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Abstract
Event-triggered Consensus Frameworks for Multi-agent Sys-
tems
Amir Amini, Ph.D.
Concordia University, 2020

Recently, distributed multi-agent systems (MAS) have been widely studied for
a variety of engineering applications, including cooperative vehicular systems, sensor
networks, and electrical power grids. To solve the allocated tasks in MASs, each agent
autonomously determines the appropriate actions using information available locally
and received from its neighbours. Many cooperative behaviours in MAS are based
on a consensus algorithm. Consensus, by definition, is to distributively agree on a
parameter of interest between the agents. Depending on the application, consensus
has different configurations such as leader-following, formation, synchronization in
robotic arms, and state estimation in sensor networks. Consensus in MASs requires
local measurements and information exchanges between the neighbouring agents. Due
to the energy restriction, hardware limitation, and bandwidth constraint, strategies
that reduce the amount of measurements and information exchanges between the
agents are of paramount interest. Event-triggering transmission schemes are among
the most recent strategies that efficiently reduce the number of transmissions. This
dissertation proposes a number of event-triggered consensus (ETC) implementations
which are applicable to MASs. Different performance objectives and physical con-
straints, such as a desired convergence rate, robustness to uncertainty in control
realization, information quantization, sampled-data processing, and resilience to de-
nial of service (DoS) attacks are included in realization of the proposed algorithms. A
novel convex optimization is proposed which simultaneously designs the control and
event-triggering parameters in a unified framework. The optimization governs the
trade-off between the consensus convergence rate and intensity of transmissions. This
co-design optimization is extended to an advanced class of event-triggered schemes,
known as the dynamic event-triggering (DET), which is able to substantially reduce
the amount of transmissions. In the presence of DoS attacks, the co-design optimiza-
tion simultaneously computes the control and DET parameters so that the number of
transmissions is reduced and a desired level of resilience to DoS is guaranteed. In ad-
dition to consensus, a formation-containment implementation is proposed, where the
amount of transmissions are reduced using the DET schemes. The performance of the
proposed implementations are evaluated through simulation over several MASs. The
experimental results demonstrate the effectiveness of the proposed implementations
and verify their design flexibility.
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Chapter 1

Introduction
This chapter provides necessary background to study event-triggered (ET) strategies
for cooperative behaviours in multi-agent systems (MAS). To provide context, net-
worked control systems (NCS) and their features are first introduced in Section 1.1.
Then, Section 1.2 provides preliminary concepts about multi-agent systems. The
chapter follows by introducing different types of consensus and their engineering appli-
cations in Section 1.3. Discussion over different communication and sensing schemes
used for consensus are included in Section 1.4.

1.1 Networked Control Systems
This section presents important concepts in the field of NCSs. In many control sys-
tems, such as industrial plants, moving vehicles, spacecrafts, under water vehicles,
ete, communication networks are adapted to exchange measurements and control sig-
nals between geographically distributed system components, such as smart sensors,
actuators, and computer units. An NCS is established when different units of the
system work together (i.e., the system is closed-loop) by means of communication
channels. The advantages of NCSs compared to traditionally analog systems are
due to their low cost, reduced weight, reduced power consumption, simple installa-
tion, easier fault detection, and higher reliability. Using communication channels in
NCSs, however, brings some challenging matters such as, communication bandwidth,
digitalization of the signals, communication delay, and security of the channels, to
name a few. NCSs can be regarded as the basis of multi-agent systems where multi-
ple sub-systems (agents) collaborate and interact with each other to achieve certain
cooperative objectives.

1.2 Multi-agent systems
In the past few decades, advances in NCSs and different engineering areas have led to
the development of complex systems composed of a large number of devices that com-
municate and cooperate with each other to achieve a common objective. Referred to
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as the multi-agent systems, they have received considerable attention in computer sci-
ence, robotics, and electrical engineering as a powerful tool to perform complex tasks
in large-scale systems. In MASs, the underlying task is divided between multiple
entities, known as the agents. To solve the allocated task, each agent autonomously
determines the appropriate actions using information available locally and from im-
mediate neighbours. In general, agents in MASs have the following features [3]:
• Sociability: Agents can communicate to a subset of other agents (neighbouring

agents) to exchange and request information needed to achieve their objectives.

• Autonomy: Agents are autonomous in taking independent actions, such as mea-
surement, actuation, information transmission, and decision making.

• Proactivity: Agents can use both current and past localized and neighbouring
information to predict necessary future actions. This ability also enables agents
to take proper actions based on their environment.

Although an agent is autonomous and capable of taking individual actions, the com-
plete benefit is achieved only when they are configured as a multi-agent system. The
main features of MASs that enables them to solve complex tasks are as follows:
• Efficiency: In MASs, a complex task is divided into multiple smaller tasks, which

are assigned to different agents. The division of tasks in MASs increases the overall
efficiency of the system.

• Low cost: As compared to the centralized approach where the entire complex
task is solved by a single powerful system the distributed approach used by MASs
often results in lower cost.

• Reliability: Another benefit of MASs is resilience to failure of agents. In case
that an agent is non-operational, the task can be assigned to other agents without
a major impact. Increased reliability is an important feature of distributed MASs.

While MASs provide the aforementioned benefits, their design and operation is more
complex as compared to NCSs where a solitary system is under study mainly due
to their distributed nature and lack of a fusion center. Several challenges, therefore,
arise in MASs in addition to the design complexities associated with other control
systems. Some of these challenges are as follows:

• In NCSs, there usually exists one main plant to be controlled. In contrast, in
MAS there are multiple agents interacting with each other. Incorporation of the
network connectivity which describes the interaction between the agents (i.e.,
in-neighbour communication network) adds additional level of difficulty.

• The control objective in NCSs are mainly stabilization or tracking control. How-
ever, in MASs the objective is usually a cooperative behaviour which requires
participation of all agents. How to translate these behaviour into the stability
of the MASs is challenging. In other words, it is usually not straightforward to
transform the original cooperative problem into an equivalent stability problem.

2



• As mentioned above, in MASs there is usually no fusion center to control the
MAS based on global information. Therefore, preserving the distributed na-
ture of the solution in both the design and implementation stages is another
challenging task in MASs.

• In contrast to NCSs, in MASs the number of interacting agents can vary and
may be large. In MASs, preserving scalability of the design approach with
respect to the number of agents is important. Increased computational com-
plexity would limit the applicability of the scheme for MASs if complexity of
design is dependent on the network size.

In MASs, the agents are often required to reach an agreement (consensus) between
themselves upon a parameter of interest (state) [4]. When consensus is achieved, this
reference parameter has the same value within the network. The reference parameter
is application-specific. For example, in vehicular MASs, the parameter of interest
is the motion of the agents (positions and velocities). In estimation applications,
the quantity of interest can be the average of a state parameter measured by agents
placed at different locations.

The thesis is concerned with such distributed consensus problems in MASs.

1.3 Consensus-based coordination
This section introduces different types of consensus and their related engineering
applications.
Average Consensus: In traditional centralized systems, the fusion center collects
information from all devices, makes necessary calculations, and sends necessary com-
mands. By omission of the fusion center, distributed algorithms (preferably with
minimal computational intensity) are required to compute necessary quantities which
depend on all information of local devices. In some distributed control and signal
processing applications such as parameter estimation using distributed sensors, node
counting in networks, sensor calibration, and Kalman filtering [5, Sec 3.3], knowing
the average value of all local information is necessary for each node. In the absence
of a fusion center, nodes are able to achieve the average value of their parameter of
interest using average consensus algorithms [4]. These algorithms originated in the
analysis of Markov chains and have been studied in computer science. Average con-
sensus is also required in microgrids which are small-scale power systems consist of
local generators, loads, and energy storages. In microgrids, an important objective
is to efficiently dispatch power supply of distributed generators (DGs) to distributed
loads, which is referred to as the power sharing. Each distributed generator can be
regarded as a node of a large multi-agent system. At node i, the apparent power
flow is represented by Si = Pi + jQi, where Pi and Qi are, respectively, the active
and reactive power components. The reactive power distribution can be achieved by
voltage control, which needs a consensus algorithm [6].
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Leader-following Consensus: In leader-following consensus, there exits one leader
(reference) in the network and the remaining agents follow the leader. Only a subset
of the followers are connected to the leader. In vehicular systems such as Unmanned
Aerial Vehicles (UAV) [7], Unmanned Surface Vehicles (USV) [8], and Autonomous
Underwater Vehicles (AUV) [9], multi-agent system configuration is employed to ful-
fill complex cooperative tasks, where direct human intervention is not possible due
to environmental hazards, complexity of the tasks, and other restrictions. In this
application, there usually exists one agent as the leader of the group which steers
other agents (followers) towards the desired path. Another application that requires
a leader-following consensus algorithm is the secondary voltage control in microgrids.
The voltage control in microgrids often follow a hierarchical structure with three lev-
els namely, primary, secondary, and tertiary control loops. The primary control loop
maintains the voltage and frequency of the DGs close to their nominal values as the
power supply and demand change over time. However, even in the presence of the pri-
mary control loop, voltage and frequency may still deviate from their nominal values.
To restore the voltage and frequency of the DGs to their nominal values, the sec-
ondary control is also required. Tertiary loop is the highest level of the hierarchy and
performs high-level tasks such as the optimization of economic performance and man-
aging the main grids [10]. The problem of secondary voltage control in microgrids can
be viewed as a distributed tracking control problem, similar to the leader-following
consensus [11]. The DGs are connected to each other based a communication topol-
ogy and the objective is to control their output voltage value based on a reference
value.
Containment: In the presence of multiple leaders, the leader-following consensus
problem extends to the containment control, with the followers moving and staying
within a convex hull formed by the leaders [12]. In applications where a team of
robots move towards a target even if only a few of them (the leaders) are equipped
with sensors to detect obstacles and identify a safe operational area, other robots (the
followers) with limited accessories seek to enter that safe area spanned by the leaders.
One related application is the mixed containment-sensing problem [13] where the ob-
jective is to have a group of mobile agents (followers) cover and sense a sequence of
regions of interest. In this application, the leaders steer the followers to the opera-
tional region and coordinate the sensing task at a higher level. Containment requires
a consensus-based control protocol in its implementation. It should be noted that
extending a consensus algorithm to containment is not trivial in many cases.

1.4 Communication and Measurement Schemes
Due to the well-known disadvantages of centralized and hierarchical schemes and the
large scale of practical networks, the state-of-the-art consensus implementations in
MASs are distributed. In other words, only local and neighbouring information is
accessible at each node. To communicate with other nodes and perform necessary
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actions, an operating agent in MASs consists of different units, including: (i) A sensor
(estimator) which measures (estimates) the agent’s state; (ii) An actuator which
implements necessary signals (also known as the control input signal); (iii) A receiver
which receives neighbouring information; and (iv) A transmitter which transmits
information to neighbouring nodes. The local units used in each agent are usually
small and powered by limited batteries. One important issue in cooperative MASs is,
therefore, to design suitable communication and sensing schemes which sustain the
desired objective with a reasonable consumption of communication and computation
resources. The local measurement scheme, which provides the agent with its state
values, is required in reaching consensus.

Primary implementations in the context of distributed consensus are based on
continuous-time (time-triggered) stat measurement and communication. In other
words, at each node local processing, such as measurement and information exchanges,
are performed in a continuous-time fashion [14–16]. In practice, the continuous-time
schemes are unfavorable due to physical constraints including: (i) Communication
bandwidth; (ii) Hardware processing limitations; and (iii) The limited on-board en-
ergy resources allocated to each node.

To cope with the aforementioned constraints, implementations which reduce the
amount of measurements and information exchanges are of great interest. In this
regard, periodic implementations are proposed in [17] and [18] for consensus. In such
schemes, states are measured periodically and neighbouring transmissions are based
on the same period. Clock synchronization of the agents and using a sampler for
consensus reduce the processing burden at the expense of imposing additional design
and stability challenges [19]. Strategies depending on a constant sampling period
operate irrespective of the agent states, time, and other trajectories of the system.
One disadvantage of these schemes is that the transmission load, for example, remains
the same for both cases when the agents are far from consensus and when consensus
is closely achieved. Therefore, the sampling-based schemes may still lead to excessive
communication and computation consumption.

A more advanced strategy is event-triggered (ET) schemes where a time-varying
condition (such as time or the disagreement between the agents) is involved to deter-
mine when the desired action should take place. As for in-neighbour transmissions,
ET strategies allow transmissions occur only if a pre-designed time-varying condition
is satisfied. The time-varying condition should be smart enough to react to dynamics
of the agents. For example, the proposed ET condition should transmit fewer infor-
mation when consensus is nearly achieved. The superiority of the ET strategies over
the sampling-based counterparts is intuitive and also proved in [20]. Due to their
additional flexibility, the application of ET transmission schemes for consensus have
been studied in literature from different perspectives. Although saving communica-
tion resources is an important feature, ET strategies bring additional challenges in
design and stability analysis. For example, it was previously known that under some
circumstances (such as noise-free measurement and communication) consensus can
be achieved asymptotically with zero disagreement error. However, the introduction
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of an ET scheme may lead to bounded consensus (i.e., consensus is reached within a
bounded error) [21]. On another note, the ET schemes are subject to a phenomena
known as the Zeno-behaviour. The Zeno-behaviour occurs if an infinite number of
events are detected within a finite interval. The Zeno-behaviour, if occurs, destabilizes
the event-detector unit and makes the scheme nonoperational in real practice.

Most ET schemes are localized, i.e., each node is autonomous in triggering its
events and the event sequences for two nodes may or may not be the same. In fact,
the nodes are not aware of the time when updates are triggered by their neighbouring
nodes. Therefore, although transmission is event-triggered, the receiver might be
constantly on to receive potential updates. If nodes are synchronized by a periodic
clock, no event is expected in inter-sampling period. Therefore, the receiver at each
node can operate based on the synchronized clock and thus follows a periodic pattern.
Clearly, the periodic scheme is more favorable than the continuous-time scheme from
the receiver’s perspective.

As for the transmission scheme, all implementations proposed in the thesis focus
on ET strategies. The measurement and receiver schemes, however, are either periodic
(sampled-data) or continuous-time in different implementations.

1.5 Organization of the Thesis
The remaining thesis is organized as follows. Chapter 2 presents the general problem
of ET consensus in MASs. An overview of the existing implementations in this area is
given in Chapter 2. Some research gaps are identified based on the literature review.
Chapter 3 presents the proposed implementations for ET consensus in single-order
MASs. The implementations proposed in Chapter 3 are applicable for average consen-
sus. Chapter 4 extends the implementations to MASs with general linear dynamics.
In Chapter 6, the application of ET consensus for formation-containment in vehicu-
lar MASs is studied. Numerical examples which quantify the theoretical results are
included in Chapter 7. Chapter 8 summarizes the proposed implementations based
on their features and provides some future direction worthy of further investigation.
An implementation for event-triggered stabilization control in NCSs is provided in
Appendix.
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Chapter 2

Problem Statement and Literature
Review
In this chapter, the problem of event-triggered consensus (ETC) in multi-agent sys-
tems (MAS) is studied. Section 2.1 and 2.2 introduce necessary notation and back-
ground used in the thesis. Then, different design objectives in the context of ETC
are elaborated in Section 2.3. Two commonly used design approaches for ETC are
discussed in Section 2.4. An overview of the recent state-of-the-art implementations
is provided in section 2.5 based on which important research gaps in ETC are pre-
sented. The main contributions of the thesis are given in Section 2.6. Section 2.7 lists
the publications that are published from this dissertation.

2.1 Notation
Throughout the thesis, alphabets in bold fonts are used to denote matrices or vectors.
Scalars are denoted by alphabets in normal font. Notation Rm×n refers to (m×n)
real-valued matrices. Let A= {ai,j}∈Rm×n denote a matrix with entries ai,j, (1 ≤
i ≤ m), (1 ≤ j ≤ n). Notation ‖A‖ denotes the L2 norm of A. Superscript T in
AT stands for the transpose of matrix A. If A> 0, then A is symmetric positive
definite, i.e., xTAx> 0, ∀x∈Rn, x 6= 0. Notation A† refers to the pseudo-inverse
of A. Matrices I and 0, respectively, stand for the identity matrix and zero matrix
of appropriate dimensions. Vector 1n represents a column vector of order n with
unit entries. Notations ⊗ and ◦, respectively, denote the Kronecker and Hadamard
products. For two vectors u= {ui}∈Rn and v= {vi}∈Rn, the inequality u≤v refers
to their element-wise inequality, i.e., ui≤ vi, (1≤ i≤n). The asterisk ∗ in the lower
triangle of symmetric matrices represents the transpose of the corresponding block
from the upper triangle.
Class K and KL functions: A scalar continuous function f2(r) defined in r∈ [0, a)
belongs to class K if the function is strictly increasing with f2(0) = 0. In addition,
f2(r) belongs to class K∞ if it is defined for all r≥ 0 and f2(r)→∞ corresponds to
r→∞. A scalar continuous function f1(r, s) with arguments r∈ [0, a) and s∈ [0,∞)
belongs to class KL if: (i) for any arbitrary fixed s, f1(r, s) belongs to class K, and (ii)
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for any arbitrary fixed r, f1(r, s) is decreasing in s such that f1(r, s)→0 as s→∞.
Graph theory: The communication network of a MAS consisting of N nodes is
modeled using a graph G= (V , E ,A), where V = {1, 2, ..., N} denotes the node set,
i.e., the i-th vertex indicates the i-th node. The edge set E includes the pair (i, j),
(1≤ i, j≤N), if and only if node j transmits its information to node i. If node j
communicates its information to node i, then the pair (j, i) is an element of E denoted
by j→ i in graph representation. In a directed graph, (j, i)∈E is not equivalent to
(i, j)∈E . Matrix A= {ai,j}∈RN×N is the weighted adjacency matrix for graph G,
where ai,i = 0, ai,j 6= 0 if (i, j)∈E , and ai,j = 0 if (i, j) /∈E . The neighbour set of node i
is defined by Ni = {j ∈ V | (i, j)∈E}. A directed graph contains a directed spanning
tree if there exists at least one path that spans all nodes in the graph. The Laplacian
matrix for G is defined by L= {li,j}=D−A, where D= diag (deg1, ..., degN), with
degi =

∑N
j=1 ai,j. The Laplacian matrix can be viewed as lii = ∑

j∈Ni aij, and lij =
−aij, ∀i 6= j, 1≤ i, j≤N . The Laplacian matrix has exactly one eigenvalue of zero
if and only if the directed network contains a directed spanning tree. Under this
condition, all other eigenvalues of L have positive real components [22].

Illustrative Example: To illustrate the graph notation used in the thesis, an ex-
ample of a MAS with with 6 nodes is given. The network topology for this MAS is
shown in Fig. 2.1. Each labeled circle illustrates a node and the bidirectional arrows
indicate bidirectional communication between the corresponding nodes. Based on
Fig. 2.1, the neighbouring sets for node 6, for example, is: N6 = {1, 5}. Considering
that all the weights associated to communication links are 1, the degree matrix D,
weighted adjacency matrix A, and Laplacian matrix L for the network shown in
Fig. 2.1 are given below

D= diag (2, 2, 2, 2, 2, 2),

A=



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


, L=



2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2


. (2.1)

2.2 Event-triggered consensus
In this section, an overview of the event-triggered consensus problem is given.

2.2.1 Preliminaries and problem statement
A MAS with N nodes is represented by the dynamics of each agent and the network
connectivity between the nodes. The general dynamics of the agents can be viewed
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Figure 2.1: An illustrative communication network with 6 nodes. The 6 nodes are connected with a
ring topology.

as

ẋi(t) = f(xi(t),ui(t)), (1 ≤ i ≤ N), (2.2)

where xi(t)∈Rn is the state of agent i and ui(t)∈Rm is the control input for agent i.
Function f(xi(t),ui(t)) describes the relationship between the state of agent i and
its control input. A special case of (2.2) is the following general linear model

ẋi(t) = Axi(t) +Bui(t), (1 ≤ i ≤ N). (2.3)

Matrices A and B with appropriate dimensions represent the system matrix and
control input matrix, respectively. Model (2.3) is useful as it represents a wide range
of MASs which are either: (i) Linear in nature; (ii) Feedback linearizable; (iii) Can
be approximated using a linear model. The distributed ETC problem is stated as
follows:

Design a distributed control protocol ui(t) and a distributed communication scheme,
which transmits only under certain situations, such that the following condition is sat-
isfied for all agents and any initial states xi(0) ∈ Rn, 1 ≤ i ≤ N

lim
t→∞
‖xi(t)−xj(t) ‖= 0, 1 ≤ i, j ≤ N. (2.4)

Conceptually speaking, when consensus is reached the disagreement between the
states of any two agents (regardless of being neighbours or not) approaches zero.
It should be noted that in some situations the disagreement can only approach a
bounded error [23], i.e.,

lim
t→∞
‖xi(t)−xj(t) ‖≤ δ, 1 ≤ i, j ≤ N, (2.5)

where δ > 0 is the consensus error. The case that δ is strictly positive is known as
the ‘bounded consensus’.

A special case of the consensus definition (2.4) is the average consensus where all
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states converge to the average value of the initial states, i.e.,

lim
t→∞
‖xi(t)−

1
N

N∑
j=1
xj(0) ‖= 0, (1≤ i≤N). (2.6)

The average consensus problem is usually concerned with distributed averaging for a
measured set of scalars. The following first-order integrator agent is often used for
average consensus

ẋi(t) = ui(t), (1 ≤ i ≤ N). (2.7)

2.2.2 Basic configuration for event-triggered consensus
A basic configuration for an ETC implementation is shown in Fig. 2.2, where an
event-detector and a controller block are incorporated with each agent 1. The event-
detector is responsible for monitoring a proposed distributed event-triggering (ET)
condition to determine whether or not to transmit necessary information (usually the
most recent state measurement) to its neighbours. If the ET condition is satisfied, new
information is transmitted to the neighbouring nodes. A common terminology used
in this regard is that ‘an event is triggered.’ Let ti0, ti1, . . . , tik denote the time sequence
at which events are triggered by node i, where k= 0, 1, 2, . . . defines the event index
for node i 2. Additionally, let tik denote the most recent event instant for node i up
to time t. Following this notation, xi(tik) is the state of agent i at the most recently
triggered event. This state is known as the ‘event state’. A disagreement index is
usually used to specify the relative difference between the states of the neighbouring
agents. A larger value for the disagreement implies a larger gap from consensus
between the agents and vice versa. The disagreement is usually used for the following
purposes:

• It is used in the controller block and to generate the control input as such a larger
(smaller) value for disagreement leads to a larger (smaller) control input ui(t).

• It is used in the event-detector to detect events (transmission instants) as such
a larger disagreement be more likely to trigger a new event.

One example of a disagreement for node i is qi(t) = ∑
j∈Ni(xi(tik)−xj(t

j
k)). In fact,

parameter qi(t) computes a sum of relative differences between ‘the most recent lo-
cal event state’ and ‘the most recent neighbouring event states’. In ‘state-feedback’
control protocols, the controller also utilizes the disagreement qi(t) and generates the
control input ui(t) based on qi(t). In general, the state-feedback consensus protocol
can be viewed as follows

ui(t) =Kqi(t), (2.8)
1Each agent is accompanied by other units such as a sensor, a transmitter, and a receiver. For

brevity these block units are omitted from the block diagram shown in Fig. 2.2.
2Note that the event-detectors in different nodes may operate asynchronously, implying that the

sequence of events for nodes i and j, (1≤ i, j≤N, j 6= i), may not be the same.
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Figure 2.2: A general event-triggered consensus configuration in node i for t ∈ [tik, tik+1).

where K ∈ Rm×n is a control gain to be designed. According to (2.8), the controller
signal ui(t) remains the same in the time interval between two events (either local or
neighbouring events). In other words, the control protocol is also event-triggered 3.

In ET schemes, a parameter (known as the state error or measurement error)
is often computed based on the difference between the ‘real-time local state xi(t)’
and ‘the most recent local event state xi(tik)’. One example of the state error is
ei(t) =xi(tik)−xi(t), t∈ [ tik, tik+1 ). The state error and disagreement value usually
play an important role in the event-triggering condition. In one sort of the ET
schemes, for example, the next event is detected as soon as the norm of the state
error exceeds the norm of the disagreement (with a design parameter for scaling).
Mathematically, this ET scheme can be viewed as

tik+1 = inf {t > tik | ‖ei(t)‖−φ ‖qi(t)‖ ≥ 0 }, ti0 = 0, 1≤ i≤N, (2.9)

where φ > 0 is a design parameter. When tik+1 is detected, the event state xi(tik+1)
is transmitted to both the local controller and the neighbouring nodes. The feedback
loop in Fig. 2.2 is continued until a desired level of consensus is achieved.

Once the structures of the control protocol and ET scheme are determined, the
next step is to design unknown control and ET parameters (in this case the control
gain K and ET constant φ). The most common approach for tuning unknown pa-
rameters and guarantee event-triggered consensus is to convert the consensus problem
into a stability problem. In other words, the stability conditions for the converted
system is the sufficient conditions for consensus in the original system. A deep discus-
sion for the design approaches in ETC is given in Section 2.4. Next, a phenomenon
known as the Zeno-behaviour that may occur in ET schemes is discussed.

3It should be noted that in some ETC implementations, unlike Fig. 2.2, only the control in-
put ui(t) is event-triggered and transmission between the nodes is not event-triggered. In all imple-
mentations proposed in the thesis the transmission is event-triggered. The control protocol may or
may not be event-triggered.
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2.2.3 Zeno-behaviour
It should be noted that in any ET scheme, the time interval between two event in-
stants must be strictly positive. Otherwise, the event-detector may detect an infinite
number of events in a finite interval. This phenomenon, which may destabilize the
ET scheme, is known as the Zeno-behaviour. It is, therefore, necessary to exclude
the Zeno-behaviour in any proposed ET schemes. As it will be observed later, the
Zeno-behaviour does not appear in the stability analysis of the MAS and its exclu-
sion should be carried out as a separate step. The exclusion of the Zeno-behaviour
is usually accomplished by obtaining a strictly positive lower-bound between two po-
tential event instants. In other words, if one guarantees that the minimum possible
interval between two event instants in a row is strictly positive, then the possibility
of detecting infinite number of events in a finite period is ruled out. This implies that
the possibility of the Zeno-behaviour is ruled out.

The implementation of an ETC scheme is influenced by the design objectives
and operational constraints. In what follows, some important design objectives and
constraints in the context of ETC are discussed.

2.3 Design objectives and constraints
The design of an ETC implementation requires assessment of different matters which
arise from either the nature of the event-triggered cooperative MASs or the environ-
mental constraints. In what follows, some of the important objectives and constraints
for ETC are discussed.

• Consensus guarantee: The main design objective in an ETC implementation is
to guarantee consensus among the agents. Otherwise, the main goal of the imple-
mentation, which is consensus, may not be achieved. As mentioned previously, the
most common approach to guarantee ETC consensus is to convert the consensus
problem into a stability problem. In other words, the stability conditions for the
converted system is the sufficient condition for consensus in the original system.

• Control protocol: The consensus control protocol is the main component that
evolves the agents through consensus. Even if consensus is guaranteed, a poorly
designed control protocol may impact the MAS in the following ways: (i) It may
generate large and fluctuating input values that are undesirable for the actua-
tors; (ii) It may lead to a slow consensus convergence rate and consensus reaches
after an excessive amount of time; and (iii) It may force the ET scheme to trig-
ger events more frequently than required which wastes communication energy re-
sources 4. Therefore, designing an efficient control protocol is crucial. The most
common control protocols used for consensus is the state-feedback [24], static
4It will be shown in Section 4.1 that the control gain directly impacts the minimum interval

between two event instants.
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output-feedback [25], dynamic output feedback [26], sliding mode [27], and model
predictive protocols [28].

• Event-triggering condition: The event-detector (which is responsible to trigger
events) is based on an ET condition with some unknown design thresholds. Even
if consensus is guaranteed, an ET scheme may be conservative. Conservation in
the context of the ET schemes usually refers to inefficiency in saving transmission
packets. The structure of the ET condition and proper design of its unknown
thresholds are two crucial matters for an efficient ET scheme.

• Exclusion of the Zeno behaviour : As mentioned previously, in any proposed ET
scheme, there must be a finite number of event-triggerings within a finite time
interval. It should be noted that the analytical approaches (such as the Lyapunov
stability theorem) which guarantee stability (consensus) does not exclude the pos-
sibility of the Zeno behaviour. Therefore, the exclusion of the Zeno behaviour is
accomplished as a separate step. Some physical constraints such as measurement
noise and communication delay may lead to Zeno-behaviour in an ET scheme
which does not exhibit the Zeno-behaviour in ideal circumstances. Therefore, it is
important to equip the ET scheme with proper structure to operate in a non-Zeno
situation.

• Measurement and event monitoring schemes: The ET scheme is capable of saving
transmissions only from the transmitter side. It is still important to reduce pro-
cessing from other departments such as the state measurement. Additionally, if
an ET scheme is required to be monitored continuously to detect possible events,
it wastes energy. One approach to reduce the amount of state-measurement and
event monitoring is to incorporate a sampler with the agents [29]. Then, all pro-
cessing can be performed periodically and no continuous-time processing is needed.
Consensus (stability) guarantees for sampled-data implementations is often more
challenging.

• Steady-state Consensus Error : Ideally, the ET scheme should not lead to a steady-
state error in consensus. In some ETC schemes [30], however, consensus can be
reached only within a steady-state bounded error. It is worth mentioning that
the exclusion of the Zeno-behaviour in some implementations is only guaranteed
for bounded consensus. In other words, an error from consensus is inevitable for
exclusion of the Zeno behaviour.

• Agent dynamical model: ETC implementations are often designed for a certain
class of agents. Depending on the application, the agents may be first-order inte-
grators, second-order integrators, general linear, and nonlinear models. First-order
integrators are usually used for average consensus. The other models may repre-
sent dynamics of mobile robots, spacecraft satellites, UAVs, AUVs, etc. The design
complexity grows with the complexity of the agent dynamics. Homogeneity or het-
erogeneity in agent models is also an important matter in ETC. If the agents are
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heterogeneous (i.e., agents have different dynamical models in a MAS), the ETC
problem becomes more challenging. In case that the agents are not identical, the
heterogeneity of the models should also be taken into consideration for consensus
analysis.

• Directed or Undirected Communication Topology: Based on the bi-directional or
uni-directional communication topology between the nodes, networks are classi-
fied into two categories of directed and undirected networks. The type of the
operating network (directed or undirected) plays an important role in consensus
analysis. Ideally, consensus implementation should be applicable to both types of
the networks. In some schemes, however, bi-directional communication is used to
facilitate stability and consensus analysis.

• Physical Constraints: In practice, operational MASs are subject to many physi-
cal and environmental constraints such as the channel noise, measurement errors,
performance degradation due to the finite word length, packet dropouts, com-
munication delays, uncertainties in modeling, round-off errors, malicious attacks,
network connectivity changes, actuator faults, and actuator saturation. These con-
straints can vastly influence the performance of the proposed implementation. An
ideal implementation should cope with the above constraints. In theory, however,
the complexity of ETC analysis may significantly grow when the above physical
and environmental constraints are considered in analysis. Similar to other control
engineering problems, explicit analysis may be overwhelming (or in some cases not
feasible) when too many constraints are considered for ETC.

• Optimality of Design: In many control applications, a cost or a performance index
is included which optimizes the design parameters and the overall performance
of the system with respect to the proposed objective function or cost. In the
context of ETC, it is also desirable to include control optimization techniques
(such as the H∞ optimization, H2 optimization, and guaranteed cost techniques)
in analysis. Having a structured trade-off between the consensus convergence rate
and the number of transmissions, for example, can only be reached using a sort of
optimization.

• Distributed Design Stage: As stated previously, the consensus iterations are dis-
tributed and performed locally without requiring a fusion center. Recently, there
has been a surge of interest to design unknown parameters for the ETC in a
distributed fashion based only on neighbouring information. Tunning necessary
parameters in a distributed manner increases flexibility of the scheme to unknown
and unpredictable changes in the configuration.

• Resilience to Cyber attacks: A major objective in control of networked systems
is resilience to Cyber-attacks directed to make the network non-operational. In
general, these attacks can be classified into two categories, namely, deception [31]
and denial of service (DoS) [32]. In deception attacks, the attacker manipulates the
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actual measurements. The falsified information degrades the performance of the
MAS. In DoS, on the other hand, the attacker attempts to block transmissions and
measurements. It is important to study the resilience of MAS to malicious attacks
and provide necessary defense actions, so that the MAS remains operational in the
presence of attack.

2.4 Design approaches
Event-triggered consensus implementations require a procedure to design the control
and ET parameters. In general, the design approaches can be classified into two
categories: (i) Emulation-based, and (ii) Co-design.

2.4.1 Emulation-based
Typically, the emulation-based approaches [1, 33–35] are based on two steps. In the
first step, the ET scheme is ignored, i.e., it is assumed that the transmission scheme
between the neighbouring nodes is continuous-time. The control parameters are de-
signed under this assumption and based on the stability of the system without the
ET scheme 5. Given these values for the control parameters, the second step designs
the required ET parameters. The emulation-based design approach has the following
advantages:

• It usually gives way to explicit stability solution for the MAS. In other words,
using an emulation-based approach unknown design parameters can be obtained
analytically and the feasible regions are clearly determined.

• The computational complexity of design does not grow with the number of partic-
ipating agents in the MAS.

On the other hand, the emulation-based approaches have three main disadvantages:

• The initial choice of the control parameters limits the feasibility region of the
ET parameters. Therefore, in these approaches the inter-event time (i.e., the time
between two successive events) may be small leading to frequent transmissions [36]
and conservativeness in the ET scheme.

• The emulation-based approaches often derive some feasible regions for the op-
erating values of the ET parameters. However, selecting proper values from a
continuous domain is still difficult and requires trial and error to fully observe the
impact of each variable on the MAS performance.
5It is worth mentioning that the control gain in many ETC implementations for average consensus

is assumed a priori and equals one. This technique, i.e., assuming a priori value for the control gain
(which guarantees stability for the closed-loop system without the ET scheme) is also regarded as
an emulation-based approach.
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• Incorporating optimization and performance objectives within the emulation-based
approaches is difficult. In other words, these approaches often guarantee only
asymptotic (or exponential) stability (consensus) for the MAS with no further
performance objectives.

2.4.2 Co-design
Another method for tuning unknown parameters in ETC is the Co-design approach [36–
40]. In co-design approaches (which is also known as the unified approach) all un-
known parameters are simultaneously designed in one step. Compared to emulation-
based approaches, co-design provides the following benefits

• It is more convenient to include physical constraints (such as communication delay
and uncertainties) in co-design approaches.

• The co-design approaches are able to include performance objectives such as the H∞
optimization [39], guaranteed cost [41], L2 optimization [38], and inter-event in-
terval maximization [36]. Unlike the emulation-based approach, co-design usually
computes the exact values of the unknown parameters based on the desired objec-
tive.

The co-design approach has the following disadvantages

• Many co-design implementations are dependent on a numerical solution. More
importantly, the feasible regions for design parameters usually remain unknown in
co-design techniques.

• In most cases, the computational complexity of the solution grows as the number
of agents increases in the MAS.

With the advances in numerical computation, linear-matrix-inequality-based solu-
tions have been extensively used in the literature within a co-design approach [42–45].

As discussed above, both design approaches offer some advantageous and have
some disadvantageous. In the thesis, both the approaches are used in the proposed
implementations.

2.5 Research gaps
The basics of many proposed implementations for ETC is mainly based on the con-
figuration explained in Section 2.3. An in-depth overview of recent advances in ETC
is provided in [6] (up to 2018) and [46] (up to 2019), where some insightful under-
standing is given on advantages and limitations of different ETC implementations.
In what follows, some of the research gaps observed in the literature are discussed.
G1. Consensus convergence rate: An important topic in cooperative MASs is the
convergence rate of the proposed implementation to the desired objective [47]. In this
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regard, a flexible rate or a finite-time convergence is of great importance. Asymptotic
rate of convergence does not provide any flexibility in terms of consensus convergence
and may result in conservative performance, i.e., the agents may not converge to
consensus in a timely manner. Alternatively, the control and ET parameters can be
designed according to a flexible exponential rate of consensus. To preserve a satisfac-
tory rate of convergence in an event-triggered fashion, an exponentially fast approach
is developed in [48] which requires continuous-time measurement and monitoring of
the ET conditions. An ET method is proposed in [49] that guarantees a finite-time
consensus within only first-order agents. In more general cases where agents may be of
high order dynamics and only sampled states of the agents are available, maintaining
a minimum rate of consensus convergence is a challenging task.
G2. Inefficient parameter design for the ET scheme: As mentioned previously,
a major disadvantage of emulation-based approaches is that the initial choice of the
control parameters limits the feasibility region for the ET parameters. While the
inter-event time (i.e., the time between two consecutive events) can be guaranteed to
be strictly positive in emulation-based approaches, its value may be small, leading
to a relatively high frequency of transmissions [36]. One solution to overcome this
limitation and increase the inter-event time is to simultaneously design the control
and ET parameters in a co-design approach and based on increasing the inter-event
interval. Formulation of a co-design framework is usually more challenging. Non-
existence of an efficient approach to co-design the control and ET parameters through
a distributed optimization deserves further attention.
G3. Continuous-time states measurement and monitoring: In many ETC
schemes [1, 32, 50–52] the ET condition is required to be monitored in a continuous-
time manner for detection of potential events. These schemes are feasible only if
continuous-time measurement of the states is possible. Along with the implementa-
tion difficulties of such approaches, constant measurement and monitoring of the ET
conditions waste valuable energy resources allocated to nodes. To eliminate this lim-
itation, sampled-data approaches which allow the ET condition to be monitored only
at periodic samples of the systems are proposed in [53–58]. However, the applicabil-
ity of these implementations to more complicated situations, such as the presence of
malicious attacks, is still in its infancy.
G4. Resilience to Cyber Attacks: Resilience to DoS attacks has been studied
in [1, 32, 37, 50–52, 59–69] for a variety of applications under different assumptions.
Despite presenting several advantageous results, existing strategies that investigate
resilience to DoS attacks face different shortcomings and are based on some unrealistic
assumptions. For example, the ET schemes considered in [1, 50–52] are required to
be monitored continuously. Additionally, transmission with precise values of the
state is a common assumption is the context of consensus subject to DoS attacks.
Quantized transmission leads to an additional term in the closed-loop system, which
makes the design analysis challenging when DoS attacks are considered, as such have
been overlooked. Assuming that the DoS follows a periodic behavior, the resilience of
different NCSs under DoS is investigated in [37,63,66]. Due to the unknown nature of
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the adversary, considering a periodic pattern for DoS may not be the case in practice.
G5. Infinite precision for the nominally designed parameters: It is a com-
mon assumption in ETC that the design parameters such as the control gains are
implementable with infinite precision. However, it is widely known that the pre-
cise realization of the control gain, for example, is often subject to round-off error
and uncertainties due to the physical restrictions from hardware aspects [70]. The
uncertainties in realization of the control gains can cause considerable performance
deterioration. In this regard, non-fragile control design techniques, which take into
account the uncertainties of the controller realization, are considered in various con-
trol problems [70,71]. It should be noted that since limited neighbouring information
is used in ET schemes, the closed-loop system is more vulnerable to such uncertain-
ties. A distributed implementation for non-fragile control design is of great interest
for ETC.
G6. Infinite precision for state transmissions: Due to the limited storage and
communication bandwidth in practical applications, information exchanges between
the neighbouring agents is quantized (coded) prior to transmission [72,73]. Therefore,
quantization is a necessary step for real implementations. In the context of ETC, it
is often assumed that the information can be transmitted with infinite precision.
G7. Old-fashioned ET schemes: Many ET schemes are only based on the dis-
agreement between the states and some set-valued thresholds. Developing more ad-
vanced ET schemes to further reduce the number of transmissions without introduc-
ing steady-state error in consensus is in great demand. As one of the most advanced
ET schemes, dynamic event-triggered (DET) mechanisms have been utilized recently
in MASs [74–76]. In such schemes, an internal dynamic variable is included which
acts as an additional threshold in the ET condition. One interesting property of
the DET schemes is that their inter-event time is larger than many old-fashioned
schemes. At the same time, consensus can still be reached without any steady-state
error when using DET schemes. This is in contrast to some other ET schemes [35]
where the cooperative objective can be reached only within a bounded error. In DET
schemes, the stability analysis of the closed-loop system is typically more difficult
due to the introduction of an additional dynamic variable [46]. The applicability of
the co-design optimization approach for DET consensus-based schemes has not yet
been studied. Additionally, continuous-time measurement and event monitoring is
required in [74–76] which is not desirable.

2.6 Main contributions of the Thesis
To address the research gaps discussed in Section 2.5, the following implementations
have been proposed in the thesis. Based on the dynamic model considered for the
agents, these implementations are categorized as ‘single-order agents’ and ‘general
linear agents’.
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2.6.1 Single-order agents:
• CEASE [77]: is a distributed framework for collaborative, event-triggered,

average consensus, sampled data (CEASE) algorithm for undirected networked
multi-agent systems. CEASE focuses on research gaps G1, G2, and G3. This
algorithm ensures a desired exponential consensus convergence rate and com-
putes control and ET parameters based on an objective function for increasing
the inter-event intervals and decreasing the steady-state consensus error. The
ET threshold and control gain are designed simultaneously through a convex
constrained optimization problem. Following some preliminary steps, the opti-
mization can be performed locally. Additionally, the computational complexity
of the proposed optimization does not grow proportionally with the number of
nodes in the network.

• Q-CEASE [78]: is a distributed framework for quantized collaborative event-
triggered average consensus sampled-data in MASs. Q-CEASE addresses gaps
G3 and G6. Q-CEASE communicates quantized information with its neigh-
bouring nodes only if a periodic ET condition is satisfied. Both design and
implementation of Q-CEASE are distributed and do not require a fusion cen-
ter. The design stage determines operating regions for the sampling period and
ET thresholds for the constituent nodes using an emulation-based approach.

• RQ-CEASE [79]: is a resilient framework for quantized, collaborative, event-
triggered, average consensus, sampled-data in multi-agent systems subject to
denial of service (DoS) attacks. RQ-CEASE addresses gaps G3, G4, and G6.
The DoS attacks attempt to block the measurement and communication chan-
nels in the network. Two different ET approaches are considered in RQ-CEASE
based on whether the ET condition is dependent or independent of the state dy-
namics. For each approach, the operating conditions (bounds) for the sampling
period and ET design parameter are derived analytically so as to guarantee the
input-to-state (ISS) stability of the network under DoS attacks. In addition, up-
per bounds for duration and frequency of DoS attacks are derived within which
the network remains operational. For each approach, the maximum possible
error from the average consensus value is derived.

• DEASE: A distributed dynamic event-triggering average consensus algorithm
with sampled-data (DEASE) is proposed with the focus to improve the efficiency
of the ET scheme and avoid consensus error. DEASE addresses the gaps G2,
G3, and G7. In contrast to CEASE, Q-CEASE, RQ-CEASE, where the ET
scheme reduces the number of transmissions at the expense of a bounded error
for consensus DEASE does not produce error and better saves unnecessary
transmissions. The state measurement and event monitoring schemes in DEASE
are periodic. Parameter design in DEASE is based on the co-design method and
increases the minimum inter-event interval using convex optimization. However,
unlike CEASE, the dimensions of the optimization grows with the network size.

19



2.6.2 General linear agents
• PEC [80]: is a performance guaranteed event-triggered consensus implementa-

tion for general linear multi-agent systems. PEC addresses gaps G1, G2, and
G5. PEC guarantees a desired rate of convergence convergence, non-fragility
to control gain uncertainties, and optimality of design parameters, namely, the
control and ET parameters. Using an approximated linear scalarization method,
the ET thresholds and control gain are designed simultaneously by solving a
convex constrained optimization problem. Similar to CEASE, the optimization
in PEC can be performed locally. In PEC continuous-time state measurement
and event monitoring are required.

• PSEC [81]: is a performance guaranteed sampled-data event-triggered consensus
algorithm for linear MASs. PSEC addresses gaps G1, G3, and G5. Communica-
tion between the nodes is based on the fulfillment of distributed state-dependent
sampled-data ET conditions. PSEC ensures a guaranteed exponential conver-
gence rate and is non-fragile to norm-bounded uncertainties in control gains
resulting from implementation distortions. The Lyapunov-Krasovskii theorem
is used to incorporate the performance objectives. Consensus design parameters
in PSEC are simultaneously computed within a set of linear matrix inequalities.

• R-PSEC: R-PSEC (resilient-PSEC) extends PSEC to the situation where un-
known DoS attacks attempts to prevent consensus. R-PSEC addresses the gaps
G1, G3, G4, and G5. In R-PSEC, the desired level of resilience to DoS is in-
cluded as a design input. The proposed R-PSEC demonstrates the trade-off
between the DoS resilience level and consensus performance indices. R-PSEC
is based on a co-design approach and simultaneously co-designs control and ET
parameters based on desired values for the sampling period, consensus conver-
gence rate, non-fragility level, and DoS resilience level.

• ROCCET [82]: is a resilient optimized consensus using dynamic event-triggered
scheme for linear MASs configured as undirected networks. ROCCET addresses
gaps G1, G2, G4, and G7. ROCCET is based on continuous-time state mea-
surement and event monitoring. Similar to DEASE, the event-triggering scheme
used in ROCCET is dynamic which further reduces the number of events. Sim-
ilar to R-PSEC, in ROCCET a desired level of resilience to DoS is included as
a design input. A co-design optimization technique is used to simultaneously
compute all required control and dynamic event-triggering parameters. The
optimization in ROCCET increases the inter-event interval based on a given
consensus convergence rate and resilience to DoS attacks.
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2.6.3 Extension to formation-containment
Cooperative behaviours in the form of leader-following consensus, formation, and con-
tainment have attracted considerable attention in a variety of vehicular MASs. Re-
cently, the formation-containment control (FCC) framework, which can be regarded
as the combined problem of formation and containment for MASs, has arisen in several
engineering applications [83–94]. In FCC, the leaders converge to a desired geomet-
ric formation. Simultaneously, the followers merge within the convex hull spanned
by the leaders. As compared to solitary containment [12, 95–98] and solitary forma-
tion [99–101], FCC is more complex and a topic of increasing interest in the control
and signal processing community. A formation-containment control approach using
a dynamic event-triggered mechanism (FCC/DEME [102]) that offers optimality for
design parameters, namely the control gains and dynamic event-triggering parameters
is proposed in Chapter 6. The main features of the proposed FCC/DEME [102] that
differentiate it from existing implementations are listed below:

• As opposed to FCC implementations [83,84,86,88–93], where all transmissions are
time-triggered (i.e., continuous-time), in FCC-DEME the follower-follower and
leader-leader transmissions are event-triggered.

• FCC/DEME is the first implementation for formation-containment that utilizes
the dynamic event-triggered mechanism. This leads to considerable energy and
communication savings for formation-containment in MASs.

• Two different sets of control and dynamic event-triggering parameters are intro-
duced for: (i) formation of the leaders, and; (ii) containment of the followers.
FCC/DEME utilizes two convex optimizations for co-designing associated param-
eters based on enabling a trade-off between the rate of convergence for formation-
containment and the frequency of transmission.

2.6.4 Stabilization control
In appendix, a co-design framework for stabilization control of a class of NCSs un-
der unknown DoS attacks is proposed. To reduce the number of control inputs, a
sampled-data dynamic event-triggering (S-DET) scheme is developed. Both the state
measurements and monitoring of the S-DET are conducted periodically. The param-
eter design is based on the solution of linear matrix inequalities (LMI) obtained from
a delay-dependent Lyapunov-Krasovskii functional using the improved free weight-
ing matrix technique. The proposed co-design approach demonstrates the trade-off
between the DoS resilience level and system performance indices.

2.7 Publications
The following articles have been published from this dissertation.
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2.8 Summary
This chapter introduces necessary background for the event-triggered consensus (ETC)
in multi-agent systems (MAS). The ETC problem is reviewed from a general point of
view. Important design objectives and constraints for ETC are discussed based on an
overview of the recent state-of-the-art literature. Based on the research gaps observed
in existing ETC works, some consensus algorithms are proposed for both the first-
order and general linear MASs, which will be presented in the next chapters. Addi-
tionally, two implementations for the event-triggered formation-containment problem
and stabilization problem of networked control systems are proposed.
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Chapter 3

Consensus in First-order Agents

This chapter focuses on event-triggered consensus in first-order agents, where three
different implementations (namely, CEASE [77], Q-CEASE [78], and DEASE) are
proposed in this regard1. Each implementation is presented in a separate section of
this chapter (Sections 3.2 to 3.4). Section 3.5 provides a summary of the proposed
implementations. Proofs of all the proposed theorems in this chapter are given in Sec-
tion 3.6. Before presenting the proposed implementations, the nature of the schemes
are reviewed for different processes required in consensus.

3.1 Measurement, communication, and control
schemes

In this chapter, it is assumed that all nodes are clock synchronized, i.e., there exists
a common clock which handles certain processing in all nodes. In all the proposed
implementations in this chapter, the measurement, event-monitoring, communication,
and control schemes are based on the following structures

• State measurements scheme: The state measurement scheme is periodic,
i.e., a sampler is incorporated with each node to measure the state of the agent.
The sampler operates based on the synchronized clock.

• Event monitoring scheme: The ET monitoring schemes considered in this
chapter are periodic (sampled-data) which operate according to the synchro-
nized clock.

• Transmitter scheme: The state transmission to the neighbouring nodes is
sampled-data event-triggered. This implies that the transmission only occurs
on some samples of the agents determined by the ET condition.

1Proposed implementations for ETC in MASs with general linear dynamics are given in Chap-
ters 4 and 5.
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• Receiver scheme: Since the ET scheme is localized, nodes are not aware of
the time when updates are transmitted by their neighbouring nodes. However,
due to the synchronized clock, no event is expected in inter-sampling period.
Therefore, the receiver at each node operates based on the synchronized clock
and thus follows a periodic pattern.

• Control scheme: The control protocol, which enforces the nodes to reach
average consensus, is sampled-data event-triggered in this chapter.

3.2 CEASE
As mentioned in Chapter 2, several strategies [103–106] are proposed to reduce the
number of information exchanges between the nodes and preserve energy resources.
As a major drawback, the event detection process in many ET schemes are mod-
eled in continuous-time and requires continuous measurements and threshold compar-
isons [107]. In an effort to overcome this limitation, a sampled-data ET mechanism
has been proposed in [108], where the event condition is monitored periodically at
certain instants.

In practice, it is often desirable to design average consensus algorithms that guar-
antee a certain level of performance or cost. As mentioned in [6, Section V], dis-
tributed optimization techniques, which aim at finding an optimal strategy subject
to desired performance constraints, have not yet been investigated for sampled-data
event-triggered consensus. Ensuring a finite time or a minimum rate of consensus con-
vergence (as opposed to asymptotic convergence) is another important performance
index [109]. In this regard, an exponentially fast ET consensus framework has been
proposed in [48]. However, only control inputs are event-triggered and constant com-
munications across the network is still a requirement. The literature review shows
that there is a need to develop a distributed structured optimization framework for
ETC which ensures some performance guarantees such as a flexible rate of conver-
gence and optimization for design parameters. To this end, a distributed framework
for collaborative, event-triggered, average consensus with sampled data (CEASE) is
proposed. The main contributions of CEASE are as follows

• In CEASE, a co-design approach for computing the consensus design parame-
ters, i.e., control gain and ET threshold, is used to incorporate the exponential
convergence conditions. Using the Lyapunov stability theorem, the problem
of finding optimal solutions for consensus parameters is transformed to a con-
strained convex optimization problem.

• The proposed objective function also reduces the steady-state error from con-
sensus. Additionally, the computation complexity of the optimization stage
does not grow with the network size.
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Figure 3.1: The CEASE block diagram for average consensus in node i.

3.2.1 Problem statement
Consider a multi-agent/sensor system with N nodes that require average consensus
on parameter x(t) associated with the system. Prior to the average consensus process,
each node has a different estimate of x(t), denoted by xi(0). The consensus time index
is denoted by t. It is noted that the time scale for the main system may be different
from the t considered for consensus steps. Similar to [4], the first-order MAS model
given below is used to reach average consensus on xi(t)

ẋi(t) = ui(t), (1 ≤ i ≤ N), (3.1)

where ui(t)∈R is a distributed consensus control protocol to be introduced later.

Assumption 1. MAS (3.1) is configured as an undirected (symmetric) connected
network.

A proposed protocol for ui(t) is said to solve the average consensus problem, if
and only if, the following condition is satisfied

lim
t→∞
|xi(t)− x̄(0) |= 0, (1≤ i≤N), (3.2)

where x̄(0) = 1
N

∑N
i=1 xi(0). To reach average consensus, each node shares its state

values with its neighbouring nodes. In order to reduce the number of transmissions, a
distributed event-detector is incorporated locally with each node. The event-detector
allows the node to transmit its states to the neighbouring nodes only if an ET con-
dition (to be introduced later) is fulfilled. The event-detector monitors a discretized
samples of the states [108], i.e., xi(nh) with sampling period h and n∈N0. Upon
receiving a new state from node j, (j ∈Ni), node i updates its information regarding
node j and stores this new state. The new state is being used in node i until the
next event is triggered by node j. The CEASE configuration for node i (1≤ i≤N)
is shown in Fig 3.1.

Denote {ni0, ni1, . . . nik} as the sample sequence until t=nh at which events are
detected (triggered) at node i and the corresponding states are transmitted to the
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Figure 3.2: Illustrative sampled-data event-triggered (or periodic event-triggered) time diagram,
with period h, for two arbitrary nodes in the network (nodes i and j). Black circles show the
instants when events are detected. Since the event-triggering process is performed locally, events for
node i and j does not necessarily occur at the same time instant.

neighbours. In nik, the node itself is specified by superscript i 2. Note that the event-
detector is a localized unit for each node, implying that the k − th event for node i
does not necessarily occur at the same time as the k − th event for node j. Fig. 3.2
shows an illustrative example of sampled-data event-triggering for two nodes (nodes
i and j) in the MAS.

Define the most recently transmitted state of node i as x̂i(nh) , xi(nikh) for
t∈ [nikh, nik+1h ). Relying on the last received/transmitted states, the following dis-
tributed control protocol is used for node i, (1≤ i≤N), to reach distributed event-
triggered average consensus in (3.1)

ui(t) = K Xi(nh), (3.3)

where scalar K ∈R is the control gain to be designed and

Xi(nh) =
∑
j∈Ni

aij
(
xj(njkh)− xi(nikh)

)
. (3.4)

It is worth noting that the control protocol (3.3) is a more general protocol for achiev-
ing average consensus as compared to the one frequently used in existing literature
where K is assumed a priori [110] and equals 1. Since the choice of K affects both
the convergence rate of consensus and the number of transmissions, its design is
important.

Given the sample instant nikh, the next event for node i is triggered at instant
nik+1h, where nik+1 satisfies the following condition (monitored by the event-detector)

ni0 = 0, nik+1 = min
n
{n | n > nik, |ei(nh)|≥ φ1 |Xi(nh)|+φ2}. (3.5)

Positive scalars φ1 and φ2 are the ET constants to be designed and ei(nh) = xi(nh)−
xi(nikh) is the state error (also known as the measurement error). In fact, ei(nh)
is the difference between the most recently transmitted state xi(nikh) and the state
value at sample n, i.e., x(nh).
Remark 3.1 (Zeno behaviour). It should be noted that in a sampled-date event-
triggering mechanism (such as CEASE) any two consecutive events are lower-bounded

2With h as the sampling period, n2
3h, for example, denotes the instant when the 4th event is

triggered at node 2.
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by at least one sampling period h. Therefore, Zeno-behaviour is avoided in such a
scheme and no further analysis is needed in this regard. The exclusion of Zeno
behaviour is not trivial if the event detection process needs continuous-time measure-
ments and monitoring [111]. In chapter 4, necessary analysis for exclusion of the
Zeno-behaviour for implementation of PEC will be given.

Consensus analysis in CEASE is mainly based on the input-to-state stability of a
converted system. The definition of Input-to-State Stability is given below.

Definition 1 (Input-to-State Stability [107]). A dynamical system with state x(t)
and input v(t) is input-to-state stable (ISS) if there exist a class KL function f1 and
a class K function f2 such that ‖x(t)‖ ≤ f1(‖x(0)‖ , t) + f2(‖v(t)‖∞), ∀t ≥ 0, where
‖.‖∞ denotes the L∞ norm.

3.2.2 Design objectives
It is clear from (3.5) that extremely small values for φ1 and φ2 lead to detection
of events on almost every samples. In this case, the ET scheme reduces to a mere
sampled-data scheme. On the other hand, an extremely large value for φ1 may en-
danger the closed-loop stability due to lack of sufficient state exchanges. Therefore,
a proper value for φ1 which efficiently reduces the number of event-triggerings is of
great importance. From (3.5), it can be noticed that a larger value for parameter φ2
increases the ET threshold. Hence, a fewer number of transmission is expected with
a larger φ2. In return, increasing the value of φ2, as will be shown later, increases
the consensus steady-state error. From a control point of view, the value of control
gain K impacts the convergence rate. A large value for K accelerates the consensus
convergence. However, it forces undesirable large control inputs. It can be shown
that a higher value for K leads to a higher frequency of event-triggerings as well. The
design objectives in CEASE are summarized as follows:

• Guarantee a predefined exponential rate for consensus convergence;

• Include an objective function in the parameter design optimization to reduce
the number of event-triggerings, reduce the control input effort, and reduce the
steady-state error from average consensus;

• Preserve the distributed nature of the MAS in the design stage. In other words,
the optimization stage for computing unknown parameters should be performed
in a distributed fashion.

• Computational complexity of the optimization is desired to be irrespective of
the network size N .
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3.2.3 Closed-loop multi-agent system
Define the following global vectors

x(t) = [x1(t), . . . , xN(t)]T , x̂(nh) = [x̂1(nh), . . . , x̂N(nh) ]T ,
u(t) = [u1(t), . . . , uN(t)]T , e(nh) = [e1(nh), . . . , eN(nh)]T . (3.6)

Based on (3.6), it holds that e(nh) = x̂(nh)−x(nh). Combining (3.3) with (3.1)
leads to the following augmented MAS

ẋ(t) = −K L (x(nh) + e(nh)) , nh≤ t< (n+1)h, (3.7)

where L is the Laplacian matrix. The next section converts the consensus problem
into an equivalent stability problem.

3.2.4 Consensus to stability conversion
A commonly used approach to guarantee consensus in (3.7) is to convert the consensus
problem to an equivalent stability problem. To this end, the following vector [107] is
defined

r(t) = x(t)− x̄(t)1N . (3.8)

Recall that x̄(t) = 1
N

1TNx(t). From Assumption 1 it holds that 1TNL= 0TN . Addition-
ally, for a connected symmetric network, one can verify that ˙̄x(t) = 0. Since ˙̄x(t) = 0, it
is concluded that x̄(t) = x̄(0). In other words, if ‖r(t)‖ → 0, then ‖x(t)−x̄(t)1N‖ → 0
which leads to average consensus. Therefore, the average consensus for (3.7) is equiv-
alent to the stability for the system expressed by r(t). Using transformation (3.8),
system (3.7) is converted to the following system

ṙ(t) =−KL(r(nh) + e(nh)), nh ≤ t < (n+ 1)h. (3.9)

Note that expression r̂(nh) = x̂(nh) − x̄(nh)1N holds for system (3.9). To enhance
readability, in the remaining section subscript n is used to denote the argument (nh),
e.g., rn = r(nh).

3.2.5 Parameter design
Given desired values for sampling period h and the set-valued ET constant φ2, the
following theorem gives sufficient conditions to compute the optimal values for control
gain K and ET threshold φ1 with respect to a proposed objective function. These
values, collectively, guarantee a bounded ζ-exponential rate of consensus convergence
for (3.7). The largest (λN) and the second smallest (λ2) eigenvalues of the Laplacian
matrix are required in the parameter optimization which can be computed distribu-
tively (with arbitrary accuracy) as follows.
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Distributed computation of Laplacian eigenvalues

To compute λ2 and λN (which is required in optimization (3.11)) in a distributed
manner, the proposed approaches in [112–114] are suggested. Based on [112], all
eigenvalues of the Laplacian matrix (including λ2 and λN) can be computed locally.
The maximum eigenvalue λN can be computed using [113, Section 4]. Additionally,
the Fiedler value (λ2) can be computed distributively from the algorithm summarized
in [114, Table 1]. The proposed algorithms in [113] and [114] are scalable with respect
to the network size N , i.e., the per-node computational complexity does not grow pro-
portionally with an increase in the value of N . For ease of reference, Algorithm 3.4
(given in section 3.6.1) is provided to summarize the main steps for computing all
eigenvalues and eigenvectors in a distributed fashion with arbitrary accuracy. Algo-
rithm 3.4 is derived from on [112].
Theorem 3.1. Given desired values for exponential convergence rate ζ, sampling pe-
riod h, and set-valued ET threshold φ2, consensus parameters {K , φ1} are calculated
from

K = p−1µ, φ1 =
√
α−1γ−1. (3.10)

These values are conditioned on the existence of positive scalars p, α, ε1, ε2, µ, and γ
satisfying the following convex minimization problem

min
p,α,ε1,ε2,µ,γ

F = µ+ α + γ − p, (3.11)

subject to : Ξ =
[
Ξ11 Ξ12
∗ Ξ22

]
< 0. (3.12)

The undefined terms in (3.12) are listed below

Ξ11 =

−2µλ2 + 2ζp 0
√

2λN
∗ −α + (ε1 + ε2)λ2

N

√
2λN

∗ ∗ −γ

, Ξ12 =
hµλN hµλN µ 2hζµ
hµλN hµλN 0 0

0 0 0 0

,
Ξ22 = diag(−h2p,−

1
2ζ p,−ε1,−ε2).

For any initial vector r(0), design parameters {K , φ1} computed from (3.10), stabilize
system (3.9) at the given ζ-exponential rate satisfying the following ISS condition with
respect to r(t)

‖r(t)‖< e−ζt‖r(0)‖+C, (3.13)

where C =
√

α
ζ
φ2 is the steady-state consensus error. The objective function F reduces

the number of event-triggerings, the control effort, and the steady-state error.
Proof. Proof of Theorem 3.1 is given in Appendix, section 3.6.2.

Remark 3.2 (Logic of the objective function (3.11)). As mentioned previously, an
ideal objective function for CEASE would attempt to (i) Reduce the number of event-
triggerings (transmissions); (ii) Reduce the steady-state error from consensus; and
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Algorithm 3.1 CEASE
Input: Neighbouring connectivity information.
Output: Exponential rate of Convergence for Sampled-data Event-triggered Average-consensus.

Preliminary: Using a distributed algorithm such as Algorithm 3.4, each node computes λ2 and λN .
Using an average consensus the nodes agree on the value of the desired sampling period h and
exponential rate of convergence ζ. Each node chooses the set-valued threshold φ2.

Optimization and Parameter Design: (D1 – D2)
D1. Each node solves the minimization problem (3.11).
D2. Using the solution of (3.11), unknown parameters {K , φ1} are computed from (3.10).
Distributed Consensus Iterations: (C1 – C4)

C1. Each node transmits the initial state xi(0) to its neighbours.
C2. The state of agent i is excited by control law (3.3) using the K designed from D1.
C3. To determine the next triggering sample, condition (3.5) is locally monitored at t=nh (n ∈ N)

using the designed φ1 from step D1 and given φ2.
C4. Steps C2 and C3 continue until average consensus is achieved among the nodes. MAS trajecto-

ries satisfy (3.13).

(iii) Reduce the control effort. For given sampling period h and set-valued thresh-
old φ2, the optimization should increase the value of φ1 and decrease K to reduce
the number of event-triggerings and control effort. Motivated by the proposed ap-
proaches in [115, Section 3] and [116, Section 2.2], a linear scalarization method is
used to minimize the decision variables involved in obtaining K (i.e., p and µ) and
φ1 (i.e., α and γ). In fact, the proposed objective function F is a linear approxima-
tion of maximizing φ1 (by minimizing α and γ) and minimizing K (by minimizing µ
and −p). For given convergence rate ζ and set-valued threshold φ2, the objective
function also reduces the steady-state consensus error C =

√
α/ζφ2 by including α in

F. The corresponding coefficients to µ, α, γ, and p are considered equal so that K
and φ1 contribute equally in F. Alternatively, the objective function F can be modi-
fied as F = a1µ+ a2α+ a3γ− a4p, where ac, (1≤ c≤ 4), is a desired positive weighting
coefficient that differentiates the contribution of each variable in F.
Remark 3.3 (Computational complexity). The convex constrained optimization
(3.11) can be solved using the interior-point algorithms which iteratively approach the
optimal solution starting from the interior of the feasible set. Generally, the interior-
point computational effort required to solve a semi-definite programming (SDP) prob-
lem, such as (3.11), depends on two factors: (i) The number of iterations required to
approach the optimal point, and; (ii) The order of arithmetic operations required
for each iteration. Let dm denote ‘the highest dimension of the LMIs associated
with an SDP problem’, e.g., dm for (3.11) is the dimension of matrix Ξ and thus
dm = 7. Additionally, denote nv as the ‘total number of decision variables’ involved
in an SDP problem, e.g., nv = 6 for (3.11). According to [117, 118], in the worst-
case complexity the number of iterations required to solve an SDP problem grows
at the O(

√
Np |log εg|) with the problem size Np = max{dm, nv} and the duality gap

denoted by εg
3. For optimization (3.11), the problem size Np is not dependent on

3The duality gap εg is the difference between the values of optimal solution for the primal and

31



the network size N . Therefore, the number of interior-point iterations required for
solving (3.11) grows only with the desired accuracy. As for the order of arithmetic
operations required in each iteration, the structure of the matrix inequalities plays a
significant role. Ignoring special matrix structures (such as sparsity), each iteration
in solving an SPD problem requires on the order of max{d3

m, d
2
mnv, Cd} operations,

where Cd is the cost of evaluating the first and second derivatives of the objective
and constraint functions [120, Section 1.3]. That being said, the complexity of total
arithmetic operations required to solve (3.11) is also irrespective of N .

Remark 3.4 (Other forms of threshold φ2). It should be noted that any function f
that satisfies f ≤ φ2, ∀t ≥ 0, can be utilized instead of the constant threshold φ2. One
interesting candidate for f is a decaying exponential term in the form of f0 =φ2e

−ct,
where c is a desired decaying rate. There exists a trade-off between f0 and φ2
in terms of transmission savings and consensus error. Since φ2 ≥ f , ∀t ≥ 0, the
constant threshold φ2 is more efficient in reducing the number of transmissions that f0.
However, f0 is a vanishing term and does not lead to consensus error.

The next section considers state quantization within the framework of CEASE.

3.3 Q-CEASE
In the context of ETC it is often assumed that the information can be transmitted with
infinite precision. In practice, however, the information is quantized to a finite number
of levels [73]. It is, therefore, necessary to consider quantization of the states before
transmission. This section proposes a quantized implementation for collaborative,
event-triggered, average consensus with sampled data (Q-CEASE).

Different from CEASE, in Q-CEASE (as shown in Fig. 3.3) an additional block
is included for quantization of the events before transmission. The parameter design
approach in Q-CEASE is based on analytic upper-bounds of the Lyapunov function.
Therefore, no parameter optimization is developed for Q-CEASE.

3.3.1 Problem statement
A uniform quantizer q(·) : R → δZ with a quantization level δ > 0 is defined by
q(x) = bxδ−1 + 0.5cδ, where the operation b·c is the greatest integer less than or
equal to the argument. For a uniform quantizer with quantization level δ, it holds
that | q(x)− x | ≤ 0.5 δ, [121].

A uniform quantizer (with quantization level δ) is incorporated at each node to
quantize the state value before being transmitted. Using the quantized values of the
most recent events, the following control signal is generated to enable consensus at

dual SDP problems. This parameter is usually used as an indication of accuracy in solving SDP
problems. See [119] for more details.
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Figure 3.3: Proposed Q-CEASE for node i, iteration n, and the previously quantized
event q(xi(nikh)). Compared to CEASE, the shaded quantization block adds an additional level
of complexity.

node i

ui(t) = −Xq
i (nh), (1 ≤ i ≤ N), (3.14)

where Xq
i (nh) = ∑

j∈Ni aij( q(x̂i(nh))− q(x̂j(nh)) ) is the quantized disagreement value
for node i. Based on the definition of the uniform quantizer, it holds that q ( x̂i(nh) ) =
x̂i(nh) + δ̃i(nh), where | δ̃i(nh) |≤ 0.5 δ. The disagreement value Xq

i (nh) is also used
by the event detector. For a given event instant t=nikh, the next event for agent i is
triggered at t=nik+1h, with nik+1 satisfying the following ET condition

nik+1 = min
n
{n | n > nik, |ei(nh)|≥ φ |Xq

i (nh)|}, (3.15)

where ei(nh) = x̂i(nh)− xi(nh) is the state error for node i. Scalar φ > 0 is the ET
thresholds to be designed.

Consider the global vectors in (3.6). Additionally, let δ̃(t) = [ δ̃1(t), . . . , δ̃N(t) ]T.
Combining (3.1) with (3.14) leads to the following closed-loop system

ẋ(t) = −L q ( x̂(nh) ), (3.16)

where L is the Laplacian matrix. Using transformation (3.8), system (3.16) is con-
verted to ṙ(t) = ẋ(t) =−L q ( x̂(nh) ). It then follows that

ṙ(t) = −Lq (x(nh) + e(nh)) = −L
(
x(nh)+e(nh)+δ̃(nh)

)
=−L ( r(nh) + x̄(0)1N + e(nh) + δ̃(nh) ). (3.17)

Since x̄(0)L1N = 0, the following expression holds from (3.17)

ṙ(t) =−L ( r(nh) + e(nh) + δ̃(nh) ). (3.18)

Next, the operating regions for h, φ, and δ that collectively guarantee an exponential
rate for bounded consensus are computed. Moreover, the worst-case error from the
average consensus value is calculated.

Theorem 3.2. Given a desired convergence rate ζ, if the selected values for the
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sampling period h and ET threshold φ satisfy h < hmax and φ < φmax, where

hmax = λ2 − ζ
λ2
N

, φmax = c1 −
√
c2

2λNc3
, (3.19)

with

c1 = 2λ2 + λN + 2ζhλN − 2ζ, c2 = 8h2ζλ3
N + 4h2ζ2λ2

N + 4hλ3
N + 4hλ2λ

2
N + λ2

N ,

c3 =λ2 + λN − ζ + 2hζλN (3.20)

then, the states of the agents converge to the following set

{x(t) | ‖x(nh)− x̄(0)1N‖ ≤M}, (3.21)

with a least convergence rate ζ, where x̄(0) = 1/N ∑N
i= 1 xi(0) and M is the maximum

quantization error given below

M = 0.5
√
N(1− φ ‖L‖)λN

c3φ2 ‖L‖2 − c1φ ‖L‖+ (λ2 − ζ − hλ2
N)
δ. (3.22)

Proof. Proof of Theorem 3.2 is given in Section 3.6.3.

Remark 3.5 (Design trade-offs in Q-CEASE). The following features of Q-CEASE
are worth mentioning:

• If h→hmax, then φmax→0 and M→∞. On the other hand, for a given h,
if φ→φmax, then M→∞. Therefore, there is a trade-off between the selected
values for h and φ, and the maximum quantization error M . In general, param-
eter M in the selected region shown in Fig. 3.4 is a monotonically increasing
function with respect to all parameters h, φ, ζ and δ.

• If h→0 and ζ→0, the proposed Q-CEASE algorithm reduces to [121] where an
asymptotic convergence without sampling is studied. In this case, i.e., {h, ζ}→0,
the operating region for φ would be φ< λ2

λN (λ2+λN ) .

• The desired consensus convergence rate must satisfy ζ <λ2. Otherwise, h would
be negative (see (3.19)). This is consistent with the widely known fact that the
consensus convergence rate is higher than or equal to λ2, [4].

• For a finite combination of networks with fixed N , the Q-CEASE algorithm can
be operated based on a switching network topologies. In this case, λ2 should
be chosen less than or equal to the minimum of the second smallest eigenval-
ues, and λN greater than or equal to the maximum of maximum eigenvalues.
The design parameters need not to be recomputed for networks with switching
topologies.
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Algorithm 3.2 Q-CEASE
Input: Neighbouring connectivity information.
Output: Sampled-data Event-triggered Average-consensus with Quantized transmission and guar-

anteed convergence.
Preliminary: Using a distributed algorithm such as Algorithm 3.4, each node computes λ2 and λN .
Parameter Design Select the quantization level δ. Select the sampling period h and ET thresh-

old φ such that the conditions given in (3.19) are guaranteed.
Distributed Consensus Iterations: (C1 – C4)

C1. Each node transmits the initial state q(xi(0)) to its neighbours.
C2. The state of agent i is excited by control law (3.14).
C3. To determine the next triggering sample, condition (3.15) is locally monitored at t=nh (n ∈ N)

using the designed values for φ.
C4. Steps C2 and C3 continue until average consensus is achieved among the nodes. MAS trajecto-

ries satisfy (3.21).

3.4 DEASE
One important area that still needs improvement is the efficiency of the ET scheme
in reducing the number of transmissions. On the other hand, CEASE and Q-CEASE
produce steady-state error in consensus, which is not desirable. As one of the most
advanced ET schemes, dynamic event-triggering (DET) has recently been proposed
in [74–76]. In DET, an internal dynamic variable is included as an additional threshold
to the state-dependent ET threshold. As shown in Remark 3.7, a wide range of ET
schemes considered in literature are special cases of the DET scheme. One interesting
feature of the DETs is that their inter-event interval can be longer than the so-called
static ET schemes. At the same time, consensus can still be reached using DET
without introducing steady-state errors. It should be noted that continuous-time
measurement and event monitoring is required in DET schemes [74–76] which is not
desirable. Additionally, no optimization approach has been studied for sampled-data
dynamic event-triggered consensus.

Following the previous implementations, a distributed dynamic event-triggering
average consensus algorithm with sampled-data (DEASE) is proposed in this section.
DEASE is expected to save more transmissions as compared to CEASE and Q-CEASE
with no consensus error. In other words, the consensus error is DEASE asymptotically
approaches zero.

3.4.1 Problem statement
Consider the first-order MAS given in (3.1). The MAS (3.1) is configured as an
undirected (symmetric) connected network.

Similar to previous implementations, notation ni0h, n
i
1h, . . . denotes the time se-

quence at which events are detected and transmitted by node i. The following control
protocol is used at node i to reach average consensus

ui(t) = − Xi(nh), nh ≤ t < (n+1)h, (3.23)

35



where Xi(nh) =∑
j∈Ni ai,j (xj(njkh)− xi(nikh)). Let ei(nh) = xi(nikh)− xi(nh) be the

state error for node i. Given the most recent event instant nikh, the next event for
node i is triggered at nik+1h, with nik+1 satisfying the following DET condition

nik+1 = min
n∈N
{ n>nik | φ1e

2
i (nh) ≥φ2X2

i (nh) + η2
i (nh)}, (3.24)

where φ1 > 0 and φ2 > 0 are design parameters. Parameter ηi(t), ∀i∈V , satisfies the
following equation

η̇i(t) = − ηi(t) + φ3|Xi(nh)|, (3.25)

where ηi(0)> 0, and scalar φ3 > 0 is another design parameter.

Remark 3.6 (On the nature of ηi(t)). Based on (3.25) parameter ηi(t) is time-varying
and its dynamic updating protocol is related to the disagreement vector Xi(nh) and
a negative self-feedback. Intuitively, ηi(t) can be regarded as a linear first-order
filtered value of |Xi(nh)|. Compared to the so-called static ET strategies (such as
e2
i (nh) ≥ φ1X2

i (nh), [122]), the introduction of ηi(t) is a key element to regulate
threshold (3.24) dynamically and in better connection with the agents disagreements.
As shown in [123, Prop. 2.3], including parameter ηi(t) in (3.24) reduces the number
of transmissions compared to the static ET schemes. As a final note, since ηi(t)
follows a dynamic equation, it acts as an auxiliary state along with state xi(t). Thus,
as observed later in Theorem 3.3, ηi(t) impacts the consensus convergence rate.

Remark 3.7 (Special cases of DET (3.24)). Many existing ET schemes that are
widely used in the literature are special cases of DET (3.24). For example,

S1 If φ3 = 0, the dynamic threshold ηi(t) would simply be a decreasing exponential
term ηi(t) = ηi(0) exp(−t) which is irrespective of the system dynamics. In this
case, DET condition (3.24) reduces to φ1e

2
i (nh) ≥ φ2X2

i (nh) + η2
i (0) exp(−2t)

which is similar to the ET scheme considered in [124].

S2 If φ2 =φ3 = 0, the disagreement term Xi(nh) is disregarded. DET condition (3.24)
reduces to φ1e

2
i (nh) ≥ η2

i (0) exp(−2t) which is similar to [111].

S3 If ηi(t) = 0, (∀t ≥ 0), then the DET condition is simplified to φ1e
2
i (nh) ≥ φ2X2

i (nh),
which is analogous to [122].

S4 As another special case, if the dynamic threshold equals a constant (i.e., ηi(t) = c,
∀t ≥ 0), the DET condition (3.24) reduces to φ1e

2
i (nh) ≥ φ2X2

i (nh) + c2, which is
similar to CEASE and [35].

In many ET schemes such as CEASE [77] and [35], event-triggered consensus is
only reached within a bounded error However, the DET scheme (3.24) do not cause
any steady-state error.

Remark 3.8 (Benefits of co-design optimization). The DET scheme (3.24) is based
on multiple unknown gains (scalars φ1, φ2, and φ3). A generic approach to design
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these parameters is of great interest. The emulation-based approaches [75, 76, 125]
derive some bounded regions for unknown DET gains. Even when the feasible regions
for design parameters are obtained, selecting proper operating values that efficiently
save transmissions is still difficult and requires trial and error. It will be observed in
Theorem 3.3 that the proposed co-design optimization simultaneously computes the
exact values for unknown DET gains based on an objective function which increases
the minimum inter-event time.

Impact of design parameters on expected number of transmissions

The values of φ1, φ2, and φ3 impact the inter-event-time and hence the intensity of
transmissions. From (3.24), it is clear that small values for φ1 and a large value for φ2
help in reducing the number of events. The value of φ3 play an important role in the
trajectory of ηi(t). With a higher value for φ3, disagreement |Xi(nh)| is more involved
in (3.25) and parameter ηi(t) tends to vanish more slowly. Therefore, parameter ηi(t)
can contribute longer to (3.24) with a higher value for φ3. In summary, the average
inter-event-time is increased (i.e., the expected number of transmissions is reduced)
with properly small values for φ1 and large values for φ2 and φ3.

Design objectives

The following design objectives are considered in DEASE:

• Compute unknown parameters φ1, φ2, and φ3 in a co-design setup.

• Incorporate an objective function to increase the inter-event time and improve
efficiency of DET (3.24).

3.4.2 Closed-loop system
Define the following global vectors

x(t) = [xT1 (t), . . . , xTN(t)]T , x̂(t) = [x̂T1 (t), . . . , x̂TN(t)]T , e(t) = [eT1 (t), . . . , eTN(t)]T ,
η(t) = [η1(t), . . . , ηN(t)]T , X(t) = [XT

1 (t), . . . ,XT
N(t)]T , X̄(t) = [ |X1(t)|, . . . , |XN(t)| ]T ,

ē(t) = [ |e1(t)|, . . . , |eN(t)| ]T . (3.26)

The closed-loop MAS from (3.1) and (3.23) is given below

ẋ(t) = −L(x(nh) + e(nh)), t ∈ [nh, (n+1)h). (3.27)

Let d(t), t−nh represent an artificial time-varying time-delay that satisfies 0 ≤
d(t) < h. Using d(t), system (3.27) is given below for the interval nh≤ t< (n+1)h.

ẋ(t) = −L (x(t−d(t)) + e(t−d(t))) , (3.28)

with x(t) =x(0) for −h ≤ t ≤ 0. One approach to guarantee consensus in (3.28) is
to convert it to an equivalent system by eigenvalue and eigenvector decomposition
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of L. There exists an orthogonal matrix V = [vi,j]∈RN×N such that V JV −1 =L,
where J = diag(0, λ2, . . . , λN). Let V −1 = [ṽi,j]. From V −1, denote the (N−1)×N
dimensional matrix Ṽ = [ṽi,j], 2≤ i≤N , 1≤ j≤N . In words, Ṽ includes rows 2
to N of matrix V −1. Now, the following transformation is considered

r(t) = Ṽ x(t). (3.29)

It is proved in [100, Theorem 1] that consensus is achieved in (3.28) if limt→∞ r(t) = 0.
Using (3.29), system (3.28) is converted to

ṙ(t) = − J̃ r(t−d(t))− J̃ Ṽ e(t−d(t), (3.30)

where J̃ = diag(λ2, . . . , λN). In summary, the parameter design for DET (3.24) is
based on stabilization of (3.30).

3.4.3 Parameter design
This section develops an LMI optimization that simultaneously computes all unknown
DET parameters. The optimization requires all the eigenvalues and eigenvectors
of the Laplacian matrix L, which can be computed in a distributed fashion using
Algorithm 3.4.

Theorem 3.3. Given a desired sampling period h, DET parameters φ1, φ2, and φ3
are computed from the following LMI constrained optimization

min F = θ1 + θ2 + θ3, (3.31)

subject to:

Π =


π11 π12 −F1 P1 −H1 −H1J̃ Ṽ
∗ π22 −F2 −H2J̃ −H3 π25
∗ ∗ −Q1 0 0
∗ ∗ ∗ π44 −H2J̃ Ṽ
∗ ∗ ∗ ∗ π55

< 0, (3.32)

Ψ =


ψ11 ψ12 −W1 P2 − 2I
∗ ψ22 −W2 0
∗ ∗ −Q2 0
∗ ∗ ∗ ψ44

< 0, (3.33)

C1 =
[
Y F
∗ Z1

]
≥ 0, C2 =

[
Y G
∗ Z1

]
≥ 0, C3 =

[
U W
∗ Z2

]
≥ 0, C4 =

[
U E
∗ Z2

]
≥ 0,

C5 =
[
−θ1 φ1
∗ −1

]
< 0, C6 =

[
θ2 1
∗ φ2

]
> 0, C7 =

[
θ3 1
∗ φ3

]
> 0, (3.34)

with the following decision variables

• Positive scalars φ1, φ2, φ3, θ1, θ2, θ3;

• (N−1)×(N−1) dimensional matrices P1 > 0, Q1 > 0, Z1 > 0, and (N×N) dimen-
sional matrices P2 > 0, Q2 > 0, Z2 > 0;
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• (N−1)×(N−1) dimensional matrices H1, H2, H3, Y11, Y12, Y22, F1, F2, G1, G2,
and N×N dimensional matrices U11, U12, U22, W1, W2, E1, E2.

Unknown block matrices in (3.32)-(3.34) are defined below

π11 =Q1 +G1 +GT
1 + hY11, π12 =F1 −G1 +GT

2 + hY12 −H1J̃ ,

π22 =F2 + F T
2 −G2 −GT

2 + hY22 − J̃H3 −HT
3 J̃ + J̃2(φ2 + 2φ3),

π25 =−H3J̃ Ṽ +(φ2 + 2φ3)J̃2Ṽ , π44 =hZ1 −H2−HT
2 ,

π55 = − φ1I + 2λ2
Nφ3I + λ2

Nφ2I, ψ11 =Q2 +E1 +ET
1 + hU11 − 2I + φ3I,

ψ12 =W1 −E1 +ET
2 + hU12, ψ22 =W2 +W T

2 −E2 −ET
2 + hU22 + I,

ψ44 =hZ2 − 2I + φ3I,

Y =
[
Y11 Y12
∗ Y22

]
, U =

[
U11 U12
∗ U22

]
, F = [F T

1 F T
2 ]T ,

G= [GT
1 G

T
2 ]T , W = [W T

1 W T
2 ]T , E= [ET

1 E
T
2 ]T .

The objective function F decreases the value of φ1 and increases the values of φ2 and
φ3 which together reduce the number of transmissions. In particular, the following
bounds are guaranteed

φ1≤
√
θ1, φ2≥

1
θ2
, φ3≥

1
θ3
. (3.35)

Proof. Proof of Theorem 3.3 is given in Appendix, Section 3.6.4.

Remark 3.9 (On weighting coefficients for the objective function). In objective func-
tion (3.31), the weights for decision variables θc, (1≤ c≤ 3), are all set at 1. In other
words, all DET parameters are treated equally in increasing the inter-event time.
Similar to CEASE, one can revise (3.31) to F = w1θ1 + w2θ2 + w3θ3 with positive
weighting coefficients wi, (1≤ i≤ 3), satisfying ∑3

i= 1 wi = 1. These weights can dif-
ferentiate the contribution of each design variable in the optimization and impact the
events density and convergence rate.

Remark 3.10 (Conservation in CEASE and DEASE). The co-design framework in
Theorem 3.3 is based on a delay-dependent Lyapunov-Krasovskii functional (LKF)
with improved free weighting matrices (IFWM). It is generally known that the IFWM
technique (compared to other techniques such as FWM) preserves useful terms in the
derivative of the LKF and incorporates the relationships among the time-varying
delay d(t), its upper bound h, and their difference, which result in less conservative
parameters. For further information refer to [126, Chapter 3]. The same observation is
made in Chapter 7, as Theorem 3.3 computes efficient values for unknown parameters
of DET (3.24) with large given sampling periods h. It should be noted that the
Lyapunov function used to develop CEASE is delay-independent. Additionally, the
time-varying delay d(t) is approximated by its upper bound h. Therefore, CEASE is
more conservatives than DEASE in terms of transmission savings.
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Algorithm 3.3 DEASE
Input: Neighbouring connectivity information.
Output: Dynamic event-triggered Average-consensus with Sampled-data

Preliminary: Using a distributed algorithm such as Algorithm 3.4, each node computes all eigen-
values and eigenvectors of the Laplacian matrix. Using an average consensus the nodes agree on
the value of the desired sampling period h.

Optimization and Parameter Design: (D1 – D2)
D1. Each node solves the minimization problem (3.31).
D2. Using the solution of (3.31), unknown parameters for DET (3.24) (i.e., φi, 1≤ i≤ 3) are com-

puted.
Distributed Consensus Iterations: (C1 – C4)

C1. Each node transmits the initial state xi(0) to its neighbours. Each node selects an initial
value ηi(0) for the dynamic threshold (3.24).

C2. The state of agent i is excited by control law (3.23).
C3. To determine the next triggering sample, condition (3.24) is locally monitored at t=nh (n ∈ N)

using the designed values for φi, (1≤ i≤ 3), from step D1.
C4. Steps C2 and C3 continue until average consensus is achieved among the nodes.

Remark 3.11 (Comparison between CEASE and DEASE). Unlike CEASE, where
the computational complexity of the proposed optimization does not grow with the
network size N , dimensions of some LMIs in DEASE grow as N is increased. There-
fore the computational intensity of solving (3.31) increases with N . As mentioned in
Remark 3.3, the highest number of iterations required to solve (3.31) grows at the
O(
√
Np |log εg|) with the problem size Np = max{dm, nv} and the duality gap denoted

by εg. Note that dm is ‘the highest dimension of the LMIs associated with the opti-
mization problem’ and nv is the ‘total number of decision variables’ involved. Both
parameters are dependent to the network size N . The order of arithmetic operations
required in each iteration is max{d3

m, d
2
mnv, Cd}) with Cd the cost of evaluating the

first and second derivatives of the objective and constraint functions. Therefore, the
complexity of total arithmetic operations required to solve (3.11) grows at the O(N3).
In return, the performance of DEASE in terms of transmission savings is expected to
be higher than CEASE. Additionally, DEASE (unlike CEASE) does not produce any
steady-state error in consensus.

The proposed DEASE algorithm is summarized in Algorithm 3.3.

3.5 Summary
Based on the research gaps observed in existing ETC literature, this chapter proposes
some ETC implementations, namely, (CEASE [77], Q-CEASE [78], and DEASE) for
multi-agent systems (MAS) with first-order dynamics. The objective of all imple-
mentations is to achieve average consensus based on only sampled measurements and
reducing the information exchanges by means of ET schemes.

CEASE uses the theory of convex optimization and linear matrix inequalities
(LMIs) to develop a sampled-data event-triggering average consensus with optimal
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Table 3.1: Comparison of different proposed ETC implementations.

Characteristics CEASE [77] Q-CEASE [78] DEASE

Transmitter scheme Sampled-data
Event-triggered

Sampled-data
Event-triggered

Sampled-data
Event-triggered

Receiver scheme Periodic Periodic Periodic
Measurement scheme Periodic Periodic Periodic

Control scheme Sampled-data
Event-triggered

Sampled-data
Event-triggered

Sampled-data
Event-triggered

Event monitoring Periodic Periodic Periodic
Optimization for
Design Parameters Yes No Yes

Steady-state error Yes Yes No
State Quantization No Yes No
Control gain Design Yes No No

Computation Complexity
of Parameter Design Medium Low High

Relative expected
number of transmissions Medium Medium Low

Network Topology Undirected Undirected Undirected

consensus parameters (i.e., a control gain and a transmission threshold). The opti-
mization stage in CEASE can be performed in a distributed manner. Additionally,
the computational complexity of CEASE does not grow with the network size. In
CEASE, no quantization is considered in the implementation and precise values of
the states are used for transmission. Q-CEASE considers a more realistic scenario
where information exchanges between the neighbouring nodes are quantized. The
parameter design approach in Q-CEASE is based on analytical manipulation of the
Lyapunov functional. Thus, no LMI optimization is considered in Q-CEASE. Re-
quired parameters in Q-CEASE can be chosen within an operational range of values.

DEASE incorporates a dynamic event-triggering (DET) scheme which is more
general and more efficient that the one used in other implementations. Parameter
design in DEASE in based on a convex optimization. In DEASE, a delay-dependent
Lyapunov-krasovskii functional (LKF) is used which results in less conservative pa-
rameters compared to CEASE. Additionally, DEASE does not produce steady-state
error for consensus.

Table 3.1 lists the proposed ETC implementations and compares them in terms
of their different characteristics. According to Table 3.1, each implementation offers
some advantages and has some shortcomings. Based on the desired application, one
can choose the suitable implementation.

3.6 Appendix
Proofs of the Theorems developed in this chapter are given in this appendix.
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Algorithm 3.4 [112]. Distributed computation of Laplacian eigenvalues
and eigenvectors.

Input: Neighbouring set Ni and network size N .
Output: Local computation of Laplacian eigenvalues and eigenvectors.
I. Initialization: (I1 – I4)

I1. Node i, (∀i∈V), denotes row vector ei ∈ R1×N , where entry i in ei equals 1 and all other entries
are zero.

I2. Node i, (∀i∈V), sets bi = Li +N ei, where Li is row i of the Laplacian matrix L and N is the
network size.

I3. Matrix Zi(0) is initialized by node i, (∀i∈V), such that biZi(0) = ei.
I4. Node i, (∀i∈V), sets matrix Pi = IN − 1

bibT
i

bTi bi.

II. Update: (U1 – U2)
U1. Node i, (∀i∈V), updates Zi(k), (k ∈N), from

Zi(k+1) =Zi(k)− 1
|Ni|

Pi

|Ni|Zi(k)−
∑
j∈Ni

Zj(k)

 .

U2. Node i, (∀i∈V), updates matrix Zi(k) based on Step U1 until ‖Zi(k+1)−Zi(k)‖ ≤ εi, where εi
is the desired local computation accuracy.

III. Computation: (C1-C3)
C1. After Step U2, node i, (∀i∈V), computes all eigenvalues of Zi(k+1), denoted by λc(Zi),

(1≤ c≤N).
C2. Node i, (∀i∈V), computes λ̃[i]

c = 1
λc(Zi)−N for (1≤ c≤N). It holds that the set {λ̃[i]

c | 1 ≤ c ≤
N} is an estimate of the Laplacian eigenvalues at node i.

C3. Node i, (∀i∈V), computes the eigenvectors of Zi(k+1), which are estimated values of Laplacian
eigenvectors.

3.6.1 Distributed computation of Laplacian eigenvalues and
eigenvectors

First, Algorithm 3.4 is presented which computes the eigenvalues and eigenvectors of
the Laplacian matrix in a distributed manner. Note that the network size N which
is required in Algorithm 3.4 can be determined in a distributed manner from [127].

Before proceeding with the proof of Theorems, the following Lemmas which will
be used in the proofs are presented.

Lemma 1. Schur Complement [128].
Consider matrices X, Y , and Z with appropriate dimensions. The following two
statements are equivalent

X > 0, Y −ZX−1ZT > 0 ⇔
[
Y Z
∗ X

]
> 0.

Lemma 2. Young Inequality [129].
Given properly dimensioned matrices Z =ZT ,M , andN , the inequality Z+MTN+

42



NTM < 0 is satisfied, if and only if there exists a scalar ε > 0 such that Z+εMTM+
ε−1NTN < 0 holds.

3.6.2 Proof of Theorem 3.1
Proof of Theorem 3.1 is given below.

Proof. Consider the following Lyapunov candidate

V (t) = p rT (t) r(t). (3.36)

In what follows, the time evolution of r(t) in the interval nh≤ t< (n+1)h is considered
which is generated from (3.9)

ṙ(t) = −(t−nh)K L (rn + en) + rn. (3.37)

From (3.36) and (3.37), parameter V̇ (t) =Z + ZT is expanded, where

Z = ((t−nh)K 2p (rn+en))TLTL(rn+en)− rTn K pL(rn + en). (3.38)

Expression Z is upper-bounded by the following term

Z ≤hK 2 p λ2
N

(
rn + en

)T(
rn + en

)
−K p λ2r

T
n rn−K p rTn Len. (3.39)

From (3.36) and (3.37), the term 2ζV (t) is expanded as follows.

2ζV (t) = 2ζ p rTnrn + 2(t−nh)2ζK 2p
(
rn+en

)T
LTL

(
rn+en

)
−2(t−nh)ζK p

(
rn + en

)T
LTrn−2(t−nh)ζK p rTnL

(
rn + en

)
. (3.40)

Using the largest eigenvalue of L, the term 2ζV (t) is upper-bounded by

2ζV (t)≤ 2 ζ p rTn rn + 2ζh2λ2
NK 2p

(
rn+en

)T(
rn + en

)
− 2(t−nh)ζK p eTn L

Trn − 2(t−nh)ζK p rTn Len. (3.41)

From (3.39) and (3.41), the following inequality is derived

V̇ (t) + 2 ζ V (t) ≤ τ T Ξ̄1τ , (3.42)

where τ=[ rTn , eTn ]T and

Ξ̄1=
[
(2ζp−2K pλ2 + ξ1 + ξ2)I (ξ1 + ξ2)I + ξ3 + ξ4

∗ (ξ1 + ξ2)I

]
, (3.43)

with ξ1 = 2hK 2pλ2
N , ξ2 = 2ζh2K 2pλ2

N , ξ3 =−K pL, and ξ4 =−2 (t−nh) ζK pL. At
this stage, the ET constraint (3.5) should be included with Ξ̄1. The quadratic form
of (3.5) can be viewed as follows

eTn en ≤ ( en + rn )T2φ2
1 λ

2
N( en + rn ) + 2φ2

2, (3.44)
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The ET constraint (3.44) is re-arranged to α(τ T Ξ̄2 τ + 2φ2
2)≥ 0, where α > 0 and

Ξ̄2 =
[
2φ2

1λ
2
NI 2φ2

1λ
2
NI

∗ −I + 2φ2
1λ

2
NI

]
.

By including α(τ T Ξ̄2 τ + 2φ2
2)≥ 0 in (3.43), inequality (3.42) is revised to

V̇ (t) + 2 ζ V (t) ≤ τ T Ξ̄3τ + 2αφ2
2, (3.45)

where

Ξ̄3=
[
(2ζp−2K pλ2 + ξ1 + ξ2)I + 2αφ2

1λ
2
NI (ξ1 + ξ2)I + ξ3 + ξ4 + 2αφ2

1λ
2
NI

∗ (ξ1 + ξ2)I − αI + 2αφ2
1λ

2
NI

]
.

Based on (3.45), if Ξ̄3 < 0 then the ISS stability for r(t) given in (3.13) is guaran-
teed. To guarantee Ξ̄3 < 0, the following matrix inequality is developed by applying
multiple times Schur complement (Lemma 1) on Ξ̄3 < 0

Ξ̄4 =


(2ζp−2K pλ2)I ξ3 + ξ4

√
2αφ1λNI hK pλNI hK pλNI

∗ −αI
√

2αφ1λNI hK pλNI hK pλNI
∗ ∗ −αI 0 0
∗ ∗ ∗ −h

2pI 0
∗ ∗ ∗ ∗ − 1

2ζpI

<0.

Matrix Ξ̄4 is then pre- and post-multiplied by B= diag (I, I, α−1φ−1
1 I, I, I). The

block matrices ξ3 and ξ4 include matrix L which requires full knowledge of the
Laplacian matrix. Since ξ3 and ξ4 are located in an off-diagonal block entry, no
upper bounds can be used to replace these terms. In order to relocate ξ3 and ξ4 to
diagonal block entries, Ξ̄4 is re-organized in the following format

Ξ̄4 = Ξ̄5 + MT
1 N + N TM1 +MT

2 N + N TM2 < 0, (3.46)

where

Ξ̄5 =


(2ζp− 2K pλ2)I 0

√
2λNI hK pλNI hK pλNI

∗ −αI
√

2λNI hK pλNI hK pλNI
∗ ∗ −α−1φ−2

1 I 0 0
∗ ∗ ∗ −h

2pI 0
∗ ∗ ∗ ∗ − 1

2ζpI

 ,

M1 = [−K pI,0,0,0,0 ], N = [ 0,L,0,0,0 ], and M2 = [−2 (t−nh) ζK pI,0,0,0,0 ].
Twice using Lemma 2, inequality Ξ̄4 < 0 holds if and only if there exist positive scalars
ε1 and ε2 such that

Ξ̄5+ ε−1
1 MT

1M1 + ε−1
2 MT

2M2+ (ε1+ ε2) N TN < 0. (3.47)

Since non-zero entries of MT
1M1, MT

2M2, and N TN are now located in diago-
nal block entries, proper upper bounds are used to develop the following inequality
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from (3.47)

Ξ̄5 + ε−1
1 MT

1M1 + ε−1
2 M̄T

2M̄2 + (ε1+ ε2) N̄ TN̄ < 0. (3.48)

where M̄2=[ 2hζK pI,0,0,0,0 ] and N̄ =[0, λNI,0,0,0 ]. For better illustration, ex-
pressions (3.48) is expanded in what follows

ξ5 0 λNI hK pλNI hK pλNI
∗ −αI + (ε1 + ε2)λ2

NI λNI hK pλNI hK pλNI
∗ ∗ −α−1φ−2

1 I 0 0
∗ ∗ ∗ −h

2pI 0
∗ ∗ ∗ ∗ − 1

2ζpI

< 0, (3.49)

where ξ5 = (2ζp− 2K pλ2)I + (K p) ε−1
1 (K p)I + (2hζK p) ε−1

2 (2hζK p)I. To linearize
the two terms (K p) ε−1

1 (K p)I and (2hζK p) ε−1
2 (2hζK p)I, Lemma 1 is used twice

for (3.49), which leads to

(2ζp−2K pλ2)I 0
√

2λNI hK pλNI hK pλNI K pI 2hζK pI
∗ −αI+(ε1+ε2)λ2

NI
√

2λNI hK pλNI hK pλNI 0 0

∗ ∗ −α−1 φ−2
1 I 0 0 0 0

∗ ∗ ∗ −T2 pI 0 0 0

∗ ∗ ∗ ∗ − 1
2ζ pI 0 0

∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ 0 −ε2I

< 0. (3.50)

The matrix inequality Ξ< 0 in (3.12) is then obtained from (3.50) by using alternative
variables γ=α−1φ−2

1 and µ= K p, and removing identity block matrices from all rows
and columns.

Motivated by [115], a linear objective function which optimizes the decision vari-
ables involved in obtaining K and φ1, i.e., p, µ, α, and γ, is incorporated with Ξ< 0.
Based on the proposed change of variables, the values of γ and α should be restricted
to enlarge φ1. On the other hand, one should restrict µ and enlarge p to restrict K .
Therefore, the proposed objective function F considers minimizing γ, α, and µ, and
maximizing p in a summation. Once the optimization problem with feasible outputs
is solved, optimal consensus parameters with respect to the objective function (3.11)
are obtained from (3.10) and that completes the proof.

3.6.3 Proof of Theorem 3.2
Proof. To develop the ζ-exponential stability conditions for system (3.18), the follow-
ing inequality is considered

V̇ (t) + 2ζV (t) < 0, (3.51)

where V (t) = 0.5 rT(t) r(t) is a Lyapunov candidate. If (3.51) is guaranteed, then it
holds that

0.5 ‖r(t)‖2≤V (t)<V (0) e−2ζt ≤ 0.5 e−2ζt‖r(0)‖2. (3.52)
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Thus, ‖r(t)‖ ≤ e−ζt ‖r(0)‖ is guaranteed if inequality (3.51) holds. The time evolution
of r(t) in the interval nh≤ t< (n+1)h is considered which is generated from (3.18)

r(t) = −(t−nh)L
(
r(nh) + e(nh) + δ̃(nh)

)
+ r(nh). (3.53)

From (3.53), expression V̇ (t) is expanded in what follows

V̇ (t) = rT (t)ṙ(t) =−rT (nh)L
(
r(nh) + e(nh) + δ̃(nh)

)
+(t−nh)

(
r(nh)+e(nh)+δ̃(nh)

)T
LTL

(
r(nh)+e(nh)+δ̃(nh)

)
≤hλ2

N

(
‖r(nh)‖+ ‖e(nh)‖+ ‖δ̃(nh)‖

)2
− λ2 ‖r(nh)‖2

+ λN ‖r(nh)‖ ‖e(nh)‖+ λN ‖r(nh)‖ ‖δ̃(nh)‖. (3.54)

For the uniform quantizers, it holds that

‖δ̃(nh)‖≤ 0.5
√
Nδ. (3.55)

Between two consecutive events, one can obtain |ei(nh)|≤ φ |Xq
i (nh)| . This inequality

can be further revised in the global sense as ‖e(nh)‖ ≤ φ ‖Lq(x̂(nh))‖, or equivalently
‖e(nh)‖ ≤ φ

∥∥∥Lr(nh) +Le(nh) + Lδ̃(nh)
∥∥∥. Under φ≤ 1

‖L‖ , the former condition on
e(nh) leads to the following inequality

‖e(nh)‖ ≤ α ‖r(nh)‖+ 0.5α
√
N δ, (3.56)

where α= φ‖L‖
1−φ‖L‖ . Using (3.55), (3.56), and ignoring negligible terms that include

h2, δ2, hδ, and their higher order terms, expression (3.54) is upper bounded by the
following terms

V̇ (t) ≤
(
hλ2

N + 2αhλ2
N + α2hλ2

N − λ2 + αλN
)
‖r(nh)‖2

+ 0.5
√
N (α + 1)λNδ ‖r(nh)‖ . (3.57)

Likewise, 2ζV (t) is expanded and upper-bounded as below

2ζV (t) = ζ rT(t) r(t) ≤ (2αζhλN + ζ) ‖r(nh)‖2 . (3.58)

From (3.57) and (3.58), the following inequality holds for r(nh)6=0

V̇ (t) + 2ζV (t) ≤ 0.5
√
N (α + 1)λNδ (3.59)

+
(
α2hλ2

N+α(2hλ2
N+λN+2ζhλN)+ζ+hλ2

N−λ2
)
‖r(nh)‖ .

Next, parameter α is replaced in (3.59). Inequality (3.51) is guaranteed if condi-
tion ‖r(nh)‖ < M is guaranteed, where M is given in (3.22). It is clear that M
must be a positive scalar. With respect to φ, M has one zero at φ= 1

‖L‖ and tow
poles at φ= c1±

√
c2

2c3‖L‖ . Since c2 > 0, both poles are real values. It can be verified that
if h< (λ2−ζ)λ−2

N , then c1 >
√
c2 and the poles of M remain positive. Assuming

h< (λ2−ζ)λ−2
N , in Fig. 3.4 the sign of M is shown with respect to different ranges of φ.
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Figure 3.4: Operational range for φ for guaranteed convergence. ‘×’ and ‘◦’, respectively,
denote the poles and zeros of M .

According to Fig. 3.4, if 0≤φ< c1−
√
c2

2c3‖L‖ and h< (λ2−ζ)λ−2
N , then M is guaranteed to

remain positive for all t> 0. Since, the upper-bound for φ, i.e., c1−
√
c2

2c3‖L‖ , depends on
the global information ‖L‖, the largest eigenvalue (λN) should be used instead, and
that completes the proof.

3.6.4 Proof of Theorem 3.3
Proof of Theorem 3.3 is given below.

Proof. Necessary global parameters used in the proof are previously given in (3.26).
Consider the Lyapunov-Krasovskii functional V =V1 + V2, where

V1 = rT (t)P1 r(t) +
∫ t

t−h
rT (s)Q1 r(s)ds+

∫ t

t−h

∫ t

s
ṙT (v)Z1ṙ(v)dvds, (3.60)

V2 =ηT (t)P2 η(t) +
∫ t

t−h
ηT (s)Q2 η(s)ds+

∫ t

t−h

∫ t

s
η̇T (v)Z2η̇(v)dvds. (3.61)

Step I. (Time derivative of V ): The time derivative of V is obtained as follows

V̇1 = 2ṙT (t)P1r(t) + rT (t)Q1r(t)− rT (t−h)Q1r(t−h),

+ hṙT (t)Z1ṙ(t)−
(∫ t−d(t)

t−h
ṙT (v)Z1ṙ(v)dv +

∫ t

t−d(t)
ṙT (v)Z1ṙ(v)dv

)
, (3.62)

V̇2 =2η̇T (t)P2η(t) + ηT (t)Q2η(t)− ηT (t−h)Q2η(t−h),

+ hη̇T (t)Z2η̇(t)−
(∫ t−d(t)

t−h
η̇T (v)Z2η̇(v)dv +

∫ t

t−d(t)
η̇T (v)Z2η̇(v)dv

)
. (3.63)

Step II. (Incorporation of DET (3.24)): The global form of DET (3.24) is given
below 4

−φ1e
Te+ φ2 XT X + ηT η ≥ 0. (3.64)

Next, the term XT X is expanded. By definition, it holds that X=Lx̂. Consider-
ing that e= x̂−x and L= Ṽ †J̃ Ṽ , one obtains X=Le+ Ṽ †J̃ Ṽ x. Using trans-
formation (3.29), this equality can be further revised as X= Ṽ †J̃ Ṽ e+ Ṽ †J̃r. The

4To improve readability, time arguments are omitted in expressions (3.64) and (3.65). All time
arguments in (3.64) and (3.65) are (t−d(t)), i.e., r , r(t−d(t)), e , e(t−d(t)), η , η(t−d(t)).
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term XT X is expanded as follows

XT X ≤ rT J̃2r + λ2
Ne

Te+ eT (Ṽ TJ̃2)r + rT (J̃2Ṽ )e. (3.65)

Let ν1 = [rT (t−d(t)), eT (t−d(t)),ηT (t−d(t))]T . Using (3.65) in (3.64) results in the
following condition

νT1

φ2J̃
2 φ2J̃

2Ṽ 0
∗ (φ2λ

2
N − φ1)I 0

∗ ∗ I

ν1 ≥ 0. (3.66)

Step III. (Null expressions): Let ν2 = [ rT(t), rT(t−d(t))]T , ν3 = [ηT(t),ηT(t−d(t))]T .
The following null equalities hold for any matrices F , G, W , E, Y , and U with ap-
propriate dimensions

2νT2 F
[
r(t−d(t))− r(t−h)−

∫ t−d(t)

t−h
ṙ(s)ds

]
= 0, (3.67)

2νT2 G
[
r(t)− r(t−d(t))−

∫ t

t−d(t)
ṙ(s)ds

]
= 0, (3.68)

2νT3 W
[
η(t−d(t))− η(t−h)−

∫ t−d(t)

t−h
η̇(s)ds

]
= 0, (3.69)

2νT3 E
[
η(t)− η(t−d(t))−

∫ t

t−d(t)
η̇(s)ds

]
= 0, (3.70)∫ t−d(t)

t−h
νT2 Y ν2ds+

∫ t

t−d(t)
νT2 Y ν2ds = hνT2 Y ν2, (3.71)∫ t−d(t)

t−h
νT3 Uν3ds+

∫ t

t−d(t)
νT3 Uν3ds = hνT3 Uν3. (3.72)

From (3.30), it holds that

2
(
rT (t)H1 + ṙT (t)H2 + rT (t−d(t))H3

)(
− J̃ r(t−d(t))− J̃ Ṽ e(t−d(t))− ṙ(t)

)
= 0.

(3.73)

Likewise, from (3.25) one obtains that

2
(
ηT(t) + η̇T(t)

)(
− η̇(t)− η(t) + φ3X̄(t−d(t))

)
= 0, (3.74)

where X̄(t) = [ |X1(t)|, . . . , |XN(t)| ]T . By using the Young inequality, the following
expression is obtained from (3.74)

2
(
ηT (t) + η̇T (t)

)(
− η̇(t)− η(t)

)
+ φ3η

T(t)η(t)
+ φ3η̇

T(t)η̇(t) + 2φ3XT (t−d(t))X(t−d(t)) ≥ 0. (3.75)

The term XT (t−d(t))X(t−d(t)) in condition (3.75) is further expanded by consider-
ing (3.65).
Step IV. (Stability Conditions): Let ν4 = [νT2 , ṙT (s) ]T , ν5 = [νT3 , η̇T (s) ]T , and
ν6 = [νT7 , νT8 ]T , where ν7 = [rT (t), rT (t−d(t)), rT (t−h), ṙT (t), eT (t−d(t))]T , and ν8 =
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[ηT (t), ηT (t−d(t)), ηT (t−h), η̇T (t)]T . Considering all expressions from (3.66) to (3.75),
the following upper bound holds for V̇

V̇ ≤νT6

[
Π 0
∗ Ψ

]
ν6−

∫ t−d(t)

t−h
νT4 C1ν4ds−

∫ t

t−d(t)
νT4 C2ν4ds

−
∫ t−d(t)

t−h
νT5 C3ν5ds−

∫ t

t−d(t)
νT5 C4ν5ds. (3.76)

Based on (3.76), if Π < 0, Ψ < 0, and Ci ≥ 0, (1≤ i≤ 4), then it holds that V̇ < 0.
Step V. (Objective Function): Consider the following constraints for design pa-
rameters φc, (1≤ c≤ 3),

φ2
1 < θ1, φ−1

2 < θ2, φ−1
3 < θ3, (3.77)

where θc> 0, (1≤ c≤ 3), are decision variables. By minimizing F= θ1 + θ2 + θ3, the
optimization attempts to decrease the values of θ1, θ2, and θ3. In return, parameter φ1
is decreased and parameters {φ2, φ3} are increased according to (3.77). As mentioned
previously, lower values for φ1 and higher values for {φ2, φ3} increase the inter-event-
time. Then LMIs given in (3.34) are obtained from (3.77). This completes the
proof
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Chapter 4

Consensus in general linear agents

Proposed implementations in Chapter 3 are limited to first-order agents and their
application is mainly for average consensus. This chapter studies a more general con-
sensus problem where the agents can be of any order. Two implementations (namely,
PEC [80] and PSEC [81]) are proposed in this regard. Section 4.1 presents implemen-
tation PEC, where event-triggered consensus for general linear MASs is studied in the
presence of control gain uncertainties. Only the transmission scheme is event-triggered
in PEC and other processing (measurement and control update) is continuous-time.
Section 4.2 proposes the PSEC implementation, which is an extended case for PEC
where a sampled-data scheme is incorporated for measurements.

4.1 PEC
Refereed to as the PEC, a distributed performance guaranteed event triggered consen-
sus algorithm for general linear MASs is presented in this section. The performance
guarantees include a desired rate of consensus convergence, a certain level of non-
fragility to control gain uncertainties, and pareto optimality of the design parameters
(the control and ET gains). Using an approximated linear scalarization method simi-
lar to CEASE (Section 3.2) and DEASE (Section 3.4), the ET parameters and control
gain are co-designed by solving a convex constrained optimization problem. Followed
by some preliminary steps, the optimization can be performed locally. However, the
optimization complexity is dependent on N . The communication network in PEC is
undirected. The PEC block diagram is exactly similar to Fig 2.2. As shown in Fig 2.2,
the consensus process is based on continuous-time state measurement. Additionally,
the event-detection in PEC is performed in a continuous-time fashion.

It is widely known that the control parameters are often subject to uncertainties
due to physical constraints, round-off error, and digitization [70]. The uncertainties
in realization of the control gains can cause considerable performance deterioration.
PEC offers a level of non-fragility in control designs.
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4.1.1 Problem statement
Consider a linear time-invariant MAS described by the following dynamics

ẋi(t) = Axi(t) +Bui(t), (1 ≤ i ≤ N), (4.1)

where xi(t)∈Rn and ui(t)∈Rm. It is assumed that the pair (A,B) is controllable.
In PEC, the disagreement for agent i, (1≤ i≤N), is defined as follows

Xi(t) =
∑
j∈Ni

ai,j
(
Λi(t)xi(tik)−Λj(t)xj(tjk)

)
, (4.2)

where Λi(t) = eA(t−tik). Note that Λi(t)xi(tik) is an open-loop estimate of xi(t) in
t∈ [ tik, tik+1 ) [111,130], which will be further explained in Remark 4.1. Note that the
control protocol (4.2) is not event-triggered due to continuous-time updates used in
Λi(t) = eA(t−tik).

Similar to previous implementations in Chapter 3, in PEC all nodes transmit their
initial state values xi(0) to their neighbours, i.e., ti0 = 0, (1≤ i≤N). Given tik, the
next event for agent i, (1≤ i≤N), is triggered based on the following ET condition

tik+1 = inf{ t> tik | ‖Φei(t)‖≥ α‖Xi(t)‖ }, (4.3)

Matrix Φ and scalar α> 0 are the ET parameters to be designed. Vector ei(t) =
Λi(t)xi(tik)−xi(t), (1≤ i≤N), is the state error. Note that ei(t) is based on the
difference between the estimated value of the state, i.e., Λi(t)xi(tik), and the real-
time state value, i.e., xi(t). The following control protocol is proposed for (4.1)

ui(t) = K Xi(t), (1≤ i≤N), (4.4)

where matrix K ∈Rm×n is the nominal control gain to be designed. However, in
realization the control signal is often perturbed with actuator faults, aging, system
modeling uncertainties, and digitalization errors [70]. One approach to model these
physical constraints is to consider an additive uncertainty in the control gain as follows

ui(t) = (K + ∆K)Xi(t), (1≤ i≤N). (4.5)

The time-varying matrix ∆K represents the uncertainties in the control gain.

Assumption 2. The uncertainty ∆K satisfies ‖∆K‖≤ δ for t> 0, where δ is a pre-
determined desired non-fragility level for K.

Remark 4.1 (Open-loop estimation). According to the agent dynamics (4.1), the ex-
pression eA(t−tik)xi(tik) , Λi(t)xi(tik), t∈ [tik, tik+1), is the zero input response (ui = 0)
of agent i with initial condition xi(tik). In literature [1, 111, 131, 132], the expres-
sion Λi(t)xi(tik) is known as the open-loop estimate of xi(t) for inter-event interval
t∈ [tik, tik+1). The phrase ‘open-loop’ is used since ui(t) is ignored in the estima-
tion, which makes Λi(t)xi(tik) an estimate of xi(t) ‘to a certain extent’. Compared
to [33, 76] where no estimation is used (i.e., Λi = In), the control protocol (4.5) and
ET scheme (4.3) benefits from the open-loop estimation in two ways: (i) Compared
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to ei(t) =xi(tik)−xi(t), the rate of changes in ei(t) = eA(t−tik)xi(tik)−xi(t) is lower,
which results in a reduction in the number of events triggered by (4.3), [131, 132].
(ii) Due to the estimate of the neighbouring states considered in disagreement (4.2),
control protocol (4.5) is more suitable for dynamic consensus problems, where the
final consensus states are time-varying [111,131]. One disadvantage of using such an
estimation approach is that the control protocol is not event-triggered and should be
updated continuously. A closed-loop estimation technique is proposed in [133], where
neighbours exchange their control update values as well as their states. Each agent
estimates the state of its neighbours based on the last state and control value received
from the neighbour. In this scheme, the control update remains event-triggered. As
indicated in [6, Sec. III. B], the control value is regarded as private information. This
precludes the closed-loop estimation approach from practical MASs.

Remark 4.2 (Special cased on MAS (4.1)). It should be noted that the general linear
model considered in (4.1) can be reduced to first-order agents if A= 0 and B= 1.
Additionally, the second-order integrator agents, which is widely considered in the
literature [134], is a special case of (4.1), where A= [0, 1; 0, 0] and B = [0, 1]T .

Before proceeding to the problem formulation and developing the main results, the
following discussion is provided for the Zeno-behaviour exclusion. The observations
made in excluding the Zeno-behaviour are also important for the design objectives
considered in PEC.

4.1.2 Zeno behaviour
If the ET scheme is based on periodic samples of the system (such as all implementa-
tions given in Chapter 3), the Zeno behaviour is inherently excluded. The reason is
that any two event instants are guaranteed to be at least one sampling period apart.
In continuous-time event detection such as PEC, however, it is essential to analyti-
cally exclude the possibility of the Zeno-behaviour. The following theorem provides
a lower-bound on the interval between any two event instants. This interval is also
known as the minimum inter-event interval.

Theorem 4.1. Consider MAS (4.1) with control protocol (4.5) and ET scheme (4.3).
The minimum inter-event interval for agent i is strictly positive and lower bounded
by the following term

tik+1−tik ≥
1

2 ‖A‖ ln
(

1+ 2α ‖A‖
‖BK̄‖‖Φ‖

)
, (4.6)

where K̄ =K + ∆K .

Proof. Proof of Theorem 4.1 is included in Appendix, Section 4.4.1.

Apart from the fact that (4.6) provides a lower-bound for exclusion of the Zeno-
behaviour, it shows how design parameters K, Φ, and α influence the minimum
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inter-event interval. According to (4.6), the events are more sparse for larger values
of α, and smaller values of ‖K‖ and ‖Φ‖. This observation can be used to construct
the objective function for designing unknown parameters so that the minimum inter-
event time is increased.

Design Objectives: The design objectives considered in PEC are as follows:

• Control the rate of consensus convergence by an exponentially decreasing term;

• Guarantee non-fragility to some level of uncertainty in the control gain;

• Optimize consensus parameters, i.e., the ET parameters {Φ, α} and control
gain K, using a convex constrained optimization. To increase the inter-event
interval, an objective function is proposed which limits the norm of K and Φ,
and enlarges α based on a weighted-sum approach.

4.1.3 Problem formulation
Define the following global vectors

x= [xT1 (t), . . . ,xTN(t)]T , x̂= [x̂T1 (t), . . . , x̂TN(t)]T , e = [eT1 (t), . . . , eTN(t)]T ,
X = [XT

1 (t), . . . ,XT
N(t)]T,Λ = diag(Λ1(t), . . . ,ΛN(t)), X̄ = [ ‖X1(t)‖ , . . . , ‖XN(t)‖ ]T ,

ē= [ ‖e1(t)‖ , . . . , ‖eN(t)‖ ]T . (4.7)

It holds that e = Λ(t)x̂(t) − x(t). The closed-loop system from (4.1) and (4.5) is
given below

ẋ= (IN⊗A+L⊗B(K + ∆K))x+L⊗B(K + ∆K) e. (4.8)

Next, the consensus problem for the original closed-loop MAS (4.8) is converted
into the stability problem of a transformed system. Let 0<λ2≤ . . . ≤λN denote the
eigenvalues of L in the ascending order. Let matrix W = [wi,j] ∈ RN×N include the
normalized eigenvectors of L such that

WJW−1 =L, ‖W ‖ = 1, (4.9)

where J = diag(0, λ2, . . . , λN). Let W−1 = [w̃i,j]. From W−1, the (N−1)×N dimen-
sional matrix W̃ = [w̃i,j], for 2≤ i≤N and 1≤ j≤N is constructed. More precisely,
W̃ includes rows 2 to N of matrix W−1. Now, consider the following transformation

ψ = W̃ ⊗ Inx. (4.10)

Using (4.10), system (4.8) is transformed to

ψ̇= (IN−1⊗A+ J̃ ⊗B(K + ∆k))ψ + J̃W̃ ⊗B(K + ∆k) e, (4.11)

where J̃ = diag(λ2, . . . , λN). It is proved in [100, Theorem 1] that consensus is
achieved in (4.8) if and only if limt→∞ψ= 0. Therefore, consensus in MAS (4.8)
is converted to stability of system (4.11).
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Remark 4.3 (Final state values for consensus). Although the final state values of the
agents in verification of consensus is irrelevant, it is interesting to find the steady-state
values of the agents. Let y(t) = w̃1⊗Inx(t), where w̃1 is the first row of matrix W−1

defined in (4.9). In [100, Theorem 1], it is shown that the steady state values in terms
of y(t) satisfies

lim
t→∞

[y(t)− eAty(0)] = 0. (4.12)

4.1.4 Parameter design
This section develops a linear matrix inequality (LMI) optimization that simultane-
ously computes all unknown parameters required in PEC. The optimization requires
all the eigenvalues and eigenvectors of the Laplacian matrix L, which can be computed
using Algorithm 3.4.

Theorem 4.2. Given desired values for exponential rate of consensus convergence ζ
and non-fragility level δ, if there exist matrices P ∈Rn×n>0, Φ̃∈Rn×n>0, Ω∈Rm×n,
positive scalars α̃, τ1, τ2, ε1, ε2, and θc, (1≤ c≤ 4), satisfying the following convex
constrained optimization

min F =
4∑

c= 1
θc, (4.13)

subject to:

Ξ=



Ξ11 J̃W̃⊗BΩ J̃⊗P 0 IN−1⊗P 0
∗ −IN ⊗ Φ̃ 0 IN⊗P 0 IN⊗P
∗ ∗ −τ1I 0 0 0
∗ ∗ ∗ −τ2I 0 0
∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ −ε2I


< 0,

π1 = 2α̃ + (−2 + τ1) < 0, π2 = 2α̃J̃2 + (−2 + τ2)IN−1 < 0,

C1 =
[
θ1I I
∗ P

]
> 0, C2 =

[
−θ2I Φ̃
∗ −I

]
< 0, C3 =

[
θ3 1
∗ α̃

]
> 0,

C4 =
[
−θ4I Ω
∗ −I

]
< 0, (4.14)

where

Ξ11 = IN−1 ⊗ (PAT +AP ) + J̃ ⊗BΩ + (J̃ ⊗BΩ)T + 2ζIN−1⊗P
+ ε1δ

2(J̃ ⊗B)(BT ⊗ J̃T ) + ε2δ
2(J̃W̃ ⊗B)(BT ⊗ W̃ T J̃T ),

then consensus design parameters are computed as

K = ΩP−1, Φ = (P−1Φ̃P−1)1/2, α=
√
α̃. (4.15)
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Algorithm 4.5 . The PEC algorithm
Input: Neighbouring information, System matrices A and B.
Output: Performance guaranteed event-triggered consensus in general linear MASs.

Preliminary: Using a distributed algorithm such as Algorithm 3.4, each node computes all eigen-
values and eigenvectors of the Laplacian matrix. Using an average consensus the nodes agree on
the value of the desired convergence rate ζ and non-fragility level δ.

I. Parameter Design: (D1 -D2)
D1. Optimization: Using a semi-definite programming solver, solve (4.13) for given ζ and δ.
D2. Parameter design: Compute consensus design parameters K, Φ, and α from (4.15).
Distributed Consensus Iterations: (C1 – C2)

C1. Initialization: Node i transmits xi(0) to its neighbours, (1≤ i≤N).
C2. Consensus process: Using designed K for (4.5) and {Φ, α} for (4.3) the states of the agents

approach a consensus with a decaying rate satisfying (4.16).

Using design parameters (4.15), consensus trajectories converge at a rate which sat-
isfies the following inequality

ψT (t)ψ(t) ≤ λmax(P−1)
λmin(P−1) e

−2ζtψT (0)ψ(0). (4.16)

Additionally, the following bounds are guaranteed by minimizing F

‖K‖ ≤ θ1

√
θ4, ‖Φ‖≤θ1θ

1/4
2 , α≥ 1√

θ3
. (4.17)

Proof. The proof is provided in Section 4.4.

The PEC algorithm is summarized in Algorithm 4.5.

Remark 4.4 (Logic behind the proposed objective function and design trade-offs).
The logic behind the proposed objective function in (4.13) is similar to CEASE and
DEASE. In short, the objective function in (4.13) minimizes a weighted sum of the
alternative variables involved in computing K, Φ, and α so that the minimum inter-
event interval (4.6) is increased. The trade-offs involved for parameter design in PEC
are related to the physical interpretation of the given parameters ζ and δ. Parameter ζ
is related to the consensus convergence rate of PEC. Therefore, a larger value for ζ
(faster consensus) leads to larger norms for the control gain K at the expense of
more frequent transmissions and vice versa. As for δ which shows the desired level
of non-fragility to control gain uncertainty, large values for δ result in higher values
for K to compensate the impact of uncertainty. In return, it is expected that larger
values for δ adversely impact the efficiency of the ET scheme and more transmissions
be allowed.

Remark 4.5 (The objective function as a comparison index). Since the objective
function (4.13) is formulated based on increasing the inter-event interval, its value
can be used as an index to compare the expected average inter-event interval between
different MASs. Consider two different MASs, namely MAS 1 and 2. Consensus
parameters are computed from Theorem 4.2 for these two MASs which leads to two
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different values for the objective function, namely F1 and F2. If F1 ≤ F2, it is
concluded that the expected average inter-event interval for MAS 1 is larger than
MAS 2 (and vice versa). That is MAS 1 is more likely to save more transmissions.
Refer to Section 7.4.1 for experimental comparison in this regard.

Remark 4.6 (PEC in the presence of measurement noise). It should be reminded
that PEC is based on continuous-time state measurement and continuous-time mon-
itoring of the ET condition. Apart from the above shortcommings, as shown in [135],
the continuous-time ET scheme (4.3) may lead to Zeno-behaviour in the presence
of arbitrary small disturbance or measurement noise. One approach to exclude the
Zeno-behaviour in the presence of external disturbance is to include a constant thresh-
old (such as φ2 in CEASE). The constant threshold guarantees that the inter-event
interval is at least equal to the constant value which is strictly positive. However,
including a constant value in th ET condition results in steady-state error in con-
sensus. Another approach to exclude the Zeno-behaviour in the presence of external
disturbance is to incorporate a sampler with the ET scheme so that the inter-event
interval remains inherently positive.

The next section proposes PSEC by incorporating a sampler in PEC.

4.2 PSEC
PSEC is a performance guaranteed sampled-data event-triggered consensus approach
for linear MASs. The performance guarantees include a desired exponential conver-
gence rate for consensus and non-fragility to some level of control gain uncertainties.
Different from PEC, a sampler is incorporated in the implementation of PSEC so
that measurements and event-triggerings are based on sampled states not the real-
time states. This reduces the amount of measurements and computations. The PSEC
configuration is similar to the block diagram shown in Fig. 3.1 for CEASE.

The introduction of a sampler in the implementation of PSEC produces an arti-
ficial time-varying time-delay in the closed-loop system. Thus, the consensus (stabil-
ity) analysis in PSEC is more complicated compared to PEC. Similar to DEASE in
Chapter 3, the parameter design in PSEC is based on a co-design framework. The co-
design in PSEC simultaneously computes all control and ET parameters from some
delay-dependent Lyapunov-Krasovskii functionals.

4.2.1 Problem statement
Consider the linear time-invariant MAS in (4.1). In PSEC, the disagreement for
agent i, (1≤ i≤N), is defined as follows

Xi(t) =
∑
j∈Ni

ai,j (Λi(nh)x̂i(nh)−Λj(nh)x̂j(nh)) , t ∈ [nh, (n+ 1)h), (4.18)
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where x̂i(nh) =xi(nikh) and Λi(nh) = eA(nh−nikh), (n ∈ N0). Unlike PEC, in PSEC
the control updates are also sampled-data event-triggered. Given nik, the next event
for agent i, (1≤ i≤N), is triggered based on the following ET condition

nik+1 = min
n∈N
{n>nik| ‖Φ

1/2
1 ei(nh)‖≥ ‖Φ−1/2

2 Xi(nh)‖}, ni0 = 0. (4.19)

Matrices Φ1 and Φ2 are the sampled-data ET parameters to be designed. Vec-
tor ei(nh) = x̂i(nh)−xi(nh), (1≤ i≤N), is the state error. The following control
protocol is considered in PSEC

ui(t) = K Xi(nh), (1≤ i≤N), t ∈ [nh, (n+ 1)h), (4.20)

where matrix K ∈Rm×n is the nominal control gain to be designed. Similar to PEC,
the physical constraints in control realization (actuator faults, aging, system model-
ing, and digitalization errors [70]) are taken into account which are modeled by

ui(t) = (K + ∆K)Xi(t), (1≤ i≤N). (4.21)

The time-varying uncertainty ∆K satisfies Assumption 2.

Design Objectives: The design objectives considered in PSEC are as follows:

• A co-design framework is proposed which simultaneously computes unknown
parameters, i.e., the control gain K and ET parameters Φ1 and Φ2.

• A desired exponential rate of consensus convergence and a desired level of non-
fragility to control gain uncertainty are included in the co-design framework.
The sampling period h is also predetermined.

4.2.2 Problem formulation
Denote global parameters as x(t) = [xT1 (t), . . . ,xTN(t)]T , x̂(t) = [x̂T1 (t), . . . , x̂TN(t)]T ,
Λ(nh) = diag(Λ1(nh), . . . ,ΛN(nh)), and e(t) = [eT1 (t), . . . , eTN(t)]T . It holds that
e(nh) = Λ(nh)x̂(nh)− x(nh). The closed-loop system from (4.1) and (4.21) is

ẋ(t) = (IN⊗A)x(t)+L⊗B(K + ∆K))x(nh) +L⊗B(K + ∆K) e(nh). (4.22)

A similar transformation used in PEC is considered for PSEC to convert the consensus
problem for MAS (4.22) into stability problem. Using (4.9) and (4.10), closed-loop
system (4.22) is transformed to

ψ̇(t) = (IN−1⊗A)ψ(t) + (J̃ ⊗B(K + ∆k))ψ(nh)
+ (J̃W̃ ⊗B(K + ∆k)) e(nh), t ∈ [nh, (n+ 1)h). (4.23)

Consensus is achieved in (4.22) if and only if limt→∞ψ(t) = 0 [100, Theorem 1]. It
should be noted that the final state values in PSEC also satisfies expression (4.12).
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4.2.3 Parameter design
An LMI constrained framework is developed in this section that simultaneously com-
putes all unknown parameters required in PSEC, i.e., K, Φ1, and Φ2. PSEC requires
all the eigenvalues and eigenvectors of the Laplacian matrix L which can be computed
in a distributed fashion using Algorithm 3.4.

Theorem 4.3. Given desired values for sampling period h, convergence rate ζ, and
control gain non-fragility level δ, if there exist the following parameters

• m×n dimensional matrix V , n×n dimensional matrices H , Y11, Y12, Y22, F1,
F2, G1, G2;

• n×n dimensional positive definite matrices P , Q, Z, M1, M2;

• positive scalars ε1, ε2 ε3;

satisfying the following LMIs

C1 =
[
Π Θ
∗ Ω

]
< 0, C2 =

[
Y F
∗ he−2ζhZ

]
≥ 0, C3 =

[
Y G
∗ he−2ζhZ

]
≥ 0, (4.24)

then, the control gain K and ET parameters Φ1 and Φ2 are computed from the
following expressions

K =V (H−1)T , Φ1 =H−1M1(H−1)T , Φ2 =M2, (4.25)

and the closed-loop MAS (4.23) satisfies the following exponential convergence rate

‖ψ(t)‖2 ≤ λ2

λ1
e−2ζt ‖ψ(0)‖2 , (4.26)

where λ1 =λmin(P̄ ), λ2 =λmax(P̄ )+hλmax(Q̄), with P̄ =H−1P (H−1)T , Q̄=H−1Q(H−1)T ,
and Z̄ =H−1Z(H−1)T . Unknown block matrices in (4.24) are defined below

Π =



π11 π12 −IN−1 ⊗ F1 π14 J̃W̃ ⊗BV 0

∗ π22 −IN−1 ⊗ F2 π24 J̃W̃ ⊗BV J̃W̃ †T ⊗H
∗ ∗ −e−2ζhIN−1 ⊗Q 0 0 0
∗ ∗ ∗ π44 J̃W̃ ⊗BV 0
∗ ∗ ∗ ∗ −IN ⊗M1 W̃ †J̃W̃ ⊗H
∗ ∗ ∗ ∗ ∗ −IN ⊗M2


, (4.27)

Θ =

0 IN−1 ⊗HT 0 0 0 0
0 IN−1 ⊗H 0 0 0 0
0 0 0 0 IN ⊗HT 0


T

, (4.28)

Ω = diag(−ε1In×(N−1), −ε2In×(N−1), −ε3In×N), (4.29)

π11 = IN−1 ⊗
(
Q+G1 +GT

1 +AH +HTAT+hY11 + 2ζP
)

+ δ2(ε1Ξ1 + ε3Ξ2),

π12 = IN−1 ⊗
(
F1 −G1 +GT

2 + hY12 +HAT
)

+ J̃ ⊗BV + δ2(ε1Ξ1 + ε3Ξ2),
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Algorithm 4.6 . The PSEC algorithm
Input: Neighbouring information, System matrices A and B.
Output: Performance guaranteed sampled-data event-triggered consensus in general linear MASs.

Preliminary: Using a distributed algorithm such as Algorithm 3.4, each node computes all eigen-
values and eigenvectors of the Laplacian matrix. Using an average consensus the nodes agree on
the value of the desired sampling period h, convergence rate ζ, and non-fragility level δ.

I. Parameter Design: (D1 -D2)
D1. Compute consensus design parameters K, Φ1, and Φ2 from (4.25).
Distributed Consensus Iterations: (C1 – C2)

C1. Initialization: Node i transmits xi(0) to its neighbours, (1≤ i≤N).
C2. Consensus process: Using the designed K for (4.21) and Φ1 and Φ2 for (4.19) the states of the

agents approach sampled-data consensus with a decaying rate satisfying (4.26).

π14 = IN−1 ⊗ (P −HT +HAT ) + δ2ε3Ξ2,

π22 = IN−1 ⊗ (F2 +F T
2 −G2 −GT

2 +hY22) + J̃ ⊗BV + (J̃ ⊗BV )T

+ δ2(ε1Ξ1 + ε3Ξ2),
π24 = − IN−1 ⊗HT + (J̃ ⊗BV )T + δ2(ε2Ξ1 + ε3Ξ2),
π44 = IN−1 ⊗ (h2Z −H −HT ) + ε3δ

2Ξ2, (4.30)

and

Y =
[
Y11 Y12
∗ Y22

]
, F =

[
F T

1 F T
2

]T
, G=

[
GT

1 GT
2

]T
,

Ξ1 = (J̃ ⊗B)(J̃ ⊗B)T , Ξ2 = (J̃W̃ ⊗B)(J̃W̃ ⊗B)T . (4.31)

Proof. Proof of Theorem 4.3 is provided in Appendix, Section 4.4.3.

The PSEC implementation is summarized in Algorithm 4.6.

Remark 4.7 (Trade-offs in PSEC). Similar to PEC, some performance trade-offs are
expected in PSEC based on the selected values for sampling period h, non-fragility
level δ, and convergence rate ζ. A larger value for ζ (faster consensus) leads to
larger norms for the control gain K at the expense of more frequent transmissions
and vice versa. Larger values for δ are expected to result in higher values for K to
compensate the impact of uncertainty. In return, larger values for δ would lead to
more transmissions between the nodes. Higher values for the sampling period h may
help in saving more transmissions. However, the control gain obtained with a higher
value for h may be conservative.

Remark 4.8 (Extension of PSEC to H∞ disturbance rejection). In case that the
measurement noise, denoted by ωi(t), is not negligible the agent model is usually
represented by ẋi(t) =Ax(t)+Bui(t)+Dωi(t). The H∞ optimization technique can
be included in Theorem 4.3 to take into account the impact of external disturbance.
In the H∞ disturbance rejection the following objectives are usually considered:

• The closed-loop system remains stable when ω(t) = 0. In the case of converted
system (4.23), this condition implies that limt→∞ψ(t) = 0 if ω(t) = 0.
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Table 4.1: Comparison of PEC and PSEC.

Characteristics PEC [80] PSEC [81]
Transmitter scheme Event-triggered Sampled-data Event-triggered

Receiver scheme Continuous-time Periodic
State Measu-

rement scheme Continuous-time Periodic

Control scheme Continuous-time Periodic
Event monitoring Continuous-time Periodic

Optimization for
Design Parameters Yes No

Steady-state error No No
State Quantization No No
Control gain Design Yes Yes
Relative expected

number of transmissions Low Low

Network Topology Undirected Undirected

• Under zero initial condition ψ(0) = 0, it holds that ‖ψ(t)‖2 ≤ γ2 ‖ω(t)‖2, where
γ is a prescribed level of noise attenuation.

It can be shown that if V̇ (t) + 2ζV (t) + ψT (t)ψ(t) − γ2ωT (t)ω(t)<0, then the H∞
disturbance rejection for system (4.23) is guaranteed [136].

Remark 4.9 (Considering communication delay in PSEC). The stability analysis
in PSEC in based on an artificial time-varying time-delay and Lyapunov-Krasovskii
functionals. More precisely, the alternative variable d(t), t−nh is used to relate the
real-time t and sample instants nh (refer to proof of Theorem 4.3 for more details).
Then, it holds that 0≤ d(t)≤h. The time-varying time-delay approach also allows
including the communication time delays that usually occur in networked communi-
cation. One necessary condition is that the communication delay should be equal or
less than the sampling period. Let τij denote the communication delay from node j to
node i, where node j is in the neighbouring set of node i. It is assumed that τij ≤h,
(1≤ i, j≤N). Considering the impact of the communication time delay, parame-
ter d(t) is revised as d(t), t−nh+h and h≤ d(t)≤ 2h. This implies that the closed-
loop MAS is exposed to a time-varying time-delay with both lower and upper-bounds.
In this case, the stability analysis in PSEC can be performed using the same LKF
proposed in [137].

Remark 4.10 (PSEC has no objective function in its parameter design). Comparing
Theorem 4.2 (parameter design for PEC) and Theorem 4.3 (parameter design for
PSEC), it is observed that the LMI conditions derived for PSEC depend on a larger set
of decision variables than that of PEC. This prevents including an objective function
for increasing the inter-event interval in PSEC.
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4.3 Summary
This chapter proposes two implementations for event-triggered (ET) consensus in
general linear multi-agent systems (MAS). In particular, PEC proposes an event-
triggered consensus approach that guarantees a desired exponential rate of consensus
convergence and some level of non-fragility to control gain perturbations. The param-
eter design in PEC is based on a co-design LMI optimization approach that increases
the inter-event interval so as to save transmission resources. The optimization can be
performed distributively following some preliminary steps. State measurement and
monitoring of the ET condition in PEC is continuous-time.

PSEC adds the flexibility of measuring only samples of the system. Hence, the
ET condition is monitored periodically using local samplers. The trade-off for incor-
porating a sampler in PSEC is that the stability analysis becomes more complicated
and no parameter optimization is considered in PSEC.

Table 4.1 summarizes the main features of PEC and PSEC.

4.4 Appendix
In this section, the proofs of the theorems proposed in Chapter 4 are provided.

4.4.1 Proof of Theorem 4.1
Proof. Consider tik and tik+1 as two consecutive event instants for node i. From (4.3),
it holds that ‖ei(tik)‖= 0. For t ≥ tik, the state error ei(t) evolves from zero until the
next event is triggered at t = tik+1 which fulfills (4.3). From ei(t) = Λi(t)x̂i(t)−xi(t),
it follows that ėi(t) = AΛi(t)x̂i(t)−ẋi(t). From (4.5) and (4.1), one obtains that
ẋi(t) = Axi(t) +BK̄ Xi(t). Some manipulation leads to ėi(t) = Aei(t)−BK̄ Xi(t),
or

‖ėi(t)‖ ≤ ‖A‖ ‖ei(t)‖+ ‖BK̄‖‖Xi(t)‖ , t∈ [tik, tik+1). (4.32)

Let ri(t) = ‖ei(t)‖
‖Xi(t)‖

. It follows that

‖ṙi(t)‖ ≤
‖ėi(t)‖
‖Xi(t)‖

+ ri(t)
‖Ẋi(t)‖
‖Xi(t)‖

, t∈ [tik, tik+1). (4.33)

Dividing (4.32) by ‖Xi(t)‖ and applying (4.33) lead to ṙi(t)≤ 2 ‖A‖ ri(t) + ‖BK̄‖,
or equivalently

ri(t)≤ c
(
e2‖A‖(t−tik)−1

)
, t∈ [tik, tik+1), (4.34)
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where c= ‖BK̄‖
2‖A‖ . The next event is triggered by (4.3) at t= tik+1 when ‖Φei(tik+1)‖=

α‖Xi(tik+1)‖. From (4.34), one obtains that

‖Φei(tik+1)‖
‖Xi(tik+1)‖ =α≤ c‖Φ‖

(
e2‖A‖(tik+1−t

i
k)−1

)
, (4.35)

From (4.35), it holds that tik+1−tik ≥ 1
2‖A‖ ln

(
1+ α

c‖Φ‖

)
which is equivalent to (4.6). The

right hand side of (4.6) is strictly positive. Therefore, the minimum time between two
events is strictly positive, i.e., ET scheme (4.3) does not exhibit the Zeno behaviour.

4.4.2 Proof of Theorem 4.2
Proof. Consider the following inequality

V̇ + 2 ζ V < 0, (4.36)

where

V =ψT (IN−1⊗P−1)ψ. (4.37)

Condition (4.36) leads to the exponential convergence rate specified in (4.16). The
time derivative of V is obtained below

V̇ = ψT Ξ̄11ψ + 2ψT Ξ̄12 e, (4.38)

where

Ξ̄11 = IN−1 ⊗ (ATP−1 + P−1A) + 2J̃ ⊗ P−1B(K + ∆K),
Ξ̄12 = J̃W̃ ⊗ P−1B(K + ∆K).

The global form of (4.2) can be viewed as follows

X=L⊗ InΛx̂(t). (4.39)

Reminding that e = Λx̂−x and L = W̃ †J̃W̃ , The following expression is developed
from (4.10) and (4.39)

X= (W̃ †J̃)⊗ Inψ + (W̃ †J̃W̃ )⊗ Ine. (4.40)

Considering that W̃ †T W̃ †= I, expression XTX is expanded

XTX ≤ 2σT1 σ1 + 2σT2 (J̃2 ⊗ In)σ2, (4.41)

where σ1 = (W̃ †J̃)⊗ Inψ and σ2 = W̃ ⊗ Ine. The following equalities hold by defi-
nition

τ−1
1

(
ψT (J̃2 ⊗ In)ψ − σT1 σ1

)
= 0, (4.42)

τ−1
2 (eTe− σT2 σ2) ≥ 0, (4.43)
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where τ1>0 and τ2>0 are decision variables. Based on (4.3), it holds that ‖Φei(t)‖≤
α‖Xi(t)‖. Let a1 = [ ‖Φe1(t)‖ , . . . , ‖ΦeN(t)‖ ]T . In a collective fashion, it holds
that a1 ≤ αX̄, which is equivalent to

aT1 a1 = eT (IN⊗Φ2)e ≤ α2X̄T X̄. (4.44)

Using (4.41), the following expression holds from (4.44)

eT (IN⊗Φ2)e ≤ 2α2σT1 σ1 + 2α2σT2 (J̃2 ⊗ In)σ2. (4.45)

Let ν = [ψT , eT ,σT1 , σ
T
2 ]T . Based on (4.38), (4.42), (4.43), and (4.45), we re-arrange

(4.36) as follows

νT
[
Ξ̃ 0
∗ Π̃

]
ν < 0, (4.46)

where Ξ̃ =
[

Ξ̃11 Ξ̄12
∗ Ξ̃22

]
, Π̃ = diag(π̃1, π̃2), and

Ξ̃11 = Ξ̄11 + τ−1
1 J̃2 ⊗ In + 2ζIN−1⊗P−1, Ξ̃22 = − IN ⊗Φ2 + τ−1

2 I,

π̃1 = (−τ−1
1 + 2α2)INn, π̃2 = − τ−1

2 I + 2α2(J̃2 ⊗ In). (4.47)

From (4.46), inequality (4.36) is guaranteed if Ξ̃<0 and Π̃<0. Inequality Ξ̃ is pre-
and post multiplied by T = diag(IN−1⊗P , IN⊗P ) which results in[

Ξ̂11 Ξ̂12

∗ Ξ̂22

]
+ S1RT

1 +R1ST
1 + S2RT

2 +R2ST
2 < 0, (4.48)

Ξ̂11 = IN−1 ⊗ (PAT +AP ) + 2J̃ ⊗BKP + τ−1
1 (J̃ ⊗ P )2 + 2ζIN−1⊗P ,

Ξ̂12 = J̃W̃ ⊗BKP , Ξ̂22 = − IN ⊗ (PΦ2P ) + τ−1
2 IN ⊗ P 2,

S1 =
[
J̃ ⊗B∆K

0

]
, R1 =

[
P
0

]
, S2 =

[
J̃W̃ ⊗B∆K

0

]
, R2 =

[
0
P

]
. (4.49)

Inequality (4.48) holds if and only if there exist scalars ε1 > 0 and ε2 > 0 such that[
Ξ̂11 Ξ̂12

∗ Ξ̂22

]
+ ε1S1ST

1 +ε−1
1 R1RT

1 + ε2S2ST
2 +ε−1

2 R2RT
2 < 0. (4.50)

The following inequalities hold based on Assumption 2

(J̃ ⊗B∆K)(∆T
KB

T ⊗ J̃T ) ≤ δ2(J̃ ⊗B)(BT ⊗ J̃T ), (4.51)
(J̃W̃ ⊗B∆K)(∆T

KB
T ⊗ W̃ T J̃T ) ≤ δ2(J̃W̃ ⊗B)(BT ⊗ W̃ T J̃T ). (4.52)

Denote Ω =KP and Φ̃ =PΦ2P as alternative variables. Considering (4.51), (4.52),
and applying the Schur complement Lemma [138] on (4.50) results in Ξ<0 given in
the statement of the theorem. Denote the alternative variable α̃=α2

1. The following
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inequality is also considered

−τ−1
i ≤ −2 + τi, i ∈ {1, 2}. (4.53)

Using α̃ and considering (4.53), inequalities π1 < 0 and π2 < 0 given in the statement
of the theorem are obtained. The relations between design parameters and decision
variables are given in (4.15).

Motivated by [116, Sec. 2.2], a linear scalarization method is used to decrease/increase
the decision variables used in K, Φ, α (see (4.15)). To this end, consider the following
constraints

P−1 < θ1I, Φ̃T Φ̃ < θ2I, α̃−1 < θ3, ΩTΩ < θ4I, (4.54)

where θc> 0, (1≤ c≤ 4), are decision variables. Based on inequalities (4.54), if
one decreases θc, (1≤ c≤ 4), parameters {‖Φ̃‖, ‖Ω‖} are decreased and parameters
{‖P ‖ , α̃} are increased. Therefore, design parameters {‖K‖ , ‖Φ‖} are decreased and
α is increased based on (4.15). These together increase the right hand side of (4.6).
Inequalities (4.17) are obtained from (4.54). The objective function F in (4.13) min-
imizes a weighted sum of the decision variables θc with all weights equal to 1. The
LMIs given in (4.14) that include θc, (1≤ c≤ 4), are equivalent to (4.54) using Schur
complement. Once (4.13) is solved, design parameters are computed from (4.15) and
that completes the proof.

4.4.3 Proof of Theorem 4.3
Proof. Let d(t), t−nh represent an artificial time-varying time-delay that satisfies
0≤ d(t)<h. Using d(t), system (4.23) is given below for the interval nh≤ t< (n+1)h.

ψ̇(t) = (IN−1⊗A)ψ(t) + (J̃ ⊗B(K + ∆k))ψ(t−d(t))
+ (J̃W̃ ⊗B(K + ∆k)) e(t−d(t)). (4.55)

Consider the LKF V = ∑3
i= 1 Vi for stabilization of system (4.55), where

V1 =ψT (t)(IN−1 ⊗ P̄ )ψ(t), V2 =
∫ t

t−h
e2ζ(s−t)ψT (s)(IN−1 ⊗ Q̄)ψ(s)ds,

V3 =h
∫ 0

−h

∫ t

t+s
e2ζ(v−t)ψ̇T (v)(IN−1 ⊗ Z̄)ψ̇(v)dvds, (4.56)

with positive definite matrices P̄ , Q̄, Z̄. The time derivative of V is derived as follows

V̇1 = 2ψ̇T (t)(IN−1 ⊗ P̄ )ψ(t),
V̇2 = ψT (t)(IN−1 ⊗ Q̄)ψ(t)− e−2ζhψT (t−h)(IN−1 ⊗ Q̄)ψ(t−h)− 2ζV2,

V̇3 = h2ψ̇T (t)(IN−1 ⊗ Z̄)ψ̇(t)−h
∫ t

t−h
e2ζ(v−t)ψ̇T (v)(IN−1 ⊗ Z̄)ψ̇(v)dv−2ζV3

≤h2ψ̇T (t)(IN−1 ⊗ Z̄)ψ̇(t)− he−2ζh
∫ t

t−h
ψ̇T (v)(IN−1 ⊗ Z̄)ψ̇(v)dv − 2ζV3. (4.57)
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Considering [t−h, t] = [t−h, t−d(t)]∪ [t−d(t), t], the following expression is obtained∫ t

t−h
f(v)dv=

∫ t−d(t)

t−h
f(v)dv +

∫ t

t−d(t)
f(v)dv. (4.58)

where f(v) = ψ̇T (v)(IN−1⊗Z̄)ψ̇(v). Let a1 = [ψT (t),ψT (t−d(t))]T . For any matrices
F̄ =

[
F̄ T

1 F̄ T
2

]T
and Ḡ =

[
ḠT

1 ḠT
2

]T
, the following null expressions hold

2aT1 (IN−1 ⊗ F̄ )
[
ψ(t−d(t))−ψ(t−h)−

∫ t−d(t)

t−h
ψ̇(s)ds

]
= 0, (4.59)

2aT1 (IN−1 ⊗ Ḡ)
[
ψ(t)−ψ(t−d(t))−

∫ t

t−d(t)
ψ̇(s)ds

]
= 0. (4.60)

Additionally, one can obtain the following expression for any matrix Ȳ =
[
Ȳ11 Ȳ12
∗ Ȳ22

]
∫ t−d(t)

t−h
aT1 (Ȳ ⊗ IN−1)a1ds+

∫ t

t−d(t)
aT1 (Ȳ ⊗ IN−1)a1ds = haT1 (Ȳ ⊗ IN−1)a1.(4.61)

The following null equality holds from (4.55)

2
(
ψT (t) + ψ̇T (t) +ψT (t−d(t))

)
(IN−1 ⊗H−1)

×
(

(IN−1⊗A)ψ(t) + (J̃ ⊗B(K + ∆k))ψ(t−d(t))

+ (J̃W̃ ⊗B(K + ∆k)) e(t−d(t))− ψ̇(t)
)

= 0. (4.62)

The event-triggering condition (4.19) ensures that

eT(t−d(t))(IN ⊗Φ1)e(t−d(t)) ≤ x̂T(t−d(t))(LTL⊗Φ−1
2 )x̂(t−d(t)). (4.63)

Considering L = W̃ †J̃W̃ , x̂=x + e, and ψ= W̃ ⊗ Inx the following condition is
obtained from (4.63)[

ψ(t−d(t))
e(t−d(t))

]T [
S11 S12
∗ S22

] [
ψ(t−d(t))
e(t−d(t))

]
≥ 0, (4.64)

where

S11 = (W̃ †J̃)TW̃ †J̃ ⊗Φ−1
2 , (4.65)

S12 = (W̃ †J̃)TW̃ †J̃W̃ ⊗Φ−1
2 ,

S22 = (W̃ †J̃W̃ )TW̃ †J̃W̃ ⊗Φ−1
2 − IN ⊗Φ1.

Let a2 = [aT1 , ψ̇T (s) ]T and ν = [ψT (t), ψT (t−d(t)), ψT (t−h), ψ̇T (t), eT (t−d(t))]T .
Considering all expressions from (4.57) to (4.63), the following upper bound holds

V̇ + 2ζV ≤νT Π̄ν −
∫ t−d(t)

t−h
aT2 (C̄2 ⊗ IN−1)a2ds−

∫ t

t−d(t)
aT2 (C̄3 ⊗ IN−1)a2ds, (4.66)
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where

Π̄ =


π̄11 π̄12 −IN−1 ⊗ F̄1 π̄14 J̃W̃ ⊗H−1B(K + ∆K)
∗ π̄22 −IN−1 ⊗ F̄2 π̄24 J̃W̃ ⊗H−1B(K + ∆K) + S12
∗ ∗ −e−2ζhIN−1 ⊗ Q̄ 0 0
∗ ∗ ∗ π̄44 J̃W̃ ⊗H−1B(K + ∆K)
∗ ∗ ∗ ∗ S22

,

C̄2 =
[
Ȳ F̄
∗ he−2ζhZ̄

]
, C̄3 =

[
Ȳ Ḡ
∗ he−2ζhZ̄

]
, (4.67)

π̄11 = IN−1 ⊗
(
Q̄+ Ḡ1 + ḠT

1 +H−1A+ (H−1A)T+hȲ11 + 2ζP̄
)
,

π̄12 = IN−1 ⊗
(
F̄1 − Ḡ1 + ḠT

2 + hȲ12 + (H−1A)T
)

+ J̃ ⊗H−1B(K + ∆K),

π̄14 = IN−1 ⊗
(
P̄ −H−1 + (H−1A)T

)
,

π̄22 = IN−1 ⊗
(
F̄2 + F̄ T

2 − Ḡ2 − ḠT
2 + hȲ22

)
+ S11 + J̃ ⊗H−1B(K + ∆K)

+ (J̃ ⊗H−1B(K + ∆K))T ,
π̄24 = (J̃ ⊗H−1B(K + ∆K))T − IN−1 ⊗H−1,

π̄44 = IN−1 ⊗
(
h2Z̄ −H−1 − (H−1)T

)
. (4.68)

Based on (4.66), if Π̄1 < 0, C̄1 ≥ 0, and C̄2 ≥ 0 then it holds that V̇ + 2ζV < 0.
Now, consider D1 = diag(IN−1⊗H , IN−1⊗H , IN−1⊗H , IN−1⊗H , IN⊗H). Matrix
Π̄ is pre- and post multiplied by D1 and DT

1 . In a similar fashion, block matrices
C̄1 and C̄2 are pre- and post multiplied by D2 and DT

2 , where D2 = diag(H ,H ,H).
The following alternative variables are considered P = HP̄HT , Q = HQ̄HT ,
Z = HZ̄HT , F = HF̄HT , G = HḠHT , Yij = HȲijH

T , (i, j ∈ {1, 2}),
M1 = HΦ̄1H

T . Additionally, let V = KHT . The terms including control gain
uncertainty ∆K are treated in a similar way used in PEC for expressions (4.48),
(4.50), (4.51), and (4.52). Using the alternative variables above and Schur comple-
ment, the LMIs given in (4.24) are obtained. Design parameters K, Φ1, and Φ2 are
computed from (4.25) and that completes the proof.
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Chapter 5

Consensus against denial of service
attack

Chapters 3 and 4 study the event-triggered consensus (ETC), respectively, in first-
order and general linear MASs. One common assumption considered in Chapters 3
and 4 is that the MAS operates in an ideal situation where Cyber-attacks never
occur. The topic of Cyber-security has received wide attention due to the recent inci-
dents of malicious attacks directed to make the networked systems non-operational.
There exist different types of attacks such as false data injection and denial-of-service
(DoS) [1, 37, 60]. In DoS, the adversary blocks the communication channels. It is
important to develop resilient strategies that are able to tolerate and bounce back
after DoS attacks and maintain the closed-loop stability.

This chapter proposes three implementations (namely, RQ-CEASE [79], R-PSEC,
and ROCCET [82]) for ETC in the presence of DoS attacks. RQ-CEASE studies the
impact of DoS attack on average consensus and explains the trade-offs between the
amount of tolerable DoS attack and communication savings. The design procedure in
RQ-CEASE is similar to Q-CEASE. The R-PSEC implementation in Section 5.2 ex-
tends PSEC for the case where the MAS is subject to DoS attacks. R-PSEC includes
a desired level of resilience to DoS, and the unknown parameters for control and event-
triggering are computed based on the desired level of resilience. Section 5.3 proposes
ROCCET, where a dynamic event-triggering scheme is used to further reduce the
amount of transmissions in the presence of DoS attacks. ROCCET deals with un-
known DoS attacks in a similar fashion to R-PSEC. However, ROCCET incorporates
a dynamic-event triggering scheme to further reduce the number of transmissions and
computes required control and ET parameters from an optimization. A summary of
the three proposed implementations are given in Section 5.4.

5.1 RQ-CEASE
Resilience to DoS attacks has been studied for both a single system [32, 62–65, 68,
69] and a network of cooperative systems [1, 37, 50–52, 60, 61, 139–142]. Existing
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implementations against DoS attacks [1,37,50–52,60,61,139–142] face at least one of
the following shortcomings:

• Inefficient Transmission Scheme: Considering a continuous time transmission
scheme, the impact of DoS attack in connected smart vehicle systems is stud-
ied in [139]. In [140], a distributed consensus approach is proposed, which depends
on continuous transmission between the agents, which is not desirable. To relax
the real-time transmission, sampling-based schemes are proposed in [60,61] for con-
sensus under DoS attacks. Sampled-data schemes, however, transmit information
periodically and irrespective of any system trajectories.

• Continuous Measurement: Although ET schemes are widely used in the context of
DoS attacks for NCSs and MASs [1,37,50–52], the ET conditions in [1,50–52,141]
are required to be monitored continuously. Considering a single plant, refer-
ence [37] couples a sampler with the ET scheme to relax real-time measurements.
In [142], a resilient sampled-data event-triggered scheme is proposed for load fre-
quency control in multi-area power systems. However, all power areas are as-
sumed to be connected to each other. In other words, the implementation is not
distributed.

• Infinite precision for information exchange: As previously mentioned, quantiza-
tion is a necessary step for real network implementations. In the context of DoS,
existing implementations are based on infinite precision for information exchanged
between the nodes. In [66], quantization is considered for some inner loops to
control one single plant. The quantization in [67] is limited to the local control
input and is not utilized for state transmission between the agents. The quantized
control input leads to an uncertain control gain [143, Section II], which can be
handled by non-fragile design techniques. On the other hand, quantized transmis-
sion in a network of agents leads to an additional term in the closed-loop system,
which makes the design analysis challenging when DoS attacks are considered, as
such have been overlooked.

• Restricted models for DoS : The DoS attacks considered in a number of works such
as [144] and [37] are assumed to follow a periodic pattern. Considering a periodic
or stochastic pattern for DoS may not fully represent the unknown and malicious
nature of the adversary. A more general model for DoS is considered in [32,52,64],
where DoS is assumed to occur with an unknown pattern. Such DoS models
with unknown patterns can be characterized only by the energy constraints of the
adversary. In [32], for example, only the total duration and frequency of attacks
are considered for formulating DoS. The amount of resilience to DoS in [32] is
derived as a joint condition based on the duration and frequency of attacks.

Referred to as the RQ-CEASE [79], in this section a resilient framework for
quantized collaborative event-triggered, average consensus, sampled-data, for first-
order multi-agent systems subject to denial of service (DoS) attacks is proposed.

68



In RQ-CEASE, the applicability of CEASE is investigated considering two addi-
tional constraints as follow (i): DoS attacks, and (ii): quantized information. In
RQ-CEASE, the state values are being quantized before transmission and before gen-
erating control inputs. Two different ET approaches are considered in RQ-CEASE
based on whether the ET threshold is dependent or independent of the state dynam-
ics. For each approach, the operating conditions (bounds) for the sampling period and
ET design parameter that guarantee the input-to-state (ISS) stability of the network
under DoS attacks are analytically derived. In addition, upper bounds for duration
and frequency of DoS attacks are derived within which the network remains opera-
tional. The maximum possible error from the average consensus value is derived. Due
to the additional difficulties imposed by the DoS attacks and quantization, in RQ-
CEASE the control gain is fixed at 1 and the other parameters are computed based
on only the stability of the closed-loop system, i.e., no optimization is concerned.

5.1.1 Ideal control protocol and event-triggering scheme
In RQ-CEASE, the agent dynamics are similar to (3.1). The proposed RQ-CEASE
implementations are shown in Figs. 5.1 and 5.2. The ET scheme used in the first
RQ-CEASE implementation (shown in Fig. 5.1) is based on the state disagreement.
Therefore, the event detector requires the most recent local and neighbouring quan-
tized events to determine the next event (the lines in blue color). However, the ET
threshold used in the second implementation (shown in Fig. 5.2) is constant and does
not require the quantized values of the most recent events.

By considering the ideal scenario, where DoS never occurs, this section introduces
the ideal control protocol and ET scheme. In the ideal scenario, the following control
protocol is used at node i to reach average consensus

u[idl]
i (t) = − X[idl]

i (nh), nh ≤ t < (n+1)h, (5.1)

where X[idl]
i (nh) =∑

j∈Ni ai,j (q(xj(njkh))− q(xi(nikh))). Let ei(nh) = xi(nikh)− xi(nh)
be the state error. Given ni0 = 0, the next event is triggered at nik+1h, with nik+1
satisfying the following ET condition

nik+1 = min
n∈N
{n | n > nik, |ei(nh)|−Ti(nh) ≥ 0}, (5.2)

where Ti(nh) is the proposed threshold which is chosen from the following options:
State-dependent ET threshold: In this approach, Ti(nh) =φ|X[idl]

i (nh)| for (1 ≤
i ≤ N) with scalar φ> 0 as the ET parameter to be designed. In words, the ET
threshold is based on the disagreement value for node i scaled by a design coefficient φ.
RQ-CEASE with state-dependent event-triggering is shown in Fig. 5.1.
State-independent ET threshold: In the second approach, Ti(nh) =φ, ∀i∈V ,
∀n∈N0. Hence, the state error ei(nh) is compared with constant coefficient φ for all
samples. The configuration of RQ-CEASE with state-independent event-triggering is
shown in Fig. 5.2.
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Figure 5.1: RQ-CEASE with state-
dependent ET threshold for node i, iteration
n, and the previously quantized events
q(xi(nikh)) and q(xj(njkh)).
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In the ideal scenario, the following inequality holds true for both ET schemes

|ei(nh)|≤ Ti(nh), ∀i∈V . (5.3)

Remark 5.1 (Combined ET thresholds). Similar to CEASE and Q-CEASE, in RQ-
CEASE the ET condition can be a combination of both state-dependent and state-
dependent thresholds, i.e., the state error |ei(nh)| is compared with φ1|Xi(nh)|+φ2
at each sample (i ∈ V). In order not to overshadow the main results with exhaustive
derivations due to DoS analysis, RQ-CEASE considers two separate ET thresholds
as discussed above.

5.1.2 Denial of Service Attack
As shown in Figs. 5.1 and 5.2 in the presence of DoS attacks both the MAS network
and local nodes are impacted in the following ways:

(i) Impact on the network: The DoS attack blocks all communication channels
between the nodes. Therefore, information exchange is denied across the nodes.

(ii) Impact on the nodes: Inside the nodes, the adversary blocks the commu-
nication channels. Therefore, the measurements cannot be transmitted to the
event-detector block. Thus, the agents evolve in a local open-loop based on the
last measurement prior to the DoS attack.

Similar to [60] and [1], this chapter considers that simultaneous DoS attack intervals
for all nodes in the MAS.
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Assumption 3. The DoS attacks occur over disconnected time intervals. Let dc
denote the time instant at which the cth DoS attack interval begins (c∈N0). This
interval ends at time instant dc + τc, with τc > 0. Accordingly, the cth DoS interval is
given by the following expression

Dc = [ dc, dc + τc ), c∈N0. (5.4)

Assumption 4. It is assumed that the duration of each DoS interval is at least h,
i.e., τc ≥ h, ∀c∈N0.

DoS intervals (5.4) are the same for all nodes. Assumption 3 is based on energy
constraints from the attackers perspective. After an active period, the attacker goes
to the sleep mode to save on energy [65]. Based on Assumption 4, it is assumed
that each DoS interval denies at least one measurement samples. This assumption
facilitates the formulation of DoS given in Section 5.1.3. It should be noted that this
assumption is relaxed in R-PSEC and ROCCET.

The union of DoS intervals for t∈ [t1, t2) is denoted by

D(t1, t2) =
{ ⋃
c∈N0

Dc

}⋂
[ t1, t2 ). (5.5)

The healthy intervals where DoS is off are denoted by

H(t1, t2) = [ t1, t2 ) \D(t1, t2). (5.6)

Let |D(t1, t2)| denote the total length of all attack intervals for t∈ [ t1, t2 ). Likewise,
|H(t1, t2)| denotes the total length of healthy intervals for t∈ [t1, t2 ). Let c(t1, t2) de-
fine the total number of DoS off-to-on transitions in the interval [t1, t2). The following
assumption is considered for the duration and frequency of the DoS attacks.

Assumption 5. There exist positive constants T0, T1, F0, and F1 such that the
following upper-bounds hold [65],

|D(t1, t2) |≤ T0 + t2−t1
T1

, ∀ t1, t2 ∈R≥0, t1≤ t2, (5.7)

c (t1, t2) ≤ F0 + t2−t1
F1

, ∀ t1, t2 ∈R≥0, t1 ≤ t2. (5.8)

Based on Assumption 5, the pattern of DoS attack considered in this chapter is
not limited to any form (such as periodic or any stochastic distribution). The only
assumption for the DoS attacks is the boundedness of the duration and frequency of
occurrence specified by (5.7) and (5.8).

Remark 5.2 (The nature of DoS attacks). Assumption 5, which is widely used for
formulation of unknown DoS attacks [1, 32], constrains DoS in terms of its average
duration and frequency of occurrence. Based on (5.7) and (5.8), the strength of the
DoS attacks (in terms of duration and frequency of occurrence) is scalable with time t
using some coefficients. Inequality (5.7) expresses the property that the DoS intervals
satisfy a slow-on-the-average type condition as indicated by [32]. It implies that the
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total duration for DoS, on average, should not exceed a certain fraction of time, which
is scaled by 1/T1. Parameter T0 is included to allow for consideration of DoS at the
start time, i.e. when d0 = 0. Inequality (5.8) expresses a similar rationale with
respect to the frequency of DoS. In fact, F1 can be defined as the average dwell-time
between consecutive DoS intervals, while F0, like the constant T0 plays the role of
regularization.

Remark 5.3 (Difference of DoS and packet loss). While sensor/control packet losses
have been previously considered in [145,146], dealing with DoS phenomena induced by
adversary requires a different problem formulation. As mentioned in [65], in contrast
to genuine packet dropouts, which conceivably can be modeled as a random process,
assuming a stochastic behaviour for the DoS attacks fails to fully model the malicious
and intelligent nature of the adversary.

Design objectives: The following questions should be addressed as the main design
objectives:

Q1. What are the operating regions for the sampling period h and ET threshold φ
to guarantee resilient average consensus in the presence of DoS?

Q2. What are the upper bounds for DoS duration and frequency of occurrence so
that consensus is preserved?

Q3. How is the rate of consensus convergence affected by design parameters h and φ,
and the DoS strength?

Q4. What is the maximum possible consensus error under quantization and DoS?

Q5. What are the differences between the two implementations in terms of resilience
to attacks, steady-state consensus error, and transmission savings?

5.1.3 DoS formulation
Unlike the ideal (attack free) scenario, the DoS attack, during its intervals, denies
transmission of local state measurement to the event-detector. Additionally, the state
exchanges between the nodes are denied. Fig. 5.3 is provided to visualize different
time notation used to model DoS, sampling, and ET transmissions. As a result of
DoS, the control protocol (5.1) cannot be updated in coordination with (5.2). After a
measurement failure due to occurrence of DoS, no acknowledgment is received by the
event-detector and a DoS interval is detected. Once DoS is detected, the measurement
scheme attempts periodically (with the same period h) to update the next block (i.e.,
event-detector) with the earliest available measurement after the DoS interval is over.
Therefore, it takes at the most h seconds to update the system with a new state after
the DoS interval ends. Let n

¯c
h with n

¯c
= min

n∈N0
{n |nh>dc} denote ‘the first instant

after dc where transmission of the measurement is denied by Dc’. Since the system
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has no inter-sampling measurement, the impact of Dc on the system takes effect
at t=n

¯c
h. Additionally, n̄ch with n̄c = max

n∈N0
{n |nh ≤ dc + τc} specifies the largest

sampled instant before the cth on-to-off DoS transition. With σc = (n̄c−n¯c
)h, define

D̄c = [n
¯c
h, σc +h ) as the cth effective DoS interval during which (5.3) may not hold.

Note that with such definition two consecutive intervals for D̄c have one sample
in common if they are not at least h seconds apart (as in the case for D̄1 and D̄2
in Fig. 5.3). To precisely determine the effective DoS intervals without overlap, the
following parameter is defined

D̄(t1, t2) =
⋃

m∈N0

Zm ∩ [t1, t2], (5.9)

with Zm = [ ξm, ξm + νm). Parameter ξm is defined by ξ0 =n
¯0 h and

ξm+1 = min{n
¯c
h |n

¯c
h> ξm, dc − dc−1 >h}.

Additionally, νm is as follows

νm =
∑
c∈N0,

ξm≤dc<ξm+1

|D̄c\D̄c+1|. (5.10)

In other words, parameter νm determines the first possible sample instant after a DoS
interval is over. If two or more attack intervals are less than h seconds apart, i.e.,
dc+1 − (dc + τc) < h for some c ∈ N0, then νm excludes the overlaps between D̄c

and D̄c+1 and sums up the intervals to determine the next possible sample instant.
For visualization, refer to Fig. 5.3 where D1 and D2 are shown. On the other hand,
parameter

H̄(t1, t2) =
⋃

m∈N0

Wm−1 ∩ [ t1, t2 ], (5.11)

with W−1 = [ 0, ξ0 ) and Wm = [ ξm + νm, ξm+1), is the union of healthy intervals with
no overlap where (5.3) holds. Fig. 5.3 is provided to visually illustrate different time
notation used to formulate the problem.

Note that |D̄(t1, t2)| and |H̄(t1, t2)|, respectively, denote the total length of cor-
responding intervals for t∈ [t1, t2). Since H̄(t1, t2) and D̄(t1, t2) are complements of
each other, the following expression holds true ∀t1, t2 ∈ R≥0, t1 ≤ t2

|H̄(t1, t2)|= t2 − t1 − |D̄(t1, t2)|. (5.12)

Since the MAS has no inter-sampling measurement, one can assume that dc is arbitrar-
ily close to n

¯c
h. Then, inequality |D̄c|≤ |Dc|+h, c ∈ N0, holds true by construction

and can be verified from Fig. 5.3. The latter inequality gives way to the following
relation between |D̄(t1, t2)|, |D(t1, t2)|, and c(t1, t2)

|D̄(t1, t2)|≤ |D(t1, t2)|+c(t1, t2)h, (t1 ≤ t2). (5.13)

Table 5.1 lists important parameters used to model DoS.
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Figure 5.3: Schematic time diagram for an illustrative DoS attack, measurement, and trans-
mission instants for nodes i and j. Successfully transmitted measurements to local event-
detectors are labeled with green circles in the ‘measurement scheme’ diagram. Red circles
show measurements that are denied by DoS from transmission to local event-detectors.
Intervals W−1, W0, and W1 are healthy and (5.3) is satisfied. Intervals Z0, Z1, and Z2
are the effective DoS intervals where (5.3) does not necessarily hold for all nodes. Note
that d2− (d1 + τ1)<h leading to a common instant between D̄1 and D̄2. This instant
is excluded by (5.10). Therefore, Z1 is the unique interval where transmission is blocked
and (5.3) does not necessarily hold.

5.1.4 Actual control protocol and transmission scheme
Let nisi(t)h be the most recent successful update instant for node i, (i∈V), until time t.
Mathematically, one can view si(t) as follows

si(t) = sup{k ∈N0 | nikh ≤ t, nikh /∈
⋃
c∈N0

D̄c}. (5.14)

Based on (5.14), the disagreement value in healthy intervals, i.e., t∈Wm and nh ≤ t <

(n+1)h, is modified to Xi(nh) =∑
j∈Ni ai,j

(
q(x̂j(nh))− q (x̂i(nh))

)
, where x̂i(nh) =

xi(nisi(t)h). In words, x̂i(nh) is the last successfully transmitted state of agent i. The
difference between Xi(nh) and X[idl]

i (nh) is that Xi(nh) is based on the last successfully
transmitted states denoted by index si(t) defined by (5.14). However, in the ideal
scenario there exists no DoS attack and event instants do need to be labeled by t.
Now, according to the ET logic (5.2) and including the periodic update attempts, the
general transmission rule is as follows (∀i∈V and m ∈ N0)

nik+1=
min

n

{
n |n>nisi(t), |ei(nh)|−Ti(nh) ≥ 0

}
, if t∈Wm,

nik + 1, if t ∈ Zm,
(5.15)

where ei(nh) = x̂i(nh)− xi(nh) for nh≤ t< (n+ 1)h.
For the ET scheme with state-dependent threshold, the actual state-disagreement

with coefficient φ is used, i.e.,

Ti(nh) =φ|Xi(nh)|, (∀i ∈ V). (5.16)
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Table 5.1: List of parameters used to model DoS attacks.

Parameter Definition Parameter Definition
dc Start time of the cth DoS interval τc Duration of the cth DoS interval

D(t1, t2) Union of DoS attacks in [t1, t2) H(t1, t2) Union of healthy intervals in
[t1, t2)

|D(t1, t2)| Total attack duration in [t1, t2) |H(t1, t2)| Total healthy duration in [t1, t2)

c(t1, t2) Total number of off-to-on DoS
transitions in [t1, t2) T0, T1 Upper-bounds for DoS duration

F0, F1 Upper-bounds for DoS frequency D̄c cth effective DoS interval

Z
Effective DoS intervals with no
overlap W Complement of Z

ξm Start time for Zm ξm + νm
End time for Zm (also the start
time for Wm)

D̄(t1, t2) Union of intervals Z in [t1, t2) H̄(t1, t2) Union of intervals W in [t1, t2)

|D̄(t1, t2)| Total duration of Z intervals in
[t1, t2) |H̄(t1, t2)| Total duration of W intervals in

[t1, t2)

For the state-independent ET scheme it holds that

Ti(nh) =φ, (∀i ∈ V , ∀n ∈ N0). (5.17)

The control input in the presence of DoS is as follows

ui(t) =
−Xi(nh), if t∈Wm,

−Xi(ξm), if t∈Zm,
(5.18)

where Xi(ξm) =∑j∈Niai,j
(

q(x̂j(ξm))− q (x̂i(ξm))
)
, with x̂i(ξm) = xi(nisi(ξm)h). In words,

Xi(ξm) is the disagreement based on the last successful event updates before ξm.

5.1.5 Closed-loop system
Consider global vectors (3.6). Additionally, δ̂(nh) = [δ̂1(nh), . . . , δ̂N(nh)]T , where
δ̂i(nh) = q(x̂i(nh)) − x̂i(nh). To enhance readability, subscript n is used to denote
the argument (nh), e.g., rn = r(nh). From (3.1), (5.15), and (5.18) the closed-loop
system is given below

Σ :
ẋ(t) =−L(xn + en + δ̂n), if t∈Wm,

ẋ(t) =−L (x̂(ξm) + δ̂(ξm)), if t∈Zm.
(5.19)

Using the same system transformation given in (3.8), system (5.19) is converted to

Σ[c] :
ṙ(t) =−L(rn + en + δ̂n), if t∈Wm,

ṙ(t) =−L (r̂(ξm) + δ̂(ξm)), if t∈Zm,
(5.20)

where r̂(nh) = x̂(nh)− x̄(nh)1N .
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5.1.6 Stability analysis
This section answers questions Q1 to Q4 specified in section 5.1.2 by analyzing the
ISS conditions for system (5.20) for the two proposed ET approaches. For the state-
dependent ET approach (5.16), the following theorem derives: (i) Operating regions
for design parameters h and φ, (ii) Tolerable DoS strength, (iii) Rate of consensus,
and (iv) Maximum possible steady-state consensus error.

Theorem 5.1. For a given uniform quantization level δ̄, if the following conditions
are satisfied for h, φ, T1, and F1

h < hM , φ < φM ,
1
T1

+ h

F1
< Ω1, (5.21)

then, system (5.20) is guaranteed to be ISS (i.e., ‖r(t)‖ ≤ f1(‖r(0)‖ , t) + f2(δ̄),
∀t ≥ 0) with the following functions

f1 =√η1 e
− ζ1

2 t ‖r(0)‖ , f2 =
√
C + 2Cη1

eζ1F0F1

1− e−ζ1F1
, (5.22)

where

hM = 2λ2 − δ?
2λ2

N(1+δ?)
, φM =

√
a2

1 + 4a2a0 − a1

λN(2a2 +
√
a2

1 + 4a2a0 − a1)
, ω1 = − a2θ

2
1 − a1θ1 + a0,

ω2 =λNθ2 (1 + 0.5δ?) , Ω1 = ω1

ω1 + ω2
, η1 = e(T0+hF0)(ω1+ω2),

ζ1 =ω1 − (ω1 + ω2)
(

1
T1

+ h

F1

)
,

C = δ?λN (θ2
1hλN+θ1hλN + hλN + θ1/2 + 1/2)

ω1(1− ω1h) , (5.23)

with δ? = 0.5δ̄
√
N , a0 =λ2−hλ2

N−δ?hλ2
N−0.5δ?λN , a1 = 2hλ2

N+λN+δ?hλ2
N+0.5δ?λN ,

a2 =hλ2
N(1 + δ?), θ1 = φλN

1−φλN , and θ2 = 1
1−φλN .

Proof. Proof of Theorem 5.1 is given in Appendix, section 5.5.1

In summary, the inequalities given in (5.21) determine the operating regions (Q1)
and tolerable DoS strength (Q2) for the state-dependent ET approach. Furthermore,
function f1 computes the least rate for consensus (Q3) and f2 is the maximum possible
consensus error.

Remark 5.4 (Parameter design based on Theorem 5.1). For a given quantization
level, the maximum value for sampling period h, i.e., hM , depends only on λ2, λN
and N . Therefore, the first design step is to select the proper value for h which
satisfies h < hM . Then, as the second step and based on the selected value for h,
the maximum value for the ET parameter, i.e., φM , is determined. The operating φ
is designed such that φ<φM . With selected values for h and φ, the value for Ω1 is
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Algorithm 5.7 RQ-CEASE with State-dependent ET Threshold.
Preliminary Step: (P1-P2)
P1. Using distributed estimation algorithm such as Algorithm 3.4, each node computes λ2, λN ,

and N .
P2. Select the quantization level δ̄.
Parameter Design: (D1 – D3)

D1. A sampling period h is selected such that h < hM .
D2. Using the selected value for h, each node selects the ET parameter φ within φ < φM .
D3. Based on the selected values for h and φ, consensus is resilient to DoS attacks satisfying 1

T1
+ h
F1
<

Ω1.
Distributed Consensus Iterations: (C1 – C5)

C1. At t= 0, node i transmits q(xi(0)) to its neighbour.
C2. The state of agent i is excited by (5.18).
C3. Using the designed values for h and φ from the parameter design step, condition (5.15) with the

state-dependent threshold (5.16) is locally monitored at t=nh (n∈N0) to determine the next
triggering event.

C4. Events are uniformly quantized before transmission.
C5. Steps C2 to C4 continue until a predefined level of consensus is achieved. Average consensus is

guaranteed under DoS attacks satisfying (5.22). The maximum possible steady-state consensus
error is C defined in (5.23).

computed. Hence, F1 and T1 can be jointly determined such that 1
T1

+ h
F1
< Ω1. In

fact Ω1 is an upper-bound for DoS parameters F1 and T1. In case that F1 and T1
are estimated beforehand (or they satisfy some known upper-bounds), the design
procedure does not change since both hM and φM do not depend on either T1 or F1.
Algorithm 5.7 is provided to show necessary steps in RQ-CEASE with state-dependent
ET threshold.

Remark 5.5 (Design trade-offs). According to Theorem 5.1, if h→hM , then φM→ 0,
C→∞, ω1→ 0, and no amount of DoS is theoretically tolerable. Additionally, for a
given h, if φ→φM , then C→∞, ω1→ 0 and no amount of DoS is tolerable. Therefore,
there exits a trade-off between the selected values for h and φ, the maximum steady-
state error f2, and maximum tolerable DoS. Larger (smaller) values for h and φ reduce
(increase) the measurements and events intensity. However, they result in a higher
(lower) consensus error and less (more) resilience to DoS. Based on (5.22), the upper-
bound for the consensus error f2 is proportional to C given in (5.23). Parameter C
itself is proportional to θ1 = φλN

1−φλN . Since the derivative of θ1 with respect to the ET
threshold φ is always positive, a higher value for φ increases the upper-bound for the
consensus error f2.

The next theorem derives ISS conditions for system (5.20) under the state-independent
ET threshold (5.17).

Theorem 5.2. For a given uniform quantization level δ̄, and DoS parameters F1
and T1, if the selected values for h and φ satisfy the following conditions

ω3 > 0, 1
T1

+ h

F1
< Ω2, (5.24)
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Algorithm 5.8 RQ-CEASE with State-independent ET threshold.
Preliminaries: Follow Steps P1 and P2 in Algorithm 5.7.
Parameter Design: (D1)

D1. Select the sampling period h and ET parameter φ such that ω3 > 0 and 1
T1

+ h
F1
< Ω2.

Distributed Consensus Iterations: (C1 – C5)
C1-C2. Follow Steps C1 and C2 in Algorithm 5.7.
C3. Using the designed values for h and φ, condition (5.15) with the state-independent thresh-

old (5.17) is monitored at t=nh (n∈N0) to determine the next events.
C4. Events are uniformly quantized before transmission.
C5. Steps C2 to C4 continue until a predefined level of consensus is achieved. Average consensus is

guaranteed under DoS attacks satisfying (5.25). The maximum possible steady-state consensus
error is R defined in (5.26).

then, system (5.20) is guaranteed to be ISS (i.e., ‖r(t)‖ ≤ f3(‖r(0)‖ , t) + f4, ∀t ≥ 0)
with the following functions

f3 =√η2 e
− ζ2

2 t ‖r(0)‖ , f4 =
√
R + 2Rη2

eζ2F0F1

1− e−ζ2F1
. (5.25)

The undefined variables are as follow

ω3 =λ2 − hλ2
N(1 + δ?/2 + φ?/2)− λN(δ?/2 + φ?/2),

ω4 =λN (1 + δ?/2 + φ?/2) , Ω2 = ω3

ω3 + ω4
,

η2 = e(T0+hF0)(ω3+ω4), ζ2 =ω3 − (ω3 + ω4)
(

1
T1

+ h

F1

)
,

R= hλ2
N(δ? + φ?)2 + λN(hλN + 1)(δ? + φ?)

ω3(1− ω3h) , (5.26)

with δ? = 0.5δ̄
√
N , φ? =

√
Nφ.

Proof. Proof of Theorem 5.2 is given in Appendix, section 5.5.2.

In summary, the inequalities given in (5.24) determine the operating regions (Q1)
and tolerable DoS strength (Q2) for the state-independent ET approach. Further-
more, function f3 computes the least rate for consensus (Q3) and f4 is the maximum
possible consensus error.

Remark 5.6 (Parameter design based on Theorem 5.2). Unlike Theorem 5.1, in
Theorem 5.2 the sampling period h and ET parameter φ are jointly designed such that
both conditions given in (5.24) are satisfied. Algorithm 5.8 is provided to list necessary
steps in implementing the RQ-CEASE with state-independent ET threshold.

Remark 5.7 (Sampling period in healthy and attack intervals). As observed earlier,
in RQ-CEASE the sampling period h remains the same for both the healthy and
attack intervals. From a design point of view, however, having a constant sampling
period is not a suitable strategy when DoS is considered. The reason lies within the
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fact that the sampling period during the healthy intervals is desired to be properly
large so as to reduce the burden of measurements and event-triggered transmissions.
On the other hand, the sampling period during the attack intervals is desired to be
properly small so that the MAS returns to normal operation almost as soon as DoS
is over. The R-PSEC implementation, which is proposed in the next section, is based
on two different sampling periods for healthy and attack intervals.

5.1.7 Comparison between Algorithms 5.7 and 5.8
This section answers Q5 by comparing Algorithms 5.7 and 5.8 from three perspectives:
(i) Resilience to DoS attacks, (ii) Steady state consensus error, and (iii) Transmission
savings.
• Resilience to DoS attacks: Parameters Ω1 and Ω2, respectively, determine resilience

upper-bounds for Algorithms 5.7 and 5.8. One can verify the following expression
for given parameters N , λN , λ2, h, φ and δ̄

Ω2 − Ω1 = b−1
5 (b1 + b2 + b3 + b4), (5.27)

where

b1 = 8φ (λ2 + λN) (1− φλN)(2λN −
√
N +

√
NφλN),

b2 =
√
Nδ̄λN(1−φλN)

(
4φ(λ2+λN) +

√
NhλN(δ̄+2φ)

)
,

b3 = 2hδ̄φ2λ4
N(Nδ̄ + 4

√
N + 2Nφ),

b4 = 2hλ2
N(8φλN + 2

√
Nδ̄ + 4

√
Nφ2λN),

b5 =λN(1− φλN)(
√
Nδ̄ + 4)(

√
Nδ̄ + 2

√
Nφ+ 4) (5.28)

Since φM < 1
λN

, it holds that 1−φλN > 0. Therefore, b2, b3, b4, and b5 are all positive
scalars. Based on (5.27), a sufficient condition for Ω2 >Ω1 is λN >

√
N

2+
√
Nφ

. In words,
under the same design and network parameters, Algorithm 5.8 is guaranteed to
tolerate stronger DoS attacks than Algorithm 5.7, if λN >

√
N

2+
√
Nφ

. This condition
can be simplified to λN >

√
N
2 which is often the case in connected networks. In

cases where λN ≤
√
N

2+
√
Nφ

, parameter Ω2 may still be larger than Ω1, depending on
the values of b2, b3, and b4.

• Steady state consensus error : The maximum steady state error from average con-
sensus is denoted by f2 and f4 for the two algorithms. To see the difference between
Algorithms 5.7 and 5.8 in terms of the consensus error, note that f2 is proportional
to the quantization level δ̄ implying that the consensus error using Algorithm 5.7
can be limited through selection of the appropriate value of δ̄, which is independent
of the all design, network, and DoS parameters. Unlike Algorithm 5.7, parame-
ter f4 in Algorithm 5.8 is not limited solely by δ̄ as f4 is proportional to φ? + δ?.
This implies that reducing the consensus error using Algorithm 5.8 requires de-
creasing the value of the ET parameter φ as well as the quantization level δ̄. Since
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decreasing φ results in detection of more events, Algorithm 5.7 is more capable of
limiting the consensus error without other side effects.

• Transmission savings: It should be reminded that the ET threshold in Algo-
rithm 5.7 is φ|Xi(nh)|. For Algorithm 5.8, this threshold is independent of disagree-
ment |Xi(nh)| and only depends on the coefficient φ. Therefore, the transmission
difference between Algorithms 5.7 and 5.8 depends on the value of |Xi(nh)|. If
for all nodes |Xi(0)|< 1, Algorithm 5.8 detects a fewer number of events than Al-
gorithm 5.7. In case that |Xi(0)| ≥ 1 for any node i, Algorithm 5.8 triggers more
events than Algorithm 5.7 until |Xi(nh)| ≥ 1. As the disagreement |Xi(nh)| be-
comes smaller than 1, then Algorithm 5.8 outperforms Algorithm 5.7 by detecting
fewer events.

5.2 R-PSEC
Existing DoS resilient ET implementations [1,37,79,141,144,147] have some practical
shortcomings. For example, implementation [147] (similar to RQ-CEASE) is limited
to first-order MASs and is not easily generalizable to MASs with higher-order dynam-
ics. The DoS attacks considered in [144] and [37] are assumed to follow a periodic
pattern, which may not be the case in practice. Another shortcoming observed in the
existing DoS resilient works is that the theoretic upper-bounds obtained for the tol-
erable strength of DoS are conservative. The main reason is that the DoS resilience
analysis (and the obtained upped-bounds for tolerable DoS) is often based on the
extremum eigenvalues of the associated matrices in the Lyapunov candidate [1, 141].
How to obtain more realistic upper-bounds for tolerable amount of unknown DoS for
general linear MASs is still an open problem, which is being covered in R-PSEC (and
also in ROCCET presented in the next section).

R-PSEC (resilient PSEC) extends the PSEC implementation proposed in Sec-
tion 4.2 to the situation where DoS attacks can degrade the consensus performance.
In the presence of DoS with unknown patterns, R-PSEC includes a desired level of
resilience to DoS as a design input. R-PSEC demonstrates the trade-off between the
DoS resilience level and consensus performance indices in terms of convergence rate
and the number of transmissions. It should be noted that Assumption 4 is not needed
for R-PSEC (and ROCCET), and the DoS duration can be of any value.

5.2.1 Problem statement
In R-PSEC, the same linear time-invariant MAS (4.1) is considered. The DoS attack
considered in R-PSEC is similar to the one in RQ-CEASE. The assumptions regarding
DoS are given in Sections 5.1.2 and 5.1.3. DoS related notation is summarized in
Table 5.1. For ease of reference, important expressions from the formulation of DoS
in Sections 5.1.2 and 5.1.3 are reproduced here. There exist positive constants F0,
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F1, T0, and T1 such that the following upper-bounds hold [65]

|D(t1, t2) |≤ T0 + t2−t1
T1

, ∀ t1, t2 ∈R≥0, t1≤ t2, (5.29)

c (t1, t2) ≤ F0 + t2−t1
F1

, ∀ t1, t2 ∈R≥0, t1 ≤ t2. (5.30)

5.2.2 Distinct sampling periods for healthy and attack inter-
vals

In RQ-CEASE, the sampling period h remains the same during healthy and attack
intervals. As mention in Remark 5.7, having a constant sampling period is not a
suitable strategy in the presence of DoS. In R-PSEC, two different sampling periods
for measurement are considered. Parameter h is the sampling period used for healthy
intervals, while g is the sampling period used once DoS is detected.
Assumption 6. Sampling period g is selected such that h

g
∈ N.

The introduction of the sampling period g is a defense strategy to decrease the
worst upper-bound for the effective DoS intervals. It should be noted that introduc-
ing two different sampling periods h and g adds an additional degree of freedom to
operate according to healthy/attack intervals. The sampling period h is desired to
be appropriately large so as to reduce the burden of measurements and ET transmis-
sions. On the other hand, the sampling period g is desired to be appropriately small
so that the MAS returns to normal operation almost as soon as DoS is over.

5.2.3 Control protocol and event-triggering scheme
Due to the complexity caused by the multiple sampling periods, the notation used in
R-PSEC is slightly different from other implementations. Sampled states of agent i
is denoted by xi(tk), where k ∈N0. In the ideal case where DoS does not occur the
sampling period for measurement is h, i.e., tk+1−tk =h. Let t?i,0, t?i,1, . . . , t?i,k denote the
time sequence at which events for agent i are detected and in-neighbour transmissions
are made until time t. In R-PSEC, the disagreement for agent i is defined as follows

Xi(t) =
∑
j∈Ni

ai,j
(
Λi(t)xi(t?i,k)−Λj(t)xj(t?j,k)

)
, t ∈ [tk, tk+1), (5.31)

where Λi(t) = eA(tk−t?i,k). Starting from t?i,0 = 0, the next event for agent i is triggered
at t?i,k+1 which satisfies the following ET condition

t?i,k+1 = min
k∈N
{tk > t?i,k | ‖Φ

1/2
1 ei(t)‖≥ ‖Φ−1/2

2 Xi(t)‖}, (5.32)

Matrices Φ1 and Φ2 are the sampled-data ET parameters to be designed. Vec-
tor ei(t) = xi(t?i,k)−xi(tk), (1≤ i≤N), is the state error. The following control
protocol is considered in R-PSEC

ui(t) = K Xi(t), (1≤ i≤N), t ∈ [tk, tk+1), (5.33)
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Figure 5.4: An illustrative time diagram showing the periodic measurement scheme and event-
triggered transmissions under five DoS attack intervals. Successfully transmitted measurements are
shown in green. The measurements denied from transmission are shown in red.

where matrix K ∈Rm×n is the nominal control gain to be designed. Similar to PEC
and PSEC, the uncertainty in control realization is taken into account as follows

ui(t) = (K + ∆K)Xi(t), (1≤ i≤N). (5.34)

The time-varying uncertainty ∆K satisfies Assumption 2.

Design objectives: The design objectives considered in R-PSEC are as follows:

• The performance objectives considered in R-PSEC (i.e., exponential consensus
convergence rate and non-fragility to control uncertainty) should be preserved.

• In the presence of DoS, a desired level of tolerance to unknown DoS attacks
is included within the co-design framework. The proposed co-design approach
demonstrates the trade-off between the DoS resilience level and consensus per-
formance indices.

5.2.4 Problem formulation
As mentioned previously, the sampling period h is used for DoS-free intervals (i.e.,
when DoS is off). After a measurement failure due to the occurrence of DoS, no
acknowledgment is received from the event-detector and a DoS interval is detected.
When DoS is detected, the measurement scheme turns into another sampling period,
denoted by g. The event-detector unit is not able to receive these measurements taken
every g seconds, unless the DoS interval is over. Once a measurement is successfully
received by the event-detector after DoS, the measurement scheme returns to period h.
Based on the two sampling periods, possible time of occurrence for DoS intervals,
and their duration, the actual impact of Dc may not start at t= dc and may not end
at t= dc+τc. Motivated by [32, 50], in what follows we formulate the effective DoS
intervals. As denoted previously, tk is the instant where ‘the most recent successfully
transmitted measurement until time t is made’. Let n

¯c
g be ‘the first instant where

transmission of the measurement is denied by Dc’. For n∈N0, let
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n
¯c

=


tk+h
g

if dc−tk≤h ∧ tk+h∈Dc,

min{n |ng≥ dc, ng ∈Dc} if dc−tk>h,
does not exist otherwise,

with n
¯0 = 0 if d0 = 0. Intuitively speaking, condition dc−tk≤h implies that the sam-

pler is using the period h as the agent enters interval Dc. Therefore, n
¯c
g= tk + h will

be the first instant where transmission of the measurement is denied (for visualization,
refer to D0, D2, and D4 in Fig. 5.4). If two DoS intervals are located closely to each
other, condition dc−tk>h may occur for a DoS interval (such as for D3 in Fig. 5.4).
In this case, there were other DoS attacks before dc and the sampler is using the
period g as the agent approaches Dc. Hence, the first instant where transmission of
the measurement is denied by Dc is ng for the smallest possible n satisfying ng≥ dc.
Note that if the duration of Dc is short, none of the above conditions may apply (such
as for D1 in Fig. 5.4). In this scenario, n

¯c
does not exist. Additionally, for n∈N0 we

define

n̄c=
max {n |ng≤ dc+τc, ng ∈Dc} if n

¯c
exists,

does not exist otherwise.

Conceptually speaking, parameter n̄cg is the ‘instant where the last measurement
before dc+τc is denied from transmission by Dc’. By using the sampling period g
during DoS, at most g seconds after n̄cg the system can ‘potentially’ recover from
DoS. Therefore, if n

¯c
and n̄c exist we define the cth effective DoS interval as

D̄c = [n
¯c
g, (n̄c+1)g]. (5.35)

Note that not all DoS attacks have a corresponding effective interval. For example,
since n

¯1 does not exist for D1 in Fig. 5.4, D̄1 does not exist either, which implies
that D1 has no effect on the system. As shown in Fig. 5.4, if two DoS intervals are
closely located to each other, their corresponding effective DoS intervals have one
sample in common (as in the case for D̄2 and D̄3 in Fig. 5.4). To precisely determine
the effective DoS intervals without intersection, we define [32]

D̄(t1, t2) =
⋃

m∈N0

Zm ∩ [t1, t2], (5.36)

with Zm = [ ξm, ξm + νm). Parameter ξm is defined by

ξ0 =n
¯0 g, ξm+1 = min{n

¯c
g |n

¯c
g > ξm, dc−tk≤h}.

Additionally, νm is the same as (5.10). Intuitively speaking, parameter νm+ξm spec-
ifies the earliest sample instant located in healthy intervals after DoS is over. If
dc−tk>h for D̄c, then νm excludes the in-common samples between D̄c for some c∈N0
and sums up the intervals until the earliest measurement after attack which can be
successfully transmitted. That sample is located at t= νm + ξm. On the other hand,
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parameter

H̄(t1, t2) =
⋃

m∈N0

Wm−1 ∩ [ t1, t2 ], (5.37)

with W−1 = [ 0, ξ0 ) and Wm = [ ξm+νm, ξm+1), is the union of healthy intervals. Pa-
rameters |D̄(t1, t2)| and |H̄(t1, t2)|, respectively, denote the total length of correspond-
ing intervals for t∈ [t1, t2). Note that H̄(t1, t2) and D̄(t1, t2) are complements of each
other and the following expression holds true

|H̄(t1, t2)|= t2 − t1 − |D̄(t1, t2)|, ∀t1, t2 ≥ 0, t2 > t1. (5.38)

In addition, it holds that

|D̄(t1, t2)|≤ |D(t1, t2)|+c(t1, t2)g, (t1 ≤ t2). (5.39)

5.2.5 Closed-loop MAS
In the absence of DoS (t ∈ Wm), the control protocol in R-PSEC is given by (5.34).
In the presence of DoS (t ∈ Zm), however, the control protocol is set as zero, i.e.,
ui(t) = 0. Considering both healthy and DoS intervals, the switched converted MAS
(using the transformation (4.10)) is given below.

ψ̇(t) =


(IN−1⊗A)ψ(t) + (J̃ ⊗B(K + ∆k))ψ(tk)
+(J̃W̃ ⊗B(K + ∆k)) e(tk), t ∈ [tk, tk+1), t ∈ Wm,

(IN−1⊗A)ψ(t), t ∈ Zm.

(5.40)

Remark 5.8 (Switching between the two modes of ui). Note that switching between
the two modes of the control protocol (i.e., expression (5.33) and ui(t) = 0) requires
the knowledge of intervals Wm and Zm. As observed earlier, the beginning of Zm
is the instant when DoS is detected by the system. Additionally, the end of Zm is
the first instant after DoS when a measurement is successfully transmitted. It is
reminded that the event-detector sends an acknowledgment (to the sampler) when it
successfully receives a new measurement. Thanks to these acknowledgments and the
definition of Zm, interval Zm and its complement Wm are fully detectable in practice.

5.2.6 Parameter design
The proposed framework in the next theorem co-designs the required parameters in
R-PSEC (i.e., the control gain K and ET parameters Φ1 and Φ2) based on desired
values for sampling period h, non-fragility level δ, and desired level of resilience to
DoS γ. Similar to PSEC, the framework requires all the eigenvalues and eigenvectors
of the Laplacian matrix which can be computed distributively using Algorithm 3.4.
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Theorem 5.3. Select desired values for sampling periods h and g, ideal stabilization
rate ζ, non-fragility level δ, and DoS resilience level γ < 1. Denote β= ζ(1−γ)

γ
. If

there exist the following parameters

• m×n dimensional matrix V , n×n dimensional matrices H , Y11, Y12, Y22, F1,
F2, G1, G2;

• n×n dimensional positive definite matrices P , Q, Z, M1, M2;

• positive scalars ε1, ε2 ε3;

satisfying the following LMIs

C1 =
[
Π Θ
∗ Ω

]
< 0, C2 =

[
Y F
∗ he−ζhZ

]
≥ 0, C3 =

[
Y G
∗ he−ζhZ

]
≥ 0, (5.41)

C4 =
[
AHT+HAT−βP+Q P−HT+HAT

∗ h2Z−H−HT

]
< 0, (5.42)

then, the control gain K and ET parameters Φ1 and Φ2 are computed from the
following expressions

K =V (H−1)T , Φ1 =H−1M1(H−1)T , Φ2 =M2, (5.43)

These parameters make system (5.40) resilient to DoS attacks satisfying
1
T1

+ g

F1
< γ. (5.44)

Additionally, trajectories of (5.40) satisfy

λ1 ‖ψ(t)‖2 ≤ ρλ2e
−ζ̄t ‖ψ(0)‖2 , (5.45)

where

ρ= e(ζ+β)(T0+gF0), ζ̄ = ζ − (ζ + β)
( 1
T1

+ g

F1

)
, (5.46)

with λ1 =λmin(P̄ ), λ2 =λmax(P̄ )+hλmax(Q̄, with P̄ =H−1P (H−1)T , Q̄=H−1Q(H−1)T ,
and Z̄ =H−1Z(H−1)T . Unknown block matrices in (5.41) are the same as those de-
fined in PSEC, i.e., expressions (4.27), (4.28), (4.29), (4.30), (4.31).

Proof. Proof of Theorem 5.3 is provided in Appendix, Section 5.5.3.

Remark 5.9 (Less conservative DoS bounds). As observed in Theorem 5.3, the guar-
anteed (theoretical) level of resilience to DoS (i.e., parameter γ) can be chosen a priori
based on the design requirements. In many implementations such as [1, 141], the re-
silience level depends on many other parameters, which makes its precise regulation
difficult. Additionally, the guaranteed resilience level to DoS in [1,32,141] is obtained
based on the norm or extremum eigenvalues of some associated matrices (such as sys-
tem matrix A and Lyapunov matrix P ). This approach often results in conservative
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Algorithm 5.9 . The R-PSEC algorithm
Input: Neighbouring information, System matrices A and B.
Output: Resilient Performance guaranteed sampled-data event-triggered consensus in general lin-
ear MASs.

Preliminary: Using a distributed algorithm such as Algorithm 3.4, each node computes all eigen-
values and eigenvectors of the Laplacian matrix. Select desired values for sampling periods h
and g, convergence rate ζ, non-fragility level δ, and DoS resilience γ.

I. Parameter Design: (D1 -D2)
D1. Compute consensus design parameters K, Φ1, and Φ2 from (5.43).
Distributed Consensus Iterations: (C1 – C2)

C1. Initialization: Node i transmits xi(0) to its neighbours, (1≤ i≤N).
C2. Consensus process: Using the designed K for (4.21) and Φ1 and Φ2 for (4.19) the states of

the agents approach sampled-data consensus with a decaying rate satisfying (5.45). Consensus is
resilient to DoS attacks satisfying 1

T1
+ g

F1
< γ.

bounds for the tolerable amount of DoS. This sort of conservation is reported in [32]
and the authors express that the practical bounds to DoS are larger. Thanks to the
LMI formulation which excludes the use of matrix norms and extremum eigenvalues,
R-PSEC is less conservative in this regard compared to [1, 32,141].

Remark 5.10 (Finding the maximum amount of resilience to DoS). From Theo-
rem 5.3 it is possible to obtain the maximum DoS resilience level, denoted by γm, for
given values of h, δ, and ζ. To this end, one can select desired values for h, δ, and ζ
and investigate the feasibility of Theorem 5.3 by incrementally increasing the value
of γ until the LMIs become infeasible. The largest value of γ which leads to a feasible
solution is the maximum resilience level to DoS (γm) guaranteed by Theorem 5.3.

5.3 ROCCET
ROCCET [82] is a resilient optimized consensus using dynamic event-triggered scheme
for linear MASs configured as undirected networks. Similar to PEC, the state mea-
surement, event monitoring, and control updates in ROCCET is performed continu-
ously. Similar to DEASE, the ET scheme used in ROCCET is dynamic which further
reduces the number of events. Similar to R-PSEC, in ROCCET a desired level of
resilience to DoS is included as a design input. A co-design optimization technique
is used to simultaneously design all required control and dynamic event-triggering
(DET) parameters. The optimization in ROCCET increases the inter-event interval
based on a given consensus convergence rate and resilience to DoS attacks. The upper-
bound for guaranteed resilience associated with the proposed co-design approach in
ROCCET is less conservative (larger) as compared to those obtained from analytical
solutions. The main features of the proposed ROCCET are listed below:

• ROCCET is the first instance that studies the impact of unknown DoS attacks for
general linear MASs with a DET transmission scheme.
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• Unlike existing DET implementations [76], the design procedure in ROCCET is
based on co-design optimization that simultaneously computes all required control
and DET parameters. The optimization enables a structured trade-off between
the consensus convergence rate, frequency of transmissions, and level of resilience
to DoS. The theoretic upper-bound for guaranteed resilience to DoS is less conser-
vative (larger).

5.3.1 Problem statement
To reduce data exchanges between the agents, in ROCCET a distributed DET scheme
(to be introduced later) is incorporated for each agent. Denote the following disagree-
ment vector for agent i

Xi(t) =
∑
j∈Ni

ai,j
(
Λi(t)xi(tik)−Λj(t)xj(tjk)

)
, ∀i∈V , (5.47)

where Λi(t) = eA(t−tik). The following control protocol is used for agent i

ui(t) = K Xi(t), ∀i∈V , (5.48)

where K ∈Rm×n is the control gain to be designed. Let ei(t) = Λi(t)xi(tik)−xi(t),
∀i∈V , denote the state error. Initialized by ti0 = 0, ∀i∈V , the next event instant is
triggered by the following DET condition

tik+1 = inf { t> tik | ‖Φ1ei(t)‖≥ φ2‖Xi(t)‖+φ3ηi(t) }, (5.49)

where symmetric matrix Φ1 ≥ 0 and scalars φ2 ≥ 0 and φ3 ≥ 0 are to be designed.
Parameter ηi(t) satisfies

η̇i(t) = − φ4 ηi(t) + φ5 ‖Xi(t)‖ , ∀i∈V , (5.50)

where ηi(0)> 0. Scalars φ4≥ 0 and φ5≥ 0 are to be designed.
In what follows, we observe that parameter ηi(t) remains positive over time.

Lemma 3. It holds that ηi(t) > ηi(0) e−(φ4+φ3
φ5
φ2

)t, ∀t≥ 0, ∀i ∈ V . Hence, ηi(t)
remains positive over time.

Proof. Based on (5.49), it holds that ‖Φ1ei(t)‖−φ3ηi(t) ≤ φ2‖Xi(t)‖ for t∈ [tik, tik+1).
This condition is multiplied by φ5

φ2
which leads to φ5

φ2
‖Φ1ei(t)‖−φ3

φ5
φ2
ηi(t) ≤ φ5‖Xi(t)‖.

Incorporating this inequality in (5.50), results in η̇i(t) ≥ −(φ4+φ3
φ5
φ2

)ηi(t)+φ5
φ2
‖Φ1ei(t)‖.

Since φ5
φ2
‖Φ1ei(t)‖ is non-negative, one obtains η̇i(t) ≥ −(φ4+φ3

φ5
φ2

)ηi(t) for t∈ [tik, tik+1).

Thus, ηi(t) ≥ ηi(tik) e
−(φ4+φ3

φ5
φ2

)(t−tik). Now, we move back to interval t∈ [tik−1, t
i
k). Fol-

lowing the same steps above, one can show that ηi(tik) ≥ ηi(tik−1) e−(φ4+φ3
φ5
φ2

)(tik−t
i
k−1).

Comparing the former and latter expressions leads to ηi(t) ≥ ηi(tik−1) e−(φ4+φ3
φ5
φ2

)(t−tik−1)

for t∈ [tik−1, t
i
k+1). By induction and moving back through all events tik−2, . . ., ti0 = 0,

one obtains ηi(t)>ηi(0) e−(φ4+φ3
φ5
φ2

)t referring to its positive value over time.
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Remark 5.11 (Importance of the co-design approach for DET schemes). Similar
to DEASE, the DET scheme (5.49) depends on multiple unknown gains (matrix Φ1
and scalars φ2 to φ5). A generic approach to design these parameters is of great
interest. The emulation-based approaches [75, 76, 125] derive some bounded regions
for unknown DET gains. It should be noted that even when the feasible regions for
design parameters are obtained, selecting proper operating values that efficiently save
transmissions is still difficult and is based on the trial and error approach. In [1], a
resilient implementation for consensus under DoS attack is proposed, where another
emulation-based approach is used to design the required parameters. The authors
in [1, Remark 3 and Remark 6] suggest that an optimization to govern the trade-off
between the consensus convergence rate and frequency of transmissions is essential for
improved performance. As it will be observed in Theorems 5.4 and 5.5, the proposed
co-design optimization in ROCCET simultaneously computes the exact values for
unknown DET and control gains using a similar objective function considered in
PEC.

The following Lemma excludes the possibility of the Zeno behaviour in ROCCET.

Lemma 4. The minimum inter-event time (MIET) for agent i, (∀i ∈ V), is strictly
positive and lower-bounded by

tiki+1− tiki≥
1
‖A‖

ln
(
1+ ‖A‖ (κ1i + κ2i)

)
, (i ∈ V), (5.51)

where

κ1i =
φ2

‖Φ1‖ ‖BK‖
, κ2i =

φ3

κ3i
ηi(0) e−(φ4+φ3

φ5
φ2

)tiki+1 ,

κ3i = ‖Φ1‖ ‖BK‖ ‖Xi(tiki+1)‖. (5.52)

Proof. Consider tik and tik+1 as two consecutive events for agent i. From (5.49), it
holds that ‖ei(tik)‖ = 0. For t ≥ tik, the state error ei(t) evolves from zero until the
next event is triggered at t= tik+1 which fulfills (5.49). From ei(t) = Λi(t)xi(tik)−xi(t),
it follows that ėi(t) =AΛi(t)xi(tik)−ẋi(t). From (5.48) and (4.1), one obtains that
ẋi(t) =Axi(t) +BK Xi(t). After simplifying one gets ėi(t) = Aei(t)−BK Xi(t), or
‖ėi(t)‖ ≤ ‖A‖ ‖ei(t)‖+ ‖BK‖ ‖Xi(t)‖, t∈ [tik, tik+1). It, then, follows that

‖ei(t)‖ ≤
‖BK‖ ‖Xi(t)‖

‖A‖
( e‖A‖(t−tik)−1). (5.53)

The next event is triggered by (5.49) at t = tik+1 where ‖Φ1ei(tik+1)‖= φ2‖Xi(tik+1)‖
+ φ3ηi(tik+1). Then, from Lemma 3, it follows that ‖ei(tik+1)‖≥ φ2

‖Φ1‖‖Xi(tik+1)‖ +
φ3
‖Φ1‖ηi(0) e−(φ4+φ3

φ5
φ2

)tik+1 . The latter inequality together with (5.53) leads to (5.51).
The right hand side of (5.51) is strictly positive. Therefore, the minimum time
between two events is strictly positive. Hence, DET (5.49) does not exhibit the Zeno
behaviour.
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5.3.2 Denial of service attacks
The DoS model considered in ROCCET is similar to RQ-CEASE and R-PSEC. In
particular, Assumptions 3 and 5, and expressions (5.5) and (5.6) hold for DoS.

5.3.3 Design objectives
ROCCET considers the the following important criteria as design objectives.

Reduce the frequency of transmissions: One approach to reduce the frequency
of transmissions is to increase the value of MIET. Based on (5.51), the MIET depends
on all of the design parameters. It can be shown that the derivative of MIET with
respect to ‖K‖, ‖Φ1‖, and φ4 is negative, implying that smaller values for ‖K‖,
‖Φ1‖, and φ4 increase the value of MIET. On the other hand, the derivative of MIET
with respect to φ2, φ3, and φ5 is positive. Therefore, higher values for φ2, φ3, and φ5
increase the MIET. This observation is used in developing the co-design approach in
Theorems 5.4 and 5.5.
Control the convergence rate of consensus A desired exponential convergence
rate as a given input is considered to control the consensus convergence rate. It is
expected that the optimization reflects on the desired rate of convergence as such a
higher rate of convergence leads to a larger number of transmissions (smaller MIET)
and vice versa.
Tolerable amount of the DoS attacks: As mention in R-PSEC, it is of great
importance to include the desired level of resilience to DoS in the parameter design
stage. In this case, the optimization is expected to compute proper control and DET
gains in response to the desired level of tolerance to DoS. In summary, the design
objectives are as follows:

• Increase the MIET by simultaneously decreasing the values of {‖K‖ , ‖Φ1‖ , φ4},
and increasing {φ2, φ3, φ5} which together lead to an increase in MIET (5.51).

• Control the rate of consensus convergence as an exponential function.

• Govern the trade-off between the frequency of transmissions, consensus conver-
gence rate, and the level of resilience to DoS attacks.

5.3.4 DoS formulation
This section formulates the DoS attacks. Many concepts are similar to Section 5.1.3,
where DoS is formulated for RQ-CEASE. However, ROCCET is based on a continuous-
time measurement and control updates. This makes the formulation of DoS relatively
easier compared to RQ-CEASE and R-PSEC, where sampled-data measurement is
considered.

If no update is received by the event-detector DoS is detected. Once DoS is
detected, the transmission logic turns into a non-event-triggered mode, where periodic
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Figure 5.5: Schematic time diagram for a representative DoS sequence and event instants
for nodes i and j. Successful transmissions are labeled with black circles while white circles
show the periodic attempts to transmit after the DoS interval ends.

attempts (with a desired period time g) are made to transmit the state value to the
neighbouring agents as soon as DoS is over. Depending on the length of the c-th DoS
interval Dc, there might be multiple transmission attempts during Dc. Let t?a, with
sequence a= 0, 1, . . ., denote the time instant when the a-th transmission attempt
is made by the agents during DoS intervals. As shown in Fig 5.5, these periodic
attempts produce a time delay hc between the first successful transmission after Dc

and the actual time when Dc is over. Time delay hc, which satisfies 0 < hc ≤ g, makes
the ‘effective’ DoS interval larger than its actual length. To model the effective DoS
intervals, define the following parameter

σc =
0 if @ t?a ∈ Dc,

max{t?a | t?a ∈ Dc} − dc otherwise.

The c-th effective DoS interval is given by D̄c = [ dc, dc+σc+g ). Two consecutive
intervals for D̄c have overlaps if they are not g seconds apart. To exclude such
overlap, define Zm as

Zm = [ξm, ξm + νm), m∈N0, (5.54)

where parameter ξm is updated as follows

ξ0 = d0, ξm+1 = inf {dc | dc>ξm, dc>dc−1+σc−1+g}.

Additionally, parameter νm is defined as

νm =
∑
c∈N0,

ξm≤dc<ξm+1

|D̄c\D̄c+1|. (5.55)

Conceptually speaking, Zm determines the m-th effective DoS interval which has no
overlap with Zm−1 and Zm+1. Based on Zm, define the union of all effective and
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disjoint attack intervals for t ∈ [t1, t2) as

D̄(t1, t2) =
⋃

m∈N0

Zm ∩ [t1, t2]. (5.56)

The complement of Zm is Wm, which represents healthy intervals. More precisely,

W−1 = [0, ξ0), Wm = [ξm + νm, ξm+1). (5.57)

The union of all healthy intervals for t ∈ [t1, t2) where ideal operation is guaranteed
is given as follows

H̄(t1, t2) =
⋃

m∈N0

Wm−1 ∩ [ t1, t2 ]. (5.58)

Fig. 5.5 provides a schematic time diagram for the operation of ROCCET.
Let |D̄(t1, t2)| and |H̄(t1, t2)|, respectively, denote the accumulative length of cor-

responding intervals for t∈ [t1, t2). Since H̄(t1, t2) and D̄(t1, t2) are complements of
each other, the following expression holds true

|H̄(t1, t2)|= t2 − t1 − |D̄(t1, t2)|, t1 ≤ t2. (5.59)

Inequality |D̄c|≤ |Dc|+g, (c ∈ N0), holds true by construction and can be verified
from Fig. 5.5. Considering t1 and t2 (t1 ≤ t2), the latter inequality gives way to the
following relationship

|D̄(t1, t2)|≤ |D(t1, t2)|+c(t1, t2)g. (5.60)

5.3.5 Closed-loop system
Define the following global vectors

x= [xT1 (t), . . . ,xTN(t)]T , x̃ = [xT1 (t1k), . . . ,xTN(tNk )]T , e= [eT1 (t), . . . , eTN(t)]T ,
η = [η1(t), . . . , ηN(t)]T , X = [XT

1 (t), . . . ,XT
N(t)]T ,Λ = diag(Λ1(t), . . . ,ΛN(t)),

X̄ = [ ‖X1(t)‖ , . . . , ‖XN(t)‖ ]T . (5.61)

During t ∈ Zm, the control input cannot be updated and remains zero. The control
protocol can be viewed as follows

ui(t) =
K Xi(t), t ∈ Wm,

0, t ∈ Zm.
(5.62)

Considering both the healthy (Wm) and attack intervals (Zm), the dynamic vari-
able ηi(t) is re-formulated as

η̇i(t) =
−φ4 ηi(t) + φ5 ‖Xi(t)‖ , t ∈ Wm,

0, t ∈ Zm.
(5.63)
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From (4.1) and (5.62), the closed-loop MAS is given below

ẋ(t) =
(IN⊗A+L⊗BK)x(t) +L⊗BK e(t), t ∈ Wm,

(IN ⊗A)x(t), t ∈ Zm.
(5.64)

To guarantee consensus in (5.64) the same state transformation used in (4.10) is used.
This transformation is given below for ease of reference

r(t) = (W̃ ⊗ In)x(t). (5.65)

It is proved in [100] that consensus is achieved in (5.64) iff limt→∞ r(t) = 0. Us-
ing (5.65), system (5.64) is converted to

ṙ(t) =


(IN−1⊗A+ J̃⊗BK) r(t) + J̃W̃⊗BK e(t), t ∈ Wm,

(IN−1 ⊗A) r(t), t ∈ Zm,
(5.66)

where J̃ = diag(λ2, . . . , λN).

5.3.6 Parameter design
This section develops an optimization algorithm that co-designs the control and DET
parameters. In order to make the derivations easier to follow, the optimization for
parameter design is presented in two theorems.

• Considering that there is no DoS attacks, Theorem 5.4 develops an optimization
algorithm to co-design all unknown control and DET gains based on a given desired
rate for consensus convergence.

• Based on Theorem 5.4, Theorem 5.5 studies the impact of DoS on the MAS and
includes a desired level of tolerance to unknown DoS attacks within the co-design
optimization.

Optimization: General framework

Initially, no DoS attack is considered in the setup. Theorem 5.5 extends the frame-
work to incorporate DoS attacks. The optimization requires the eigenvalues and
eigenvectors of the Laplacian matrix L, which can be computed from Algorithm 3.4.

Theorem 5.4. Given a desired convergence rate ζ, the control gain and DET pa-
rameters are computed as follows

K = ΩP−1, Φ1 = (P−1S1P
−1)1/2, φ2 = 1

√
s2
,

φ3 =√s3, φ4 = s4, φ5 = 1
√
s5
. (5.67)
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The validity of (5.67) is conditioned on the existence of positive definite matri-
ces Pn×n> 0, S1n×n > 0, matrix Ωm×n, positive scalars sj > 0, (2≤ j≤ 5), and θc> 0,
(1≤ c≤ 7), satisfying the following constrained optimization

min F =
7∑

c= 1
θc, (5.68)

subject to:
Ψ =

[
Ψ11 Ψ12
∗ Ψ22

]
< 0, (5.69)

C1=
[
θ1I I
∗ P

]
> 0, C2=

[
−θ2I S1
∗ −I

]
< 0, C3=

[
−θ3 s2
∗ −1

]
< 0, C4=

[
θ4 1
∗ s3

]
> 0,

C5=
[
−θ5 s4
∗ −1

]
< 0, C6=

[
−θ6 s5
∗ −1

]
< 0, C7=

[
−θ7I Ω
∗ −I

]
< 0, (5.70)

where

Ψ11 =

ψ11 J̃W̃ ⊗BΩ 0
∗ −IN ⊗ S1 0
∗ ∗ (1− 2s4 + s3 + ζ)IN

 ,

Ψ12=


√

2J̃⊗P
√

2J̃⊗P 0 0

0 0
√

2λNIN⊗P
√

2λNIN⊗P
0 0 0 0

,
Ψ22 = diag(−s2I(N−1)n,−s5I(N−1)n,−s2INn,−s5INn),

and ψ11 = IN−1 ⊗ (AP + PAT + ζP ) + J̃ ⊗BΩ + (J̃ ⊗BΩ)T . Using (5.67), the
convergence rate of r(t) satisfies

λmin(P−1)rT (t) r(t) + ηT (t)η(t) ≤ µe−ζt, (5.71)

where µ = λmax(P−1) rT (0) r(0) + ηT (0)η(0). By minimization of the objective
function F, the following bounds are guaranteed

‖K‖≤ θ1

√
θ7, ‖Φ1‖≤θ1θ

1/4
2 , φ2≥

1√
θ3
, φ3≥

1√
θ4
, φ4 ≤

√
θ5, φ5≥

1√
θ6
.

(5.72)

Proof. Proof of Theorem 5.4 is given in Appendix, Section 5.5.4.

Optimization: Extension to DoS Attacks

The next theorem extends the optimization framework to cope with DoS attacks. A
desired level of resilience to DoS is included as a given parameter.

Theorem 5.5. Select desired values for ideal convergence rate ζ, DoS resilience
level γ < 1, and period g for transmission attempts during DoS intervals. Let
β= ζ(1−γ)

γ
. If there exist positive definite matrices Pn×n> 0, S1n×n > 0, matrix Ωm×n,
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positive scalars sj > 0, (2≤ j≤ 5), and θc> 0, (1≤ c≤ 7), satisfying

min F =
7∑

c= 1
θc, (5.73)

subject to:
Ψ < 0, C1 > 0, C2 < 0, C3 < 0, C4 > 0, C5 < 0, C6 < 0, C7 < 0,
AP + PAT − βP < 0. (5.74)

with Ψ and Ci, (1≤ i≤ 7), defined in Theorem 5.4, then control gain K and DET
gains Φ1 and φ2 to φ5 are computed from the same equations given in (5.67). These
parameters make MAS (5.66) resilient to DoS attacks satisfying

1
T1

+ g

F1
< γ. (5.75)

Using design parameters (5.67), system trajectories satisfy

λmin(P−1)rT (t) r(t) + ηT (t)η(t) ≤ µρ e−ζ̄t, (5.76)

where µ = λmax(P−1) rT (0) r(0) + ηT (0)η(0) and

ρ= e(ζ+β)(T0+gF0), ζ̄ = ζ − (ζ + β)
( 1
T1

+ g

F1

)
. (5.77)

Proof. Proof of Theorem 5.5 is given in Appendix, Section 5.5.5.

Remark 5.12 (Design trade-offs in ROCCET). Based on Theorem 5.5, the trade-off
between the consensus convergence rate, frequency of transmissions, and tolerable
strength of DoS attacks in ROCCET can be controlled as follows: As stated pre-
viously, optimization (5.73) is based on increasing MIET (5.51) with respect to the
desired ‘ideal’ consensus convergence rate ζ. With higher values for ζ, computed
parameters from optimization (5.73) tend to accelerate the rate of consensus conver-
gence at the expense of more frequent transmissions. Converse statements are also
true for smaller values of ζ. The desired resilience level to DoS (i.e., γ) provides an
additional degree of freedom to control resilience to DoS attacks. By construction,
increasing γ makes the MAS more resilient to DoS.

Remark 5.13 (Computation complexity of parameter design in PEC, PSEC, R-PSEC,
and ROCCET). Dimensions of the LMIs developed in PEC, PSEC, R-PSEC, and
ROCCET are all dependent on the number size N . Thus, the computational com-
plexity of the design state in all three implementations grows with N . As previously
mentioned in Remark 3.11, this growth is in the order of O(N3). This remains as a
future work to relax the dependency of the parameter design stage with preferably
minimum loss to the advantageous features of the implementations.

Remark 5.14 (Extension to the leader-following consensus). The proposed imple-
mentations in this chapter and Chapter 4 can be extended to the leader-following
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Table 5.2: Comparison of different proposed ETC implementations.

Characteristics RQ-CEASE [79] R-PSEC ROCCET [82]

Transmitter scheme Sampled-data
Event-triggered

Sampled-data
Event-triggered Event-triggered

Receiver scheme Periodic Periodic Continuous-time
State Measu-

rement scheme Periodic Periodic Continuous-time

Control scheme Sampled-data
Event-triggered Periodic Continuous-time

Event monitoring Periodic Periodic Continuous-time
Optimization for
Design Parameters No No Yes

Steady-state error Yes No No
State Quantization Yes No No
Control gain Design No Yes Yes
Relative expected

number of transmissions High Medium Very Low

Resilience to DoS attacks Yes Yes Yes
Network Topology Undirected Undirected Undirected

consensus, where all agents (followers) are supposed to follow a certain agent labeled
as the leader [148]. Two conditions are required for the leader following consensus: (i)
The communication topology should contain a directed spanning tree with the leader
as the root. (ii) While some nodes receive information from the leader, the leader
does not receive information from any of the followers. The second condition implies
that the leader is autonomous in its behaviour and does not interact with any of the
followers. Therefore, the associated Laplacian matrix has a row with all entries equal
zero.

5.4 Summary
This chapter proposes three resilient implementations for event-triggered consensus
(ETC) in the presence of unknown denial of service (DoS) attacks. RQ-CEASE can
be regarded as the extended version of Q-CEASE, which deals with unknown DoS
attacks.

R-PSEC extends PSEC for the situation where the MAS is subject to unknown
but bounded DoS attacks. R-PSEC includes a desired level of resilience to DoS, and
the unknown control and ET parameters are computed based on the desired level of
resilience. The parameter design in R-PSEC is a co-design LMI framework.

ROCCET deals with unknown DoS attacks in a similar fashion to R-PSEC. How-
ever, ROCCET benefits from a dynamic-event triggering (DET) scheme to further
reduce the number of transmissions and computes required control and ET parameters
based on an optimization. State measurement and monitoring of the ET condition in
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ROCCET is continuous-time. Table 5.2 summarizes the main features of RQ-CEASE,
R-PSEC, and ROCCET.

5.5 Appendix
In this section, the proofs of the theorems proposed in Chapter 5 are provided.

5.5.1 Proof of Theorem 5.1
Proof. Consider the following Lyaponuv candidate for (5.20)

V (t) = 0.5 rT(t) r(t). (5.78)

Step I. Analysis for healthy intervals. Let t∈Wm. The time evolution of r(t)
in healthy intervals is generated from (5.20) and is given below

r(t) = −(t−nh)L ( rn + en + δ̂n ) + rn. (5.79)

Using (5.79), the time derivative of V (t) is expanded

V̇ (t) = (t−nh)(rn+en+δ̂n)TLTL(rn+en+δ̂n)−rTnL(rn + en + δ̂n)
≤hλ2

N(‖rn‖+ ‖en‖+ ‖δ̂n‖)2 − λ2 ‖rn‖2 + λN ‖rn‖ ‖en‖+ λN ‖rn‖ ‖δ̂n‖.
(5.80)

According to ET condition (5.15) with (5.16), in healthy intervals it holds that
|ei(nh)|≤ φ |Xi(nh)| , (i∈V). Collectively, it is true that ‖en‖ ≤ φ ‖Lq(x̂n)‖, or
equivalently ‖en‖≤ φ ‖L‖ ‖rn+en+δ̂n‖. Under φ< 1

λN
, the former condition leads to

‖en‖ ≤ θ1 ( ‖rn‖+ ‖δ̂n‖ ), (5.81)

with θ1 defined previously. From (5.80) and (5.81), and considering ‖δ̂n‖≤ δ? the
following inequality is obtained

V̇ (t)≤
(
− λ2 + hλ2

N(1 + θ1)2 + θ1λN
)
‖rn‖2

+ 2
(
hλ2

N(θ2
1 + θ1 + 1) + λN/2(1 + θ1)

)
‖rn‖ δ?.

It holds that 2 ‖rn‖ δ?≤ δ? ‖rn‖2 + δ?. This gives way to

V̇ (t)≤ ‖rn‖2
(
− λ2 + hλ2

N(1 + θ1)2 + θ1λN + δ? hλ
2
N(θ2

1 + θ1 + 1) + δ?λN/2(1 + θ1)
)

+ δ?
(
hλ2

N(θ2
1 + θ1 + 1) + λN/2(1 + θ1)

)
, t ∈ Wm. (5.82)

The following condition is derived from (5.82)

V̇ (t)≤ − ω1V (nh) + C1, t ∈ Wm, (5.83)

where C1 = δ? (hλ2
N(θ2

1 + θ1 + 1) + λN/2(1 + θ1) ). With V (nh) =V (t)− (t− nh)V̇ (t),
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(5.83) is revised as follows

V̇ (t)≤ − ω1V (t) + C2, t ∈ Wm, (5.84)

where C2 = C1
1−ω1h

. Inequality (5.84) leads to

V (t)≤ e−ω1(t−ξm−νm)V (ξm + νm) + C3, t ∈ Wm, (5.85)

where C3 = C2
ω1

.

Step II. Analysis for DoS intervals. Now, let t∈Zm. From (5.20) and (5.78),
V̇ (t) is derived as follows

V̇ (t) =
(
−L (r̂(ξm) + δ̂(ξm))

)T
r(t) ≤ λN ‖r̂(ξm)‖ ‖r(t)‖+ λN

∥∥∥δ̂(ξm)
∥∥∥ ‖r(t)‖ .

(5.86)

At the start of Zm it holds that ‖e(ξm)‖ ≤ φ‖Lq(r̂(ξm))‖. Considering ‖e(ξm)‖ =
‖r̂(ξm)−r(ξm)‖, it is obtained that

‖r̂(ξm)−r(ξm)‖ ≤ φ1λN(‖r̂(ξm)‖+ δ?). (5.87)

With ‖r̂(ξm)‖ − ‖r(ξm)‖ ≤ ‖r̂(ξm)− r(ξm)‖, one obtains the following upper-bound
for (5.87)

‖r̂(ξm)‖ ≤ θ2 ‖r(ξm)‖+ θ1δ?, (5.88)

where θ2 is previously defined. Using (5.88), the following inequality is obtained
from (5.86)

V̇ (t) ≤ λNθ2 ‖r(ξm)‖ ‖r(t)‖+ δ?λN(θ1 + 1) ‖r(t)‖ . (5.89)

Based on the values of r(t) and r(ξm) the following two scenarios are possible:
(i) ‖r(t)‖ ≤ ‖r(ξm)‖, and (ii) ‖r(t)‖ ≥ ‖r(ξm)‖. First, it is assumed that ‖r(t)‖ ≤
‖r(ξm)‖. Including 2 ‖r(t)‖ δ?≤ δ? ‖r(t)‖2 + δ? in (5.89), leads to V̇ (t) ≤ ω2V (ξm) +
C4, where C4 = 0.5δ?λN(θ1 + 1) and ω2 is given previously. Under scenario (i), the
solution of V̇ (t) is given below

V (t) ≤ ω2(t− ξm)(V (ξm) + C4) + V (ξm). (5.90)

Alternatively, if ‖r(ξm)‖ ≤ ‖r(t)‖, (5.89) results in V̇ (t) ≤ ω2V (t) + C4 which has
the following solution

V (t) ≤ eω2(t−ξm)V (ξm) + eω2(t−ξm)C5, t ∈ Zm, (5.91)

where C5 = 1
ω2
C4. Since 1 + ε ≤ eε, ∀ε≥ 0, the upper-bound in (5.91) is larger

than (5.90). Therefore, V (t) is upper-bounded by the right hand side of (5.91) for
t∈Zm.
Step III. Merging Healthy and DoS intervals. Combining (5.85) and (5.91),
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the following condition can be obtained for t ≥ 0, [32],

V (t) ≤ e−ω1|H̄(0,t)|eω2|D̄(0,t)|V (0) + C + 2C
∑
m∈N0
ξm≤t

e−ω1|H̄(ξm+vm,t)|eω2|D̄(ξm,t)|, (5.92)

where C = max{C3, C5}. From (5.7), (5.8), (5.12), and (5.13), the following upper-
bound holds true

e−ω1|H̄(0,t)|eω2|D̄(0,t)| ≤ η1 e
−ζ1t, (5.93)

with η1 and ζ1 given in (5.23). Additionally, the summation in (5.92) lies withing the
following bound [32, Lemma 4]

∑
m∈N0
ξm≤t

e−ω1|H̄(ξm+vm,t)|eω2|D̄(ξm,t)| ≤ η1
eζ1F0F1

1− e−ζ1F1
. (5.94)

From (5.78), (5.93), and (5.94), expression (5.92) is revised:

‖r(t)‖ ≤ η1
1
2 e−

ζ1
2 t ‖r(0)‖+

√
C

(
1 + 2η1

eζ1F0F1

1−e−ζ1F1

)1
2

. (5.95)

System (5.20) is ISS if ζ1 > 0. Two conditions are necessary for ζ1 to be strictly
positive: (i) ω1 > 0, and (ii) ω1 > (ω1 +ω2)( 1

T1
+ h

F1
). Condition (i) is satisfied if a0 > 0

which leads to hmax and φmax. Based on condition (ii), one concludes 1
T1

+ h
F1
< Ω1. It

can be shown that max{C4, C5}=C4. The proof is complete by defining C =C4.

5.5.2 Proof of Theorem 5.2
Proof. Following (5.78), (5.79), and (5.80), the proof follows the same steps used in
Theorem 5.1.
Step I. Let t∈Wm. According to (5.15) with the static threshold (5.17), it holds
that |ei(nh)| ≤φ, (i∈V), which leads to the following inequality in the global sense

‖en‖ ≤ φ?, (5.96)

where φ? is given previously. Also ‖δ̂n‖≤ δ? . The following inequality is obtained
from (5.80) and (5.96) for t ∈ Wm

V̇ (t)≤
(
hλ2

N − λ2
)
‖rn‖2 +

(
hλ2

N + λN
)
‖rn‖ δ?

+
(
hλ2

N + λN
)
‖rn‖φ? + hλ2

N(φ? + δ?)2. (5.97)

It holds that 2 ‖rn‖ δ?≤ δ? ‖rn‖2 + δ?, and 2 ‖rn‖φ? ≤ φ? ‖rn‖2 +φ? . Including these
two inequalities in (5.97) leads to the following inequality for t ∈ Wm

V̇ (t)≤ − ω3V (nh) + R1, (5.98)

where R1 = hλ2
N(δ?+φ?)2 +λN(hλN +1)(δ?+φ?). With V (nh) =V (t)−(t−nh)V̇ (t),
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(5.98) is revised as follows

V̇ (t)≤− ω3V (t) + R2, (t ∈ Wm), (5.99)

where R2 = R1
1−ω3h

.
Step II. Let t∈Zm for which V̇ (t) is given in (5.86). At the start of Zm it holds that
‖e(ξm)‖ ≤ φ? or equivalently ‖r̂(ξm)− r(ξm)‖ ≤ φ? . Based on the former inequality,
the following condition is obtained

‖r̂(ξm)‖ ≤ φ? + ‖r(ξm)‖ . (5.100)

Using (5.100), the following inequality is obtained from (5.86)

V̇ (t) ≤λN ‖r(t)‖ (φ? + ‖r(ξm)‖) + λNδ? ‖r(t)‖ . (5.101)

First, it is assumed that ‖r(t)‖ ≤ ‖r(ξm)‖ which results in the following inequality
based on (5.101)

V̇ (t) ≤ ω4V (ξm) + R3, (5.102)

where R3 = λN(δ?/2 + φ?/2). Alternatively, if ‖r(ξm)‖ ≤ ‖r(t)‖, the following
inequality is derived from (5.101)

V̇ (t) ≤ ω4V (t) + R3. (5.103)

Step III. Similar to Theorem 5.1, the solution of (5.103) is the comprehensive upper
bound for V̇ (t) when t∈Zm. To derive stability conditions for t≥ 0, the same steps
given in (5.92) to (5.94) are followed, which results in f3 and f4 given in (5.25).
Two conditions are necessary for f3 to be a class KL function: (i) ω3 > 0, and (ii)
ω3 > (ω3 +ω4)( 1

T1
+ h

F1
). Condition (i) includes both h and φ. Based on condition (ii),

inequality 1
T1

+ h
F1
< ω3

ω3+ω4
must be satisfied which completes the proof.

5.5.3 Proof of Theorem 5.3
Proof. The proof is given in two steps.
Step I. Stability analysis in the presence of DoS: Let d(t), t− tk represent an
artificial time-varying time-delay that satisfies 0≤ d(t)<h. Using d(t), system (5.40)
is given below

ψ̇(t) =


(IN−1⊗A)ψ(t) + (J̃ ⊗B(K + ∆k))ψ(t− d(t))
+(J̃W̃ ⊗B(K + ∆k)) e(t− d(t)), t ∈ Wm,

(IN−1⊗A)ψ(t), t ∈ Zm.

(5.104)

Consider LKF (4.56). From Theorem 4.3 with given ζ and LMIs C1 < 0, C2≥ 0, and
C3≥ 0, it is guaranteed that V̇ (t) < −ζ V (t) for healthy intervals (t ∈ Wm). This

99



leads to

V (t) ≤ e−ζ(t−ξm−νm)V (ξm + νm), t ∈ Wm. (5.105)

In the presence of DoS (t ∈ Zm), system (5.104) is open loop and its states may
diverge. In other words, there exists a positive scalar β such that V̇ (t) < βV (t) for
t ∈ Zm. This inequality is expanded as follows

V (t) ≤ eβ(t−ξm)V (ξm), t∈Zm. (5.106)

By combining (5.105) and (5.106) the stability condition is obtained. If t ∈ Zm, the
following sequence of inequalities hold

V (t) ≤ eβ(t−ξm)V (ξm)
≤ eβ(t−ξm)

(
e−ζ(ξm−ξm−1−νm−1)V (ξm−1 + νm−1)

)
≤ eβ(t−ξm)e−ζ(ξm−ξm−1−νm−1)eβ(ξm−1+νm−1−ξm−2)V (ξm−2)
≤ . . .
≤ e−ζ|H̄(0,t)|eβ|D̄(0,t)|V (0). (5.107)

From (5.29), (5.30), (5.38), and (5.39), it holds that

e−ζ|H̄(0,t)|eβ|D̄(0,t)| ≤ ρ e−ζ̄t, (5.108)

with ρ and ζ̄ given in (5.46) 1. Condition (5.108) gives way to

V (t) < ρe−ζ̄tV (0), t ≥ 0, (5.109)

which is equivalent to (5.45). Let γ= ζ/(ζ + β). Based on (5.109), if DoS attacks
satisfy ( 1

T1
+ g

F1
) < γ, system (5.104) is exponentially stable. Parameter γ is referred

to as the DoS resilience, since its value defines the upper-bound for tolerable amount
of DoS.
Step II. Parameter design with given DoS resilience: For healthy intervals (t ∈
Wm), the parameter design based on LKF (4.56) leads to the LMIs C1 < 0, C2≥ 0,
and C3≥ 0 given in (5.41). Next, consider DoS intervals (t ∈ Zm). Let γ= ζ/(ζ + β)
be a given DoS resilience level. Hence, β= ζ(1−γ)

γ
. The following expressions are

considered for the derivatives of LKF (4.56) in t ∈ Zm

V̇1 =2ψ̇T (t)(IN−1⊗P̄ )ψ(t), V̇2 ≤ ψT (t)(IN−1⊗Q̄)ψ(t),
V̇3 ≤h2ψ̇T (t)(IN−1⊗Z̄)ψ̇(t). (5.110)

The following null expression holds based on (5.104)

2
(
ψT (t)IN−1⊗H−1 + ψ̇T (t)IN−1⊗H−1

)(
IN−1⊗Aψ(t)−ψ̇(t)

)
= 0. (5.111)

1It is straightforward to show that (5.107) also holds if t∈Wm.
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Form (5.110), the following condition holds

V̇ − βV =
3∑

i= 1
V̇i − β

3∑
i= 1

Vi ≤
3∑

i= 1
V̇i−βV1. (5.112)

Considering (5.110) and (5.111), expression (5.112) is revised as follows
3∑

i= 1
V̇i−βV1 =νT1 (C̄4 ⊗ IN−1)ν1, (5.113)

where ν1 = [ψT (t), ψ̇T (t)]T and

C̄4 =
[
c̄1 (H−1A)T −H−1 + P̄
∗ h2Z̄−H−1−(H−1)T

]
, (5.114)

with

c̄1 =H−1A+ (H−1A)T − βP̄ + Q̄. (5.115)

Considering (5.112) and (5.113), one concludes that if C̄4 < 0, then V̇ (t)−βV (t) < 0
is guaranteed for t ∈ Zm. As shown previously, combining V̇ (t) + ζV (t) < 0 for
t ∈ Wm and V̇ (t)− βV (t) < 0 for t ∈ Zm leads to (5.45). Pre- and post multiply C̄4
by T and T T , where T = I2⊗H . Considering the same alternative variables used at
the end of proof of Theorem 4.3 leads to LMI C4 < 0 given in (5.42).

5.5.4 Proof of Theorem 5.4
Proof. To improve readability, the time argument t is removed in the proof. Global
vectors used in the proof are defined in (5.61). Consider the following inequality

V̇ + ζ V < 0, (5.116)

where V = V1 + V2 with

V1 = rT (IN−1⊗P−1) r, V2 =ηT η. (5.117)

If (5.116) is guaranteed, condition (5.71) is satisfied.
Step I. (Time derivation of V ): The time derivative for V1 is obtained

V̇1 =rT Ξ r + 2rT (J̃W̃ ⊗ P−1BK) e, (5.118)

where Ξ = IN−1 ⊗ (ATP−1 + P−1A) + 2J̃ ⊗ P−1BK. Expression V̇2 is expanded
based on (5.50)

V̇2 = 2ηT (−φ4 η + φ5X̄). (5.119)

From Young’s inequality, it holds that ηT (φ5X̄)+(φ5X̄)Tη ≤ ηTη+ φ2
5 X̄

T X̄. In what
follows, the upper-bound for (5.119) is obtained

V̇2 ≤ (1− 2φ4)ηT η + φ2
5 X̄

T X̄. (5.120)

101



The global from of (5.47) can be viewed as X=L⊗ InΛx̃. From e = Λx̃ − x
and L= W̃ †J̃W̃ , one obtains that

X= (L⊗ In)e+ (W̃ †J̃ ⊗ In)r. (5.121)

Next, expression X̄T X̄ is expanded as follows

X̄T X̄=XTX ≤eT (2L2 ⊗ In)e+ rT (2J̃2 ⊗ In) r
≤2λ2

Ne
Te+ rT (2J̃2 ⊗ In) r. (5.122)

The following upper-bound holds from (5.120) and (5.122)

V̇2≤ (1− 2φ4)ηTη + 2φ2
5λ

2
Ne

Te+ rT (2φ2
5J̃

2 ⊗ In) r. (5.123)

Let ν = [ rT , eT ,ηT ]T . From (5.118) and (5.123), expression (5.116) is re-arranged as

νTΨ1ν < 0, (5.124)

where

Ψ1 =

Ψ1,11 J̃W̃ ⊗ P−1BK 0
∗ 2φ2

5λ
2
NINn 0

∗ ∗ (1−2φ4 + ζ)IN

 ,
and Ψ1,11 = Ξ + ζIN−1⊗P−1 + 2φ2

5J̃
2 ⊗ In.

Step II. (Incorporation of DET (5.49)): From (5.49), it holds that ‖Φ1ei(t)‖≤
φ2‖Xi(t)‖+φ3ηi(t). Let ē= [ ‖Φ1e1(t)‖ , . . . , ‖Φ1eN(t)‖ ]T . In a collective manner it
holds that ē ≤φ2X̄+φ3η. To include this condition in (5.124), the following quadratic
constraint is developed

ēT ē= eT (IN⊗Φ2
1)e ≤ φ2

2 X̄
T X̄ + φ2

3η
Tη. (5.125)

Using (5.122), inequality (5.125) is expanded in what follows

νTΨ2ν ≥ 0, (5.126)

where Ψ2 = diag
(
2φ2

2(J̃2⊗In), −IN ⊗Φ2
1 + 2φ2

2λ
2
NINn, φ

2
3IN

)
. By incorporation of

(5.126) with condition (5.124) one obtains the sufficient stability condition as follows

νTΨ3ν < 0, (5.127)

where Ψ3 = Ψ1 + Ψ2. From (5.127), if Ψ3 < 0 stability for r is guaranteed.
Step III. (Convexification of Ψ3 < 0): Inequality Ψ3 < 0 is not affine with respect
to all the decision variables. To derive an equivalent affine condition, the Schur com-

plement Lemma is applied on Ψ3 < 0 multiple times which results in Ψ̃ =
[
Ψ̃11 Ψ̃12
∗ Ψ̃22

]
<
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0, where

Ψ̃11 =
[

Ξ+ζIN−1⊗P−1 J̃W̃⊗P−1BK 0

∗ −IN⊗Φ2
1 0

∗ ∗ (1−2φ4+φ2
3+ζ)IN

]
,

Ψ̃12=
[√

2J̃⊗In
√

2J̃⊗In 0 0

0 0
√

2λNINn
√

2λNINn
0 0 0 0

]
,

Ψ̃22 = diag(−φ−2
2 I,−φ−2

5 I,−φ−2
2 I,−φ−2

5 I).

Pre- and post multiply inequality Ψ̃ < 0 by T = diag(IN−1 ⊗ P , IN⊗P , IN , I(N−1)n,
I(N−1)n, INn, INn). Denote the following alternative variables

Ω =KP , S1 =PΦ2
1P , s2 =φ−2

2 , s3 =φ2
3, s4 =φ4, s5 =φ−2

5 . (5.128)

Using these alternative variables, the LMI Ψ < 0 given in (5.69) is obtained.
Step IV. (Formulation of objective function): Similar to the objective functions
used in CEASE and PEC, a linear weighted-sum method is used to decrease/increase
the design parameters based on their impact on MIET (5.51). To this end, the
following constraints are considered

P−1 < θ1I, ST1 S1 < θ2I, s2
2 < θ3, s−1

3 < θ4,

s2
4 < θ5, s2

5 < θ6, ΩTΩ < θ7I, (5.129)

where θc> 0, (1≤ c≤ 7), are decision variables. Based on (5.129), if one decreases the
values of θc> 0, (1≤ c≤ 7), parameters {‖P ‖ , s3} are increased and {S1, s2, s4, s5, ‖Ω‖}
are decreased. In return, parameters {‖K‖ , ‖Φ1‖ , φ4} are decreased and {φ2, φ3, φ5}
are increased based on alternative variables (5.128). This increases MIET (5.51).
Inequalities (5.72) are as a result of (5.129). The objective function F in (5.68)
minimizes a weighted sum of θc, (1≤ c≤ 7), with all weights equal one. LMIs Ci,
(1≤ i≤ 7), given in (5.70) are obtained from (5.129). Design parameters are com-
puted from (5.67) once (5.68) is solved.

5.5.5 Proof of Theorem 5.5
Proof. The proof is given in two steps.
Step I. Stability analysis in the presence of DoS: From Theorem 5.4, with
given ζ and LMI Ψ < 0, it is guaranteed that V̇ (t) < −ζ V (t) for healthy intervals
(t ∈ Wm). This leads to

V (t) ≤ e−ζ(t−ξm−νm)V (ξm + νm), t ∈ Wm. (5.130)

In the presence of DoS (t ∈ Zm), MAS (5.66) is open loop and its states may diverge.
Therefore, there exists a scalar β such that

V̇ (t) < βV (t), (t ∈ Zm). (5.131)
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This inequality is expanded as follows

V (t) ≤ eβ(t−ξm)V (ξm), (t∈Zm). (5.132)

By combining (5.130) and (5.132) the stability condition is obtained. If t ∈ Zm, the
following sequence of inequalities hold

V (t) ≤ eβ(t−ξm)V (ξm)
≤ eβ(t−ξm)

(
e−ζ(ξm−ξm−1−νm−1)V (ξm−1 + νm−1)

)
≤ eβ(t−ξm)e−ζ(ξm−ξm−1−νm−1)eβ(ξm−1+νm−1−ξm−2)V (ξm−2)
≤ . . .
≤ e−ζ|H̄(0,t)|eβ|D̄(0,t)|V (0). (5.133)

From (5.7), (5.8), (5.59), and (5.60), it holds that

e−ζ|H̄(0,t)|eβ|D̄(0,t)| ≤ ρ e−ζ̄t, (5.134)

with ρ and ζ̄ given in (5.77). Condition (5.134) gives way to

V (t) < ρ e−ζ̄tV (0), t ≥ 0, (5.135)

which is equivalent to (5.76). Let γ= ζ/(ζ + β). Based on (5.135), if DoS attacks
satisfy ( 1

T1
+ g

F1
) < γ, MAS (5.66) is exponentially stable.

Step II. Parameter design with given DoS resilience: For healthy intervals
(t ∈ Wm), the parameter design based on Lyapunov function (5.116) leads to the LMIs
given in (5.69) and (5.70). Next, consider DoS intervals (t ∈ Zm). Let γ= ζ/(ζ + β)
be a given DoS resilience level. Hence, β= ζ(1−γ)

γ
. Now, we work on (5.131) with

Lyapunov candidate (5.117) for (t ∈ Zm):

V̇ − βV = (V̇1 + V̇2)− β(V1 + V2) < 0. (5.136)

If

(V̇1 + V̇2)−βV1 < 0, (t ∈ Zm), (5.137)

holds, condition (5.136) (or (5.131)) also holds. Based on (5.63), it holds that η̇i = 0,
(1≤ i≤N), for t∈Zm. Therefore, V̇2 = 0 for t ∈ Zm. Expression (5.137) is expanded
based on (5.66) for t ∈ Zm

rT
(
IN−1 ⊗ (ATP−1 + P−1A− βP−1)

)
r < 0. (5.138)

In summary, if (5.138) holds, then V̇ (t) − βV (t) < 0 is guaranteed for t ∈ Zm. As
shown previously, combining V̇ (t) + ζV (t) < 0 for t ∈ Wm and V̇ (t)− βV (t) < 0 for
t ∈ Zm leads to (5.76). Pre- and post multiply (5.138) by IN−1 ⊗ P which results in
LMI (5.74). This completes the proof.
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Chapter 6

Event-triggered
Formation-Containment

Recently, the formation-containment control (FCC) framework, which can be re-
garded as the combined problem of formation and containment for MASs, has arisen
in several engineering applications [83–94]. In FCC, the leaders converge to a de-
sired geometric formation. Simultaneously, the followers merge within the convex
hull spanned by the leaders. As compared to solitary containment [12, 95–98] and
solitary formation [99–101], FCC is more complex and is a topic of increasing interest
in the control and signal processing community. A related application for FCC is the
mixed containment-sensing problem [13] where the objective is to have a group of mo-
bile agents (followers) cover and provide surveillance sequentially from one region of
interest to another. In this application, the leaders steer the followers from one opera-
tional region (formation) to another and coordinate the sensing task for the followers.
Formation-containment has been studied for agents with different dynamics, includ-
ing second-order linear agents [83, 84], general linear agents [88, 89], heterogeneous
agents [90, 91], Euler–Lagrange systems [92, 93], and a class of nonlinear agents [86].
All of these implementations impose the strict condition of real-time data transmis-
sions between the agents. To preserve the limited energy allocated to each agent,
event-triggered (ET) mechanisms [36,39,149–153] that reduce communications are of
great interest in FCC applications.

The chapter proposes a formation-containment control approach using a dynamic
event-triggered mechanism (FCC/DEME [102]) that offers optimality for design pa-
rameters, namely the control gains and dynamic event-triggering (DET) parameters.
The leader-leader and follower-follower communications are reduced by utilizing a
distributed DET framework. The main features of the proposed FCC/DEME [102]
are listed below:
• FCC/DEME is the first implementation for formation-containment that utilizes

the DET mechanism. This leads to considerable energy and communication sav-
ings for the MASs.

• Two different sets of control and DET parameters are introduced for: (i) formation
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of the leaders, and; (ii) containment of the followers. To design these parameters,
FCC/DEME utilizes two convex optimizations based on enabling a trade-off be-
tween the rate of convergence for formation-containment and the frequency of
events.

Perhaps, the closest work to FCC/DEME is [94], where an ET scheme is proposed
for the FCC problem. Unlike [94], the DET used in this paper is more general and
adds additional degrees of freedom. As another difference, FCC/DEME (unlike [94])
is based on an optimization framework to develop a structured trade-off between the
formation-containment convergence rate and frequency of the transmissions.

6.1 Multi-agent system
Consider the following general linear MAS

ẋi(t) = Axi(t) +Bui(t), i ∈ V = {1, . . . , N+M}, (6.1)

where xi(t)∈Rn and ui(t)∈Rm are, respectively, the state and control input for
agent i. Matrix pair (A,B) is controllable.

There exist two sets of agents in MAS (6.1), namely, the followers and leaders.
The follower and leader sets are, respectively, denoted by F = {i∈V | 1≤ i≤N} and
L= {i∈V |N+1≤ i≤N+M}. For follower i, (1≤ i≤N), notation N i

F←F is used to
represent the set of its neighbours, which are also followers. The neighbours of fol-
lower i within the leaders’ set are denoted by N i

F←L. For leader i, (N+1≤ i≤N+M),
the set of its neighbours which are also leaders is denoted by N i

L←L. Additionally,
the neighbours of leader i within the followers’ set is denoted by N i

L←F .

Assumption 7. The follower-follower and leader-leader communication network topolo-
gies are connected and undirected. None of the leaders receive communication from
the followers’ set, i.e., N i

L←F is a null set for all leaders. In physical terms, this
implies that the leaders are autonomous and are not restrained in their movement
by the followers. There exists at least one directed path originating from one of the
leaders to any follower in MAS (6.1).

Under Assumption 7, the associated Laplacian matrix L ∈ R(N+M)×(N+M) with
MAS (6.1) is given below

L =
[
LF(N×N) LFL(N×M)

0 LL(M×M)

]
. (6.2)

Under Assumption 7, all eigenvalues of LF are positive real scalars. Each element in
−L−1

F LFL is non-negative, and each row of −L−1
F LFL has a sum equal to one [12].

Illustrative example: To illustrate the graph notation used in this chapter, an
example of a network with 10 agents (4 leaders, i.e., M = 4, and 6 followers, i.e., N = 6)
is provided. This network is shown in Fig. 6.1. Based on Fig. 6.1, the neighbouring
sets for agents 6 and 7, for example, are as follows: N 6

F←F = {1, 5}, N 6
F←L= {8},

106



4

1

6

5 3

27

9

8

Leaders Followers

10

Figure 6.1: An illustrative network topology including leaders and followers.

N 7
L←L= {8, 10}, N 7

L←F = {}. The following blocks represent different partitions for
the Laplacian matrix (6.2) corresponding to this network

LF=


2 0 0 −1 0 −1
0 2 −1 −1 0 0
0 −1 2 0 −1 0
−1 −1 0 3 0 0
0 0 −1 0 3 −1
−1 0 0 0 −1 3

,LL=
[ 2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

]
,LFL=


0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 0 −1 0
0 −1 0 0

 . (6.3)

Definition 2 (Formation). For a given formation vector hi ∈Rn, the leaders are said
to achieve state formation if there exists a formation reference function r(t)∈Rn

such that limt→∞(xi(t)−hi−r(t)) = 0, ∀i∈L, ∀xi(0)∈Rn. As a result, it holds
that limt→∞(xi(t)−xj(t)) =hi−hj, ∀i, j ∈L. This chapter considers constant (time-
invariant) formation vector hi, ∀i∈L.

Note that the leaders can determine the desired state formation by selecting proper
values for formation vector hi, (i∈L). According to Definition 2, when formation is
achieved it holds that limt→∞(xi(t)−hi) = limt→∞ r(t), ∀i∈L. This implies that the
disagreements between xi(t) and its corresponding formation vector hi approaches
the reference function r(t) for all leaders. Fig. 6.2 is provided to show the relationships
between xi(t), hi, and r(t) for an illustrative formation for 3 leaders. From Fig. 6.2,
it is inferred that the formation reference r(t) describes the macroscopic movement
of the whole formation, and hi is the relative offset between xi(t) and r(t). As shown
later in Remark 6.3, the reference function r(t) is dependent on the initial state of
the leaders and formation vectors hi.

Definition 3 (Containment). Containment is said to be solved if starting from any
initial states, the states of the followers converge to a convex hull formed by the
leaders.

Definition 4 (Formation-Containment). MAS (6.1) is said to achieve formation-
containment if for any initial values, the leaders converge to the desired formation
and simultaneously the followers achieve containment.
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Figure 6.2: An illustrative example for 3 leaders forming a triangle. When formation is
achieved, it holds that limt→∞(xi(t)−hi−r(t)) = 0, (1 ≤ i ≤ 3).

6.1.1 Dynamic event-triggering scheme and control protocol
The agents share their states within their neighbourhoods to achieve formation-
containment. To reduce the amount of transmission, an event-detector is incorpo-
rated with each agent. The event-detector in agent i (leader or follower) monitors
a ‘dynamic event-triggering condition’ to determine whether to transmit the state
value xi(t) within its neighbourhood. If the event detector detects an event at time
instant tik (superscript i indicates agent i, and subscript k= 0, 1, · · · denotes the se-
quence of events for agent i), then agent i transmits xi(tik) to its neighbours. Upon
receiving xi(tik), agent j, (a neighbour of agent i), updates its previous database with
the newly received state from agent i. This state value, i.e., xi(tik), is used at agent j
until the next event is triggered by agent i. Let x̂i(t) , xi(tik), t∈ [ tik, tik+1 ). Denote
the following disagreement vectors, for followers and leaders

Xi(t) =
∑

j∈N iL←L

ai,j
(
(Λi(t)x̂i(t)− hi)− (Λj(t)x̂j(t)− hj)

)
, (∀i∈L) (6.4)

Xi(t) =
∑

j∈N iF←F

ai,j (Λi(t)x̂i(t)−Λj(t)x̂j(t))−
∑

j∈N iF←L

ai,jxj(t), (∀i∈F) (6.5)

where ai,j is element (i, j) in the weighted adjacency matrix and Λi(t) = eA(t−tik).

Remark 6.1. Based on (6.4) and (6.5), the follower-follower and leader-leader state
exchanges are event-triggered. Similar to [94–96, 153], the leader-to-follower trans-
mission in FCC/DEME is continuous. Compared with the existing FCC implemen-
tations [83, 84, 86, 88–93] where all transmissions across the network are continuous,
all in-neighbour transmissions in FCC/DEME except for the leader-to-follower com-
munication are event-triggered. It should be noted that the leader-to-follower state
transmission can be performed by a different subset of leaders during the formation-
containment process (as shown later). This enhances the longevity of the leaders.

Let all agents transmit their initial state values xi(0) to their neighbours, i.e.,
ti0 = 0, ∀i∈F ∪L. Denote the state error at time instant t by ei(t) = Λi(t)x̂i(t)−xi(t),
∀i∈F ∪L, Motivated by [75], the next event instant after tik, ∀i∈F ∪L, is triggered
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based on the following DET condition

tik+1 = inf{t> tik| ‖Φcei(t)‖≥ αc‖Xi(t)‖+βcηi(t)}, (6.6)

where Φc ∈ Rn×n> 0, αc>0, and βc>0 for c∈{1, 2} are design parameters. In (6.6),
if i ∈ L then c= 1 is used and if i ∈ F then c= 2. Parameter ηi(t) satisfies

η̇i(t) = − γc ηi(t) + ρc ‖Xi(t)‖ , ∀i∈V , (6.7)

where ηi(0)> 0. Parameters γc> 0 and ρc> 0 are to be designed. Similar to (6.6),
in (6.7) if i ∈ L then c= 1 and if i ∈ F then c= 2. The proposed distributed control
protocol for the control input is given below

ui(t) =


K1 Xi(t) +H ∑

j∈N iL←L
ai,j(hi − hj), i∈L

K2 Xi(t), i∈F .
(6.8)

Matrices K1 ∈Rm×n and K2 ∈Rm×n are the control gains to be designed. Addition-
ally, matrix H ∈Rm×n is the formation gain which is also unknown and needs to be
designed. As shown later in Remark 6.2, the term H

∑
j∈N iL←L

ai,j(hi − hj) is used
in (6.8) to expand the set of possible formations that the leaders can achieve [100].

6.1.2 Design objectives
The design objectives in FCC/DEME are as follows:

1. Reduce the frequency of follower-follower and leader-leader state transmissions.

2. Add flexibility to control the rate of formation-containment convergence rate.

3. Govern the trade-off between the formation-containment convergence rate and
the frequency of event-triggerings.

4. Compute unknown control and DET parameters in a co-design optimization
framework based on an objective function to increase the inter-event interval.

6.2 Problem formulation
Define the following global vectors

xF = [xT1 (t), . . . ,xTN(t)]T , xL= [xTN+1(t), . . . , xTN+M(t) ]T , x̂F = [x̂T1 (t), . . . , x̂TN(t)]T ,
x̂L= [x̂TN+1(t), . . . , x̂TN+M(t)]T, eF = [eT1 (t), . . . , eTN(t)]T , eL = [eTN+1(t), . . . , eTN+M(t)]T ,
ηF = [η1(t), . . . , ηN(t)]T , ηL = [ηN+1(t), . . . , ηN+M(t)]T , XF = [XT

1 (t), . . . ,XT
N(t)]T,

XL = [XT
N+1(t), . . . ,XT

N+M(t)]T ,ΛF = diag(Λ1(t), . . . ,ΛN(t)),
ΛL = diag(ΛN+1(t), . . . ,ΛN+M(t)), X̄F = [ ‖X1(t)‖ , . . . , ‖XN(t)‖ ]T ,
X̄L = [ ‖XN+1(t)‖ , . . . , ‖XN+M(t)‖ ]T , ēF = [ ‖e1(t)‖ , . . . , ‖eN(t)‖ ]T ,
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ēL = [ ‖eN+1(t)‖ , . . . , ‖eN+M(t)‖ ]T ,h = [h1, . . . ,hM ]T . (6.9)

It holds that eL = ΛLx̂L − xL and eF = ΛF x̂F − xF . The closed-loop system
from (6.1) and (6.8) is given below

ẋL= (IM⊗A+LL⊗BK1)xL +LL⊗BK1 (eL−h) + (LL⊗BH)h. (6.10)
ẋF = (IN⊗A+LF⊗BK2)xF +LF⊗BK2 eF +LFL⊗BK2 xL. (6.11)

6.2.1 System transformation
This section converts the FCC problem for the original closed-loop MAS (6.10)
and (6.11) into the stability problem for a transformed system. System transfor-
mation is accomplished in the following 3 steps.
Step I: The first step converts the problem of formation for the leaders into an
equivalent stability problem. Let z=xL−h. Using z, system (6.10) is expressed as

ż= (IM ⊗A+LL ⊗BK1) z +LL ⊗BK1 eL + (IM ⊗A+LL ⊗BH)h. (6.12)

To guarantee stability in (6.12), the eigenvalue decomposition of LL, which was previ-
ously discussed in Section 4.1.3, is used. Let 0<λ2,L≤ . . . ≤λM,L denote the eigen-
values of LL in the ascending order. Let matrix W = [wi,j] ∈ RM×M include the
normalized eigenvectors of LL such that

WJ1W
−1 =LL, ‖W ‖ = 1,

where J1 = diag(0, λ2,L, . . . , λM,L) includes all eigenvalues of LL. Let W−1 = [w̃i,j].
FromW−1, the (M−1)×M dimensional matrix W̃ = [w̃i,j], for 2≤ i≤M and 1≤ j≤M ,
is constructed. More precisely, W̃ includes rows 2 to M of matrix W−1. Consider
the following transformation

ψL = W̃ ⊗ Inz. (6.13)

Using (6.13), system (6.12) is transformed to

ψ̇L= (IM−1⊗A+ J̃1⊗BK1)ψL + J̃1W̃⊗BK1 eL

+ (W̃ ⊗A)h+ (W̃ ⊗ In)(LL ⊗BH)h. (6.14)

where J̃1 = diag(λ2,L, . . . , λM,L). In fact, ψL is a disagreement between the state of the
leaders and their respective formation vectors. It is proved in [100, Theorem 1] that
formation is achieved in (6.10) if and only if limt→∞ψL= 0. Similar to [88,89,91,100],
the term (W̃ ⊗ A)h + (W̃ ⊗ In)(LL ⊗ BH)h in (6.14) should be made zero to
guarantee limt→∞ψL= 0. More precisely, the following condition, which is known as
the formability condition, should be satisfied.
Formability Condition: For given formation vectors hi, (i∈L), if there exists a
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formation gain H such that the following condition is satisfied

(A+BH)
∑

j∈N iL←L

ai,j(hi − hj) = 0, (∀i∈L), (6.15)

then formation for leaders is feasible with respect to hi. For proof of (6.15), refer
to [100, Theorem 2]. Under (6.15), expression (6.14) reduces to

ψ̇L= (IM−1⊗A+ J̃1⊗BK1)ψL + J̃1W̃⊗BK1 eL. (6.16)

Step II: Let

ψF = xF + (L−1
F LFL)⊗ InxL. (6.17)

If limt→∞ψF = 0, it holds that

lim
t→∞

[xF + (LF
−1LFL)⊗ InxL] = 0.

Since the row sum of −LF
−1LFL equals one, the term (LF

−1LFL) ⊗ InxL expresses
a convex hull of the leaders’ states to which xF converges. Therefore, containment
is achieved in the sense of Definition 3 if limt→∞ψF = 0. Next, expression (6.11) is
transformed under transformation (6.17) and formability condition (6.15)

ψ̇F = (IN ⊗A+LF ⊗BK2)ψF +LF ⊗BK2 eF + (IN ⊗BK1)(L−1
F LFLLL ⊗ In) z

+ (IN ⊗BK1)(L−1
F LFLLL ⊗ In) eL. (6.18)

Step III: If limt→∞ψL= 0, formation is achieved for the leaders with respect to
Definition 2. As a result, it holds that limt→∞ z=xL−h= 1M ⊗ r(t). Therefore,
the third term in the right hand side of (6.18) approaches (IN⊗BK1)(L−1

F LFLLL ⊗
In) 1M ⊗ r(t). Since LL1M = 0, it holds that

lim
t→∞

(IN ⊗BK1)(L−1
F LFLLL ⊗ In) z= 0. (6.19)

The state error for leaders eL approaches zero, i.e., limt→∞ eL= 0. This fact together
with (6.19) imply that the asymptotic stability for (6.18) can be simplified to the
asymptotic stability of the following system

ψ̇F = (IN ⊗A+LF ⊗BK2)ψF +LF ⊗BK2 eF . (6.20)

A similar eigenvalue decomposition is used for (6.20). Let matrix V be the normalized
eigenvector matrix for LF such that

V J2V
−1 =LF, ‖V ‖ = 1, (6.21)

where J2 = diag(λ1,F, . . . , λN,F) includes all eigenvalues of LF. The following trans-
formation is considered

ψ̃F =V −1 ⊗ InψF. (6.22)
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Using (6.22), system (6.20) is transformed to
˙̃ψF = (IN ⊗A+ J2 ⊗BK2) ψ̃F + (J2V

−1 ⊗BK2) eF . (6.23)

In conclusion, the formation-containment problem for MAS (6.1) is solved if sys-
tems (6.16) and (6.23) are stable.

It should be noted that, unlike LL, all eigenvalues of LF are strictly positive.
Therefore, the transformation used in (6.22) is based on all eigenvectors included
in V . In contrast, in (6.13) the corresponding eigenvector to eigenvalue of zero is
excluded.
Remark 6.2. According to the formability condition (6.15), linear MASs cannot
achieve all the formation vectors due to the dynamic constraints of the agents. Sim-
ilar observations for formability in general linear MASs have been made in other
implementations including [88, 89, 91, 100]. The physical interpretation of (6.15) is
that the expected formation should comply with the dynamics of the leaders [88]. It
is worth mentioning that if H = 0 in control protocol (6.8), the formability condi-
tion (6.15) reduces to A∑

j∈N iL←L
ai,j(hi−hj) = 0. Therefore, including the formation

gain H expands the set of feasible formations that the leaders can achieve. It should
be noted that for some formation vectors and agent dynamics, the formation gain H
may be unnecessary (i.e., H can be zero).
Remark 6.3. It is worth mentioning that if formation is achieved (i.e., limt→∞ψL= 0),
the explicit expression for formation reference function r(t) satisfies

lim
t→∞

(r(t)− r0(t)− rh(t)) = 0, (6.24)

where

r0(t) = eAt(w̃1 ⊗ In)xL(0),

rh(t) =−eAt(w̃1⊗In)h +
∫ t

0
eA(t−v)((w̃1 ⊗ In)(IM ⊗A+LLBH))h dv,

and w̃1 is row 1 of W−1. For proof of (6.24) refer to [100, Theorem 3]. Based
on (6.24), the formation reference function r(t) depends on both the leaders’ initial
states xL(0) and global formation vector h. In particular, r0(t) is the impact of xL(0)
on r(t), while rh(t) shows how different choices of hi impact r(t).

6.3 Main results
In this section, first the possibility of Zeno-behaviour for DET scheme (6.6) is ex-
cluded by obtaining a lower bound for the interval between two successive events.
It is explained how this lower bound relates to the design objectives mentioned in
Section 6.1.2. Two separate optimizations are then developed to co-design unknown
parameters. The first optimization simultaneously computes all design parameters
(K1, Φ1 α1, β1, γ1, and ρ1) for the leaders. The second optimization co-designs all
design parameters (K2, Φ2 α2, β2, γ2, and ρ2) for the followers.

112



6.3.1 Exclusion of Zeno-behaviour
This section begins with the following Lemma which will be used for the exclusion of
the Zeno-behaviour.

Lemma 5. It holds that ηi(t) > ηi(0) e−(γc+βc ρcαc )t, ∀t≥ 0, ∀i ∈ V , and c ∈ {1, 2}.
Hence, ηi(t) remains positive over time.

Proof. Based on (6.6), for t∈ [tik, tik+1), it holds that ‖Φcei(t)‖−βcηi(t) ≤ αc‖Xi(t)‖.
Therefore, ρc

αc
‖Φcei(t)‖−βc ρcαcηi(t) ≤ ρc‖Xi(t)‖. Incorporating this inequality in (6.7),

results in η̇i(t) ≥ −(γc + βc
ρc
αc

)ηi(t) + ρc
αc
‖Φcei(t)‖. Hence, η̇i(t) ≥ −(γc + βc

ρc
αc

)ηi(t).
Thus, ηi(t) > ηi(tik) e−(γc+βc ρcαc )(t−tik). By induction and moving back through all
events tik, tik−1, . . ., ti0 = 0, one obtains ηi(t)>ηi(0) e−(γc+βc ρcαc )t referring to its posi-
tive value.

Next, the minimum inter-event time (MIET) for leaders is obtained which excludes
the Zeno-behaviour. The MIET for followers can be obtained in a similar way.

Theorem 6.1. The minimum inter-event time for leader i, (∀i ∈ L), is strictly
positive and lower-bounded by

tik+1− tik≥
1
‖A‖

ln (1+ ‖A‖ (κ1i + κ2i)) , (i ∈ L), (6.25)

where

κ1i =
α1

κ3i

∥∥∥Xi(tik+1)
∥∥∥ , κ2i =

β1

κ3i
ηi(0) e−(γ1+β1

ρ1
α1

)tik+1 ,

κ3i = ‖Φ1‖
(
‖BK1‖ ‖Xi(tik+1)‖+κ4i

)
, κ4i = ‖BH

∑
j∈N iL←L

ai,j(hi − hj)‖. (6.26)

Proof. Consider tik and tik+1 as two consecutive events for leader i. From (6.6), it
holds that ‖ei(tik)‖= 0. For t ≥ tik, the state error ei(t) evolves from zero until the
next event is triggered at t = tik+1 which fulfills (6.6). From ei(t) = Λi(t)x̂i(t)−xi(t),
it follows that ėi(t) = AΛi(t)x̂i(t)−ẋi(t). From (6.8) and (6.1), one obtains that
ẋi(t) = Axi(t) +BK1 Xi(t) + BH

∑
j∈N iL←L

ai,j(hi−hj). After simplifying one gets
ėi(t) = Aei(t)−BK1 Xi(t)−BH

∑
j∈N iL←L

ai,j(hi −hj), or ‖ėi(t)‖ ≤ ‖A‖ ‖ei(t)‖+
‖BK1‖ ‖Xi(t)‖+ κ4i, t∈ [tik, tik+1). It, then, follows that

‖ei(t)‖ ≤
‖BK1‖ ‖Xi(t)‖+κ4i

‖A‖
( e‖A‖(t−tik)−1). (6.27)

The next event is triggered by (6.6) at t = tik+1 where

‖Φ1ei(tik+1)‖= α1‖Xi(tik+1)‖+β1ηi(tik+1).

From Lemma 5, it follows that ‖ei(tik+1)‖≥ α1
‖Φ1‖‖Xi(tik+1)‖+ β1

‖Φ1‖ηi(0) e−(γ1+β1
ρ1
α1

)tik+1 .
The latter inequality together with (6.27) leads to (6.25). The right hand side of (6.25)

113



is strictly positive. Therefore, the minimum time between two events is strictly posi-
tive. Hence, DET (6.6) does not exhibit the Zeno behaviour.

Corollary 1. It is straightforward to show that the MIET for followers is obtained
from (6.25) by considering κ4i = 0, (i ∈ F), and replacing the followers’ parame-
ters K2, Φ2, α2, β2, γ2, and ρ2.

How design objectives are related to MIET (6.25)?

One approach to reduce the frequency of events (Design objective 1 mentioned in
Section 6.1.2), is to increase the value of MIET (6.25). To this end, one should
limit {‖Kc‖ , ‖Φc‖ , γc} and increase {αc, βc, ρc} for c∈{1, 2}. On the other hand, the
formation-containment convergence rate (Design objective 2) is impacted by ‖Kc‖.
Accelerating the convergence rate, for example, tends to increase ‖Kc‖, which de-
creases MIET (6.25). As mentioned previously, increasing the MIET tends to re-
duce ‖Kc‖, which may lead to a conservative convergence rate. To cope with the
trade-off between the frequency of the events and convergence of the MAS, it is
desirable to design unknown parameters using an optimization framework (Design
objectives 3 and 4) based on an objective function that increases the value of MIET
for a desired convergence rate for formation-containment.

6.3.2 Parameter design

Parameter design for leaders: This section proposes an optimization to co-design
all required parameters (K1, Φ1 α1, β1, γ1, and ρ1) for the leaders. To solve the
optimization, each leader should locally compute the eigenvalues of LL (included
in J̃1) and its matrix of eigenvectors W as a preliminary step. These eigenparameters
can be computed in a distributed fashion using Algorithm 3.4.

Theorem 6.2. Let the formation gain H and formation vectors hi satisfy the forma-
bility condition (6.15). Given (6.15) and a desired convergence rate ζ1, if there exist
matrices P ∈Rn×n>0, Φ̃∈Rn×n>0, Ω∈Rm×n, positive scalars α̃, β̃, γ̃, ρ̃, τ1, τ2,
and θc, (1≤ c≤ 7), satisfying the following optimization

min F1 =
7∑

c= 1
θc, (6.28)

subject to:

Ξ=


Ξ11 J̃1W̃⊗BΩ J̃1⊗P 0
∗ −IM ⊗ Φ̃ 0 IM⊗P
∗ ∗ −τ1I 0
∗ ∗ ∗ −τ2I

< 0,

π1 = 1− 2γ̃ + 2β̃ + 2ζ1 < 0, π2 = 4α̃ + 2ρ̃+ (−2 + τ1) < 0,
π3 = (4α̃ + 2ρ̃)J̃2

1 + (−2 + τ2)IM−1 < 0,
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C1 =
[
θ1I I
∗ P

]
> 0, C2 =

[
−θ2I Φ̃
∗ −I

]
< 0, C3 =

[
θ3 1
∗ α̃

]
> 0, C4 =

[
θ4 1
∗ β̃

]
> 0,

C5 =
[
−θ5 γ̃
∗ −1

]
< 0, C6 =

[
θ6 1
∗ ρ̃

]
> 0, C7 =

[−θ7I Ω
∗ −I

]
< 0, (6.29)

where Ξ11 = IM−1 ⊗ (PAT + AP ) + J̃1 ⊗ BΩ + (J̃1 ⊗ BΩ)T + 2ζ1IM−1⊗P , then
design parameters for leaders are computed as

K1 = ΩP−1, Φ1 = (P−1Φ̃P−1)1/2, α1 =
√
α̃, β1 =

√
β̃, γ1 = γ̃, ρ1 =

√
ρ̃.

(6.30)

Using design parameters (6.30), system trajectories converge at a rate which satisfies

λmin(P−1)ψT
L(t)ψL(t) + ηTL(t)ηL(t) ≤ µe−2ζ1t, (6.31)

where µ = λmax(P−1)ψT
L(0)ψL(0) + ηTL(0)ηL(0). The following bounds are guaran-

teed by minimizing F1

‖K1‖≤ θ1

√
θ7, ‖Φ1‖≤θ1θ

1/4
2 , α1≥

1√
θ3
, β1≥

1√
θ4
, γ1 ≤

√
θ5, ρ1≥

1√
θ6
. (6.32)

Proof. The proof is included in Appendix, Section 6.5.1.

Parameter design for followers: The following theorem co-designs all required
parameters (K2, Φ2 α2, β2, γ2, and ρ2) for the followers. The following optimization
is based on the knowledge of the eigenvalues and eigenvectors of LF. The eigenvalues
of LF are equal to non-zero eigenvalues of Lest = [LF LFL; 0 0]. The eigenvalues
of Lest can be computed by the followers in a distributed fashion using [112].

Theorem 6.3. Let the formability condition (6.15) hold. Given (6.15) and a desired
convergence rate ζ2, if there exist matrices P ∈Rn×n>0, Φ̃∈Rn×n>0, Ω∈Rm×n, pos-
itive scalars α̃, β̃, γ̃, ρ̃, τ1, τ2, and θc, (1≤ c≤ 7), satisfying the following optimization1

min F2 =
7∑

c= 1
θc, (6.33)

subject to:

Ξ=


Ξ11 J2V

−1⊗BΩ IN⊗P 0
∗ −IN ⊗ Φ̃ 0 IN⊗P
∗ ∗ −τ1I 0
∗ ∗ ∗ −τ2I

< 0,

π1 = 1− 2γ̃ + 2β̃ + 2ζ2 < 0, π2 = 4α̃ + 2ρ̃+ (−2 + τ1) < 0,
π3 = (4α̃ + 2ρ̃)J2

2 + (−2 + τ2)IN < 0,
1To improve comprehension, common notation used for leaders and followers is intentionally kept

the same in Theorems 6.2 and 6.3. For example, Ξ in Theorem 6.2 corresponds to the constraint
matrix for the leaders. Likewise, Ξ in Theorem 6.3 corresponds to the constraint matrix for the
followers. The difference between them is evident from the context where the symbols are used.
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Algorithm 6.10 . FCC/DEME
I(a). Parameter Design (Leaders): (D1 -D3)
D1. Formation gain H is selected such that the formability condition (6.15) is satisfied for formation

vectors hi.
D2. Each leader uses a distributed approach such as Algorithm 3.4 to locally compute the eigenvalues

and eigenvectors of LL. Then, they construct J̃1 and W̃ following Section 6.2.1.
D3. Each leader solves optimization (6.28) for an agreed value of ζ1. The control gain and dynamic

event-triggering parameters are computed from (6.30).
I(b). Parameter Design (Followers): (D1 -D2)
D1. Each follower uses a distributed approach [112, 127] to locally compute the eigenvalues and

eigenvectors of LF .
D2. Followers solve optimization (6.33) for an agreed value of ζ2. The control gain and dynamic

event-triggering parameters are computed from (6.35).
II. Execution: (E1 and E2)
E1. Leaders and followers transmit their initial state values xi(0) to their neighbourhoods.
E2. Using designed parameters the states of the leaders approach the desired formation specified by

formation vectors hi. The followers achieve the event-triggered containment.

C1 =
[
θ1I I
∗ P

]
> 0, C2 =

[
−θ2I Φ̃
∗ −I

]
< 0, C3 =

[
θ3 1
∗ α̃

]
> 0, C4 =

[
θ4 1
∗ β̃

]
> 0,

C5 =
[
−θ5 γ̃
∗ −1

]
< 0, C6 =

[
θ6 1
∗ ρ̃

]
> 0, C7 =

[−θ7I Ω
∗ −I

]
< 0, (6.34)

where Ξ11 = IN ⊗ (PAT +AP ) + J2 ⊗BΩ + (J2 ⊗BΩ)T + 2ζ2IN⊗P , then design
parameters for followers are computed as

K2 = ΩP−1, Φ2 = (P−1Φ̃P−1)1/2, α2 =
√
α̃, β2 =

√
β̃, γ2 = γ̃, ρ2 =

√
ρ̃.

(6.35)

The following bounds are guaranteed by minimizing F2

‖K2‖≤ θ1

√
θ7, ‖Φ2‖≤θ1θ

1/4
2 , α2≥

1√
θ3
, β2≥

1√
θ4
, γ2 ≤

√
θ5, ρ2≥

1√
θ6
. (6.36)

Proof. The proof is included in Appendix, Section 6.5.2.

Based on Theorems 6.2 and 6.3, the proposed formation-containment control using
dynamic event-triggered mechanism (FCC/DEME) is summarized in Algorithm 6.10.

Remark 6.4. It should be noted that the parameter design stage in FCC/DEME
is independent of LFL. Therefore, the communication topology between the leaders
and followers can change during the formation-containment process without requir-
ing a re-design of the control and event-triggering parameters. In other words, the
leader-to-follower transmission can be performed by different leaders at each period
of time. This prolongs the leaders’ communication energy resources since one subset
of leaders can transmit to the followers for a certain time interval. Then, this subset
ceases the leader-to-follower transmission and another subset takes the responsibility
of transmitting to the followers.
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6.4 Summary
Referred to as the FCC/DEME, this chapter proposes a formation-containment con-
trol (FCC) implementation using the dynamic event-triggered (DET) strategy for
multi-agent systems. To achieve formation for the leaders and containment for the
followers, the formation and containment formulations are converted to stability prob-
lems of equivalent systems. The Lyapunov stability theorem is used to develop suf-
ficient conditions to guarantee formation-containment. An objective function is pro-
posed for optimal parameters design. Namely, the control gains and DET parameters,
are computed through a constrained convex optimization framework.

6.5 Appendix

6.5.1 Proof of Theorem 6.2
Proof. Consider the following inequality

V̇ + 2 ζ1 V < 0, (6.37)

where V = V1 + V2 with

V1 =ψT
L(IM−1⊗P−1)ψL, V2 =ηTL ηL. (6.38)

Inequality (6.37) leads to the exponential convergence rate specified in (6.31). The
time derivative for V1 is obtained as follows

V̇1 = ψT
L Ξ̄11ψL + 2ψT

L Ξ̄12 eL, (6.39)

where

Ξ̄11 = IM−1 ⊗ (ATP−1 + P−1A) + 2J̃1 ⊗ P−1BK1, Ξ̄12 = J̃1W̃ ⊗ P−1BK1.

In what follows, V̇2 is expanded based on (6.7)

V̇2 = 2ηTL(−γ1 ηL + ρ1X̄L). (6.40)

From Young’s inequality, it holds that ηTL(ρ1X̄L) + ρ1X̄
T

LηL ≤ ηTLηL + ρ2
1X̄

T

LX̄L. The
following upper-bound for (6.40) is obtained

V̇2 ≤ (1− 2 γ1)ηTL ηL + ρ2
1 X̄

T

LX̄L. (6.41)

The global form of (6.4) for leaders can be viewed as follows

XL =LL⊗ In(ΛLx̂L−h). (6.42)

From eL = ΛLx̂L − xL, z = xL − h, and LL = W̃ †J̃1W̃ , the following expression
from (6.13) and (6.42) is derived

XL = (W̃ †J̃1)⊗ InψL + (W̃ †J̃1W̃ )⊗ IneL. (6.43)
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Considering that W̃ †T W̃ †= I, expression X̄T

LX̄L is expanded below

X̄T

LX̄L=XT
LXL ≤ 2σT1 σ1 + 2σT2 (J̃2

1 ⊗ In)σ2, (6.44)

where σ1 = (W̃ †J̃1)⊗ InψL and σ2 = W̃ ⊗ IneL. The following upper-bound holds
from (6.41) and (6.44)

V̇2≤ (1−2 γ1)ηTLηL + 2ρ2
1σ

T
1 σ1 + 2ρ2

1σ
T
2 (J̃2

1⊗In)σ2. (6.45)

The following two equalities hold by definition

τ−1
1

(
ψT
L(J̃2

1 ⊗ In)ψL − σT1 σ1
)

= 0, (6.46)
τ−1

2 (eTLeL − σT2 σ2) ≥ 0, (6.47)

where τ1>0 and τ2>0 are decision variables. Based on (6.6), it holds that ‖Φ1ei(t)‖≤
α1‖Xi(t)‖+β1ηi(t). Let a1 = [ ‖Φ1eN+1(t)‖ , . . . , ‖Φ1eN+M(t)‖ ]T . In a collective
fashion it holds that a1 ≤ α1X̄L + β1ηL, which is equivalent to

aT1 a1 = eTL(IM⊗Φ2
1)eL ≤ (α1X̄L + β1ηL)T (α1X̄L + β1ηL)

≤ 2α2
1X̄

T

LX̄L + 2β2
1η

T
LηL. (6.48)

Using (6.44), the following expression holds from (6.48)

eTL(IM⊗Φ2
1)eL ≤4α2

1σ
T
1 σ1 + 4α2

1σ
T
2 (J̃2

1 ⊗ In)σ2 + 2β2
1η

T
LηL. (6.49)

Let ν = [ψT
L , e

T
L,η

T
L ,σ

T
1 , σ

T
2 ]T . Based on (6.39), (6.45), (6.46), (6.47), and (6.49),

expression (6.37) is re-arranged as follows

νT
[
Ξ̃ 0
∗ Π̃

]
ν < 0, (6.50)

where Ξ̃ =
[

Ξ̃11 Ξ̄12
∗ Ξ̃22

]
and Π̃ = diag(π̃1, π̃2, π̃3) and

Ξ̃11 = Ξ̄11 + τ−1
1 J̃2

1 ⊗ In + 2ζ1IM−1⊗P−1, Ξ̃22 = − IM ⊗Φ2
1 + τ−1

2 IMn,

π̃1 = (1− 2γ1 + 2β2
1 + 2ζ1)IM , π̃2 = (2ρ2

1 − τ−1
1 + 4α2

1)IMn,

π̃3 = − τ−1
2 I + (4α2

1 + 2ρ2
1)(J̃2

1 ⊗ In). (6.51)

Based on (6.50), inequality (6.37) is guaranteed if Ξ̃<0 and Π̃<0. Pre- and post mul-
tiply inequality Ξ̃ by T = diag(IM−1⊗P , IM⊗P ) which results in Ξ̂ =

[
Ξ̂11 Ξ̂12
∗ Ξ̂22

]
< 0

where

Ξ̂11 = IM−1 ⊗ (PAT +AP ) + 2J̃1 ⊗BK1P + τ−1
1 (J̃1 ⊗ P )2 + 2ζ1IM−1⊗P ,

ψ̂12 = J̃1W̃ ⊗BK1P , ψ̂22 = − IM ⊗ (PΦ2
1P ) + τ−1

2 IM ⊗ P 2. (6.52)

Denote Ω =K1P and Φ̃ =PΦ2
1P as alternative variables. Then, the Schur comple-

ment is applied on Ξ̂ which results in Ξ<0 given in the statement of the theorem.
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Denote α̃=α2
1, β̃= β2

1 , γ̃= γ1, and ρ̃= ρ2
1. The following inequality is also considered

−τ−1
i ≤ −2 + τi, i ∈ {1, 2}. (6.53)

Using α̃, β̃, γ̃, ρ̃, and considering (6.53), inequalities π1 < 0, π2 < 0, and π3 < 0 given in
the statement of the theorem are obtained. The relations between design parameters
and decision variables are given in (6.30).

Motivated by [116, Sec. 2.2] and similar to [36, 40], a linear scalarization method
is used to decrease/increase the decision variables used in K1, Φ1, α1, β1, γ1, and ρ1
(see (6.30)). To this end, consider the following constraints

P−1 < θ1I, Φ̃T Φ̃ < θ2I, α̃−1 < θ3, β̃−1 < θ4,

γ̃2 < θ5, ρ̃−1 < θ6, ΩTΩ < θ7I, (6.54)

where θc> 0, (1≤ c≤ 7), are decision variables. Based on inequalities (6.54), if one
decreases θc, (1≤ c≤ 7), parameters {‖Φ̃‖, γ̃, ‖Ω‖} are decreased and parameters
{‖P ‖ , α̃, β̃, ρ̃} are increased. Therefore, design parameters {‖K1‖ , ‖Φ1‖ , γ1} are
decreased and {α1, β1, ρ1} are increased based on (6.30). These together increase
MIET (6.25). Inequalities (6.32) are obtained from (6.54). The objective function F1
in (6.28) minimizes a weighted sum of the decision variables θc with all weights equal
to 1. The LMIs given in (6.29) that include θc, (1≤ c≤ 7), are equivalent to (6.54)
using Schur complement. Once (6.28) is solved, design parameters are computed
from (6.30) and that completes the proof.

6.5.2 Proof of Theorem 6.3
Proof. The proof follows the same steps given in the proof of Theorem 6.2. Consider
the following inequality

V̇ + 2 ζ2 V < 0, (6.55)

where V = V1 + V2 with

V1 = ψ̃T
F(IN ⊗ P−1) ψ̃F , V2 =ηTF ηF . (6.56)

From (6.23) and (6.56), it follows that

V̇1 = ψ̃T
F Ξ̄11 ψ̃F + 2ψ̃T

F Ξ̄12 eF , (6.57)

where

Ξ̄11 = IN ⊗ (ATP−1 + P−1A) + 2J2 ⊗ P−1BK2,

Ξ̄12 =J2V
−1 ⊗ P−1BK2, (6.58)

In what follows, V̇2 is expanded based on (6.7)

V̇2 = 2ηTF(−γ2 ηF + ρ2X̄F). (6.59)
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Similar to (6.41) the following condition holds from (6.59)

V̇2 ≤ (1− 2 γ2)ηTFηF + ρ2
2 X̄

T

F X̄F . (6.60)

The global form of (6.4) for followers is given below

XF =LF⊗ InΛF x̂F +LFL⊗ InxL. (6.61)

Considering eF = ΛF x̂F −xF , V J2V
−1 =LF, and transformation (6.17), the follow-

ing expression is developed from (6.61)

XF =ψF + (V J2 ⊗ In)σ. (6.62)

where σ= (V −1⊗In)eF . Recalling that V TV = I (symmetric matrices have orthog-
onal eigenvectors), we expand X̄T

F X̄F

X̄T

F X̄F =XT
FXF = 2ψT

FψF + 2σT (J2 ⊗ In)2σ. (6.63)

The following upper-bound holds from (6.60) and (6.63)

V̇2≤ (1− 2 γ2)ηTFηF + 2ρ2
2ψ

T
FψF + 2ρ2

2σ
T (J2 ⊗ In)2σ. (6.64)

Based on (6.6), it holds that ‖Φ2ei(t)‖≤ α2‖Xi(t)‖+β2ηi(t). Let a1 = [‖Φ2e1(t)‖ ,
. . . , ‖Φ2eN(t)‖]T . Collectively, it holds that a1 ≤ α2X̄F + β2ηF , or

aT1 a1 = eTF(IN⊗Φ2
2)eF ≤ (α2X̄F + β2ηF)T (α2X̄F + β2ηF)

≤ 2α2
2X̄

T

F X̄F + 2β2
2η

T
FηF . (6.65)

Using (6.63) the following expression holds from (6.65)

eTF(IN⊗Φ2
2)eF ≤4α2

2ψ
T
FψF + 4α2

2σ
T (J2 ⊗ In)2σ + 2β2

2η
T
FηF . (6.66)

The following equality holds by definition

τ−1
1 (ψ̃T

F ψ̃F −ψT
FψF) = 0, (6.67)

τ−1
2

(
eTFeF − σTσ

)
≥ 0, (6.68)

where τ1>0 and τ2>0 are decision variables. Let ν = [ ψ̃T
F , e

T
F ,η

T
F ,ψ

T
F ,σ

T ]T . Based
on (6.57), (6.64), (6.67), (6.68) and (6.66), we re-arrange (6.55) as follows

νT
[
Ξ̃ 0
∗ Π̃

]
ν < 0, (6.69)

where Ξ̃ =
[

Ξ̃11 Ξ̄12
∗ Ξ̃22

]
and Π̃ = diag(π̃1, π̃2, π̃3) and

Ξ̃11 = Ξ̄11 + τ−1
1 INn + 2ζ2IN⊗P−1, Ξ̃22 = − IN ⊗Φ2

2 + τ−1
2 INn,

π̃1 = (1− 2γ2 + 2β2
2 + 2ζ2)IN , π̃2 = (2ρ2

2 − τ−1
1 + 4α2

2)INn,
π̃3 = − τ−1

2 INn + (4α2
2 + 2ρ2

2)(J2
2 ⊗ In). (6.70)
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Following the same steps given in (6.52), (6.53), and (6.54) leads to the LMIs given
in the statement of the Theorem. The proposed objective function (6.33) follows the
same logic explained in Theorem 6.2 and that completes the proof.
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Chapter 7

Experimental Results

In this section, different MASs are considered to provide comprehensive experimental
results on the performance of the proposed algorithms in the thesis. Different values
for the initialization parameters are considered to fully observe their influence on the
MAS and find potential trade-offs between important features of the event-triggered
consensus. To solve the optimization stages included in some algorithms, the YALMIP
parser [154] and SDPT3 solver [155] are used in Matlab environment.

7.1 CEASE
To illustrate the implementation of Algorithm 3.1, a network with 10 nodes is con-
sidered. The corresponding Laplacian matrix to this network is given below

L=



7 −1 −1 −1 −1 0 −1 0 −1 −1
−1 4 0 −1 0 −1 −1 0 0 0
−1 0 5 0 −1 −1 0 0 −1 −1
−1 −1 0 4 0 0 −1 0 −1 0
−1 0 −1 0 4 0 0 0 −1 −1
0 −1 −1 0 0 4 0 −1 −1 0
−1 −1 0 −1 0 0 4 0 0 −1
0 0 0 0 0 −1 0 2 −1 0
−1 0 −1 −1 −1 −1 0 −1 7 −1
−1 0 −1 0 −1 0 −1 0 −1 5


. (7.1)

It can be verified that λ2 = 1.5617 and λN = 8.4398. To initialize optimization (3.11),
convergence rate is set at ζ = 0.30 and sampling period at h= 0.01 sec. It takes 24
iterations for the interior-point method used by SDPT3 to solve (3.11). The solution
of optimization (3.11) for this setting is given below:

p= 2.1072, α= 189.1258, ε1 = 2.2304, ε2 = 0.0134, µ= 1.2740, γ= 188.2934. (7.2)

Using (7.2), consensus design parameters are computed as K = 0.6046 and φ1 = 0.0053.
Additionally, the objective function (3.11) is computed as F = 376.58. The maximum
possible consensus error is obtained from (3.13) as C = 0.5022.

Let xi(0) = 2 × i, (1≤ i≤ 10). The constant threshold in the ET scheme (3.5) is
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Figure 7.1: Consensus trajectories using Algorithm 3.1 (a): Average consensus for xi(t),
(b): Expected and actual trajectories for ‖r(t)‖, (c): Events for each agent.

considered as φ2 = 0.03. Consensus iterations are run for 5 seconds. The evolutions
of xi(t) in (3.1) for the 10 nodes are shown in Figs. 7.1(a). Based on Fig.7.1(a), the
states xi(t) converge to the average value of the initial parameter. Fig.7.1(b) compares
the theoretical (guaranteed) rate of consensus and its actual rate. As expected the
actual rate is below the guaranteed rate. In this example, the nodes, respectively,
trigger 59, 74, 40, 59, 22, 24, 48, 91, 49, and 58 event samples. These event instants
are shown in Fig. 7.1(b). The average number of events (AE) for the 10 nodes
is 52.40. Notice that if the ET scheme was not used, the nodes would transmit
5/0.01=500 packets. However, using the ET scheme only 52.40/500 ≈ 10% of the
total packets is transmitted. The average inter-event time (AIET), which shows
the average frequency of the event-triggering, is computed as AIET = 5/AE. In this
exampled, AIET= 0.0954. The consensus error at t= 5 sec, which is denoted by
‖r(5)‖, is also reported. The consensus error in this example is ‖r(5)‖ = 0.0414. As
expected the actual consensus error is lower than the theoretical one, i.e., ‖r(5)‖ ≤C.

7.1.1 Impact of convergence rate ζ

In this section, the impact of different convergence rates ζ on consensus features is
investigated. The sampling period h is fixed at h= 0.01 sec. The desired convergence
rate ζ is increased with steps of 0.1 and optimization (3.11) is solved while other
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Table 7.1: CEASE with varying ζ and fixed h= 0.01, φ2 = 0.03.

ζ K φ1 Ts ‖r(Ts)‖ AE AIET F

0.10 0.3242 0.0086 6.5910 0.1914 46.2 0.1427 229.9806
0.20 0.4819 0.0067 5.0250 0.1154 50.9 0.0987 295.7997
0.30 0.6046 0.0053 4.2410 0.0877 51.8 0.0819 376.5860
0.40 0.7101 0.0041 3.6800 0.0824 58.1 0.0633 488.0071
0.50 0.8049 0.0030 3.3860 0.0691 58.5 0.0579 659.0263
0.60 0.8921 0.0021 3.0570 0.0664 60.7 0.0504 963.3216

parameters remain fixed. Consensus results for varying ζ and fixed h are listed in
Table 7.1. Starting from initial values xi(0) = 2 × i, (1≤i≤10), CEASE is run until
the settling time Ts, where

Ts = min
t=nh
{ t | | ‖r((n+ 1)h)‖−‖r(nh)‖ | ≤ 0.0001} (7.3)

In fact, the settling time Ts denote the time that consensus is reached within its
steady-state error. From Table 7.1 one observes that:

• The settling time Ts gets steadily reduced as ζ is increased;

• Faster convergence rate is achieved with a higher minimized objective function F,
which implies obtaining a larger K and a smaller φ1. In fact, a smaller value of
the objective function translates to having larger values for AIET;

• The steady-state consensus error ‖r(Ts)‖ becomes smaller with higher convergence
rates.

It is worth mentioning that in this configuration with h= 0.01, the optimization
problem (3.11) becomes infeasible for ζ ≥ 0.82, i.e., no consensus convergence rate
higher than ζ = 0.82 is guaranteed for a sampling period of h= 0.01 in this network.

7.1.2 Impact of sampling period h

In this section, we fix ζ = 0.30, φ2 = 0.03 and vary h. Consensus results are listed in
Table 7.2, where it is observed that

• Increasing h leads to smaller values for both φ1 and K , and a larger value for the
objective function F.

Table 7.2: CEASE with varying h and fixed ζ = 0.3, φ2 = 0.03.

h K φ1 Ts ‖r(Ts)‖ AE AIET F

0.001 1.7609 0.0106 1.5600 0.0646 44.40 0.0351 188.7839
0.005 0.8271 0.0076 3.2060 0.0735 48.0 0.0668 263.4882
0.015 0.5054 0.0035 4.7860 0.1189 58.4 0.0820 562.3605
0.025 0.4051 0.0008 5.7010 0.1429 59.5 0.0958 2558.6431
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Table 7.3: CEASE with different constant values for φ2 and fixed ζ = 0.3, h= 0.01.

φ2 K φ1 Ts ‖r(Ts)‖ AE AIET F

0.01 0.6046 0.0053 4.3510 0.0907 88.10 0.0494 376.58
0.02 0.6046 0.0053 4.2110 0.0974 63.80 0.0660 376.58
0.05 0.6046 0.0053 4.0300 0.1067 38.90 0.1036 376.58
0.10 0.6046 0.0053 3.6210 0.1744 26.90 0.1346 376.58

Table 7.4: CEASE for a large network with N = 100, and φ2 = 0.01, h= 0.01.

ζ K φ1 Ts ‖r(Ts)‖ AE AIET F

0.3 0.1029 0.0036 4.6510 0.2274 77.23 0.0602 547.79
0.4 0.1236 0.0034 4.3301 0.1933 85.46 0.0507 586.77
0.5 0.1417 0.0032 4.2213 0.1691 88.17 0.0479 624.9473

• With smaller values of h, consensus is reached faster.

• The AIET is increased with larger values of h.

• With larger values of h the steady-state consensus error ‖r(Ts)‖ becomes larger.

With ζ = 0.30, the optimization problem (3.11) becomes infeasible for h≥ 0.031, im-
plying that the largest sampling period that can guarantee 0.30-exponential rate of
convergence in this configuration is h= 0.031 sec.

7.1.3 Impact of constant threshold φ2

Next, the impact of the constant threshold φ2 on the consensus features is studied.
Consensus results for incrementally increasing values of φ2 and fixed ζ = 0.3 and
h= 0.01 are reported in Table 7.3. It should be reminded that parameter φ2 is not
involved in the optimization (3.11). Hence, parameters K and φ1 are similar in all rows
of Table 7.3. According to Table 7.3, the AIET is increased with higher values of φ2
at the expense of higher errors in consensus. It should be noted that increasing φ2
decreases the settling time.

7.1.4 Large networks
In the final experiment, CEASE is evaluated over a large random network. To this
end, a connected network of 100 nodes, i.e., N = 100, is randomly generated with
Pr{aij = 1}= 0.25 and Pr{aij = 0}= 0.75. Necessary eigenvalues of the Laplacian ma-
trix corresponding to this network are λ2 = 15.5772 and λN = 39.8007. Considering
h= 0.01 sec, φ2 = 0.01, and given values of ζ in Table 7.4, consensus parameters are
computed using (3.11). The results are listed in Table 7.4. Similar to previous exper-
iments, computed values of K and φ for this large network correspond to the desired
exponential rate ζ.
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Figure 7.2: (a): Average consensus using Q-CEASE, (b): The guaranteed (theoretical) rate
of convergence vs the actual rate of convergence.

Table 7.5: Q-CEASE performance for differnet {h, φ, δ}.
h/hmax φ/φmax δ M Ts ‖r(Ts)‖ AE

0.1 0.5 0.05 0.93 2.01 0.1145 202.91
0.5 0.5 0.05 1.34 1.99 0.1521 238.78
0.9 0.5 0.05 1.95 2.00 0.1649 164.76
0.5 0.1 0.05 1.15 1.94 0.1205 204.25
0.5 0.5 0.05 2.04 1.95 0.1354 206.84
0.5 0.9 0.05 9.40 2.03 0.1414 196.15
0.5 0.5 0.01 0.41 1.98 0.0845 212.01
0.5 0.5 0.10 3.95 1.83 0.1754 197.93
0.5 0.5 0.40 21.41 1.63 0.4492 219.63

7.2 Q-CEASE
This sections evaluate the proposed Q-CEASE implementation. Consider the same
10-node network with Laplacian matrix (7.1) with λ2 = 1.5617 and λ10 = 8.4398. Se-
lect the quantization level as δ= 0.05 and convergence rate ζ = 0.3 From (3.19),
hmax = 0.0177. Select h≈ 0.2hmax = 0.004, which leads to φmax = 0.0115. To keep
M small enough, select φ= 0.9φmax, which results in φ= 0.0104. For these values,
M = 4.2276. Starting from initial values xi(0) = 2× i, (1≤i≤10), the Q-CEASE algo-
rithm is run until Ts, where Ts is defined in (7.3). The evolution of the states xi(t)
for the ten nodes is shown in Fig. 7.2(a). For this setting, Ts = 2.499 sec, which is
equivalent to a total number of 2.499/0.004≈ 625 samples. However, the ten nodes,
respectively, trigger 210, 208, 225, 224, 225, 204, 220, 208, 211, and 209 events, leading
to an average event of AE=214.40 per node. The ratio of the average events to total
samples for this setting is, therefore, 214.40/625 = 0.3430. The norm of r(Ts) which
shows how close the nodes have reached x̄(0) is calculated as ‖r(Ts)‖ = 0.1349. As
expected, ‖r(Ts)‖ ≤M . In Fig. 7.2(b), the guaranteed rate e−0.3t ‖r(0)‖ is compared
with the actual rate ‖r(t)‖, which satisfies ‖r(t)‖ ≤ e−0.3t ‖r(0)‖ for all t > 0.

Compared to CEASE, Q-CEASE transmits more samples.
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7.2.1 Random networks
Next, the scalability of the Q-CEASE algorithm is investigated for random net-
works with N = 10 and varying parameters h, φ, and δ. Networks are generated
with E{λ2}= 2 and E{λ10}= 8, where E returns the expected value. For given values
of h/hmax, φ/φmax, and δ in each row of Table 7.5, the Q-CEASE algorithm is run
with ζ = 0.3 over 25 random networks. The results for M , Ts, ‖r(Ts)‖, and AE are
calculated based on the average values for all 25 networks. According to Table 7.5,
one concludes that:

• For fixed φ/φmax and δ, increasing h/hmax results in smaller values for AE at
the expense of a higher quantization error (larger ‖r(Ts)‖).

• For fixed h/hmax and δ, increasing φ/φmax decreases the AE, however quantiza-
tion error is slightly increased.

• As expected, increasing δ results in higher values for ‖r(Ts)‖ which is translated
to a higher error in average consensus.

7.2.2 Large networks
In this section, larger random networks with N = 50, E{λ2}= 9, and E{λ50}= 27
are considered. Let ζ = 0.3. Fig. 7.3(a) shows ‖r(Ts)‖ and M with respect to δ
for fixed h/hmax =φ/φmax = 0.5. According to Fig. 7.3(a), the actual quantization
error ‖r(Ts)‖ is much lower than the worst-case error (M ), especially for larger δ. In
Fig. 7.3(b), the 3D graph for AE is shown with respect to different ratios of h/hmax
and φ/φmax, (δ= 0.05). Based on Fig. 7.3(b), the least amount for AE happens when
both φ and h are chosen close to their maximum allowable values from (3.19), i.e.,
φ→φmax and h→hmax, which is at the expense of a higher quantization error.
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7.3 DEASE
Experimental results for DEASE are included in this section. The 10-node network
given in (7.1) is considered. To compute consensus parameters required in DEASE,
set h= 0.01 and solve optimization (3.31). The following parameters are computed

φ1 = 6.2444, φ2 = 0.0309, φ3 = 0.0219. (7.4)

The objective function is calculated as F= 117.03. The same initial states considered
in CEASE are considered, i.e., xi(0) = 2 × i, (1≤ i≤ 10). Additionally, the initial
states consider for the dynamic threshold η is ηi(0) = 0.1, (1≤ i≤ 10). Consensus
iteration is run for 5 seconds. The evolution of xi(t) and ηi(t), (1≤ i≤ 10), for the
10 nodes are shown in Fig. 7.4(a). As shown in Fig. 7.4(b), ηi(t) rises from the
initial value of 0.1 and provides a considerable threshold for (3.24). Variable ηi(t)
converges zero and does not cause steady state error in consensus. Fig. 7.4(c) shows
the transmission instants triggered by each node. The agents trigger 19, 24, 14, 32, 16,
27, 28, 39, 18, and 16 events during consensus, which leads to an average transmission
value of AE=23.30. Compared to CEASE, where AE=52.4, the value of AE using
DEASE is lower. Based on the number of transmissions, it can be concluded that
DEASE outperforms CEASE in communication savings. Additionally, at t= 5 sec,
the consensus error 1 in DEASE is ‖r(5)‖= 0.000958, which is way lower than the
error computed for CEASE. Compared to CEASE, DEASE provides a more efficient
framework both in terms of transmission saving and consensus error.

7.3.1 Impact of h
This section investigates the impact of h on consensus features. The network config-
uration and initial conditions are kept the same. Consensus time horizon is set at 5s.
In this MAS setting, the maximum allowable h which computes feasible solution for
optimization (3.31) is h= 0.12s. Compared to CEASE, where the maximum allowable
sampling period is obtained as h= 0.031, DEASE is more powerful in allowing larger
values for the sampling period. The reason lies within the fact that DEASE uses
all eigenvalues of the Laplacian matrix. However, CEASE is based on the extreme
eigenvalues which makes the feasibility region limited at the expenses of scalability
to the network size.

1It should be reminded that the consensus error in DEASE asymptotically approaches zero. In
this example, ‖r(5)‖ is reported for DEASE just for the sake of comparison with CEASE.

Table 7.6: Consensus using DEASE with varying h.

h φ1 φ2 φ3 AE AIET F
0.01 6.2444 0.0309 0.0219 23.3 0.2146 117.0310
0.05 7.8971 0.0194 0.0137 27.2 0.1835 187.1074
0.08 9.9334 0.0122 0.0086 24.7 0.2020 296.0299
0.10 12.1757 0.0081 0.0058 42.0 0.1188 444.7712
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Figure 7.4: Consensus trajectories using Algorithm 3.3 (a): Average consensus for xi(t),
(b): Trajectories of the dynamic threshold ηi(t), (c): Events for each agent.

7.3.2 Comparison with Reference [122]
This section compares DEASE and implementation [122] from different aspects. Ref-
erence [122] proposes a sampled-data ET scheme for consensus in first-order agents.
Denote tik as the k-th event instant for agent i. With some minor modification in
notation, the following ET condition is used in [122] to detect and trigger the next
event instant

tik+1 = tik + h inf {n | e2
i (tik + nh) ≥ σi z

2
i (tik + nh)}, (7.5)

where ei(tik+nh) = xi(tik)−xi(tik+nh) and zi(tik+nh) = ∑
j∈Ni(xi(tik+nh)−xj(tik+nh)),

with given sampling period h. Scalar σi ≥ 0 is the ET parameter and needs to be
designed. Note that the ET scheme (7.5) is only used for reducing the number of
‘control updates’ and transmission between the agents is conducted periodically (not
event-triggered). In contrast, both the control updates and neighbouring transmis-
sions in DEASE are sampled-data event-triggered. According to [122, Theorem 8],
the operating regions for h and σi are as follows

0 < h ≤ 1
2λN

, 0 < σi <
1
λ2
N

. (7.6)
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The same network used in [122] is considered

L=

 2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 . (7.7)

For (7.7) it holds that λ4 = 4. Hence, one obtains that 0 < h ≤ 0.125 and σi <
0.0625. To observe the fewest number of events triggered by [122], let h= 0.125
and σi = 0.0625, i= 1, ..., 4. Initial conditions are set as x(0) = [0.4773, −0.3392, 0.5,
−0.6381]T . The agents trigger 41, 40, 39, and 41 events (AE=40.25) in a time horizon
of 10 seconds.

With h= 0.125, the following parameters are obtained from DEASE for net-
work (7.7)

φ1 = 5.2062, φ2 = 0.0445, φ3 = 0.0315. (7.8)

Let ηi(0) = 0.1. Consensus is run using DEASE with above parameters. The agents
trigger 20, 19, 12, and 23 events (AE= 18.50) in 10 seconds. This implies that DEASE
triggers fewer number of events than [122].

In another experiment, the maximum allowable sampling period in DEASE is
computed as hmax = 0.264. Comparing this value with 0.125 shows that the maximum
sampling period supported by DEASE is much higher.

In fact, these two observations (i.e., fewer number of events and higher admissi-
ble h in DEASE) were expected since i) The dynamic event-triggering scheme used in
DEASE is more advanced; and ii) In DEASE all eigenvalues of the Laplacian matrix
are used to compute necessary parameters. However, implementation [122] is based
on the extreme eigenvalue λN and its design is irrespective of network size N .

7.4 PEC
To evaluate the performance of PEC, the following MAS is considered

ṙi(t) = vi(t),
v̇i(t) = − µkvi(t) + ui(t)

}
1 ≤ i ≤ 6, (7.9)

where ri(t)∈R and vi(t)∈R, respectively, denote the position and velocity of agent i.
Scalar µk>0 denotes the velocity damping and ui(t) is the control input. Considering
µk = 0.5, the state space representation for (7.9) in the form of linear agent (4.1) is
given by

A=
[0 1
0 −0.5

]
, B=

[0
1
]
, (7.10)
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where xi(t) = [ri(t), vi(t)]T . The network topology associated with MAS (7.9) is rep-
resented by the following Laplacian matrix

L=


2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

 . (7.11)

Considering the eigenvalue decomposition in (4.9), one can verify that the following
parameters hold for Laplacian matrix (7.11)

J = diag(0, 1, 1, 3, 3, 4), J̃ = diag(1, 1, 3, 3, 4),

W =


0.4082 0.2887 0.5 0.2887 −0.5 0.4082
0.4082 −0.2887 0.5 0.2887 0.5 −0.4082
0.4082 −0.5774 0 −0.5774 0 0.4082
0.4082 −0.2887 −0.5 0.2887 −0.5 −0.4082
0.4082 0.2887 −0.5 0.2887 0.5 0.4082
0.4082 0.5774 0 −0.5774 0 −0.4082

 ,

W̃ =


0.2887 −0.2887 −0.5774 −0.2887 0.2887 0.5774

0.5 0.5 0 −0.5 −0.5 0
0.2887 0.2887 −0.5774 0.2887 0.2887 −0.5774
−0.5 0.5 0 −0.5 0.5 0

0.4082 −0.4082 0.4082 −0.4082 0.4082 −0.4082

 . (7.12)

Parameter design: To solve consensus using Algorithm 4.5, select ζ = 0.3 and
δ= 0.01. For an accuracy of εg = 10−5, it takes 22 iterations for the SDPT3 solver to
solve (4.13) with the following solution

P =
[

0.0737 −0.0611
−0.0611 0.2481

]
,Ω = [ −0.0186 −0.3514 ] , Φ̃ =

[
1.1764 −0.0116
−0.0116 1.3330

]
, α̃= 0.058027,

τ1 = 1.8839, τ2 = 0.14314, ε1 = 32.3787, ε2 = 10.6587, θ1 = 18.3983,
θ2 = 1.7791, θ3 = 17.2334, θ4 = 0.1238. (7.13)

Using (4.15) and solution (7.13), consensus parameters are calculated as follows

K = [−1.7953 −1.8586] , Φ =
[18.5377 4.5921

4.5921 5.7849
]
, α= 0.2409. (7.14)

From solution (7.13) and considering the convergence rate in PEC, i.e., expres-
sion (4.16), the rate of consensus is obtained as follows

ψT (t)ψ(t) ≤ 2.2181 e−0.6tψT (0)ψ(0). (7.15)

Additionally, the objective function F in (4.13) is computed as F= 37.5346.
Consensus iterations: Let xi(0) = [10× i, i]T , (1≤ i≤ 6). The uncertainty in con-
trol gain is assumed as ∆K = 0.01 sin(i × t), (1≤ i≤ 6). Note that the control gain
uncertainty satisfies Assumption 2 with δ= 0.01. The following criterion is used to
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Figure 7.5: Trajectories of MAS (7.9) using PEC; (a): State consensus, (b): The guaranteed
consensus rate vs the actual rate, (c) The control inputs ui(t), (1≤ i≤ 6), (d) The event
instants for each agent.

determine t?, which is the time when consensus is achieved. Time t? is determined as

t? = inf{ t | ‖ψ(t)‖
‖ψ(0)‖ ≤ 0.0001 }. (7.16)

Conceptually speaking, time t? is the smallest time when the disagreement between
the agents ‖ψ(t)‖ reaches within the 0.0001 of its initial value ‖ψ(0)‖. A lower value
for t? is translated to a faster rate of consensus convergence. Based on (7.16), it takes
8.60 sec to reach consensus in MAS (7.9). In Fig. 7.5, the trajectories of MAS (7.9) us-
ing the PEC implementation are plotted. Fig. 7.5(a) shows the evolution of the states
to reach a consensus. As shown in Fig. 7.5(a), the disagreement between the position
states ri(t) for all agents approaches zero as consensus is achieved. Additionally, all
velocities approach zero as consensus is reached. Fig. 7.5(b) is included to verify that
the obtained consensus parameters are capable of ensuring 0.3-exponential consen-
sus and satisfy (7.15). In Fig. 7.5(c), the control input used to achieve consensus
is plotted. Simulation results show that the six agents, respectively, trigger 64, 209,
237, 235, 201, and 68 events (transmissions) during the process. These event instants
are shown in Fig. 7.5(d). The average number of events is AE=169.00. Let AIET
= t?/AE define the average inter-event time. In this example, AIET = 0.0509. This
implies that the agents transmit every 0.0509 sec at average.
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7.4.1 Impact of ζ and δ on PEC
Next, the impact of different values of ζ and δ on consensus features is investigated.
To this end, optimization (4.13) is solved for given values of ζ and δ listed in Table 7.7.
In the first half of Table 7.7, parameter δ is fixed at δ= 0.01 and ζ is incrementally
increased. In the second half of Table 7.7, ζ = 0.3 is fixed and δ is increased. Simula-
tion is conducted for (7.9) with corresponding computed parameters. The following
facts are observed according to Table 7.7:

• As expected, with higher values for ζ the rate of convergence is increased and
thus t? steadily gets reduced.

• A larger ζ leads to a larger ‖K‖. This is consistent with the fact that increasing
the desired convergence rate requires higher values for the control input ui(t).

• A larger value for ζ leads to smaller values for α and higher values for Φ to increase
the events density and cope with the desired rate of convergence. Therefore, the
AIET becomes smaller (i.e., more frequent events) as ζ is increased.

• The value of the objective function F is constantly increased with increments in ζ.
It is reminded that F (4.13) is formulated based on increasing MIET (4.6). Hence,
with a higher value of F one expects a smaller AIET and that can be observed in
Table 7.7.

• A larger value for δ results in a larger ‖K‖ to compensate the impact of larger
uncertainty. Additionally, the ET parameters Φ and α are computed, respectively,
larger and smaller to let more transmission.

• Although larger values for δ lead to larger control gains but the convergence time t?
does not necessarily gets reduced. This is due to the impact of uncertainty in the
nominal control gains which adversely affects the convergence rate.

• No specific trend is observed in AE and AIET with changes in δ.

These results verify the flexibility and effectiveness of the proposed PEC algorithm in
maintaining an event-triggered consensus with two performance related initializations.

Table 7.7: Consensus performance using PEC; different values for ζ and δ.

ζ δ ‖K‖ ‖Φ‖ α t? AE AIET F
0.0 0.01 1.2669 11.7086 0.2427 14.80 125.33 0.1181 30.5293
0.2 0.01 2.1113 16.8325 0.2415 9.73 136.17 0.0715 34.9227
0.4 0.01 3.0937 23.6438 0.2402 7.43 183.00 0.0406 40.4270
0.6 0.01 4.2342 32.4615 0.2388 6.89 240.17 0.0287 47.0449
0.3 0.01 2.5840 20.0191 0.2409 8.60 169.00 0.0509 37.5346
0.3 0.05 2.5941 20.9679 0.2409 8.51 175.33 0.0485 38.1213
0.3 0.10 2.6290 22.3003 0.2410 8.81 166.83 0.0528 38.9620
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7.5 PSEC
To evaluate the effectiveness of PSEC, the same MAS given in (7.9) is considered
with Laplacian matrix (7.11).
Parameter design: To solve consensus using Algorithm 4.6, initial parameters are
selected as h= 0.05, ζ = 0.3, and δ= 0.01. For the accuracy of εg = 10−5, it takes 10
iterations for the SDPT3 solver to solve the LMIs in Theorem 4.3 with the following
solution

V = [ −0.0223 −3.0502 ] , H =
[

5.3156 −4.5884
−3.2413 5.5064

]
, Y11 = [ 199.7110 5.2908

5.2908 231.8874 ] ,

Y12 =
[
−182.5239 −13.5311
−19.9524 −190.4797

]
, Y22 =

[
194.8548 −0.8846
−0.8846 205.6827

]
, F1 =

[
−8.2771 5.8829
5.0067 −9.2585

]
,

F2 =
[
−7.9583 4.9631
5.6608 −9.1558

]
, G1 =

[
−29.3485 2.8433
10.2084 −42.6486

]
, G2 = [ 17.7108 5.7674

−3.7916 23.4150 ] ,

P =
[

11.8711 −7.2267
−7.2267 11.2479

]
, Q=

[
17.8488 −12.3498
−12.3498 20.5883

]
, Z =

[
476.0677 −261.7300
−261.7300 423.7600

]
,

M1 = [ 19.7385 16.9919
16.9919 16.4037 ] , M2 = [ 0.0099 0.0035

0.0035 0.0108 ] , ε1 = 71.3307, ε2 = 71.7854,
ε3 = 63.4235. (7.17)

Using (4.25) and (7.17), consensus parameters for PSEC are computed as follows

K =
[
−0.9806 −1.1312

]
, Φ1 =

[
19.7385 16.9919
16.9919 16.4037

]
, Φ2 =

[
0.0099 0.0035
0.0035 0.0108

]
.(7.18)

From solution (7.17) and considering the convergence rate in PSEC, i.e., expres-
sion (4.26), the rate of consensus is obtained as follows

‖ψ(t)‖2 ≤ 3.1995 e−0.6t ‖ψ(0)‖2 . (7.19)

Comparing (7.19) with the one obtained for PEC, i.e., (7.15), one can conclude that
the guaranteed bound in PSEC is more conservative, since the exponential coefficient
for PSEC is higher ( 3.1995 > 2.2181). Therefore, it is expected that consensus in
PSEC reaches slower than PEC with the same values of ζ and δ. This is one of the
trade-offs for incorporation of a sampler in PSEC.
Consensus iterations: Consider the same initial conditions xi(0) and control gain
uncertainty ∆K given for PEC. Consensus is run until the same termination point
determined by (7.16). Based on (7.16), it takes 12.44 sec for the PSEC algorithm to
reach consensus in MAS (7.9). In Fig.7.6(a), trajectories of (7.9) reaching consensus
are plotted. Note that the value for t? was 8.60 sec for PEC, which implies that
consensus reaches more slowly in PSEC. Fig.7.6(b) verifies that expression (7.15) holds
between the guaranteed rate and actual rate of consensus. In Fig.7.6(c), the control
input used to achieve consensus is plotted. As shown in Fig.7.6(d), the six agents,
respectively, transmit on 94, 157, 107, 182, 134, and 95 occasions. The average number
of events is AE=128.17. Compared to PEC, fewer number of events are triggered
in PSEC. This is because the sampling period itself adds to the interval between
the events. Note that if no ET scheme was utilized, each agent would transmit on
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Figure 7.6: Trajectories of MAS (7.9) using PSEC; (a): State consensus, (b): The guar-
anteed consensus rate vs the actual rate, (c) The control inputs ui(t), (1≤ i≤ 6), (d) The
event instants for each agent.

12.44/0.05 ≈ 249 occasions. However, with the ET scheme the average number of
transmissions is 128.17. This implies that 128.17/249 ≈ 50% of the total packets are
saved from transmissions. In this example, the AIET is computed as AIET = 0.0971.

7.5.1 Impact of ζ, δ, and h on PSEC
This section studies the impact of different desired initial values, i.e., convergence
rate ζ, sampling period h, and non-fragility level δ, on the consensus features. To
this end, the LMIs obtained in Theorem 4.3 are solved for given values of ζ, δ, and h
listed in each row of Table 7.8. The table is divided into three sections. Out of the
three parameters ζ, δ, and h, one is varying in each section and the remaining two are
fixed. Consensus is run for (7.9) with corresponding computed parameters for each
row of Table 7.8. The results are summarized below.

• The impact of varying ζ and δ on consensus is similar to the discussion given for
PEC in Section 7.4.1.

• By increasing the value of the sampling period h (last section in Table 7.8), the
AIET is increased. This is due to the fact that a larger sampling period helps in
increasing the interval between events and saves more transmissions.
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• Increasing the sampling period h, leads to control gains with smaller norms. There-
fore, reaching consensus may be slower with increased values of h.

7.6 RQ-CEASE
This section quantifies the performance of the RQ-CEASE algorithms. The network
with N = 6 is described by

L=



2 −1 0 0 0 −1
−1 3 0 −1 −1 0
0 0 2 −1 0 −1
0 −1 −1 3 0 −1
0 −1 0 0 2 −1
−1 0 −1 −1 −1 4


. (7.20)

It can be verified that λ2 = 1.4384 and λ6 = 5.5616. Let x(0) = [111.0, 211.1, 121.3,
102.9, 202.0, 150.0]T . The following DoS sequence considered in [32] is used

dc = (c+ 1) + 0.5c(c+ 1)− α−1(c+ 1),
τc =α−1(c+ 1), c ∈ N0 (7.21)

where α ∈ R≥1. This DoS sequence satisfies Assumption 5 with T0 = 0, T1 =α, F0 = 1,
and F1 = 1, [32].
Algorithm 5.7: Let δ̄= 0.01. Using λ2, λ6, δ̄, and N the upper bound for h is
calculated as hM = 0.0457. Select h= 0.01 which satisfies h<hM . Based on the
selected value for h, the maximum ET parameter is φM = 0.0266. Let φ= 0.01. It is
obtained that ω1 = 0.7240, ω2 = 5.9251, and Ω1 = 0.1089. With α= 15 it holds that
1
T1

+ h
F1

= 0.0867. Hence, 1
T1

+ h
F1

< Ω1. With such values η1 = 1.1422, ζ1 = 0.1478,
and f2 = 1.0635. Consensus iteration is run for a time horizon of 7sec, i.e., t∈ [0, 7].
The evolution of xi(t) to reach average consensus is shown in Fig. 7.7(a). Fig. 7.7(b)

Table 7.8: Consensus performance using PSEC; different values for ζ, δ, and h.

ζ δ h ‖K‖ ‖Φ1‖ ‖Φ2‖ t? AE AIET
0.0 0.01 0.05 0.9717 4.4841 0.1647 16.04 80.50 0.1993
0.2 0.01 0.05 1.3230 6.6025 0.1615 11.50 108.17 0.1063
0.4 0.01 0.05 1.7544 9.5932 0.1410 10.44 131.83 0.0792
0.6 0.01 0.05 1.9811 12.4167 0.1216 9.30 124.83 0.0745
0.3 0.05 0.05 1.5931 7.1564 0.1493 12.63 121.33 0.1041
0.3 0.10 0.05 1.9523 6.7090 0.1429 9.73 99.17 0.0981
0.3 0.15 0.05 2.2132 5.3403 0.1200 9.90 98.50 0.1005
0.3 0.01 0.04 1.5737 8.4731 0.1553 11.82 156.00 0.0758
0.3 0.01 0.08 1.5123 7.9054 0.1538 12.26 93.67 0.1309
0.3 0.01 0.12 1.4429 7.6928 0.1484 12.94 75.67 0.1710
0.3 0.01 0.20 1.1600 7.1621 0.1260 12.99 48.00 0.2558
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compares the guaranteed theoretical trajectory for ‖r(t)‖ given in (5.22) with the
actual rate ‖r(t)‖. As expected, the actual rate is below the theoretical bound.
Parameter ‖r(7)‖ is used as an indication of how close the nodes have reached average
consensus. In this experiment ‖r(7)‖ = 0.0045. For this setting, a total number of 700
samples are used in t∈ [0, 7]. The six nodes, however, trigger 492, 388, 463, 395, 478,
and 419 events respectively, leading to an average event AE of 439.17 per node. The
events are shown in Fig. 7.7(c).

Next, the performance of RQ-CEASE is investigated for the same network against
DoS (7.21) using different design parameters. For the given values of h, φ, and δ̄
specified in each row of Table 7.9, a separate consensus is run and corresponding
results are recorded. According to Table 7.9, one concludes that: (i) Increasing any
of h, φ, or δ̄ reduces the resilience of the network to DoS attacks since Ω1 is decreased;
(ii) For fixed values of h and δ̄, increasing φ decreases AE since the ET threshold
becomes larger. (iii) As expected, increasing δ̄ results in higher values for ‖r(7)‖,
which is translated to higher consensus errors.
Algorithm 5.8: Next, the performance of RQ-CEASE with the state-independent
ET threshold (Algorithm 5.8) is investigated for the same network against DoS (7.21)
using different design parameters. Let h=φ= δ̄= 0.01 and α= 15. These values result
in Ω2 = 0.1551, η2 = 1.1408, ζ2 = 0.4506 and f4 = 1.5245. As expected, Ω2 >Ω1 which
implies more resilience of Algorithm 5.8.

Using Algorithm 5.8, consensus is run with the previously given initial conditions.
The nodes, respectively, trigger on 188, 268, 322, 268, 307, and 194 occasions which
leads to AE = 257.83. In addition, ‖r(7)‖ = 0.0062. System trajectories are shown
in Fig. 7.8. Comparing Fig. 7.7(c) with Fig. 7.8(c), one observes that the density of
events remains almost the same when using Algorithm 5.7. However, Algorithm 5.8
detects very few events as consensus approaches the error bound. This phenomenon
was expected since Xi(0)> 1 for all nodes. Table 7.10 is provided to study the
impact of different parameters on Algorithm 5.8. In addition to the observations
made for Algorithm 5.7, it is noted that: (i) The values for Ω2 are larger than Ω1 in
all corresponding rows of Tables 7.9 and 7.10 which verify higher resilience offered by
Algorithm 5.8 (Note that λ6 > 0.5

√
6). (ii) The recorded AE values are smaller for

Algorithm 5.8, implying higher transmission savings for Algorithm 5.8 at this setting.

Table 7.9: Performance of Algorithm 5.7 for different parameters.

h φ δ̄ Ω1 AE ‖r(7)‖
0.004 0.010 0.010 0.1362 605.50 0.0042
0.008 0.010 0.010 0.1182 422.16 0.0043
0.012 0.010 0.010 0.0994 525.66 0.0045
0.010 0.004 0.010 0.1423 633.00 0.0045
0.010 0.008 0.010 0.1203 633.00 0.0045
0.010 0.012 0.010 0.0971 341.16 0.0042
0.010 0.010 0.001 0.1143 446.17 0.0021
0.010 0.010 0.015 0.1059 442.33 0.0155
0.010 0.010 0.025 0.0999 444.66 0.0174

137



0 1 2 3 4 5 6 7
Time(sec)

100

120

140

160

180

200

220
x
i
(t
)

( a )

0 1 2 3 4 5 6 7
Time (sec)

0

20

40

60

80

100

120

R
at

e 
of

 c
on

ve
rg

en
ce

( b )
guaranteed rate
actual rate

0 1 2 3 4 5 6 7
Events (sec)

1

2

3

4

5

6

A
ge

nt
s

( c )

Figure 7.7: Consensus trajectories using Algorithm 5.7 (a): Average consensus for xi(t),
(b): Expected and actual trajectories for ‖r(t)‖, (c): Events for each agent.

(iii) ‖r(7)‖ is larger in Algorithm 5.8. This is consistent with the steady-state error
upper-bounds f2 and f4, where the scale of f4 (unlike f2) depends on δ? + φ?.

7.6.1 Randomized initial conditions
Finally, the impact of randomized initial state values xi(0) is investigated on the
RQ-CEASE performance. To this end, select the 10-node network that was al-
ready considered in (7.1). Initial values are picked at random from normal distri-
bution with zero mean and σ2 variance, i.e. xi(0)∼ N (0, σ2) for (1≤ i≤ 10). Let

Table 7.10: Performance of Algorithm 5.8 for different parameters.

h φ δ̄ Ω2 AE ‖r(7)‖
0.004 0.010 0.010 0.1787 510.66 0.0100
0.008 0.010 0.010 0.1631 304.83 0.0116
0.012 0.010 0.010 0.1469 222.66 0.0108
0.010 0.004 0.010 0.1606 314.66 0.0096
0.010 0.008 0.010 0.1569 270.50 0.0104
0.010 0.012 0.010 0.1532 246.50 0.0155
0.010 0.010 0.001 0.1592 257.16 0.0109
0.010 0.010 0.015 0.1528 256.50 0.0131
0.010 0.010 0.025 0.1481 258.66 0.0132
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Figure 7.8: Consensus trajectories using Algorithm 5.8 (a): Average consensus for xi(t),
(b): Expected and actual trajectories for ‖r(t)‖, (c): Events for each agent.

σ2 ∈{0.1, 0.5, 1, 5, 15}. For each value of σ2, 100 sets of initial values {x1(0), . . . , x10(0)}
are selected from N (0, σ2). Then, consensus is run for each set of initial values us-
ing both Algorithms 5.7 and 5.8 with h= 0.005, φ= 0.01, and δ̄= 0.01 under DoS
sequence (7.21) with α= 12. Fig. 7.9(a) compares the average transmissions using
Algorithms 5.7 and 5.8. Each trajectory in Fig. 7.9(a) is the average number of
events for the ten nodes and for randomized initial conditions at a particular time.
According to Fig. 7.9(a), Algorithm 5.7 triggers fewer number of events at the start
of process. However, Algorithm 5.8 transmits less samples afterwards and, unlike Al-
gorithm 5.7, remains almost monotonous. Likewise, Fig. 7.9(b) compares the average
values for ‖r(t)‖ calculated from the two algorithms. According to Fig. 7.9(b), the
rates of ‖r(t)‖ converging to the error-bound are very close for the two algorithms.
However, using Algorithm 5.8 the steady-state error for consensus, i.e., lim

t→∞
‖r(t)‖,

is larger than Algorithm 5.7.

7.7 R-PSEC
Consider the same network topology given in PEC and PSEC with the Laplacian
matrix (7.11). Let ri(t) = [x̃i(t), ỹi(t), z̃i(t)] and ui(t) = [ui,x(t), ui,y(t), ui,z(t) ], re-
spectively, denote the position and control vectors for spacecraft i in the Cartesian
coordinate system. The linearized equations of the relative dynamics for spacecraft i,
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Figure 7.9: Comparing (a): the average number of events (transmissions) over time, (b):
The norm of disagreement (‖r(t)‖).

(1≤ i≤ 6) is written as follows [64]

ẋi(t) =
[

03 I3
A1 A2

]
xi(t) +

[
03
I3

]
ui(t), (1 ≤ i ≤ 6), (7.22)

where xi = [ rTi (t), ṙTi (t) ]T and

A1 =

0 0 0
0 3ω2

0 0
0 0 −ω2

0

 , A2 =

0 3ω2
0 0

0 −2ω2
0 0

0 0 0

 . (7.23)

Parameter ω0 = 0.001 is the angular rate of the spacecraft [64]. The spacecrafts are
said to achieve formation flying if the velocity vectors converge to the same value,
i.e., ṙi(t)→ṙj(t), and the positions maintain a prescribed separation, i.e., ri(t) −
hi→rj(t)− hj, (1≤ i, j≤ 6) [64].
Consensus-based formation: The spacecrafts are desired to form a regular hexagon.
Formation is achieved if limt→∞[xi(t)−xj(t)] =hi−hj, (1≤ i, j≤ 6). Formation can
be achieved in (7.22) using the R-PSEC algorithm with the following disagreement

Xi(t) =
∑
j∈Ni

ai,j
(
(Λi(tk)x̂i(tk)− hi)− (Λj(tk)x̂j(tk)− hj)

)
, (7.24)

Consider similar steady-state velocity for (7.22), (i.e., lim
t→∞

[ṙi(t) − ṙj(t)] → 0, 1 ≤
i, j ≤ 6). Additionally, it is assumed that the steady-state value ỹi(t) is the same
for all spacecrafts, (i.e., lim

t→∞
[ỹi(t) − ỹj(t)] → 0, 1≤ i, j≤ 6). This implies that

the regular hexagon will be achieved while the spacecrafts have equal velocity and
equal ỹi(t). Note that the N vertices of a 2-dimensional N -sided regular polygon with
radius d, centered at (0, 0), can be given by pi = (x̃i, z̃i), where x̃i = d cos(2πi/N) and
z̃i = d sin(2πi/N) for (1≤ i≤N). By definition, when formation is achieved it holds
that

lim
t→∞

[xi(t)− xi+1(t)] =hi − hi+1. (7.25)
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Based on (7.25) and with h1=[0, 0, 0, 0, 0, 0]T , the remaining formation vectors are
computed as follows

hi+1 =hi − bi, (1≤ i≤N−1), (7.26)

where bi can be obtained from (7.25) as follows

bi = d [ cos(2πi/N)− cos(2π(i+ 1)/N), 0, sin(2πi/N)− sin(2π(i+ 1)/N), 0, 0, 0 ]T .

For N = 6 and d= 5, the agents in this example form a regular hexagon with an edge
of d= 5m.
Parameter design: Consider h= 0.05, ζ = 0.3, and δ= 0.01. The desired level of
resilience to DoS is selected as γ= 0.25. The following control gain and ET parameters
are computed from Theorem 5.3

K =

−0.5385 0.0011 0 −1.2024 0 0
−0.0011 −0.5385 0 0 −1.2024 0

0 0 −0.5385 0 0 −1.2024

 ,

Φ1 =



10.6590 −0.0002 0 15.3019 0.0282 0
−0.0002 10.6618 0 −0.0287 15.3091 0

0 0 10.6583 0 0 15.3004
15.3019 −0.0287 0 24.8012 −0.0005 0
0.0282 15.3091 0 −0.0005 24.8163 0

0 0 15.3004 0 0 24.7979

 ,

Φ2 =



0.0015 0 0 0.0011 0 0
0 0.0015 0 0 0.0011 0
0 0 0.0015 0 0 0.0011

0.0011 0 0 0.0036 0 0
0 0.0011 0 0 0.0036 0
0 0 0.0011 0 0 0.0036

 . (7.27)

Formation iterations: Similar to (4.10), the formation disagreement is defined
as z(t) = (W̃⊗In) (x(t)−h), where h= [hT1 , . . . ,hT6 ]T . Let x1(0) = [30, 10, 20, 0, 1, 0]T,
x2(0) = [15, 15, 12, 0, 1, 0]T , x3(0) = [−5, 6, 15, 0, 1, 0]T, x4(0) = [8, 22, 45, 0, 1, 0]T,
x5(0) = [10, 8, 55, 0, 1, 0]T and x6(0) = [12,−8, 30, 0, 1, 0]T . The consensus-based
formation is run until time t?, where

t? = inf{ t | ‖z(t)‖ ≤ 5× 10−4 ‖z(0)‖ }. (7.28)

DoS attacks: Consider the following DoS sequence [32],

dc = (c+ 1) + 0.5c(c+ 1)− a−1(c+ 1),
τc = a−1(c+ 1), c ∈ N0, a∈R≥1. (7.29)

With T0 = 0, T1 = a, and F0 =F1 = 1, Assumption 5 is satisfied for (7.29), [32]. Let
the period for transmission attempts during DoS be g= 0.01s. With T1 = a= 4.5, it
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Figure 7.10: Trajectories of MAS (7.22) using R-PSEC; (a): The spacecrafts reach formation
flying on a regular hexagon, (b): The control input generated to reach formation, (c)
The event instants for each agent. Highlighted areas in figures (b) and (c) show DoS
intervals (7.29).

holds that 1
T1

+ g
F1

= 0.2322 < γ= 0.25. Using designed parameters (7.27), consensus-
based formation is simulated in the presence of DoS (7.29). Fig. 7.10(a) shows the
trajectories of the spacecrafts reach a formation of a regular hexagon. Based on the
termination time defined in (7.28), it takes 17.48 sec for the MASs to reach formation
in the presence of DoS. The control inputs ui(t) are shown in Fig. 7.10(b). The
highlighted areas in Pink color show the DoS intervals. Note that the control inputs
are kept zero during the DoS attacks. The spacecrafts, respectively, transmit 187,
216, 150, 191, 206, and 148 times during the process. The event-triggerings are shown
in Fig. 7.10(c). The average number of events is AE=183.00. To compute the AIET
in the presence of DoS, the following expression is used

AIET = t? − |D(0, t?)|
AE . (7.30)

In fact, in AIET (7.30) the total DoS duration from time 0 to t?, denoted by |D(0, t?)|,
is omitted from the total formation time t?. In other words, AIET is computed only
based on the healthy intervals. Using (7.30), for this example AIET=0.0775.

Formation indices in the absence of DoS: It is interesting to observe how the
formation indices (i.e., the settling time t?, AE, and AIET) are impacted when DoS
never occurs. To this end, the same parameters obtained in (7.27) are used and
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no DoS attack is considered. Simulation results lead to t? = 14.86, AE=173.83, and
AIET=0.0855. As expected, formation is reached faster with lower number of events
and larger interval between the events.

7.7.1 Impact of DoS resilience level γ
This section studies the impact of the desired DoS resilience level γ on computed pa-
rameters and consensus features. Consider fixed values ζ = 0.3, h= 0.05, and g= 0.01.
The DoS pattern is considered the same as (7.29), with T0 = 0, T1 = a, and F0 =F1 = 1.
Parameter a in (7.29) is selected such as 1

T1
+ g

F1
= γ, where g= 0.01. Note that

1
T1

+ g
F1

= γ implies an asymptotic convergence based on Theorem 5.3. The obtained
results are listed in Table 7.11, where the following observations are made

• Higher values for γ lead to smaller values for ‖K‖ and a more conservative con-
sensus (formation) is obtained. In fact, the LMIs in Theorem 5.3 return a smaller
control gain to accommodate for a stronger attack. The settling time t? is, there-
fore, increased with larger γ.

• The rate of change for AE and AIET is not monotonic. However, the pattern is
that with larger γ more transmission is made (larger AE) and AIET is decreased.

7.8 ROCCET
To evaluate the performance of ROCCET, two different experiments are conducted.
In the first experiment, the formation control for non-holonomic mobile robots is stud-
ied. The second experiment considers the leader-following application for a second-
order oscillatory MAS.

7.8.1 Formation in nonholonomic mobile robots
The dynamics of mobile robot i shown in Fig. 7.11 is given by [156]

˙̄xi =f(x̄i) + B̄ūi, (1≤ i≤ 5), (7.31)

Table 7.11: Consensus performance using R-PSEC; different desired resilience γ with ζ = 0.3,
h= 0.05, and δ= 0.01.

γ ‖K‖ ‖Φ1‖ ‖Φ2‖ t? AE AIET
0.05 1.6123 7.7199 0.1309 12.56 163.17 0.0741
0.10 1.5528 7.5549 0.1394 13.20 160.17 0.0763
0.15 1.5012 5.8258 0.1191 16.21 190.33 0.0773
0.25 1.3175 8.2125 0.0850 19.91 215.00 0.0754
0.33 1.2489 54.2063 0.0547 20.90 313.50 0.0508
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Figure 7.11: Non-holonomic mobile robot coordinates.

where

x̄i = [ rx,i, ry,i, θi, vi, ωi ]T , f(x̄i) = [ vi cos(θi), vi sin(θi), ωi, 0, 0 ]T ,

B̄=
[
0 0 0 0 1

J

0 0 0 1
m

0

]T
, ūi = [ fi, τi ]T .

For robot i, parameters rx,i and ry,i are the inertial positions; θi is the orientation;
vi is the linear speed; ωi is the angular speed; τi is the applied torque; fi is the
applied force; m= 10.1kg is the mass; and J = 0.13kg.m2 is the moment of inertia.
The network is described by the following Laplacian matrix

L =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 . (7.32)

As described later, the objective is that the five robots in (7.31) form a regular
pentagon.
Feedback linearization: Denoting the following variables, robot (7.31) is state
feedback linearizable [156]

x1,i = rx,i + L cos(θi), x2,i = ry,i + L sin(θi),
x3,i = vi cos(θi)−Lωi sin(θi), x4,i = vi sin(θi)+Lωi cos(θi), x5,i = θi, (7.33)

where L= 0.12m is an internal distance in the structure of the robot. Now, consider
the following linear system

ẋi = Axi +Bui, (1≤ i≤ 5), (7.34)

where xi = [ x1,i, x2,i, x3,i, x4,i ]T and

A =
[
02×2 I2
02×2 02×2

]
, B =

[
02×2
I2

]
.
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The feedback linearizing control for robot i is

ūi =
[

1
m

cos(θi) −L
J

sin(θi)
1
m

sin(θi) L
J

cos(θi)

]−1 (
ui −

[
−viωi sin(θi)− Lω2

i cos(θi)
viωi cos(θi)− Lω2

i sin(θi)

])
. (7.35)

Following [156], the states of actual system (7.31) is obtained from the states of linear
system (7.34) as

rx,i = x1,i − L cos(x5,i), ry,i = x2,i − L sin(x5,i),

θi = x5,i, vi =
1
2x3,i cos(x5,i) + 1

2x4,i sin(x5,i),

ωi = −
1

2Lx3,i sin(x5,i) + 1
2Lx4,i cos(x5,i), (7.36)

where ẋ5,i = − 1
2Lx3,i sin(x5,i) + 1

2Lx4,i cos(x5,i). To solve formation for the nonlinear
MAS (7.31), one can design a control protocol for linear system (7.34) with control
input ui. Trajectories of system (7.31) then follows (7.36), if the feedback linearizing
control (7.35) is applied.
Consensus-based formation: The robots are desired to form a predefined geomet-
ric shape. To this end, a given formation vector hi is included in disagreement (5.47).
Formation is achieved if limt→∞(xi(t)−xj(t)) =hi−hj, (1≤ i, j≤ 5). Formation can
be achieved in (7.31) using the ROCCET algorithm with the following disagreement

Xi(t) =
∑
j∈Ni

ai,j
(
(Λi(t)xi(tik)−hi)− (Λj(t)xj(tjk)−hj)

)
. (7.37)

To compute formation vector hi, the same procedure used in Section 7.7 is consid-
ered here. This gives way to expressions (7.25) and (7.26). We use h1=[0, 0, 0, 0]T .
For N = 5 and d= 3, the agents in this example form a regular pentagon with an edge
of d= 3m.
Optimization: Let ζ = 0.4. The desired level of resilience to DoS is selected as
γ= 0.3. Using the SDPT3 solver, a solution for optimization (5.73) is computed as

K=−[ 0.3948, 0.7973 ]⊗ I2, Φ1=
[
7.3433 4.3451
4.3451 11.4059

]
⊗I2,

φ2 = 0.4676, φ3 = 0.9628, φ4 = 1.1635, φ5 = 0.4676.

The value of the objective function is F= 127.94.
DoS attacks: Consider the same DoS given in (7.29) with T0 = 0, T1 = a, and
F0 =F1 = 1, Assumption 5 is satisfied for (7.29), [32]. Let the period for transmission
attempts during DoS be g= 0.01s. With T1 = a= 3.5, it holds that 1

T1
+ g

F1
= 0.2957 <

γ= 0.3.
Implementation: Similar to (5.65), define the formation disagreement as z(t) =
(W̃ ⊗ In) (x(t)−h), where h= [hT1 , . . . ,hT5 ]T . Let x1(0) = [0, 0, 0, 0]T, x2(0) =
[3, 0, 0, 0]T , x3(0) = [1.5, 2, 0, 0]T, x4(0) = [3, 3, 0, 0]T, x5(0) = [−3,−3, 0, 0]T , and

145



Figure 7.12: State evolution of the robots and forming a pentagon.
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Figure 7.13: Event instants. The highlighted areas in pink color are the DoS intervals.

ηi(0) = 1, (1≤ i≤ 5). The consensus-based formation is run until time t?, where

t? = inf{ t | ‖z(t)‖ ≤ 1× 10−4 ‖z(0)‖ }. (7.38)

Time t? is when formation is achieved within 0.01% of the initial disagreement. Pa-
rameter t? is used as an index to compare the consensus (formation) convergence
rate. A larger value for t? corresponds to a smaller rate of convergence and vice
versa. For this setting, t? = 22.12s. Trajectories of (7.31) is plotted in Fig. 7.12,
where the agents reach a regular pentagon. The agents, respectively, trigger 52,
56, 74, 67, and 55 events which are shown in Fig. 7.13. The highlighted areas (in
pink color) in Fig. 7.12 are the DoS attack intervals. The total average number
of events per agent is AE = 60.8. Parameter AIET is also reported, which is com-
puted by AIET=(t?− |D(0, t?)|)/AE. In this example, AIET= 0.3638. The trajecto-
ries ηi(t), (1≤ i≤ 5), are included in Fig. 7.14. As shown in Fig. 7.14, parameter ηi(t),
(1≤ i≤ 5), efficiently contributes in reducing the number of transmissions. Parame-
ter ηi(t) converges to zero and does not cause any steady-state error for formation.
Impact of given parameters ζ and γ: This section studies the impact of different
values for convergence rate ζ and desired level of resilience γ on the formation fea-
tures. To this end, optimization (5.73) is solved for given values of ζ and γ given in
Table 7.12. The table is categorized into two sections. In the first section γ is fixed
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Figure 7.14: Trajectories of ηi(t). The highlighted areas in pink color are the DoS intervals.

and ζ is incrementally increased. In the second part of the table, ζ is fixed and γ is
increased. Formation for (7.31) is run using corresponding designed parameters. DoS
sequence follows (7.29) with a = 6. According to Table 7.12, one observes:

• Higher values for ζ increase the rate of convergence. Therefore, convergence time t?
steadily gets reduced and formation achieves faster.

• Larger values for ζ lead to larger ‖K‖. In fact, increasing the desired convergence
rate requires higher values for the control input ui(t).

• As a result of larger values for ζ, the frequency of transmissions increases and
parameter AIET becomes smaller (i.e., more frequent transmissions).

In the second half of the table, we set ζ = 0.4 and observe the impact of different
values for desired level of resilience to DoS γ. From Table 7.12, one observes that
higher values for γ lead to smaller control gains. Therefore, formation is achieved with
more conservation. As for the AIET no specific trend is found. It is worth noting
that the largest resilience level that optimization (5.73) remains feasible is γ= 0.47
for this MAS setting.

These results verify the efficiency of ROCCET for a structured trade-off between
the rate of convergence, frequency of transmission, and resilience to DoS.

Table 7.12: Impact of given parameters ζ and γ on ROCCET.

ζ γ ‖K‖ ‖Φ1‖ φ2 φ3 φ4 φ5 t? AE AIET
0.2 0.2 0.645 11.67 0.470 0.981 1.081 0.470 22.90 44.6 0.513
0.3 0.2 1.086 13.72 0.538 0.972 1.122 0.538 16.37 45.0 0.363
0.4 0.2 1.602 19.11 0.568 0.963 1.163 0.568 10.23 35.0 0.292
0.5 0.2 2.236 26.46 0.583 0.954 1.205 0.583 8.44 33.6 0.251
0.6 0.2 2.997 36.59 0.598 0.946 1.248 0.597 7.65 34.2 0.224
0.4 0.1 2.716 34.88 0.614 0.962 1.163 0.614 8.46 33.6 0.251
0.4 0.2 1.602 19.114 0.567 0.962 1.163 0.567 10.23 35.0 0.292
0.4 0.3 0.889 14.171 0.467 0.962 1.163 0.467 16.87 53.0 0.318
0.4 0.4 0.597 19.759 0.346 0.962 1.163 0.346 24.42 85.8 0.285
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Figure 7.15: The states of MAS (7.39) following trajectories of the leader in a leader-
following setup.

7.8.2 Comparison with Reference [1]
This section compares ROCCET with reference [1] in terms of transmission savings
and the amount of guaranteed resilience to DoS. To this end, consider the leader-
following application for a type of oscillatory MAS with the following parameters

A =
[

0 −0.5
0.5 0

]
, B =

[
0
1

]
. (7.39)

A network with 5 agents is considered, where agent 5 is the leader and it has no
neighbours. Agents 1 and 2 are connected to the leader and continuously receive
state information from the leader. The information exchanges among the followers
are event-triggered. The network configuration of the agents is modeled as

L =


2 0 0 −1 −1
0 2 −1 0 −1
0 −1 2 −1 0
−1 0 −1 2 0
0 0 0 0 0

 . (7.40)

Effectiveness of DET scheme: This part compares the effectiveness of DET
scheme (5.49) with [1]. To focus only on the capability of transmissions schemes, con-
sider the DoS free situation and solve optimization (5.68) with ζ = 0 (i.e., asymptotic

Table 7.13: Comparison between Theorem 5.4 and [1, Theorem. 4].

Method
Number of transmissions

AE AIET
Agent 1 Agent 2 Agent 3 Agent 4

Theorem 5.4 226 237 260 236 239.75 0.1043
Ref. [1] 493 533 526 540 523.00 0.0478
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consensus). The following parameters are computed from (5.67)

K =
[
0.8462 −1.3384

]
, Φ1 =

48.4832 −9.1889
−9.1889 15.1221

 ,
φ2 = 0.5672, φ3 = 1, φ4 = 1, φ5 = 0.5672. (7.41)

The transmission scheme used in [1, Eq. (24)] is a combination of an event-triggering
scheme (in the form of tik+1 = inf { t> tik | ‖ei(t)‖≥ β̃i‖Xi(t)‖ }) and a periodic
scheme with period b̃i. The control protocol in [1] is similar to (5.48). To compute
necessary consensus parameters using [1, Theorem 4], let R̃= 1, Q̃= [1.6, 0; 0, 1],
τ̃ = 0.98, s̃i = 1, and %̃= 48. These parameters are selected in such a way so as to
compute the largest possible β̃ and almost the same control gain as in (7.41). Since
the control gains are almost the same, the convergence rate for both simulations will
be almost the same. This helps to have a fair comparison for the number of trans-
missions. The control gain for [1, Eq. (22)] and ET thresholds for [1, Eq. (24)] are
computed as

K̃ =
[
0.8429 −1.3366

]
, β̃i = 0.0225, b̃i = 0.0345.

Let xi(0) = i × [1, 2]T , (1≤ i≤ 4), and x5(0) = [0.5, 1]T . Using the two sets of
parameters, the leader-following consensus problem is solved for (7.39) in a time
horizon of 25s, i.e., t ∈ [0, 25]. Fig. 7.15 shows the trajectories of MAS (7.39) using
parameters (7.41). Table 7.13 includes the number of transmissions for ROCCET
(Theorem 5.4) and [1, Theorem 4]. It is observed that the number of transmissions
triggered by ROCCET (Theorem 5.4) is lower as compared to [1]. This corroborates
the superiority of the DET scheme compared to the so-called static scheme used in [1].

Guaranteed resilience level to DoS: Next, the theoretical resilience level guar-
anteed by ROCCET (Theorem 5.5) and that of [1] is compared. In [1], an algebraic
Riccati equation (ARE) approach is used for stability analysis and control design.
The guaranteed resilience level to DoS in [1, Eq. (27) and (28)] is obtained based
on the norm and extremum eigenvalues of some associated matrices. With the ARE
approach, the theoretical resilience guaranteed by [1] for MAS (7.39) is 0.1701. In
other words, DoS attacks satisfying 1

T1
+ g

F1
< 0.1701 are theoretically guaranteed of

maintaining a stable MAS (7.39). Theorem 5.5 is used to find the maximum guaran-
teed resilience to DoS for MAS (7.39). Let ζ = 0.3. The maximum resilience to DoS is
found by incrementally increasing γ in Theorem 5.5 until no feasible solution is com-
puted. It is observed that optimization (5.73) remains feasible until γ= 0.4802, which
implies that DoS attacks satisfying 1

T1
+ g

F1
< 0.4802 are theoretically admissible and

do not destabilize MAS (7.39). Compared to [1], the theoretical DoS resilience guar-
anteed by ROCCET is higher and thus more realistic. The reason is that, unlike [1]
where the DoS bound is computed from matrix norms and extremum eigenvalues,
Theorem 5.5 uses the full information included in the system matrix A and decision
matrices P , Ω, and S1 in the LMI formulation.
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7.9 FCC/DEME
Implementation FCC/DEME is evaluated for a MAS comprising of 4 leader and 6
follower robots with the same dynamics given in (7.31). The network topology shown
in Fig. 6.1 is used, which is represented by the partitioned Laplacian matrices (6.3).
It holds that

J̃1 = diag(2, 2, 4), J2 = diag(4.613, 3.808, 3.258, 0.387, 1.192, 1.742),

W̃ =
[0.707 0 −0.707 0

0 0.707 0 −0.707
−0.5 0.5 −0.5 0.5

]
,

V −1 =


0.354 0.261 −0.300 −0.381 0.524 −0.544
0.216 0.355 0.064 −0.707 −0.472 0.317
0.425 −0.413 0.565 −0.046 −0.299 −0.488
−0.381 −0.544 −0.524 −0.354 −0.300 −0.261
0.707 −0.317 −0.472 0.216 −0.064 0.355
−0.046 −0.488 0.299 −0.425 0.565 0.413

 .

The formation-containment objective in this example is that the 4 leaders in (7.31)
form a regular square and the 6 followers merge within the square form by the leaders.
The same feedback linearization technique (7.33) is used here.
Formation vector and formation gain: As specified previously, the 4 leaders
in (7.31) are supposed to form a regular square. To compute formation vector hi,
the same procedure used in Section 7.7 is considered here. This gives way to expres-
sions (7.25) and (7.26). We use h1=[0, 0, 0, 0]T . With M = 4 and d= 3, the leaders in
this example will form a regular square with an edge of d= 3m. It is straightforward
to show that A∑

j∈N iL←L
(hi − hj) = 0, (1≤ i≤ 4), which implies that the formabil-

ity condition (6.15) holds with H = 0. Therefore, the formation gain in (7.43) is
considered as H = 0.
Parameter design for leaders: Let ζ1 = 0.3. Using the SDPT3 solver, optimiza-
tion (6.28) is solved which leads to the following solution:

P =
[
0.0675 −0.0505
∗ 0.2057

]
⊗I2, Φ̃ =

[
1.1849 −0.0437
∗ 1.4451

]
⊗I2,

Ω = [−0.0144 −0.1971]⊗I2, α̃= 0.0178, β̃= 0.5980, γ̃= 1.3980, ρ̃= 0.0252,
τ1 = 1.8783, τ2 = 0.0536, θ1 = 19.6111, θ2 = 2.1089, θ3 = 56.1314, θ4 = 1.6721,
θ5 = 1.9545, θ6 = 39.6909, θ7 = 0.0391.

Design parameters are calculated form (6.30) as follows

K1 = −[ 1.1414, 1.2390 ]⊗ I2, Φ1 =
[
19.7233 4.8133
∗ 7.0278

]
⊗I2

α1 = 0.1335, β1 = 0.7733, γ1 = 1.3980, ρ1 = 0.1587.

The value of the objective function is F1 = 121.20.
Parameter design for followers: Next, design parameters for the followers are
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Figure 7.16: Formation-containment for MAS (7.31).

computed. Optimization (6.33) is solved with ζ2 = 0.3 which leads to the following
solution

P =
[
0.1844 −0.0837
∗ 0.1605

]
⊗I2, Φ̃ =

[
1.6485 −0.0651
∗ 1.7888

]
⊗I2,

Ω = [−0.0449 −0.3973]⊗I2, α̃= 0.0134, β̃= 0.5980, γ̃= 1.3980,
ρ̃= 0.0184, τ1 = 1.9086, τ2 = 0.0544, θ1 = 11.3746, θ2 = 3.2921, θ3 = 74.6831,
θ4 = 1.6721, θ5 = 1.9545, θ6 = 52.8089, θ7 = 0.1598.

The following design parameters are then computed

K2 = −[ 1.7906, 3.4091 ]⊗ I2, Φ2 = [ 9.0799 4.6743
∗ 10.7708 ]⊗I2

α2 = 0.1157, β2 = 0.7733, γ2 = 1.3980, ρ2 = 0.1376.

The objective function is computed as F2 = 145.94.
Formation-containment implementation: Let x1(0) = [−10,−4, 0, 0]T, x2(0) =
[−6,−4, 0, 0]T , x3(0) = [3,−8, 0, 0]T, x4(0) = [10,−2, 0, 0]T, x5(0) = [−5, 8, 0, 0]T,
x6(0) = [5, 8, 0, 0]T, x7(0) = [0, 0, 0, 0]T, x8(0) = [3, 0, 0, 0]T, x9(0) = [1.5, 2, 0, 0]T ,
x10(0) = [3, 3, 0, 0]T , and ηi(0) = 1, (1≤ i≤ 10). Time t?, which is the time when
formation-containment is achieved, is determined as follows

t? = inf{ t | max
{
‖ψL(t)‖
‖ψL(0)‖ ,

‖ψF(t)‖
‖ψF(0)‖

}
≤ δ }. (7.42)

Conceptually speaking, time t? is the smallest time when both the formation for lead-
ers and containment for followers are achieved within at least δ factor of the initial dis-
agreements specified by ‖ψL(0)‖ and ‖ψF(0)‖, respectively. This time, i.e., t?, is used
as an index to compare the convergence rates for different examples. Let δ= 0.005.
This value provides a high accuracy for formation-containment achievement. For this
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Figure 7.17: Event instants; (a): for Leaders, (b): for Followers.
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Figure 7.18: Trajectory of the dynamic threshold ηi(t), (a): For Leaders; (b): For Followers.

setting, t? = 12.72s with δ= 0.005. 2 In Fig. 7.16, the trajectory of (7.31) is plot-
ted where the leaders (shown in blue color) reach a regular square and the followers
(shown in red color) achieve containment inside the square. The leaders, respectively,
trigger 89, 75, 104, and 69 events shown in Fig. 7.17(a). The number of events for the
followers are, respectively, 69, 76, 79, 73, 83, and 80. The event instants for followers
are shown in Fig. 7.17(b). The total average number of events (including both the
leaders and followers) per agent is AE = 79.70. The average inter-event time is com-
puted by AIET=t?/AE. In this example, AIET= 0.1596. The trajectories of ηi(t),
(1≤ i≤ 10), are included in Figs. 7.18(a) and (b). As shown in Figs. 7.18(a) and
(b), parameter ηi(t), (1≤ i≤ 10), provides a considerable threshold and efficiently
contributes in reducing the number of events.
Impact of convergence rates ζ1 and ζ2: Optimizations (6.28) and (6.33) are solved
for the given values of ζ1 and ζ2 listed in Table 7.14. Then, formation-containment is
run using the designed parameters. According to Table 7.14, one observes that:

• With higher values for ζ1 (or ζ2) the rate of convergence increases and t? steadily
2It should be noted that convergence within 1% of the initial disagreement(i.e., δ= 0.01 in (7.42))

provides a satisfactory level of formation-containment convergence in MAS (7.31). With δ= 0.01,
formation-containment is achieved at t? = 9.43 in this example. Simulation is run using a higher
accuracy of δ= 0.005 to better observe the differences between different examples.
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gets reduced. In return, the value AIET is also reduced which is translated to
more dense event-triggerings.

• Larger values for ζ1 (or ζ2) lead to larger ‖K1‖ (or ‖K2‖). This is consistent with
the fact that increasing the desired convergence rate requires higher values for the
control input ui(t).

• Larger values for ζ1 (or ζ2) lead to smaller values for {α1, β1, ρ1} (or {α2, β2, ρ2})
and higher values for {‖Φ1‖ , γ1} (or {‖Φ2‖ , γ2}) which together increase the fre-
quency of the event-triggerings to cope with the higher given rate of convergence.
The AIET, in return, becomes smaller (i.e., higher frequency for event-triggerings)
as ζ1 (or ζ2) is increased.

These results verify the flexibility of FCC/DEME for formation-containment based
on a structured trade-off between the rate of convergence and events frequency.
FCC/DEME is tested for a variety of other multi-agent systems. The results cor-
roborate the observations reported in the aforementioned simulation.

7.10 Summary
This chapter provides numerical examples to quantify the effectiveness of the pro-
posed implementations. For average consensus, simulations are based on different
networks of single-order MASs. For consensus in general linear agents and formation-
containment, different dynamical agents, such as a class of second-order vehicles,
spacecrafts, and non-holonimic mobile robots are selected for experiments. Simula-
tions demonstrate the capability of the CEASE algorithm in achieving a guaranteed
exponential rate for event-triggered average consensus using only sampled-data states.
CEASE is based on an optimization which does not depend on the network size. The
optimization attempts to increase the average inter-event time (AIET). It was ob-
served that CEASE and Q-CEASE produce a bounded steady-state consensus error.

Due to involving a more advanced ET scheme, (dynamic event-triggering scheme),
DEASE is more powerful than CEASE in terms of transmission savings. Additionally,
it was observed that DEASE provides feasible solution for larger sampling periods
than CEASE. DEASE guarantees asymptotic consensus with arbitrary small error.

Table 7.14: Impact of different desired convergence rates {ζ1, ζ2} on computed parameters
and FCC features.

Given Rates Computed parameters from Opt. (6.28) Computed parameters from Opt. (6.33) Features
ζ1 ζ2 ‖K1‖ ‖Φ1‖ α1 β1 γ1 ρ1 ‖K2‖ ‖Φ2‖ α2 β2 γ2 ρ2 t? AE AIET

0.00 0.00 0.8904 13.36 0.1339 0.8107 1.1573 0.1592 2.4696 9.66 0.1161 0.8107 1.1573 0.1381 19.76 86.3 0.2290
0.10 0.10 1.1307 15.59 0.1338 0.7975 1.2360 0.1591 2.9551 11.14 0.1160 0.7975 1.2360 0.1379 17.17 80.2 0.2141
0.20 0.20 1.3949 18.22 0.1336 0.7851 1.3163 0.1589 3.4106 12.81 0.1159 0.7851 1.3163 0.1378 14.93 74.5 0.2004
0.30 0.30 1.6846 21.28 0.1335 0.7733 1.3980 0.1587 3.8507 14.67 0.1157 0.7733 1.3980 0.1376 12.72 79.7 0.1596
0.40 0.40 2.0011 24.78 0.1333 0.7623 1.4811 0.1585 4.2849 16.75 0.1156 0.7623 1.4810 0.1374 11.81 88.5 0.1334
0.50 0.50 2.3465 28.75 0.1331 0.7518 1.5652 0.1583 4.7201 19.04 0.1154 0.7518 1.5652 0.1372 10.44 95.6 0.1092

153



RQ-CEASE considers the impact of DoS attacks. RQ-CEASE transmits more than
CEASE, and Q-CEASE.

A second-order MAS is selected to study the ETC using PEC. It is shown that
PEC provides an appropriate framework to cope with the uncertainties in the control
protocol and preserves the desired exponential rate of consensus when the ET scheme
is used. It is observed that PSEC outperforms PEC in terms of transmission savings.
The reason lies within the fact that PSEC incorporates a sampler in its configuration.
The sampling interval, inherently, reduces the transmission load. R-PSEC studies the
impact of DoS attacks on PSEC. It is observed that R-PSEC considers a desired level
of resilience to DoS in its parameter design. The resilience level has some trade-offs
with the consensus performance. For example, higher DoS resilience leads to more
frequent transmissions.

ROCCET benefits a dynamic event-triggering scheme and its parameter design
includes an optimization in increase the MIET. Comparison with [1] shows that ROC-
CET provides more realistic (higher) resilience to DoS.

Finally, using FCC/DEME the problem of formation-containment in a class of
non-holonimc agents is simulated. It is shown that FCC/DEME is capable of saving
transmissions for follower-follower and leader-leader communication.

ui(t) = (K + ∆Ki(t))Xi(t), (1≤ i≤N). (7.43)
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Chapter 8

Summary and Future Direction

This chapter summarizes the proposed event-triggered consensus (ETC) implemen-
tations based on their features. Some future research directions worthy of further
investigations are included in this chapter.

8.1 Summary
In recent years, event-triggering (ET) transmission strategies have been widely stud-
ied to cope with the bandwidth constraints and save communication resources in
networked control systems (NCSs) and cooperative multi-agent systems (MASs). Dis-
tributed consensus, which is an important algorithm required in many control and
signal processing applications such as sensor networks, multi-robot systems, and un-
manned aerial vehicles, is based on information exchanges between the neighbouring
agents. Several ET strategies have been proposed for consensus to reduce the number
of transmissions and prolong longevity of the agents. The literature review in Chap-
ter 2 shows that existing ETC implementations have limitations especially in terms of
their parameter design approach, resilience to Cyber-attacks, and transmission with-
out quantization, to name a few. Based on the dynamics of the agents, proposed
implementations are categorized to single-order and general linear agents.

Table 8.1 lists the proposed ETC implementations for first-order agents (average
consensus) and compares them in terms of their different features. According to
Table 8.1, each implementation offers some advantages and has some shortcomings.
Based on the desired application, one can choose the suitable implementation. All
proposed implementations for average consensus incorporate a sampler to reduce the
burden of state measurement, event monitoring, and control update. Additionally,
the receiver at each node awaits an update from the neighbouring nodes only at the
sampling instants.

The parameter design in CEASE and DEASE include a parameter optimization to
increase the inter-event time. The optimization in CEASE is independent of network
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Table 8.1: Different proposed ETC implementations for first-order agents.

Characteristics CEASE [77] Q-CEASE [78] RQ-CEASE [79] DEASE
Transmitter

scheme
Sampled-data

Event-triggered
Sampled-data

Event-triggered
Sampled-data

Event-triggered
Sampled-data

Event-triggered
Receiver scheme Periodic Periodic Periodic Periodic

State Measu-
rement scheme Periodic Periodic Periodic Periodic

Control scheme Sampled-data
Event-triggered

Sampled-data
Event-triggered

Sampled-data
Event-triggered

Sampled-data
Event-triggered

Event monitoring Periodic Periodic Periodic Periodic
Optimization for
Design Parameters Yes No No Yes

Steady-state error Yes Yes Yes No
State Quantization No Yes Yes No
Control gain Design Yes No No No

Computation Complexity
of Parameter Design Medium Low Low High

Relative expected
number of transmissions Medium Medium High Low

Resilience to DoS attacks No No Yes No
Network Topology Undirected Undirected Undirected Undirected

size. Thus the computational complexity of optimization does not grow with the net-
work size. In contrast, the computational complexity in DEASE grows with the net-
work size. The benefits of DEASE compared to CEASE are threefold: (i) DEASE is
more efficient in reducing the number of transmissions; (ii) DEASE does not produce
steady-state error in consensus; (iii) Higher values of sampling period is applicable in
DEASE.

Q-CEASE considers the information quantization in their configuration. Unlike
CEASE and DEASE the parameter design in Q-CEASE and RQ-CEASE is analytical,
which leads to some operating regions for the unknown parameters.

RQ-CEASE considers the impact of the unknown denial of service (DoS) attacks
on the average consensus.

Three different implementations are proposed for ETC in general linear MAS.
These implementations are listed in Table 8.2. The design approach for all imple-
mentations is co-design, i.e., all unknown parameters are designed simultaneously. In
PEC, only the transmission is event-triggered and other processing are continuous-
time. PEC includes an objective function to increase the AIET. The value of the
objective function can be used as an index to predict and compare the expected
AIET for different MASs. Unlike PEC, PSEC includes a sampler for each node.
R-PSEC is the extended version of PSEC, where DoS attack is considered in the
implementation.
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Table 8.2: Comparison of different proposed ETC implementations.

Characteristics PEC [80] PSEC [81] R-PSEC ROCCET [82]

Transmitter scheme Event-triggered Sampled-data
Event-triggered

Sampled-data
Event-triggered Event-triggered

Receiver scheme Continuous-time Periodic Periodic Continuous-time
State Measu-

rement scheme Continuous-time Periodic Periodic Continuous-time

Control scheme Continuous-time Periodic Periodic Continuous-time
Event monitoring Continuous-time Periodic Periodic Continuous-time

Optimization for
Design Parameters Yes No No Yes

Steady-state error No No No No
State Quantization No No No No
Control gain Design Yes Yes Yes Yes
Relative expected

number of transmissions Low Low Medium Very Low

Resilience to DoS attacks No No Yes Yes
Network Topology Undirected Undirected Undirected Undirected

8.2 Future Direction
In what follows, some important and challenging research topics that are close to the
subjects studied in the thesis are suggested. These research topics, which arise mainly
from strict assumptions, bring potential space for improvement over the proposed
implementations in the thesis.

1. Asynchronous sampling period: One common assumption considered in the
thesis is that the sampling process, although performed locally, is synchronized in
the MAS. When the network is large this might be a strict assumption. Therefore,
it is important to consider asynchronous (different) sampling periods in the net-
work. In [157] asynchronous sampled-data ET consensus is studied for first-order
agents. Reference [158] extends the work in [157] to the second-order agents. For
more general agents, however, the asynchronous sampled-data ET consensus is yet
to be studied.

2. Sampled-data dynamic event-triggering for more general agents: Im-
plementation DEASE is based on a sampled-data dynamic event-triggered trans-
mission scheme. In Chapter 7, the capability of the dynamic event-triggering in
saving transmissions is observed. How to extend the sampled-data dynamic event-
triggering scheme to more general agent models, such as the general linear, is still
yet to be discovered.

3. Distributed DoS attacks: As observed in RQ-CEASE, R-PSEC, and ROCCET,
it was assumed that the DoS attacks target all nodes of the MAS at the same time.
In practice, however, each node may experience a different pattern of attack. It
is important to extend the synchronized attacks considered in Chapter 5 to a
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distributed type of attack, where the adversary lunches different patterns of attack
for each node. To date, it is an open problem to investigate distributed DoS attacks
for cooperative control in general linear agents.

4. Observer-based resilient strategies: In this thesis two different control pro-
tocols are suggested during DoS attacks. In RQ-CEASE, the control input is
constants and is based on the last available information before the DoS interval.
In R-PSEC and ROCCET, on the other hand, the control input is kept zero in
the presence of attack. A more advanced control protocol during DoS interval is
to use an observer-based protocol. The main idea in the observed-based resilient
strategies is to predict the local and neighbouring states during the attack inter-
vals. The control input is then updated based on the predicted values. Using an
observer-based control scheme in the presence of DoS leads to a more smooth and
faster consensus as compared to the zero-input protocol. In other words, the DoS
attack have less impact on the MAS when a state observer is used. There are still
few works on the observed-based resilient strategies.

5. Application to Smart-grids: Microgrids are small-scale power systems consists
of local generations, loads, and energy storage. The control of microgrids often
follow a hierarchical structure with three levels, namely, primary, secondary, and
tertiary control loops. The primary control loop maintains the voltage and fre-
quency of the distributed generators (DGs) close to their nominal values as the
power supply and demand change over time. However, even in the presence of the
primary control loop, voltage and frequency can still deviate from their nominal
values. To restore the voltage and frequency of DGs to their nominal values, the
secondary control is also required. Tertiary loop is the highest level of the hierarchy
and performs high-level tasks such as the optimization of economic performance
and managing the main grids [10]. The problem of secondary voltage control in
microgrids can be viewed as a distributed tracking control problem, also known as
the leader-following consensus [11]. The ET communication and control approach
for secondary voltage control in microgrids has been studied recently in [11]. There
are still plenty of important topics to be investigated in this area. For example,
with regards to the Cyber security, an important topic is to develop an optimized
trade-off between the level of security and the amount of transmissions between
the DGs.

6. Application of learning algorithms: The emergence and rapid development
of different learning algorithms in recent years have opened new research areas
in analysis of complex system. With no exception, the application of learning
algorithms in ETC is currently a hot topic. In [159], an iterative approach is
proposed for computing adaptive optimal controller gain for continuous-time linear
systems where system matrices A and B are completely unknown. It is shown
that the system can learn the optimal control gain using only a set of its own
state measurements and control inputs. Therefore, this approach for finding the
optimal control gain is also known as the ‘model-free’ method. The optimal model
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free approach is extended to [160] where, unlike [159], the control updates are
event-triggered. Recently, in [161] the model free approach has been extended
to the ET containment control problem. The application of model-free learning
approaches for ETC is still very open to study.
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Appendix. Stabilization control
under DoS attacks

Chapters 3 to 6 are focused on distributed MASs, where multiple agents (subsys-
tems) are connected to each other and a cooperative behaviour is desired. In many
control applications, only one plant is involved and stability or regulatory control is
concerned. Stability is known as one of the most important subjects in design and
analysis of various aspects of control systems [162]. Similar to MASs, in networked
control systems (NCS), the limited on-board energy resources allocated to system
necessitates strategies that reduce processings such as state measurement and con-
trol input update [123]. At the same time, with the emergence of Cyber-attacks,
the resilience of NCS implementations to various types of attacks has been given
considerable attention and is one of the hot topics in NCSs [32].

In NCSs some physical constraints such as energy and network bandwidth com-
pelled the researchers to employ sampled-data schemes [163], in which state measure-
ment and actuator updates are conducted periodically. To further reduce the burden
of communication and control updates, there has been an increasing interest in event-
triggered (ET) schemes in recent years. Recently, a dynamic event-triggering (DET)
mechanism [75, 76, 164–167] is proposed in which an additional dynamic variable is
included in the ET condition. It is shown in [123] that the number of transmissions
in DETs is lower than the so-called static ET schemes. At the same time, DET
schemes does not produce any steady-state error in the NCS. It should be noted that
continuous-time state measurement and event monitoring is a common assumption
in implementation of DET schemes [75, 76, 164–167]. Incorporation of a sampled-
data measurement and monitoring method greatly enhances the applicability of DET
schemes in practice.

In the same way as MASs, in the context of the ET control for NCSs, there
are usually emulation [50, 63, 64, 168, 169] and co-design [37, 66, 144, 167, 170, 171]
approaches to design unknown control and ET parameters. It should be reminded that
one disadvantage of the emulation-based design is that the feasible regions obtained
for the ET parameters are limited by the initial choice of the control gains [172]. This
decreases the efficiency of the ET scheme in reducing the amount of transmissions.
The applicability of the co-design technique is yet to be investigated for sampled-data
dynamic event-triggered control.

Cyber-attacks can highly degrade the performance of NCSs by different ways

160



of malicious manipulation. If the impact of adversary is not properly taken into
account in the stability analysis, the NCS may become unstable in the presence of
attacks such as DoS. Resilience results for NCSs against DoS have been reported in
[32,37,50,63,64,66,144,167,173–175] for different applications. Assuming that the DoS
follows a periodic pattern, the resilience of different NCSs under DoS is investigated
in [37, 63, 66, 144, 173–175]. Considering a periodic or stochastic pattern for DoS, as
mentioned in Chapter 5, may not fully represent the unknown and malicious nature
of the adversary. A more general model for DoS is considered in [32, 50, 64, 167],
where DoS is assumed to occur with an unknown pattern. Such DoS models with
unknown patterns can be characterized only by the energy constraints of the adversary
(similar to Assumption 5 in Chapter 5). Implementations [32, 50, 52, 64] are based
on emulation-based approaches to design control and ET parameters, and deriving
the maximum amount of resilience to unknown DoS. As mentioned in R-PSEC and
ROCCET in Chapter 5, one disadvantage of the emulation-based approaches for DoS
analysis is that the theoretic resilience guaranteed for unknown DoS is conservative.
The reason lies within the use of norms and extreme eigenvalues of the associated
matrix to calculate the upped-bounds. An alternative approach is to include the
desired resilience level within the co-design framework which excludes the use of such
norms and eigenvalues.

Motivated by the above shortcomings and based on R-PSEC and ROCCET, this
appendix focuses on a sampled-data dynamic event-triggering (S-DET) scheme for
stabilization control in NCS with a designable level of resilience to unknown DoS
attacks. The main features of the proposed framework are listed below:

• This is the first instance where a co-design sampled-data dynamic event-triggering
(S-DET) scheme is developed for stabilization of networked control systems. Com-
pared to existing results in the context of DET [75, 76, 164–167], the proposed
S-DET scheme relaxes the continuous-time state measurement and monitoring.

• In the presence of DoS, the proposed co-design framework allows including a priori
level of resilience to unknown DoS attacks. Therefore, the trade-offs between the
stabilization convergence rate, average inter-event time, and the desired level of
resilience to unknown DoS is formulated within LMI conditions. Compared to
emulation-based approaches where the DoS resilience is based on matrix norms
and eigenvalues [32, 50, 52, 64, 176], the proposed co-design framework results in
less conservative (larger) upper-bounds for unknown DoS attacks.

A.1 Problem statement
Consider the following general linear plant

ẋ(t) = Ax(t) +Bu(t), (A.1)
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Figure A.1: Block diagram for the S-DET control against DoS attack.

where x(t) ∈ Rn is the system state and u(t) ∈ Rm is the control input. System
matrices A ∈ Rn×n and B ∈ Rn×m are constant and known, and (A,B) is a control-
lable pair. In stabilization, and in particular exponential stabilization, the following
objective is desired

Definition 5. Exponential Stability [137]: Given a convergence rate ζ > 0, NCS (A.1)
is said to be ζ-exponentially stable if there exists a positive scalar η such that

‖x(t)‖≤ η e−ζt‖x(0) ‖, t ≥ 0, ∀x(0)∈Rn. (A.2)

To guarantee (A.2), a control protocol for u(t) should be proposed which com-
mands the NCS based on the state measurements of the system x(t). As shown in
Fig. A.1, a sampler is incorporated with plant (A.1) to provide sampled states of
the system, i.e., x(tk), where k ∈N0. In the ideal case where DoS does not occur
the sampling period for measurement is h, i.e., tk+1 − tk =h. To reduce the control
input updates u(t), a sampled-data DET scheme (to be introduced) is also incor-
porated with the plant. The S-DET condition is monitored periodically at t= tk,
(tk+1−tk =h), to determine whether or not to update the control input. Only if
the DET condition is satisfied, an event is triggered and the controller is updated.
In summary, the state measurement scheme is sampled-data (with period h). The
scheme for control update is sampled-data event-triggered. The monitoring process
of the DET condition is also periodic with period h.

A.1.1 Control and Dynamic Event-triggering protocols
Let t?0, t?1, . . . , t?k denote the time sequence at which events are detected and control
input u(t) is updated. Starting from t?0 = 0, the next event is triggered at t?k+1 which
satisfies the following S-DET condition

t?k+1 = inf { tk | tk>t?k, eT (tk)S1e(tk) ≥ xT (tk)S2x(tk) + ηT (tk)S3η(tk)}, (A.3)
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where e(tk) =x(t?k)−x(tk) is the measurement error. Symmetric matrices Si ∈ Rn×n,
(1≤ i≤ 3) are S-DET gains to be designed. Parameter η(t) satisfies

η̇(t) = − η(t) + S4x(tk) + S5e(tk), (A.4)

where Si ∈ Rn×n, (i= 4, 5), are other design parameters. From (A.3) it is clear
that the S-DET scheme is monitored periodically on only samples of the system.
The following sampled-data event-triggered state feedback protocol is proposed for
stabilization of plant (A.1)

u(t) =Kx(t?k), t?k ≤ t < t?k+1, (A.5)

whereK ∈ Rm×n is the control gain to be designed. Fig. A.1 is provided for visualiza-
tion of the proposed S-DET scheme for stabilization of plant (A.1). The closed-loop
system from (A.1) and (A.5) is given below for tk≤ t< tk+1

ẋ(t) =Ax(t) +BK(x(tk) + e(tk)). (A.6)

Let d(t), t− tk represent an artificial time-varying time-delay that satisfies 0≤ d(t)<h.
Using d(t), system (A.6) is given below for the interval tk≤ t< tk+1

ẋ(t) =Ax(t) +BK(x(t−d(t)) + e(t−d(t))), (A.7)

with x(t) =x(0) for −h ≤ t ≤ 0.

Remark A.1. Based on (A.4) parameter η(t) is time-varying and its dynamic updat-
ing protocol is related to state x(t), measurement error e(t), and a negative definite
self-feedback. Intuitively speaking, η(t) can be regarded as a linear first-order fil-
tered value of x(t) and e(t). Compared to the so-called static ET strategies (such as
eT (tk)S1e(tk) ≤ xT (tk)S2x(tk) considered in [37,66,144]), the introduction of η(t) is
a key element to regulate threshold (A.3) dynamically and in better connection with
the plant dynamics. As shown in [123, Prop. 2.3], including parameter η(tk) in (A.3)
reduces the number of event-triggerings compared to the static ET schemes. As a
final note, since η(t) follows a dynamic equation, it acts as an auxiliary state along
with state x(t). As we will observe later in Theorems A.1 and A.2, η(t) can impact
the stabilization convergence rate.

Remark A.2. Compared to most widely used ET schemes, S-DET scheme (A.3)
is more general and many existing ET schemes used for NCSs are special cases of
S-DET (A.3). For example, if η(t) = 0, (∀t≥0), the S-DET condition reduces to
eT (tk)S1e(tk) ≤ xT (tk)S2x(tk) which is considered in [2, 37, 66, 144]. In case that
S4 =S5 = 0, then η(t) reduces to a mere exponentially decaying function [111]. In
this case, η(t) is only dependent on time, not the state and error dynamics. If η̇(t) = 0,
(∀t≥0), then parameter η(t) remains constant over time. The constant (set-valued)
thresholds for ET schemes are considered in [170]. Including a constant value to the
ET condition, however, leads to an unavoidable bounded error for stabilization, which
is not desired. Note that the S-DET scheme (A.3) does not cause any steady-state
error. Additionally, unlike DET schemes proposed in [75, 76, 164–167], S-DET (A.3)
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is sampled and can be easily implemented in a digital platform with the desired
sampling rate.

A.1.2 Denial of Service Attacks
As shown in Fig. A.1, the attacker in DoS attempts to jam the wireless communication
link from the sampler to event-detector and destabilize the system. The model DoS
attacks considered in this chapter is similar to the one considered in Chapter 5. In
particular, expressions (5.4), (5.5), (5.6), and Assumption 5 are considered here.

A.1.3 Objectives
The design approach and objectives for the proposed S-DET scheme against DoS are
discussed below.
Develop a co-design framework for S-DET control: We first consider an ideal
scenario where DoS never happens. A co-design (unified) framework is proposed which
simultaneously computes unknown parameters, i.e., the control gain K and S-DET
parameters Si, (1≤ i≤ 5). The unified framework co-designs unknown parameters
based on a desired sampling period h and a desired exponential rate for stabilization
of plant (A.1).
Include a desired level of resilience against DoS with unknown pattern: In
the presence of DoS, it is of great importance to include the desired level of tolerance
to unknown DoS attacks within the co-design framework. It will be shown later in
Theorem A.2 that the tolerable amount of DoS attack is closely related to (i): The
desired convergence rate of stabilization in the ideal scenario, (ii): The sampling pe-
riod, and (iii): The values of control gain K and S-DET gains Si, (1≤ i≤ 5). The
co-design framework, as will be shown in simulations, allows obtaining less conserva-
tive upper-bounds for admissible DoS attacks.

A.2 Main results

A.2.1 DoS formulation
The formulation of DoS is similar to Section 5.2.4, where sampling period g is con-
sidered for attack intervals and expressions (5.38) and (5.39) are ultimately derived.

A.2.2 Closed-loop system
During DoS attacks the control input is kept zero, i.e., u(t) = 0, if t∈Zm. Therefore,
the plant is open-loop when DoS is detected. Considering both the healthy (Wm) and
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attack intervals (Zm), the following system is obtained

ẋ(t) =
Ax(t) +BK(x(tk) + e(tk)), t ∈ Wm,

Ax(t), t ∈ Zm.
(A.8)

The dynamic variable η(t) is re-formulated as

η̇(t) =
−η(t) + S4x(tk) + S5e(tk), t ∈ Wm,

−η(t), t ∈ Zm.
(A.9)

Note that switching between the two modes of (A.9) requires the knowledge of in-
tervals Wm and Zm. As observed in Section 5.2.4, the beginning of Zm is the instant
when DoS is detected by the system. Additionally, the end of Zm is the first in-
stant after DoS when a measurement is successfully transmitted. It is reminded that
the event-detector sends an acknowledgment (to the sampler) when it successfully
receives a new measurement. Thanks to these acknowledgments and the definition
of Zm, interval Zm and its complement Wm are fully detectable in practice.

A.2.3 Parameter Design: General framework
This section develops a general co-design framework that simultaneously computes
the control gain K and S-DET parameters Si, (1≤ i≤ 5). In this section, the attack-
free (ideal) scenario is considered. Extension to DoS attack is given in Section A.2.4.

Theorem A.1. Given desired values for sampling period h and stabilization rate ζ1,
if there exist the following decision variables

• m×n dimensional matrix V ;

• n×n dimensional positive definite matrices P1,Q1, Z1, P2,Q2, Z2,Mi, (1≤ i≤ 5);

• n×n dimensional matrices N , Y11, Y12, Y22, F1, F2, G1, G2, U11, U12, U22, W1,
W2, E1, E2,

satisfying the following LMIs

C1 =
[
Π Φ
∗ Ψ

]
< 0, (A.10)

C2 =
[
Y F
∗ he−ζ1hZ1

]
≥ 0, C3 =

[
Y G
∗ he−ζ1hZ1

]
≥ 0, (A.11)

C4 =
[
U W
∗ he−ζ1hZ2

]
≥ 0, C5 =

[
U E
∗ he−ζ1hZ2

]
≥ 0, (A.12)

then, control gain K and S-DET parameters Si, (1≤ i≤ 5), are computed from the
following expressions

K =V (N−1)T , S1 =N−1M1(N−1)T , S2 =N−1M2(N−1)T ,
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S3 =N−1M3(N−1)T , S4 =M4(N−1)T , S5 =M5(N−1)T , (A.13)

and closed-loop system (A.7) is ζ1-exponentially stable with the following condition
for the rate of convergence

λ1 ‖x(t)‖2 +λ2 ‖η(t)‖2 ≤ e−ζ1t(λ3 ‖x(0)‖2 +λ4 ‖η(0)‖2), (A.14)

where λ1 =λmin(P̄1), λ2 =λmin(P̄2), λ3 =λmax(P̄1) + hλmax(Q̄1) + h2λmax(Z̄1), and
λ4 =λmax(P̄2)+hλmax(Q̄2)+h2λmax(Z̄2), with P̄i =N−1Pi(N−1)T , Q̄i =N−1Qi(N−1)T ,
and Z̄i =N−1Zi(N−1)T , for (i= 1, 2). Unknown block matrices in (A.10), (A.11),
and (A.12) are defined below

Π =


π11 π12 −F1 π14 BV
∗ π22 −F2 π24 BV
∗ ∗ −e−ζ1hQ1 0 0
∗ ∗ ∗ π44 BV
∗ ∗ ∗ ∗ −M1

 , (A.15)

Φ =


NAT 0 0 NAT

MT
4 + V TBT MT

4 0 MT
4 + V TBT

0 0 0 0
−N 0 0 −N

MT
5 + V TBT MT

5 0 MT
5 + V TBT

, (A.16)

Ψ =


ψ11 ψ12 −W1 P2 −NT −N
∗ ψ22 −W2 −NT

∗ ∗ −e−ζ1hQ2 0
∗ ∗ ∗ ψ44

, (A.17)

π11 =Q1 +G1 +GT
1 +AN +NTAT+hY11 + ζ1P1,

π12 =F1 −G1 +GT
2 + hY12 +BV +NAT ,

π14 =P1 −NT +NAT , π22 =F2 +F T
2 −G2 −GT

2 +hY22 +BV +V TBT+M2,

π24 = −NT + V TBT , π44 =h2Z1 −N −NT ,

ψ11 =Q2 +E1 +ET
1 + hU11 −N−NT + ζ1P2, ψ12 =W1 −E1 +ET

2 + hU12 −N ,

ψ22 =W2 +W T
2 −E2 −ET

2 + hU22 +M3, ψ44 =h2Z2 −N −NT ,

Y =
[
Y11 Y12
∗ Y22

]
, U =

[
U11 U12
∗ U22

]
, F =

[
F T

1 F T
2

]T
,

G=
[
GT

1 G
T
2

]T
, W =

[
W T

1 W T
2

]T
, E=

[
ET

1 ET
2

]T
.

Proof. Consider the Lyapunov-Krasovskii functional (LKF) V = ∑6
i= 1 Vi where

V1 =xT (t)P̄1 x(t), V2 =
∫ t

t−h
eζ1(s−t)xT (s)Q̄1 x(s)ds,

V3 =h
∫ 0

−h

∫ t

t+s
eζ1(v−t)ẋT (v)Z̄1ẋ(v)dvds,
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V4 =ηT (t)P̄2 η(t), V5 =
∫ t

t−h
eζ1(s−t)ηT (s)Q̄2 η(s)ds,

V6 =h
∫ 0

−h

∫ t

t+s
eζ1(v−t)η̇T (v)Z̄2η̇(v)dvds, (A.18)

where matrices P̄i, Q̄i, Z̄i, (i= 1, 2), are positive definite. We obtain time derivative
of V as follows

V̇1 = 2ẋT (t)P̄1x(t), V̇2 = xT (t)Q̄1x(t)− e−ζ1hxT (t−h)Q̄1x(t−h)− ζ1V2,

V̇3 = h2ẋT (t)Z̄1ẋ(t)−h
∫ t

t−h
eζ1(v−t)ẋT (v)Z̄1ẋ(v)dv−ζ1V3

≤h2ẋT(t)Z̄1ẋ(t)− he−ζ1h
∫ t

t−h
ẋT(v)Z̄1ẋ(v)dv − ζ1V3,

V̇4 = 2η̇T (t)P̄2η(t), V̇5 = ηT (t)Q̄2η(t)− e−ζ1hηT (t−h)Q̄2η(t−h)− ζ1V5,

V̇6 = h2η̇T (t)Z̄2η̇(t)−h
∫ t

t−h
eζ1(v−t)η̇T (v)Z̄2η̇(v)dv−ζ1V6

≤h2η̇T (t)Z̄2η̇(t)− he−ζ1h
∫ t

t−h
η̇T (v)Z̄2η̇(v)dv − ζ1V6. (A.19)

Considering [t−h, t] = [t−h, t−d(t)]∪ [t−d(t), t], we obtain the following expressions∫ t

t−h
ẋT (v)Z̄1ẋ(v)dv=

∫ t−d(t)

t−h
ẋT (v)Z̄1ẋ(v)dv +

∫ t

t−d(t)
ẋT (v)Z̄1ẋ(v)dv, (A.20)∫ t

t−h
η̇T (v)Z̄2η̇(v)dv=

∫ t−d(t)

t−h
η̇T (v)Z̄2η̇(v)dv +

∫ t

t−d(t)
η̇T (v)Z̄2η̇(v)dv. (A.21)

Let a1 = [xT (t),xT (t−d(t))]T and b1 = [ηT (t),ηT (t−d(t))]T . For any matrices
F̄ = [F̄ T

1 F̄ T
2 ]T , Ḡ= [ḠT

1 Ḡ
T
2 ]T , W̄ = [W̄ T

1 W̄ T
2 ]T , and Ē= [ĒT

1 Ē
T
2 ]T , the following

null expressions hold

2aT1 F̄
[
x(t−d(t))− x(t−h)−

∫ t−d(t)

t−h
ẋ(s)ds

]
= 0, (A.22)

2aT1 Ḡ
[
x(t)− x(t−d(t))−

∫ t

t−d(t)
ẋ(s)ds

]
= 0, (A.23)

2bT1 W̄
[
η(t−d(t))− η(t−h)−

∫ t−d(t)

t−h
η̇(s)ds

]
= 0, (A.24)

2bT1 Ē
[
η(t)− η(t−d(t))−

∫ t

t−d(t)
η̇(s)ds

]
= 0. (A.25)

The following expressions hold for any matrices Ȳ =
[
Ȳ11 Ȳ12
∗ Ȳ22

]
and Ū =

[
Ū11 Ū12
∗ Ū22

]
∫ t−d(t)

t−h
aT1 Ȳ a1ds+

∫ t

t−d(t)
aT1 Ȳ a1ds = haT1 Ȳ a1, (A.26)∫ t−d(t)

t−h
bT1 Ūb1ds+

∫ t

t−d(t)
bT1 Ūb1ds = hbT1 Ūb1. (A.27)
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From (A.7), it holds that

2
(
xT (t) + ẋT (t) + xT (t−d(t)) + ηT (t) + η̇T (t)

)
N−1

×
(
Ax(t)+BKx(t−d(t))+BK e(t−d(t))−ẋ(t)

)
= 0. (A.28)

Likewise, from (A.4) we obtain

2
(
ηT (t) + η̇T (t) + ηT (t−d(t))

)
N−1

(
−η(t)+S4x(t−d(t))+S5e(t−d(t))−η̇(t)

)
= 0.

(A.29)

The event-triggering condition (A.3) ensures that

eT(t−d(t))S1e(t−d(t)) ≤xT(t−d(t))S2x(t−d(t)) + ηT(t−d(t))S3η(t−d(t)). (A.30)

Let a2 = [aT1 , ẋT (s) ]T , b2 = [bT1 , η̇T (s) ]T , and ν = [νT1 νT2 ]T where

ν1 = [xT (t), xT (t−d(t)), xT (t−h), ẋT (t), eT (t−d(t))]T ,
ν2 = [ηT (t), ηT (t−d(t)), ηT (t−h), η̇T (t)]T .

Considering all expressions from (A.19) to (A.30) the following upper bound holds

V̇ + ζ1V ≤νT C̄1ν −
∫ t−d(t)

t−h
aT2 C̄2a2ds−

∫ t

t−d(t)
aT2 C̄3a2ds

−
∫ t−d(t)

t−h
bT2 C̄4b2ds−

∫ t

t−d(t)
bT2 C̄5b2ds, (A.31)

where

C̄1 =
[
Π̄ Φ̄
∗ Ψ̄

]
, C̄2 =

[
Ȳ F̄
∗ he−ζ1hZ̄1

]
, C̄3 =

[
Ȳ Ḡ
∗ he−ζ1hZ̄1

]
,

C̄4 =
[
Ū W̄
∗ he−ζ1hZ̄2

]
, C̄5 =

[
Ū Ē
∗ he−ζ1hZ̄2

]
,

Π̄ =


π̄11 π̄12 −F̄1 π̄14 N−1BK
∗ π̄22 −F̄2 π̄24 N−1BK
∗ ∗ −e−ζ1hQ̄1 0 0
∗ ∗ ∗ π̄44 N−1BK
∗ ∗ ∗ ∗ −S1

, Φ̄ =


(N−1A)T 0 0 (N−1A)T
φ̄21 (N−1S4)T 0 φ̄24
0 0 0 0

−(N−1)T 0 0 −(N−1)T
φ̄51 (N−1S5)T 0 φ̄54

,

Ψ̄ =
 ψ̄11 ψ̄12 −W̄1 P̄2−N−1−(N−1)T
∗ ψ̄22 −W̄2 −N−1

∗ ∗ −e−ζ1hQ̄2 0

∗ ∗ ∗ ψ̄44

,
π̄11 = Q̄1 + Ḡ1 + ḠT

1 +N−1A+ (N−1A)T+hȲ11 + ζ1P̄1,

π̄12 = F̄1 − Ḡ1 + ḠT
2 + hȲ12 +N−1BK + (N−1A)T ,

π̄14 = P̄1 −N−1 + (N−1A)T ,
π̄22 = F̄2 + F̄ T

2 − Ḡ2 − ḠT
2 + hȲ22 +N−1BK + (N−1BK)T + S2,

π̄24 = (N−1BK)T −N−1, π̄44 =h2Z̄1 −N−1 − (N−1)T ,
φ̄21 = φ̄24 = (N−1S4)T + (N−1BK)T , φ̄51 = φ̄54 = (N−1S5)T + (N−1BK)T ,
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ψ̄11 = Q̄2 + Ē1 + ĒT
1 + hŪ11 −N−1−(N−1)T + ζ1P̄2,

ψ̄12 = W̄1 − Ē1 + ĒT
2 + hŪ12 − (N−1)T ,

ψ̄22 = W̄2 + W̄ T
2 − Ē2 − ĒT

2 + hŪ22 + S3, ψ̄44 =h2Z̄2 −N−1 − (N−1)T .

Based on (A.31), if C̄1 < 0, and C̄i ≥ 0, (2≤ i≤ 6), then it holds that V̇ + ζ1V < 0.
Now, consider T1 = I9⊗N and T2 = I3⊗N . We pre- and post multiply C̄1 by T1 and
T T

1 . In a similar fashion, block matrices C̄i, (2≤ i≤ 6), are pre- and post multiplied
by T2 and T T

2 . For i= 1, 2 and j= 1, 2 the following alternative variables are consid-
ered Pi = NP̄iN

T , Qi = NQ̄iN
T , Zi = NZ̄iN

T , Fi = NF̄iN
T , Gi = NḠiN

T ,
Wi = NW̄iN

T , Ei = NĒiN
T , Yij = NȲijN

T , and Uij = NŪijN
T . Additionally,

let V = KNT , Mi =NS̄iNT , (1≤ i≤ 3), Mj =SjNT , (j= 4, 5). Using such trans-
formations, LMIs (A.10), (A.11), and (A.12) are obtained. Parameters K and Si,
(1≤ i≤ 5), are calculated from (A.13).

Remark A.3. Based on Theorem A.1, the validity of (A.13) depends on the feasibil-
ity of LMIs (3.32), (A.11), and (A.12). The selected values for the sampling period h
and stabilization rate ζ1 impact the feasibility of the LMIs. Due to the dynamic
constraints of the NCS (A.1), not all values for h and ζ1 are guaranteed to have
feasible solutions. The physical interpretation is that the desired sampling period h
and stabilization rate ζ1 should comply with the dynamics of the NCS (A.1). In
general, to compute feasible solutions for the LMIs and design unknown parameters
based on (A.13), smaller values for h and ζ1 are first selected. Then, these parameters
can be increased incrementally to find the maximum allowable sampling period and
stabilization rate for NCS (A.1).

Remark A.4. In [168, 169], a periodic dynamic event-triggered implementation is
proposed for stabilization in linear systems. The main differences between implemen-
tations [168], [169] and Theorem A.1 are as follows. The stability analysis in [168] is
based on an impulsive system approach, where a time-dependent Lyapunov candidate
with a simple quadratic function is used. Even though some sufficient conditions on
the stability are derived, these conditions are closely dependent on the solution of a
Riccati differential equation. As also mentioned in [177, Remark 2], the Riccati-based
approach used in [168, 169] complicates the controller design, and the control gains
should be known in advance. One approach to design the control gain in [168, 169]
is through emulation. As mentioned previously, the initial choice of the control gain
in emulation-based approaches limits the feasible regions for the event-triggering pa-
rameters [172] and reduces the efficiency of the event-triggering scheme. In contrast
to [168], our proposed framework in Theorem A.1 co-designs all required control and
DET parameters simultaneously. In fact, the control gain and DET parameters in
Theorem A.1 are treated equally and this improves the feasibility regions for the
unknown DET parameters.
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A.2.4 Parameter Design: Extension to DoS Attacks
Similar to R-PSEC and ROCCET, a desired level of resilience to DoS is included
within the proposed framework in Theorem A.1, which leads to the following theorem.

Theorem A.2. Select desired values for sampling periods h and g, ideal stabilization
rate ζ1, and DoS resilience level Ω<1. Let ζ2 = ζ1(1−Ω)

Ω . If there exist

• m×n dimensional matrix V ;

• n×n dimensional positive definite matrices P1,Q1, Z1, P2,Q2, Z2,Mi, (1≤ i≤ 5);

• n×n dimensional matrices N , Y11, Y12, Y22, F1, F2, G1, G2, U11, U12, U22, W1,
W2, E1, E2,

satisfying

C1 < 0, C2≥ 0, C3≥ 0, C4≥ 0, C5≥ 0, (A.32)

C6 =
[
ANT+NAT−ζ2P1+Q1 P1−NT+NAT

∗ h2Z1−N−NT

]
< 0, (A.33)

C7 =
[
−(N+NT )−ζ2P2 +Q2 P2 −NT −N

∗ h2Z2−N−NT

]
< 0, (A.34)

with Ci, (1≤ i≤ 5), defined in Theorem A.1, then control gain K and S-DET param-
eters Si, (1≤ i≤ 5), are computed from the same equations given in (A.13). These
parameters make system (A.1) resilient to DoS attacks satisfying

1
T1

+ g

F1
< Ω. (A.35)

Additionally, trajectories of (A.7) satisfy

λ1 ‖x(t)‖2 +λ2 ‖η(t)‖2 ≤ ρe−ζt(λ3 ‖x(0)‖2 +λ4 ‖η(0)‖2), (A.36)

where

ρ= e(ζ1+ζ2)(T0+gF0), ζ = ζ1 − (ζ1 + ζ2)
( 1
T1

+ g

F1

)
. (A.37)

Parameters λi, (1≤ i≤ 4), follow the same equations given below (A.14).

Proof. The proof is given in two steps.
Step I. Stability Analysis in the Presence of DoS: From Theorem A.1, with
given ζ1 and LMIsC1 < 0, C2≥ 0, C3≥ 0, C4≥ 0, C5≥ 0, it is guaranteed that V̇ (t) <
−ζ1 V (t) for healthy intervals (t ∈ Wm). This leads to

V (t) ≤ e−ζ1(t−ξm−νm)V (ξm + νm), t ∈ Wm. (A.38)

In the presence of DoS (t ∈ Zm), system (A.1) is open loop and its states may diverge.
Therefore, there exists a scalar ζ2 such that V̇ (t) < ζ2V (t) for t ∈ Zm. This inequality
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is expanded as follows

V (t) ≤ eζ2(t−ξm)V (ξm), t∈Zm. (A.39)

Expressions (A.38) and (A.39) are combined to obtain the stability condition. If t ∈
Zm, the following sequence of inequalities hold

V (t) ≤ eζ2(t−ξm)V (ξm)
≤ eζ2(t−ξm)

(
e−ζ1(ξm−ξm−1−νm−1)V (ξm−1 + νm−1)

)
≤ eζ2(t−ξm)e−ζ1(ξm−ξm−1−νm−1)eζ2(ξm−1+νm−1−ξm−2)V (ξm−2)
≤ . . .
≤ e−ζ1|H̄(0,t)|eζ2|D̄(0,t)|V (0). (A.40)

From (5.7), (5.8), (5.12), and (5.13), it holds that

e−ζ1|H̄(0,t)|eζ2|D̄(0,t)| ≤ ρ e−ζt, (A.41)

with ρ and ζ given in (A.37). Condition (A.41) gives way to

V (t) < ρe−ζtV (0), t ≥ 0, (A.42)

which is equivalent to (A.36). Let Ω = ζ1/(ζ1 + ζ2). Based on (A.42), if DoS attacks
satisfy ( 1

T1
+ g

F1
) < Ω, system (A.1) is exponentially stable.

Step II. Parameter Design with Given DoS resilience: For healthy inter-
vals (t ∈ Wm), the parameter design based on LKF (A.18) leads to the LMIs given
in (A.10), (A.11), and (A.12). Next, consider DoS intervals (t ∈ Zm). Let Ω = ζ1/(ζ1+
ζ2) be a given DoS resilience level. Hence, ζ2 = ζ1(1−Ω)

Ω . We consider the following ex-
pressions for the derivatives of LKF (A.18) in t ∈ Zm,

V̇1 = 2ẋT (t)P̄1x(t), V̇2 ≤ xT (t)Q̄1x(t), V̇3 ≤ h2ẋT (t)Z̄1ẋ(t)
V̇4 = 2η̇T (t)P̄2η(t), V̇5 ≤ ηT (t)Q̄2η(t), V̇6 ≤ h2η̇T (t)Z̄2η̇(t). (A.43)

The following null expressions hold based on (A.8) and (A.9)

2
(
xT (t)N−1 + ẋT (t)N−1

)(
Ax(t)−ẋ(t)

)
= 0,

2
(
ηT (t)N−1 + η̇T (t)N−1

)(
−η(t)−η̇(t)

)
= 0. (A.44)

Form (A.43), the following condition holds

V̇ − ζ2V =
6∑

i= 1
V̇i − ζ2

6∑
i= 1

Vi ≤
6∑

i= 1
V̇i−ζ2(V1+V4). (A.45)

Considering (A.43) and (A.44), we revise (A.45) as follows
6∑

i= 1
V̇i−ζ2(V1+V4) =νT1 C̄6ν1 + νT2 C̄7ν2, (A.46)
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where ν1 = [xT (t), ẋT (t)]T , ν2 = [ηT (t), η̇T (t)]T , and

C̄6 =
[
c̄1 (N−1A)T −N−1 + P̄1
∗ h2Z̄1−N−1−(N−1)T

]
, C̄7 =

[
c̄2 P̄2 −N−1 − (N−1)T
∗ h2Z̄2−N−1−(N−1)T

]
,

with c̄1 =N−1A+ (N−1A)T − ζ2P̄1 + Q̄1, and c̄2 =−N−1 − (N−1)T − ζ2P̄2 + Q̄2.
Considering (A.45) and (A.46), we conclude that if C̄6 < 0 and C̄7 < 0, then V̇ (t)−
ζ2V (t) < 0 is guaranteed for t ∈ Zm. As shown previously, combining V̇ (t)+ζ1V (t) <
0 for t ∈ Wm and V̇ (t) − ζ2V (t) < 0 for t ∈ Zm leads to (A.36). We pre- and
post multiply C̄6 and C̄7 by T3 and T T

3 , where T3 = I2 ⊗N . Considering the same
alternative variables used at the end of proof of Theorem A.1 leads to LMIs C6 < 0
and C7 < 0 given in (A.33) and (A.34). This completes the proof.

Remark A.5. From Theorem A.2 it is possible to obtain the maximum resilience
level, denoted by Ωm, for given values of h and ζ1. To this end, one can select desired
values for h and ζ1 and investigate the feasibility of Theorem A.2 by incrementally in-
creasing the value of Ω until the LMIs become infeasible. The largest value of Ω which
leads to a feasible solution is the maximum resilience level to DoS (Ωm) guaranteed
by Theorem A.2.

A.3 Numerical examples
To investigate the effectiveness of Theorems A.1 and A.2, this section conducts simu-
lations over some widely-used NCSs used in the literature. The LMIs are solved using
the Yalmip parser and SDPT3 solver in Matlab environment.

A.3.1 Batch reactor
Consider a batch reactor system with the dynamics given below [178,179]

A=


1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

, B=


0 0

5.679 0
1.136 −3.146
1.136 0

. (A.47)

The open-loop batch reactor system is unstable.

Case I. DoS-free: First, we evaluate the performance of our proposed attack-free
framework (Theorem A.1). Let h= 0.1 and ζ1 = 0.3. The control gain K and S-DET
parameters Si, (1≤ i≤ 5), are computed from Theorem A.1

K =
[
−0.1044 −0.2509 −0.0703 −0.0322
1.3925 0.2116 1.0056 −0.5246

]
, S1 =

[ 26.1387 3.3468 22.2799 −13.4629
3.3468 1.7992 2.0495 −0.7013
22.2799 2.0495 21.9516 −14.5033
−13.4629 −0.7013 −14.5033 10.1517

]
,

S2 =
[ 0.0980 0.0172 0.0417 −0.0039

0.0172 0.1010 −0.0184 0.0022
0.0417 −0.0184 0.1331 −0.0965
−0.0039 0.0022 −0.0965 0.0893

]
, S3 =

[
0.1049 0.0135 0.0558 −0.0216
0.0135 0.0284 0.0068 0.0027
0.0558 0.0068 0.0495 −0.0229
−0.0216 0.0027 −0.0229 0.0280

]
,
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Figure A.2: States trajectories x(t).

S4 =
[ −0.3231 −0.0883 −1.2185 1.0344

0.1745 1.1114 0.1081 −0.0051
0.8943 −0.1917 2.2328 −1.7619
−0.6044 −0.2011 −1.4848 1.3926

]
, S5 =

[
1.3829 −0.0365 1.0043 −0.6815
0.3152 0.8205 0.2128 0.0437
0.8441 0.2810 0.9656 −0.3317
−0.0768 0.1609 −0.1036 0.4349

]
.

The stabilization time is computed by Ts = inf{t | ‖x(t)‖
‖x(0)‖ ≤ δ}. In fact, Ts is the

time when stabilization is achieved within at least δ factor of x(0). Let δ= 0.0001,
x(0) = [1, 1, 2, 2]T , and η(0) = 0.5[1, 1, 2, 2]T . For this setting, the settling time is com-
puted as Ts = 11.40 sec. The state trajectories of system (A.47) are shown in Fig. A.2.
The evolution of thresholds xT (t)S2x(t) and ηT (t)S3η(t) are shown in Fig. A.3. It
can be observed that the value of the dynamic threshold ηT (t)S3η(t) can significantly
increase the combined ET threshold (A.3). The control update instants are show in
Fig. A.4. The total number of events is Ne = 37. This implies that only 37/114≈ 32%
of the total packets are used to update the control input. We also report the average
inter-event time (AIET) which is roughly the frequency of the event-triggerings and
computed by AIET =Ts/Ne. In this case, AIET = 0.3078.
Impact of h and ζ1: Next, two scenarios are considered to observe how the perfor-
mance of the batch reactor system (in terms of Ts, Ne, and AIET) is influenced by
different values of the sampling time h and decaying rate ζ1. First in scenario (a),
h is fixed at h= 0.1 and ζ1 is varied. Next, in scenario (b), we set ζ1 = 0.3 and vary
h. Table A.1 lists the corresponding results for each case. According to Table A.1,
with fixed h, increasing the stabilization rate ζ1 reduces the settling time Ts at the
expense of lower AIET, which implies a more frequent control updates. When ζ1 is
fixed and h is varying, the settling time Ts does not significantly change. However,
higher values of h help reducing the number of events and increasing AIET.

Table A.1: Impact of h and ζ1 on batch reactor system.

Scenario (a): h= 0.1 Scenario (b): ζ1 = 0.3

ζ1 Ts Ne AIET h Ts Ne AIET

0.2 12.48 39 0.3200 0.01 11.05 38 0.2908
0.4 10.24 35 0.2926 0.05 10.69 34 0.3144
0.6 8.28 31 0.2671 0.15 12.34 37 0.3335
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Figure A.3: Trajectories of the thresholds in S-DET (A.3).
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Figure A.4: Release time intervals.

Case II. In the presence of DoS: Next, stabilization for NCS (A.47) is studied
against DoS attacks using Theorem A.2. Let h= 0.05 and ζ1 = 0.8. The desired level
of resilience to DoS is selected as Ω = 0.15. The control gain and S-DET parameters
are computed from Theorem A.2 as follows

K =
[
−0.2970 −0.3779 −0.1621 −0.0857
1.5520 0.1952 1.2311 −0.6972

]
, S1 =

[ 44.1827 7.0762 35.3298 −19.7294
7.0762 3.1661 4.7343 −1.5658
35.3298 4.7343 30.8121 −18.6282
−19.7294 −1.5658 −18.6282 12.3279

]
,

S2 =
[

0.1729 0.0423 0.0451 0.0358
0.0423 0.0902 −0.0015 0.0060
0.0451 −0.0015 0.0940 −0.0564
0.0358 0.0060 −0.0564 0.0701

]
, S3 =

[
0.0850 0.0134 0.0455 −0.0161
0.0134 0.0195 0.0087 0.0013
0.0455 0.0087 0.0354 −0.0123
−0.0161 0.0013 −0.0123 0.0181

]
,

S4 =
[ −0.1407 0.0929 −1.5234 1.4449

0.6006 1.3157 0.3534 −0.0133
1.0296 −0.3216 2.6016 −2.1145
−0.2407 −0.2103 −1.2832 1.3263

]
, S5 =

[
1.4743 −0.0048 0.9454 −0.6158
0.4734 0.9886 0.2454 0.2090
1.0416 0.3636 1.0525 −0.3043
−0.1099 0.2571 −0.2465 0.6392

]
.

(A.48)

Consider the following DoS attack sequence for c ∈ N0

dc = 0.5 + 1.4c, τc = 0.12 + 0.08|cos(dc)|. (A.49)

This DoS sequence satisfies Assumption 5 with T0 = 0.2, T1 = 7, F0 = 1, and F1 = 1.
Let g= 0.005. Condition (A.35) holds, i.e., 1

7+ 0.005
1 < 0.15. The same initial conditions

given in the previous section are used. The settling time in the presence of DoS (A.49)
is computed as Ts = 10.08 sec. The state trajectories x(t) and event-triggerings in
the presence of DoS are depicted in Figs. A.5 and A.6. The total number of events
is Ne = 55. This implies that 55/202 ≈ 25% of the total packets are used to update
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Figure A.5: States trajectories x(t) in the presence of (A.49).
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Figure A.6: Release time intervals in the presence of DoS (A.49).

the control input. Simulation is run using parameters (A.48) with no DoS attacks.
The results are as follows: Ts = 8.34, Ne = 31, and AIET = 0.2687. Compared to the
DoS-free case, the settling time Ts is higher in the presence of DoS. Additionally, the
total number of events Ne is higher and AIET is lower. This observation shows that
by considering the impact of DoS in Theorem A.2, computed control gain and S-DET
parameters from Theorem A.2 are more conservative compared to Theorem A.1. This
is consistent with the anticipated trade-off between the performance of the system
(in terms of stabilization convergence rate and number of control updates) and the
resilience to attacks.

A.3.2 Comparison
In this section, the proposed method in Theorems A.1 and A.2 is compared with
existing methods in terms of the effectiveness of the S-DET scheme and also the
amount of guaranteed resilience to DoS.

Effectiveness of S-DET (DoS-free situation): The ability of the proposed S-
DET scheme in terms of reducing the amount of control updates is compared with [2],
where a sampled-data static ET scheme is proposed considering an attack free sce-
nario. In order to be consistent with [2], the following assumptions are considered
here (i): There is no consideration for DoS in [2]. Therefore, Theorem A.1 (attack-free
framework) is used for comparison. (ii): Asymptotic stability is investigated in [2].
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To be consistent, we also set ζ1 = 0. Initial conditions for x(0) and η(0) are set as
unity vectors. The following widely-used systems are selected from literature for
comparison with [2].

• System. I: The batch reactor system given in (A.47).

• System. II: An inverted pendulum system [180] described by

A=

0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0

, B=

 0
1.18182

0
4.5455

. (A.50)

• System. III: A widely-used linear plant [181]

A=
[0 1
0 −0.1

]
, B=

[ 0
0.1
]
. (A.51)

• Sys. IV: An unstable linear plant [32]

A=
[1 1
0 1

]
, B=

[1 0
0 1

]
. (A.52)

The simulation time horizon is set at Tf = 25 sec. Initial conditions for x(0) and η(0)
are unity vectors. Table A.2 includes the number of control updates for different
values of h. It is observed that the proposed S-DET scheme leads to fewer number of
control updates compared to the static ET scheme used in [2].

The guaranteed DoS bounds: Finally, the resilience level guaranteed by the pro-
posed approach in Theorem A.2 is compared with that of References [32, 50]. To
this end, system (A.52) is considered, which is also studied in [32, 50]. The authors
in [32,50] use the solutions of ΦTP +PΦ +Q= 0 where Φ = (A+BK) to compute
the control gain K. The guaranteed upper-bound for DoS is then obtained from
the largest and smallest eigenvalues of P . With the LQR control gain, the tolerable
amount of DoS guaranteed by [32] is 0.0321. In other words, only attacks satisfying
1
T1

+ g
F1
< 0.0321 are guaranteed to not destabilize system (A.52). Using some other

Table A.2: Number of control updates, Theorem A.1 and [2].

System. I: System. II:
Method h=0.01 h=0.05 h=0.10 h=0.01 h=0.05 h=0.10
Theorem A.1 56 56 59 108 90 79
Ref. [2] 87 91 89 136 106 91

System. III: System. IV:
Method h=0.01 h=0.05 h=0.10 h=0.01 h=0.05 h=0.10
Theorem A.1 48 45 44 38 36 37
Ref. [2] 50 54 51 137 129 113
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values for K and Q an amount of 0.0971 for the admissible DoS is also reported
in [32]. The authors in [32] suggest that the obtained bounds are conservative and
the practical bounds are much larger.

The proposed method in Theorem A.2 is used to find the maximum resilience to
DoS. For h= 0.01, a value for ζ1 is selected and the maximum resilience to DoS (Ωm)
is found by incrementally increasing Ω in Theorem A.2 until no feasible solution is
computed (see Remark A.5). Table A.3 lists the corresponding pairs ζ1 and Ωm. Based
on Table A.3 the resilience level guaranteed by Theorem A.2 in much higher than
that of [32,50]. The reason is that, unlike [32,50] where the DoS bound is computed
from matrix norms and extreme eigenvalues, Theorem A.2 uses all the information
included in the LKF matrices (i.e., Pi,Qi, Zi, (i= 1, 2)). Therefore, the DoS resilience
guaranteed by Theorem A.2 is higher and thus more practical than [32, 50]. As
observed in Table A.3, the maximum resilience to DoS Ωm is proportional to the ideal
stabilization rate ζ1. This is consistent with Ω = ζ1

ζ1+ζ2
which implies a proportional

relationship between Ω and ζ1.

Table A.3: Maximum attack resilience (Ωm) guaranteed by Theorem A.2 with varying ζ1
and fixed h= 0.01.

ζ1 Ωm ζ1 Ωm

0.5 0.192 1.0 0.331
0.6 0.231 1.1 0.355
0.7 0.259 1.2 0.374
0.8 0.283 1.3 0.392
0.9 0.307 1.4 0.411
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