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Abstract

Security and Privacy Analysis of Parental Control Solutions

Quentin Duchaussoy

For parents of young children and adolescents, the digital age has introduced many new

challenges, including excessive screen time, inappropriate online content, cyber predators,

and cyberbullying. To address these challenges, many parents rely on numerous parental

control solutions on different platforms, including parental control network devices and

software applications on mobile devices and laptops. While these parental control solu-

tions may help digital parenting, they may also introduce serious security and privacy risks

to children and parents, due to their elevated privileges and having access to a significant

amount of privacy-sensitive data. In recent years, attacks and security flaws concerning

this type of applications have flourished, however no systematic study for the security and

privacy of these parental control solutions has been carried out to date. In this thesis, we

present an experimental framework for systematically evaluating security and privacy is-

sues in parental control software and hardware solutions. Using the developed framework,

we provide the first comprehensive study of parental control solutions on multiple plat-

forms including network devices, mobile apps, Windows applications and web extensions.

We analyze a representative dataset of each type of solution and build a security and privacy

state-of-the-art of each environment. Our analysis uncovers pervasive security and privacy

issues that can lead to leakage of private information, and/or allow an adversary to fully

control the parental control solution, and thereby may directly aid cyberbullying and cyber

predators.
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Chapter 1

Introduction

1.1 Motivation

Many of today’s children cannot imagine their daily lives without Internet. A recent sur-

vey [64] shows that 42% of US children (4–14 years) spend over 30 hours a week on

their phones; nearly 70% of parents think that such use has a positive impact on their chil-

dren’s development [64]. While the web could be an excellent environment for learning

and socializing, there is also a plethora of online contents that can be seriously damaging

to children. In addition, children are by nature vulnerable to online exploitation and other

risk effects of online social networking, including cyber-bullying and even cyber-crimes

(see e.g., [23, 2]); the current COVID-19 pandemic and its potential societal consequences

have only increased these risks (see e.g., [69]).

To provide a safe, controlled internet experience, many parents and school adminis-

trators rely on parental control solutions that are easily accessible either for free or for

a relatively cheap price. From recent surveys in the US, some forms of parental con-

trol apps/services are used by 26–39% of parents [19, 54], indicating a growing adoption

of these solutions. Such solutions are also recommended by government agencies, e.g.,

FTC [31] in US and the Council for Child Internet Safety (UKCCIS) [68] in UK, despite
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their limited effectiveness (cf. EU commissioned benchmark at sipbench.eu), and question-

able morality since they, arguably, can act as surveillance tools [78]. It should be noted that

this ethical and moral debate is outside the scope of this thesis.

On the other hand, over the past few years, many attacks targeted parental control solu-

tions, exposing monitored children’s data, sometimes at a large scale [44, 55]. Aside from

endangering children’s safety (online and in the real-world), such leaked children’s per-

sonal data may be sold by criminals (cf. [79]). Recent reports also revealed several security

and privacy issues in the analyzed parental control solutions [4, 75, 27]. However, such

analysis was limited to the privacy of Android apps, and only one network device, even

though popular parental control solutions are used across different platforms: mobile and

desktop OSes, web extensions, and network devices. Note that, unlike other vulnerable

products (e.g., buggy gaming apps [76]), or non-complaint products (e.g., Android apps

for children [62]), which can be removed when such concerns are known, parental control

solutions are deemed essential by many parents and schools, and thus are not expected to

be removed due to the lack of better alternatives.

1.2 Thesis Statement

Parental control solutions are products intended for underage users and process sensitive

private user information to perform their operations. They must, therefore, be subjected to

analysis to detect possible security and privacy problems. However, only a few academic

studies have been carried out on this subject and exclusively on Android. Through this

thesis, we aim to fill this gap and shed light on the security and privacy issues affecting

parental control solutions in a multi-platform approach. We also investigate, as a second

objective, how parental control solutions carry out monitoring operations and identify the

similarities and discrepancies across the different platforms, especially in terms of range

and capabilities.

2
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In this thesis, we undertake the first comprehensive study to analyze different types of

parental control hardware and software solutions. We design a set of security and privacy

tests, and systematically analyze popular representative parental control solutions available

in network devices, Windows and Android OSes, and Chrome extensions. While develop-

ing our comprehensive analysis framework for solutions in multiple platforms, we faced

several challenges. Most parental control solutions implement various techniques that hin-

der traffic analysis (e.g., custom protocols). The use of proprietary firmware and code

obfuscation techniques also poses challenges for static analysis. Furthermore, these solu-

tions are expected to be used continuously over prolonged periods. Automatic, episodic

and cursory security testings are likely to miss critical security flaws. Studying the long-

term behavior of this type of products by actively using them for days presents obvious

temporal constraints which hinders this type of analysis.

1.3 Contributions

Our contributions can be summarized as follows.

• We developed an experimental framework for systematically evaluating security and

privacy issues in parental control software and hardware solutions. We especially em-

phasized three elements: network traffic analysis, client product static analysis and

online user interface analysis. The study of network flows brought to light access

control issues, insecure transmissions of sensitive data as well as the communica-

tion of private data to third parties. The static analysis complemented the dynamic

analysis and highlighted flaws in the client software endangering the user. Finally,

the analysis of the client interface revealed weaknesses that could lead to the client’s

account being compromised.
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• We utilized this framework to conduct the first comprehensive study of parental con-

trol solutions on multiple platforms, including 8 network devices, 8 Windows appli-

cations, 10 Chrome extensions and 28 Android apps.1

• Our analysis identified 170 vulnerabilities among the solutions tested and revealed

that the majority of solutions broadly fail to adequately preserve the security and

privacy of their users, both children and parents.

Related Publication. The analysis discussed in this thesis has been peer-reviewed and

accepted in the Annual Computer Security Applications Conference (ACSAC 2020) as a

paper entitled:

Betrayed by the Guardian: Security and Privacy Risks of Parental Control Solutions.

Suzan Ali, Mounir Elgharabawy, Quentin Duchaussoy, Mohammad Mannan, and Amr

Youssef. 2020. In Annual Computer Security Applications Conference (ACSAC 2020),

December 7–11, 2020, Austin, USA.

1.4 Ethical Considerations

Our study revealed many security and privacy vulnerabilities in parental control solutions.

In the absence of defined guidelines for vulnerability analysis, we followed the best prac-

tices set in previous work [41, 3, 24]. To ensure the ethical aspect of our study, our analysis

was performed exclusively on our own testing devices and dedicated accounts. Throughout

this work, we never accessed other users’ information. In addition, our assessment of the

security of the backend and online interface was limited to ensure that the extra load did not

affect availability. Whenever possible, we prioritized side-channel measurements to assess

backend vulnerabilities.
1The Android analysis are separated into 2 sets. An initial analysis of 13 Android apps was performed by

a co-researcher. Thus, it will only be briefly mentioned in the following parts.
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As part of responsible disclosure, we contacted the developers of the solutions we an-

alyzed and shared our findings, including proof-of-concept scenarios and possible fixes.

Four months after disclosure, only ten companies responded (one Windows application,

two network devices and seven Android apps). We received seven custom and three au-

tomatic replies. Notable changes after the disclosure: one Android app deprecated their

custom browser; Another fixed the Firebase database security issue; and a third enabled

HSTS on their server.

1.5 Outline

This thesis is organized as follows: chapter 2 introduces the background information re-

quired to understand the technical context of the analysis, the decisions made, the chal-

lenges faced and the conception of the methodology. Subsequently, we describe and discuss

prominent related works relative to the analysis of parental control solutions, and security

and privacy studies conducted on the various platforms analyzed. Chapter 3 presents the

framework developed and used to analyze a dataset of parental control solutions cover-

ing Windows application, network device, Android apps and Browser extension. We also

describe the threat model observed and the security and privacy issues considered. Addi-

tionally, we provide insight on the selection of the solutions analyzed. Chapter 4 groups

the results obtained based on the aforementioned methodology. We divided this part by

platform and related threats as stated in Chapter 3. Chapter 5 offers a conclusion to the

thesis and proposes recommendations and future research perspectives on this topic.
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Chapter 2

Background and Related Work

In this chapter, we present the background associated with this thesis and the related work

literature. We define the terminologies used in this thesis and a type of attack performed

in the context of our analysis. We cover the different platforms studied and the monitor-

ing techniques featured by parental control solutions. We also discuss the related work

regarding security and privacy analysis previously conducted on each platform.

2.1 Background

2.1.1 Terminology

In what follows, we use the term parental control solutions to cover different types of

parental solutions: network devices, Chrome extensions, Windows applications and An-

droid apps.

Similarly, personally identifiable information (PII) refers to any information related to

the user as defined by the US FTC and Office of the Privacy Commissioner of Canada. It

may concern the user identity (name, email, address, unique identifiers) or behavior (web

activity: URL visited, computer usage).

6



We consider as third party any entity that is not directly related to a parental control

solution; this includes but is not limited to trackers and advertisers.

2.1.2 SSLStrip Attacks

SSLStrip attacks refer to the use of techniques to strip away the security provided by

HTTPS, exposing user private information in plaintext. We tested the analyzed parental

control solutions against this type of attack in our study. This type of attack was first

presented in 2009 by Moxie Marlinspike at the Black hat conference [45]. In essence, the

original attack consists in exploiting the transition from HTTP pages to HTTPS. The HTTP

content being unencrypted, an attacker can modify HTTPS hyperlinks present in the HTTP

page and trick the user in sending private information. This version of the attack was es-

pecially prevalent in the context where most of the website only provided HTTPS on their

login pages.

Figure 1: SSLStrip attack.

In consequence, the IETF developed in 2012 the HTTP Strict Transport Security (HSTS),

a security mechanism designed to circumvent the SSLStrip class of attacks. This mecha-

nism allows web servers to communicate to the web browser that any subsequent connec-

tion must be issued over HTTPS. The web server response header contains the Strict-

7



Transport-Security field which specifies the duration of the security constraint.

In 2014, Leonardo Nve Egea proposed an enhanced version of the attack at the Black

Hat conference. Named SSLStrip+ or SSLStrip2, this newer version was able to bypass the

HSTS security mechanism. In practice, the attacker exploits a flaw in the HSTS setting.

In the absence of the includeSubDomains flag, www.example.com is protected

by HSTS but wwww.example.com, which is not recognized, is not. In SSLStrip+, the

attacker bypass HSTS this way, when the client attempts to resolve wwww.example.c

om, the attacker uses a DNS resolved to mirror www.example.com.

Figure 2: SSLStrip+ attack.

As explained above, the includeSubDomains flag should effectively defend the

user against this enhanced version. However, our analysis showed that most parental con-

trol solutions do not include HSTS or it is not properly configured.

8
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2.1.3 Main Types of Parental Control Solutions

Parental control solutions across and within the different platforms can be categorized in

several ways. Nevertheless, we can distinguish two main families of such solutions: host-

based solutions and network-based solutions. The difference between these two categories

lies essentially in their capabilities. The host-based solutions are directly installed on the

monitored device, whereas the network-based solutions monitor the devices remotely. This

setup difference affects the data available and the range of operation the solution can per-

form.

Host-based parental control solution. This is the most common family of parental con-

trols. Intrinsically linked with the democratization of home computing, parent control solu-

tions began to appear in the early 1990s. Initially limited to personal computers, the market

has now opened up to mobile and tablet devices, as well as web browsers (via extensions).

In practice, host-based solutions have access to a wide variety of information and control

tools, depending on the restrictions of the platform and their permissions. In particular,

they can collect and use information about the usage of the host platform (e.g., programs

launched, resource utilization), user inputs (e.g., keystrokes, search engine queries) and

media access (e.g., enable webcam, record user’s screen activity). In addition to the data

collection capabilities, they may also enforce parenting through various operations (e.g.,

PC or device lock, data interception).

Network-based parental control solution. In contrast, network-based parental control so-

lutions have a much more limited access to user information. Their only available sources

of information is the network flows to and from the user device. Therefore, they are un-

able to control and monitor launched applications and requested local resources. We can

further differentiate the network-based solution in two types: network devices, operating

on the local network, and DNS-based solutions, which are remote DNS servers incorporat-

ing parental control features. Located on the path between the user device and the online

9



resources, the network-based solutions rely primarily on DNS (protocol used to convert

human-readable information - URL, in machine readable one - IP address) queries to iden-

tify the requested content and determine its suitability. In its most commonly used version

(DNS-Over-HTTPS and DNS-Over-TLS excluded), this protocol does not protect the con-

fidentiality of the requested resource, the information is sent unencrypted. Thus, parental

control solutions can read the packet, identify the requested resource and determine if the

content is suitable. Network-based solutions naturally feature a much restricted set of op-

erations, usually limited to the modification and drop of the out-going DNS requests, or the

in-going requested resources.

In this thesis, we conduct an analysis on four different platforms: Windows applica-

tions, Android apps, web extensions and network devices. Because of the inherent lim-

itations of our study in terms of scope of observation we are restricted in our operations

and observations to the client side of the solutions, we cannot directly analyze how private

data is handled once received by the server. Hence, we excluded DNS-based solutions,

which feature a fully remote parental control engine, from our analysis. We also decided

not to analyze OS-based parental control features (e.g., Windows 10 parental control), their

operation is too intrinsically tied to the functioning of the operating system itself, thereby

hindering both network flow analysis and reverse engineering.

In what follows, we briefly discuss some common techniques used by parental control

solutions to perform parental monitoring.

2.1.4 Monitoring Techniques

Parental control solutions generally allow the parent to remotely control the child device,

perform web filtering, and monitor online activities. However, the capabilities of these so-

lutions vary greatly from one platform to another and within the same platform. Thus, it

is important to get familiar with the different techniques used. First of all, not all parental

10



control software provides the same features. The monitoring means are highly related to the

usage of the supervised device. Likewise, the permissions granted and monitoring scope

differ from one platform to another. For instance, Android parental control apps almost all

support geolocation tracking, whereas this feature is not available for Windows applica-

tions or network devices. Similarly, parental control browser extensions focus exclusively

on monitoring online accessed resources, as they do not have the ability to monitor local

resources.

The following list of monitoring techniques is derived from the product documentations

and our observations from installation procedure and analysis of these solutions. As the

techniques vary significantly across platforms, we chose to regrouped here as such.

Network devices. The parental control network devices only have access to the local

network to enforce digital parenting. No one of the network devices analyzed in our study

required to install a certificate in the child device trusted root certificate store. They could

only monitor plaintext data and were unable to inspect the content of encrypted traffic.

The devices act as a man-in-the-middle between the client device and the internet router

by using one of two techniques: performing Address Resolution Protocol (ARP) spoofing,

or creating a separate access point.

• ARP spoofing, also known as ARP poisoning is a MITM technique that enables

the network device to impersonate the internet router on the local network. The

device achieves that by sending forged ARP packets that bind the router’s IP with

the network device’s MAC address. As a result, all the local network traffic is routed

through the device before going to the internet router.

In here, we explain an example of ARP poisoning. The parental control device sends

a specially crafted ARP packet to the child device. With the type “is-at”, the parental

control device informs the receiving device that it owned the “ip_source” of the gate-

way (binding the IP address and the Mac address). Following it, the child device will

11



Figure 3: ARP poisoning method used by network devices.

send messages means for the gateway to the parental control device.

• Alternatively, the network device may create an explicit access point exclusively for

children to enforce parental control filtering on all devices connected to it.

Android apps. Android apps rely on several Android-specific mechanisms. To provide

insights about the techniques used, we extracted the permissions used by the Android so-

lutions analyzed in our study and present some of them in Table 1.
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Figure 4: Access point method used by network devices.
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Activate device admin

View and control screen

View and perform actions

Apps usage statistics

Custom browser

Custom video player

Manage phone calls

SMS permission

Notification access

Access location

Facebook login

Instagram login

Screen capture

Access storage

Video/Audio recording

Display over other apps

Modify system setting

Change home launcher

Table 1: Techniques used by Android apps to monitor child activities.
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• Device administration provides several administrative features at the system level.

This permission allows the apps, among others, to lock the device, factory reset,

install certificates and manage the storage encryption. The main usage of this per-

mission by parental control apps is to prevent the child to uninstall the application.

• Android accessibility service allows apps to perform various operations. It includes

subsidiary permissions such as view and control screen and view and

perform actions. Enabling accessibility services gives the apps the possibility

to monitor user actions (via received notifications), user interactions with an app,

capturing and retrieving window content, logging keystrokes. It even allows the

monitoring app to control visited online resources by injecting JavaScript code into

the requested web pages. The range of operation available explains its prevalence

among the analyzed apps as it provided most of the data and control means necessary

for the apps to operate.

• Apps usage statistics permission gives access to the device usage and history. It

allows parental control apps to monitor the usage of the other apps used on the device.

• Custom browser and video player doesn’t require specific permission. They are used

to closely monitor the resources accessed by the child.

• Manage phone calls is a self-explanatory user permission. It allows an app to query

the current cellular information and status of on-going calls.

• SMS permission authorizes the granted app to read SMS sent and received.

• Notification access enables Android apps to read or dismiss all notifications dis-

played in the status bar; these notifications widely used by messaging apps, among

others, may include personal information such as contact names and communication

content.
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• Access location permission (access_fine_location) gives the app full control to get

the device location; It permits to use GPS and WiFi and mobile cell data to pre-

cisely locate the user. This permission is the most requested among our tested apps.

The large presence of geo-tracking apps among mobile parental control apps can be

explained by the need for parents to constantly being aware of the child’s location.

• Social media login is another technique used by parental control apps. Leveraging

on specifically developed social media API, the app gets access to the child’s social

activities.

• Screen capture permission (screen casting) allows apps to capture the user screen and

all the information displayed on, and send it elsewhere. This is a specific permission

which in Android 10 need to be grant every time it is being used.

• Access storage is a generic permission, it is necessary to access the phone gallery

and saved media (picture, video and music).

• Audio recording allows the app to get data from the embedded phone microphone.

This can be used to retrieve the ambient surrounding sound.

• Display over other apps is a permission used to enforce parenting by Android apps.

It permits to draw an overlay over any activity windows (regular screen, system win-

dows are still displayed in foreground) and thus to deny access to specific apps or

resources in complement with identifying permission.

We have also encountered one solution that requires to change the home launcher to

its own. The home launcher consists in screens, shortcuts and widgets. Effectively this

technique was used to trap the user within the parental control app which played the role

of a safe environment app.
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Windows applications. As opposed to Android parental control apps, Windows applica-

tions do not require specific permission and operate with more inherent privileges. From

our observation they use the following techniques:

• TLS-interception: a proxy is installed by inserting a self-signed certificate in the

trusted root certificate store. This allows the Windows applications to perform con-

tent analysis and alter content from HTTPS webpages.

• Application monitoring: user applications are monitored for their usage and duration.

• User activity monitoring: some Windows applications take screenshots, record

keystrokes, and access the webcam.

Chrome extensions. The web extensions operate within the boundaries allowed by the

browser. They are only able to monitor online resources displayed via the web browser.

Chrome web extension rights are regulated on a very similar fashion to Android. Exten-

sions require permissions granted by the user at installation or run-time to operate. We have

extracted from the analyzed parental control extensions the requested permissions and their

associated description and present the main ones in Table 2.
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Tabs

WebRequest

RequestBlocking

WebNavigation

Storage

ContextMenus

nativeMessaging

Cookies

Background

Management

http://*/*

https://*/*

<all_urls>

Table 2: Permissions requested by Chrome web extensions to monitor child online activi-

ties.

• Tabs is a powerful permission that gives read and write rights on the Tab object fields.

This object is used by the browser to describe a user tab. Among other elements, its

fields contain the Tab ID, the openerTabID (ID of the tab that opened it), the

URL (URL of the main frame), the pendingURL (URL requested before it has

committed) and the Tab Title (associated name of the main frame URL). This

information effectively provides the monitoring extensions way to detect unsuitable
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content and enforce parenting.

• WebRequest and RequestBlocking are required to use the chrome.webRequest API.

This API can be used to observe, analyze, intercept and modify request in-flight.

RequestBlocking must be granted to use the above mentioned API in a blocking

way.

• WebNavigation permission gives access to the chrome.webNavigation API used to

get further information about the status of web requests in-flight. On Chrome,

the navigation requests go through four successive steps: onBeforeNavigate,

onCommitted, onDOMContentLoaded and onCompleted. In combination

with the WebRequest permission, this permission can allow fine monitoring.

• Storage permission allows to use the chrome.storage API to write, read and track

modification in user data.

• ContextMenus gives rights to use the eponymous API to modify Chrome’s context

menu (e.g., frame, media, hyperlink and pages).

• With NativeMessaging, the extensions can communicate with native application reg-

istered as native messaging host.

• Cookies’s API authorize the extension to query and modify user cookies.

• Background is an interesting permission. It makes the Chrome run as soon as the

user logs to the computer and continue even after Chrome windows are closed. The

extension with the associate permissions are naturally running along with Chrome.

• Management gives permission to the extension to monitor the other installed exten-

sions.
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• Extension Scope: Chrome extensions consist of two different categories of scripts:

Background script, running in background and used to perform long term operations

and managing the extension general functioning, and Content script invoked on page

matching a certain pattern. The “match patterns” consist in an URL starting with a

specific scheme (HTTP(s), FTP, etc.) and possibly wildcard characters. http://*/*

and https://*/* are two matching patterns that determine the scope of the extension.

For instance, http://*/* only allows the extension to run content script on http pages.

<all_url> is a pattern that match any URL.

2.2 Related Work

Over the past years, several parental control solutions have made the news for security

and privacy breaches. For instance, the teen-monitoring app TeenSafe leaked thousands of

children’s Apple IDs, email addresses and passwords [44]. Family Orbit exposed nearly

281 GB of children data from an unsecured cloud server [55]. In 2019, a privacy flaw

in Kaspersky anti-virus and parental control application was found [25]. This application

included a script to perform content checking on each page intercepted by a TLS proxy.

However, some unique IDs were also included in the process, allowing the website to track

the user. In 2010, EchoMetrix settled US FTC charges for collecting and selling children’s

information to third parties through their parental control software [26].

Parental control analysis. From an academic point of view, studies on parental control

solutions have focused on the fast growing field of Android apps with very few work done

on other platforms.

Between 2015 and 2017, researchers from the Citizen Lab (citizenlab.ca), Cure53 (cure

53.de), and OpenNet Korea (opennetkorea.org) published a series of technical audits of

three popular Korean parenting apps mandated by the Korean government, Smart Sheriff [4,

5] , Cyber Security Zone [6] and Smart Dream [7]. The security audits found serious
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security and privacy issues in the three parental control Android apps. For example, Smart

Sheriff failed to adequately encrypt PII either on storage or in transit. Similarly, Smart

Dream allowed unauthorized access to children’s messages and search history.

Feal et al. [27] recently studied 46 parental control Android apps for data collection and

data sharing practices, and the completeness and correctness of their privacy policies. Their

approach focused more on personal information leakage and privacy policy analysis. They

relied on the Lumen Android app (see https://haystack.mobi/) for their analysis,

which is unable to analyze target apps with VPN or certificate pinning. Parent apps and

dashboards were also excluded from their analysis. In contrast, our analysis framework

doesn’t present such limitations and evenly focus on security and privacy related issues as

the former negatively affect the latter. Consequently, we are able to identify new critical

security issues (e.g., leakage of plaintext authentication information), even among the apps

analyzed by Feal et al.

Wisniewski et al. [78] conducted an analysis on 75 parental control apps to determine

the dominant feature and parenting strategies among them. They evaluated 42 features and

shown that most apps value control over self-regulation strategies. In addition, they found

that apps boast the use of privacy invasive techniques.

Marsh [46] carried out an examination of the perception of privacy online risk and

digital privacy. Through interviews with a panel of parents and children and using prepared

scenarios they attempted to measure the effectiveness and usability of parental control apps.

Additionally, they identified a list of seven parenting strategies mean to equally satisfy the

need for online safety and the right of digital privacy.

Reyes et al. [62] analyzed children Android apps for COPPA compliance. Out of 5855

apps, the majority of the analyzed apps were found to potentially violate COPPA, and 19%

were found to send PII in their network traces. Their large scale analysis built a ground truth

of the COPPA compliance of Android apps. Several apps analyzed are parental control
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apps.

Web extensions privacy and security analysis. Over the past decade, Chrome extensions

have made news for security and privacy issues [74, 33, 30]. The security analysis of web

extensions is an on-going topic and was the subject of several studies.

In 2017, Starov et al. [66] conducted a large scale study on privacy leakage caused web

extensions. They relied on simulated user interaction and keyword search and found that

several hundred extensions leaked private information. More interestingly, they found that

the majority of the extension leaked information “accidentally” via the Referer header by

injecting third-party content.

In 2017, Weissbacher et al. [73] designed an automated solution to identify privacy-

violating extension relying solely on the analysis of network flows. The underlying idea

is that if the user history increases the leaking extension data sharing will proportional

increase. Through their tool, they managed to identify a few rogue extensions, including

Web of Trust, which were immunized against formed detection techniques.

In 2018, Chen et al. [14] approached the problem of privacy leakage differently. They

performed an enhanced taint analysis by customizing the browser JavaScript engine to

identify leaking private information extensions. We used in our analysis the tool they made

available, Mystique (https://mystique.csc.ncsu.edu/), to compare and cross-

check our results.

In 2019, A. Beggs et al. [10] looked at wild extensions. These web extensions are not

referenced on the Chrome Web Store itself but downloadable from external sources. The

researchers demonstrated that these unregistered extensions posed serious security prob-

lems. They focus on the various methods used by these wild extensions to hide and trick

users into installation (e.g. social engineering). Subsequently, they relied on Mystique to

detect privacy issues.

Our analysis differs from the previous ones in that we have been interested in a very
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specific type of extension: parental control extension. We especially focus on the compre-

hensibility of the study. We relied on previous works to determine the elements likely to

lead to privacy leakage.

Windows applications privacy and security analysis. To our knowledge, Windows

parental control applications have been only studied with respect to the security of their

TLS proxies.

In 2016, De Carné de Carnavalet et al. [22] analyzed a dozen windows applications

(including a few parental control applications) performing some kind of TLS interceptions.

They discovered that many products put users at risk by degrading or ignoring certain

security tests that are essential to the TLS ecosystem. We drew inspiration from their

analysis to study our TLS proxy applications and we enhanced it by considering further

security and privacy vulnerabilities.

Network device privacy and security analysis. Similar to Windows applications, very

few studies have been carried out on parental control network devices and this field of

research remained mainly unexplored.

In 2017, Cisco Talos analyzed the Disney Circle parental control network device and

found 23 different security vulnerabilities [75]. We also analyzed Circle, among other

devices, but conducted our analysis on a newer version released in 2019. This version is

based on the insights from Cisco Talos’s analysis.

Interestingly, several studies have been conducted on smart toys. This type of IoT de-

vice, equipped with network capability, shares some commonalities with parental control

devices. In particular regarding the intended user and the legal constraints resulting from

it, as well as the types of data that may be leaked. In 2018, Shasha et al. [65] proposed

a taxonomy of the flaws specific to its type of devices and a methodology to detect and

analyze them. They showed that behind the harmless toy appearance, such devices pre-

sented critical security and privacy flaws, threatening the digital and physical security of
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their owner.

Conclusion. In contrast to previous work, we conduct a comprehensive, systematic study

of security and privacy threats in parental control solutions across multiple platforms: desk-

top (Windows), web browser (Chrome extensions), mobile (Android) and stand-alone net-

work devices, as popular solutions are available in all these platforms. Our analysis shed

light on a broader picture of security and privacy risks of parental control solutions. Com-

pared to existing Android app studies of parental control apps, our framework was also

more in-depth and inclusive.
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Chapter 3

Framework for Analyzing Security and

Privacy Issues in Parental Control

Solutions

In this chapter, we specify the security and privacy issues we focused our analysis on and

define the threat model considered in this thesis. Then, we present the criteria used to select

the solutions analyzed and describe the experimental framework developed to systemati-

cally evaluate parental control solutions.

3.1 Potential Security and Privacy Issues

We define the following list of potential security and privacy issues to evaluate parental

control solutions. All the tests were performed using only our own accounts when appli-

cable. This list is initially inspired by previous work [4, 60, 22, 65], and then iteratively

refined by us.
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1. Vulnerable client product: A parental control product and features (including its up-

date mechanism) being vulnerable. This flaw may allow sensitive information dis-

closure (e.g., via on-device side-channels), or even full product compromise (e.g.,

via arbitrary code execution).

2. Vulnerable backend: The use of remotely exploitable outdated server software, and

misconfigured or unauthenticated backend API endpoints. This vulnerability can

lead, among other issues, to sensitive information leakage and the bypass of secure

access control mechanisms.

3. Improper access control: Failure to properly check whether the requester owns the

account before accepting queries at the server-end. A textbook case of this type of

issue is the insecure direct object reference [52].

4. Insecure authentication secrets: Plaintext storage or transmission of authentication

secrets (e.g., passwords and session IDs).

5. SSLStrip attack: The parental control solution’s online management interface is vul-

nerable to SSLStrip attack, possibly due to lack of HSTS enforcement (cf. [43, 42]).

6. Weak password policy: Acceptance of very weak passwords (e.g., with 4 characters

or less).

7. Online password brute-force: No defense against unlimited login attempts on the

online parental login interface.

8. Uninformed suspicious activities: No notifications to parents about potentially dan-

gerous activities (e.g., the use of parental accounts on a new device, or password

changes).

9. Insecure PII transmission: PII from the client-end is sent without encryption, allow-

ing an adversary to eavesdrop for PII.
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10. Unjustified PII exposure : PII collection and sharing (from client devices) with third

parties or with the parental control solution when it appears to be unnecessary to

perform the monitoring operation.

3.2 Threat Model

We consider the following attacker types with varying capabilities.

• Local network attacker: an attacker with direct or remote access to the child device

local network. This attacker can eavesdrop communication and directly interact with

the child device. She can consist in a malicious (or compromised) application in-

stalled on the child device or a physical person connected to the child local network.

Figure 5: Local network attacker.

• On-path attacker: a man-in-the-middle attacker between the home network and ei-

ther the solution’s backend server. This attacker can eavesdrop, replay, modify, and

drop communication. She can consist in a compromised router or a malicious or

compromised ISP.
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Figure 6: On-path attacker.

• Remote attacker: any attacker who can connect to a solution’s backend server. This

attacker can interact with the solution backend via API calls and online user interface.

She doesn’t have the capability to directly collect user information but she can exploit

publicly available sources (e.g., marketing database). Additionally, she performs

realistic brute force attacks on weak passwords and enumerates short and guessable

solution ID.

Figure 7: Remote attacker.

We exclude from our threat model any attacks requiring physical access to either the

child/parent device. An attacker with physical access to the user devices has a variety
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of avenue to bypass security checks and it renders useless even the most advanced ones.

Consequently, we chose to not consider them.

3.3 Selection of the Solutions

We chose solutions used in the most popular computing platforms for mobile devices (An-

droid), personal computers (Windows), web browser (Chrome), and selected network prod-

ucts from popular online marketplaces (Amazon). As of October 2020, current market

shares according to one estimate (https://gs.statcounter.com) are Android

72.9%, Windows 76.3% and Chrome 63.8%.

3.3.1 Windows Applications

In the absence of a reliable method to measure popularity or obtain the number of down-

loads of a Windows application, we relied on rankings and reviews provided by specialized

media outlets (e.g., [13, 53, 37]). The Windows applications chosen are: Qustodio, Kasper-

sky, Dr. Web, Norton, Syprix, Kidswatch, KidLogger and Kurupira. Due to the initial in-

spiration of the project [22] and to the criticality it brings, we have prioritized the analysis

of software that operates a form of content checking via a TLS-interception proxy. In the

absence of a more accurate system to measure the popularity and in addition to the spec-

ified reviews, we used Alexa services to collect information on website usage associated

with the selected applications, see Table 3. However, this information should be treated

with caution as some sites are not solely dedicated to the parental control application and

some solutions have an online interface while others do not.
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Application # of visits/day Main countries World Alexa rank

Qustodio 27k US 85,673

Kaspersky 1.4M IN, US, RU 2,114

Dr. Web 84K US 40,515

Norton 6.4M US 431

Spyrix 21k UK 230,966

Kidswatch NA NA 2,175,932

KidLogger 4.2k PE 156,645

Kurupira 17k BR 84,918

Table 3: List of parental control Windows applications.

3.3.2 Network Devices

Concerning the network devices, we selected and bought eight devices from Amazon.

Amazon presents different categories of products (e.g., electronics, network router) and

each category has its own internal ranking. However, parental control is not a category and

we found parental control solutions across different categories which prevent us from using

it to select the most popular ones. Another possibility would have been to rely on customer

reviews and ratings, however, the shortcomings of this technique are very noticeable as

reviews are easily manipulable. In consequence, we opted to rely on the Amazon store

SEO. This decision is primarily motivated by a desire to mimic a normal user selection

of parental control products. We searched for “Parental Control" on the Canadian and US

Amazon store and selected relevant products among the top searches. Our criteria included

the presence of parental control as a primary feature and a reasonable price (<350 C$). We

analyzed eight network devices: Circle home plus, Blocksi, KoalaSafe, KidsWifi, Roqos

core, Bitdefender box , HomeHalo and Fingbox, see Table 4.
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Device Version
Circle Home Plus 3.10.0.2
KoalaSafe 1.26825
KidsWifi N/A
Blocksi N/A
Bitdefender 2.1.66.4
Roqos N/A
HomeHalo 1.0.0.8
Fingbox 0.5-2ubuntu4

Table 4: List of parental control devices and their firmware versions.

3.3.3 Browser Extensions

We decided to focus on Chrome web extensions. With 62.5% of the market share, Chrome

is currently the most representative web browser. We chose all the extensions in the Chrome

Web Store and ignored Wild extensions (extension downloaded from third parties). The

reasons behind this decision are that wild extension are not indexed and present higher

security risk compared to extensions approved by Chrome. Moreover, from a regular user

perspective, the selection of extension from the Chrome Web Store is more logical. We

faced similar issues described in Sec. 3.3.2 to select and measure the popularity of parental

control extension (e.g., lack of categories and unreliableness of user review and notation).

The Chrome Web Store displays the total number of downloads for each application in the

form of a threshold (e.g., +100 + 1000, +2000 downloads). A higher number is not a direct

evidence of a higher number of active users, but it still provides valuable insight on its

usage. We chose ten extensions among the most “popular" (more than 1000 downloads)

and relevant results sorted by the store’s search engine for the term “parental control". Most

of the names of the chosen extensions are some sort of combination of parental control,

adult and blocker. Therefore, in order to distinguish the extensions more easily, we have

associated a part of the extension name with the developer one. The extensions analyzed

are listed in Table 5.
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Extension Installs ID Version

Blocksi Web Filter 40K+ pgmjaihnmedpcdkjcgigocogcbffgkbn 1.0.144
Parental control 3K+ bdjgolepmhcchlgncgkmobepknekjbkd 1.0.22
TinyFilter 20K+ epniipcfpbjliciholgdeipceecgcfmj 2016.11.1.1
Porn Blocker 10K+ kmillccnmojidmkhhjngjlalnbhpobcl 1.5. 2
Adult Blocker 80K+ onjjgbgnpbedmhbdoikhknhflbfkecjm 6.2.8
Anti-porn addon 20K+ peocghcbolghcodidjgkndgahnlaecfl 2.20.0
MateCode Blocker 80K+ gppopmmjibhcboobpmfombbkoehgicoh 1.0.5
MetaCert 20K+ dpfbddcgbimoafpgmbbjiliegkfcjkmn 0. 10.18
FamilyFriendly 7K+ epdelmeadnnoadlcalkmacoopocdafnp 0.9.0
Kids Safe Web 3K+ lakceedfffnfheaipjadbcndkldlplnd 1.0.7

Table 5: List of parental control Chrome extensions.

3.3.4 Android Apps

On the mobile apps side, we focused on Android, the most popular operating system with

72.6% market share. We obtained a total of 462 applications using the following search

terms: "parental control", "family tracker". From this initial dataset, we selected 158 appli-

cations with 10k downloads or more. These applications were then automatically analyzed.

Excluding the unresponsive and irrelevant ones, we came up with a total of 153 applications

analyzed; 33% of applications intended for children (child apps), 15% to parents (parent

apps), 52% of applications that needed to be installed on both the child’s and the parent’s

device (shared apps). Subsequently, we performed an in-depth analysis on two sets of a

dozen solutions. The first series carried out by a student of the laboratory included 13 solu-

tions, the second series that I analyzed included 15 solutions. Each solution could include

a child, parent application and an online user interface. The analyzed solutions are listed in

Table 6.
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Solution Installs App package name Version

Becloser 10M+ com.becloser 3.0.19
Geozilla 5M+ com.geozilla.family 6.10.8
Iwawa 1M+ com.sencatech.iwawa.iwawahome 5.5.6
Kids home 50K+ com.arolle.kidshome 3.0
My kids Safety 10K+ com.family.tracker.kids.gps.locator.phone.free 1.5.0
Tittle parental control 10K+ com.bluecube.parentalkit 4.9.7
Fun control 10K+ me.funcontrol.app 1.0.191003
Sentry 100K+ com.sentry kid / parental 2.6.4
Safe Lagoon 100K+ com.safelagoon.parenting 4.2.151-b
Locategy 100K+ com.locategy.family 1.97.5
Easy parental control 10K+ com.landak.gimbotparentalcontrol 1.2.4
Keepers Child Safety 50K+ com.keepers 1.1.60
Safezone 500K+ com.omrup.cell.tracker 1.63
Bosco 100K+ com.bosco.boscoApp 75.40
Saferkid 50K+ com.saferkid.monitor 1.0.41

Table 6: List of parental control Android app (Set 2).

3.4 Methodology

We combined dynamic (primarily traffic and usage) and static (primarily code review/reverse-

engineering) analysis to identify security and privacy flaws in parental control solutions; for

an overview, see Fig. 8.

For each product, we first conducted a dynamic analysis and captured the parental con-

trol solution traffic during its usage (as parents/children); if the traffic was in plaintext or

decryptable (e.g., via TLS MITM), we also analyze the information sent.

Second, we statically analyzed their binaries (via reverse engineering) and scripts (if

available). We paid specific attention to the API requests and URLs present in the code to

complement the dynamic analysis. After merging the findings, we looked into the domains

contacted and checked the traffic for security flaws (e.g., TLS weaknesses). Third, we

tested the security and privacy issues described in Sec. 3.1 against the collected API URLs

and requests.
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Lastly, in case the parental control solution presented an online interface, we assessed

the password-related issues and tested the SSLStrip attack against the login page.

Figure 8: Overview of our evaluation framework.

3.4.1 Dynamic Analysis

We set up test environments for each solution, emulated user actions for hours to days, col-

lected the traffic from the child, parent, and network devices, and then performed relevant

analysis (see Sec. 3.1).

Usage Emulation and Experimental Setup. We analyzed each solution by manually

mimicking regular users’ operations with the goal of triggering parental control mecha-

nisms. We tested for potential vulnerabilities in these mechanisms (see Sec. 3.4.1). For

all solutions, we evaluated the web filtering mechanism by visiting a blocked website
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(gambling/adult) and a university website. We also perform user activities monitored by

platform-specific parental control features (see Sec. 2.1.4, and evaluated the solution’s op-

erations. For example, on Android, we performed basic phone activities (SMS, phone call)

and internet activities (Instant messaging, social media, browsing, and accessing blocked

content).

The network devices were evaluated in a lab environment by connecting them to an

internet-enabled router like in a domestic network setup. We used a router with the Open-

Wrt firmware [51], an embedded OS based on Linux, primarily used on network routers.

We used test devices with web browsing to emulate a child’s device. In case the parental

control device used ARP spoofing, the test device was connected directly to the router’s

wireless access point (AP); see Fig. 9 (a). Otherwise, the test device were connected to the

parental control device’s wireless AP instead; see Fig. 9 (b). We captured network traffic

on both the test device and the router using Wireshark and tcpdump, respectively.

We tested each Windows application and Chrome extension on a fresh Windows 10

virtual machine with Chrome, tcpdump and mitmproxy installed. We intercepted inbound

and outbound traffic using mitmproxy on the host, and recorded packets using tcpdump.

For Android apps, we maintained two experimental environments to concurrently record

and inspect network traffic originating from the child and parent apps. We examined the

child apps using a One Plus 7 phone running Android 10.0; for the parent apps, we use a

Nexus 4 with Android 7. We ran a full Linux distribution with mitmproxy and tcpdump on

each experimental environment by installing Linux Deploy [8], and configured Android’s

network settings to proxy all traffic going through the WiFi adapter to the mitmproxy server.

This enables us to capture the network traffic directly within mobile devices.

After intercepting traffic, we parsed and committed the collected tcpdump traffic to an

SQLite database and checked for the following security and privacy related issues.

PII and authentication secrets leakage. We examined the collected traffic to check for PII
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(a) ARP poisoning case.

(b) Dedicated Access Point case.

Figure 9: Network devices test environment.

and authentication secrets transmitted in plaintext or leakage of PII to third-party domains.

We created a list of possible PII that can be leaked via the Request URL, Referer, HTTP

Cookie, and LocalStorage. We automatically search for PII items (i.e., case insensitive

partial string match) in the collected traffic, and record the leaked information, including

the HTTP request URL. We decoded the collected network traffic (including URL, HTTP

cookies, requests’ payload) using common encodings (base64 and URL encoding) and

hashing algorithms (MD5, SHA1, SHA256, and SHA512) to find out obfuscated leaks.

Improper access control. We parsed the traffic to find API endpoints with improper access

control. First, we tried to identify all the APIs that can be potentially exploited (without

strong authentication), using Postman (postman.com) to replay the recorded HTTP

request stripped of authentication headers (e.g., cookies and authorization header). Any

request successfully replayed were labeled as potentially vulnerable. Afterward, we re-

trieved the parameters used by these APIs (e.g., keys, tokens, or unique IDs), and assessed

the parameters in terms of their predictability and confidentiality. For instance, we deemed
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a device’s access control insecure if its own MAC address was used for API endpoints au-

thentication, as the MAC address can easily be found by an attacker on the local network.

Identifying third-parties trackers. To identify third-party domains in the parental control

solutions traffic, we used the WHOIS [58] registration record to compare the domain owner

name to the parental control website owner. In cases where the domain information is pro-

tected by the WHOIS privacy policy, we visited the domain’s domain to detect any redirect

to a parent site; we then lookup the parent site’s registration information. If this failed, we

manually reviewed the domain’s “Organization” in its TLS certificate, if available. Other-

wise, we tried to identify the domain owner by searching in crunchbase.com.

Backend Assessment. Due to ethical/legal concerns, we refrained from using any inva-

sive vulnerability scanning tools to assess backend servers. Instead, we looked into the

backends’ software components as disclosed by web servers or frameworks in their HTTP

response headers, such as “Server" and “X-Powered-By." We then matched these com-

ponents against the CVE database to detect known vulnerabilities associated with these

versions. Additionally, we used the Qualys SSL Test (Qualys 2020: ssllabs.com) to

evaluate the security of the SSL configuration of the parental control solutions’ backends.

Challenges. During the interception and traffic analysis phase, we encountered several

challenges. Those challenges are not unique to our analysis, but they have not been ex-

plored for parental control solutions. We summarize them here, including the tools and

techniques we use to address them.

Traffic interception. Most network devices used TLS for communicating with their

backends and security mechanism prevented us from inserting a root certificate on these

devices, so some of the network traffic generated by them is completely opaque to us. In

these cases, we rely on static analysis of the device’s firmware and differential dynamic

analysis to infer behavior. A few studies have been conducted on the topic of monitoring

IoT devices from encrypted traffic [15, 80]. However, it remains an open research question.
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One Windows application, Qustodio used its own encrypted certificate authorities store to

check, accept or reject certificates. Thus we could not regularly intercept the traffic with

mitmproxy as it required to install its associated certificate. We extracted the Qustodio TLS

proxy private key by dumping its process memory and used its own certificate to replace

the mitmproxy one.

Traffic identification. On Android, a key issue is to properly identify the process that

generated the traffic in the absence of the packets’ referral metadata. We tested how the app

behaves when the child uses her device normally (e.g., phone calls, messaging, browsing).

These activities produce a large amount of traffic that we need to match to the correspond-

ing processes. We used the mitmproxy addon to call netstat to detect the process name

for every packet. While we may fail to detect short-lived connections due to the delay of the

near real-time netstat. The majority of the connections analyzed consisted of long-lasting

connections where netstat allows us to bind connections with PID. We directly used netstat

from the underlying Linux kernel (in our Linux Deploy setup) to capture the process ID

and process name as soon as a connection is created, while previous work [39, 59] read and

parse the system proc directory from the Android Linux kernel by checking the directory

periodically. This past approach misses connections that are opened and closed before the

next time they check the proc directory, while our approach looks into the live connection

as soon as a connection is created. We may only miss very short-lived connections that

are not detected by netstat. To the best of our knowledge, we achieve more reliable traffic-

process attribution compared to past work. We leave a full evaluation of the effectiveness

of the technique for future work.

3.4.2 Static Analysis

Our static analysis aimed to complement the dynamic analysis whenever we could not

decrypt the network traffic (e.g., in cases of network devices using TLS). We used static
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analysis to identify PII leakage, contacted domains, weak security measures (e.g., bad input

sanitization), or potential flaws in implemented mechanisms.

Network devices. We analyzed the network device firmware whenever possible. We tried

three approaches to access the devices’ firmware:

• First, we attempted to extract the firmware directly from the device via JTAG, UART,

or ICSP interfaces. Sometimes companies remove such debugging and communica-

tion interfaces prior to sales to decrease risks of industrial espionage. When in-

terfaces were available, we tried to bypass or brute force the authentication. This

method proved to be effective in models running on OpenWrt. We were able to

trigger the failsafe mode, change the password before rebooting in normal mode,

effectively bypassing the authentication.

• When physical interfaces were removed, we scanned for the presence of open remote

admin services (e.g., SSH). However, the devices we scanned had either the port

closed or key-protected (while it hindered our analysis, we were glad to see this type

of service protected).

• Among the remaining devices without access to their firmware, we tried to download

the device firmware from the vendor’s website.

We found 3/8 network devices with an accessible serial UART port (KoalaSafe, Blocksi,

and Fingbox) that we used to extract the firmware from the devices. Another device, Circle,

made its firmware available online.

To identify vulnerable services, we scan the network devices with several tools (Open-

Vas [50], Nmap [49], Nikto [18] and Routersploit [61]), and match the identified software

versions against public vulnerability databases.

Chrome extensions. We manually analyzed the source code of the Chrome extensions.

The source code of a Chrome extension mainly consists of scripts, separated into content
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scripts and background scripts. Listed in the manifest, the content scripts are injected and

ran on pages matching defined patterns or all the pages. Using the Chrome API, the scripts

can interact with the page, and query and modify content. On the other hand, background

scripts are loaded in the browser’s background and are invisible to the user. They aim to

sustain the operation of the extension during all the user session activity. As most Chrome

extensions’ codebase was relatively small and did not involve serious obfuscation, we were

able to investigate their operations and detect security and privacy issues (e.g., PII leakage,

common JavaScript vulnerabilities).

Android apps. We performed an automated analysis on all 153 Android apps using Fire-

base Scanner [63] to detect security misconfigurations in Firebase.1

We also used LibScout [9] to identify third-party libraries embedded in these apps.

Since LibScout does not distinguish which libraries are used for tracking purposes, we use

Exodus-Privacy [57] to classify tracking SDKs. We use MOBSF [47] to extract the list of

third-party tracking SDKs from all 153 apps based on Exodus-Privacy’s tracker list.

3.4.3 Online Interface Analysis

The online user interface is the primary communication channel between parents and parental

control solutions. It displays most of the data collected by the solutions, and may remotely

enable more intrusive features. Compromising the parent account can be very damaging,

and thus we evaluate the security of this interface.

SSLStrip attack. To check for SSLStrip attacks, we first set up a WiFi AP with mitm-

proxy [21], SSLStrip2 [38] and Wireshark [77] installed. Then, we connect the parental

control solution to our WiFi access point. Wireshark is utilized to record network traffic

while mimicking common use case scenarios with the goal of triggering all parental control

1Google Firebase (https://firebase.google.com/) provides support for backend infrastructure
management for Android apps.
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monitoring and control UI and API requests looking for signs of successfully SSL Strip-

ping attack on the traffic. We confirm the effectiveness of the attack by comparing the result

to the corresponding traffic in a regular testing environment (i.e., without SSLStrip).

Weak password policy. During the parental control solution’s account creation, we eval-

uate its password policy. We adopt a fairly conservative stance and only labeled as weak

the password policy accepting password with 4 characters or less. We also evaluated the

presence of most advanced requirements: usage of number, special char, lower and upper

case char. Finally, we tried to use password from the top 10 passwords used (and highly

insecure).

Online password brute-force. We use Burp Suite [56] to perform password brute-force

attacks on our own online accounts. To keep the load on the server minimal, we test for the

presence of defensive mechanisms by 50 attempts on our account from a single computer.

Uninformed suspicious activities. To determine whether the solution presents measures

to report suspicious activities, we test two scenarios in which the user should be notified:

modification of the user’s password, and connection to the account from a new/unknown

device. We deem a parental control solution that does not alert (e.g., via email) in either

case to be vulnerable.
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Chapter 4

Results

In this chapter, we present the results of the analysis of 41 parental control solutions across

four different platforms. We identify 92 vulnerabilities and reveal that the majority of the

analyzed parental control solutions threaten the child privacy and security. As each plat-

form has its own unique characteristics, monitoring capabilities and restrictions, we group

the results by platforms and vulnerability types. An overview of the results is provided in

Table 7.
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Vulnerable client product
Vulnerable backend
Improper access control - - - - - - - - - - - -

Insecure authentication secret - - - - - - - - - - - -

SSLStrip attack - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Online password bruteforce - - - - - - - - - - - - - - - - - - - -

Weak password policy - - - - - - - - - - - - - - - - - - - -

Uninformed suspicious activities - - - - - - - - - - - - - - - - - - - -

Insecure PII transmission
Unjustified PII exposure

Table 7: Overall results for security and privacy flaws in parental control solutions labeled
following the threat model in Sec. 3.2. : Local network attacker; : On-path attacker;

: Remote attacker; -: not applicable; blank: no flaw found. In case the vulnerability
can be exploited by two types of attacker, we display the fullest circle applicable.
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4.1 Windows Applications

The Windows application analysis preceded the formal implementation of the methodology

described in Sec. 3.4. It integrated tests related to the specificity of the monitoring features

on Windows (mainly TLS proxy). Some of the tests carried out were deemed as successful,

and served as a basis for the methodology subsequently developed, while others proved to

be less relevance and were not included.

4.1.1 Analysis of the TLS-proxy

One of those Windows-specific tests concerns the TLS-interception feature used by parental

control Windows applications. Our initial security analysis drew inspiration from the re-

search conducted by X. de Carné de Carnavalet and M. Mannan [22] on TLS-interception

proxy. First, we wanted to assess the current state of the implementation of the proxies in

parental control applications with regards to the previous observations. TLS interception

involves the delegation of security checks from the browser to the proxy and thus carries

an important security implication. We performed four types of security checks:

• Certificate generation: Modern web connections rely on TLS to guarantee basic

web security. Certificates are mainly used to guarantee the identities and prevent

malicious actors to impersonate known domains. In the context of a TLS-proxy,

the content received by the web browser is first certified by the proxy certificate.

This proxy certificate is beforehand trusted by either the web browser or by the OS

(included in the Trusted Root Certification Authorities Certificate Store). Therefore,

the generation of the proxy certificate and the confidentiality of its private part are

critical. If the secret key is leaked or shared across devices (e.g., statically generated

or guessable) it is possible for an attacker to make the web browser trust malicious

content. To determine whether a proxy certificate was dynamically generated we
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compare the private key of multiple generated root certificates of the same parental

control solution. Those certificates are generated by going through the complete

installation procedure on different clean instances of the same virtual environment

multiple times.

• Certificate validation: In a TLS-interception situation, the proxy also replaces the

web browser in its role of communication with the servers. Therefore, a correct vali-

dation procedure of the received certificates by the proxy is a crucial step, especially

to detect faulty or forged certificates. Previous studies[22] showed that this validation

was poorly operated by some applications and consequently accepting faulty certifi-

cates and putting the users at risk. We assess certificate validation using online tools,

badssl.com and ssllab.com and completed those tests by crafting special

faulty certificates and connecting the machine with the proxy to a local domain using

those certificates.

• TLS parameters: In addition to the security checks involving certificates, it is impor-

tant to ensure that the secure connection parameters are neither outdated nor vulner-

able. The security provided by the proxy should not be any lower than the security

of an updated web browser. Otherwise, it would create an illusive sense of security

for the user. For this purpose, we established connections between the proxy and a

server using different protocols, unsecured (e.g., SSL3, TLS 1.0) and secure (e.g.,

TLS 1.2, TLS 1.3). We also assessed the cipher suites supported and accepted by the

proxy.

• Know practical attacks: We also tested these proxies against prominent TLS-based

attacks. We tested FREAK, Logjam and CRIME.
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4.1.2 Initial Dynamic Analysis

The second analysis performed on Windows applications concerns the study of data sharing

mechanisms. Through previous work and our preliminary study we distinguished two data

sharing behavior: (1) triggered and (2) periodic communications. Triggered communica-

tion refers to any data sharing triggered by a user action (e.g., software use, search engine

query or website connection). On the other hand, periodic communication involves data

sharing at a given frequency and independent of the user action.

To identify data shared through periodic connection, we opted to record network con-

nections over an extended period. The objective was to retrieve information about the

connections issued by the software (e.g., domains contacted, frequency, and content). We

implemented two types of monitoring, passive with Wireshark and Sysmon, and active with

mitmproxy. The passive monitoring allowed us to identify the connections issue by soft-

ware, their frequencies, the quantity of data shared and the domains contacted. The active

monitoring relied on MITM proxy to intercept secure connections to extract the content of

the communication. The recording time for the passive monitoring was of 3-5 days (de-

pending on the application) while the active method spanned for 24 hours, see Table 8 .

We used Selenium paired with the Windows task manager to automate action on the

Chrome web browser at regular intervals. The web crawler visited the top 5 google results

for each search by repeating the procedure every 5 minutes for a day. The purpose of

this test was to detect an action pattern in the proxy suggesting an irregular data sharing

coinciding with the search done. An iteration of the test was also conducted using a mixed

URL list composed of legitimate domains from Alexa top 50 for USA (filtering adults

website) and unsuitable domains from a blacklist maintained by the University of Toulouse,

France [70].

One of the objectives of those tests was to detect odd pattern (e.g., data sharing with
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Frequency of
communication

Type
of
com-
muni-
cation

Encrypted
chan-
nels

Qustodio 5mins API 3

Kaspersky 20mins API 3

Dr. Web 5mins API 3

Norton 10mins API 3

Spyrix 1.5min API 3

Kidswatch 1 day API
KidLogger 2.5mins API 3

Kurupira no default value email 3

Table 8: Windows parental control application-server communications.

a third party) when connecting to websites of different types. Connections made by the

solution to domains unrelated to its backend would be an evidence of advertising, tracking

or other undesirable activities performed by the parental control solution. To narrow the

scope of the analysis and identify these connections to third-party domains with a better

precision, we set up another experiment. For each Windows parental control solution, we

visited multiple times a list of several websites: social media, academic domain, govern-

mental domain, and media. We automatically parsed and compared the network records

with a control recorded in similar conditions (but without a parental control solution in-

stalled). To avoid false positives, we considered a connection to a domain as issued by the

solution when we found occurrences of it in two-third of the visits for a given URL.

We did not generalize the aforementioned tests to the other type of parental control

solutions. From a result-oriented perspective, these experiments did not reveal the presence

of any third-party trackers. Second, our understanding of the parental control solution

evolved during the analysis. We changed our assumption of parental control solutions from

potential rogue malware to probable flawed applications. Hence, we accordingly modified

our analysis to the current form described in Sec. 3.4.
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4.1.3 Security

Vulnerable client product. On the bright side, critical vulnerabilities pointed out by pre-

vious work on parental control solution’s TLS proxy have been corrected, especially re-

garding the generation of the certification. However, we still found some weaknesses, in

particular in the certificate validation. Other than Kidswatch, all tested Windows applica-

tions relied on TLS-interception proxies to operate. We found that some of these proxies

do not properly perform the certificate validation step. Qustodio and Dr. Web accepted

intermediate certificates signed with SHA1, despite recent research enhanced collision at-

tack on SHA1 [40]. Dr. Web also accepted Diffie-Hellman 1024 considered weak [1], and

deprecated in Safari and Chrome since 2016 [16]. In addition, none of the proxies analyzed

rejected revoked certificates. We also found that upon uninstallation of the applications, the

root certificate associated with the proxy remained in the Windows trusted root certificate

store, with four of them having a validity duration over one year.

Vulnerable backend. We found that some Windows applications’ servers do not always

use ideal TLS configurations. For instance, Qustodio server’s certificate chain of trust con-

tains an intermediate certificate signed with SHA1. Furthermore, Qustodio and KidLogger

servers support and issue communications using the RSA key exchange protocol, which

lacks forward secrecy.

SSLStrip attack. We found all the Windows applications with an online interface ex-

cept Norton are vulnerable to SSLStrip attack (Qustodio, Spyrix and KidLogger). They

transmitted credentials in plaintext under an SSLStrip attack. This allows an adversary to

compromise the parent account for a long time, particularly if the app does not send any

notification to the parent when the account is accessed from a new device (see uninformed

suspicious activities).

Password policy. Spyrix and KidLogger enforced a weak password policy (password

shorter than four character).
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Online password brute-force. All the Windows applications with an online interface

except Norton fails to protect their login interface against online password brute-force.

We were able to continuously attempt to login (>50 tries) to the same account without

triggering any defense mechanism (e.g., timeout, captcha or IP ban).

Uninformed suspicious activities. All three applications did not report suspicious ac-

tivities performed on the parent’s account (password changes, access from unrecognized

devices). These activities are possible indicators of account compromise and should be

reported to the user.

4.1.4 Privacy

Insecure PII transmission. Kidswatch is probably the most problematic Windows parental

control application among the ones we analyzed. This application is no longer advertised

in the top ranking for 2018-2019 but is still displayed by some websites and was part of

the 2017 and anterior years top rankings. However, this application was found to be de-

fective on several levels. Among the Windows applications, it is the only one that sends

unencrypted traffic to its server. The application sent reports in the form of an email via

HTTP to kidwatch.com/kw50/mail/mail/mail_addqueue.php. On a differ-

ent note, during the installation phase of Kurupira, the user has to set up an SMTP server

with the assistance of the application to receive activity reports. However, in case the user’s

SMTP server uses an unencrypted protocol, Kurupira does not warn about the risk involved

in the transmission of child activity reports in plaintext.

Unjustified PII exposure. Following the disclosure of the privacy flaw in Kaspersky ap-

plication [25] described in Sec. 2.2, we conducted a static analysis on the other Windows

applications to determine whether they added scripts through the processing of the TLS

proxy and if these scripts included identifiable elements susceptible to be used to track

users. We found that only the Kaspersky parental control application presented this type of
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behavior. In addition, and in contrast to solutions on other platforms, we did not observe

any communication between Windows solutions and third parties.

4.2 Network Devices

This section details the results of analyzing the eight network devices. This study was

conducted in cooperation with another researcher. We purchased and manually analyzed

these devices between September 2019 and May 2020. Overall, we found vulnerabilities

in all but one device (Bitdefender Box).

4.2.1 Security

Vulnerable client product. The importance of securing the update mechanism has been

known for years, cf. [11]. Surprisingly, the Blocksi firmware update happens fully through

HTTP. An integrity check is done on the downloaded binary image, using an unkeyed

SHA256 hash, again retrieved using HTTP, and thus rendering it useless. Therefore, an

on-path attacker can trivially alter the update file and inject their own malicious firmware

into the device. We confirmed this vulnerability to be exploitable by performing the attack

on our device.

We also found another vulnerability that enables executing a command as root on the

Blocksi device via command injection (i.e., unsanitized user input is passed directly to a

system shell for execution). We confirmed this vulnerability to be exploitable by sending

a router_setGeneralSettings request to the Blocksi API endpoint, and injecting

a command in the timezone field in the request parameters. The settings change triggers

a WebSocket Secure (WSS) message to the Blocksi device. The device then reads the

new configuration from the API endpoint and updates its local configuration.The timezone

value is passed as tz to [“echo” + tz + “> /etc/TZ”]. Thus, if tz is “$(ls)”, the ls command
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would be executed and its output written to /etc/TZ.

In addition, we noticed that KoalaSafe runs Dropbear v2014.63 SSH server/client (re-

leased on Feb. 19, 2014), associated with four known remote code execution vulnerabili-

ties. Under certain conditions, the KoalaSafe device opens a reverse SSH tunnel through

its backend server, exposing the vulnerable SSH Dropbear server to an attacker outside

the local network. By calling a KoalaSafe API endpoint (https://api.koalasaf

e.com/api/router/[MACaddress]/et) an external attacker can detect when a

reverse SSH tunnel is open using only the victim device’s MAC address. If the tunnel is

open, the API endpoint responds with the tunnel’s port number, 0 otherwise. The same

API is used daily by the device to know if he should open the developer reverse tunnel. For

large-scale exploitation, an attacker can query the aforementioned API endpoint to enu-

merate all KoalaSafe devices with the reverse tunnel open. This enumeration is feasible as

KoalaSafe uses the GuangLia network interface card (NIC), and MAC addresses assigned

to GuangLia NICs [67] are limited to only 220 values.

Vulnerable backend. The results of our analysis of the backend server API endpoints

are summarized in Table 9. Of the subdomains contacted by the Circle device, only one,

urldb.meetcircle-blue.co, incorporates a “Server” HTTP header in its response.

The other subdomains were opaque in terms of the web framework they are running. Based

on the Server header, urldb.meetcircle-blue.co runs version 1.15.5 of the nginx

web server, with three known CVEs. Interestingly, all of the backend servers using Nginx

are running old versions that are vulnerable to the same three CVE’s which impact the

server’s availability. The Blocksi’s API backend only indicates that it runs on OpenResty

and Google Frontend. However, it does not report the versions of these components. As

for the Roqos, the backend servers do not disclose the web server or framework they are

running in their response headers.

Improper access control. The KoalaSafe API login endpoint requires three parameters
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Device Software Components # of CVEs

KoalaSafe Apache 2.4.34 11
Circle Nginx 1.15.5 3

KidsWifi
Nginx 1.10.2 3
PHP 7.0.27 26

HomeHalo Nginx 1.12.0 3
FingBox Nginx 1.12.2 3
Blocksi OpenResty, Google Frontend N/A
Bitdefender N/A N/A
Roqos N/A N/A

Table 9: Vulnerable software components on backend APIs. N/A: Not enough information
could be extracted.

that are available to anyone on the local network: a device-generated authentication token,

the device’s date and time, and the device’s MAC address for successful authentication.

These parameters can be obtained by visiting endpoints hosted by the KoalaSafe device.

The authentication token and device time are available at https://device.koala

safe.com/auth.lua, and the MAC address at https://device.koalasafe

.com/status.lua. Thus, a local network attacker can easily collect the information

needed for authentication and use the API endpoint to access sensitive information such as

the profile name, email address, and browsing history.

For Blocksi’s login API endpoint, the device’s serial number (SN) and the registered

user’s email are required to authenticate the device to the server. However, a remote attacker

needs to know only one of these parameters to authenticate. This is because a remote

attacker can retrieve a user’s email using their device SN or vice-versa; For SN to email,

use https://service.block.si/config_router_v2/router_checkRo

uters/null/[SN], and for email to SN, https://service.block.si/confi

g_router_v2/router_checkRouters/[email]. By sending both parameters

to the API endpoint in a POST message, any remote attacker can authenticate to the server,

and access sensitive information about the home network (e.g., the WiFi password, and

MAC addresses of connected devices).
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The HomeHalo device uses only the device’s SN and an HTTP header called secret

Token to authenticate to its API endpoint. In our case, the secretToken had a fixed

value of 100500. Although we haven’t tested this hypothesis on multiple HomeHalo de-

vices, the secretToken doesn’t appear to be randomly generated and could either be

constant across all devices or enumerable. An on-path attacker can intercept and modify

these messages, and gain access to admin controls (e.g., reading or changing the wireless

SSID, password, or even the device’s root password). Other privacy sensitive information

is also exposed, including the devices connected to HomeHalo’s network and the parental

control profile setup.

The Circle Home Plus creates a profile for each child and stores it locally on the de-

vice, including the child age groups, usage history and statistics, child photo, and username

(i.e., some parents may use the real child name as username). We identify two API end-

points used to transmit child information over the local network. The first API endpoints,

http://[CircleIP]/api/USERINFO?host=ios&nocache=157229231

3630HTTP/1.1, sends child account usage history and statistics, and profileID. It

insecurely relies on the requester’s MAC address to identify the child device and commu-

nicate sensitive information. This API endpoint is called whenever a child device attempts

to access a restricted domain. The second API endpoint, http://[CircleIP]/ap

i/USERPHOTO?profileID=[profileID], fetches the profile photo corresponding

to the received profile ID. Both API responses are sent in plaintext over the local network

whenever a child device attempts to access a restricted domain. Thus, an eavesdropper,

such as a malicious house guest, or an attacker who cracked the WiFi password, can easily

intercept and leak sensitive information being exchanged over the network. Alternatively, a

local attacker who can spoof her MAC address can easily extract this information. Thirdly,

a malicious app or SDK installed on the child’s device can also launch this attack. We

confirmed this scenario by creating a dummy Android app. This app didn’t request any

51

http://[Circle IP]/api/USERINFO?host=ios&nocache=1572292313630 HTTP/1.1
http://[Circle IP]/api/USERINFO?host=ios&nocache=1572292313630 HTTP/1.1
http://[Circle IP]/api/USERPHOTO?profileID= [profileID]
http://[Circle IP]/api/USERPHOTO?profileID= [profileID]


additional permission and could call the APIs, collect information and sent it back to its

server in a completely transparent way for the user.

Insecure authentication secrets. During the setup procedure of KidsWifi, the device cre-

ates an open wireless Access Point (AP) called “set up KidsWifi”. The user must use

this AP’s captive portal to configure the KidsWifi device to connect it to their home net-

work. However, as this AP is not password protected and the client-device communication

happens through HTTP, the home router’s WAN and KidsWifi’s LAN credentials become

available to a local attacker.

When launched, Blocksi creates kid and parent wireless networks. These networks are

set up such that they share a default password common to all the Blocksi devices. Although

Blocksi recommends changing the password as part of the setup, it’s not mandatory and we

can expect that a significant number of users would skip this step [12]. Thus, if the owner of

the device does not change this default password during the setup, an outsider can connect

to either network using these default credentials.

The KidsWifi user web interface generates a token when a user connects to it. This

token is used as authentication means to access personal information via the device’s APIs.

The token generated is stored in plaintext on the local storage, which is not designed to

store sensitive information [28]. Local storage does not have the cookie http-only flag

protection. Thus, information stored in local storage can be requested by any JavaScript

contained in the page, including imported libraries. To obtain the token, an attacker could

leverage cross-site scripting (XSS) attacks. Moreover, this token is the only authentication

method used to control API calls and it is unique per device. Which means that any regen-

eration of the token will give the same. This design choice also disallows the removal of a

(malicious) parent account; any user who ever had access to the interface can just save the

token and keep requesting sensitive information.

SSLStrip attack. We found that four network devices, KoalaSafe, Blocksi, Kidswifi and
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Roqos are vulnerable to SSLStrip attack. They transmitted the parent account credentials

via HTTP under an SSLStrip attack. This allows an adversary to compromise the parent

account for a long time, particularly if the app does not send any notification to the parent

when the account is accessed from a new device (uninformed suspicious activities).

Password policy. Two network devices, KoalaSafe and Blocksi, enforced a weak password

policy (password shorter than four characters). In fact, both KoalaSafe and Blocksi simply

do not enforce any password policy, accepting any length and any type of characters as a

password. Concerning the others, the requirements when choosing a password are more up-

to-date. The chosen password must contain a certain amount of characters, a combination

of number, lower and upper case chars. However, no blacklists are applied and common and

weak passwords such as “Password123" or “Qwerty1234" are accepted despite their lack

of robustness. Regarding Roqos, we observed the presence of a password strength meter

to assist the user when modifying the password. It incorporates a dictionary and warns

the user of a weakness in the password when recognizing words. For example, passwords

containing “password" or “admin" trigger a “worst" rating by the password strength meter.

However, the password strength meter does not impose any constraints, very weak and

“worst" passwords are accepted the same way an “excellent" password would be. In the

end, the only restriction enforced is the presence of at least 8 characters.

Online password brute-force. We found that two network devices, Circle and Blocksi,

leave their online login interface open to password brute-force attacks. In essence, we

were able to attempt multiple logins for the same account without triggering any forms of

defense mechanism (e.g., timeout, captcha or IP ban). This vulnerability is worsened when

the online interface has a bad password policy allowing the use of very weak password,

shorter and less complex, thus easier to break by brute force. All the other network devices

make the choice of timeout after a certain amount of attempt, while this solution is not

perfect it does hinder simple password brute-force attempts.

53



Uninformed suspicious activities. We noticed that five network devices, do not report

suspicious activities on the parent’s account such as password changes and accesses from

unrecognized devices. These activities are possible indicators of account compromise and

should be reported to the user.

4.2.2 Privacy

Insecure PII transmission. We found that the KoalaSafe and Blocksi network devices ap-

pend the child’s MAC address, firmware version number, and serial number into outgoing

DNS requests. By binding the MAC address to the DNS request, these products keep track

of the child devices’ history and enforce the profile-based restrictions. However, regular

DNS requests are not encrypted. Therefore, by adding the user MAC address to the request,

the device makes the user activity traceable by on-path attackers (cf. [20]). The HomeHalo

device suffers from a similar problem: whenever a domain is requested by a user device

inside its network, HomeHalo sends an HTTP request, including the child device’s MAC

address, to its backend server to identify the requested domain’s category.

Unjustified PII exposure. We evaluated potential uses of third-party tracking SDKs in the

parental control solutions. For network devices, we identified the use of third-party SDKs

in the companion apps but not in the firmware. Our static analysis for five companion apps

(three devices does not have it) reveals the use of tracking SDKs (2–12 unique trackers) in

four on them. Effectively, Fingbox companion app presented twelve, Circle six trackers,

Roqos three, Bitdefender two and KoalaSafe zero.

From the dynamic analysis, we also found that one of the network devices’ compan-

ion app, Circle, includes a third-party analytical SDK from Kochava. Every time the app is

launched, or it returns to the foreground, the following information is shared with Kochava:

Device ID (enables tracking across apps), device data (enables device fingerprinting for per-

sistent tracking). Kochava provides an opt-out option (app_limit_tracking=true)
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that can be used to comply with COPPA. However, the app transmits this flag as false

from the child device. Note that Disney, a former partner of Circle (involved in the 1st

generation of the circle product), is the target of a class action lawsuit for using a similar

SDK in children’s apps [71].

4.3 Browser Extensions

This section presents the result of the analysis of ten Chrome extension. The analysis was

conducted from April 2020 to June 2020. Extensions have certain peculiarities due to their

nature, notably the absence of an online parental interface. From a security perspective,

the static controls implemented by Chrome detect and filter out problematic extensions. As

soon as a new form of vulnerability is brought to light by security experts, Chrome controls

and disables hundreds of vulnerable extensions. Our analysis, therefore, focused mainly on

privacy issues, also emphasized by several articles and research (see Sec. 2.2).

4.3.1 Security

Vulnerable client product. Two Chrome extensions (Adult Blocker and MateCode Blocker)

download and run a third-party tracking script at run time (launched by the background

script). The domains hosting the scripts are apparently neither related to the extension

providers nor well-known libraries: dc.airdropanalytics.com and thatheme.c

lub. This type of operation raises two major concerns:

• Runtime loaded scripts bypass the static control of Chrome for extension security,

which has been exploited in the wild by tricking developers into adding malicious

scripts masquerading as tracking scripts [34].

• The surface of attack includes both the extension developer and the third party, dou-

bling the risk of malicious takeovers or phishing attacks.
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4.3.2 Privacy

Insecure PII transmission. We found that three extensions, Blocksi Web Filter, Fami-

lyFriendly Parental Control and Porn Blocker transmitted the domains contacted by the

user in plaintext. The two first extensions sent the domain name requested by the user to

their server to check whether the website contacted is suitable for children. The commu-

nication happened fully over HTTP. On the other hand, Porn Blocker leaked the full URL

of the current page when trying to connect to a blocked domain. The extension redirects

the user to https://www.purplestats.com/page/blocked/ when visiting a

blocked website. Indeed, the HTTP referer request header contains the full URL of the

page from where the connection is issued. The Referer header leakage is a known issue in

the web extension privacy analysis field, particularly regarding the use of custom toolbars,

which are requested and injected in each page (leaking the full URL by the same way).

Unjustified PII exposure. The majority of the Chrome extensions send browsing infor-

mation to their server. Four extensions sent the requested domains to their server to check

whether the website should be blocked. Although this would appear as a legitimate op-

eration, a better approach would be using a local database in the client browser. Google

safe browsing in its earliest version acted similarly to the applications studied, by sending

the complete URL. In response to privacy concerns, it opted to perform with an imported

database and send anonymous data (truncated hashes) to the servers instead (note that this

practice still raises privacy concerns [32]). Using a local database and check would permit

to avoid unnecessary privacy concerns introduced by PII sending [35]. Two more concern-

ing extensions sent the complete URL, possibly leaking personal information. Furthermore,

the full URL is irrelevant to determine whether the website is suitable for children or not.

Another extension, Parental Control, overrode Chrome setting and replaced the default

search URL by its server domain, which automatically redirected to Google Safe Search.

Similarly, the information sent to the extension’s server can be avoided and constitutes a
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privacy leakage.

On a different level, half of the extensions analyzed did not have a privacy policy or

were unavailable. While we could argue that the stricter User data policy Chrome enforced

starting Fall 2019 (project Strobe [17]) may not apply to the parental control extension ana-

lyzed. The user is therefore not informed of the usage done of the information sent back to

the extension server (e.g., URL, search terms, browser information, location information).

Extension Data leaked Analytical service contacted Privacy policy available Analysis result
Blocksi Web Filter Domain Yes Privacy leakage

Parental control Domain
Google-Analytics,
analytics.vmn.net No Privacy leakage

TinyFilter
Google-Analytics,
doubleclick.net No Suspect

Parental Control: Porn Blocker URL purplestats.com Yes Privacy leakage
Adult Blocker- Porn Adult Filter Yes Suspect*
Parental Control - Adult Blocker Google-Analytics Yes Safe
Adult Website Blocker | Porn Blocker No Suspect*
MetaCert - Adult Content Blocker URL Yes Privacy leakage
FamilyFriendly Domain No Privacy leakage
Kids Safe Web Domain Google-Analytics No Privacy leakage

Table 10: Chrome extensions privacy analysis results. Suspect*: The extension downloads
a script from a third party at the beginning of each user session and extension operation is
susceptible to be unexpectedly modified.

We report a conservative rate of 60% privacy-leaking and 90% including suspected

extensions. The differences between these figures and those reported by previous studies

(between 2% and 7%) can mainly be explained by the type of extension and the scope of

the analysis. Many parental control extensions send personal data such as the URL as part

of their operations. In terms of content leaked, the parental control extensions do not differ

from the results reported in studies with a broader scope, mainly exposing browsing data

(domain and URL). For comparison, we have subjected our list of extensions to the tool

developed and used by a previous work: Mystique [14]. From the 6/10 extensions that we

formally identified as privacy leaking, only two were correctly identified as privacy leaking

by the tools. On the other hand, the tools did not reveal any leaks that we were unaware

of. This comparison doesn’t mean to undermine the merit of Mystique, which due to its

automation and its scalability permits the analysis of a very large number of extensions
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in a reduced time, but rather to emphasize the value of manual analysis as a supplement,

especially when analyzing a specific topic.

4.4 Android Solutions

This section describes the result of the analysis of 15 Android solutions (child and parents

apps). This analysis is the second set of analysis on Android parental control solutions

using the methodology presented in Sec. 3.4, the first one was conducted by another student

and thus will not be discussed in this section. This study was conducted from July 2020 to

September 2020.

4.4.1 Security

Vulnerable client product. We found that the application Easy parental control threatens

the security of the child device and its owner on various levels. The application is designed

to be used by the child and parent on the same local network. However, all the commu-

nications issued by the child app insecurely occur over HTTP, e.g., http://[ChildI

P]/pair?p=[pairnumber]&c=[lock/sendMsg&v=message...]. Both the

child IP and the pair number can easily be eavesdropped. This flaw has for consequence to

allow a local attacker (e.g., a physical person with the WiFi access or an app installed on

the child / parent phone) to perform different operations on the child’s phone. The attacker

can extract the child apps, lock the device (soft locking) or send direct messages to the

child via the application. The latest feature can lead to physical harm as the attacker can

impersonate the parent and lure the child outside.

Improper access control. The application Bosco communicates with its backend via
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POST requests. The requests are protected by Json Web Tokens, dynamically gener-

ated for each user. However, the endpoint failed to check the relation between the au-

thorization token provided and the information requested. Any parent with a valid to-

ken can request information about any registered child knowing only its ID. For exam-

ple, a remote attacker can get the child position using https://production.b

oscoserver.com/batteryapigetChildBatteryAndLocation with

the body data in Fig. 10. Alternatively, using https://production.boscose

Figure 10: Body data used to get child information using Bosco API.

rver.com/gateApi/getContentInfo parameters and similar body informa-

tion the attacker has access to all the content labeled as unappropriated used/ visited by

the child. Without any authorization token, it is also possible to request all the parent

information associated with the posted child ID, including the parent unique ID, email,

name and picture (if present). Lastly, we were able to get the phone call history using

https://production.boscoserver.com/voiceapigetCallsList.

Insecure authentication secret. The issue discussed above is worsened by the usage of the
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Android advertising ID (AAID) as unique user identifier by Bosco. The AAID is a unique

personal semi-persistent Identifier. It is generated by each android phone to allows devel-

opers and marketers to track activity for advertising purposes. This ID can be requested by

any apps installed on the user phone and is the primary identifier used for marketing. Any

android user can manually reset it via the phone setting, however most users are oblivious

of the ID usage. Issues occur when this ID is used as a means of identification by Android

app API endpoints. The scale of the aforementioned improper access control would be

much less important if the unique child identifiers were randomly generated string, without

the possibility to link a specific user to a known ID.

SSLStrip attack. Only 3/15 of the Android solutions tested provided an online interface

and two were found vulnerable to SSLStrip attack. SafeLagoon and Locategy online in-

terface transmitted parent account credentials via HTTP under an SSLStrip attack. This

allows an adversary to compromise the parent account for a long time, particularly if the

app does not send any notification to the parent when the account is accessed from a new

device (uninformed suspicious activities).

Password policy. Sentry and Safe Lagoon enforced a weak password policy (password

shorter than four characters). We also noticed that Safe Lagoon gives contrary information

about the password policy, asking for strong passwords (alphanumerical and symbol 6+

characters long password) but still accepted 4 characters and less long passwords.

Online password brute-force. All but one Android solution implementing a login system

do not protect their login interface against online password brute-force. We were able to

continuously attempt to login (>50 tries) to the same account without triggering any de-

fense mechanism (e.g., timeout, captcha or IP ban). Interestingly, we found that a few

applications (e.g., Safe zone) delegate their login system to Google by asking the user to

login with a Google account linked with the phone. We also noticed that some applica-

tions used imaginative captcha alternatives during the account creation (e.g., Iwawa) but

60



unfortunately not in the login process.

Uninformed suspicious activities. Five android solutions did not report suspicious activi-

ties performed on the parent’s account (e.g., password changes, access from unrecognized

devices). These activities are possible indicators of account compromise and should be

reported to the user.

4.4.2 Privacy

Insecure PII transmission. Easy parental control Solution communication between the

child and the parent happens over HTTP. The applications installed and the phone usage

are leaked over the local network and any device and application connected to the network

can eavesdrop the information.

Unjustified PII exposure. Most of the analyzed Android solutions implemented one or

many third-party trackers. Through the static analysis using Libscout, we found that 41/51

of the children application (installed on the child phone, 22/24 of the parent application

(installed on the parent phone) and 73/78 of the shared application (installed on both type)

included trackers libraries see Table. 11.

Children apps Shared apps Parent apps

# Android apps 51 78 24

# Unique tracking SDK 35 41 31

# Apps with tracking SDK 44 73 22

Average #SDK per apps 4.5 5.3 5.4

Max # SDK per apps 10 22 12

Table 11: Use of tracking SDK in Android parental control applications found through

static analysis.
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More than 25% of the children apps utilized well-known advertisement networks (Dou-

bleclick, Google Ads), see Fig. 11.
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Figure 11: Tracking SDKs present in Android apps found through static analysis.

We also identified the third-party trackers installed on the child phone from the network

traffic generated by the use of the tested applications during the dynamic analysis. We

found that, except Easy parental control, all the Android solutions installed on the child

device communicated with at least one third party, see Fig. 12.
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Figure 12: Tracking SDKs present in Android apps found through dynamic analysis.

The dynamic analysis confirmed that several applications did not comply with the reg-

ulations in force regarding the protection of children’s data. The Coppa compliant pa-

rameters, restricting tracking, were not or hardly used by the applications when they were

available. As a result, 70% of the applications tested send data to graph.facebook (the face-

book analytics platform) with advertiser_tracking_enabled=true. 100% of

the applications using ajust.com supplied information with the tracking_enabled=1

parameter. In order to comply with the legislation reinforcing the protection of minors,

several analytics service companies have decided to restrict or prohibit their service to ap-

plications aimed at children. Among the third parties detected during dynamic analysis,
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Crashlytics and Amplitude forbid developers to embed their SDK in children’s apps. How-

ever, 6/15 android solutions children apps used analytics solutions stating in their privacy

policy that their service should not be used for children’s apps. The Android apps analyzed

shared numerous PII with third parties, see Table 12.

Table 12: Android apps sharing PII with third parties.

Solution Shared PII Third parties (number, domains [max. 2]) *

Becloser AppID 1 (magnus.ms)

Becloser AAID 2 (magnus.ms, ajust.com)

Becloser GSF ID 1 (ajust.com)

Becloser Mobile carrier 1 (supersonicads.com)

Geozilla AAID 5 (branch.io, localytics.com)

Geozilla Mobile carrier 5 (branch.io, facebook.com)

Iwawa AAID 2 (facebook.com, mixpanel.com)

Iwawa AppID 1 (mixpanel.com)

Iwawa Mobile carrier 1 (doubleclick.net)

Kids home AAID 1 (mixpanel.com)

Kids home Mobile carrier 1 (doubleclick.net)

My Kids Safety AAID 4 (amplitude.com, appsflyer.com)

My Kids Safety Mobile carrier 4 (amplitude.com, appflyer.com)

My Kids Safety Geoposition 1 (onesignal.com)

Tittle parental control Mobile carrier 1 (doubleclick.net)

Tittle parental control AAID 1 (facebook.com)

Tittle parental control Mobile carrier 1 (facebook.com)

Funcontrol Mobile carrier 2 (doubleclick.net, facebook.com)

Continued on next page
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Table 12 – continued from previous page

Solution Shared PII Third parties (number, domains [max. 2]) *

Funcontrol AAID 2 (facebook.com, mixpanel.com)

Funcontrol AppID 1 (mixpanel.com)

Sentry AAID 1 (appflyer.com)

Sentry Mobile carrier 1(appsflyer.com)

Locategy AAID 1 (facebook.com)

Locategy Mobile carrier 1 (facebook.com)

Keepers AAID 3 (appflyer.com, facebook.com)

Keepers Mobile carrier 3 (appsflyer.com, mixpanel.com)

Safe zone AAID 1 (facebook.com)

Safe zone Mobile carrrier 1 (facebook.com)

Bosco AAID 2 (facebook.com, appsflyer.com)

Bosco Mobile carrier 2 (facebook.com, appsflyer.com)

Saferkid AAID 1 (bugfender.com)

*: Number of domains limited to 2 to fit display; AAID refers to Android Advertising ID;

We use the word “domain” to refer to second-level domains.
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Chapter 5

Concluding Remarks

In this chapter, we deliver our recommendations to parental control solution providers to

enhance the security of their products. We then discuss potential aspects of our work which

could be the subject of future research. Finally, we present our conclusion to this thesis.

5.1 Recommendations

In what follows, we list our recommendations for parental control solution providers.

Addressing vulnerabilities. Because of the sensitivity of the information processed by the

parental control solutions, companies should conduct regular security audits; the issues we

listed in Sec. 3.1 can serve as a starting point. Moreover, they should have an identified

process to address vulnerabilities such as responsible disclosure and bug bounty programs.

During our analysis, among the solutions tested, only Kaspersky and Bitdefender were

found to participate in such programs.

Enforcing best practices. Parental control companies should rely on publicly available

guidelines and best practices, including proper API endpoint authentication and web secu-

rity standards [28, 29]. We also strongly encourage companies to adopt a strong password

policy in their products. The use of default, weak and stolen credentials has been exploited
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in many known data breaches [72]. In the case of network devices, manufacturers should

employ a secure firmware update architecture (see e.g., IETF [48]). Adopting known best

practices is critical due to the especially vulnerable user base of these products.

Monitoring account activities. Parental control solutions should report suspicious activ-

ities on the parent’s account such as password changes and accesses from unrecognized

devices. These activities could indicate account compromise.

Limiting data collection. Parental control solutions should limit the collection, storage,

and transmission of the children’s data to what is strictly necessary. For instance, they

should not store PII that is not required for the solution’s functionality. The parental control

solutions should allow the parent to selectively opt-out of the data collection in certain

features.

Securing communication. Transmissions of PII should happen exclusively over secure

communication channels. The solution should also utilize MITM mitigation techniques

such as host white-listing, certificate pinning, and HSTS [36].

Limiting third parties and SDKs. Parental control solutions should limit the usage of

trackers and tracking SDKs in applications intended for children. For the SDKs that allow

special parameters for children’s apps, those parameters must be used appropriately.

5.2 Future Work

In this thesis, we designed and applied a novel multi-platform security and privacy analy-

sis framework for parental control solutions. By investigating a representative sample of

parental control solutions through the prism of eight prevalent security threats (described in

Sec. 3.1), we showed that this type of solutions is prone to security issues. This study can

serve as a basis for further work on parental control solutions. In particular, the following

aspects can be the subject of future research:
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• In our study, we have prioritized the most popular platforms, namely Windows for

personal computer OS, Android for mobile OS, Chrome for web browsers. It may

be interesting to study the potential differences that would arise from the analysis of

other types of solutions, such as iOS apps or Mozilla Firefox and Opera web exten-

sions. Another noteworthy research scope concerns the OS-based parental control

features mentioned in Sec. 2.1.3.

• The framework could also be improved, in particular by refining certain aspects of the

analysis. In absence of former comprehensive analysis of parental control solutions,

we drew inspiration from past work (see Sec. 2.2) to build our threat model. Further

reverse engineering work on parental control solutions may uncover additional dis-

tinctive vulnerabilities in parental control solutions. The design and the application

of a precise methodology for reverse engineering analysis of this type of solutions

could be an interesting area for improvement.

• The analysis can also benefit from further automation, opening the door to a large ex-

tension of the analysis dataset. This especially concerns the parental control solutions

grouped in software stores (mobile and web browser) that can easily be identified and

extracted. The mobile app analysis part of our framework is already assisted by par-

tial automation for the detection of PII leakage, and communication with known third

parties. This effort can be extended to the other aspects of our framework.

5.3 Conclusion

In this thesis, we carried out a security and privacy analysis of parental control solu-

tions. Those solutions are used by parents to help them protect their children from

online risks. Some of these solutions have made news in recent years following sig-

nificant data breaches. Nevertheless, only a selected number of academic research
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(see Sec. 2.2) has been conducted on this topic. To contribute in this area of research,

we designed an experimental framework for systematic analysis of security and pri-

vacy issues in parental control solutions and set up a cross-platform comprehensive

analysis of this type of solutions. The results of our study showed systematic prob-

lems in the design and deployment of 49 out of 54 tested solutions and revealed a

total of 170 security and privacy issues. Several identified flaws had the potential to

directly affect the real-world safety of children in addition to the leakage of private

information. These solutions are viewed as an essential instrument to provide chil-

dren a safer online experience by many parents, yet we highlight that the majority of

examined solutions broadly fail to adequately preserve the security of its users. We

advocate that these solutions should be subjected to more rigorous and systematic

evaluation and more stringent regulations.
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