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Chapter 1 

Introduction 

This chapter consists of a definition of the key terminologies and concepts which are related to 

this thesis. These definitions are then followed by a description of the motivation and problem 

statement, and the contribution of this thesis. The last section of this chapter consists of an 

overview of how the rest of the thesis is organized.  

1.1.  Definition 

In the section to follow, the definitions of key terms essential to this thesis are provided. The 

terms included in this section are Internet of Things, IaaS (Infrastructure-as-a-Service), and Cloud 

Computing. These are the terminologies that are most crucial to this thesis. 

1.1.1. Internet of Things (IoT) 

The Internet of Things refers to a paradigm that “enables physical objects to see, hear, think 

and perform jobs by having them “talk” together, to share information and to coordinate 

decisions. The IoT transforms these objects from being traditional to smart by exploiting its 

underlying technologies such as ubiquitous and pervasive computing, embedded devices, 

communication technologies, sensor networks, Internet protocols and applications” [1]. These 

physical ‘objects’ involved in IoT are essentially devices that can perform some type of 

computation and communication, and all these devices can have differing capabilities. The main 

components that make up the Internet of Things include these objects, a network for 

communicating data, such as the Internet, and backend servers to handle and process this data. In 
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fact, the Internet of Things is a very broad domain that is now gaining immense popularity and 

providing efficient solutions in nearly all sectors and industries, such as health care, traffic systems, 

education, retail, etc. Some examples of the various IoT devices include microcontrollers such as 

ESP8266, Arduino, to which external sensors can be attached, sensors and actuators such as 

Virtenio Preon32, Lego EV3 Mindstorms, DHT22, Advanticys TelosB Skymotes, etc.  

1.1.2. Cloud Computing 

Cloud Computing provides on demand access to configurable computing resources (servers, 

memory, network, etc.) in the cloud, which require minimal management by the end user. It “refers 

to both the applications delivered as services over the Internet and the hardware and systems 

software in the datacenters that provide those services. The services themselves have long been 

referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will 

call a Cloud” [2]. The resources provided by the cloud platforms are provided on a pay-per-use 

basis and allow the users to easily carry out dynamic provisioning on a seemingly infinite pool of 

computing resources [2]. When these cloud services are made available to the general public using 

the pay-per-use model, it is referred to as the Public cloud. When these resources, such as 

datacenters, are not made available to the public and are instead utilized internally by an 

organization, it is referred to as the Private Cloud. Cloud computing includes three service models 

which are: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a 

Service (SaaS). IaaS is when cloud providers give users access to servers, networking, storage, 

and other such computing resources; PaaS is when the cloud providers provide the users with 

software development environments where they can build their own applications; and SaaS is 

when the cloud service providers give users access to specific applications or software for them to 

use.  
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1.1.3. Infrastructure as a Service (IaaS) 

“Infrastructure as a service (IaaS) is an instant computing infrastructure, provisioned and 

managed over the internet” [3]. In simpler words, it is a category of cloud computing that allows 

the users to leverage resources like storage, processing, network, computing, and other 

“Infrastructural” resources on a pay-per-use or on-demand basis. These resources can be used by 

the users to run applications requiring different degrees of computational power, or other software. 

It allows the users to cut on the costs of purchasing high cost physical resources such as servers, 

operating systems, and other datacentre resources, and instead use the infrastructure provided by 

these IaaS Cloud service providers on demand. Examples of some providers of IaaS include 

Microsoft Azure, Amazon Web Services (AWS), Google Compute Engine, IBM Cloud etc. 

1.2. Motivation and Problem Statement 

The emergence of Cloud Computing has made it somewhat possible to provision the 

heterogenous IoT devices (sensors, actuators, etc.) in a manner that is scalable, energy efficient, 

and suffers minimal latency to some extent. However, the conflicting properties of the cloud and 

IoT infrastructure pose many challenges to the successful integration of Cloud computing and IoT. 

More specifically, “IoT is generally characterized by real world small things, widely distributed, 

with limited storage and processing capacity, which involve concerns regarding reliability, 

performance, security, and privacy” [4]. Thus, IoT devices are usually resources constrained and 

expensive. On the contrary, “Cloud computing has virtually unlimited capabilities in terms of 

storage and processing power, is a much more mature technology, and has most of the IoT issues 

at least partially solved” [4]. To address this particular challenge and bridge the gap between these 

incompatibilities in the two infrastructures, it is essential to decouple the IoT device services from 
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the physical IoT devices. The IoT devices (sensors and actuators) can be virtualized through node 

level virtualization, which will enable these IoT devices to become multi-purpose by concurrently 

running several applications on a single node [5]. The virtualization of these devices will allow the 

applications to share the capabilities of these devices and have access to them in a manner similar 

to the rest of the cloud infrastructure. It will not only improve the costs, but also provide better 

flexibility in terms of IoT device access. Currently there are several IoT devices in the market that 

support virtualization, for example, Virtenio Preon 32 Shuttle with Varisen Module, Advanticsys 

CM5000 and XM1000 sensors, etc.  

However, in order to utilize the IoT infrastructure in a manner similar to the Cloud 

infrastructure, it is essential to design and implement an IoT IaaS. This turns out to be a very 

challenging task due to the heterogenous nature of the IoT devices and their capabilities. Each IoT 

device supports different modes of communication and different types of tools and platforms. In 

fact, some IoT devices might not support virtualization at all. Hence the first challenge encountered 

in the design of an IoT IaaS is the creation of a high-level interface to access the IoT IaaS, as well 

as a low-level interface to access the different IoT devices in a homogenous manner. The second 

challenge is to build a mechanism for allowing the publication and discovery of the various IoT 

devices and their capabilities. The third challenge would be the need for an orchestration 

mechanism to orchestrate the different device capabilities based on the application’s requirements. 

The fourth challenge would be to allow virtualization as well as bare metal access to devices. This 

will also be helpful in situations when certain devices do not support virtualization at all. The fifth 

and last challenge would be to allow the automatic triggering of certain IoT devices based on the 

outputs obtained from other IoT devices, for example, dispatching fire-fighting robots 

automatically when fire is detected by sensors.  
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1.3. Thesis Contributions 

The contributions made by this thesis are as follows: 

• A set of requirements essential to the IoT IaaS architecture. 

• Review of the state of the art and its evaluation based on our derived requirements. 

• An architecture for the IoT IaaS, with IoT devices such as sensors and actuators as part of 

the infrastructure, and virtualized, as well as Bare metal access to the IoT devices. 

• High level interfaces to allow access to the IoT IaaS. 

• Low level interfaces for accessing the heterogenous IoT devices in a uniform manner. 

• Implementation of the prototype and evaluation of its performance metrics. 

• A Simulation using Contiki Cooja to measure the scalability performance of the 

architecture. 

1.4. Thesis Organization 

The remaining thesis is organized in the following manner: 

Chapter 2 focusses on the background and key concepts associated with this thesis, where each 

concept is discussed in detail. 

Chapter 3 presents the motivating scenario and also lays down the set of requirements essential 

to the IoT IaaS architecture. The state of the art is also reviewed and assessed against these 

requirements. 

Chapter 4 focuses on the description of the proposed IoT IaaS architecture. Each component of 

the architecture is explained along with the various interfaces utilized. 
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Chapter 5 describes the tools and platforms used for realizing the proof-of-concept prototype. 

The implemented architecture is also thoroughly explained followed by detailed explanations of 

the performance metrics for the architecture’s evaluation.  

Chapter 6 provides a conclusion to the thesis. The overall thesis contributions are summarized 

and the future research directions for the proposed architecture are identified. 
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Chapter 2 

Background 

The goal of this chapter is to explain all the terms and concepts related to this thesis. The chapter 

begins by providing a detailed overview of the Internet of Thing (IoT) including its enabling 

technologies and application areas. This is followed by a review of the concept of virtualization 

and its various techniques, with special focus on virtualization in IoT devices. This includes node-

level virtualization, which is essential for this thesis. Then, we describe Cloud Computing, its 

features and service models with a special focus on IaaS, which is crucial to this thesis. We also 

provide a brief description of Bare Metal Provisioning before concluding the chapter. 

2.1. The Internet of Things (IoT) 

In this section, we present an overview of the internet of things. First, a general definition along 

with the simplified structure of the IoT is presented. This is followed by a brief overview of the 

key enabling technologies of IoT and its application areas.  

2.1.1. General Definition of the Internet of Things (IoT)  

The Internet of Things refers to a paradigm that “enables physical objects to see, hear, think 

and perform jobs by having them “talk” together, to share information and to coordinate 

decisions. The IoT transforms these objects from being traditional to smart by exploiting its 

underlying technologies such as ubiquitous and pervasive computing, embedded devices, 

communication technologies, sensor networks, Internet protocols and applications” [1]. It can 

further be defined as “An open and comprehensive network of intelligent objects that have the 

capacity to auto-organize, share information, data and resources, reacting and acting in face of 
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situations and changes in the environment” [6]. These physical ‘objects’ involved in IoT are 

essentially devices that can perform some type of computation and communication, and all these 

devices can have differing capabilities. The main components that make up the Internet of Things 

include these objects, a network for communicating data, such as the Internet, and backend servers 

to handle and process this data. In fact, the Internet of Things is a very broad domain that is now 

gaining immense popularity and providing efficient solutions in nearly all sectors and industries, 

such as health care, traffic systems, education, retail, manufacturing etc.  

Figure 1 [7] shows the main components that constitute the Internet of Things. The first 

essential component is the IoT devices, represented as ‘Smart devices’, which make up the entire 

infrastructure for the Internet of Things. These devices or ‘things’ are capable of interacting with 

other devices on the network as well as with users. These devices must be capable of computation 

and some forms of communication. Moreover, these ‘things’ must be context aware, meaning that 

they must be able to dynamically adapt to their changing environments or contexts and accordingly 

take suitable measures for self-configuration. Some examples of these ‘things’ are sensors, 

actuators, smart phones, etc. The second component of the Internet of Things is the Network 

Infrastructure, which refers to all the resources that make up this network over which these devices 

can communicate. For example, the internet. This network allows these devices to send and receive 

data to and from other devices, other servers, or other platforms connected to the network. The 

third component is the Cloud and back end servers [7].  

Sensors and actuators, the ‘things’ or ‘smart devices’ which make up an essential part of the 

IoT IaaS proposed in this thesis, are described below. 
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Figure 1. Simplified Internet of Things Structure [7] 

2.1.1.1. Sensors 

Sensors are devices, modules, or machines that can sense the environment and the changes 

taking place within it, communicate with other devices or systems to send this data, and 

occasionally, perform basic computations on the data being collected [8]. They are always used 

with other computing systems/electronics. Nowadays, sensors are used in nearly every system and 

have become of wide importance. They are key enablers for IoT and are used in everyday objects 

such as Air Conditioning and Heating system thermostats, smart phones, smart home systems, 

security systems etc. Some examples of sensors are Virtenio Preon32 with VariSen module, 

Advanticsys SkyMote sensors like XM1000 and CM5000, DHT22 temperature-humidity sensor, 

PIR motion sensor, Arduino, etc.  

2.1.1.2. Actuators 

“Actuators perform actions to change the behavior of the environment or physical systems” 

[9]. For instance, a robot starts moving when some command is sent to it.  “In many situations, 
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actuator nodes typically have stronger computation and communication powers and more energy 

budget that allows longer battery life” [9]. In order to properly function, actuators need an energy 

source and a control signal. This signal can come from various other sources, for example, devices 

such as sensors, PCs, other IoT devices, or other events taking place in the external environment 

of the actuators. The actuators, thus, perform certain actions when triggered. Examples of various 

actuators are Lego Mindstorms Robots, relay motors, solenoids, etc.  

2.1.2. Enabling Technologies of IoT 

In this section, the key enabling technologies of IoT are described. According to [10], there are 

several capabilities that allow these smart ‘things’ to interact with and understand their 

environments. These capabilities are the key enablers on which IoT relies. In [10], these enabling 

technologies have further been divided into 3 categories: hardware, software, and architectures.  

2.1.2.1. Hardware 

The hardware infrastructure on which IoT is built primarily includes RFID, NFC, Sensor 

Networks.  

2.1.2.1.1. RFID (Radio Frequency Identification) 

“RFID is a short-range communication technology where an RFID tag communicates with an 

RFID reader via radio-frequency electromagnetic fields” [10]. The RFID tags contain some form 

of data. It allows for tracking as well as identification of the objects with the RFID tags attached 

on it. This proves beneficial for IoT. For IoT applications, the data contained in these RFID tags 

is mostly Electronic Product Code (EPC). This EPC is essential to IoT as it allows each device in 

the IoT network to be uniquely identified, as the EPC is unique for each ‘thing’ [10].  
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2.1.2.1.2. NFC (Near Field Communication) 

NFC is a communication technology that has evolved from RFID and is a communication 

standard over short-range. NFC allows devices to communicate via radio communication when 

kept in close proximity to each other. Similar to RFID, each device with NFC capability contains 

a tag that uniquely identifies the device, also called Unique Identification (UID). Currently, most 

smart phones contain the NFC technology and are capable of transferring data to each other 

quickly, when kept within few centimetres from each other. In fact, NFC devices can also connect 

with objects containing NFC tags that are not powered up, or are passive, for example, smart 

posters with NFC tags containing relevant data [10]. The NFC chips have very low power 

consumption, and thus NFC is currently one of the most efficient ways of wireless communication.  

2.1.2.1.3. Wireless Sensor Networks 

Sensors are devices, modules, or machines that can sense the environment and the changes 

taking place within it, communicate with other devices or systems to send this data, and 

occasionally, perform basic computations on the data being collected [8]. Whenever a collection 

of several sensors is utilized as a network, where they are capable of interacting with each other as 

well as with the external environment, it is called a wireless sensor network (WSN). “Wireless 

sensor networks contain the sensors themselves and may also contain gateways that collect data 

from the sensors and pass it on to a server”  [10]. It is also possible to have sensor-actuator 

networks as part of the WSN. This can allow the networks to sense the environment as well as 

perform some action, or interact with the environment in response, which is an essential objective 

of IoT. For example, in the case of smart irrigation systems, sensor-actuator networks can allow 

detection of low water levels in crops through temperature and humidity sensors, which will in 
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turn signal the relay motor to turn on in order to water the plants. Thus, sensor-actuator networks 

are frequently utilized.  

2.1.2.2. Software 

Since the IoT hardware and infrastructure comprises of several different types of devices, i.e. 

heterogenous devices, it is essential to constantly have new software available in order to allow 

interoperability between these devices, as well as the ability to search the data being generated by 

these different IoT devices [10]. The key enabling technologies for IoT with regards to software 

are described in this section.  

2.1.2.2.1. Middleware 

In order to provide abstraction to the IoT applications from IoT devices, it is essential to have 

an application-independent software in between, known as middleware. The middleware enables 

interoperability between heterogenous IoT devices. It “sits between the IoT hardware and data 

and the applications that developers create to exploit the IoT” [10]. It facilitates the connection 

between the IoT devices and applications irrespective of the underlying networks, hardware, 

operating system, etc. This gives the flexibility to developers to simply focus on creating and 

deploying new IoT applications instead of worrying about writing different application code for 

different types of IoT device platforms [10]. Some examples of middleware solutions that exist 

include Hydra, Impala, Lime, MiLAN etc.  

2.1.2.2.2. Searching/Browsing 

IoT devices tend to generate a large amount of information and data. Moreover, due to their 

capabilities to adapt dynamically to their environment, often the information generated by these 

devices keeps changing. Therefore, similar to the search engines that currently exist for the World 
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Wide Web, there needs to be a similar search engine for IoT devices, which can constantly search 

the information that these devices generate. Moreover, similar to the current internet browsers, 

there is also a dire need for a browser for the IoT, which can interact with the IoT devices, identify 

them, and discover their capabilities [10]. 

2.1.2.3. Architecture 

There are several architectures that have been proposed in order to represent, organize, and 

structure the IoT [10]. This section aims at exploring these architectures that can support the IoT 

devices and their services. In [10], the architectures for IoT have been classified into 

hardware/network, software, process, and general. The hardware/network architectures are 

proposed in order to handle and provide support for the distributed computing environments for 

the heterogenous IoT devices. Examples include peer-to-peer architecture. In order to access and 

share services of the IoT smart devices, various software architectures have also been proposed. 

Some examples include Service Oriented Architectures (SOA), Representational State Transfer 

(REST) model, etc. Certain process-based architectures have also been proposed in order to 

provide a structure for the business processes that make use of IoT, for instance, architectures for 

structuring workflows. The last category of architectures, general/requirements, includes those 

architectures that are generalised, not based on specific categories, since currently there is no single 

architecture that is the best fit for IoT. This includes various architectural design concepts that 

have been proposed and currently exist in the literature [10].  

2.1.3. Application Areas for IoT 

With the advancement in technology and the ever-increasing demand for IoT, the number of 

domains within which IoT applications can now be used are limitless. There are several categories 
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within which the IoT applications can be categorized. In [10] and [11], several applications of IoT 

are proposed, which are summarized below. 

2.1.3.1. Healthcare 

IoT applications are being extensively used in the healthcare industry, especially in aiding in 

assisted living. Certain tasks such as making decisions based on patients’ symptoms, monitoring 

body fluid levels and other bodily changes are now being handled by several IoT applications. 

Patients’ monitoring equipment often contain smart sensors that collect the patients’ health data 

and make them available to doctors, as well as provide treatments during certain circumstances. 

Examples of some smart sensors in the healthcare sector include blood glucose level sensors, blood 

pressure sensors, sensors for detecting heart attacks etc. The information collected by these sensors 

is sent on to the cloud from where it can be made available as needed [10]. 

2.1.3.2. Supply Chains/Logistics 

Supply chains and logistics industry has been making use of RFID and sensor networks for 

tracking and tracing products in manufacturing as well as other parts of the supply chain process. 

Currently, IoT applications are improving the processes within the supply chain and logistics 

sector by providing up-to-date information in an efficient and reliable manner [10]. IoT 

applications are being used for inventory management and tracking in warehouses, monitoring 

transportation of the items, decision making processes and analysis in this industry etc. 

2.1.3.3. Smart Transportation 

Smart transportation, i.e. Intelligent transportation systems, is another area of research which is 

being extensively explored. IoT applications are being built to enable smart transportation systems. 

Smart transportation refers to a network of smart vehicles, interconnected with each other and 
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capable of communicating, as well as smart traffic signals, etc. Smart transportation aims at 

improving the current transportation system through the use of cloud computing and IoT in order 

to make the system more secure, reliable, and efficient for the citizens [11]. Google’s self-driving 

cars, vehicles developed by Tesla Inc. are some examples of smart vehicles that are currently being 

tested. The main idea is to allow vehicles to use IoT and cloud services to share data with other 

vehicles nearby, as well as to analyse the traffic data within its vicinity. One such example can be 

a smart car which communicates with the smart vehicles present within a range of a few kilometres 

and can thus judge which routes would be less congested than others. It can then suggest the driver 

the best path to reach the destination making it possible to avoid getting stuck in traffic congestion.  

2.1.3.4. Smart Infrastructure 

“Integrating smart objects into physical infrastructure can improve flexibility, reliability and 

efficiency in infrastructure operation” [10]. The IoT technology is now being utilized to enhance 

the infrastructure of homes, industries, offices, parking lots, public spaces etc., thus, invoking the 

concept of ‘smart cities’. Smart homes are gaining increased popularity, where the homes are fitted 

with smart infrastructure, such as smart HVAC systems, smart security systems, smart lighting, 

smart appliances, smart energy consumption systems etc., which make homes more secure, giving 

the resident a superior experience. Similar systems are also being incorporated into offices to 

enhance the security and reduce the costs and power consumption. To enable the realization of 

‘smart cities’, all of its sub-applications (which include smart transportation, smart healthcare, 

smart infrastructure, etc.) must be incorporated. The city of Padova in Italy is one such example 

where a smart city framework has been deployed [11].  
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2.1.3.5. Social Applications 

IoT technology is also being increasingly incorporated into social media applications for several 

functionalities such as detecting friends, social events, or activities taking place nearby, or fetching 

information about the whereabouts and activities of an individual etc. For example, social media 

applications such as snapchat now allow people to detect their friends present within a range of a 

few kilometers. Another example can be the transfer of data (through NFC or other IoT 

technologies) between several smart devices just by bringing the devices in the vicinity of each 

other [10]. All these are examples of IoT technologies being integrated into the various social 

networking platforms, providing users with a better experience and service.  

2.2. Virtualization 

This section provides detailed overview of virtualization, which is a key concept utilized 

throughout the IoT IaaS proposed in this thesis. First, a general definition of virtualization is 

provided, followed by explanations of the various types of virtualizations that currently exist. This 

is followed by a brief overview of the techniques to virtualize IoT devices. 

2.2.1. Definition 

The term Virtualization refers to a technology that “promises a reduction in cost and complexity 

through the abstraction or emulation of physical resources (e.g., servers, network links, and host 

bus adapters) into logical units” [12]. Virtualization, thus, allows decoupling between the 

hardware infrastructure and the software and applications running on the machine. This allows 

complete and more efficient utilization of the hardware resources, thus minimizing the overall 

costs. To perform this decoupling between the hardware resources and applications running on the 

machine, a Hypervisor (also called Virtual Machine Monitor-VMM) is used. A hypervisor allows 
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one host computer to support multiple guest VMs (Virtual Machines) by virtually sharing its 

resources, such as memory and processing [13]. The hypervisor software, which is installed 

directly on the system hardware, divides/partitions the hardware resources as needed amongst the 

various virtual machines running on top of it. These virtual machines run independently from each 

other, in an isolated manner, while the hypervisor manages how they share the underlying 

hardware resources. According to [14], virtualization can be of several types, which are as 

described below.  

2.2.1.1. Server Virtualization 

In Server Virtualization, special software is used to virtualize one physical server into many 

virtual servers. The virtual servers run in isolation from each other and can run different operating 

systems. This allows optimum CPU utilization as the resources are not underutilized, since 

multiple virtual servers are running on it, thus reducing the CPU idle time. Server virtualization is 

further divided into three types. 

2.2.1.1.1. Full Virtualization 

In Full Virtualization, the hypervisor has complete control over the resources of the physical 

server and is responsible for providing them, as needed, to the different virtual servers. The 

“hypervisor creates isolated environment between the guest or virtual server and the host or server 

hardware” [15]. Privileged instructions sent by the virtual servers are trapped by the hypervisor. 

Moreover, the overall performance of the server is quite slow since the hypervisor needs some 

processing power for itself as well. However, each virtual machine server is provided with 

complete isolation and maximum security in full virtualization. It also makes the migration and 

portability relatively easily as the guest OS can be migrated and run as-is on other virtualized or 
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physical servers. Some examples of products which provide full virtualization include VMWare 

ESXi, Microsoft Virtual Server, etc. 

2.2.1.1.2. Para-Virtualization 

“Para virtualization modifies the OS kernel in order to replace the non-virtualizable instructions 

with hyper calls which can communicate directly with the virtualization layer i.e., hypervisor” 

[14]. The guest OS and hypervisor are thus able to communicate with each other. Moreover, the 

various guest servers are also not fully isolated (but are partially isolated) and are able to work 

together in a more efficient manner. Furthermore, the guest Operating System is modified to be 

able to run on the hypervisor, and the hypervisor does not need as much processing power for itself 

as it needed in full virtualization. The privileged instructions sent by the guest OS are not trapped 

by the hypervisor. Para-virtualization provides much better performance compared to full 

virtualization but is not as good when it comes to migration and portability since the guest OS is 

modified to be compatible with the hypervisor. An example of a para virtualization project is the 

Xen Windows GPLPV. 

2.2.1.1.3. Hardware Assisted Virtualization 

Hardware Assisted Virtualization is when the features for virtualization are built into the 

hardware (CPUs) in order to simplify the virtualization techniques. It thus enables virtual machines 

to be run without any modification, and with less overhead compared to full virtualization. 

Moreover, “the privileged and sensitive calls are set to automatically trap to the hypervisor and 

removes the requirement for either binary translation or paravirtualization” [14]. Examples of 

some processors that include these features include AMD-V where Virtual Control Blocks are 

used for storing the guest state, and Intel-VT-x where Virtual Machine Control Structures are 

responsible for storing the guest state [14].  
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2.2.1.2. Desktop Virtualization 

“Desktop virtualization refers to the virtualization of the computer desktop in order to achieve 

security and flexibility of the desktop usage” [16]. In Desktop virtualization, the desktop 

environment is completely decoupled from the computing device that is utilized to access it (i.e. 

physical client device). This poses an advantage that the user can access their desktop from any 

client device. Moreover, desktop virtualization, as a result, also “reduces the need for duplicate 

hardware and has other economical aspects”  [14]. Some examples of desktop virtualization 

software include Citrix XenDesktop, Microsoft Remote Desktop Services, etc. 

2.2.1.3. Virtual Networks 

Virtual Networks, which can at times also be called Virtual Private Networks allow the user to 

believe that they are directly connected to a company’s network or other resources, even if there 

is no direct physical link present. The users can utilize any internet network to connect to a virtual 

private network that can provide them access to the company’s resources [14]. 

2.2.2. Virtualization of IoT Devices 

Virtualization of IoT devices is more challenging compared to the virtualization of traditional 

nodes such as servers, computers, etc. This is because IoT devices possess limited processing 

capacity, storage, and might also be battery operated. Their resource-constrained nature requires 

more efforts in terms of carrying out effective virtualization in order to realize the true potential of 

these IoT devices. It is possible to virtualize the IoT device nodes at node-level and at network 

level [17].  

These two approaches of virtualizing IoT devices are described in this subsection. Furthermore, 

the key differences between these two approaches are also explored within this subsection. 
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2.2.2.1. Node-Level Virtualization 

When virtualization is utilized to allow several applications to run concurrently on a single 

sensor node or other IoT device, it is referred to as Node-level virtualization [5]. This technique, 

thus, allows efficient utilization of the devices by rendering them multi-purpose. The two main 

ways in which node level virtualization is carried out are: Sequential execution and Simultaneous 

execution [5]. “Sequential execution can be termed a weak form of virtualization, in which the 

actual execution of application tasks occurs one-by-one (in series)” [5]. Sequential execution is, 

thus, much easier to implement but is not as efficient since the applications have to wait in order 

to execute their tasks and utilize the device resources. Whereas, in the case of simultaneous 

execution, “application tasks are executed in a time-sliced fashion by rapidly switching the context 

from one task to another” [5]. Even though simultaneous execution is much more complex to 

implement, it is beneficial as the waiting times for applications are reduced as context switching 

at time intervals allows each application to carry out its task without having to endlessly wait for 

more time-consuming applications to finish their execution. Node-level virtualization, thus, 

essentially allows applications to share the devices’ resources and capabilities, which is 

specifically beneficial in the case of IoT devices (sensor nodes, actuators etc.). In this thesis, node-

level virtualization has been incorporated. 

2.2.2.2. Network-Level Virtualization 

In Network-Level Virtualization, Virtual Sensor Networks (VSN) are formed. In this type of 

virtualization, a subset of the nodes in the IoT network (Wireless Sensor Network) are used to 

form VSNs. At a given time, the VSN can be dedicated exclusively to one application, thus 

providing it isolation [5]. Moreover “enabling the dynamic formation of such subsets ensures 
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resource efficiency, because the remaining nodes are available for different multiple applications” 

[5]. There are two ways of creating VSNs, one way is to use the same IoT network infrastructure 

and create several VSNs over them, or the second way is to have a VSN composed of nodes from 

administratively different IoT networks [5].  

2.2.2.3. Node-Level vs Network-Level Virtualization 

Both node-level and network-level virtualization aim to increase resource utilization and 

efficiency within a network of physical IoT devices. According to [5], the general architecture of 

node-level virtualization is shown in figure 2, while figure 3 shows the general architecture for the 

two types of network-level virtualizations.  

While node-level virtualization aims to enable “multiple applications to run their tasks 

concurrently on a single sensor node, so that a sensor node can essentially become a multi-purpose 

device” [5], network-level virtualization aims to enable the formation of dynamic Virtual Sensor 

Networks (VSNs) over the Wireless Sensor Networks (WSNs). This dynamic formation of the 

VSNs over a subset of the WSN’s nodes can allow efficient utilization of resources as the 

remaining nodes in the network can then be available for other applications. Thus, it can be inferred 

that while node-level virtualization targets the increase in the utilization of a single IoT device 

through virtualization, network-level virtualization aims to increase the efficiency of a network of 

physical IoT devices through virtualization.   
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         Figure 2. Node Level Virtualization:                Figure 3. Network-Level Virtualization: 
Execution of multiple applications in a general      (a) Multiple VSNs over single WSN 

                purpose WSN node [5]              (b) Single VSN over multiple WSNs [5] 
   

  

Node-level virtualization consists of two approaches: sequential and simultaneous execution of 

the application task, while the two approaches of network-level virtualization are: creating multiple 

VSNs over the same underlying WSN infrastructure, or having a VSN which is composed of WSN 

nodes from different administrative domains (depicted in figure 3 (a) and (b)). Although network-

level virtualization increases resources efficiency, it is still possible that the individual devices 

within the networks are underutilized, since at a given point in time the device is only a part of one 

virtual network and can thus only cater to the needs of the application using this network. This 

issue can only be tackled through node-level virtualization, which can allow several applications 

to run simultaneously on a single physical device. Thus, often a hybrid of the two techniques is 

used to achieve maximum resource, as well as cost efficiency [5].  



 23 

2.3. Cloud Computing 

This section aims at describing Cloud Computing. The section first gives an overview of Cloud 

computing, followed by a brief description of some of its unique characteristics. This is followed 

by a brief discussion of the advantages and disadvantages of Cloud Computing. It then covers the 

service models of Cloud Computing, with special focus on IaaS (Infrastructure-as-a-Service), 

which is a crucial concept for this thesis.  

2.3.1. Definition 

Cloud Computing provides on demand access to configurable computing resources (servers, 

memory, network, etc.) in the cloud, which require minimal management by the end user. It “refers 

to both the applications delivered as services over the Internet and the hardware and systems 

software in the datacenters that provide those services. The services themselves have long been 

referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will 

call a Cloud” [2].  

The resources provided by the cloud platforms are provided on a pay-per-use basis and allow 

the users to easily carry out dynamic provisioning on a seemingly infinite pool of computing 

resources [2]. When these cloud services are made available to the general public using the pay-

per-use model, it is referred to as the Public cloud. When these resources, such as datacenters, are 

not made available to the public and are instead utilized internally by an organization, it is referred 

to as the Private Cloud. When the cloud infrastructure is made available for a specific community 

of users, it is called Community Cloud, for example a group of universities interconnecting their 

infrastructure to provide cloud services to their students, faculty, etc. [18]. Another type of cloud 

is the Hybrid Cloud where “the computing infrastructure is a combination of two or more distinct 
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entities, namely, private cloud, public cloud or community cloud. Each entity remains distinct, but 

they are bound together by standardized protocols that permit data and application portability” 

[18]. For example, when an organization is unable to handle the customer load on its private cloud, 

it may decide to use the services of the public cloud to manage the load. In this case, both private 

and public cloud are used. 

2.3.2. Characteristics of Cloud Computing 

Cloud Computing has several unique characteristics that make it particularly enticing to 

organizations as well as independent users. This section aims at briefly describing the 

characteristics of Cloud Computing that make it a distinct paradigm today.  

2.3.2.1. Multi-tenancy 

Cloud Computing supports multi-tenancy. This implies that multiple users share the same 

resources provided by the cloud service providers. However, each user (tenant) uses the cloud 

platform in an isolated manner, and the data of each user remains separate from the other users. 

All the users are unaware of the fact that they are sharing the same resources.  

2.3.2.2. Scalability 

“Scalability is the ability of a system to sustain increasing workloads with adequate 

performance provided that hardware resources are added” [19]. In simpler words, scalability 

refers to the ability to process increased workloads on the current infrastructure (scale up) or on 

the current plus some additional infrastructural resources (scaling out) without having drastic 

impacts on the performance, and without any interruptions. In order to maintain the performance 

when the load increases, cloud computing can allow either vertical scaling, i.e. scaling up within 

the existing infrastructure, or horizontal scaling, i.e. scaling out to additional infrastructure. The 
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infrastructural resources are usually of pre-planned capacity. When the application demands less 

resources, the IT manager can scale down the resources statically and thus reduce costs. Thus, in 

scalability, the resource allocation is such that it can suffice the maximum predicted workload 

without suffering significant performance degradation. Furthermore, as mentioned in [19], “The 

scalability of a system including all hardware, virtualization, and software layers within its 

boundaries is a prerequisite in order to be able to speak of elasticity”. 

2.3.2.3. Elasticity 

“Elasticity is the degree to which a system is able to adapt to workload changes by provisioning 

and deprovisioning resources in an autonomic manner, such that at each point in time the 

available resources match the current demand as closely as possible” [19]. In simpler terms, 

Elasticity refers to the ability to dynamically add or remove resources based on the needs of the 

users. These resources could be any of the cloud computing resources such as servers, storage 

resources, network resources, etc. Elasticity is a main feature of several public cloud platforms 

that rely on the pay-per-use model. It is closely associated with cloud solutions that provide 

horizontal scaling (scale-out). Elasticity allows cost efficiency as the users only pay for what they 

use. When the workloads are high, more resources are added and the users pay more, whereas 

when the workload is less, the users pay less since resources are removed. Thus, elasticity gives 

the users the illusion of there being an infinite pool of resources at their dispersal.  

2.3.2.4. Pay-per-use Model 

Cloud Service Providers provide a pay-per-use or pay-as-you-go model to the customers. This 

essentially means that the users only pay for the services and infrastructure that they use. The 
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customers are billed based on several criteria, such as the number of hours or usage, workload, 

type of resources being used, etc.  

2.3.2.5. Dynamic Provisioning of Resources 

“One of the key features of cloud computing is that computing resources can be obtained and 

released on the fly” [20]. Cloud computing makes it very easy for service providers to obtain 

resources based on the current demand. If the demand increases, they can easily acquire more 

resources, or release them when the demand decreases, thus lowering the cost of operating [20]. 

2.3.3.  Advantages and Disadvantages of Cloud Computing 

With the rapid growth of Cloud Computing, more and more users and organizations are starting 

to rely on its services for better managing their costs and enhancing the overall functioning of their 

organizations. In this section, we review the advantages that Cloud Computing poses, as well as 

its disadvantages. 

2.3.3.1. Advantages of Cloud Computing 

According to [18], Cloud Computing has the following advantages: 

• It allows organizations to reduce their capital expense as they do not need to purchase their 

own new infrastructure but can instead use the Cloud infrastructure at reasonable costs. 

• Cloud computing provides a plethora of software systems and other services on a pay-per-

use basis. 

• Cloud Computing provides the users access to scalable and elastic infrastructure on 

demand. This allows organizations to increase their computing power by requesting the 

cloud resources as needed, thus, giving the illusion of infinite availability of resources. 
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This can be especially advantageous for start-up companies that can lower their investment 

costs by making use of the cloud resources and requesting more resources as needed.  

• Cloud Service Providers and organizations sign Service Level Agreements (SLAs) which 

assure the quality of the service provided by the service providers to the organizations. 

• Cloud services can be used by organizations for automatic backing up of data. In the case 

of server crashes or data corruption this will prove beneficial for immediate recovery of 

data. 

2.3.3.2. Disadvantages of Cloud Computing 

There are several advantages in addition to those mentioned above. However, there are also 

certain disadvantages or risks that Cloud Computing can pose. These are listed below. 

• Since access to the Cloud Computing infrastructure requires a constant connection, such 

as connection to the internet, etc., if the connection gets disrupted then the access to the 

Cloud services also gets cut off. This can be mitigated by having backup independent 

modes of connection to the Cloud Service Provider’s services. 

• The exchanging of data back and forth between the user and the Cloud Service over a 

public connection, such as the internet, can lead to security threats, such as eavesdropping 

by malicious third parties, corruption or stealing of data while it is being sent, etc. To avoid 

this issue, strong data encryption techniques need to be utilized along with other forms of 

security in order to make the access to the Cloud Services and exchange of data as secure 

as possible.  

• Due to the lack of standardization of the services provided by different Cloud Service 

Providers, it becomes tedious for an organization to back-up and move all of their data onto 

a different Cloud platform in case the vendor they currently use is unable to provide the 
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desired quality of service, or declares bankruptcy. Such a situation can be mitigated if the 

organization considers vendors whose services are similar to the standards used by other 

vendors, thus allowing minimum software rewriting in case the vendor needs to be 

changed. 

• Another disadvantage is when the Cloud Service providers and the users/organization using 

the services are both located in different countries. In this case, if the data gets corrupted 

or stolen, legal problems can arise. To avoid such a situation, the Service Level Agreements 

should clearly state what laws should apply during such a situation. 

2.3.4. Service Models in Cloud Computing 

Cloud computing includes three service models which are: Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS is when cloud providers give 

users access to servers, networking, storage, and other such computing resources; PaaS is when 

the cloud providers provide the users with software development environments where they can 

build their own applications; and SaaS is when the cloud service providers give users access to 

specific applications or software for them to use.  

2.3.4.1. IaaS (Infrastructure-as-a-Service) 

IaaS is the main focus of this thesis. This section provides a brief overview of IaaS. First, we 

define Infrastructure as-a Service, followed by a detailed overview of its architecture and the layers 

into which it is organized.  

2.3.4.1.1. Definition 

“Infrastructure as a service (IaaS) is an instant computing infrastructure, provisioned and 

managed over the internet” [3]. In simpler words, it is a category of cloud computing that allows 
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the users to leverage resources like storage, processing, network, computing, and other 

“Infrastructural” resources on a pay-per-use or on-demand basis. These resources can be used by 

the users to run applications requiring different degrees of computational power, or other software. 

It allows the users to cut on the costs of purchasing high cost physical resources such as servers, 

operating systems, and other datacentre resources, and instead use the infrastructure provided by 

these IaaS Cloud service providers on demand. The role of the Cloud IaaS providers is to only 

provide the required hardware of appropriate capacity. In addition, several users utilize the 

hardware provided by the vendors at the same time. Thus, “as different customers may deploy 

their own operating systems and applications running on them, the servers are enveloped by a 

layer of software which makes them behave like the hardware system demanded by the user” [18]. 

This implies that virtualization is required, where several different types of virtual machines can 

be supported. This is achieved by running the hypervisor. IaaS allows multitenancy, and 

companies usually provide an Application Programming Interface (API) for users to easily be able 

to access the hardware [18]. Examples of some providers of IaaS include Microsoft Azure, 

Amazon Web Services (AWS), Google Compute Engine, IBM Cloud etc. 

2.3.4.1.2. IaaS Cloud Architecture 

According to Moreno-Vozmediano et at (2012) [21], the IaaS Cloud Architecture is divided into 

distinct layers, which are shown in figure 4. The Cloud IaaS comprises of two main layers, which 

are the Physical Infrastructure and the Cloud Operating System. This section briefly describes the 

components present within this IaaS Cloud Architecture, which is responsible for managing the 

infrastructure (both physical and virtual), as well as the provisioning of resources.  
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2.3.4.1.2.1. Physical Infrastructure  

The physical infrastructure comprises of all the resources present in the data centre, which are 

servers, networks, storage units, etc. It is the lowest layer in the architecture. 

2.3.4.1.2.2. Cloud OS Drivers 

This layer includes the 2 components: The Physical Infrastructure Drivers and the Cloud 

Drivers, as shown in the figure 4. These drivers and adapters are utilized by the Cloud Operating 

System to interact with the different virtualization technologies that permit the abstraction of the 

underlying infrastructure. These virtualization technologies could include the hypervisor, storage 

drivers, etc. 

2.3.4.1.2.3. Cloud OS Core 

The Cloud OS Core comprises of several components such as the VM Manager, Network 

Manager, Storage Manager, etc. These components utilize the underlying Cloud OS drivers to 

manage the virtual infrastructure, deploy the virtual infrastructure as well as manage it after 

deploying. The components within this layer are as follows: 

• Virtual Machine Manager: The Virtual Machine Manager manages the entire life cycle 

of the Virtual Machines. It is responsible for performing the VM actions such as deploy, 

resume, suspend, shut down, migrate etc. based on the commands sent by the user. “To 

perform these actions, the VM manager relies on the hypervisor drivers, which expose the 

basic functionality of underlying hypervisors, and VMware to avoid limiting the cloud OS 

to a specific virtualization technology” [21]. 

• Network Manager: The Network manager is responsible for managing the instantiation 

of all the possible networks on the physical network infrastructure. It uses the network 
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drivers for the provisioning of the virtual networks and allows the services to be accessible 

by external users through the management of the interconnection of various service 

components.  

• Storage Manager: “The storage manager's main function is to provide storage services 

and final-user virtual storage systems as a commodity” [21]. The storage services provided 

to the user need to be scalable, reliable, available, easily manageable, and high performing. 

In order to suffice these requirements, the Storage Manager uses the storage drivers, which 

provide abstraction and allow the storage resources to appear as one, thus, enabling the 

storage manager to manage them easily based on the users’ needs. 

• Image Manager: The Image Manager is responsible for efficiently managing all the 

different VM images used by different users. These VM images have different 

configurations, different operating systems, etc. The Image Manager is also responsible for 

ensuring the security of the VM images. 

• Information Manager: The Information Manager monitors the state of each VM, servers, 

and other infrastructural components and collects information on it. It, thus, ensures that 

each component is functioning normally and maintaining the expected level of 

performance.  

• Authentication and Authorization: This component is responsible for authenticating the 

users and administrators in order to create a secure cloud environment, as well as give the 

customers access to authorized resources. 

• Accounting and Auditing: This component is responsible for providing the billing 

information for each user (accounting), as well as monitoring the users’ activities in the 
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cloud resources indicating which resources were accessed when and what operations were 

performed on these resources. 

• Federation Manager: This component allows the Cloud OS to access remote and partner 

cloud infrastructures managed by similar or public cloud providers. It provides the basic 

mechanisms such as deployment, authentication, runtime management, etc. as well as 

several advanced features depending on the design and capabilities of the Federation 

Manager. 

2.3.4.1.2.4. Cloud OS Tools 

The Cloud OS Tools layer comprises of components that allow the IaaS to be accessible by 

external users and organizations. It includes several components such as Administrator Tools, 

Service Manager, Scheduler, and Cloud Interfaces, which are briefly described below. 

• Scheduler: The scheduler is responsible for managing the scheduling within the cloud 

infrastructure. Its role is to decide which VM will get access to the system resources, and 

which physical CPUs and other resources will be assigned to the VMs, as well as which 

VM will be deployed on which physical server. 

• Administrative Tools: This component is responsible for providing the different 

interfaces and tools that will allow the users and administrators to perform several tasks on 

the Cloud OS. For example, tasks such as shutting down or starting servers; deploying, 

shutting down, suspending VMs etc.  

• Service Manager: “The cloud OS should be able to manage and support virtualized 

multitier services. A multitier service can comprise several component/tiers with some 

intrinsic dependencies among them” [21]. The role of the Service Manager is to 

accept/reject services depending on the resources available and the requirements of the 
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service, and manage the entire life cycle of the accepted services, which would include 

deployment, canceling, suspending, etc. 

• Cloud Interfaces: Cloud interfaces allow the services of the Cloud to be exposed to the 

users and organizations. This would involve standardized APIs, which the users can use to 

access the cloud services. Most cloud service providers provide their own APIs such as 

Amazon’s EC2, etc.  

 
Figure 4. IaaS cloud architecture with its three layers: drivers, core components, and high-level tools [21] 
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2.3.4.2. PaaS 

The PaaS is built on top of the IaaS. In PaaS, the vendors provide the users with an 

environment/platform where they can develop their applications. This includes providing the 

operating system, deployment tools, programming languages, and the application program 

development tools[18]. Some examples of PaaS include Windows Azure by Microsoft, IBM’s 

SmartCloud, Google App Engine, etc. 

2.3.4.3. SaaS 

In SaaS, the vendors build applications that run on the IaaS or on their own servers. These 

applications are then provided to the customers on a pay-per-use basis. The customers use this 

application software simultaneously by connecting with it through the internet. For instance, the 

email applications provided by various companies like Google, Yahoo, etc. are one such example. 

Several other examples include third party customer relationship management software on the 

cloud, etc. [18].  

2.4. Bare Metal Provisioning 

Bare metal provisioning refers to allocating the entire server hardware to the 

user/organization/application. “Consequently, applications can run natively on the host and fully 

utilize the underlying hardware. However, this is a single tenant option as unused hardware 

resources cannot be shared or re-used by others within the data center” [22]. Bare metal 

provisioning does not allow any form of virtualization, and the hardware remains fully dedicated 

to the user/application. Furthermore, since the provisioning of a server as bare metal allows the 

direct installation of an operating system, it is specifically advantageous for running latency 

sensitive tasks that require significant processing power. Moreover, since the user is the only tenant 
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on the bare metal server, it gives the user better control over the resources. However, the single 

tenancy of the bare metal resources often leads to decreased overall utilization rates of the 

hardware, and thus, it is often not cost effective [22].  

2.5. Conclusion 

In this chapter, we discussed all the essential terms and concepts crucial to this thesis. We began 

by providing an overview of the Internet of Things (IoT), its enabling technologies and application 

areas. We then described virtualization and covered its definition, types and techniques. We also 

discussed briefly the techniques to virtualize IoT devices. Next, we discussed Cloud Computing, 

its characteristics and service models with special focus on IaaS. Lastly, we provided a brief 

overview of Bare Metal provisioning before concluding the chapter. 

The next chapter presents the motivating scenario and also lays down the set of requirements 

essential to the IoT IaaS architecture. The state of the art is also reviewed and assessed against 

these requirements. 
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Chapter 3 

Use Case and State of the Art 

In this chapter we first provide a motivating use case for the IoT IaaS. The requirements of the 

IoT IaaS are then derived with the help of this use case. Finally, the chapter focuses on evaluating 

the current state of the arts against these derived requirements and obtaining conclusive results. 

3.1. Use Case 

The use case considered in this thesis is a ‘Smart Factory’ scenario. The goal is to make product 

manufacturing factories, such as pharmaceutical manufacturing factories, or cellular devices 

manufacturing factories smarter and more efficient. Applications of IoT can enhance the 

functioning of these factories by improving their performance, making them more cost and energy 

efficient, and also enhance their risk/hazard handling systems.  

In particular, the case of Pharmaceutical factories is considered. The pharmaceutical industry 

is essential in enhancing the health care of any country and, thus, making it more efficient is 

necessary. Making the factory smart would allow automation of the manufacturing process, as well 

as better monitoring and control over the equipment. The idea is to use IoT technologies to enhance 

the performance of the pharmaceutical factories in a number of ways, for instance, by monitoring 

the performance of the equipment, by efficiently tracking the products, by ensuring the proper 

storage of cold chain products, by improving the efficiency of fire and hazard handling systems, 

by enhancing the security systems etc. 

In order to improve the pharmaceutical factory’s performance, as well as handle risks in a better 

and efficient manner, several IoT applications, along with the required infrastructure (such as 
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sensors and actuators) can be deployed into factories. The Smart Factory Scenario is depicted in 

figure 5. The following types of IoT applications can be utilized for this purpose: 

3.1.1. Monitoring of Cooling Systems 

Pharmaceutical factories always contain or manufacture certain cold chain products. These 

products are those that require very low or refrigerated temperatures in order to remain usable. 

These products could include certain temperature sensitive medicines, vaccines, etc. In order to 

enhance the working of these cooling systems and make them more efficient, IoT sensors can be 

deployed to monitor the cooling systems in areas where these products are kept. This would allow 

continuous monitoring of these spaces and immediate control of the cooling system without much 

human interference. This application could require IoT devices for temperature sensing, humidity 

sensing, and a mechanism to control the HVAC systems. For example, the sensors could constantly 

detect the temperature and humidity levels within the specific area where environment sensitive 

products are kept, and when the environment conditions in the area become unsuitable for the 

products, the HVAC systems are immediately controlled to mitigate the situation. 

3.1.2. Anti-Fire Systems 

Pharmaceutical factories contain certain flammable items and materials such as acetone, plastic 

powder dust etc. Due to the presence of these substances it is essential to have an efficient Anti-

Fire System in place to allow early detection and proper mitigation of these situations. The Anti-

Fire Systems application could require temperature sensing, humidity sensing, smoke detection, 

firefighting robots. For example, the sensors can be utilized to keep checking for potential fire 

hazards or detect fires. When a fire is detected, firefighting robots can be immediately dispatched 

to extinguish the fire. 
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3.1.3. Items Tracking Systems  

It is important to keep track of all the products and items present in the factory, where they are 

kept, where they have been moved to etc. This is essential to avoid misplacing or losing the 

products, since these products could incur significant costs to the pharmaceutical factory. Real-

time tracking of these products within the factory is thus necessary. This Items Tracking 

application could require RFIDs (tags and readers), and access to databases. For example, the 

location of the items in the factory can be tracked by RFID tags in real time. 

3.1.4. Inventory Management Systems  

In a factory, it is essential to have an effective inventory management system. Inventory 

management includes updating the databases with the quantities of each item, most up-to-date 

information on each product, etc. In pharmaceutical factories, this is essential too. Having an 

efficient inventory management system will allow the factory to know exactly which products are 

sufficiently available, and which need to be produced or ordered as they are low in stock. This 

will, in turn, allow cost-savings as no excess products will be produced/ordered since the most up-

to-date information will be available on each item. This application would require RFIDs (tags and 

readers), database access and management. For example, the RFID tags associated with each item 

will contain information on that item, which can be updated or modified. These tags will then 

allow the databases to have the most up-to-date information on each item in the inventory. 

3.1.5. Smart Security Systems  

An efficient security system is essential in any factory to ensure that unauthorized personnel 

cannot access the factory, as well as to ensure no thefts, etc. IoT Applications can be utilized to 

enable a smart and efficient security system that can detect such unauthorized access and 
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immediately issue alerts, notify the respective authorities, etc. Especially in the pharmaceutical 

factories, where expensive and specialty drugs/vaccines etc. are prepared, which may not be 

available to the general public or have limited distribution, the security of these products is 

essential. Thus, a smart security system is essential in the pharmaceutical factories. The Smart 

Security Systems application could require motion sensors, alarms, and other devices for issuing 

alerts or notifying authorities. For example, motion sensor-alarm systems can be deployed. The 

motion sensors can be activated when the factory operating hours end. If any unauthorized motion 

is detected, alarm modules can be triggered, and alerts can be sent to the respective authorities. 

3.1.6. Smart Energy Systems  

In order to reduce the costs of the factories, energy efficient systems need to be enabled. In 

pharmaceutical factories, there are several equipment that are used for preparing medicines and 

other products, which consume a lot of energy and incur a lot of costs to the factory. Moreover, 

lots of workers work in these factories and, thus, proper lighting and ventilating systems are also 

in place, which incurs additional costs. Thus, a smart energy system is needed that can detect when 

one section of the factory is not being used and automatically turn of the lights, ventilation, and 

other non-essential electric equipment in that area. This will not only reduce overall costs but will 

also allow the factories to be more environment friendly and consume less energy. This Smart 

Energy Systems application would require motion sensors, access to systems for controlling 

electricity, etc. For example, the motion sensors at the factories can detect motion in the areas of 

the factories where workers are present. When no motion is detected, i.e. no worker is present, a 

signal can be sent to turn off the lights, and other non-essential electronic equipment in that area. 

This can allow lower energy consumption as well as lower electricity costs.  
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Figure 5. Motivating Scenario: Smart Factory use case 

3.2. Requirements 

The first requirement that our IoT IaaS must fulfill is node level virtualization of the IoT 

devices in order to allow better and more efficient utilization of the resources.  

Node level virtualization will prove beneficial in our use case as well, since most of the 

applications in our ‘Smart Factory’ use-case require IoT devices that are common (sensors, 

actuators). To increase the efficiency of the factory and to reduce the costs spent on the 

infrastructure, it is essential that many applications share the same physical IoT devices. The 

applications can send requests for virtualizations of the physical IoT devices and then use these 

virtual devices. For instance, the ‘Anti Fire Systems’ application and the ‘Monitoring of Cooling 

Systems’ application can share the temperature and humidity sensors, since both the applications 
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involve detecting the temperature and humidity of the environment after certain time intervals in 

order to take specific actions. Similarly, the motion sensors can be shared by the ‘Smart Security 

Systems’ and the ‘Smart Energy Systems’ application. The ‘Smart Security Systems’ can use these 

motion sensors to identify motion after factory operating hours in order to detect unauthorized 

access, while the ‘Smart Energy Systems’ can use these motion sensors to detect motion in the 

specific factory areas and thus, turn the lights and equipment off when no motion is detected for a 

considerable period. Node level virtualization can enable this sharing, as the physical IoT devices 

will be virtualized for each application depending on the parameters specified by the application, 

and the application can then use the specific virtualization created for it. These virtualizations on 

the IoT devices are run simultaneously. Thus, these applications should be able to use the particular 

IoT sensors or actuators concurrently, and in order to support this scenario the IoT IaaS must 

support node level virtualization. 

The second requirement of the IaaS would be to have a publish and discovery mechanism 

that can allow the IoT devices’ capabilities to be stored and queried as needed. 

As is evident from the Smart Factory scenario, in order to efficiently handle all the deployed 

infrastructure and use it efficiently, there is a need for a Repository which will contain information 

about all the physical devices available in the IaaS. This is essential in order to create 

virtualizations on, or reserve devices that can fulfill the requirements of the applications requesting 

the resources. For instance, if the IaaS receives requests from the applications in the Smart Factory, 

it must be able to search for an appropriate physical device which can meet the needs of 

application, and further reserve it or create virtualizations on it. In order to achieve this, the 

information about the capabilities of each device can be published in a database, i.e. Repository, 
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from where the IaaS can easily discover this device. Thus, our second requirement is necessary for 

the IoT IaaS. 

The third requirement of the IaaS is to have an orchestration mechanism to allow the 

orchestration of different device capabilities. 

This is critical for our use case as well, since some applications in the Smart Factory scenario 

require the services of several IoT devices for their functioning. An orchestration mechanism needs 

to be in place to allow an application to get access to several devices as needed. Moreover, this 

orchestration mechanism is essential to ensure that the various IoT devices work together as one 

unit to achieve the task of the IoT application. 

For example, the ‘Anti-Fire Systems’ application requires the temperature sensor and humidity 

sensor to sense potential fire hazards. It also needs access to the robot which will be dispatched to 

extinguish fires in case the temperature falls outside a threshold. To allow the ‘Anti-Fire Systems’ 

application to use all of these devices, an orchestration mechanism is needed, which can allow for 

the creation of virtualizations for each of these devices and orchestrate them to be used by the 

application. 

Similarly, the ‘Monitoring and Cooling Systems’ application requires temperature sensing, 

humidity sensing, and access to the HVAC system in order to control it. Thus, the orchestrator 

would need to virtualize the temperature sensor and humidity sensor to be used by the application. 

The orchestrator would also need to provide the application with the HVAC control actuator. All 

of these services would need to be orchestrated and given to the application to be used in 

conjunction. 

Another example is the ‘Smart Security Systems’ application, which would need access to the 

motion sensor and the alarm module. Thus, the orchestrator would again need to orchestrate these 
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two services and provide it to this application. All these applications would not be able to function 

without the provision of an orchestration mechanism within the IaaS. 

The fourth requirement that our IoT IaaS must fulfill would be to have bare metal access 

to the IoT devices. 

At times it is possible that an application might need hardware that remains fully dedicated to 

the specific application and is not virtualized and shared with any other application. In such a 

situation, this requirement becomes critical for the IoT IaaS. For instance, in our ‘Smart Factory’ 

scenario, the ‘Anti-Fire Systems’ application would require exclusive access and complete control 

over the fire-fighting robots in order to immediately dispatch them during hazardous situations. 

However, if these robots are being utilized by other applications, then the ‘Anti-Fire Systems’ 

application might not be able to utilize the full capabilities of the robot, or the robots might not 

perform efficiently to mitigate the fire hazard since other applications are also using them 

simultaneously. Hence, in such a scenario, there needs to be a mechanism to provision the physical 

devices as bare metal, thus allowing the application to use the device as-is and have complete 

control over it. Moreover, since the physical device is used as is without any middleware for 

virtualization, bare metal provisioning poses an additional advantage of supporting tasks that are 

latency sensitive. Thus, the ‘Anti-Fire Systems’ application, which is a latency sensitive 

application, would benefit from this bare metal provisioning since the robots will be dispatched 

immediately without significant delay. 

Finally, the fifth and last requirement of the IaaS would be the ability to control and use 

actuators as needed by the application. 

This requirement becomes critical for the IoT IaaS when applications request for actuation 

capabilities from it. For instance, the applications within the Smart Factory scenario require both 
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sensing as well as actuation capabilities. The ‘Anti-Fire Systems’ application would require 

firefighting robots, which would need to be dispatched in case of fire hazards. Similarly, the 

‘Monitoring and Cooling Systems’ application would require access to an actuator to control the 

HVAC system in situations when the temperatures increase beyond the specified threshold in the 

cooling areas. Therefore, it is essential that besides providing sensing capabilities, the IaaS also 

provide actuation capabilities to allow the applications to perform certain controlling/actuating 

tasks.  

3.3. State of the Art 

In this subsection, the current state of the art is analysed and evaluated against our proposed 

requirements. For this purpose, the state of the art is divided into two categories. First the state of 

the art involving complete architectures for the IoT IaaS is analyzed and summarized. This is 

followed by an analysis and summary of the state of the art involving models and frameworks that 

can aid the IoT IaaS.  

3.3.1. Architectures for IoT IaaS 

There currently exist very few architectures for the IoT IaaS that have been analyzed in this 

subsection. Each of these works is first discussed in detail and then evaluated against our set of 

derived requirements.  

In the work titled “Cloud Based IoT Network Virtualization for Supporting Dynamic 

Connectivity among Connected Devices”, Ullah et al. [23] propose a concept for building a 

dynamic virtualized IoT network over the cloud environment. These IoT devices can belong to 

different domains, are interconnected, and their virtual objects are utilized for the creation of this 

network over the cloud. Figure 6 shows the architecture proposed in this work. To begin the 
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process, the IoT devices first register themselves by posting their profile information to a pre-

configured virtualization server. To do this, a registration request is sent by the devices. Next, the 

virtualized objects are created for these registered IoT devices which are stored in this 

virtualization server. Whenever a user sends a request based on certain criteria and with the desired 

settings, this request is sent to the Controller component present within the Virtualization Layer 

of the architecture. This Controller is responsible for retrieving the virtual objects from the 

virtualization server that match the criteria specified in the users’ requests, as well as manipulating 

these virtual objects to obtain the required network settings. To obtain data from the virtual objects 

an activation command can be sent to them. Moreover, a mapping list is maintained that can be 

used to retrieve the mapped virtual object to which an actuation command can be sent. The paper 

presents three use cases: Automatic Door Opening Application, Fire Safety Application, and 

Indoor Environment Application. OMNeT++ is used for simulating the virtualization networks, 

which include the client, server, and the IoT device nodes. A local gateway node is also present in 

this simulation that allows the IoT device nodes to be connected to the virtualization server. 

 
Figure 6. Layered architecture of the proposed IoT network virtualization [23]  
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In addition, there is also a dedicated interface that permits the applications to express the 

number of IoT devices they require, along with the specifications and settings of these devices. 

However, there is no mention of any high-level APIs for interacting with the gateway node or any 

sort of cloud access interface.  

 On evaluating the architecture proposed in this work against our derived requirements, the 

following points were observed: 

1. Node Level Virtualization: In this work, for every IoT device, a corresponding virtual 

object is created. Moreover, a concept is proposed to build a dynamic network of these 

virtual objects, based on the needs of the application. The virtual networks on top of the 

physical IoT devices are then utilized by the application. This implies that this work makes 

use of network level virtualization, and not node level virtualization. Thus, our first 

requirement of node level virtualization is not met. 

2. Publication and Discovery Mechanism: In this work, since initially each IoT device 

registers and posts its specification by sending the server a registration request, and the 

Controller can later discover these device profiles, the second requirement of a ‘Publication 

and Discovery mechanism for IoT devices’ is met. 

3. Orchestration Mechanism: The Controller  module, proposed in the architecture specified 

in this work, is responsible for orchestrating the various virtual objects to dynamically form 

a network based on the application’s specifications. Thus, the third requirement for an 

orchestration mechanism is met by this work. 

4. Bare metal access to IoT devices: The main focus of this work is to create a virtual 

network using the virtual objects of the IoT devices. There is no mention of any provision 
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to access the physical IoT devices as bare metal. Hence, the fourth requirement of having 

bare metal access to IoT devices is not met. 

5. Ability to control and use Actuators: The proposed work highlights the ability to control 

virtualized actuators in a similar manner to the virtual sensors. Moreover, the Controller 

module contains a set of simple rules to determine whether to send the actuation command 

to the actuator or not based on the obtained sensor output. Hence, the fifth requirement 

pertaining to the ability to control and use actuators is met in this work. 

Guerreiro et al. [24] present a resource allocation model for assigning sensor and cloud 

resources to the clients/applications. The Sensing as a Service (Se-aaS) paradigm used in this work 

allows multi-client access to these sensor resources as well as multi-supplier deployment. The 

work also proposes a heuristic algorithm based on Se-aaS.  

As shown in figure 7, the registered physical sensors are virtualized to allow management and 

customization of the IoT devices according to the needs of the applications/clients/consumers. 

Many virtual sensors can be grouped together to achieve the applications’/clients’ needs. 

One of the main contributions of this work is to enable the software components to have 

bindings to mashups managed in the cloud. Each of these mashups consists of a workflow that 

combines one or more devices. This allows the events to be processed and actuation commands to 

be triggered in the cloud, based on the workflows of the mashup. Only the final data is then 

delivered to the application. The sensors and data are shared by the clients/applications through 

the dedicated instances of each distinct type of sensor. 
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Figure 7. Virtualization layers in Se-aaS [24] 

The proposed resource allocation model was evaluated against our requirements and the 

following points were observed: 

1.  Node Level Virtualization: Since the resource allocation model allows several 

applications/clients to share the same sensor devices (through their virtualizations), the first 

requirement of node level virtualization is met by this work. 

2. Publication and Discovery Mechanism: In this work, there is no mention of any kind of 

registry service for publishing the capabilities of the IoT devices or any discovery service. 

It is assumed that the physical devices are registered in the cloud. Hence the second 

requirement of a publication and discovery mechanism is not met by this work. 

3. Orchestration Mechanism: The ‘mashups’ seen in the architecture of this work somewhat 

mimic the role of an orchestrator. The mashups (workflows), for instance, allow for 
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actuations to be triggered based on the outputs of certain virtual sensors. This allows for a 

proper mechanism to orchestrate (mashup) these virtual devices and only deliver the final 

data of interest to the applications/clients. Thus, the third requirement of an orchestration 

mechanism is met by this work. 

4. Bare metal access to IoT devices: The work only proposes virtualizing all the registered 

physical sensors to be used by applications/clients through the mashups in the cloud. 

However, there is no mention of any mechanism to allow these IoT devices to be used as 

bare metal by these applications/clients. Thus, the fourth requirement of having bare metal 

access to the IoT devices is not met in this work. 

5. Ability to control and use actuators: The architecture proposed in this work is Se-aaS 

(Sensor as a Service). Its main focus is to virtualize the registered physical sensors for 

usage. Even though the ‘mashups’ proposed in the work do mention triggering actuations, 

there is no mechanism mentioned to virtualize the physical actuators in a manner similar 

to the physical sensors. Hence the fifth requirement for handling and using actuators is not 

met.  

Atzori et al. [25] in their work titled “SDN&NFV contribution to IoT objects virtualization”, 

aim to provide IoT devices “as a Service” i.e. “Smart Devices as-a-Service” (SDaaS) to the users 

through virtual images, similar to [24]. However, the main aim of this work is to design a novel 

infrastructure and paradigm to enable the “deployment of new personal IoT services inside the 

infrastructure provider premises” [25]. The idea is to provide the users with the IoT services 

through the virtual objects of the IoT devices present at the service provider’s end, instead of 

physically placing the IoT devices in the users’ homes/premises, such as network-attached storage 

servers, sensors, set-top boxes etc. The design proposed in this work utilizes Network Functions 
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Virtualization (NFV) and Software Defined Networking (SDN) in order to create virtual overlay 

networks for each user. These virtual overlay networks allow the users to connect to the virtual 

images of the IoT devices required for the services they need and provides the level of isolation 

and security similar to LAN (Local Area Network). On evaluating this work with our requirements, 

the following were observed: 

1. Node Level Virtualization: In this work, a virtual overlay network is associated with each 

user. This virtual network is deployed on top of the network of physical IoT devices. 

Moreover, each physical IoT device is associated with only one virtual object, and there is 

no mention of any possibility of running several virtualizations of the same physical device 

simultaneously. Thus, several applications cannot run concurrently on this physical device. 

Thus, it can be said that the work proposed by Atzori et al. [25] does not satisfy our first 

requirement of node level virtualization.  

2. Publication and Discovery Mechanism: The proposed work does not explain any 

mechanism for publication and discovery of the physical IoT devices’ specifications. 

Although a ‘Discover’ operation is mentioned in the LwM2M enabler interface, it isn’t 

explained in any further detail. Hence the second requirement of a publication and 

discovery mechanism is not satisfied. 

3. Orchestration Mechanism: The solution proposed in this work supports the grouping 

together of several Virtual Objects in a PaaS instance to create a virtual overlay network 

depending on the needs of each user. Hence, a mechanism for the orchestration of several 

services is present and our third requirement is satisfied. 

4. Bare metal access to IoT devices: One of the main features of this work is to provide 

added security by not allowing direct access to the physical IoT devices. Instead, only the 
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virtual objects of these devices are utilized in the overlay networks. Each user makes use 

of the virtual overlay network created as per their needs, and the sensors/actuators cannot 

be accessed for specific functions directly by any external entity. Hence the fourth 

requirement of having bare metal access to the physical IoT devices is not met.   

5. Ability to control and use actuators: The proposed system includes virtualization of IoT 

services that includes all its associated sensors and actuators. Hence actuator control is 

carried out by the system in a manner similar to sensor control and control of other IoT 

devices. Thus, the fifth requirement of controlling and using actuators is met by this work. 

In [26] Alam et al. propose a full-fledged architecture for an IaaS for the Internet of Things, 

which can permit the low-cost provisioning of IoT applications as well as their decoupling from 

the underlying physical devices. In addition, the work also proposes high-level APIs that allow the 

applications and users to interact with the IoT IaaS and utilize the virtualized resources as per their 

needs. Low level APIs are also proposed for the management of the physical IoT devices. The 

work stresses on sharing the capabilities of the physical devices via node level virtualization and 

depicts this through an Anti-Fire application and a Smart HVAC application as use cases. The 

work proposes an architecture that allows for more efficient resource utilization. The architecture 

proposed in the work is shown in figure 8. 
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Figure 8. The Architecture of the IoT IaaS [26] 

In the proposed architecture, the Physical IoT Layer contains all the physical IoT devices 

(sensors, actuators etc.), while the Virtual IoT Layer consists of a logical representation of the 

virtualized IoT devices. The Physical and Virtual IoT Management Layer  allow the underlying 

heterogenous devices to be managed and used in a homogenous manner. Furthermore, the Virtual 

IoT Infrastructure Management Layer manages the virtual IoT infrastructure and is responsible 

for providing the applications with the required virtual resources as per their needs. It makes use 

of the uniform interface to interact with and control the virtual IoT resources. On evaluating the 

work against our requirements, the following points can be observed: 
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1. Node Level Virtualization: The proposed architecture utilizes node-level virtualization 

to allow several applications to simultaneously run on the physical IoT devices through 

their virtualizations. Thus, this work meets our first requirement. 

2. Publication and Discovery Mechanism: The proposed architecture contains a 

Publisher module, which is responsible for publishing the information of each device 

into the repository, as well as a Discovery Engine to discover the devices with the 

capabilities required by the application. Thus, this work meets our second requirement 

of a mechanism for publication and discovery of the devices’ services. 

3. Orchestration Mechanism: The authors describe a detailed mechanism for the 

orchestration of several services in this work. The architecture contains an Orchestrator 

which is responsible for this task. The Orchestration Plans are further stored in the 

repository for usage later on. Thus, this work fulfills the third requirement for an 

orchestration mechanism. 

4. Bare metal access to IoT devices: The work only focuses on creating virtual instances 

of the physical IoT devices and provides no mechanism to have bare metal access to a 

physical IoT device. Thus, this work does not meet our fourth requirement of having 

bare metal access to an IoT device. 

5. Ability to control and use actuators: Although the work mentions orchestration plans 

consisting of actuation tasks, it does not provide any detailed mechanism for the 

provision of, or usage of actuators. The work focuses primarily on sensor devices. Thus, 

this work does not meet our fifth requirement of the ability to control and use actuators.  

Khan et al. propose a novel architecture for WSN Virtualization in [27], which is shown in 

figure 9. The work focuses on tackling the issue of redundant WSN deployment by using 
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virtualization techniques. The architecture makes use of node level as well as network level 

virtualization to enhance cost and resource efficiency. In this work, the architecture allows a single 

WSN to be shared by several applications. The architecture makes use of the constrained 

application protocol and consists of four layers, as shown in the figure 9.  

 

Figure 9. Multi-layer WSN virtualization architecture [27] 

The Physical Layer contains various independent WSNs, while the Virtual Sensor Layer 

consists of a logical representation of each of the physical sensors. The Virtual Sensor Access 

Layer contains sensor agents that control and retrieve data from the virtual sensors and interact 

accordingly with the overlays, thus, ensuring platform independence. The last layer, the Overlay 

Layer contains the different overlay networks created on the basis of the specifications of each 

application. The work is further evaluated against our proposed requirements and the results are 

summarized below. 
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1. Node Level Virtualization: The architecture proposed in this work allows the physical 

sensor nodes to simultaneously execute several tasks by allowing their virtualizations 

to be a part of several application specific overlay networks at a given time. Thus, this 

work meets our first requirement of node level virtualization. 

2. Publication and Discovery Mechanism: Although the proposed architecture contains 

a discovery service for finding the appropriate devices, it assumes that the sensor and 

GTO owners have already published their nodes to a central repository. Hence, a 

dynamic mechanism does not exist for the publication and discovery of the devices’ 

services, and thus, this work does not fully satisfy our second requirement of a 

publication and discovery mechanism for the devices’ services. 

3. Orchestration Mechanism: Although the overlay networks for each application 

contain several virtual sensors for fulling the application’s tasks, there is no mechanism 

described in this work for orchestrating the services of the different IoT devices. The 

overlays are simply a network of several different virtual devices and do not depict these 

devices as one orchestrated virtual device for the application. Thus, this work does not 

meet our third requirement of an orchestration mechanism for orchestrating the services 

of several IoT devices together as needed.   

4. Bare metal access to IoT devices: The architecture does not provide any mechanism 

for accessing the physical devices as bare metal, and thus, it does not meet our fourth 

requirement of having bare metal access to the devices. 

5. Ability to control and use actuators: The architecture primarily focuses on sensors as 

physical devices. It does not provide any mechanism for controlling or using actuators, 

which implies that our fifth requirement is not satisfied by this work.  
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3.3.2. Summary of the State of the Art of Architectures for IoT IaaS 

Table 1 summarizes the state of the art of the architectures for the IoT IaaS against the 

evaluation of our requirements. In this table a ‘✓’ means that the requirement is met by the 

particular work, whereas a ‘×’ means that the requirement is not met by the work. 

Table 1. Summary of the Related Works involving Architectures for the IoT IaaS 

Papers 
Requirements 

Node Level 
Virtualization 

Publication 
and Discovery 
Mechanism 

Orchestration 
Mechanism 

Bare metal 
access to IoT 

devices 

Ability to 
control and use 

actuators 
Ullah et al. [23] ×  ✓  ✓  ×  ✓  

Guerreiro et al. 
[24] 

✓  ×  ✓  ×  ×  

Atzori et al. 

[25] ×  ×  ✓  ×  ✓  

Alam et al. [26] ✓ ✓ ✓ ×  × 

Khan et al. [27] ✓ × × ×  ×  

 

3.3.3. Models and Frameworks for aiding the IoT IaaS 

There are few works in the current state of the art that propose frameworks or service models 

that can aid in the development of an IoT IaaS by overcoming the issues that it currently faces. In 

this section, some of these current works have been analyzed. First, each of the works is discussed 

in detail followed by an evaluation against our set of derived requirements. 

In [28] and [29], Gupta et al. propose and provide an implementation of virtual sensors at the 

IaaS level respectively. The implementation in [29] focusses on representing the physical sensors 

as virtual sensors and provides a soft sensor API to handle these sensor objects at the IaaS level. 
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The aim is to enable on-demand, pervasive, and shared access to these physical sensors through 

their abstractions (virtual sensors). The authors propose a distributed architecture for the virtual 

sensor system abstraction. This architecture consists of a total of 5 layers: Physical Sensor Devices 

layer, Sensing System layer, Processing System layer, Storage System layer, and Communication 

System layer. There is also a Monitoring System in the architecture. Basic APIs are also proposed 

to facilitate interaction between the layers as well as to expose the virtual sensor system abstraction 

to the cloud. The Physical Sensor layer contains the physical sensor devices, while the Sensing 

System acquires the sensor data, converts it into the appropriate form and analyzes it. The Sensing 

System contains appropriate APIs for collecting and interpreting the sensor data. The Processing 

System is responsible for modifying the sensor data to suit the needs of the user. It contains APIs 

to efficiently handle the individual functions and allows the processing tasks to be executed in the 

cloud. It contains APIs capable of terminating or creating virtual sensors, reading and writing to 

sensor objects, etc. Storage System is responsible for handling the storage constraints of the 

physical sensors by providing virtual sensor storage in the cloud. It has APIs for providing 

specifications such as storage types, i.e. heap, database, etc., allocation and deallocation of 

memory space, as well as a handler to access the stored data. The last layer is the Communication 

System which is responsible for transmitting the data received from the physical sensors to the 

appropriate destinations, as well as for receiving any data sent to the virtual sensor objects. It 

handles tasks such as protocol specification for effective communication and identifying the sensor 

data source. It consists of appropriate APIs to achieve these tasks. The Monitoring System is 

responsible for providing error free sensor data by interacting with user and physical sensors to 

ensure that the data is correct and is provided in an uninterrupted manner. The architecture extracts 

the data from the physical sensors and provides it to the virtual sensors. Modifications are 
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performed on these readings directly fetched from the sensor based on the needs of the users. The 

work proposed in this paper is further analyzed against our proposed requirements as follows: 

1. Node Level Virtualization: The architecture proposed in this paper proposes virtual 

sensors that simply request the same sensor data, which is further modified at the higher 

layers to fit the user specified configurations of the virtual sensor. There is no provision 

in this architecture to run several applications concurrently on the same physical sensor 

node. Thus, the first requirement of node level virtualization is not met in this work. 

2. Publication and Discovery Mechanism: The proposed work does not contain any 

mechanism for publishing the capabilities or discovering the capabilities of the physical 

sensors. In addition, there is no repository or database present in the architecture that 

can store the information of each device. Thus, the second requirement for a publication 

and discovery mechanism is also not met.  

3. Orchestration Mechanism: In the proposed architecture in this work there is no 

mention of any orchestration mechanism for orchestrating several services provided by 

the physical sensors. The Virtual Sensor System abstraction architecture only allows 

for abstracting the sensor services from the underlying physical devices. The data 

fetched directly from the sensors is simply provided to the virtual sensors, which can 

be further utilized by the users directly, other applications, or cloud services. However, 

the services are not orchestrated together. Thus, our third requirement for an 

orchestration mechanism is not met by this work. 

4. Bare metal access to IoT devices: The aim of this work is to provide a virtual sensor 

system for abstracting the services of the physical devices. There is no provision for 
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accessing the physical sensors as bare metal in this work. Thus, the fourth requirement 

of bare metal access to the physical IoT devices is not met. 

5. Ability to control and use actuators: The architecture proposes abstraction for virtual 

sensors and provide no mechanism for controlling or using actuators. Hence, this work 

does not meet our fifth requirement of the ability to control and use actuators. 

In [30], Mattos et al. propose a network function virtualization infrastructure for the Internet of 

Things that is effective and agile. The paper mainly proposes the development of a gateway node 

that can effectively virtualize the domains to which the physical IoT devices connect. The proposed 

gateway in this work allows for the creation of virtual interfaces that behave as different virtual 

access points for different domains of the connected IoT devices. The physical resources/devices 

of the network are abstracted into virtual resources in the NFVI. Furthermore, the software-based 

virtual network functions are chained together in the virtual environment to provide the required 

network service. Moreover, outsourcing the network functions to the proposed virtualized 

infrastructure also allows for minimum load on the gateway. The gateway is, thus, mainly 

responsible for providing access to the IoT devices through the virtual interfaces. The entire NFVI 

along with the gateway and virtual interfaces is presented in figure 10.  

The gateway and NFVI communicate via the GRE (Generic Routing Encapsulation) tunnel, and 

once the devices are associated, all the frames are forwarded to the NFVI through this tunnel. For 

the network virtualization infrastructure OPNFV (Open Platform for Network Function 

Virtualization) 4 is utilized, while the management of the virtualization layer is carried out through 

OpenStack5. Virtual network functions are implemented as virtual machines running Linux 

Ubuntu 16.04. 
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Figure 10. The complete architecture showing the NFVI for IoT and the connected devices Gateway. [30] 

The proposed work is evaluated against our requirements and the results are summarized below. 

1. Node Level Virtualization: In the proposed work the physical IoT devices are used and 

connected through the virtual interfaces. However, there is no mechanism mentioned for 

running several applications together on the same IoT device. The devices are a part of 

different virtual networks and the work does not address the possibility of a device being 

used in several virtual networks at the same time and concurrently running several 

applications on it. Thus, this work does not meet our first requirement of node level 

virtualization. 

2. Publication and Discovery Mechanism: The proposed work does not mention any 

mechanism for publishing and discovering the capabilities of the different IoT devices. 

Hence, our second requirement of having a mechanism for publication and discovery of 

the IoT device services is not met. 

3. Orchestration Mechanism: Although, in this work, there is a mention of orchestration of 

the various network services together, as such a proper orchestration mechanism has not 
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been described. Hence, the third requirement for an Orchestration Mechanism is not met 

by this work. 

4. Bare metal access to IoT devices: This work only focuses on a gateway node that allows 

for the creation of virtual interfaces for connecting the physical IoT devices to NFVI. Thus, 

the physical devices are only accessible through these virtual interfaces and there is no 

means to provide bare metal access to these physical IoT devices. Thus, the fourth 

requirement is also not met in this work. 

5. Ability to control and use actuators: The proposed work provides a gateway node to 

access IoT devices, such as both sensors and actuators. However, there is no specific 

mechanism mentioned pertaining to controlling and using actuators. Thus, the fifth 

requirement of having the ability to control and use actuators is not completely met by this 

work. 

In [31], Mandal et al. propose a service model for IoT services, called ‘Things as a Service’ 

(TaaS) that allows the users to be exposed to the capabilities of the IoT devices, and efficient 

utilization of the IoT resources. The architecture framework for the TaaS is shown in figure 11.  

The primary constituents of the proposed service model are the ‘things’, i.e. sensors and 

actuators. The service gateways present in the framework allow the IoT devices to expose their 

service interfaces and publish it onto the cloud, from where it can be accessed by users and 

applications. The cloud is responsible for maintaining a registry containing information of all these 

devices and providing the users with the appropriate services. It is also responsible for event and 

process management. The overall architecture also utilizes REST based services for the interaction 

between the various layers. 
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Figure 11. Architectural Framework for Things as a Service [31] 

 
The proposed framework is further evaluated against our proposed requirements as follows: 

1. Node Level Virtualization: The proposed framework simply exposes the services 

provided by the IoT devices to the cloud but does not provide any mechanism for 

running several applications concurrently on the IoT devices. The work is more ‘data’ 

driven, i.e. the data collected by the IoT devices is retrieved and provided to the 

applications as needed. Thus, our first requirement of node level virtualization is not 

met by this work. 

2. Publication and Discovery Mechanism: The framework focuses on publishing the 

services of the IoT devices to the cloud registry. Moreover, the cloud is responsible for 

discovering the service needed by the application and providing it. Thus, there exists 

the implementation of a proper publication and discovery mechanism which fulfills our 

second requirement. 
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3. Orchestration Mechanism: In this work, there is no explicit definition of any kind of 

orchestration mechanism for combining the services of several devices as per the 

applications’ needs. Thus, the third requirement for an orchestration mechanism is not 

met by this work. 

4. Bare metal access to IoT devices: In this work, the services of the devices are 

published in the cloud and simply provided to the applications as needed. However, 

there is no mechanism described to allow an application to access an IoT device 

exclusively as bare metal. Thus, our fourth requirement for bare metal access to IoT 

devices is not met in this work. 

5. Ability to control and use actuators: The framework proposed in this work involves 

handling actuators. It treats both the sensors and actuators as ‘things’ with certain 

capabilities, which are published onto the cloud. Further, the cloud layer is responsible 

for handling actuator events, i.e. it carries out event management. Thus, our fifth 

requirement of controlling and using actuators is met by this work. 

K.P.S. et al. propose a software framework for WSN (Wireless Sensor Network) virtualization, 

i.e. virtualization of a network of IoT sensors, in [32]. “This new Framework presents few 

conventions that help application developers to create applications without requiring it to 

understand underlying hardware and hardware developers can provide plug-and-play modules to 

the virtualization layer” [32].  

The framework proposed in this work is shown in figure 12. The lowest layer comprises of the 

various sensors. These devices first need to be registered to be utilized in this framework. There is 

a special registration server for this purpose in the framework. After registration the Middleware 

Layer is responsible for implementing each functionality that the hardware layer may require. It 
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also provides the respective APIs to access the functionalities of each sensor. Furthermore, there 

is also Session Management present in this Middleware Layer that allows management of each 

session such as data acquisition, actuation, etc. As we go up the layers in the framework, it becomes 

possible to provide application developers or other clients/platforms with high level Java APIs 

which they can use in their own applications and interact with the devices.  

 
Figure 12. Software Framework for WSN virtualization [32] 

This framework is further evaluated against our requirements, and the results are summarized 

below: 

1. Node Level Virtualization: The framework proposed in this paper contains a session 

manager that ensures that the no two devices can access the same device at the same time. 

Thus, the concept of node level virtualization is not possible in this work since a device 
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cannot have many concurrent sessions on it. Thus, this first requirement is not satisfied by 

this work. 

2. Publication and Discovery Mechanism: The framework contains a special Registration 

Server where the all the new devices are registered. This Registration Server contains a 

database that stores the relevant information of each device, such as location, module 

supported data types, etc. This database is further utilized for finding appropriate 

functionalities. Thus, this framework contains a mechanism for publication and discovery 

of the devices, which fulfills our second requirement. 

3. Orchestration Mechanism: The framework does not explicitly state any mechanism for 

orchestrating the services of several devices. This implies that our third requirement for an 

orchestration mechanism is not met by this work. 

4. Bare metal access to IoT devices: This framework does not provide any mechanism for 

having access to the devices as bare metal. It only provides virtualization of the WSN. Thus, 

our fourth requirement of having bare metal access to the IoT devices is also not met by this 

work. 

5. Ability to control and use actuators: As mentioned in the framework, actuation tasks are 

handled by the Session Management. However, there is no explicit mechanism or APIs 

described for the management of actuators. Thus, this requirement for controlling and using 

actuators is not completely met by this work.   
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3.3.4. Summary of the State of the Art of Models and Frameworks for aiding 

the IoT IaaS 

Table 2 summarizes the state of the art of the models and frameworks for aiding the IoT IaaS 

against the evaluation of our requirements. In this table a ‘✓’ means that the requirement is met 

by the particular work, whereas a ‘×’ means that the requirement is not met by the work. 

Table 2. Summary of the Related Works involving the models and frameworks for aiding the IoT IaaS 

Papers 
Requirements 

Node Level 
Virtualization 

Publication 
and Discovery 
Mechanism 

Orchestration 
Mechanism 

Bare metal 
access to IoT 

devices 

Ability to 
control and use 

actuators 
Gupta et al. [28] 

and [29] 
×  ×  ×  ×  ×  

Mattos et al. 
[30] 

×  ×  ×  ×  ×  

Mandal et al. 
[31] 

×  ✓  ×  ×  ✓  

K.P.S et al. [32] ×  ✓ ×  ×  × 
 

3.4. Conclusion 

In this chapter, we first provided a motivating use case for the IoT IaaS. This use case was then 

discussed and used to derive the requirements of the IoT IaaS. This was followed by a thorough 

analysis of the current state of the art. We divided the state of the art into two categories: 

architectures for the IoT IaaS, and models and frameworks to aid the IoT IaaS. For the works in 

each of these categories, we first discussed each work in detail and then evaluated the work against 

the set of our derived requirements. Summary tables were also presented to show which 
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requirements were fulfilled by which state of the art. It was observed that none of the current state 

of the art was able to meet all of our derived requirements. 

In the next chapter, the proposed architecture of the IoT IaaS is discussed in detail. All the 

components, functionalities, procedures, and interfaces are thoroughly discussed in it.   
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Chapter 4 

The Architecture of the IoT IaaS 

This chapter involves providing a description of the architecture of the IoT Infrastructure-as-a-

Service proposed in this thesis. First, a high-level view of the architecture is provided, followed 

by the detailed description of the various architectural modules. The detailed description also 

includes the interfaces present within the architecture. Next, we provide a detailed description of 

the procedures pertaining to the architecture along with sequence diagrams for their illustration. 

Finally, the proposed architecture is evaluated against our derived requirements, followed by a 

conclusion to the chapter. 

4.1. High-Level View of the IoT IaaS Architecture 

Figure 13 shows the high-level view of the proposed architecture for the IoT IaaS. The 

architecture consists of the IoT Devices Layer, the IoT Capabilities Management Layer, the IoT 

Cloud Management Layer, the Repository, and several interfaces. The IoT Capabilities 

Management Layer and the IoT Devices Layer have access to the Repository. Moreover, each layer 

contains a Front End that is responsible for processing the incoming request and forwarding this 

request to the appropriate managers within the layer.  

The topmost layer of the architecture is the IoT Cloud Management Layer which is responsible 

for parsing all the incoming requests. This layer includes the Cloud Front End and the Cloud 

Manager. The Cloud Front End  forwards the received request to the Cloud Manager, which can 

handle application requests requiring a single IoT device or several IoT devices. It also specifically 

handles the cases when applications request both sensing as well as actuation capabilities.  
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Next is the IoT Capabilities Management Layer, which is responsible for handling the sensing 

capabilities and the actuation capabilities requested by the applications. This layer includes a 

Capabilities Front End, the Sensing Capabilities Manager and the Actuation Capabilities 

Manager. The Capabilities Front End  receives the request and sends it to either the Sensing 

Capabilities Manager  or the Actuation Capabilities Manager. The Sensing/Actuation Capabilities 

Managers handle the provisioning of the sensing or actuation IoT devices. The Sensing 

Capabilities Manager is responsible for handling application requests for sensing devices, such as 

temperature sensors, humidity sensors, motion sensors, etc., while the Actuation Capabilities 

Manager is responsible for handling requests for actuation devices, such as Lego Mindstorms 

robots, motors, etc. Both these managers are responsible for querying the Repository to find the 

appropriate IoT devices with the requested capabilities, and then handle the provisioning of these 

devices as per the applications’ needs.  

The lowest layer is the IoT Devices Layer, which consists of all the physical IoT devices, the 

virtual IoT devices created on top of the physical devices, and the modules to handle these IoT 

devices. These devices have sensing and/or actuation capabilities and are all heterogenous and 

resource constrained. The virtual IoT devices are basically abstractions of the properties of the 

physical IoT devices. These virtual devices can be orchestrated together to fulfill the needs of 

various applications. The applications that request virtual devices have complete control over the 

provisioned virtual IoT devices. In addition, a physical IoT device can only support a certain 

maximum number of virtualizations running on top of it. For instance, the Advanticsys SkyMote 

can support a maximum of 4 virtualizations on it without running out of memory. The IoT Devices 

Layer is further responsible for handling the creation of virtual devices, as well as the bare metal 

provisioning of the physical IoT devices. It also has the provision to add/update/delete information 
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to/from the Repository based on the status of the IoT devices. This layer includes the IoT Devices 

Front End, Virtual/Bare-Metal Device Manager, and the physical/virtual IoT devices. The IoT 

Devices Front End sends the received request to the Virtual Device Manager or the Bare Metal 

Device Manager, which are responsible for handling the provisioning of the virtual and physical 

IoT devices, respectively. 

There also exists a Repository in the architecture, to which two layers of the architecture have 

access. This Repository includes all the information about the physical as well as the virtual 

devices, including their device IDs, capability descriptions, type of device (sensor/actuator), and 

status (idle/busy). The capability description includes the number of virtual devices the physical 

device can support (if any). For instance, the Repository includes the information of a physical 

Virtenio sensor with its capabilities: temperature sensing, humidity sensing, illuminance, air 

pressure, and acceleration; the virtual sensors created on top of it, their IDs, and their status. 

 
Figure 13. High Level View of the Architecture of the IoT IaaS 
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The architecture also contains several REST based interfaces, which include a high-level 

interface (Int. A) and several inter-layer interfaces. The high-level interface, Int. A, exposes the IoT 

IaaS to be used by various applications, which are shown above this interface in the figure as the 

External Applications layer. However, in addition to these applications, various PaaS can also 

access this IoT IaaS through this interface. In addition, several other interfaces, denoted by Int. B, 

Int. C,  and Int. D, are also present between the different layers in order to facilitate their interaction.  

4.2. Detailed View of the IoT IaaS  

This section provides a detailed description of the various modules present in the architecture. 

More specifically, the details of the internal components of the Managers within the architecture, 

the Repository, as well as the interfaces are provided. A detailed view of the Cloud Manager, the 

Sensing/Actuation Capabilities Manager, and the Virtual/Bare Metal Device Manager are shown 

in figure 14 (a), (b), and (c) respectively. In order to describe these modules in detail, the internal 

components have been categorized into various entities based on their functions within these 

modules. These categories include the Coordinators, Orchestrators, Publication/Discovery 

Entities, and the Interface Mappers. Each of these entities are described in detail in the following 

subsection, followed by a description of the Repository. Finally, this section provides a brief 

description of the interfaces, especially the high-level interface (Int. A) that exposes the IoT IaaS 

to external applications and PaaS, and the inter-layer interface Int. C that allows the virtual and 

bare metal provisioning of the IoT devices.  

4.2.1. Coordinators 

As shown in figure 14 (a), (b), and (c), each of the managers contains a Coordinator entity. The 

main responsibility of the Coordinators is to send the request to the appropriate modules within 
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these managers in addition to facilitating the coordination within the managers’ modules. These 

coordinators have similar, yet slightly different roles in each manager. This section describes in 

detail the role of each Coordinator within the Cloud Manager, the Capabilities Manager, and the 

Device Manager. 

4.2.1.1. Cloud Coordinator 

The Cloud Coordinator is a part of the Cloud Manager in the IoT Cloud Management Layer. 

This component is primarily responsible for directing all the applications’ requests to the 

appropriate component within the IoT Cloud Management Layer or to the underlying layers. All 

the application requests forwarded to the Cloud Manager are first received by the Cloud 

Coordinator. The responsibility of the Cloud Coordinator is to decide whether to forward this 

request to the Cloud Orchestrator within the Cloud Manager, or to the underlying IoT Capabilities 

Management Layer, depending on whether the application request requires the orchestration of the 

services of several IoT devices for sensing and actuation, or only a single device. 

4.2.1.2. Capabilities Coordinator 

The Capabilities Coordinator is present in the Sensing Capabilities Manager and Actuation 

Capabilities Manager within the IoT Capabilities Management Layer. All the requests sent to any 

of the Capabilities Managers first reach its Capabilities Coordinator. This module is responsible 

for checking if the request needs orchestration or not, and then taking appropriate measures to 

handle this request. If only a single device is needed, then the Capabilities Coordinator accesses 

the Discovery Engine for the information of such a matching device and sends a command to the 

underlying IoT Devices Layer for reserving the device to be used as bare metal or creating a 

virtualization of this device. If more than one sensing or actuation devices are needed, in which 
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case orchestration of the capabilities of several devices is needed, it forwards the obtained request 

to the Capabilities Orchestrator within the Capabilities Manager, which further handles the 

request. 

4.2.1.3. Device Coordinator 

The Device Coordinator is present within the Virtual Device Manager and the Bare Metal 

Device Manager within the IoT Devices Layer. It is responsible for coordinating between and 

interacting with the Device Interface Mapper and the Publication Engine in order to provision the 

devices and publish the most up-to-date information into the Repository. In order to provision the 

devices as bare metal, or create virtual devices, the Device Coordinators of the respective 

managers, i.e. Bare Metal Device Manager and Virtual Device Manager, interact with the 

respective Device Interface Mappers so that the devices can be provisioned. Once these devices 

are provisioned, the coordinators further interact with the respective Publication Engines within 

these managers to update the Repository with the information pertaining to the devices. 

 
Figure 14. Detailed View of (a) Cloud Manager in the IoT Cloud Management Layer, (b) Capabilities Manager in 

the IoT Capabilities Management Layer, (c) Device Manager in the IoT Devices Layer 
 

4.2.2. Orchestrators 

The Orchestrators are present within the Cloud Manager, the Sensing Capabilities Manager 

and the Actuation Capabilities Manager. They are responsible for the orchestration of the services 
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of several IoT devices and contain the Orchestration Plan Generator and Orchestration Plan 

Executor. This subsection describes the Cloud Orchestrator present in the Cloud Manager, and 

the Capabilities Orchestrator present in the Sensing/Actuation Capabilities Managers in detail. 

Both these orchestrators have similar roles, with one key difference being that the Cloud 

Orchestrator orchestrates the services of both sensing and actuation devices, while the Capabilities 

Orchestrator only orchestrates the services of specific types of devices (i.e. sensing or actuation). 

This implies that the Capabilities Orchestrator within the Sensing Capabilities Manager 

orchestrates the services of several sensing devices, while the Capabilities Orchestrator within the 

Actuation Capabilities Manager orchestrates the services of several actuation devices.  

4.2.2.1. Cloud Orchestrator 

The Cloud Orchestrator is present within the Cloud Manager in the IoT Cloud Management 

Layer. It is responsible for handling the orchestration of the services of several IoT devices when 

the application needs both sensing and actuation capabilities. It is also responsible for monitoring 

the outputs of the provisioned IoT devices and taking appropriate measures, such as firing 

actuation triggers, whenever the outputs of the devices exceed the specified thresholds. The Cloud 

Orchestrator further contains the Orchestration Plan Generator and the Orchestration Plan 

Executor, which are described below in detail. 

4.2.2.1.1. Orchestration Plan Generator 

The Orchestration Plan Generator within the Cloud Orchestrator is responsible for handling 

the requests when both sensing, and actuation devices are needed by the application. Based on the 

sensing and actuation devices requested, it generates an appropriate Orchestration Plan which will 

meet the needs of the application. This Orchestration Plan also includes the threshold values for 



 75 

the IoT devices, and the actions to be taken when these thresholds are exceeded. This 

Orchestration Plan is further sent to the Orchestration Plan Executor  which is responsible for 

executing the plan.  

A flowchart of the sample Orchestration Plan generated by the Orchestration Plan Generator 

in the Cloud Orchestrator is shown in figure 15 and described below. 

 

Figure 15. Orchestration Plan generated by the Orchestration Plan Generator in the Cloud Orchestrator 

On getting the application’s request for both sensing and actuation devices, as well as the 

thresholds for these devices’ outputs, the Orchestration Plan Generator within the Cloud 

Orchestrator generates an Orchestration Plan. 

The Orchestration Plan is as follows: 

! On receiving the request for sensing and actuation devices, the request is first parsed for the 

specifications of all the sensing and actuation devices, and their thresholds.  

! Next, commands are sent to the underlying IoT Capabilities Management Layer to find the 

suitable sensing and actuation devices and provision them. 
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! If matching devices are not found, and thus the provisioning of all devices cannot take place, 

then the respective message is sent to the Orchestration Plan Generator indicating that the plan 

cannot be executed and thus the application’s request cannot be met. This terminates the plan. 

! If all matching devices are found and provisioned, the IoT devices’ outputs can now be 

monitored for the specified thresholds, if provided by the application. When the IoT devices’ 

outputs exceed the thresholds, the corresponding action trigger is fired. For example, in the case 

of the ‘Anti-Fire Systems’ application, when the obtained temperature sensor value is above a 

certain specified threshold, the command is sent to dispatch the firefighting robots in that area 

to extinguish the fires. 

This Plan is sent to the Orchestration Plan Executor, which executes all the steps in this Plan. 

4.2.2.1.2. Orchestration Plan Executor 

The Orchestration Plan Executor simply executes the Orchestration Plan that it receives from 

the Orchestration Plan Generator. This Orchestration Plan includes all the steps required for 

fulfilling the needs of the application. This, first and foremost, involves checking the request for 

the different devices requested by the application, and further sending the request to the underlying 

IoT Capabilities Management Layer to handle the provisioning of the sensing and actuation 

devices. 

The Orchestration Plan also includes the information about the threshold values for the outputs 

of the IoT devices, and the actions to be taken when these thresholds are exceeded. Thus, the 

Orchestration Plan Executor is also responsible for monitoring these IoT devices once they are 

provisioned. For example, it monitors the outputs of the temperature sensors being used by the 

application. When the outputs of these sensors exceed the specified threshold (indicating a possible 
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fire hazard), it sends commands to the underlying layers to immediately dispatch the fire-fighting 

robots provisioned for this application. 

4.2.2.2. Capabilities Orchestrator 

The Capabilities Orchestrator is present in the Sensing Capabilities Manager and the Actuation 

Capabilities Manager present within the IoT Capabilities Management Layer. It is responsible for 

the orchestration of the services of several IoT devices, when these services belong to the same 

type of device, i.e. sensing or actuation. Thus, the Capabilities Orchestrator within the Sensing 

Capabilities Manager is responsible for orchestrating the services of several sensing devices, while 

the Capabilities Orchestrator within the Actuation Capabilities Manager handles the orchestration 

of several actuation devices. The Capabilities Orchestrator consists of the Orchestration Plan 

Generator and the Orchestration Plan Executor, which are described below. 

4.2.2.2.1. Orchestration Plan Generator 

The Orchestration Plan Generator  within the Capabilities Managers is responsible for 

generating an orchestration plan for orchestrating the services of the various sensing devices or 

actuation devices needed as per the specifications of the request, as well as for monitoring these 

devices. For instance, when several sensing devices are requested, it parses the request for 

specifications of each sensing device. It then accesses the Discovery Engine to check if the required 

devices with the specifications provided in the application’s request are available for provisioning 

or not. Once it receives this information, if all the matching devices required for the application’s 

request are available, it generates an Orchestration Plan and forwards this plan to the 

Orchestration Plan Executor to be executed. However, if any of the devices matching the 
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specifications requested by the application are not available, an Orchestration Plan cannot be 

generated since the needs of the application cannot be met.  

The sample Orchestration Plan generated by the Orchestration Plan Generator within the 

Capabilities Orchestrator of the Sensing Capabilities Manager is shown in figure 16 and 

explained below. 

After storing the information of all the sensing devices that match the devices’ specifications 

requested by the external application, the Orchestration Plan Generator within the Capabilities 

Orchestrator generates an Orchestration Plan, which can be executed by the Capabilities 

Orchestration Plan Executor. The Orchestration Plan is shown in figure 16. 

 

Figure 16. Orchestration Plan generated by the Orchestration Plan Generator in the Sensing Capabilities 

Orchestrator 

The Orchestration Plan Generator generates an Orchestration Plan which is as follows: 

! Let us say that ‘n’ sensing devices were found in the Repository that match the 

application’s request and need to be provisioned. 

! For each device, a command is sent to the underlying IoT Devices Layer to provision this 

device. 
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! The above step is carried out until commands are sent for all the sensing devices needed 

by the application (i.e. device_num is incremented until it is equal to ‘n’). 

! Once all the sensing devices are provisioned, the specific IoT devices’ outputs are now 

monitored. If the outputs exceed the threshold values specified by the application, the 

corresponding measures are taken. For example, in the case of several sensors, this could 

mean starting another sensor when one sensor’s output exceeds the threshold value. This 

concludes the plan. 

This plan is sent to the Orchestration Plan Executor which carries out all its steps. 

4.2.2.2.2. Orchestration Plan Executor 

The Orchestration Plan Executor is responsible for receiving the Orchestration Plan from the 

Orchestration Plan Generator and executing it. Based on the Orchestration Plan, it sends 

commands to the underlying IoT Devices Layer  for the creation of virtual devices and/or 

reservation of devices to be used as bare metal by the applications. Similar to the Cloud 

Orchestrator, it performs all the actions present in the Orchestration Plan, which can also include 

monitoring the outputs of the provisioned IoT devices for thresholds and taking appropriate 

measures based on these outputs. For example, when the threshold of a particular sensor is 

exceeded, it sends commands to start/stop another sensor as per the Orchestration Plan. 

4.2.3. Publication/Discovery Entities 

The publication and discovery modules present within the IoT Capabilities Management Layer 

and the IoT Devices Layer allow for the publication of the IoT devices information into the 

Repository, as well as for the discovery of the suitable devices based on the applications’ needs. 
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This section describes the Discovery Engine in the Sensing/Actuation Capabilities Managers and 

the Publication Engine in the Virtual/Bare Metal Device Managers in detail. 

4.2.3.1. Discovery Engine 

The Discovery Engine is present in the Sensing Capabilities Manager and the Actuation 

Capabilities Manager within the IoT Capabilities Management Layer. It is responsible for 

querying the Repository to find suitable information about the IoT devices as requested by the 

Orchestration Plan Generator in the Capabilities Orchestrator, or the Capabilities Coordinator. 

It interacts directly with the Repository and fetches the information as needed. 

4.2.3.2. Publication Engine 

The Publication Engine is present in the Virtual Device Manager and the Bare Metal Device 

Manager within the IoT Devices Layer. It is responsible for updating the Repository with the most 

relevant information on the physical and virtual IoT devices. Whenever a new physical device is 

added to the Physical IoT Devices layer or a new virtual IoT device is created over the physical 

IoT devices, this component updates the Repository with the information pertaining to these new 

devices. Similarly, it also updates the Repository with the relevant information whenever a device 

is removed from the infrastructure or a virtual device is deleted. If a physical device is reserved to 

be used as bare metal or released by the application using it as bare metal, it again updates the 

Repository with this latest information. It gets the command to do so from the Device Coordinator. 

4.2.4. Interface Mappers 

The Device Interface Mappers are present in the Virtual Device Manager and the Bare Metal 

Device Manager within the IoT Devices Layer. They interact with the proprietary interfaces of the 

IoT devices, and essentially play the role of a ‘mapper’ between these proprietary interfaces and 
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the uniform interfaces. Although the roles of both these Device Interface Mappers are similar, they 

differ in handling the virtual devices and physical devices respectively. The Bare Metal Device 

Interface Mapper and the Virtual Device Interface Mapper are described in this section. 

4.2.4.1. Bare Metal Device Interface Mapper 

The Bare Metal Device Interface Mapper within the Bare Metal Device Manager is responsible 

for controlling the physical devices by directly interacting with them through their proprietary 

interfaces. It acts as a mapper between the uniform bare metal REST based interface, and the 

proprietary interfaces of the IoT devices. Whenever the IoT Devices Layer gets the command via 

the uniform interface to reserve a device to be used as bare metal, this component interacts directly 

with the physical device (through the proprietary interface of this physical device) and reserves it 

for the application. Similarly, it also releases the physical device being used as bare metal when 

the application is done using it. For example, the Bare Metal Interface Mapper uses nesC for 

interacting with the advanticsys sensor when it needs to be reserved as bare metal.  

4.2.4.2. Virtual Device Interface Mapper 

The Virtual Device Interface Mapper is responsible for creating virtualizations of the physical 

IoT devices by interacting with them through their proprietary interfaces. Whenever the IoT 

Devices Layer gets the command via the uniform interface to create a virtual device, this 

component interacts with the physical devices and creates their virtualization as per the 

application’s specifications. Similarly, it also deletes the virtual device when it receives the 

command to do so, when the application is done using the virtual device. Similar to the Bare Metal 

Interface Mapper, it acts as a mapper between the uniform and independent REST based interface 

for creating virtual devices, and the proprietary interfaces of the IoT devices. For example, the 



 82 

Virtual Device Interface Mapper uses Java for creating virtualizations on top of the Virtenio 

sensor. 

 

4.2.5. Repository 

The Repository is essentially a database responsible for storing the latest and most up-to-date 

information pertaining to the physical and virtual IoT devices. There are two types of repositories 

utilized within this IoT IaaS. These repositories are: Physical IoT Device Repository, and the 

Virtual IoT Device Repository. These repositories are described in detail in the subsections to 

follow. 

4.2.5.1. Physical IoT Device Repository 

The Physical IoT Device Repository contains the information about all the physical IoT devices 

present within the infrastructure. It contains information about their capabilities/functionalities, 

type of device (sensor/actuator), device ID, and their status (idle/busy) i.e. whether they have been 

reserved to be used as bare metal or not. The capability description would also include the number 

of virtual devices the physical device could support (if any). For instance, the Repository would 

include the information of a physical Virtenio Preon32 Shuttle + VariSen sensor with its 

capabilities, i.e. temperature sensing, humidity sensing, illuminance, air pressure, and acceleration, 

and the virtual sensors created on top of it, their IDs, and status. 

4.2.5.2. Virtual IoT Device Repository 

The Virtual IoT Device Repository contains information about all the virtualized devices created 

on top of the physical devices. It contains information about their capabilities/functionalities, type 

of device (sensor/actuator), device ID, and status. 
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4.2.6. Interfaces  

For the interaction between the layers of the proposed architecture, several interfaces have been 

designed. The general principle used to design these interfaces is the use of the REpresentational 

State Transfer (REST) architectural style. The interfaces between the layers expose CRUD 

(Create, Read, Update, Delete) operations. For instance, the interface between the applications and 

IoT Cloud Management Layer (Int. A) allows the applications to send a request to the IoT Cloud 

Management Layer to create a sensor + actuator module with given sensor and actuator parameters 

(e.g., service-type, location, sampling rate, etc.), whenever a combination of sensors and actuators 

is required by the application. It also allows the applications the get the sensors data and a list of 

actuator actions. Table 3 demonstrates the uniform interface we propose for Interface A. Each 

sensor+actuator module is identified by a unique ID.  

Table 3. Summary of the API to access the IoT IaaS (Interface A) 

Plane Operation Explanation Focus 
Point Example Values Resource URL 

Control 
create_sam 
(sensor 
actuator 
module) 

Create a 
sensor_actuator 
module with 
given sensor 
and actuator 
parameters. 

Method: POST 

<BASE_URI> 

Parameters 

{sensor: [{service-
type, location, 
sampling-rate, data-
mode}], 
actuator:[{service-
type, location}]} 

Success 200 OK <ID> 

Failure 

Error message/code 
(e,g – 404 Not 
Found, 422 
Unprocessable 
Entity) 

Control delete_sam 
Delete the 
sensor_actuator 
module with ID  

Method: DELETE 

<BASE_URI/ID> Parameters  

Success 200 OK <ID> 
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Failure 
Error message/code 
(e,g – 404 Not 
Found)  

Data get 

Gets the sensor 
output/data and 
list of actuator 
actions 
(actionIDs for 
each action the 
actuator can 
perform) 

Method: GET 

<BASE_URI/ID/sam_data> 

Parameters  

Success 200 OK 

Failure 
Error message/code 
(e,g – 404 Not 
Found) 

Data post 

Specify the 
threshold value 
for the sensor 
and its 
corresponding 
actuator action 

Method: POST 

<BASE_URI/setter> 

Parameters 

{mappings: 
[{samID:xx, 
sensor_ID: xx, 
sensor_threshold : 
[{type:range/const, 
val:xxx,…}], 
actuator_ID:xx, 
action_URI: 
xx},…]} 

Success 200 OK 

Failure 
Error message/code  
(e,g – 404 Not 
Found, 403 
Forbidden)  

 

Similarly, the interfaces for provisioning of the IoT devices as bare metal, and creation of virtual 

devices are shown below. The Int. C (Interface C) comprises of these interfaces for the 

provisioning of devices. Table 4 shows the RESTful API for provisioning of the bare metal 

devices. Each physical device has a unique UUID. The table shows the request types for reserving 

a device as bare metal, getting list of devices which are available to be provisioned as bare metal, 

releasing the device being used as bare metal. Similarly, table 5 and 6 show the APIs for 

provisioning virtual actuators and sensors respectively, identified by unique UUIDs.  

The interfaces Int. B and Int. D are simply concerned with exchanging the information 

pertaining to the applications’ requests between the IoT Cloud Management Layer and the IoT 
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Capabilities Management Layer, and the exchange of IoT devices information between the 

Repository and the Publication/Discovery Engines respectively. Thus, they are not as full-fledged 

as the interfaces summarized below. 

Table 4. Summary of the API for the Bare Metal Provisioning of IoT Devices. 

Plane Operation Explanation Focus Point Example Values Resource URL 

Control reserve_biot 

Reserve the 
physical IoT 
device to be 
accessed as 
bare metal for 
the 
application 
requesting it 

Method POST 

<BASE_URI/UUID> 

Parameters {status (e.g. 
busy)} 

Success 200 OK 
<UUID> 

Failure 

Error 
message/code 
(e,g – 404 Not 
Found on giving 
uuid that does 
not exist) 

Control  get 

Get list of 
UUIDs of 
IoT devices 
(to access as 
bare metal) 

Method: GET 

<BASE_URI/LIST_IOT> 

Parameters  

Success 200 OK 

Failure 
Error 
message/code 
(e,g – 404 Not 
Found)  

Control release_biot 

Release the 
physical IoT 
device once 
application is 
done using it 

Method POST 

<BASE_URI/UUID> 

Parameters {status (e.g. 
idle)} 

Success 200 OK 
<UUID> 

Failure 

Error 
message/code 
(e,g – 404 
Not Found on 
giving uuid that 
does not exist) 
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Table 5. Summary of the API for Creating a Virtual Actuation Device. 

Plane Operation Explanation Focus 
Point Example Values Resource URL 

Control create_act 
Create virtual 
actuator with 
given 
parameters 

Method: POST 

<BASE_URI> 

Parameters {service-type, 
location} 

Success 200 OK <UUID> 

Failure 

Error 
message/code  
(e,g – 404 
Not Found, 422 
Unprocessable 
Entity)  

Control delete_act 
Delete 
actuator 
identified by 
the UUID 

Method: DELETE 

<BASE_URI/UUID> 

Parameters  

Success 200 OK <UUID> 

Failure 
Error 
message/code  
(e,g – 404 
Not Found)  

Control get 
List all actions 
that the actuator 
can perform 

Method: GET 

<BASE_URI/UUID/actions> 

Parameters  

Success 200 OK 

Failure 
Error 
message/code  
(e,g – 404 
Not Found)  

Data post 
Post request 
trigger for firing 
an action in the 
actuator 

Method: POST 

<BASE_URI/UUID/actions/ 
actionid> 

Parameters 
{event_start_time, 
status (eg. on/off), 
action_duration 
etc.} 

Success 200 OK 

Failure 
Error 
message/code  
(e,g – 404 Not 
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Found, 422 
Unprocessable 
Entity)  

Control get 

List the device’s 
specifications 
(eg. location, 
manufacturer, 
serial number) 
and device’s 
configurable 
settings (eg. 
uptime, task-
mode, (other 
device specific 
settings)) 

Method: GET 

<BASE_URI/UUID> 

Parameters  

Success 200 OK 

Failure 
Error 
message/code  
(e,g – 404 
Not Found)  

Control post 

Configure 
device 
parameters or 
settings that can 
be configured 
by user 

Method: POST 

<BASE_URI/UUID> 

Parameters 

{set-task-
mode=XX 
(specific to 
device, for eg. 
Standard 
mode/advanced 
mode for 
particular action), 
set-velocity=XX 
(eg. In case of 
robots set their 
velocity or other 
device specific 
parameters) etc.} 

Success 200 OK 

Failure 

Error 
message/code (e,g 
– 404 Not Found, 
422 
Unprocessable 
Entity)  

 

Table 6. Summary of the API for Creating a Virtual Sensing Device 

Plane Operation Explanation Focus Point Example Values Resource URL 

Control create_sen Create virtual 
sensor with Method: POST <BASE_URI> 
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given 
parameters Parameters 

{service-type, 
location, sampling-
rate, data-mode} 

Success 200 OK <UUID> 

Failure 
Error message/code  
(e,g – 404 Not Found, 
422 Unprocessable 
Entity)  

Control delete_sen 
Delete sensor 
identified by 
the UUID 

Method: DELETE 

<BASE_URI/UUID> 

Parameters  

Success 200 OK <UUID> 

Failure 
Error message/code  
(e,g – 404 
Not Found)  

Data get 
Get the data 
from the virtual 
sensor device 

Method: GET 

<BASE_URI/UUID/data> 

Parameters  

Success 200 OK 

Failure Error message/code  
(e,g – 404 Not Found)  

Control get 

List the device’s 
specifications 
(eg. location, 
manufacturer, 
serial number), 
capabilities, and 
device’s 
configurable 
settings (if any) 

Method: GET 

<BASE_URI/UUID> 

Parameters  

Success 200 OK 

Failure 
Error message/code  
(e,g – 404 
Not Found)  

4.3. Procedures  

The proposed architecture consists of three sub-procedures within the layers of the IoT IaaS, as 

well as two procedures that span several layers and may contain the specified sub-procedures. This 
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section describes each of these procedures in detail. These main procedures spanning several layers 

of the architecture are: IoT Devices Provisioning, and IoT Devices Monitoring.  

4.3.1. Procedures within the Layers of the Architecture 

The procedures within the layers of the IoT IaaS architecture include orchestration, device 

capabilities management, and virtual device creation/device reservation. Each of these procedures 

are described in this subsection. These procedures may further act as sub-procedures for the 

procedures that span several layers, and which are described in the upcoming subsections in this 

chapter.  

4.3.1.1. Orchestration 

The orchestration procedure is essential to the IoT IaaS when the orchestration of the services 

of several IoT devices is required as per the applications’ requests. The Orchestrators present 

within the respective Managers, i.e. Capabilities Manager and/or the Cloud Manager, are 

responsible for carrying out this orchestration. The orchestration procedure starts with a request 

being forwarded to the orchestration component to orchestrate the services of 2 or more devices. 

On receiving this request, the Orchestration Plan Generator within the Orchestrator of the 

appropriate Manager, creates an Orchestration Plan  for orchestrating the services of the devices, 

and monitoring the devices. The Orchestration Plan Executor of this Manager further handles the 

execution of this Orchestration Plan. If the application’s request is for a combination of sensing 

and actuation devices, the Cloud Orchestrator handles this orchestration, whereas if the 

application’s request is for a combination of only sensing devices or only actuation devices, then 

the Capabilities Orchestrator present within the respective Capabilities Manager, i.e. Sensing 

Capabilities Manager or Actuation Capabilities Manager, handles the orchestration of the 
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devices’ services. Furthermore, the orchestration procedure would also include monitoring the 

outputs of the devices based on specified thresholds once the provisioning is completed. Figures 

18 and 19 highlight the IoT devices provisioning procedure, which is described in the upcoming 

subsections. The sequence diagrams in these figures also show the sequence of steps when the 

request reaches the Cloud Orchestrator or the Capabilities Orchestrator respectively.  

In the motivating ‘Smart Factory’ scenario presented in chapter 3, the ‘Monitoring of Cooling 

Systems’ application will use this procedure when requesting for temperature and humidity 

sensors. Since this application will require only sensing devices, the Capabilities Orchestrator 

within the Sensing Capabilities Manager will handle the orchestration of the temperature and 

humidity sensing devices. Similarly, in the case of the ‘Anti-Fire Systems’ application, the Cloud 

Orchestrator within the Cloud Manager will handle this orchestration since both sensing and 

actuation capabilities would be needed. 

4.3.1.2. Device Capabilities Management 

The Device Capabilities Management procedure is carried out by the Sensing Capabilities 

Manager and the Actuation Capabilities Manager within the IoT Capabilities Management Layer. 

This procedure handles the management of the sensing and actuation capabilities of the IoT 

devices. Primarily, it involves querying the Repository to find the appropriate and available sensing 

or actuation devices as per the needs of the application. For instance, in the case of the ‘Smart 

Factory’ scenario, all the applications would require access to sensing or actuation devices. In this 

case, the Device Capabilities Management procedure would be used to find the most appropriate 

devices that can fulfill the applications’ needs. Furthermore, this procedure would not only be used 

for applications requiring single IoT devices, but also for applications requiring several IoT 
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devices, in which case the Orchestration procedure would require the devices’ data obtained from 

the Device Capabilities Management procedure.  

4.3.1.3. Virtual Device Creation/ Device Reservation 

This procedure is carried out by the Virtual Device Manager or the Bare Metal Device Manager 

in the IoT Devices Layer. This procedure involves two distinct functions, which include interacting 

with the proprietary interfaces of the physical IoT devices to virtualize them or provision them to 

be used as bare metal, and publish the most relevant information pertaining to these physical and 

virtual IoT devices into the repository. Furthermore, once the devices are provisioned based on the 

applications’ requests, the appropriate ‘device reserved/virtualization created’ messages must also 

be returned. The Virtual Device Manager is responsible for creating virtual devices on top of the 

physical IoT devices and for publishing their information into the repository, while the Bare Metal 

Device Manager does the same for the bare metal provisioning of the physical IoT devices. 

Within the ‘Smart Factory’ use case mentioned in chapter 3, the ‘Anti-Fire Systems’ application 

will require bare metal access to the fire-fighting robots in order to reduce latency. In order to 

achieve this, the Device Reservation procedure would be utilized by the IoT Devices Layer to 

provide bare metal access to the robots. 

4.3.2. Procedures spanning several Layers of the Architecture 

The procedures that span several layers of the architecture are described in this subsection. 

These include the IoT Devices Provisioning and the IoT Devices Monitoring procedures. 

4.3.2.1. IoT Devices Provisioning 

The IoT Devices Provisioning procedure involves the provisioning of the various sensing and 

actuation devices as bare metal or as virtual devices on top of the physical IoT devices. This 
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procedure, which involves the provisioning of the required devices (sensors, actuators), would 

further include the sub-procedures, which are Orchestration, Device Capabilities Management, 

and Virtual Device Creation/Device Reservation explained in the previous subsection. This 

procedure spans all the layers of the architecture, since the request must pass through each layer 

in order to finally allow the IoT devices to be reserved or virtualized. 

The request received by the IoT IaaS is first processed and if several devices are requested, i.e. 

orchestration is needed, then it is performed by the appropriate Orchestrator, i.e. the Cloud 

Orchestrator or the Capabilities Orchestrator. The Device Capabilities Management procedure is 

further used to find the appropriate device or devices that can be provisioned. The last step of this 

procedure involves the Virtual Device Creation/Device Reservation, i.e. the virtual devices are 

created on top of the physical IoT devices, or the physical IoT devices are reserved to be used as 

bare metal. The sequence diagrams for the IoT Devices Provisioning procedure are shown in 

figures 17, 18 and 19. Figure 17 shows the provisioning of a single IoT device, where the sequence 

diagram depicts step-by-step how the request passes through the appropriate components in each 

layer. For provisioning a single IoT device orchestration is not required. Similarly, figure 18 shows 

the sequence diagram for provisioning a combination of several sensors and actuators, while figure 

19 shows the sequence of steps for provisioning several devices of only one specific type (i.e. 

sensing or actuation), in this case, several sensing devices. These diagrams depict how these 

different types of requests pass through the various layers in the architecture, and which 

components are responsible for handling them.  

In the motivating ‘Smart Factory’ scenario, this procedure proves critical as every application 

must send a request to the IoT IaaS to provision the devices it requires. For instance, the ‘Smart 

Energy Systems’ application will send the request to the IoT IaaS, which will use the IoT Devices 
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Provisioning procedure to provide motion sensors and actuators for controlling electricity systems 

to the application.  

 

Figure 17. Sequence Diagram for Provisioning a Single IoT Device 
 

 
Figure 18. Sequence Diagram for Provisioning of Sensing and Actuation IoT Devices 
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Figure 19. Sequence Diagram for Provisioning of Several Sensing Devices 

 

4.3.2.2. IoT Devices Monitoring  

The IoT Devices Monitoring procedure involves monitoring the outputs of the IoT devices to 

detect the specified thresholds. Once the thresholds are exceeded, it is further responsible for taking 

appropriate actions as per the applications’ specifications. Thus, this procedure is not only 

responsible for monitoring the IoT devices, but also for automatically sending control commands 

to other IoT devices whenever the threshold values are exceeded. The Orchestrators present within 

the Cloud Manager and the Capabilities Manager handle this monitoring of the devices’ outputs. 

The threshold values, mentioned above, are incorporated into the Orchestration Plan, which is 

generated by the Orchestration Plan Generator and executed by the Orchestration Plan Executor 

of the appropriate managers. The Orchestration Plan Executor then constantly checks the IoT 

devices for the outputs matching or exceeding the threshold values, and further sends commands 

to the underlying layers to fire the appropriate actuation triggers or control other sensing IoT 

devices. Figure 20 shows the sequence diagram for the IoT Devices Monitoring procedure. 
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Within the ‘Smart Factory’ use case, the ‘Anti-Fire Systems’ application will use this procedure 

to monitor the values of the temperature and humidity sensors. Once these sensors exceed the 

specified thresholds, the fire-fighting robots would automatically be launched. 

 
Figure 20. Sequence Diagram for IoT Devices Monitoring Procedure 

 

4.4. Evaluation of the Proposed Architecture against the Requirements 

It is essential to evaluate our proposed architecture against the requirements derived from the 

motivating use case. In fact, it is observed that this architecture fulfills all the requirements.  

The provision of several virtual devices on top of the same physical device based on the 

applications’ needs aim to increase resource utilization by running several applications 

simultaneously on the physical device. Thus, the architecture relies heavily on node level 

virtualization, which fulfills our first requirement. 

The proposed architecture consists of a Publication Engine in both the Virtual Device Manager 

and Bare Metal Device Manager, which are responsible for publishing the most relevant 

information on the virtual devices and the physical devices respectively into the Repository. This 
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includes information about addition of new devices, deletion of devices, and their current status. 

In addition, the Sensing Capabilities Manager and Actuation Capabilities Manager both consist 

of a Discovery Engine which is responsible for querying the Repository and fetching information 

about the matching devices based on the request received.  

Thus, there exists a mechanism for the publication and discovery of the devices’ services, 

which satisfies our second requirement. 

The proposed architecture consists of a mechanism for orchestration. The Cloud Manager 

contains a Cloud Orchestrator, which is responsible for handling the orchestration of the 

capabilities of the sensing and actuation devices. In addition, the Sensing Capabilities Manager 

and Actuation Capabilities Manager both contain the Capabilities Orchestrator, which is 

responsible for handling the orchestration of the capabilities of several sensing devices or of 

several actuation devices respectively.  

Thus, it can be seen that there exists a proper orchestration mechanism to orchestrate the 

capabilities of the different IoT devices. Hence, our third requirement is fulfilled by the 

proposed architecture.  

The proposed architecture supports the bare metal provisioning of IoT devices. The Bare Metal 

Device Manager present in the IoT Devices Layer is responsible for reserving devices to be used 

as bare metal by the applications. It achieves this by interacting with the proprietary interfaces of 

the physical IoT devices.   

Thus, the architecture supports the bare metal provisioning of the IoT devices, which 

satisfies our fourth requirement. 

Finally, the architecture consists of a mechanism for using and controlling actuators. The 

architecture contains the Actuation Capabilities Manager, which is responsible for the 
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provisioning and control of actuation devices by sending appropriate commands to the underlying 

layers. To facilitate this, the architecture contains RESTful APIs for interacting with the actuator 

devices.  

Thus, our fifth requirement of the ability to control and use actuators is fulfilled by the 

proposed architecture.  

4.5. Conclusion 

In this chapter, we provided a detailed description of the architecture of the IoT Infrastructure-

as-a-Service proposed in this thesis. We began by providing a high-level view of the architecture, 

followed by a detailed view of the various architectural modules and interfaces. Next, we described 

the procedures pertaining to the architecture along with several detailed sequence diagrams for 

their illustration. Finally, we provided a justification of our proposed architecture by evaluating it 

against our derived requirements.  

In the next chapter, we will present the implemented prototype and describe the tools and 

platforms used. In addition, we will also analyze the performance metrics for the architecture’s 

evaluation and derive conclusive results. 
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Chapter 5  

Validation of the Architecture 

This chapter begins by providing an overview of the implemented prototype architecture. This 

overview includes a brief description of the implemented scenario and the implemented prototype, 

followed by the details of the hardware and software used. We then provide the detailed description 

of the prototype architecture, which includes the description of each implemented layer of the 

prototyped architecture using the bottom-up approach, and a validation summary. This is followed 

by a detailed section on the performance evaluations, which includes the description of the 

performance metrics, the experimental setup, and a thorough analysis of the results obtained. In 

addition, the performance evaluation also includes testing the scalability of the IoT IaaS by 

provisioning a large number of devices through extensive simulations. Finally, we conclude the 

chapter by providing its summary.  

5.1. Prototype Architecture Overview 

In this section we first describe the implemented scenario, followed by a high-level description 

of the working of the prototype. Finally, we present a brief description of the hardware and 

software used for the implementation of this prototype. 

5.1.1. Implemented Scenario 

The implemented scenario consisted of a subset of our motivating use case. The ‘Anti-Fire 

Systems’ and ‘Monitoring of Cooling Systems’ applications were implemented for this purpose. 

For the ‘Anti-Fire Systems’ application, both the sensing capabilities (temperature sensing and 

humidity sensing) and actuation capabilities (firefighting robot movement) were considered. For 



 99 

the ‘Monitoring of Cooling Systems’ application, only the sensing capabilities (temperature 

sensing and humidity sensing) were considered. The actuation capabilities for this application were 

excluded. The sensors (for temperature and humidity sensing) used were from two different 

vendors, Advanticsys (CM5000 TelosB SkyMote) and Virtenio (Preon32 Shuttle and VariSen 

module), while the actuator (robot) used was the LEGO Mindstorms EV3 robotics kit. For both 

the applications, the sampling rate for temperature and humidity sensing was set to 1 

sample/second. In the case of the ‘Anti-Fire Systems’ application, the requirement was to start the 

robot as soon as the temperature and humidity sensing values exceeded a pre-defined threshold. 

For trial purposes this threshold was set to 25ºC for the temperature sensor and 50% relative 

humidity for the humidity sensor. The threshold of 25ºC for the temperature sensor was simply 

chosen for the purpose of experimentation.  In the case of the ‘Monitoring of Cooling Systems’ 

application, the requirement was to raise an alert message whenever the temperature and sensing 

values exceeded beyond the pre-defined threshold. 

Both the applications required orchestration of several services. While the ‘Anti-Fire Systems’ 

application required the orchestration of both sensing and actuation capabilities, the ‘Monitoring 

of Cooling Systems’ application only required the orchestration of multiple sensing capabilities. 

More specifically, the ‘Anti-Fire Systems’ application required sending a request to the IoT IaaS 

for temperature sensor, humidity sensor, and EV3 LEGO robot, along with arbitrary thresholds for 

values of temperature and humidity sensors. Since these are several devices, orchestration was 

needed, and the virtualizations of these devices or bare metal access to these devices needed to be 

provisioned. Next, the temperature and humidity sensor readings were to be constantly monitored 

and as soon as the value of the temperature and humidity sensors crossed the specified threshold, 

the EV3 robot was to be automatically started. A similar procedure was required for the 
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‘Monitoring of Cooling Systems’ application, except that this application did not require an 

actuator, instead it required that an alert message be issued to the application when thresholds were 

exceeded. Both the applications required access to common IoT devices (temperature sensor and 

humidity sensor). The devices were, thus, to be shared by creating virtualizations that would be 

accessed independently by these applications or by provisioning some devices as bare metal for 

an application, depending on the application’s request.  

5.1.2. Description of the Implemented Prototype 

In order to access the IoT IaaS, a REST API (Application Programming Interface) has been 

implemented that allows the applications to utilize the services of the IoT IaaS in a uniform 

manner. This further enables the programming interface to be platform/language independent. The 

interfaces for provisioning of virtual sensors and actuators, and bare metal provisioning of IoT 

devices, as well as interaction between the different components in the architecture, are also sets 

of REST APIs. 

The captured application request is parsed by the IoT IaaS and on successful completion of the 

request the results are returned to the application with the appropriate URIs to access the devices, 

whether virtualized, composite, or reserved for bare metal access. In the case of monitoring IoT 

devices for thresholds, the responses returned include messages indicating that the threshold is 

exceeded, as well as messages indicating the successful completion of actions triggered on 

threshold surpassing. In order to match devices with the applications requests, the application 

requests are parsed for parameters such as type of device/devices (i.e. sensor/actuator), 

functionalities of devices (eg. temperature sensing, humidity sensing, movable robot), virtualized 

or bare metal access to the devices, sampling-rate (in case of temperature and humidity sensors).  
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In order to validate the prototype, we conducted experiments using the following physical 

devices: an Advanticsys TelosB CM5000 SkyMote (temperature and humidity sensing), a Virtenio 

Preon32 Shuttle with VariSen module (temperature and humidity sensing), and a LEGO EV3 

Mindstorms robot (actuation). In addition, Contiki Cooja was used to simulate SkyMotes 

(temperature and humidity sensing) up to a limit of 1000 devices to test the scalability of the IoT 

IaaS. First, each of the single physical devices were individually used for bare metal provisioning 

as well as creation of virtual devices. Next, for validating the ability of the IoT IaaS to monitor the 

outputs of the IoT devices (in this case, sensing device) and immediately take appropriate actions 

(in this case, sending command to actuator) based on the applications’ needs, the EV3 robot and 

Virtenio sensor were provisioned to get both the actuation and sensing capabilities respectively. 

Finally, in order to test the scalability of the IoT IaaS, provisioning of 2, 4, 8, 10, 16, 32, 100, 200, 

400, and 1000 SkyMotes was carried out using Contiki Cooja Simulator. This setup was also 

utilized to validate the orchestration of the services of these devices.  

5.1.3. Software and Hardware Used 

In this section, we briefly describe the software and hardware used while implementing the 

proof-of-concept prototype. 

5.1.3.1. Advanticsys TelosB SkyMote – CM5000 

The Advanticsys CM5000 TelosB sensor is a wireless IoT device which has limited processing 

power and memory, and is IEEE 802.15.4 compliant. It is based on the TelosB platform, which is 

designed by University of California, Berkeley and is open source. This SkyMote comes with three 

sensing capabilities, which are temperature sensing (within the range -40 ~ 123.8 ºC), humidity 

sensing (within the range 0 ~ 100% RH), and light intensity sensing. The capabilities utilized in 
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our implementation prototype only included temperature and humidity sensing. The sensor 

contains a USB interface that can be used to connect with the device and program it. The 

programming language required to program this device is C-like, called NesC. It can be used 

wirelessly by inserting 2xAA batteries or can be used by powering up through the USB connector. 

It is compatible with TinyOS and ContikiOS [33]. We used ContikiOS to connect with, and 

program the device.  

 
Figure 21. The Advanticsys TelosB SkyMote (©AdvanticsysTM) 

5.1.3.2. Virtenio Preon32 Shuttle with VariSen Module 

The Virtenio Preon32 Shuttle is a radio module with a 32-bit microcontroller and IEEE 802.15.4 

compatibility. It contains interfaces such as USB, SPI, I2C, CAN. It does not possess any sensing 

capabilities but has an expansion module, the VariSen Module, which is the ultimate sensor 

extension for it. This VariSen Module contains several different sensing capabilities, which are 

temperature (in the range -40°C to  +105°C),  humidity  (in  the  range 0  to  100 %RH), 

illuminance, air pressure, and acceleration. However, only temperature sensing and humidity 

sensing were used in our prototype. The Preon32 shuttle can be programmed in Java and consists 

of a JavaVM for embedded sensors developed by Virtenio on it. This JavaVM contains Java 

libraries that are modified for these sensors and not the same as the standard Java libraries [34,35]. 
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The Virtenio documentation for these Java Libraries is provided along with concrete examples on 

how to utilize the interfaces and access the sensors. The Virtenio Pren32 Shuttle is more capable 

compared to the Advanticsys CM5000 and can be battery operated or connected to a power source.  

  
 

Figure 22. Virtenio Preon32 Shuttle and VariSen Module (©VirtenioTM) 

5.1.3.3. LEGO Mindstorms EV3 

We used LEGO Mindstorms EV3 robot as part of the prototype. The EV3 is the third generation 

of robots in the LEGO Mindstorms series and was released in 2013. The programmable robotics 

kit of EV3 contains a programmable brick that can be programmed using the original firmware 

which comes pre-installed on it, or in Java using the LeJOS firmware, which is a replacement to 

the original firmware and includes a Java Virtual Machine [36]. In our prototype, we installed the 

leJOS firmware on the brick to program it. The kit includes the brick, three servo motors, color, 

touch, and IR sensors [37]. The kit contains several pieces that can be assembled to make several 

types of robots. In our prototype we built the basic EV3 ‘Botticelli’ robot. The robot built in our 
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prototype in the lab is shown in figure 23. The robot can be powered up using the rechargeable 

batteries provided in the kit or using 6xAA batteries. It can be connected to the laptop/PC via USB 

or via Bluetooth. It is easy to program and reusable since the same kit can be utilized to make 

several robots with different functionalities.  

 

Figure 23. EV3 Robot Built in our Lab for the Proof-of-Concept Prototype from the EV3 LEGO Mindstorms Kit 

5.1.3.4. Contiki Cooja 

Contiki operating system is an open source OS for memory and resource constrained 

microcontrollers and other IoT devices. It allows efficient applications to be developed for these 

IoT devices, which can fully utilize the hardware and provide low-power wireless communication 

[38]. Cooja is a network-simulator application for Contiki OS. It permits the emulation of real IoT 

devices with special focus on the simulation of wireless sensor networks. It supports several 

standards such as IEEE 802.15.4, Contiki-RPL, uIPv6 stack, etc. [39]. It can simulate various 
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sensor motes such as SkyMote, Z1 mote, Wismote mote etc. without using any actual physical 

motes. We used Contiki Cooja for simulating several Sky Motes to test the scalability performance 

of the IoT IaaS. In our implementation, we used Instant Contiki with ContikiOS version 3.0. Instant 

Contiki allows easy installation and usage of ContikiOS since it is a virtual machine having all the 

required software and toolchains. 

5.1.3.5. JVM 

A Java Virtual Machine (JVM) makes it possible to run java bytecode on a hardware processor. 

It is essentially a virtual machine that allows java programs, or programs from other languages 

compiled into bytecode, to run on machines irrespective of the underlying platforms or operating 

systems. Thus, it enables interoperability. In our infrastructure, the Virtenio Preon32 Shuttle comes 

with the PreonVM installed on it, which is a modified version of the JVM for the embedded 

systems. It allows java bytecode to run on the Virtenio sensor, and includes all data types, several 

libraries and drivers.  

5.1.3.6. Python-Flask 

Flask is a microframework for python that does not require specific libraries or tools. Flask 

makes it easy to add several different types of functionalities to application through the various 

extensions that it supports. For instance, in our implementation, Flask was used to build REST 

APIs with ease. The Flask-RESTful extension adds support for building REST APIs quickly. 

Although, even without this RESTful extension Flask can easily allow building of REST APIs and 

handling of HTTP requests.  
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5.1.3.7. Python Requests Library 

The python Requests library makes it easy to send HTTP requests easily. Simple methods for 

‘get’, ‘post’, ‘put’, ‘delete’ etc. can be utilized for sending requests. Moreover, a response object 

gets returned for every request, which has data such as status, encoding, etc. [40]. In our 

implementation, the Requests library was used by the applications to issue requests to the IoT IaaS. 

It was also utilized by the various components in the architecture to forward requests and thus 

interact.  

5.1.3.8. MySQL 

MySQL is one of the most utilized open source relational database management system. It 

allows the storage of data in a structured manner. SQL is used for sending commands to the 

database to perform operations such as adding data, modifying data, deleting data, etc., through 

the MySQL server. Since this comprises of relational databases, all the data is stored in tabular 

form, with several tables having relationships between them such as pointers, one-to-many, one-

to-one etc. MySQL is open source, fast, reliable, and easy to use [41]. Moreover, python’s MySQL 

driver can allow python programs to have access to and control databases.  

5.1.3.9. Programming Languages and IDE Used 

For programming the IoT devices, the languages used were Java and nesC. The IDE used was 

the Eclipse IDE. The leJOS plugin was installed on the Eclipse IDE in order to enable the 

programming of the EV3 LEGO Mindstorms robot. In order to implement the REST APIs, the 

applications, and the various components of the architecture, python was used. Primarily, python-

flask along with libraries such as Requests, MySQL driver were used. The IDE used for python 

programming was Visual Studio Code. 
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5.2. Prototype Architecture 

The architecture of the prototype is shown in figure 24. As shown in this architecture, the ‘Anti-

Fire Systems’ application and ‘Monitoring of Cooling Systems’ application are able to utilize the 

services of the IoT IaaS by sending requests for the provisioning of devices.  

 

Figure 24. Prototype Architecture for the IoT IaaS 

In the subsections to follow, the details of the IoT IaaS implementation prototype are discussed 

along with a description of the interfaces and the applications. Finally, a short summary of the 

prototype validation is provided.  

5.2.1. IoT IaaS Prototype 

In this section, we describe each implemented layer of the prototype using the bottom up 

approach. For each of these layers we discuss the components implemented, or excluded, and how 
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the implementation was carried out. The Repository implementation and the implementation of the 

applications and interfaces is also discussed.  

5.2.1.1. IoT Devices Layer 

For the implementation of the prototype, the physical sensing devices used were from two 

different vendors. These devices were the Virtenio Preon32 Shuttle with the VariSen module and 

the Advanticsys CM5000 TelosB SkyMote. Both these devices had temperature and humidity 

sensing capabilities. In addition, Contiki Cooja was used to simulate several TelosB SkyMotes 

with simulated temperature and humidity sensing. The actuation device used was the LEGO 

Mindstorms EV3 robot. The virtual sensing and actuation devices were run on top of the physical 

IoT devices. The simulated sensors in Contiki Cooja also supported running several virtual 

instances on each simulated sensor.  

The Virtenio Preon32 Shuttle with VariSen module was programmed in Java with the help of 

the modified Java libraries for embedded systems developed by Virtenio. The Advanticsys 

CM5000 TelosB SkyMote and the simulated SkyMotes on Contiki Cooja were programmed in a 

C-like language known as nesC. Lastly, the EV3 robot was programmed in the Java language using 

the leJOS firmware, which was installed on the robot and provided libraries for controlling the 

robot. The IoT Devices Front End was implemented using python-Flask. The components within 

the Bare Metal Device Manager and the Virtual Device Manager were all implemented, with the 

Device Coordinators being implemented using python. The Device Interface Mappers present 

within these managers received the command from the Device Coordinators, and then handled 

these requests by directly interacting with the proprietary interfaces of the IoT devices, which 

included utilizing Java and nesC programs for controlling the devices. The implementation of the 

Publication Engine present within these managers required the use of python and the MySQL 



 109 

driver of python to interact with the Repository and publish information pertaining to the IoT 

devices on it. For implementing the publishing capability of the Publication Engine in a simplified 

manner, some details such as functionality of the specific device, type of the device were set to 

predefined values for the specific devices, so that whenever these devices would connect to the 

IoT IaaS, their information would be added to the Repository. For example, when the EV3 robot 

would connect to the IoT IaaS, its information would be published into the repository with 

predefined value “moveable” for functionality of device, and predefined value “actuator” for type 

of device.  

5.2.1.2. Interface C (Int. C)  

The interface for interacting with the IoT Devices Layer (Int. C) was implemented using the 

REST architectural style. For virtual devices provisioning, operations for creation, deletion of 

virtual devices, fetching data, fetching capabilities, fetching and modifying the configurable 

settings were implemented. In addition, for virtual actuators, extra operations were implemented 

for fetching the list of actions that the actuator could perform, and for firing actuation action 

triggers. For bare metal provisioning of devices, operations such as getting list of physical devices 

available for bare metal provisioning, reserving device for bare metal access, and releasing device 

from bare metal access were implemented. Python-flask was used for creating the REST API for 

the implementation of this interface. 

5.2.1.3. IoT Capabilities Management Layer 

Within the IoT Capabilities Management Layer, the Capabilities Front End, the Sensing 

Capabilities Manager and Actuation Capabilities Manager were all implemented using python. 

The Capabilities Front End was implemented with python’s Flask being used to receive the 
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incoming requests. The Capabilities Coordinators within the managers were also implemented 

using python. Within the Capabilities Orchestrators, the Capabilities Orchestration Plan 

Generator was implemented in python and simply generated a json file, instead of a graph, that 

could later be parsed by the Orchestration Plan Executor. The Capabilities Orchestration Plan 

Executor and the Discovery Engine were also implemented using python, and the Discovery 

Engine could query the Repository using the MySQL driver for python.  The Requests library of 

python was used for issuing requests to the underlying layers by the Capabilities Orchestration 

Plan Executor.  

5.2.1.4. Interface B (Int. B) and Interface D (Int. D) 

The implementation of the interface B included very basic commands to parse the incoming 

requests from IoT Cloud Management Layer and forward them to the appropriate component in 

the underlying IoT Capabilities Management Layer. It was implemented using python’s Flask and 

Requests library.  

Furthermore, Interface D (Int. D) did not need to be implemented as a separate API since the 

implemented publication and discovery entities within the architecture made use of the MySQL 

driver for python to send requests to the MySQL based Repository. 

5.2.1.5. IoT Cloud Management Layer 

In order to implement the IoT Cloud Management Layer, all its components were implemented 

with the Orchestration Plan Generator specifically being implemented in a simplified manner. 

The Cloud Front End  was a request processing python program implemented using python’s Flask, 

and Requests libraries. Within the Cloud Manager, the Cloud Coordinator was also implemented 

in python. Furthermore, within the Cloud Orchestrator,  the Orchestration Plan Generator python 



 111 

program gave the output for the orchestration plan as a simple json file, instead of a graph, which 

could then be parsed by the Cloud Orchestration Plan Executor. The Cloud Orchestration Plan 

Executor also used the python-requests library to further send commands to the underlying 

interface.  

5.2.1.6. Interface A (Int. A) 

Interface A was the interface that exposed the IoT IaaS to external applications. The REST API 

was implemented using Python-flask for the implementation of this interface. This interface 

included operations through which the applications could request for the provisioning of sensor 

and actuator combinations, with given parameters for sensors and actuators, such as service-type, 

location, sampling rate. It also included operations for deleting the provisioned devices, getting 

data from the sensors, and specifying the threshold values for sensors and the corresponding 

actions.  

5.2.1.7. Repository 

The Repository was implemented using MySQL. Both the Physical IoT Device Repository and 

the Virtual IoT Device Repository were implemented as MySQL tables in which the records of the 

physical and virtual IoT devices could be created, queried, updated, or deleted by the different 

layers of the IoT IaaS. The records in MySQL stored information pertaining to each device, which 

included, device ID, type of device (sensor/actuator), functionality of device, status of device 

(idle/busy), action URI (in the case of actuators). 

5.2.1.8. Anti-Fire Systems Application 

The ‘Anti-Fire Systems’ application was implemented using python. Since an anti-fire system 

requires constant and regular monitoring, the sampling rate used was 1 sample/sec for this 
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application. The python application used the Requests library to initiate the request for temperature 

sensing, humidity sensing, and robot devices, and displayed distinct messages when it received 

confirmation of devices provisioning, confirmation of threshold exceeding, and confirmation of 

actuation action being triggered. The application also constantly pulled the data from the IoT IaaS 

and displayed it. For testing the application and using it with the IoT IaaS, the threshold for 

temperature sensing was set to 25°C and for humidity sensing was set to 50%.  

5.2.1.9. Monitoring of Cooling Systems Application 

The ‘Monitoring of Cooling Systems’ application was also implemented in python in a similar 

manner to the ‘Anti-Fire Systems’ application. However, this application only required 

temperature and humidity sensing capabilities, and not any actuation capability. The sampling rate 

for this application was set to 1 sample/second for both the sensing capabilities. The threshold set 

for trial purposes was 25°C for temperature sensing and 50% for humidity sensing. This 

application displayed messages for devices provisioning, and also displayed the data being 

received. Whenever the threshold was exceeded, it displayed an alert message to alert the user of 

the same.  

5.2.2. Summary  

The prototype implementation allowed the applications to provision several virtual devices on 

top of the physical IoT devices. This was made possible through the sharing of the same physical 

devices for running several virtualizations. Thus, this validated Node Level Virtualization in the 

proof-of-concept implementation. Furthermore, in order to implement the publishing of devices’ 

information, some predefined values for the devices, such as functionality, type of device, were 

added automatically to the Repository as soon as the devices were available within the IoT IaaS. 
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The implemented Discovery Engine was also able to query this Repository and fetch the 

information of the appropriate devices as needed. Thus, the Publication and Discovery mechanism 

for finding the appropriate devices and keeping up to date information on each device, was 

validated. In addition, it was possible for the applications to send requests for provisioning multiple 

devices, for which the orchestration of the capabilities of several different IoT devices was 

required. It was handled successfully by the orchestration components of the prototype, which 

further validated the Orchestration Mechanism. Moreover, the Int. C included the implementation 

of an API for the bare metal provisioning of the IoT devices. In addition, the discovery mechanism 

involved checking the Repository for the information of the physical IoT devices matching the 

capabilities required by the application and available to be reserved for bare metal usage. The IoT 

Devices Layer then handled the interaction with the proprietary interface of the physical device in 

order to reserve it to be solely used as-is by the application. This validated that the prototype 

allowed bare metal access to the physical IoT devices. Lastly, the infrastructure for the prototype 

included actuators, in this case the EV3 Mindstorms robot. It was possible to use the robot and 

control it, for instance, to make it move. The application was able to request for actuators, which 

could further be accordingly provisioned. This validated the ability of our proof-of-concept to 

control and use actuators. Thus, we can conclude that the architecture for the IoT IaaS proposed 

in this work is validated by the implemented prototype.  

5.3. Performance Evaluations 

In this section, we first describe the performance metrics to evaluate the performance of the 

proposed architecture. This is followed by a description of the experimental setups for this 

evaluation. Finally, we provide an end to this section by an analysis of the obtained results. 
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5.3.1. Performance Metric 

Three performance metrics were selected in order to evaluate the performance of our proposed 

architecture. These were as follows: 

IoT Device Provisioning Delay: It is measured from the time a request is sent by the 

application for the provisioning of devices, to the time the acknowledgement message of the 

devices having been provisioned is received. This includes the time taken for the processing of the 

application’s request, orchestration of the services of several devices, and the creation of virtual 

devices or reservation of the devices to be used as bare metal. The IoT Devices Provisioning Delay 

is measured for the various individual heterogenous devices available within the infrastructure, as 

well as for a combination of several devices. The measurements on the individual devices were 

taken for provisioning virtual devices on these physical devices, as well as for bare metal 

provisioning of these physical device. In addition, the number of devices requested for 

provisioning were gradually increased up to 1000 devices to test for scalability.  

Orchestration Delay: The orchestration delay is measured whenever 2 or more capabilities are 

requested by the application, in which case, the orchestration of the services of several IoT devices 

is needed. The Orchestration Delay is defined as the time between the orchestrator component 

receiving the request for orchestration, and the time the acknowledgment message of orchestration 

completion is received. The Orchestration Delay was measured for the orchestration of the 

services from 2 to up to a 1000 IoT devices. This also allowed testing the scalability of the 

architecture.  
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Sensor Threshold – Actuation Trigger Delay: The Sensor Threshold – Actuation Trigger 

Delay is defined as the time taken from the detection of the IoT devices’ output exceeding the 

specified threshold, to the time the appropriate actuation action trigger is fired.  

5.3.2. Experimental Setup 

For the experimental setup, each physical IoT device was programmed to run a maximum of 4 

virtual devices on top of it. This was because the Advanticsys TelosB SkyMote could only support 

a maximum of 4 virtual devices running on top of it without running out of memory. Hence, to 

maintain uniformity, each device in the infrastructure was programmed to support up to 4 virtual 

instances.  

In order to evaluate the first performance metric, the following setups, Setup 1 and Setup 2, 

were considered. 

Setup 1: In this setup, virtual device provisioning, as well as bare metal device provisioning 

was done individually for the following physical IoT devices within the infrastructure: the 

Advanticsys CM5000 SkyMote, Virtenio Preon32 Shuttle with VariSen module, and the LEGO 

Mindstorms EV3 Boticelli robot. For each of these individual experiments, the tests were repeated 

10 times in order to capture the average delays. In addition, virtual device provisioning, as well as 

bare metal device provisioning was also done for a combination of sensor and actuator, in this case 

the Virtenio sensor and the EV3 robot, with the test being repeated 10 times. 

Setup 2: In this setup, Contiki Cooja simulator was incorporated into the infrastructure to 

simulate several TelosB SkyMotes. Experiments were conducted where 2, 4, 8, 10, 16, 32, 100, 

200, 400, and 1000 virtual devices were provisioned from the infrastructure. For each of these 

experiments, an average of ten (10) iterations was taken. The number ten (10) was chosen because 

beyond these ten iterations there was no significant difference in the measurements. 
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In order to evaluate the second performance metric, the Setup 2 was considered.  

For evaluating the third performance metric, the following setup, Setup 3, was considered. 

Setup 3: In this setup, the EV3 robot and the Virtenio sensor were provisioned in order to detect 

the delay between the sensor output’s threshold detection and the automatic starting of the robot 

action. Both the devices were provisioned, and a threshold of 25ºC was provided for the 

temperature sensor. A total of 10 iterations were conducted for this experiment in order to capture 

the average delay. The number of experiments was arbitrarily chosen to be 10, since after 10 

iterations there was no significant difference observed in the measurements.  

5.3.3. Results and Analysis 

In this subsection, the performance results are discussed based on the specified metrics. First, 

the IoT Device Provisioning Delay is analyzed for the setups 1 and 2 in separate subsections. Next, 

the Orchestration Delay is analyzed for setup 2, and finally, the Sensor Threshold – Actuation 

Trigger Delay is analyzed for setup 3.  

5.3.3.1. IoT Device Provisioning Delay for Setup 1 

Figure 25 shows the time taken for creating a virtual device over the Virtenio sensor as well as 

for its bare metal provisioning over 10 iterations. The average device provisioning delay for 

creating a virtual sensor on top of the Virtenio sensor is 606.5 ms (milliseconds), while the average 

delay for the bare metal provisioning of the Virtenio sensor is 338.6 ms. Similarly, the figures 26 

and 27 show the time taken for creating a virtual device and the time taken for bare metal 

provisioning of the Advanticsys sensor and the EV3 Mindstorms robot respectively, taken over 10 

iterations. For the Advanticsys sensor, the average time for provisioning a virtual device on top of 

the physical sensor is 154 ms, whereas the time taken for the bare metal provisioning of the device 
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is 79.2 ms. The average time taken to create a virtualization on top of the EV3 robot is 518.7 ms, 

whereas the average time taken for the bare metal provisioning of the robot is 233.2 ms.  

It can be observed that for all these physical devices, the time taken to create a virtual instance 

on top of the physical device is nearly double the time taken to provision the device as bare metal, 

with a factor of 1.79 for the Virtenio sensor, 1.94 for the Advanticsys sensor, and 2.22 for the EV3 

robot.  

In the case of the EV3 robot, there was one limitation encountered while creating several virtual 

devices on top of it. These virtual devices would run successfully on top of the physical robot as 

long as their actions did not clash, i.e. require access to the same parts of the robot, or overlap. For 

instance, while trying to run two virtual devices on top of the robot, where both the devices 

required controlling the motors of the robot to move it for 2 seconds and 4 seconds respectively, it 

was noticed that the robot would only move for 2 seconds and then stop. However, the messages 

for both the actions would be displayed. This was because for the first virtualization, the command 

to stop the robot would come after 2 seconds, while for the second virtualization the command to 

stop the robot would come after 4 seconds. However, since the 2 actions would overlap, the 

command to stop the robot after 2 seconds would reach it and control it first, and it would thus 

remain in the stopped position even when it received another stop command 2 seconds later. 

However, such issues could be avoided to some extent by handling the edge cases while 

programming.  

In addition, on comparing the Advanticsys CM5000 sensor and the Virtenio Preon32 Shuttle + 

VariSen Module, it can be observed that for virtualization, the Virtenio sensor takes nearly 3.93 

times the time taken by the Advanticsys sensor. In order to provision the devices as bare metal, 

the Virtenio Sensor takes nearly 4.27 times the time taken by the advanticsys sensor. Thus, on an 
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average, for both the provisioning operations, the Virtenio sensor takes nearly 4 times more time 

than the Advanticsys sensor. One reason that can possibly explain this phenomenon is the fact that 

the Advanticsys sensor makes use of C based libraries for running programs on it, whereas the 

Virtenio sensor uses the Java based libraries, which causes some overhead leading to additional 

overall delays. It is a known fact that C based code, in general, runs faster than java as it usually 

provides better startup performance for machines for which it is compiled. Moreover, Java requires 

JVM to convert byte code to machine code which causes more delay.  

Figure 28 shows the time taken for the virtualization and bare metal provisioning of the Virtenio 

sensor and EV3 robot combination. The test is repeated 10 times, and it can be observed that the 

average time taken to create virtual sensor and virtual actuator combination is 1130.9 ms, while 

the time taken to provision a combination of these devices as bare metal is 593.6 ms. Here as well, 

the time taken for virtualization is nearly double the time taken for bare metal provisioning, with 

a factor of 1.9, which aligns with the results obtained above. Moreover, it can be seen that the time 

taken to provision the combination of the virtenio sensor and the robot is slightly greater, or nearly 

equal, to the sum of provisioning both the devices individually in most of the iterations, for both 

virtual device provisioning and bare metal device provisioning. Both these devices, i.e. the 

Virtenio sensor and the EV3 robot, utilize java-based libraries for running programs, which is why 

nearly 1 second is taken for their provisioning.  
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Figure 25. Bare Metal and Virtual Device Provisioning of Virtenio Preon32 Shuttle + VariSen Module 

 

Figure 26. Bare Metal and Virtual Device Provisioning of Advanticsys CM5000 TelosB SkyMote 
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Figure 27. Bare Metal and Virtual Device Provisioning of LEGO EV3 Mindstorms Robot 

 

Figure 28. Bare Metal and Virtual Device Provisioning of Virtenio Sensor and EV3 Robot 
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During the provisioning of 2 devices, the average device provisioning delay was found to be 

317.1 ms. For 4 devices it was 777.7 ms, which is slightly greater than double the time taken for 

two devices, and so on. On observing the device provisioning delays for up to the 1000 devices, it 

was observed that the delays increased by nearly the same factor as the increase in the number of 

devices. As another instance, the device provisioning delay for 100 devices was 9.038 seconds, 

while that for 200 devices was 19.297 seconds, an increase by a factor of 2.1.  

This indicates that the IoT device provisioning delay increased almost linearly with the increase 

in the number of devices to be provisioned. In order to test the scalability of the architecture, the 

number of devices were increased up to 1000 devices, and the linearity was confirmed by the 

nearly straight-line graph, as can be seen in the figures 29 and 30.  

This is indeed expected in these results. The reason for this is that a majority of the device 

provisioning time, more than 80%, is spent in the orchestration of the devices, and the processing 

of the application’s request and capabilities handling, as we will observe in the section 5.3.3.3. 

Much less part of the device provisioning time is actually spent in interacting with the IoT devices’ 

proprietary interfaces. Therefore, the majority of the device provisioning time is not dependent on 

the type of device being provisioned from the infrastructure. In addition, as the number of devices 

in the request increase, the implemented prototype would take more time to go over each requested 

device one by one and accordingly handle the request. As shown in section 5.3.3.3., the 

orchestration delay also increases linearly when the number of requested devices increase. Thus, 

unless severe delays are suffered in the interaction with the proprietary interfaces of the IoT 

devices, the device provisioning would be more or less linear. Moreover, in our experimental 

setup, all the IoT devices are simulated TelosB SkyMotes in Contiki Cooja, on which virtual 

instances are provisioned. These TelosB SkyMotes are all of the same type. There can be several 
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possible cases, such as bare metal provisioning of all the requested devices, virtual provisioning 

of all devices running on the same type of real physical sensors, virtual provisioning of all devices 

running on different types of real physical sensors, or some devices being provisioned as bare 

metal and some being provisioned as virtual devices. However, the explanation given above would 

apply to all of these cases, and thus, it is expected that the results in all of them would be similar 

to the ones obtained in our experiment.  

Furthermore, the linear scalability depicted by these graphs implies that the performance of the 

architecture remained consistent with the increase in the number of devices provisioned. The 

architecture was able to handle the provisioning of the devices without suffering any significant 

degradation or delays successfully up to 1000 devices.  

However, this linear scalability might not prove beneficial for certain applications that require 

quicker provisioning of devices and have strict start times. More specifically, for provisioning 100 

devices, the delay encountered is nearly 9 seconds, and for 1000 devices, it is nearly 1 minute 36 

seconds. For instance, for certain real time and large scale applications, such as a ‘Monitoring of 

Cooling Systems’ in large factories or setups, where hundreds or thousands of temperature sensors 

are to be provisioned for ensuring that the equipment within that area remains in a cooled 

environment, provisioning delays as long as 1 minute and 36 seconds can cause significant damage 

to the equipment by the time the sensors get provisioned.   
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Figure 29. Average IoT Device Provisioning Delay, in milliseconds, for provisioning 2, 4, 8, 16, 32 devices 

 
Figure 30. Average IoT Device Provisioning Delay, in seconds, for provisioning 10, 100, 200, 400, 1000 devices 
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delay, in seconds, for 10, 100, 200, 400, and 1000 devices. Both these figures show the average 

orchestration delay for the different number of devices taken over 10 iterations. On comparing 

figures 29 and 31 it can be observed that in the case of 2 devices, the total device provisioning 

delay is 317.1 ms, while the orchestration delay is 254.61 ms, which is nearly 80.29% of the 

average IoT device provisioning delay. Similarly, the orchestration delay is nearly 77% of the 

average device provisioning delay for 4 devices; 84.7% of the average device provisioning delay 

for 8 devices, and so on. In fact, on observing all the delays, it is found that, on an average, the 

orchestration delay takes nearly 80.7% of the device provisioning delay for the different numbers 

of devices, up to 1000 devices. This denotes that a majority of the time (nearly 80.7%) is taken by 

the orchestration components during the provisioning of the IoT devices.  

Moreover, the nearly straight graphs in the figures 31 and 32 show that the orchestration delay 

also increases in a linear manner as the number of devices increase. For example, the orchestration 

delay increases by a factor of nearly 2.3 as the number of devices double from 2 to 4. Similarly, 

the orchestration delay increases by a factor of nearly 2.1 as the number of devices double from 

100 to 200. Therefore, the orchestration delay increases by nearly the same factor as the increase 

in the number of devices. This linear scalability shows that the performance of the architecture 

does not suffer significant degradation for up to 1000 devices, and that it is able to handle their 

orchestration successfully.   
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Figure 31. Average Orchestration Delay, in milliseconds, for orchestrating the services of 2, 4, 8, 16, 32 devices 

 
Figure 32. Average Orchestration Delay, in seconds, for orchestrating the services of 10, 100, 200, 400, 1000 

devices 
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average time taken over these 10 iterations was 3.203 seconds. In this case, the threshold was 

assumed to be 25ºC, and every time the sensor gave this output or larger, the command was sent 

automatically to the robot to start moving. The average delay calculated indicates that the robot 

starts moving nearly 3.203 seconds after the sensor output is found to exceed the threshold value. 

This value might not be acceptable for certain time sensitive applications which require quick 

action, and where even a second of delay can create a significant difference, such as smart patient-

health monitoring applications, and so on. However, this delay might be acceptable in applications 

that can withstand few seconds of delay.  

 
Figure 33. Sensor Threshold – Actuation Trigger Delay, in seconds, measured over 10 iterations 
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Chapter 6  

Conclusion 

In this chapter, we first provide a summary of the contribution of this thesis, and then highlight 

the possibility of the future research direction. 

6.1. Contributions Summary 

With the ever-increasing demand of IoT in daily life as well as in the industry, most IoT 

applications aim for cost and energy efficiency, scalability, and minimal latency in terms of 

resource provisioning, which is somewhat made possible through Cloud Computing. However, the 

conflicting properties of the cloud and IoT infrastructure, such as the heterogenous and resource 

constrained nature of the IoT devices, pose many challenges to the successful integration of Cloud 

computing and IoT. To bridge this gap, it is essential to decouple the IoT device services from the 

physical IoT devices through virtualization techniques, such as node level virtualization. This 

would allow the sharing of the capabilities of the IoT devices, thus improving cost efficiency, as 

well as more flexible and uniform access to the devices. Therefore, there is a need to design and 

implement an IoT IaaS that not only enables sharing the capabilities of IoT devices to improve 

costs, but also addresses other challenges that the integration of Cloud computing and IoT face, 

such as the heterogeneity of the devices, orchestration of the different IoT devices’ services, bare 

metal provisioning of the devices, and publication and discovery of the capabilities of IoT devices.  

In order to derive the requirements for the IoT IaaS, we presented a motivating scenario within 

a ‘Smart Factory’ environment. This scenario consisted of six applications that required sharing of 

the capabilities of the same physical devices, which included both sensors and actuators, as well 
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as bare metal access to the devices. In addition, some applications also required automatic 

triggering of actuator actions whenever some sensors obtained outputs beyond specified 

thresholds. This use case, thus, allowed us to derive several requirements for the IoT IaaS, which 

included node level virtualization as one of the primary requirements in order to enable the sharing 

of the physical resources. In addition, a publication and discovery mechanism for storing and 

querying the IoT devices’ capabilities information, and an orchestration mechanism to combine 

the services of different devices, were also considered essential for the realization of the IoT IaaS. 

Two other critical requirements were also identified, which included having a mechanism to allow 

the bare metal provisioning of the physical IoT devices and enabling the applications to control 

and use actuators included in the infrastructure. We then proceeded to evaluate complete 

architectures for the IoT IaaS, and the models and frameworks that can aid the IoT IaaS, against 

these derived requirements. None of the works in the state-of-the-art could meet all the 

requirements.  

Next, we proposed an architecture for the IoT IaaS that would meet all of our derived 

requirements. The architecture relied heavily on node level virtualization, since it enabled several 

virtual devices to be provisioned on top of a single physical device in order to increase resource 

utilization and meet the needs of the applications. Furthermore, the publication and discovery 

entities described within the architecture along with the database Repository provided a well-

established mechanism to publish and discover the devices and their information as needed. In 

addition, the architecture also contained orchestration modules, such as the Cloud Orchestrator 

and Capabilities Orchestrator,  that enabled the provisioning of a proper mechanism for the 

orchestration of the services of several IoT devices. Moreover, the architecture also contained 

components and interfaces that allowed the physical IoT devices to be provisioned as bare metal. 
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All of the devices present within the infrastructure included both sensing and actuation devices. 

Thus, a mechanism was also presented within the architecture for controlling and using actuators. 

Finally, the architecture also contained several RESTful interfaces, such as those for provisioning 

the devices as bare metal, for provisioning virtual sensors and actuators, and a high-level interface 

for exposing the proposed IoT IaaS to external applications. In the end, we proposed the procedures 

for the IoT IaaS architecture to depict its functioning.  

This was followed by the implementation of a prototype for validating the IoT IaaS. A subset 

of the motivating ‘Smart Factory’ scenario was used along with the implementation of a subset of 

the proposed architecture. The subset of the motivating scenario implemented involved developing 

two applications, the ‘Anti-Fire Systems’ application and ‘Monitoring of Cooling Systems’ 

application which could utilize the interface for accessing the IoT IaaS.  

Finally, three performance metrics were described along with the experimental setups. The 

results of each of the experiments were graphically depicted and analysed. The feasibility of the 

architecture was evaluated, as well as its scalability performance through extensive simulations. 

From the results it was evident that provisioning virtual devices on top of the physical devices took 

nearly double the time taken to provision the physical devices as bare metal. In addition, on 

extensive simulations of up to 1000 devices it was found that the IoT device provisioning delay 

increased almost linearly with the increase in the number of devices, i.e. showed linear scalability. 

Thus, the performance of the architecture did not suffer significant performance degradation up to 

1000 devices. As the number of provisioned devices increased, this mechanism would not satisfy 

certain real time applications with stricter start times, since for 1000 devices the provisioning delay 

went up to 1 minute 36 seconds. However, it would still be an appropriate choice for non-real time 

applications or real-time applications with lenient start times. Furthermore, nearly 80.7% of the 
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device provisioning time was spent in the orchestration of the services of several devices. Finally, 

the experimentally calculated average delay experienced between the detection of the threshold 

values within the sensors’ outputs and the corresponding action triggers were acceptable for 

applications that could withstand few seconds of delay.  

6.2. Future Research Direction 

In this work, while evaluating the scalability of the architecture, no particular algorithms were 

implemented to enhance the resource efficiency and performance. Future works can incorporate 

algorithms into the architecture to enable dynamic scaling and optimum utilization of the devices. 

Furthermore, our architecture did not involve network level virtualization, which can prove 

beneficial in future works and allow for efficient resource utilization within networks of IoT 

devices.  

In addition, the proposed architecture for the IoT IaaS provided no mechanism for securing the 

IaaS, which is very critical nowadays. Furthermore, since the proposed architecture in this thesis 

supports virtualized as well as bare metal access to the IoT devices, security becomes all the more 

necessary. For instance, if the attackers gain bare metal access to the IoT device, they can directly 

corrupt IoT devices or render them completely useless, while if they gain virtualized access to the 

IoT devices, they can potentially corrupt the other virtual instances running on the same device 

and affect the working of the other applications. Thus, in order to secure the IoT IaaS one approach 

is to secure the interface which exposes the IoT IaaS to the applications, through techniques such 

as token based authentication. Moreover, encryption keys and SSL certificates can be incorporated 

into the IaaS in order to transmit and receive data to/from the IoT devices. Further research in this 

domain can definitely enhance the IoT IaaS.  
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Moreover, in our work, it was observed that as the number of devices to be provisioned 

increased, the time taken to provision them also increased linearly, which went up to nearly 1 

minute and 36 seconds for 1000 devices. This might not be feasible for certain applications. Thus, 

there is a need for a mechanism that can reduce the factor by which the total IoT device 

provisioning time increases, i.e. as the number of devices increase by a certain factor, the total IoT 

device provisioning time increases by a reduced/lower factor, also called supra-linear scalability. 

Although supra-linear scalability is a rare scenario, it does hold significant research potential. 

$QRWKHU limitation of the IoT IaaS proposed in this thesis was that it provisioned only virtual 

and bare metal IoT devices to the applications but was unable to provision virtual IoT networks or 

bare metal IoT networks to the applications. However, certain applications may require the 

provisioning of virtual or bare metal IoT networks. For instance, in applications such as a ‘Fire 

Direction Map’ application, a network of IoT temperature and humidity sensors may be needed, 

which can allow these sensors to communicate with each other and, thus, enable the detection of 

the fire as well as its direction of propagation within an area. In such a case, the application would 

require the provisioning of either a bare metal or a virtual IoT network of these sensors. In order 

to make this happen, there can be two possible research directions. The first is the architectural 

direction, where specific layers, software modules, and interfaces can be added into the IoT IaaS. 

A possible challenge in this scenario will be the new interfaces, which will enable applications to 

request for the creation of virtual or bare metal IoT networks. The second is the algorithmic 

direction, which would involve the development of specific algorithms to enable efficient resource 

allocation.� )LQDOO\�� DQRWKHU� SRVVLEOH� IXWXUH� UHVHDUFK� GLUHFWLRQ� FDQ� LQYROYH� UHILQLQJ� WKH�

IXQFWLRQLQJ�RI�WKH�RUFKHVWUDWLRQ�PHFKDQLVP��SURSRVHG�ZLWKLQ�WKH�,R7�,DD6�DUFKLWHFWXUH��WKURXJK�

WKH� DGGLWLRQ� RI� EXVLQHVV� SURFHVV� PRGHOV� LQ� RUGHU� WR� JHQHUDWH� LPSURYHG� DQG� RSWLPL]HG�

RUFKHVWUDWLRQ�SODQV��&ORXG�EDVHG�%XVLQHVV�3URFHVV�0RGHOLQJ�WRROV�FDQ�HQKDQFH�WKLV�SRVVLELOLW\�
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