOC -

46

4ayr Co2(1+ p) -

A 2yrpRP
1czc+VP ~0

)

0.

(B-26)

(B-27)

(B-28)

(B-29)

(B-30)

(B-31)

(B-32)

(B-33)

(B-34)

(B-35)

(B-36)

(B-37)



Solving these six equations, I find that B;. = 0, and arrive at the formulas for other variables

as follows:
1 S kyYBoc A2, RP?

AOC — 1 - ln(T) - = + 2 O'y COC 2’)‘ O-YBOC + r - 4ayr2 - T'O'Z(l + p)p (B—38)

2ayrRP(p — 1) — 2ayrA;; (1 + p)
A = , (B-39)

1+ ar + ar2+2ar2[1—2 _p’
( p) \/( ) yro (1+p)
2 p?
A,r = — + 242 211-2 ,

2c = —ayr® +yr |(ar) ayro [ a- p)] (B—40)

kyY|(r + 2xy) £/ (r + 2Ky)? — 4(yroy)?
By = Y [( ! y) \/( y) (yroy) ] (B—41)

oZ[r F /(r + 2Ky)? — 4(yroy)?]
_ (T + 2Ky) + \/(T + 2Ky)2 - 4(]/1"0'1/)2 (B—42)
oc = 202 '
Y
The conditional liquidity premium
With By = By¢, Cy = Cyc, and By = 0, equation (A—29) becomes:

1 2

AOC + AlCNl + _AZCNI == Ao, (B—43)

2

By replacing Ay, A1c, Azc, and Ay with the formulas (B-38), (B-39), (B—40) and (B-29),
respectively, in the last equation, I arrive at equation (25).
It follows that A4 is well-defined because «, y, r, p are all positive constants and A, is also

positive, and thus, the term under the radical is positive. Furthermore, similar to Case 1, the

condition of N; > should hold for A;;> 0 and for A;; to increase with Nj.

RP
yro2(1+2p)
The expected value of the conditional liquidity premium can be estimated by replacing N;

with the process N;; in equation (25). Following equation (12), I find that if N;; = 0, then N;; =

RP(1-p)+A;,(1+p)
yra2(1+2p)(1-p)

(1 — e™P%). Substituting this process into equation (25), I obtain the conditional

liquidity premium as a function of the illiquidity coefficient a:
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X
2a)31r2 — XUV —yu-— Azcuv] BRAL!

A= 52 , (B—44)
2
2yv + Aycv Zayr?

where

Y= 2ayrRP(p-1) —2ayr(1+p) _ RP(1—e~PY)

(1+p) ar+J(ar)2+2ayraz[1 2(1+p)]] (1+p) ar+\/(ar)2+2ayr02[1—2(1'3_'0) ] yro?(1+2p)

Y B o 2
- yr02(1+2p)(1_p)' 1= 20(]/1‘2 Xv yu AZCuv T'Z xu +

1 RP?(1-p) x?
~A,cu? - )
2 2¢C t 2ro2(1+2p)(1+p)  4ayr?

Case 3 — Numerical Example. This example illustrate the findings using the following
parameters: r = 0.02, Y =1, RP, = RP, = RP; = 0.06, 0, = 0.4, 0, = 0, = 03 = 0.4, T =
0.05, ky =1, py1 = py2 = pys = —0.4, po1 = Po2 = po3 = —0.4, poy = 0.4, y =2, pyp =
p13 = P23 = 0.2

When the three stocks have the same characteristics (RP and o) and py; = py # 0, pg; =
po # 0, the six equations (A—10) to (A—15) for the economy with transaction costs and the three
equations (A—26) to (A—28) for the market without costs become:

For the economy with transaction costs

. Aichac v _ 20ypyRP] _ yrooypy(1-p) 2[4 _
rAic — ayr + Bi¢c [KYY o (1+7) 1tp Byc + oy [1 (1+p)] BocBic — (B—45)
2YrpRP
ry(RP + A;y) + ) o 0,
_ _ A 2[4 _ _20% 2yrooypy(1—p) 2[4 _ 202 _
rhoc = 225 + 0 1 (1+p)] Bl — HULIR,  + (yro) 1 (1+p)] =0, (B-46)
o _ 2yroypoPy i7 _ 20ypyRP 2 _
(= = yroveoy — sy + B Boc + [ = 22T Coc + 02 [1 (B47)
2p} _ AicBic | 2yTpoRP _ g
(1+p)] ~0C™0C 2ayr oc(1+p) '
_T_ _ 2yroypopy 1 201 _ 20% |2 _ Bic 2[4 _
[ S~ YTOyPoy — Ky + tp) ]Coc + 30y [1 rp) Coc — rayr + - (VT) [1 (B-43)
208 1 _
(a+p)l
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o _ 2yroypopy yrooypy(1-p) 2[4 _ 20% _
[ T —YTroypPoy — Ky + “aep) ]Blc —1ep Coc + oy [1 —(1+p)] B1icCoc (B—49)

AzcBic + (yr)2apo(1-p) -0,

2ayr 1+p
2 2 2p% 2 7 _ 20ypyRP
- oc v Loc vy |4~ oc yY — oc -
2rdoc + 02Coc + [1 (1+p)] B2, + 2 [K v - ]B o (B-50)
2RP?
2T+ 2r — i)
For the economy without transaction costs:
3yrpooyp 3oy pyRP
[—r — Yroypoy — Ky + —(1;’2;) Y] By + [KY 0(1;+1;p)] Co + 07 [1 (1+2p)] B,Co + (B-51)
3yrpoRP __
c(1+2p) '

[—r — 2yroypoy — 2Ky + w] Co + o [1 ] C¢ + (yr)? [1 — ﬂ] =0, (B-52)

(1+2p) (1+2p) (1+2p)
2 —_—
—2rAq + 02Cy + o [1 — (13:)2"[))] B +2 [KYY igi’;}:;] By — 2rIn(r) — 2T+ 2r — (B-53)
3RPZ
o2(1+2p) -

The last system of nine equations needs solving numerically with detailed results shown in

Subsection 4.1.3. Equation (32) can be achieved by using also equation (A—29).
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Appendix C

In this Appendix, I present the solutions of optimization problem when there are arbitrary
number of stocks available in the market. Unfortunately, a large number of stocks prevents me
from finding out a closed-form optimal allocation to each liquid stock Nj. Therefore, I first
simplify this problem by making an assumption that all stocks have the same positive correlation
coefficient (p). The allocations to liquid stocks in the economy with and without transaction costs

are then given by:

In the economy without transaction cost

N = {pXripoi — [1+ (n—Dplpor} _ CooylpXicipyi—[1+(n— 1)P]Pyk}l v
* 0, (1= p)[1+ (n — Dp] yro (1 —p)[1+ (n — 1)p]

_ [Boffy{P Yic1pvi — [1+ (n— Dplpyy} (C-1)
yrox(1—p)[1+ (n— 1)p]
N P XA (RP; X [Tsij=107) = [1 + (n = DpIRPe X [Ty jo1 Uj}l k=1 . n
yrog(l—p)[1 + (n—Dpl L, 0; T

In the economy with transaction cost

—~

Ny,
_yraip(p—1) — Bicaylp Xica pyi — [1 + (n = 2)plpyic}
yrop(1—p)[1+ (n—2)p]
+ yrip Xicz poi — [1+ (n — 2)plpor} — Cocovip Xizz pyi — [1 + (n — 2)plpyk} v (C-2)
yrop(1—p)[1+ (n—2)p]
_ [Bocovip Xizz pvi — [1 + (n — 2)plpyi}
yro(1—p)[1+ (n—2)p]
+ {P 2?,]:2(Rpi X H?:ti Uj) —[1+ (n—2)p]RP; X H?ik,j:Z Uj}
yro(1—p)[1+ (- 2)p] 1L, 0;

Ny

k=2..n

However, the task of finding the unknown variables for the function g(Y, N;) and for the
function g(Y) still needs solving numerically. Therefore, I only consider two cases which enable
me to arrive at closed-form solutions: one is when all stocks are independent and other correlation
coefficients are zero; the other is when all stocks have the same characteristics and same positive

correlation coefficients while assuming other correlation coefficients are zero. The results of the
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former case are similar to those in Example 1 — Appendix B. Thus, I do not show detailed results
of this case.

In the second case, I assume p;;, = p > 0 while py; = 0, pg; = 0 and pyy = 0. It follows
that equation (33) results from equation (C—1) and equation (35) is derived from equation (C-2).
The solutions for unknown variables Ay¢, Aic, A2z¢, Boc, Bic» Coc in the function g(Y, N;) and

Ay, By, Cy in the function g(Y) are presented as follows:

In the economy without transaction cost:

The system of three equations (A—26) to (A—28) becomes:

_T'BO + O-YZB()CO + Ky?CO - KyBO = 0,
—1Co + (y1)% + 0%CE — 2K, Cy = 0,

1, 1, nRP?
—r[In(r) + 4g] =t +7r+s0yCy + z0yBs + kyYB — = 0.

2 2 20%[1+ (n—1)p]

Solving the last three equations, I receive the formulas for A, B, and Cy:

kyYB, nRP?
r 2ra2[1+ (n—1Dp]

1,
—oy Cy +
- orbo

T 1
A0=1—ln(r)—;+—0§Bg+2

2r

kY (r + 26y) + iy Vo (r + 260)? — 40 (yr)?
021 F 02/ (r + 2Ky)? — 402 (y7)?

0

- (r + 2Ky) £ /(T + 2Ky)% — 4(yToy)?
0= :

2
20y

In the economy with transaction cost

The system of six equations (A—10) to (A—15) becomes:

yrpRP(n —1) % hchac

-1l + L+ (= 2Dp] + 0¢BocBic + kyYByc — yr(RPy + Apy) — 2ayr =0

r 1 (r)?e?p*(n—1) 1 Azc
— Ay + 2 ‘- + 507 Bic - -

5f2c T3 (yroy) 2[0l+(n—=2)p] 2 o e 4ayr

_ AicBic

—1Boc + 0Z2BocCoc + Ky Y Coc — KyBoc — =0

rboc + 0y bocloc T Ky ¥ Loc — KybBoc 2ayr
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(C-3)
(C4

(C-5)

(C-6)

(C-7)

(C-8)

(C-9)

(C-10)

(C-11)



rooo1, 1 BZ
_ECOC + > (yr)* + 507 Coc — kyCoc — dayr =0, (C-12)
AzcBic
—TBlC + O-YZB:lCCOC - KYBIC - Za‘y‘r = O; (C_13)
1 1 _ RP?’(n—1) A2,
—r[In(r) + Agc] —T+ 7+ EJ,ECOC + EG,EBSC + KyYBoc — 20 1T (= Dp]  dayr 0. (C-14)

Solving these six equations, I find that B, = 0, and the roots for Ay, A1¢, Azc, Boc, Coc are given

by:

T 1 1 kyYB A2 RP?’(n—1)
Aoc =1 —1In(r) ==+ —02Coc + —0fB2, + —25 - 1 _ : -1
¢ n(r) T + 27 Y boc + 2 Y Poc + r 4ayr?  2ro?[1+ (n—2)p] (C=15)
2ayr(p — 1)RP — 2ayr[1+ (n— 2)p]A
» P Pt : (C-16)
[1+n—2)p]|ar+ |(ar)?+ 2ayro? [1 _ prn—1)
[1+ (n—2)p]
(1-p)[1+(n—1)p]
A,e =yr| [(ar)? + 2ayro? —ar|, _
kY (r + 2ky) + 1y Vo (r + 266y)% — 40 (y7)? 18
o 021 F 02/ (r + 2Ky)? — 402 (yr)?
(r+ 2ky) £ \/(r + 2Kky)? — 4(yroy)?
oc = 3 : (C-19)
20y
The conditional liguidity premium
With By = By¢, Cy = Cyc, and By = 0, equation (A—29) becomes:
1 2
Agc + A1cNy + 5 A2cNT = Ao, (C-20)

2
By replacing Ay¢, Ai¢c, Azc, and Ay with the formulas (C-15), (C-16), (C—17) and (C-6),

respectively, into the last equation, I arrive at equation (36).
It follows that A;; is well-defined because «, y, 1, p are all positive constants; A, is also

positive, and thus the term under the radical is positive. Furthermore, similar to Case 1 and Case
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2 in Appendix B, the condition of N; > RP - should hold for A;;> 0 and for Ay to

yro2[1+(n-1p]
increase with Nj.

Following equation (12), I arrive at the process N;; shown in equation (37) when N;, = 0.
By substituting this formula for N; in equation (36), I obtain the conditional liquidity premium as

a function of the illiquidity coefficient a:

X
Za]alrz —XUV—yu-— Azcuv] — VP2
A= - , (C-21)
2 _
2yv + Aycv Zayr?
where
X = 2ayrRP(p—1) y = —2ayr[1+(n-2)p] U =
[1+(n—2)p] ar+J(ar)2+2ayr02[1—[1‘:_2(5?__21)1,]]] [1+(n-2)p] ar+J(ar)2+2ayr02[1—[1‘1_2(:1__21))[)]]]
RP(1—e~PY) _ [1+(n-2)p](1-e~b?)

@y = ( =Y xv— yu — Azcuv)z - (4yv +

yro2[1+(n-1pl’ =~ yre2(1-p)[1+(n-1)p]’ 2ayr?

2
24,c0% — =2

RP%(1-p) x? )
ayr? )

1 2 _
) (xu + 2A2Cu + 2ro?[1+(n—-1)pl[1+(n-2)p] 4ayr?
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