

Optimized Resource-Constrained Method for Project

Schedule Compression

Moaaz Aly Elkabalawy

A Thesis

In the Department

of

Building, Civil and Environmental Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Civil Engineering)

Concordia University

Montreal, Quebec, Canada

October 2020

©Moaaz Aly Elkabalawy, 2020

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This statement is to certify that the thesis prepared

By: Moaaz Aly Elkabalawy

Entitled: Optimized Resource-Constrained Method For Project Schedule

Compression

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Civil Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

________________________________Chair

 Dr. S. H. Han

_____________________________Examiner

 Dr. R. Dziedzic

_____________________________Examiner

 Dr. M. Y. Chen

_____________________________Supervisor

 Dr. O. Moselhi

Approved by__

 Dr. Michelle Nokken, Graduate Program Director

October 28, 2020 ______________________________________

 Dr. Amir Asif, Dean, Gina Cody School of Engineering and Computer Science

III

ABSTRACT

Optimized Resource-Constrained Method for Project Schedule Compression

Moaaz Elkabalawy

Construction projects are unique and can be executed in an accelerated manner to meet

market conditions. Accordingly, contractors need to compress project durations to meet client

changing needs and related contractual obligations and recover from delays experienced during

project execution. This acceleration requires resource planning techniques such as resource

leveling and allocation. Various optimization methods have been proposed for the resource-

constrained schedule compression and resource allocation and leveling individually. However, in

real-world construction projects, contractors need to consider these aspects concurrently.

For this purpose, this study proposes an integrated method that allows for joint

consideration of the above two aspects. The method aims to optimize project duration and costs

through the resources and cost of the execution modes assigned to project activities. It accounts

for project cost and resource-leveling based on costs and resources imbedded in these modes of

execution. The method's objective is to minimize the project duration and cost, including direct

cost, indirect cost, and delay penalty, and strike a balance between the cost of acquiring and

releasing resources on the one hand and the cost of activity splitting on the other hand.

The novelty of the proposed method lies in its capacity to consider resource planning and

project scheduling under uncertainty simultaneously while accounting for activity splitting. The

proposed method utilizes the fuzzy set theory (FSs) for modeling uncertainty associated with the

duration and cost of project activities and genetic algorithm (GA) for scheduling optimization. The

method has five main modules that support two different optimization methods: modeling

uncertainty and defuzzification module; scheduling module; cost calculations module; sensitivity

IV

analysis module; and decision-support module. The two optimization methods use the genetic

algorithm as an optimization engine to find a set of non-dominated solutions. One optimization

method uses the elitist non-dominated sorting genetic algorithm (NSGA-II), while the other uses

a dynamic weighted optimization genetic algorithm. The developed scheduling and optimization

method is coded in python as a stand-alone automated computerized tool to facilitate the needed

iterative rescheduling of project activities and project schedule optimization.

The developed method is applied to a numerical example to demonstrate its use and to

illustrate its capabilities. Since the adopted numerical example is not a resource-constrained

optimization example, the proposed optimization methods are validated through a multi-layered

comparative analysis that involves performance evaluation, statistical comparisons, and

performance stability evaluation. The performance evaluation results demonstrated the superiority

of the NSGA-II against the dynamic weighted optimization genetic algorithm in finding better

solutions. Moreover, statistical comparisons, which considered solutions’ mean, and best values,

revealed that both optimization methods could solve the multi-objective time-cost optimization

problem. However, the solutions’ range values indicated that the NSGA-II was better in exploring

the search space before converging to a global optimum; NSGA-II had a trade-off between

exploration (exploring the new search space) and exploitation (using already detected points to

search the optimum). Finally, the coefficient of variation test revealed that the NSGA-II

performance was more stable than that of the dynamic weighted optimization genetic algorithm.

It is expected that the developed method can assist contractors in preparation for efficient

schedule compression, which optimizes schedule and ensures efficient utilization of their

resources.

V

ACKNOWLEDGMENT

First and foremost, I’m very grateful to God for granting me showers of blessings

throughout my research, and for helping me complete the research successfully.

I would like to express my special thanks of gratitude to my research supervisor, Professor

Osama Moselhi, for his patience, motivation, enthusiasm, and immense knowledge. His invaluable

guidance helped me in all time of research and writing of this thesis. I could not have imagined a

better advisor and mentor for my master's study. His dynamism, sincerity, vision, and motivation

have deeply inspired me. It was a great privilege and honor to work and study under his guidance.

Finally, I would like to thank my parents for their love, prayers, caring and sacrifices for

educating and preparing me for my future. Also, I express my thanks to my brothers and friends

for their endless support and valuable prayers.

VI

DEDICATION

This thesis is dedicated with love, admiration, and respect

To my dear father Prof. Aly Elkabalawy,

my kind mother Sahar Elgendy,

and my beloved Brothers Eng. Mohammed and Dr. Abdalla;

VII

Table of Contents

List of Tables .. IX

List of Figures ... IX

Notations ... XI

1 CHAPTER ONE: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation ... 3

1.3 Scope and Objectives ... 4

1.4 Organization of the Thesis.. 4

2 CHAPTER TWO: LITERATURE REVIEW .. 6

2.1 General .. 6

2.2 Time-Cost Optimization Problem ... 9

2.3 Deterministic Resource-Constrained Project Scheduling Problem .. 10

2.4 Resource-Constrained Scheduling under uncertainty Problem ... 13

2.5 Resource Allocation Scheduling Problem ... 16

2.6 Summary ... 19

3 CHAPTER THREE: DEVELOPED METHOD .. 22

3.1 General .. 22

3.1.1 Modeling Uncertainty and Defuzzification Module .. 25

3.1.2 Scheduling Module: .. 26

3.1.3 Cost Calculations Module .. 32

3.1.4 Sensitivity Analysis Module ... 32

3.1.5 Optimization Methods .. 33

3.1.6 Decision-Support Module .. 40

3.2 Mathematical Formulation .. 41

VIII

3.3 Problem Constraints .. 43

3.3.1 Duration Constraint... 43

3.3.2 Network Logic Constraint .. 44

3.3.3 Resource Balance Constraint ... 44

3.3.4 Activity Splitting Constraint ... 46

4 CHAPTER FOUR: NUMERICAL EXAMPLE .. 47

4.1 Background .. 47

4.2 Method Validation ... 50

5 CHAPTER FIVE: DISCUSSION OF RESULTS .. 56

5.1 NSGA-II Optimization Method Results .. 56

5.2 Dynamic Weighted Optimization Method Results .. 58

5.3 Comparison of the Developed Optimization Methods .. 62

6 CHAPTER SIX: SUMMARY AND CONCLUSIONS ... 66

References .. 68

Appendix I: .. 80

IX

List of Tables

Table 1: Capabilities and limitations of the most recent and relevant references 20

Table 2: Example input data ... 29

Table 3: Activity execution modes (costs) (Zheng and Ng, 2005) ... 48

Table 4: Activity execution modes (durations) (Zheng and Ng, 2005) .. 48

Table 5: Activity execution modes (resources) ... 49

Table 6: Project parameters ... 50

Table 7: Population size sensitivity analysis ... 52

Table 8: Mutation rate sensitivity analysis ... 53

Table 9: Crossover rate sensitivity analysis .. 55

Table 10: NSGA-II non-dominated set of solutions .. 56

Table 11: Selected mode for each activity (NSGA-II) .. 57

Table 12: Sample of the generated weights .. 59

Table 13: Optimal solutions for some of the chosen weight’s combinations ... 60

Table 14: Weighted objective optimization non-dominated set of solutions .. 61

Table 15: Selected mode for each activity (weighted objective optimization) .. 61

Table 16: Comparison of the optimization methods results... 62

Table 17: Statistical analysis results ... 64

Table 18: Coefficient of variation results ... 65

List of Figures

Figure 1 Developed modules ... 23

 Figure 2 Flow chart of the proposed method .. 24

Figure 3 Types of Fuzzy number representations (Ouma, Yabaan, Kirichu and Tateishi, 2014) 25

Figure 4 Triangular fuzzy number representation (Martin & Klir, 2007)... 26

Figure 5 User terminal ... 27

Figure 6 Example project network ... 29

Figure 7 The example initial Gantt chart .. 30

Figure 8 The example resource utilization profile .. 31

Figure 9 The example final Gantt chart .. 31

file:///C:/Users/Moaaz/Dropbox/CATIA%20PROJ/backup%2030-11-2019/optimization%20cost-schedule/Moselhi%20suggested%20papers/schedule%20compression/master%20of%20science%20thesis/M.A.S.c%20thesis_RD%5b2660%5d.docx%23_Toc56078109
file:///C:/Users/Moaaz/Dropbox/CATIA%20PROJ/backup%2030-11-2019/optimization%20cost-schedule/Moselhi%20suggested%20papers/schedule%20compression/master%20of%20science%20thesis/M.A.S.c%20thesis_RD%5b2660%5d.docx%23_Toc56078116

X

Figure 10 Description of the Genetic algorithm population .. 33

Figure 11 Numerical example network (Zheng and Ng, 2005) ... 47

Figure 12 Population size sensitivity analysis .. 52

Figure 13 Mutation rate sensitivity analysis ... 54

Figure 14 Crossover rate sensitivity analysis .. 54

Figure 15 NSGA-II Pareto front... 57

XI

Notations

N Number of activities

NC Number of critical activities

NN Number of non-critical activities

𝑀𝑗 Number of modes for executing activity j; j=1,2,…….N

 under mode m and zero otherwise

P Number of resource types required by the project

𝐷𝑗𝑚 Duration of activity j running in mode m; m=1,2…. 𝑀𝑗

 time t; t= 𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗

T= Actual project duration

PC Project cost

F Contract project duration

B Delay penalty/ Bonus payment

𝐶𝐴𝑝 Acquiring cost of resource p

𝐶𝑅𝑝 Releasing cost of resource p

XII

𝐶𝑆𝑗 Splitting cost of activity j

IC Indirect cost

𝐶𝑗𝑚 Direct cost of activity j under mode m

𝑥𝑗𝑚 Binary variable equals to 1 when activity j is performed under mode

m and zero otherwise

𝑦𝑡𝑗 Binary variable equals to one when activity j is progress at time t; t=

𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗

𝑧𝑗𝑡 Required resources by activity j during time t.

𝑁𝐿𝑗 Number of times activity j is split.

𝐷𝑡𝑝 Number of resources p released during time t

𝐼𝑡𝑝 Number of resources p acquired during time t

𝑆𝑗 Start time of activity j; j=1…,nc

𝐹𝑗 Finish time of activity j; j=1…,nc

1

1 CHAPTER ONE: INTRODUCTION

1.1 Background

Delays and cost overruns are routine incidents that occur at many construction projects,

despite the project managers' considerable efforts to execute projects within the targeted budgets

and dates. According to a study by Baloi and Price (2003), a sizable majority (63%) of 1778

construction projects funded by the World Bank exceeded their budgets. This problem is more

severe in developing countries where time and cost overruns frequently exceed 100% of the

projects' planned cost and duration (Memon, Rahman and Abdullah, 2010). Therefore, delays and

cost overruns can be possible reasons behind inevitable disputes between contractors and clients.

Accordingly, schedule compression has been introduced in the industry and studied

intensely in the literature. It may be in the interest of both clients and contractors to reduce the

project schedule for various reasons. Contractors tend to compress project durations to meet

contractual obligations, recover from delays experienced during project execution, and determine

the least project’s duration. On the contrary, clients tend to enforce accelerated project delivery to

cope with current market conditions and meet stakeholder demands. The process of accelerating

the completion of construction projects is referred to in the literature as the time-cost trade-off

where a delicate balance between the overall cost of a project and its duration is established to

achieve the desired overall project objectives (Moselhi and Esfahan, 2013). The schedule duration

reduction results in a higher direct cost and a lower indirect cost. The direct costs are the costs of

all resources directly used in the project exaction phase; likewise, indirect costs are incurred

whether or not the productive work is accomplished. Schedule reduction results in hiring additional

resources to reduce the individual activities' actual durations, which give rise to a progressive

2

increase of the direct project cost and a steady reduction in the indirect project cost. Accordingly,

the minimization of such increased direct cost and finding the point of least-cost duration has

always been of interest to researchers and professionals alike.

Accounting for resources while scheduling the compressed construction project, known as

resource allocation and leveling, is another difficulty that contractors face. Research and industry

used different techniques to perform scheduling that provides the shortest duration with a

minimum cost. The critical path method (CPM) is one of the oldest ways that has been widely used

for project scheduling in construction projects. It was developed in the late 1950s by Morgan

Walker and James Kelley to avoid the costs of plant shutdowns and restarts caused by inefficient

scheduling. Although CPM accounts for the time and determines critical activities to minimize

project duration, it doesn’t consider resource planning. Karaa and Nasr (1986) pointed out that

tremendous costs can occur due to the unsmoothed utilization of a specific resource known as

resource-leveling. Adjusting the number of resources in response to the time-varying requirement

results in additional costs related to extra charges such as hiring and firing resources known as

releasing and acquiring costs. Besides, CPM does not directly allow for activity splitting, which

necessitates the stoppage of work execution in that activity due to insufficient resources. Activity

splitting allows for stopping an activity and resuming it at a later date. This is very significant to

enhance the project's optimal makespan when there is resource scarcity or temporary resource

unavailability (Buddhakulsomsiri and Kim, 2006). Therefore, the decision is to balance the extra

costs of acquiring and releasing resources incurred due to the fluctuation in their utilization over

time and the activity splitting associated expenses.

The uncertain nature of the activity’s time and cost adds a dimension of complexity to the

already hard to solve combinatorial problem. The problem lies in assuming that a crisp (precise)

3

duration and cost of the activities can be pre-determined by the project managers and planners.

However, construction projects are unique and seldomly entirely identical and can be affected by

external and internal events such as inflation, economic and social stresses, and climate changes.

This may be associated with certain activities’ uncertainties, which requires scheduling methods

that account for such conditions. Accordingly, researchers have successfully applied the

probability theory to address the uncertain nature of construction projects. However, it’s hard to

record historical construction data in the absence of a mature tool for recording and retrieving the

time/cost data (Zheng and Ng, 2005). Hence, it's might not applicable to determine probability

distributions for costs and durations of activities. In light of this case, the Fuzzy Set (FFs) theory

can effectively examine the consequences of the identified uncertainties (Zheng and Ng, 2005).

Unlike a crisp set where an element takes a membership value of either 0 or 1, the value of an

element's fuzzy memberships can have a value that varies between 0 and 1. Accordingly, this

variation allows for more accurate representation when the set boundaries cannot be determined

as crisp values.

1.2 Motivation

After two years of experience in construction and reviewing relevant literature on project

acceleration, specific issues attracted my attention and appeared to have been left unanswered.

Firstly, although contractors tend to consider schedule compression frequently, there is still no

fully developed framework or commercially available software that can be used to perform such

essential management functions. Accordingly, contractors lean on their judgment and intuition.

Besides, even though there are reported methods in the literature to solve the schedule compression

problem, project managers have minimal use. This phenomenon happens because these methods

limit the schedule compression problem to some sort of time-cost trade-off analysis based on the

4

additional direct costs for crashing the project activities, without explicitly accounting for resource

allocation and leveling. Besides, even though the construction activities have an uncertain nature,

many researchers tended to follow the traditional way of assuming deterministic time-cost trade-

off analysis (Harris, 1978). Based on the defined gaps, the problems mentioned earlier associated

with real-life projects were accounted for and addressed in the proposed method.

1.3 Scope and Objectives

The main objective is to model optimized resource-constrained schedule compression;

considering activity splitting, resource leveling, and uncertainty associated with project activities

duration and cost. Accordingly, a set of sub-objectives are well-defined to achieve the stated

primary objective as follows:

1- model uncertainties associated with activities’ duration and cost;

2- incorporate more than one activity execution mode in the activity crashing with activity

splitting;

3- account for resource-leveling and allocation; and

4- develop a stand-alone automated computerized tool.

1.4 Organization of the Thesis

Chapter 2 reviews the current literature in the schedule compression field while addressing

the limitations and overcoming them. Chapter 3 presents the proposed method and its modules in

detail and their mathematical formulations and problem constraints. The method implementation

and validation are described in Chapter 4, using a recognized numerical example drawn from the

literature. Chapter 5 shows the comparative analysis results between the proposed optimization

5

methods that involve performance evaluation and statistical comparisons. Finally, chapter 6

presents a summary of the study and concluding remarks.

6

2 CHAPTER TWO: LITERATURE REVIEW

2.1 General

The existing literature has offered various methods, and algorithms for the schedule

optimization problem with defined objective functions aligned with the decision maker's

objectives. The proposed algorithms can be classified as exact methods (linear/integer or dynamic

programming), heuristic algorithms, and meta-heuristic or evolutionary algorithms. While the

objective functions can be categorized as time-based, cost-based, and quality-based objective

functions.

Exact methods relate the problem constraints with the objective function with some

mathematical relationships and solve it with a linear or dynamic optimization technique (Davis

and Heidorn, 1971). Such methods have been found convenient in modeling the time-cost

optimization problem (TCO) and can offer exact solutions. However, their effectiveness descents

rapidly as the project size and the resource alternatives increase as the solution becomes

computationally intensive or infeasible (Dayanand and Padman, 2001). Therefore, heuristic and

meta-heuristic algorithms are needed in practice to generate near-optimal schedules (Ghoddousi,

Eshtehardian, Jooybanpour and Javanmardi, 2013).

Heuristic methods apply some rules for selection and exclusion to a list of generated

potential solutions, leading to an optimum or near optimum solution. A typical establishment of

heuristic methods is the branch and bound analysis. This method utilizes a systematic enumeration

of all candidate solutions where large subsets of fruitless candidates are discarded using upper and

lower estimated bounds of the optimized quantity (Christofides, Alvarez-Valdes and Tamarit,

1987). However, this method's efficiency depends heavily on the effectiveness of the used

7

branching and bounding algorithms. Besides, there is no universal bounding algorithm that works

for all problems.

 Metaheuristics and evolutionary algorithms have received the focus of most of the recent

studies since the TCO problem attains a significant size as the number of project activities, resource

types, and activity execution modes increases. Accordingly, the metaheuristics algorithms find,

generate, or select a heuristic that may provide a sufficiently good solution to an optimization

problem, especially with incomplete or imperfect information or limited computation capacity.

Examples of the metaheuristics methods are the Genetic Algorithm (GA), Ant Colony

Optimization (ACO), and Particle Swarm Optimization (PSO). The genetic algorithm is inspired

by the natural evolution theory, which uses a heuristic search. It was first proposed by John Holland

(Goldberg, 1989). In the genetic algorithm, a population is created from a candidate set of

solutions. Each individual has a gene, and each gene is connected to other genes to form a

chromosome, which represents a possible solution. For the generation of a new population, the

algorithm uses three operators: selection operator, crossover operator, and mutation operator. In

the selection phase, individuals are selected based on their fitness score towards the objective

function, and their genes are passed to the next generation. The fitness score of an individual will

determine the selection probability for reproduction. Accordingly, the crossover operator swaps

some parent chromosomes genes, forming the offspring (new populations). In contrast, the

mutation operator flips some parent chromosomes' digits to introduce useful genetic materials

while producing the offspring (Zheng, Ng and Kumaraswamy, 2004)

 On the other hand, Ant colony optimization is a population-based meta-heuristic method

proposed by Dorigo (1992), inspired by the ant colonies' foreign behavior. The ACO aims to

combine prior information about promising solutions with posterior information about the better-

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem

8

found solutions to search for solutions to the combinatorial problems (Dorigo, 1992). Contrary to

the GA, ACO resembles the particle swarm optimization (PSO) in that they utilize previous

information of the entire colony rather than the previous generation only (Li and Zhang, 2013).

However, PSO is inspired by the swarm's choreography with the same natures, unlike ACO, based

on a population of individuals with different structures but a common goal. Finally, ACO, unlike

GA and PSO, utilizes some extra heuristic information in the search course, which may help and

speed up finding the optimality. (Li and Zhang, 2013)

Previous methods that attempted to optimize the resource-constrained project scheduling

or perform schedule compression in the literature can be classified into four categories: (1) Time-

Cost optimization models; (2) Deterministic resource-constrained scheduling models; (3)

Resource-constrained scheduling under uncertainty models; and (4) Resource allocation

scheduling models.

The objective of time-cost optimization models (TCO) is to compress the project schedule

while maintaining a project budget (Zheng, Ng and Kumaraswamy, 2005). The objective of

deterministic resource-constrained scheduling models is to develop optimal schedules subject to

resource availability and project duration minimization or confinement within given deadlines

(Kaiafa and Chassiakos, 2015). In contrast, the resource-constrained scheduling objective under

uncertainty models analyzes the project schedule in an uncertain environment. The resource

allocation scheduling problem belongs to the class of NP-hard problem and is an extension of the

Multi-mode resource-constrained project scheduling problem (MMRCPSP). The resource

allocations models' objective is to minimize the project duration and cost and account for resource-

leveling and availability. Resource leveling aims to reduce the peaks and valleys in the resource

9

usage profile while considering the project deadline to achieve the most efficient resource

consumption and project duration.

This chapter reviews the proposed time-cost optimization models, deterministic resource-

constrained models, resource allocation scheduling models, and resource-constrained scheduling

under uncertainty models. Moreover, the main limitations of the proposed models are described in

the summary section.

2.2 Time-Cost Optimization Problem

Moselhi and Esfahan (2013) developed a novel method to deal with the trade-off between

time and cost. A modified multiple binary decision method (MBDM) and a multi-attributed

schedule crashing algorithm were proposed to reduce the project schedule. They utilized the

MMBD as a multi-criteria decision support method to set priorities for the activities. Accordingly,

an iterative crashing method was used to progressively reduce project duration in search for a least-

cost duration based on the assigned priorities. Moselhi and Alshibani (2013) used iterative crashing

subject to the fuzzy costs of activities and contractor’s judgment. The model used set priorities and

weights from the experts to optimize schedule compression and produce the best compression plan

based on the least cost-duration and contractor's judgment. Feng, Liu and Burns (1997)

demonstrated the use of the convex hull method in solving the multi-objective time-cost trade-off

based on the principles of the genetic algorithms. They developed a computer program that can

efficiently execute the proposed methodology by finding non-dominated solutions. Zheng, Ng and

Kumaraswamy (2004) modified the traditional adaptive weight method. The proposed algorithm

establishes a combination of time-cost solutions by utilizing previous iteration information to

adjust the next search's scope based on the current population's performance in obtaining global

optimization. Afshar, Ziaraty, Kaveh and Sharifi (2009) utilized a multi-colony non-dominated

10

archiving method ACO where each of the ant colonies is assigned to each of the time-cost trade-

off problem (TCTP) targets. Aminbakhsh and Sonmez (2016) developed a particle swarm

optimization for medium and large-scaled TCTPs. Their efficient developed methodology proved

to outperform the previously proposed methods in solution quality and computation time,

especially for large-scale projects. Toğan and Eirgash (2018) used a Teaching- Learning Based

Optimization incorporated with the Modified Adaptive Weight method to find a set of Pareto front

time-cost trade-off solutions. According to the authors, the proposed algorithm works effectively

to find optimal or near-optimal solutions for TCTP in the construction engineering and

management field than the previously proposed metaheuristic methods.

2.3 Deterministic Resource-Constrained Project Scheduling Problem

The assumption in the primary form of the resource-constrained project scheduling

problem is that each activity can be performed by one method within a determined processing time

with one renewable resource. The extended way of the RCPSP is the multi-mode resource-

constrained project scheduling problem (MMRCPSP) in which several techniques (alternatives)

are available to execute the project activities. Each execution mode has a specific processing

duration and resource requirement (Hartmann and Briskorn, 2010).

MMRCPSP was first introduced by Elmaghraby (1977) where the author assumed that an

activity j must be performed by a mode 𝑚 ∈ 𝑀𝑗 and must be processed in the same way until

completion. Brucker et al. (1999) proposed the branch and bound method to solve the MMRCPSP.

The searching tree reduction schemes enhanced the branch and bound methodology's basic

enumeration scheme by Sprecher and Drexl (1998). Similarly, Heilmann (2003) used a branching

strategy where the branching rule was selected dynamically. He successfully managed to

determine a solution that represents the modes and start times simultaneously. On the other hand,

11

Tao and Tam (2013) employed the Levenberg Marquardt plus Universal Global Optimization

method to optimize MMRCPSP with time, cost, and quality objectives.

Along with the different exact solving methods, some researchers used heuristic algorithms

to solve the problem in a less timely manner since heuristic methods allow selection between

competing for limited resources. Heilmann (2001) proposed an integrated approach based on a

multi-pass priority with back planning embedded in random sampling. Erenguc, Ahn and Conway

(2001) followed a heuristic method to minimize the cost of a generated initial feasible schedule

using the proposed six rules. The six rules are based on the selected execution mode, including a

different combination of labors and equipment. The rules included precedence relationships,

resource capacities for each project period, and assigning only one mode to each activity. Singh

(2014) utilized priority rules and the AHP method based on an integrated method to minimize

project duration and delay penalty simultaneously.

To cope with the complex nature of the construction project activities and to have more

realistic scenarios representing the construction industry, researchers explored using metaheuristic

methods to analyze more activities with multiple execution modes. Chen and Weng (2009)

developed a two-phase genetic algorithm that resolves the time-cost trade-off and resource-

constrained scheduling problem. To jointly optimize both objectives, a GA-based time-cost

tradeoff analysis is used to select modes to balance the cost and time, followed by utilizing a GA-

based resource scheduling model to consider the project constraints while generating the feasible

schedule. Coelho and Vanhoucke (2011) split the MRCSP into two steps to improve solution

quality and speed. They presented an algorithm that has a mode assignment step and a mode project

scheduling step. The first step is solved by a fast solver, whereas the second step is solved using a

GA. Baradaran, Ghomi, Ranjbar and Hashemin (2012) analyzed a hybrid genetic algorithm to

12

solve the MRCSP problem in PERT networks. Their analysis was based on the scatter search and

a path relinking algorithm. Menesi and Hegazy (2015) utilized constraint programming (CP) as an

advanced mathematical optimization technique that suits scheduling problems. The IBM ILOG

modeling software and its CPLEX-CP solver engine have been used to develop a CP optimization

model for the multi-mode schedule compression problem. Although the proposed model is fast

and provides a near-optimum solution for projects with hundreds of activities within minutes, it

optimized only the project duration with resources constraint.

Resources categories were first defined by Slowinski (1980) as renewable and non-

renewable resources based on their availability. Renewable resources represent labor, machinery,

and equipment and non-renewable resources represented money. Accordingly, a resource is

renewable if the amount of that resource is constant at every moment of the project duration, and

a non-renewable resource if only its total consumption (integral availability up to the project

deadline or a given moment) is limited (Węglarz, Józefowska, Mika and Waligóra, 2011). Li and

Zhang (2013) considered the renewable and nonrenewable resources in an ant colony optimization

algorithm to solve the resource-constrained scheduling problem. Azizoglu, Çetinkaya and Pamir

(2015) developed a linear programming relaxation-based heuristic solutions algorithm

implemented in a project scheduling problem with a single non-renewable resource. Altintas and

Azizoglu (2020) published one of the latest papers on the multi-mode resource-constrained and

discrete time-cost trade-off problem. They optimized the activity execution modes with a single

non-renewable resource released at specified times and specified quantities in a progressive way.

Renewable and non-renewable resources were studied by Chaleshtarti and Shadrokh (2014) as an

extended form of the resource-constrained scheduling problem. They proposed a branch and cut

algorithm with some techniques that shorten the models' size related to the nodes and some

13

fathoming rules that lessen the number of nodes. The developed method specifies the lower bounds

for the problem in any middle stage of the solving process that is useful to deal with large instances,

where solving processes take a long time. A bi-objective multi-mode resource-constrained

scheduling problem is studied with renewable and non-renewable resources that focus on

maximizing the net present value while minimizing the project duration by considering the

discounted cash flow (Tirkolaee, Goli, Hematian, Sangaiah and Han, 2019). The proposed model

was constructed using the non-dominated sorting genetic algorithm and multi-objective simulated

annealing algorithm and implemented by CPLEX solver of GAMS software. The Ԑ-constraint

method, a well-known approach to deal with the multi-objective problems which can generate

Pareto solutions, was constructed to validate the developed metaheuristic methods. Single

renewable resources were considered in a resource-constrained genetic algorithm by Kadam and

Kadam (2014). The authors claim that their model is more effective for the RCPSP than the

existing optimizations algorithm. Multiple projects scheduling problem was investigated by

Afruzi, Aghaie and Najafi (2018). This problem involves multiple projects with different

importance weights, activities with uncertain durations, predefined assigned due dates, and

renewable resources with a sharing policy. The model's main objective is to find an optimal

structure containing all the projects such that the maximum weighted differences between the

project's finish times and their assigned due dates will be minimal while transferring the resources

between the activities based on the resource sharing policy.

2.4 Resource-Constrained Scheduling under uncertainty Problem

Project scheduling success depends heavily on having an accurate baseline schedule that

allows better control and easy planning. However, to have a precise baseline schedule, the

scheduling timetable must be obtained by contractors before starting the project with accurate

14

information. The availability level of the required information can be full or limited. In the case of

having limited information, the project schedule must be analyzed in an uncertain environment.

The resource-constrained scheduling problem is faced with significant uncertainties such as

activities that might take a shorter or longer duration than the estimated amount, resources that

might not be available at the time of need, and unpredictable natural disasters, weather, and climate

change. Some contractors use historical data to account for uncertainties; however, historical data

is always limited in construction projects. The historical data limitation is due to the lack of a

mature tool for recording and retrieving the data needed to represent the uncertainty as a

probability distribution for the duration and cost (Zheng and Ng, 2005). Accordingly, the literature

revealed that the fuzzy theory used to model uncertainty in the construction field are more

appealing and preferred than random numbers (Herroelen and Leus, 2005). Fuzzy set theory (FSs)

was introduced by Zadeh (1965).

Eshtehardian, Afshar and Abbasnia (2009) considered the uncertain nature of the time-

cost optimization problem by embedding the fuzzy structure of the uncertainties in the total direct

cost. The project manager's acceptable risk level is defined through a defuzzification method, α-

cut method, for which a separate Pareto front with a set of non-dominated solutions has been

developed. The α-cut concept shows the level to which project experts want to encompass

uncertainties in calculations and is directly associated with their courage and confidence in their

decision-making. Associated fuzzy costs for different values of α-cut are ranked by comparing the

alternative set of options for any assumed project duration. Finally, an appropriate GA is used to

develop a multi-objective fuzzy time cost optimization model. Two concepts of time-cost trade-

off, resource leveling, and allocation have been embedded in a stochastic multi-objective

optimization model by Zahraie and Tavakolan (2009). The authors attempted to minimize the total

15

project time, cost, and resource moments simultaneously while considering the uncertainties. In

the proposed research, the fuzzy set theory was applied to increase decision-makers' flexibility

while using the model outputs. The Left and right dominance ranking method was used in an ant

colony optimization algorithm by Kalhor, Khanzadi, Eshtehardian and Afshar (2011) to find the

non-dominated solutions for the stochastic time–cost trade-off optimization problem. The

proposed ranking method defines the decision maker's optimism using the β concept to rank the

fuzzy numbers based on the left and right dominance. Simultaneously, the model searches for non-

dominated solutions considering the project's total duration and total cost as two objectives.

Birjandi and Mousavi (2019) used a hybrid heuristic and metaheuristic stochastic algorithm to

consider the uncertainty in the resource-constrained scheduling problem. A heuristic algorithm

based on distribution rules was used to generate high-quality initial solutions to solve the trade-off

between cost and time based on multiple routes. The heuristic distribution rules were used instead

of random solutions to generate appropriate and initial solutions to speed up reaching the near-

optimal solutions. Then particle swarm optimization (PSO) algorithm was used to change and

assign an appropriate route from available routes for flexible activities. Lastly, a genetic algorithm

is proposed to generate the best solutions from the PSO's generated routes. Salama and Moselhi

(2019) utilized the center of area method as a defuzzification method to solve the stochastic multi-

objective optimization for repetitive scheduling with activity interruptions. Their model design

integrated six modules: schedule calculations using the integration of linear scheduling method

and critical chain project management, uncertainty and defuzzification module using fuzzy set

theory, cost calculations module that considers direct and indirect costs, delay penalty and work

interruptions cost, module for identifying multiple critical sequences and schedule buffers and

reporting module and finally a multi-objective optimization module using genetic algorithm.

16

2.5 Resource Allocation Scheduling Problem

The resource allocation scheduling problem is one of the most challenging projects

management problems. It is a combinatorial problem with multiple objectives (project duration

confinement, resource-constrained allocation, resource leveling, and activity splitting). The

problem's complexity and size grow exponentially as the resource types, activities, and execution

modes increase. Resource leveling aims to provide a smooth resource utilization that prevents day-

by-day resource fluctuations (Kaiafa and Chassiakos, 2015).

One of the earliest attempts to solve the resource leveling was by Harris (1990), where the

author proposed a minimum moment method for resource-leveling. Hiyassat (2001) modified

Harris's original method to apply it to multiple resource projects (multiple resource leveling).

Tawalare and Lalwani (2012) improved the selection criterion of activities that will be moved or

reloaded within the project duration and the resource histogram. On the other hand, Christodoulou,

Ellinas and Michaelidou-Kamenou (2010) modified Harris’ method as an entropy maximization

problem where activity stretching is allowed, and resource allocation solutions are improved to

previous methods. Abdel-Basset, Ali and Atef (2019) proposed a model to minimize the costs of

daily resource fluctuations using the precedence relationships during the project completion while

overcoming the ambiguity caused by real-world problems by designing a resource leveling model

based on the neutrosophic heuristic procedure. The Multiple attribute decision-making model was

utilized to find non-dominated solutions generated from a traditional genetic algorithm to solve

the resource allocation scheduling problem (leu and Yang, 1999). The authors developed a multi-

criteria optimization model for construction schedule based on a genetic algorithm, which

incorporated the time-cost trade-off, resource-constrained allocation, and the limited resource-

leveling models. The model was implemented in two phases. In phase 1, non-dominated solutions

17

were found for time and cost functions under resource constraints. In phase 2, resource leveling

was performed, and the starting dates of activities were determined. Ghoddousi, Eshtehardian,

Jooybanpour and Javanmardi (2013) improved Leu’s model by solving the multi-mode resource-

constrained project scheduling, discrete time-cost trade-off and, resource leveling problems

simultaneously. NSGA-II was used to find a non-dominated solution for the optimal time, cost,

and resource moments. (Hegazy and Menesi (2012) developed an optimization model that uses

cycles of crashing for lowest-cost critical activities (i.e., stepwise time/cost trade-off process) and

resolves any resource over allocation within each time/cost trade-off cycle. Hegazy (1999)

minimized the total project duration and appropriate moments simultaneously under resource

constraints using a near-optimal solution generated by a genetic algorithm. Hegazy and Ersahin

(2001) developed Schedule optimization concerning time, cost, and resource constraints using a

spreadsheet model. Resource leveling was extended by Roca, Pugnaghi and Libert (2008) to

account for the minimization of the project span and the leveling of resource usage over time and

produce non-dominated solutions.

The resource allocation and time buffering problems were recently introduced as a bi-

objective robust project scheduling model (Liang, Cui, Hu and Demeulemeester, 2019). The

authors managed to fill the previous studies' gaps where integration between resource allocation

and time buffering was proposed. Besides, they considered the project due date and the activity

start times against disruptions during execution. Xu, Hao and Zheng (2020) developed a logistic

task resource allocation model for the multi-stage resource leveling problem in sharing logistic

networks known as multi-objective resource-constrained project scheduling problems. The

proposed model considers the total cost and duration for sharing logistics network and improves

the intra-stage efficiency and inter-stage stability for resource providers. The authors provided a

18

multi-objective artificial bee colony algorithm with adaptive neighborhood rules that improve the

slow convergence, weak local search, and easy-to-precocious of the traditional artificial bee colony

algorithm, NSGA-II, and multi-objective particle swarm optimization.

The basic assumption in the traditional resource-constrained project scheduling problem

(RCPSP) is that activities cannot be interrupted once started. Accordingly, the number of resources

needed by activity A will be held during that activity and cannot be used for other activities until

activity A finishes. However, in real case projects, some activities might be interrupted due to

equipment repairs or insufficient resources at any period of the project. The activity splitting was

raised for the first time in 1988 by Kaplan; He stated that construction activities could be stopped

and resumed without additional costs. Peteghem and Vanhoucke (2010) solved the Preemption

multi-mode resource-constrained project scheduling problem by applying a bi-population genetic

algorithm that uses two populations and extends the serial schedule generation scheme by

introducing a mode improvement procedure. Preemption without a penalty was discussed by

Moukrim, Quilliot and Toussaint (2015). An effective branch-and-price algorithm was used to

minimize the project duration based on minimal interval order enumeration involving column

generation and constraint propagation. On the other hand, preemption with a penalty and the

earliness-tardiness cost were introduced by Afshar-Nadjafi (2014). The author developed a mixed

integer programming model to minimize the total project cost, considering earliness-tardiness and

preemption penalties. The model assumed an activity could be restarted after being interrupted in

a discrete point of time with a constant setup penalty and without setup time. On the contrary, Li,

Lai and Shou (2011) proposed a hybrid particle swarm optimization model that permits activities

to be interrupted only once during the whole project. The model consisted of two schedule

generation schemes that decode the designed four types of particle representations. Cheng, Fowler,

19

Kempf and Mason (2015) introduced the non-preemptive activity splitting to deal with renewable

resources' varying capacity. In their method, an activity can be interrupted one or more times after

starting whenever the resource levels are insufficient and will resume in the next eligible

processing period. Hariga and El-Sayegh (2011) developed an optimization model for resource-

leveling that allows activity splitting and minimizes its associated costs. Their objective was to

level resources to provide a trade-off between the extra cost of acquiring and releasing resources

versus the additional cost of activity splitting. Hariga, Shamayleh and El-Wehedi (2016) proposed

a mixed-integer linear programming model to provide a least-cost project schedule with well-

adjusted resource utilization and reduced project duration. The proposed method integrated the

activity crashing and leveling problems with the possibility of splitting activities.

2.6 Summary

After a thorough literature review on schedule compression and project scheduling, some

gaps and possible improvements were identified for a more realistic and efficient project

scheduling. The capabilities and limitations of the most recent relevant references to this study are

summarized in Table 1. The joint research gaps that were encountered while reviewing the

literature can be summarized in the following points:

1. Unconstrained-Resource scheduling methods.

2. Deterministic resource-constrained scheduling methods.

3. Scheduling methods that don’t account for activity splitting.

4. Scheduling methods that don’t account for the extra costs of acquiring and releasing

resources such as hiring and firing resources represent the resource utilization profile

variation.

20

5. Scheduling methods that don’t account for delay penalty/ opportunity cost.

Table 1: Capabilities and limitations of the most recent and relevant references

To address the above needs, this study proposes a resource-constrained schedule

compression method to account for resource planning and project scheduling under uncertainty

simultaneously while accounting for activity splitting. The method's objective is to minimize the

project duration and cost, including direct cost, indirect cost, and delay penalty, and strike a

balance between the cost of acquiring and releasing resources on the one hand and the cost of

Criteria Reference

 (1) (2) (3) (4) (5) (6) (7) (8)

Optimization methods
NSGA-

II
ACO BIP GA PSO MILP

MAWA-

TLBO
MILP

Multi-objective

optimization
      

Consider Cost      

Deterministic     

Considered the

activities’ uncertainty
  

Resource-constrained  

Resource leveling   

Consider delay

penalty/ bonus
 

Allow activity splitting   

Consider resource

acquiring and

releasing costs

  

NOTES: (NSGA-II) Elitist Non-Dominated Sorting Genetic Algorithm, (ACO) Ant Colony Optimization, (BIP) Binary

Integer Programming, (IOE) Branch-and-Price Algorithm, (PSO) Particle Swarm Optimization, (EA) Evolutionary-Based

Algorithm, (MAWA-TLBO) Modified Adaptive Weight Approach and Teaching Learning Based Optimization, (MILP)

Mixed Integer Linear Programming; (1) Zahraie and Tavakolan, 2009, (2) Kalhor, Khanzadi, Eshtehardian and Afshar,

2011, (3) Hariga and El-Sayegh, 2011, (4) (Moselhi and Salama, 2019), (5) Aminbakhsh and Sonmez, 2016, (6) Hariga,

Shamayleh and El-Wehedi 2016, (7) Toğan and Eirgash 2018, (8) Altintas and Azizoglu, 2020.

21

activity splitting on the other hand. The method’s objectives are subjective to the duration, network

logic, resource balance and activity splitting constraints. To the best of our knowledge, the

proposed method is the first to address the resource-constrained schedule compression under

uncertainty and resource-leveling problems simultaneously with the possibility of splitting

activities.

22

3 CHAPTER THREE: DEVELOPED METHOD

3.1 General

This study provides an integrated method for the resource-constrained project scheduling

problem in an uncertain environment with the possibility of selecting an optimal solution from a

developed set of non-dominated solutions. The proposed method utilizes the fuzzy set theory (FSs)

for modeling uncertainty and the genetic algorithm (GA) for optimization. By combining GA with

FFS, different sets of Pareto solutions are identified by employing different risk acceptance levels.

The user's affordable risk level is transformed into crisp values through the α-cut concept, for

which a separate Pareto front has been developed. The integration of the fuzzy concept within the

genetic algorithm optimization procedure facilitates the decision-support process by selecting a

specified risk level and employing the associated Pareto front. The developed method expands

upon the work discussed in the literature review chapter by providing an integrated resource-

constrained project scheduling method to optimize project duration and cost through the resources

and cost of the execution modes assigned to project activities. The integrated method accounts for

project cost and resource-leveling based on costs and resources imbedded in these modes of

execution. The developed method has five main modules that support two different optimization

methods, as shown in Figure 1.

23

The method steps to generate an optimal schedule and project cost using the developed modules

and optimization methods are summarized in the flow chart, shown in Figure 2.

Figure 1 Developed modules

24

 Figure 2 Flow chart of the proposed method

25

3.1.1 Modeling Uncertainty and Defuzzification Module

The first module aims to model the uncertainty of the construction activities’ duration and

cost using the fuzzy set (FFs) theory and transform fuzzy input variables into crisp values. The

FFs comprise two steps; fuzzification and defuzzification, where fuzzification is changing a real

scale value into a fuzzy value, and defuzzification is replacing the fuzzy variable for a crisp one.

Fuzzy set qualifies as fuzzy numbers if they are normal, convex, and bounded, where a fuzzy

number can be represented by triangular, trapezoidal, or gaussian shapes, as seen in Figure 3. Since

Klir, Wang and Harmanec (1997) pointed out that the fuzzy membership function's used shape

does not significantly show sensitivity to most FSs applications, triangular fuzzy numbers (TFN)

will be used for simplicity to represent the uncertainty of the project activities. On the contrary,

Defuzzification methods have been proposed in the literature and the most popular technique is

the center of gravity, which involves some sort of weighted averaging over its membership

function. However, a fuzzy membership can also be represented by its α -cut where each α -cut

indicates a confidence level at its corresponding certitude level α, as shown in Figure 4. The alpha-

cut method provides a decision analysis tool for the user to model acceptable risk levels.

Figure 3 Types of Fuzzy number representations (Ouma, Yabaan, Kirichu and Tateishi, 2014)

By adopting FSs theory, the developed module allows the user to input the activities’

duration and cost with a fuzzy triangular representation. TFN is represented by three points (𝑎1,

26

a2, a3) on the universe of discourse, representing the minimum, most likely, and maximum values,

respectively, as seen in Figure 4. Simultaneously, an alpha-cut method is used as a defuzzification

method to find the project duration and cost-based on the user preference alpha-cut value that

determines the acceptable risk level. The used alpha-cut method takes the average of the left and

right endpoints (a1 and a3), known as minima and maxima of the alpha-cuts, respectively, to find

the crisp values. A sample code on the modeling uncertainty and defuzzification module is

provided in Appendix I. The activities’ triangular fuzzy representation provided by the user is used

to calculate the project duration based on the alpha cut method. The developed code for the

modeling uncertainty and defuzzification module utilized some functions from a python library

called Skfuzzy.

Figure 4 Triangular fuzzy number representation (Martin & Klir, 2007)

3.1.2 Scheduling Module:

For the scheduling module, the user is asked to identify the normal and crashed durations,

related costs and resource requirements, precedence relationships, and lags/Lead for each activity,

as shown in the user terminal in Figure 5.

27

Figure 5 User terminal

The developed scheduling module utilizes the user inputs to calculate the project duration and

generates a feasible project schedule based on the following steps.

1- Based on the precedence relationships between the activities, the forward and backward

calculations are performed to determine the critical and non-critical activities, which result

in a critical path(s) and project duration.

2- The earliest start time, latest start time, earliest finish time, latest finish time, and total float

are calculated for each activity.

3- Initially, critical and non-critical activities are scheduled at their earliest start time.

4- The resource demand is calculated for each period of the project based on the activities'

resource requirements.

5- Non-critical activities are rescheduled within their early start and late finish based on

resource availability and resource demand.

28

6- An activity splitting function, which will be explained in the next paragraph with an

example, is used to split non-critical activities if the resource demand is higher than the

availability at any period of the project.

7- Finally, the number of acquired and released resources for each period t of the project are

calculated based on the resource demand on period t and t+1. The calculated number of

acquired and released resources represents the variation of the resource’s utilization along

the project's span.

Sample code on the scheduling module is provided in Appendix I. A Python critical path library,

Criticalpath, was utilized to calculate the early, late start, early, and late finish and define the

project duration's critical activities. The critical path library was then modified to assign the

required resources to the project activities and accordingly generates a Gantt chart for the project

that calculates the resource demand for each project period and performs non-critical activity

splitting based on the availability of the resources.

Scheduling Module’s Splitting Function

To demonstrate the scheduling module's splitting function, we will use an illustrative

example that is an extension to the one used in (Son and Mattila, 2004) for the multiple resource

case. The type of resource that is used by all activities was a single machine. The input data and

project network are shown in Table 2 and Figure 6, respectively.

29

Table 2: Example input data

As seen in Figure 6, the non-critical activities are G, H, K, and L, which can be split in case

of insufficient resources. However, activities A, B, C, D, E, and F are critical activities that should

not be interrupted to keep the original project duration.

Figure 6 Example project network

The Gantt chart for the previously mentioned example before splitting is shown in Figure

7. The project schedule has nine available resources for 15 days period where the resource demand

was higher than the available resources in periods 3, 4, and 5. The 1’s and 0’s indicate when an

Activity Duration Resources ES LS EF LF TF

A 2 2 0 2 0 2 0

B 3 4 2 5 2 5 0

C 2 2 5 7 5 7 0

D 3 1 7 10 7 10 0

E 3 4 10 13 10 13 0

F 2 6 13 15 13 15 0

G 4 4 0 4 3 7 3

H 3 5 4 7 7 10 3

K 2 2 2 4 7 9 5

L 4 2 4 8 9 13 5

30

activity is active during its total float. For example, activity G has a total float of 7 days with four

days duration, where it was active from period 1 to 4. However, it can be split within its floats

based on the resource availability on these periods without affecting the project schedule.

A Gantt chart and resource utilization profile for a feasible project schedule with splitting

are generated and shown in Figures 8 and 9. The resource demand was equal to or less than the

available resources. As illustrated in the Gantt chart, activities G and L were interrupted from

periods 3 to 5 and 6 to 9, respectively, since ytj, binary variable equals to one when activity j is

progressing at time t; t= 𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗 and zero otherwise, were equal to zero in these periods.

Although the generated schedule is feasible regarding resource availability, it can be observed

from the resource utilization profile that such a schedule resulted in inefficient resource utilization.

Lastly, it can be noted that activity H was not split; however, its starting time was adjusted to start

Activity/Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 1

B 1 1 1

C 1 1

D 1 1 1

E 1 1 1

F 1 1

G 1 1 1 1 0 0 0

H 1 1 1 1 0 0 0

K 1 1 0 0 0 0 0

L 1 1 1 1 0 0 0 0 0 0
Resources
Demand

6 9 10 14 10 9 9 3 3 3 4 4 4 3 3

Acquired
Resources

6 3 1 4 0 0 0 0 0 0 1 0 0 0 0

Released
Resources

0 0 0 0 4 1 0 6 0 0 0 0 0 1 0

Available
Resources

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Figure 7 The example initial Gantt chart

31

on period 6 rather than period 4 to satisfy the resource availability in periods 4 and 5. In this case,

splitting costs won't be imposed since the activity wasn’t started yet.

Figure 9 The example final Gantt chart

Activity/Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 1
B 1 1 1
C 1 1
D 1 1 1
E 1 1 1
F 1 1

G 1 1 0 0 0 1 1
H 0 0 1 1 1 1 0
K 1 1 0 0 0 0 0
L 1 1 0 0 0 0 1 1 0 0

Resources
Demand

6 9 6 7 7 9 9 6 6 7 8 4 4 3 3

Acquired
Resources

6 3 0 1 0 2 0 0 0 1 1 0 0 0 0

Released
Resources

0 0 3 0 0 0 0 3 0 0 0 4 0 1 0

Available
Resources

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ES

O
U

R
C

ES

PROJECT PERIOD

Resource utilization profile

Figure 8 The example resource utilization profile

32

3.1.3 Cost Calculations Module

For the cost calculations module, the user is asked to identify the contractual duration,

activity splitting cost per split, indirect cost per day, resources releasing and acquiring costs per

resource, and the delay penalty/bonus payment per day. The cost calculations module uses the user

inputs and the scheduling module output to find the total project cost based on the following

components:

1- Direct cost; the summation of the activities’ costs.

2- Indirect cost; the project's indirect cost rate multiplied by the duration of the project.

3- Splitting cost; the number of splits occurred multiplied by the cost of one split,

representing the extra costs associated with shutting down the activity and later restarting

it.

4- Costs of acquiring and releasing resources; the number of acquired and released resources

for each period of the projects multiplied by the acquiring and releasing cost rate, which

represents the extra costs associated with hiring and firing resources.

5- Delay penalty/Opportunity cost; the difference between the contractual duration and the

actual schedule duration multiplied by the bonus payment or the delay penalty,

representing the advantage of finishing the project before or after the planned date.

3.1.4 Sensitivity Analysis Module

Since the optimization problem is solved with the genetic algorithm, the solution quality

might be influenced by the GA parameters such as the number of generations, population size,

mutation, and crossover rates. Usually, the user selects these parameters with no guidelines for

what values will result in a better solution. Hence, the sensitivity analysis module is developed to

establish the procedures for choosing the parameters' values and study the possible effects of these

33

parameters and their interaction on the solution's quality. Therefore, this module identifies the

values of the GA parameters that produce quality solutions. The developed sensitivity module is

case dependent which is very useful for optimization problems where the knowledge about the

optimal GA parameters is unknown.

3.1.5 Optimization Methods

Optimization is a branch of operations research that can help in better decision-making

when solving problems. Optimization aims to quantitatively minimize or maximize a goal by

determining the optimum solution or set of solutions while respecting user-defined constraints.

(Elmasry, Zayed and Hawari, 2019). The Genetic algorithm was chosen as it is widely used in the

time cost optimization field. The genetic algorithm’s population structure for the developed

optimization method is shown in Figure 10.

Figure 10 Description of the Genetic algorithm population

The used crossover operator in the developed optimization method is the partial mapped crossover,

an extension of the two-point crossover. This crossover method was proposed by Lingle at the first

conference proceedings on genetic algorithm in 1985 to solve the illegitimacy caused by the simple

two-point crossover by preserving the parents' elements' order and position. The following steps

explain the partial mapped crossover:

34

I. The crossover substring is randomly selected

II. Substrings exchanged between parents

III. Substring mapping (searching for the elements in the substring that hasn’t been

copied yet in step 2)

IV. Replacement of doubled genes outside the substring based on the substring mapping

In the mutation operation, a simple reciprocal mutation operator is used. Two positions are

randomly selected, and genes swapped on these positions. The following steps explain the

reciprocal mutation operator:

I. Two positions are randomly selected

35

II. Genes on these positions are swapped

Resource-Constrained Optimization Problem

The resource-constrained problem was handled in the developed method by the following

functions:

1- Rescheduling non-critical activities within their floats.

2- If the resource demand is still higher than the available resources, splitting non-critical

activities within their floats.

3- If the resource demand is still higher than the available resources, applying a penalty

function.

The literature has implemented many penalty functions where the most fundamental one is the

death penalty, eliminating any infeasible solution from consideration immediately. Another

method is based on a constant magnitude penalty depending on the number of violated constraints.

A more efficient method extracted from (Damak, Jarbouia, Siarryb and Loukila,2009) will be used

in this study. This method measures the degree of the infeasibility of solutions from the feasible

region and transforms it into a penalty that grows in proportion to the infeasibility level; thus, it is

continuously guiding the search towards the feasible space. The penalty function is defined with

Equations 1 and 2:

Penalty = ẟ (Cmax) . degree of infeasibility Eq. 1

Penalty = ẟ (Cmax). max(
Maximum of Daily Consumption

Resource threshold level
− 1, 0) Eq.2

Where, ẟ is the fitness factor of the current solution that takes a value larger than one and, 𝐶𝑚𝑎𝑥 is

36

the fitness value of the current solution before adding the penalty. Accordingly, the precise

definition of the fitness function for infeasible solutions is defined with Equation 3:

Fitness value = Cmax + penalty Eq. 3

Increasing the ẟ value will make the penalty a death penalty where the current solution will not

survive in the next generation. On the other hand, decreasing the ẟ value will make the current

population survive for the next generation. Accordingly, the trade-off must be found since we want

to eliminate the population's infeasibility to find the optimal global solution and avoid stagnation

in a local optimum by introducing some perturbations. When the penalty value is zero, it reveals

that the current solution is feasible.

The objective of the developed optimization methods is to find a set of non-dominated

solutions that optimize the project's total duration and cost based on activities execution modes

with resources and precedence relationship constraints. As well to strike a balance between the

resources acquiring and releasing costs and activity splitting costs. In multi-objective problems,

there is always a conflict in the problem criteria. In other words, an improvement in one objective

can only be achieved by sacrificing another. In addition, most criteria are non-commensurable; it

is hard to predefine preferences among them before a search process is carried out. Accordingly,

the best solution does not usually exist in such optimization problems. Instead, there usually exists

a set of solutions, which are called non-dominated solutions or Pareto-optimal solutions. The

developed method supports two optimization methods; elitist non-dominated sorting genetic

algorithm (NSGA-II) and weighted multi-objective optimization genetic algorithm.

37

3.1.5.1 NSGA-II Optimization Method

NSGA algorithm was first suggested by Goldberg (1989), where the author presented the

Pareto ranking process to carry the multi-objective optimization. This process, known as non-

dominated sorting, is the cornerstone of all multi-objective evolutionary optimization algorithms

(Zahraie and Tavakolan, 2009). NSGA utilizes fitness sharing to measure effective objectiveness

based on the number of members occupying the same space or situation. Srinivas and Deb (1994)

implemented NSGA for the first time in 1994. Later on, the NSGA method was criticized for its

complexity algorithm in sorting nondominated points and ignoring elitism. Deb, Pratap, Agarwal

and Meyarivan (2002) attempted to improve the NSGA algorithm by proposing NSGA-II. This

fast and elitist multi-objective model proved to be more efficient than other previously developed

algorithms. Unlike the traditional genetic algorithm, NSGA-II utilizes two extra operators: the fast-

non-dominated sorting operator and fast crowded distance operator. NSGA-II utilizes these

operators in the selection process to rank each individual in the population based on the multi-

objective functions. On the other hand, the traditional genetic algorithm uses a simple selection

operator based on selecting the lower fitness function values in the minimization problems.

Yandamuri, Srinivasan and Bhallamudi (2006) introduced the following steps for the NSGA-II

algorithm, which will be used in this study.

1- Selection of GA parameters, where the parameter setting may affect the solution quality

and speed.

• Set the number of generations as a termination condition, size of population N, and

the probability of mutation and crossover.

2- Create a parent population (P0) randomly with a size N.

• The chromosome representation contains the mode assignment for activities

execution modes where each activity j ∈ n is assigned a mode m ∈ Mj.

38

3- Based on the nondomination concept, Sort the present random population.

4- Assign a fitness rank value for each non-dominated solution equal to its nondomination

level, where 1 is the best level, 2 is the next best level, and so on.

5- Divide the parent population into P1 and P2 to create a child population (Q0) of size N using

crossover and mutation operators.

6- Create a new generation from the initial population with the following steps:

• create Rt with a size of 2N (the mating pool) by combining the parent population

(Pt) and the child population (Qt).

• Identify all non-dominated fronts (F1, F2,…., Fl) using the fast nondominated

sorting procedure to sort Rt.

• Generate the new parent population (Pt+1) of size N by adding nondominated

solutions starting from the first ranked nondominated front and proceeding with the

subsequently ranked nondominated fronts until exceeding size N.

• Reject some of the lower-ranked nondominated solutions from the last front to

construct the new parent population Pt+1 of size N using crowding distance sorting

assigned to each solution in the previously dominated front.

• Create the new child population Qt+1 of size N by using the crossover and mutation

operators on Pt+1

7- Repeat Step 6 until reaching the maximum number of generations.

8- Generate a 2D Pareto front for the output solutions showing the optimal time-cost trade-

off curve.

39

A sample code on the NSGA-II method is provided in Appendix I. The NSGA-II functions

were adopted from a program code written by Khan (2017), NSGA-II fast non-dominated sorting

function, sorting solution, and crowding distance calculation function.

3.1.5.2 Dynamic Weighted Optimization Genetic Algorithm Method

A dynamic weighted optimization method is constructed to solve the multi-objective

problem with cost and time as the objective functions to validate the developed NSGA-II method

and compare the results. Integrating multiple objective functions is a challenge since they have

different units of analysis. Accordingly, there has been a variety of developed methods to solve

this issue. Some studies choose one primary objective and change the others into constraints with

a fixed range value (Lee, Madanat and Reger, 2016). Conversely, other studies base their

analysis on the normalization of the model output to compare the multi-objective solutions

(Torres-Machi et al., 2018). The latter method will allow all the objectives to be explored

simultaneously in the objective function. The multi-objective problem was transformed into a

single objective problem using dynamic weights, as shown in Equation 4. This method was used

in the literature by Elmasry, Zayed and Hawari (2019) and France-Mensah and O’Brien (2019).

Minimize F(x) = ∑ wnfn(x)N
n=1 Eq.4

Such that ∑ 𝑤𝑛
𝑁
𝑛=1 = 1 and N = total number of objective functions

To avoid any biases in choosing the objective functions’ weights and to have an objective

method, values were randomly generated to determine the optimal combination weights for the

two objective functions (i.e., time and cost), as shown in Equation 5. These weights were

considered default values; however, the user can input the relative weights that suit their project

and conditions.

40

wi =
μi

∑ μi
n
i=1

 Eq. 5

Where, 𝜇𝑖is the importance of objective function i and ∑ 𝜇𝑖
𝑛
𝑖=1 is the summation of all objective

functions’ importance.

Accordingly, the resultant single objective function is shown in Equation 6.

F(x) = w1 ∗ Duration + w2 ∗ project cost Eq. 6

The developed code for the dynamic weighted optimization genetic algorithm method utilized a

python library called GA.

3.1.6 Decision-Support Module

Multi-criteria decision-support methods permit considering different attributes for ranking

the different scenarios and choosing the best one among the generated ones (Abdelkader, Marzouk

and Zayed, 2019). The developed decision-support module uses the weighed sum method to allow

the project managers to select the most feasible scenario among the generated ones. It generates a

2D Pareto fronts for time, cost solutions for the desired alpha-cut values, and project parameters

where the optimum solution is selected. The weighted sum method is based on calculating a

preference index for each alternative, whereas the best alternative is the one with the highest

preference in the maximization case. On the other hand, the best alternative has the lowest

preference in the minimization case.

The preference of each alternative can be calculated using Equation 7.

pi = ∑ fij ∗ wj(1 ≤ i ≤ m, 1 ≤ j ≤ n),n
j=1 Eq. 7

41

Where 𝑝𝑖 represents the preference of each alternative. 𝑓𝑖𝑗 represents the measure of performance

in the normalized matrix. 𝑤𝑗 represents the weight of each criterion. m and n represent the number

of alternatives and the number of criteria, respectively.

Accordingly, the normalized objective function for the proposed optimization method can be

expressed with Equation 8.

Normalized Objective function = (
duration∗weight

Sum of durations
) + (

cost∗weight

Sum of costs
) Eq. 8

3.2 Mathematical Formulation

Considering a construction project with n activities where each activity j has m modes of

execution Mj = 1,2,…,m. The activity execution modes have fuzzy durations and costs based on

the user input Tj and DCj respectively, j = 1, 2,…,n, and a fixed resource requirement as a

renewable resource p. The longest duration of an activity j is known as the normal duration, and

the shortest duration is knows as the crash duration. The critical path calculations (forward and

backward calculations) have resulted in NN noncritical activities and NC critical activities,

forming a critical path(s) of a project duration T. Also, the earliest start time ESj, earliest finish

time EFj, latest start time LSj, Latest finish time LFj, and total float TFj of each activity has been

calculated based on the user input precedence relationship. Each noncritical activity can be

rescheduled within its early start and late finish and split based on the user input resource

constraint. The resource constraint guarantees that the resource demand Rtp is less than or equal to

the resource availability Ra for each project period.

This study developed an integrated method that optimizes project duration and cost through

the resources and cost of the execution modes assigned to project activities. It accounts for project

cost and resource-leveling based on costs and resources imbedded in these modes of execution.

42

The method's objective is to minimize the project duration and cost, including direct cost, indirect

cost, and delay penalty, and strike a balance between the cost of acquiring and releasing resources

on the one hand and the cost of activity splitting on the other hand. The objective functions can be

represented with Equations 9 and 10.

Minimize T = ∑ ∑ xjmDjm;
Mj

m=1
NC
j=1 Eq. 9

Minimize PC = ∑ [CAp ∑ Itp + CRp ∑ Dtp] +T
t=1

T
t=1

P
p=1

∑ [CSjNLj]
N
j=1 + ∑ ∑ [xjmCjm] + IC T + [(T − F)B];

Mj

m=1
N
j=1 Eq. 10

The decision variables of the developed method:

• 𝑥𝑗𝑚= binary variable equals to 1 when activity j is performed under mode m and zero

otherwise

• 𝑦𝑡𝑗= binary variable equals to one when activity j is progressing at time t; t= 𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗

• 𝑧𝑗𝑡= Required resources by activity j during time t.

• 𝑁𝐿𝑗= number of times activity j is split.

• 𝐷𝑡𝑝= number of resources p released during time t

• 𝐼𝑡𝑝= number of resources p acquired during time t

• 𝑆𝑗 = start time of activity j; j=1…,nc

• 𝐹𝑗 = finish time of activity j; j=1…,nc

The following notations will be used throughout this section.

• N = number of activities

• NC = number of critical activities

• 𝑀𝑗 = number of modes for executing activity j; j=1,2,…….N

under mode m and zero otherwise

• P = number of resource types required by the project

• 𝐷𝑗𝑚= duration of activity j running in mode m; m=1,2…. 𝑀𝑗

time t; t= 𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗

43

• T = actual project duration

• B = Delay penalty/ Opportunity cost

• PC = project cost

• F = contract project duration

• 𝐶𝐴𝑝 = Acquiring cost of resource p

• 𝐶𝑅𝑝 = Releasing cost of resource p

• 𝐶𝑆𝑗 = Splitting cost of activity j

• IC = indirect cost

• 𝐶𝑗𝑚 = Direct cost of activity j under mode m

The method is developed under the following assumptions:

• Each activity has a constant resource requirement rate over its duration.

• All non-critical activities can be split with an associated cost.

• An activity resumes after splitting with the same resource requirement.

• Every activity has multiple modes but can be executed under one mode during its duration.

• The precedence relationship for split activities remains unchanged.

• The project resources are assumed to be interchangeable for the project activities.

3.3 Problem Constraints

The introduced decision variables should satisfy the following types of constraints:

duration constraint, network logic constraint, resource balance constraint, activity splitting

constraint. The mathematical formulations of these constraints are adopted from (Hariga,

Shamayleh and El-Wehedi, 2016).

3.3.1 Duration Constraint

This constraint states that the total number of active periods for a non-critical activity j

should be equal to it its duration 𝐷𝑗𝑚 𝑤ℎ𝑒𝑛 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑢𝑛𝑑𝑒𝑟 𝑚𝑜𝑑𝑒 𝑚 as seen in Equation 11.

44

∑ ytj = ∑ Djmxjm
Mj

m=1

LFj

t=ESj
; j = 1, … , nn Eq. 11

3.3.2 Network Logic Constraint

The network logic constraint guarantees that the precedence relationships between all

activities are preserved. To express these network logic constraints, we need first to determine

each activity's mode. Equation 12 represents mathematically that each activity is only allowed to

run in one mode of operation.

∑ xjm = 1
Mj

m=1 ; j=1,…., N Eq. 12

Furthermore, we will also need to determine the starting and finishing times for all activities using

Equations 13 and 14.

Sj = (T + 1) − max{(T + 1 − t)ytj; t = ESj, ESj + TFj} Eq. 13

Fj= max (t ytj; t = LFj − TFj , LFj) Eq. 14

Thus, the network logic constraint can be represented by Equation 15.

𝑆𝑘 ≥ 𝐹𝑗 + 1; j=1,…., N k ∈ succ (j) Eq. 15

where succ(j) is the set of immediate successors to activity j.

3.3.3 Resource Balance Constraint

The resource balance constraint ensures that the resource requirement for resource p on

period t plus the amount of the same resource released during period t is equal to the resource

requirement on period t-1 plus the number of resources acquired during period t. Before defining

this constraint, we need to express the resource requirement (Rtp) as a function in terms of the

45

binary variable 𝑦𝑡𝑗 and 𝑥𝑗𝑚. In other words, the resource requirement at time t is the sum of the

required resources for all activities running at time t, which can be explained with Equation 16.

Rtp = ∑ ytj ∑ rjmxjm; t = 1, … … , T
Mj

m=1
N
j=1 Eq. 16

Since the above function is nonlinear as it involves the product of the decision variables 𝑦𝑡𝑗 , and

𝑥𝑗𝑚, we needed to convert it into a linear equation by introducing the continuous decision variable

𝑧𝑗𝑡 that is shown in Equation 17 and satisfying the constraints shown in Equations 18 to 20:

zjt ≤ rj
maxytj; j=1,……,N t= ESj to LFj Eq. 17

zjt ≤ ∑ rjm
Mj

m=1 xjm

; j=1,……,N t= ESj to LFj Eq. 18

zjt ≥ ∑ rjm
Mj

m=1 xjm − rj
max(1 − ytj)

 ; j=1,……,N, t= ESj to LFj Eq. 19

zjt ≥ 0 ; j=1,……,N, t= ESj to LFj Eq. 20

Using the above constraints, it can be verified that 𝑧𝑗𝑡= 0 when 𝑦𝑡𝑗= 0. Otherwise,

 zjt= ∑ rjm
Mj

m=1 xjm when ytj=1 Eq. 21

By using the new continuous decision variables, the resource requirement can be written with

Equation 22.

Rtp = ∑ zjtp
N
j=1 ; t = 1, … … , T p = 1, … . ., P Eq. 22

The resource balance constraint can be written, as shown in Equation 23.

Rtp - R(t−1)p+ Dtp- Itp=0 Eq. 23

46

3.3.4 Activity Splitting Constraint

Activity splitting constraint helps determine the number of times an activity has been split

during its scheduling interval as a function of the binary variable 𝑦𝑡𝑗 . An activity is considered

split at period t+1when 𝑦𝑡𝑗 = 1 and 𝑦(𝑡+1)𝑗 = 0 for t ≥ 𝐸𝑆𝑗 j and t < 𝐿𝐹𝑗 − 1.

This condition can be presented mathematically with Equation 24:

Ltj= max {ytj − y(t−1)j , 0} j = 1, . . . ,N, t = ESj to LFj Eq. 24

This equation specifies that 𝐿𝑡𝑗 = 1 when 𝑦𝑡𝑗 = 1 and 𝑦(𝑡+1)𝑗 = 0, indicating a split occurred

during the period (t + 1). Then, the number of times activity j has been split during its scheduling

interval can be easily determined using Equation 25:

NLj =∑ Ltj
LFj

t=ESj
− 1; j = 1, . . . ,N Eq. 25

 Note that when the finish time of activity j is less than 𝐿𝐹𝑗 , then using the above Equation 𝐿𝑡𝑗=1

for t = 𝐹𝑗 will result in zero, which confirms that it is not a splitting case during the period 𝐹𝑗 +1.

This case explains the use of (−1) in the equation.

47

4 CHAPTER FOUR: NUMERICAL EXAMPLE

4.1 Background

The developed method is applied to a numerical example adapted from (Zheng and Ng,

2005) to demonstrate its use and capabilities. This numerical example was utilized since it was

widely used in the project scheduling under uncertainty studies and covered much of the

parameters used in this study. The example project network is shown in Figure 11.

Figure 11 Numerical example network (Zheng and Ng, 2005)

The project consists of seven activities (A-G) where each activity has three to five modes

of execution to be selected from, as shown in Tables 3 and 4. Triangle fuzzy numbers represent

the time and cost of each option. The first and third values for time and cost represent the lowest

and highest possible values for each option. The second value defines the most probable time and

costs for that option. The sum method was used as a decision-support module to find the best time-

cost solution from the generated set of non-dominated solutions.

48

 Table 3: Activity execution modes (costs) (Zheng and Ng, 2005)

 Table 4: Activity execution modes (durations) (Zheng and Ng, 2005)

 Direct cost in $ 1000 (optimistic, most likely, pessimistic)

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

A (20.5, 23, 28) (16.2, 18, 21.2) (11.5, 12, 13.5) - -

B (2.87, 3, 3.58) (2.26, 2.4, 2.9) (1.5, 1.8, 2.1) (1.08, 1.2, 1.9) (0.5, 0.6, 0.72)

C (4.2, 4.5, 4.95) (3.75, 4, 4.5) (2.9, 3.2, 3.75) - -

D (43.5, 45, 48.85) (33.62, 35, 38.9) (28.5, 30, 34.5) - -

E (18.1, 20, 23.5) (15.2, 17.5, 21) (13.7, 15, 18.5) (8.75, 10, 11.8) -

F (38.5, 40, 49.5) 30.25, 32, 36.2) (16.8, 18, 21.05) - -

G (28.4, 30, 34.5) (22.2, 24, 26.8) (21, 22, 23.25) - -

Duration in days (optimistic, most likely, pessimistic)

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

A (12, 14, 16) (17, 20, 23) (19, 24, 29) - -

B (12, 15, 18) (13, 18, 23) (15, 20, 25) (23, 30, 37) (54, 60, 66)

C (10, 15, 20) (20, 22, 24) (28, 33, 38) - -

D (10, 12, 14) (12, 16, 20) (17, 20, 23) - -

E (16, 22, 28) (20, 24, 28) (23, 28, 33) (25, 30, 35) -

F (12, 14 16) (15, 18, 21) (20, 24, 28) - -

G (7, 9, 11) (13, 15, 17) (15, 18, 21) - -

49

Unfortunately, since there is little research in the resource-constrained scheduling under

uncertainty, some modifications were applied to the project parameters to perform the study with

a resource-constrained environment.

The modifications are as follows:

1- Activity’s needed resources were calculated using Equation 25 and presented in Table 5,

where the resource cost was assumed to be 200$/day:

• Resources needed=Activity cost/ (activity duration * 200$/day) Eq. 25

Table 5: Activity execution modes (resources)

2- The used project parameters are shown in Table 6, where the splitting and resources

acquiring and releasing costs were assumed based on values from the literature.

 Project Activities’ Resources

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

A 9 5 3 - -

B 1 1 1 1 1

C 2 1 1 - -

D 22 14 8 - -

E 6 4 3 2 -

F 16 10 4 - -

G 20 9 7 - -

50

4.2 Method Validation

The resource-constrained time-cost optimization problem was solved with the dynamic

weighted optimization method and NSGA-II to evaluate their results and illustrate their robustness.

The developed method was coded using python on a 16GB RAM, 2.60 GHz i7 core CPU, and

Windows 10 with a 64-bit operating system. The running time ranged between 10 min and 15 min.

The proposed methods are validated through a multi-layered comparative analysis that

involves performance evaluation and statistical comparisons. The used performance evaluation

method compares the quality of the non-dominated set of solutions by ranking the solutions and

finding the best alternative using the weighted sum method. On the contrary, the statistical

comparison investigates the capabilities of the developed methods in improving the solutions by

genetic algorithm evolution and searching the unknown criteria space before converging to a

Table 6: Project parameters

Indirect cost ($/day) 500

Contractual duration (day) 80

Splitting cost ($/split) 1000

Acquiring costs ($/resource) 500

Releasing costs ($/resource) 500

Delay penalty/ Opportunity

cost ($/day)

500

Available resources

(resource/day)

15

Alpha-cut value (i.e. accepted

level of risk)

0.5

51

global optimum. The used statistical measures in the validation process are the mean, range, and

best values. The coefficient of variation was used to assess the stability of the developed

optimization methods since this test is used widely in the literature for that purpose.

Genetic Algorithm Sensitivity analysis

A sensitivity analysis of the GA parameters is performed to identify the GA parameters

that produce quality solutions. The developed sensitivity module is case-dependent, which is very

useful in optimization problems where the knowledge about the optimal GA parameters is

unknown. As our case study is rather simple, the algorithms may have a high tendency to converge

impulsively at a local optimum. Accordingly, the recommended genetic algorithm parameters from

the literature are as follows: population size = 50, the number of generations = 200, two parents

exchanged their genes with a crossover rate of 0.4 to ensure adequate offspring exploitation,

exploration, and stepwise convergence, a mutation rate of 0.9 which aids in avoiding premature

convergence and introducing useful genetic materials. Sensitivity analysis is performed for

different values of crossover probabilities (Pc = 0.4 to 1 in steps of 0.2), mutation probabilities (Pm

= 0.2 to 0.8 in steps of 0.2), and population sizes (30, 50, and 60). The values of the parameters

were changed iteratively to test the effect on the quality of solutions.

Table 7 and Figure 12 show the sensitivity analysis results for the population size. As can

be seen, the different population sizes did not show a big difference in the output solutions and the

optimal time-cost trade-off curves. However, the 2nd solution in the recommended population size

had the lowest preference index (PI) among all other solutions of the different population sizes

with a PI value of 0.080252, a duration of 61 days, and a cost of $183,781. While the best solution

for population sizes 30 and 60 had PI values of 0.080281 and 0.080294, durations of 61 days and

52

61 days, and costs of $183,907 and $183,965, respectively. Accordingly, having a genetic

algorithm run with a 50-population size will result in better solutions.

Table 7: Population size sensitivity analysis

Figure 12 Population size sensitivity analysis

 Duration

(Days)
Cost ($)

Normalized

Duration
Normalized Cost PI

Pop size = 30

60 213147 0.075472 0.09716 0.086316

61 183907 0.07673 0.083832 0.080281

67 173320 0.084277 0.079006 0.081641

73 167396 0.091824 0.076305 0.084065

60 197889 0.075472 0.090205 0.082838

Recommended

pop size = 50

60 211004 0.075472 0.096184 0.085828

61 183781 0.07673 0.083774 0.080252

73 167522 0.091824 0.076363 0.084093

Pop size = 60

61 183965 0.07673 0.083858 0.080294

67 176478 0.084277 0.080445 0.082361

73 170304 0.091824 0.077631 0.084727

79 165050 0.099371 0.075236 0.087304

60 211004 0.075472 0.096184 0.085828

150000

160000

170000

180000

190000

200000

210000

220000

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

C
O

ST
 (

$)

DURATION (DAYS)

Pop size 50 pop size 60 pop size 30

53

Table 8 and Figure 13 illustrate the sensitivity analysis results for the mutation rate. It can

be observed that mutation rates of 0.4 and 0.6 resulted in higher PI solutions with values of

0.068147 and 0.068146, respectively, and better time-cost trade-off curves than that of the

mutation rates of 1 and 0.8 with PI values of 0.070773 and 0.069212 respectively. Although

mutation rates of 0.4 and 0.6 resulted in very close PI values, the mutation rate of 0.6 had a better

time-cost trade-off curve, as shown in Figure. Accordingly, choosing either of mutation rates of

0.4 and 0.6 should result in a better set of non-dominated solutions.

Table 8: Mutation rate sensitivity analysis

 Duration

(Days)
Cost ($)

Normalized

Duration
Normalized Cost PI

Mutation rate = 0.4

60 197785 0.062827 0.077939 0.070383

61 183781 0.063874 0.072421 0.068147

76 165289 0.079581 0.065134 0.072357

Mutation rate = 0.6

60 197785 0.062827 0.077939 0.070383

61 183775 0.063874 0.072418 0.068146

67 170288 0.070157 0.067104 0.06863

73 167407 0.07644 0.065968 0.071204

82 165705 0.085864 0.065298 0.075581

Recommended

mutation rate = 0.8

60 197785 0.062827 0.077939 0.070383

67 173239 0.070157 0.068266 0.069212

82 168163 0.085864 0.066266 0.076065

Mutation rate = 1

60 213170 0.062827 0.084002 0.073414

67 181164 0.070157 0.071389 0.070773

79 172354 0.082723 0.067918 0.07532

54

Figure 13 Mutation rate sensitivity analysis

Table 9 and Figure 14 demonstrate the sensitivity analysis results for the crossover rate. It

can be seen that the output solutions and time-cost trade-off curves didn’t follow any pattern for

the different crossover rates. However, the crossover rate of 0.4 had the lowest PI value of

0.055726 with a duration of 61 days, and a cost of $183,781among all other solutions of the

different crossover rates. While the best solution for mutation rates 0.2, 0.6, and 0.8 had PI values

of 0.055733, 0.05576, and 0.057515, durations of 61 days, 61 days, and 60 days, and costs of

$183,820, $183,995, and $197,666 respectively. Consequently, having a genetic algorithm run

with a 0.4 crossover rate can result in better solutions.

Figure 14 Crossover rate sensitivity analysis

150000

160000

170000

180000

190000

200000

210000

220000

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

C
O

ST
 (

$
)

DURATION (DAYS)

mutation rate 0.8 mutation rate 0.6 mutation rate 0.4 mutation rate 1

150000

160000

170000

180000

190000

200000

210000

220000

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

C
O

ST
 (

$)

DURATION (DAYS)

crossover rate 0.4 crossover rate 0.2 crossover rate 0.6 crossover rate 0.8

55

Based on the performed sensitivity analysis results, the NSGA-II and dynamic weighted genetic

algorithm method will use the following genetic algorithm parameters: Population size = 50,

number of generations = 200, mutation rate = 0.6, and crossover rate = 0.4.

Table 9: Crossover rate sensitivity analysis

 Duration

(Days)
Cost ($)

Normalized

Duration

Normalized

Cost
PI

Crossover = 0.2

60 213219 0.051813 0.06819 0.060002

61 183820 0.052677 0.058788 0.055733

76 165157 0.06563 0.052819 0.059225

Recommended

crossover = 0.4

60 211004 0.051813 0.067482 0.059648

61 183781 0.052677 0.058776 0.055726

73 167522 0.06304 0.053576 0.058308

Crossover = 0.6

60 198194 0.051813 0.063385 0.057599

61 183995 0.052677 0.058844 0.05576

63 181741 0.054404 0.058123 0.056264

67 173403 0.057858 0.055456 0.056657

79 174530 0.068221 0.055817 0.062019

81 173628 0.069948 0.055528 0.062738

88 174530 0.075993 0.055817 0.065905

Crossover = 0.8

60 197666 0.051813 0.063216 0.057515

63 191131 0.054404 0.061126 0.057765

67 181032 0.057858 0.057896 0.057877

78 172477 0.067358 0.05516 0.061259

56

5 CHAPTER FIVE: DISCUSSION OF RESULTS

5.1 NSGA-II Optimization Method Results

After running 200 generations of the NSGA-II optimization method using a population size

of 50, a mutation rate of 0.6, and a crossover rate of 0.4, the non-dominated set of solutions is

shown in Table 10, where the sum weighted method was used to find the best solution among

them. Since our optimization problem is a minimization case, the lowest preference index (PI)

solution will be the best alternative. It can be seen that the third solution is the best solution with

the lowest PI with a value of 0.160327573, a duration of 69 days, and a cost of $178,536.

Simultaneously, the sixth solution is the most inadequate solution with the highest PI value of

0.1796517, a duration of 90 days, and a cost of $169,459. Figure 15 shows the resulted solutions

for the 200 generations, where the black curve shows the optimal time-cost trade-off curve with

the non-dominated set of solutions. The selected mode for each activity based on the optimal

solution is highlighted in Table 11.

Table 10: NSGA-II non-dominated set of solutions

Duration
(Days)

Cost ($) Normalized Duration Normalized Cost Preference Index (PI)

67 204142 0.150224215 0.189747031 0.169985623

68 181709 0.152466368 0.168895883 0.160681125

69 178536 0.15470852 0.165946625 0.160327573

73 171895 0.16367713 0.159773912 0.161725521

79 170123 0.177130045 0.158126864 0.167628454

90 169459 0.201793722 0.157509685 0.179651704

57

Figure 15 NSGA-II Pareto front

NOTE: Correct sign = Elected mode, Cross = Mode available for the activity but not selected,

Blank = Mode wasn’t available for that activity

 Project Activities Durations (days)

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

A    - -

B     

C    - -

D    - -

E     -

F    - -

G    - -

Table 11: Selected mode for each activity (NSGA-II)

58

5.2 Dynamic Weighted Optimization Method Results

Since the dynamic weighted optimization method requires selecting weights for the two

objective functions (i.e., duration and cost), 100 values were randomly generated to avoid any

biases in choosing the objective functions’ weights. A sample of the generated weighs shown in

Table 12, where the non-dominated solutions of each weight’s combination, are listed with their

calculated weighted objective function. The optimal solution for each weight’s combinations is

determined based on the weighted sum method as the solution with the lowest weighted objective

function. For example, the optimal solution for run 20 with W1= 0.7868, W2= 0.2132, is the

solution with the lowest weighted objective function with a value of 36451.1, a duration of 86

days, and a cost of $170,667.5. Table 13 summarizes the optimal solutions for some of the chosen

weight combinations. The best alternative among these optimal solutions, which is written in bold

in Table 13, is the solution with the lowest preference index (PI) value. This solution has a PI value

of 0.02421525, a duration of 73 days, a cost of $148,257, and objective function weights of

0.10438 (W1) and 0.895618 (W2). These weights indicate that cost was predominant in this

optimization process.

Dynamic weighted optimization was run for 200 generations using the found best

alternative weight combination, a population size of 50, a mutation rate of 0.6, and a crossover rate

of 0.4. The resulting non-dominated set of solutions is shown in Table 14, where the sum weighted

method was used to find the best solution. Since our optimization problem is a minimization case,

the solution with the lowest preference index is the best alternative. The third solution has the

lowest PI with a value of 0.126069221, a duration of 82 days, and a cost of $155,017. On the other

hand, the sixth solution has the highest PI with a value of 0.1759102, a duration of 116 days, and

59

a cost of $212,947. The selected mode for each activity based on the optimal solution is highlighted

in Table 15.

Table 12: Sample of the generated weights

Note: The bold values show the optimal solution for each of the weights’ combination.

Iterations Objective functions weights
Duration

(Days)
Cost ($)

Weighted objective
function

1
W1= 0.3795731 and W2 =

0.6204268

73 171700 106555

79 250264.7 155300.9

70 255179.6 158346.8

67 161487.5 100216.6

75 264603.8 164195.7

94 292847.7 181726.2

73 444113.7 275567.7

61 258210.4 160223.8

20
W1 = 0.7868169 and W2 =

0.2131830

119 203370 43448.7

86 244215.7 52130.3

127 195000 41670.6

86 170667.5 36451.1

83 261197.5 55748.2

91 309955 66148.7

60 306686 65427.5

92 210567.3 44961.8

69
W1= 0.1043815 and W2 =

0.8956184

73 148257.5 132789.8

83 286221.9 256354.3

68 277004.2 248097.1

73 171587.5 153684.5

85 287024.8 257073.6

77 413033.8 369928.7

68 277004.1 248097.1

93 283374.4 253805.1

100
W1 = 0.2274323 and W2 =

0.7725676

77 160262.5 123831.1

84 265201.4 204905.1

92 278500 215181

91 168495 130194.5

117 424215.3 327761.6

122 193135 149237.6

83 285333.6 220458.4

76 268445.2 207409.3

60

Table 13: Optimal solutions for some of the chosen weight’s combinations

Iteration W1 W2
Duration

(Days)
Cost ($)

Weighted
objective
function

Preference index

1 0.379573 0.620427 67 161487 100216 0.025909185

2 0.053117 0.946883 100 166982.5 158118.3 0.027375094

3 0.32203 0.67797 90 215718 146279 0.034661388

4 0.666265 0.333735 69 803035 268046.7 0.060746401

5 0.165209 0.834791 95 180300 150528 0.030187488

6 0.288942 0.711058 79 184754 131394 0.02989024

7 0.095044 0.904956 85 165265 149565.6 0.027079133

8 0.321706 0.678294 82 163850 111164 0.028029957

9 0.064577 0.935423 84 187637 175525.9 0.030205733

10 0.393901 0.606099 79 247652.1 150132.8 0.036106663

11 0.572025 0.427975 84 234665 100479 0.034724733

12 0.29564 0.70436 83 160495 113070 0.027620701

13 0.208417 0.791583 124 178982 141705.4 0.032711451

14 0.93771 0.06229 88 186887 11723 0.033884897

15 0.990365 0.009635 105 208247 2110 0.04067371

16 0.435746 0.564254 84 166615 94049 0.029255123

17 0.386916 0.613084 81 177165 108648 0.029551112

18 0.708912 0.291088 96 177487 51732 0.034680296

19 0.334022 0.665978 87 176570 117620 0.030103104

20 0.786817 0.213183 86 170667 36451.08 0.032082739

21 0.055499 0.944501 73 155970 147317.9 0.025157119

22 0.50942 0.49058 92 262577.9 128862.4 0.038809894

23 0.434954 0.565046 79 155025 87630.63 0.02735804

24 0.160908 0.839092 89 186005 156089.6 0.030544852

25 0.726364 0.273636 87 164357.5 45037.26 0.031722553

26 0.195595 0.804405 86 241866.7 194575.7 0.037676319

27 0.366043 0.633957 73 272249.2 172620.9 0.038001458

̶ ̶ ̶ ̶ ̶ ̶ ̶

69 0.10438 0.895618 73 148257 132789 0.02421525

̶̶̶ ̶̶̶ ̶̶̶ ̶̶̶ ̶̶̶ ̶̶ ̶̶̶

100 0.227432 0.772568 77 160262 123831.1 0.026618134

61

Duration

(Days)
Cost ($) Normalized Duration Normalized Cost Preference Index (PI)

88 184377.5 0.143089431 0.141306555 0.142197993

76 179702.5 0.123577236 0.137723645 0.13065044

82 155017.5 0.133333333 0.118805109 0.126069221

87 195520 0.141463415 0.149846146 0.14565478

84 190537.5 0.136585366 0.146027567 0.141306467

116 212947.5 0.188617886 0.163202548 0.175910217

82 186702.5 0.133333333 0.143088431 0.138210882

Table 14: Weighted objective optimization non-dominated set of solutions

Table 15: Selected mode for each activity (weighted objective optimization)

Project Activities Durations (days)

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

A    - -

B    

C    - -

D    - -

E     -

F    - -

G    - -

62

5.3 Comparison of the Developed Optimization Methods

Both of the developed optimization Methods’ results were compared to evaluate their

performance in finding the optimal solutions. The results of both methods are tabulated in Table

16, where it's evident that the NSGA-II was superior in finding better solutions than the dynamic

weighted optimization. The optimal solution from the NSGA-II Pareto front has a PI value of

0.070013517, a duration of 69 days, and a cost of $178,536, while the optimal solution of the

dynamic weighted optimization has a PI value of 0.07120034, a duration of 82, and a cost of

$155,017.

Table 16: Comparison of the optimization methods results

On the contrary, the statistical test results were compared to investigate the developed

methods' capabilities in improving the solutions by genetic algorithm evolution and searching the

unknown criteria space before converging to a global optimum. The achieved statistical results

Optimization

Methods

Duration

(Days)
Cost ($)

Normalized

Duration

Normalized

Cost
Preference Index

NSGA-II

67 204142 0.063147974 0.085749846 0.07444891

68 181709 0.064090481 0.076326864 0.070208673

69 178536 0.065032988 0.074994046 0.070013517

73 171895 0.068803016 0.072204494 0.070503755

79 170123 0.074458058 0.071460165 0.072959112

90 169459 0.084825636 0.071181252 0.078003444

Dynamic

weighted

optimization

88 184377.5 0.082940622 0.077447768 0.080194195

76 179702.5 0.071630537 0.075484034 0.073557286

82 155017.5 0.07728558 0.0651151 0.07120034

87 195520 0.081998115 0.082128175 0.082063145

84 190537.5 0.079170594 0.080035276 0.079602935

116 212947.5 0.10933082 0.089448596 0.099389708

82 186702.5 0.07728558 0.078424384 0.077854982

63

from both optimization methods are shown in Table 17. Both optimization methods solved the

multi-objective time cost optimization problem since the objective functions (time and cost) were

improved simultaneously with evolution. For example, the best duration and cost values for the

NSGA-II method were improved from 103 days in generation 25 to 96 days in generation 200 and

from $204,170 in generation 25 to $198,007 in generation 200. The best duration and cost values

for the dynamic weighted optimization were improved from 78 days in generation 25 to 67 days

in generation 200 and from $170552.5 in generation 25 to $155,017 in generation 200. However,

NSGA-II appears more robust in searching out the optimal solutions since the NSGA-II output

average values for duration and cost were lower than that of the dynamic weighted optimization.

The NSGA-II average values in generation 200 for duration and cost are 82.94 days and

$189,444.45, respectively. In comparison, the dynamic weighted optimization average values in

generation 200 for duration and cost are 85.25 days and $185,500.93, respectively. Furthermore,

the range values demonstrate that NSGA-II has a more remarkable ability in searching the

unknown criteria space before converging to a global optimum. This explains the reason behind

the high range values for the duration and cost in the first 25 generations of the NSGA-II compared

to that of the last generations. Hence, the NSGA-II had a trade-off between exploration (i.e.,

exploring the new search space) and exploitation (i.e., using already detected points to search the

optimum). On the other hand, the range values for the weighted dynamic optimization's duration

and cost increased with the generations, which suggests that the algorithm didn’t have a trade-off

between exploration and exploitation.

64

The coefficient of variation (CV), which is the ratio of the standard deviation to the mean,

is a way to measure the optimization algorithm's stability. A CV closer to zero in the last

generations is desirable as it shows little or no variation between the output solutions and reveals

the algorithm stability. Table 18 shows the CV results of duration and cost for the two optimization

methods through the different generations. It is shown that the NSGA-II had lower CV values for

the duration and cost than the dynamic weighted optimization. NSGA-II had a CV value of

0.04678 and 0.05490 in the last generation for the duration and cost, respectively. However, the

dynamic weighted optimization had a CV value of 0.15495 and 0.082734 in the last generation for

the duration and cost, respectively. Accordingly, the results show that the NSGA-II performance

was more stable than that of the dynamic weighted genetic algorithm.

Optimization

Methods
Iterations

Criteria

Duration (Days) Cost ($)

Average Best Range Average Best Range

NSGA-II

25 85.82 103 28 192210.1 204170 33817.5

50 80.56 84 11 190923.0 198120 14075.0

75 81.7 88 13 190610.9 201392.5 28415.0

100 80.28 92 6 197758.8 198195.0 8880.0

125 81.38 92 10 195475.3 198195.0 25030.0

150 81.42 96 17 192486.8 198195.0 16250.0

175 84.44 99 21 187402.05 204170.0 33970.0

200 82.94 96 10 189444.45 198007.5 14150.0

Dynamic weighted

optimization

25 87.375 78 38 189670.93 170552.5 42395.0

50 86.625 78 38 188554.06 163995.0 48952.5

75 86.625 78 38 186247.81 163995.0 48952.5

100 86.75 75 41 188010.93 163995.0 48952.5

125 86.25 75 41 187954.06 163995.0 48952.5

150 84.5 73 43 184591.56 156437.5 56510.0

175 85.625 73 43 188777.5 155017.5 57930.0

200 85.25 67 49 185500.93 155017.5 57930.0

Table 17: Statistical analysis results

65

Table 18: Coefficient of variation results

Optimization

Methods
Iterations

Criteria

Duration (Days) Cost ($)

Mean
Standard

Deviation

Coefficient
of

variation

Mean
Standard

Deviation

Coefficient
of

variation

NSGA-II

25 85.82 7.3 0.085062 192210.1 9432.85 0.049076

50 80.56 2.041 0.025335 190923 6491.97 0.034003

75 81.7 3.38 0.041371 190610.9 6381.76 0.033481

100 80.28 1.94 0.024165 197758.8 1737.4 0.008785

125 81.38 2.87 0.035267 195475.3 4858.6 0.024855

150 81.42 3.42 0.042004 192486.8 5937.36 0.030846

175 84.44 5.68 0.067267 187402.1 8074.37 0.043086

200 82.94 3.88 0.046781 189444.5 10401.68 0.054906

Dynamic

weighted

optimization

25 87.375 11.21 0.128298 189670.93 11093.83 0.05849

50 86.625 11.34 0.130909 188554.06 12618.67 0.066923

75 86.625 11.34 0.130909 186247.81 13983.13 0.075078

100 86.75 12.19 0.140519 188010.93 13072.67 0.069531

125 86.25 11.66 0.135188 187954.06 12783.87 0.068016

150 84.5 12.77 0.151124 184591.56 16066.68 0.087039

175 85.625 12.09 0.141197 188777.5 15667.89 0.082997

200 85.25 13.21 0.154956 185500.93 15347.23 0.082734

66

6 CHAPTER SIX: SUMMARY AND CONCLUSIONS

This study introduced an integrated method for the resource-constrained schedule

compression under uncertainty that handles resource planning and project scheduling. The

developed method was developed in a computational framework coded in python as a stand-alone

automated computerized tool to aid in the iterative rescheduling of project activities and facilitate

the project schedule optimization. The developed method evaluated two different genetic

algorithm methods in the optimization process; NSGA-II and weighted multi-objective

optimization. The two optimization methods went through a multi-layered comparative analysis

to evaluate their performance and compare their outputs. Results showed that NSGA-II

outperformed the weighted optimization method, resulting in a better global optimum solution and

avoiding entrapment in local minima. It is anticipated that the developed method can help

contractors generate efficient schedule compression while ensuring efficient utilization of

resources.

The contributions of the developed method are in the field of project scheduling, specifically:

1- developing a multi-objective optimization method under uncertainty that tackles the time-

cost trade-off problem and allows for activity splitting while providing a smooth resource

utilization;

2- generating (2D) Pareto front for the duration and cost to allow project managers to select

the optimum solution from a set of non-dominated solutions based on the accepted risk

levels; and

3- computerizing the developed method in a stand-alone automated tool that can be used by

contractors for schedule compression.

67

The developed method can be further extended to account for linear projects such as pipeline

installations, highway projects, and multi-story building construction. As well, the developed

algorithm can be further extended to consider the different types of resources. Finally, the

developed automated computer application can be enhanced with a graphical user interface to

facilitate its use.

68

References

Abdel-Basset, M., Ali, M., & Atef, A. (2019). Resource levelling problem in construction projects

under neutrosophic environment. The Journal of Supercomputing, 76(2), 964–988. doi:

10.1007/s11227-019-03055-6

Abdelkader, E. M., Marzouk, M., & Zayed, T. (2019). An optimization-based methodology for the

definition of amplitude thresholds of the ground penetrating radar. Soft Computing, 23(22), 12063-

12086. doi:10.1007/s00500-019-03764-3

Afruzi, E. N., Aghaie, A., & Najafi, A. A. (2018). Robust Optimization for the Resource Constrained

Multi-Project Scheduling Problem with Uncertain Activity Durations. Scientia Iranica, 0(0), 0–0.

doi: 10.24200/sci.2018.20801

Afshar, A., Ziaraty, A. K., Kaveh, A., & Sharifi, F. (2009). Nondominated Archiving Multicolony

Ant Algorithm in Time–Cost Trade-Off Optimization. Journal of Construction Engineering and

Management, 135(7), 668–674. doi: 10.1061/(asce)0733-9364(2009)135:7(668)

Afshar-Nadjafi, B. (2014). Resource Constrained Project Scheduling Subject to Due Dates:

Preemption Permitted with Penalty. Advances in Operations Research, 2014, 1–10. doi:

10.1155/2014/505716

Altintas, C., & Azizoglu, M. (2020). A Resource Constrained Project Scheduling Problem with Multi-

Modes. International Journal of Information Technology Project Management, 11(1), 55–70. doi:

10.4018/ijitpm.2020010104

69

Aminbakhsh, S., & Sonmez, R. (2016). Discrete particle swarm optimization method for the large-

scale discrete time–cost trade-off problem. Expert Systems with Applications, 51, 177–185. doi:

10.1016/j.eswa.2015.12.041

Azizoglu, M., Çetinkaya, F. C., & Pamir, S. K. (2015). LP relaxation-based solution algorithms for

the multi-mode project scheduling with a non-renewable resource. European J. of Industrial

Engineering, 9(4), 450. doi: 10.1504/ejie.2015.070322

Baloi, D., & Price, A. D. (2003). Modelling global risk factors affecting construction cost

performance. International Journal of Project Management, 21(4), 261-269. doi:10.1016/s0263-

7863(02)00017-0

Baradaran, S., Ghomi, S. F., Ranjbar, M., & Hashemin, S. (2012). Multi-mode renewable resource-

constrained allocation in PERT networks. Applied Soft Computing, 12(1), 82–90. doi:

10.1016/j.asoc.2011.09.007

Birjandi, A., & Mousavi, S. M. (2019). Fuzzy resource-constrained project scheduling with multiple

routes: A heuristic solution. Automation in Construction, 100, 84–102. doi:

10.1016/j.autcon.2018.11.029

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project

scheduling: Notation, classification, models, and methods. European Journal of Operational

Research, 112(1), 3–41. doi: 10.1016/s0377-2217(98)00204-5

Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project

scheduling problems with resource vacations and activity splitting. European Journal of

Operational Research, 175(1), 279–295. doi: 10.1016/j.ejor.2005.04.030

70

Chaleshtarti, A. S., & Shadrokh, S. (2014). A Branch and Cut Algorithm for Resource-Constrained

Project Scheduling Problem Subject to Nonrenewable Resources with Pre-Scheduled

Procurement. Arabian Journal for Science and Engineering, 39(11), 8359–8369. doi:

10.1007/s13369-014-1319-9

Chen, P.-H., & Weng, H. (2009). A two-phase GA model for resource-constrained project

scheduling. Automation in Construction, 18(4), 485–498. doi: 10.1016/j.autcon.2008.11.003

Cheng, J., Fowler, J., Kempf, K., & Mason, S. (2015). Multi-mode resource-constrained project

scheduling problems with non-preemptive activity splitting. Computers & Operations

Research, 53, 275–287. doi: 10.1016/j.cor.2014.04.018

Christodoulou, S. E., Ellinas, G., & Michaelidou-Kamenou, A. (2010). Minimum Moment Method

for Resource Leveling Using Entropy Maximization. Journal of Construction Engineering and

Management, 136(5), 518–527. doi: 10.1061/(asce)co.1943-7862.0000149

Christofides, N., Alvarez-Valdes, R., & Tamarit, J. (1987). Project scheduling with resource

constraints: A branch and bound approach. European Journal of Operational Research, 29(3),

262–273. doi: 10.1016/0377-2217(87)90240-2

Coelho, J., & Vanhoucke, M. (2011). Multi-mode resource-constrained project scheduling using

RCPSP and SAT solvers. European Journal of Operational Research, 213(1), 73–82. doi:

10.1016/j.ejor.2011.03.019

Damak, N., Jarboui, B., Siarry, P., & Loukil, T. (2009). Differential evolution for solving multi-mode

resource-constrained project scheduling problems. Computers & Operations Research, 36(9),

2653-2659. https://doi.org/10.1016/j.cor.2008.11.010

71

Davis, E. W., & Heidorn, G. E. (1971). An Algorithm for Optimal Project Scheduling under Multiple

Resource Constraints. Management Science, 17(12). doi: 10.1287/mnsc.17.12.b803

Dayanand, N., & Padman, R. (2001). A Two Stage Search Heuristic for Scheduling Payments in

Projects. Annals of Operations Research, 102, 197–220. doi: 10.1023/A:1010910316909

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

https://doi.org/10.1109/4235.996017

Dorigo, M. (1992). Optimization, learning and natural algorithms (Unpublished doctoral dissertation).

Politecnico di Milano.

Elmaghraby, S. E. (1977). Activity networks: Project planning and control by network models. New

York: Wiley.

Elmasry, M., Zayed, T., & Hawari, A. (2019). Multi-Objective Optimization Model for Inspection

Scheduling of Sewer Pipelines. Journal of Construction Engineering and Management, 145(2),

04018129. doi:10.1061/(asce)co.1943-7862.0001599

Erenguc, S. S., Ahn, T., & Conway, D. G. (2001). The resource constrained project scheduling

problem with multiple crashable modes: An exact solution method. Naval Research

Logistics, 48(2), 107–127. doi: 10.1002/1520-6750(200103)48:2<107::aid-nav1>3.0.co;2-9

Eshtehardian, E., Afshar, A., & Abbasnia, R. (2009). Fuzzy-based MOGA approach to stochastic

time–cost trade-off problem. Automation in Construction, 18(5), 692–701. doi:

10.1016/j.autcon.2009.02.001

72

Feng, C.-W., Liu, L., & Burns, S. A. (1997). Using Genetic Algorithms to Solve Construction Time-

Cost Trade-Off Problems. Journal of Computing in Civil Engineering, 11(3), 184–189. doi:

10.1061/(asce)0887-3801(1997)11:3(184)

France-Mensah, J., & O’Brien, W. J. (2019). Developing a Sustainable Pavement Management Plan:

Tradeoffs in Road Condition, User Costs, and Greenhouse Gas Emissions. Journal of Management

in Engineering, 35(3), 04019005. doi:10.1061/(asce)me.1943-5479.0000686

Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., & Javanmardi, A. (2013). Multi-mode resource-

constrained discrete time–cost-resource optimization in project scheduling using non-dominated

sorting genetic algorithm. Automation in Construction, 30, 216–227. doi:

10.1016/j.autcon.2012.11.014

Goldberg. (1989). Genetic algorithms in search, optimization, and machine learning. Choice Reviews

Online, 27(02), 27-0936-27-0936. https://doi.org/10.5860/choice.27-0936

Hariga, M., & El-Sayegh, S. M. (2011). Cost Optimization Model for the Multiresource Leveling

Problem with Allowed Activity Splitting. Journal of Construction Engineering and

Management, 137(1), 56–64. doi: 10.1061/(asce)co.1943-7862.0000251

Hariga, M., Shamayleh, A., & El-Wehedi, F. (2016). Integrated time-cost tradeoff and resources

leveling problems with allowed activity splitting. International Transactions in Operational

Research, 26(1), 80-99. doi:10.1111/itor.12329

Harris, R. B. (1978). Precedence and arrow networking techniques for construction. New York: John

Wiley & Sons.

https://doi.org/10.5860/choice.27-0936

73

Harris, R. B. (1990). Packing Method for Resource Leveling (Pack). Journal of Construction

Engineering and Management, 116(2), 331–350. doi: 10.1061/(asce)0733-9364(1990)116:2(331)

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained

project scheduling problem. European Journal of Operational Research, 207(1), 1–14. doi:

10.1016/j.ejor.2009.11.005

Hegazy, T. (1999). Optimization of Resource Allocation and Leveling Using Genetic

Algorithms. Journal of Construction Engineering and Management, 125(3), 167–175. doi:

10.1061/(asce)0733-9364(1999)125:3(167)

Hegazy, T., & Ersahin, T. (2001). Simplified Spreadsheet Solutions. II: Overall Schedule

Optimization. Journal of Construction Engineering and Management, 127(6), 469–475. doi:

10.1061/(asce)0733-9364(2001)127:6(469)

Hegazy, T., & Menesi, W. (2012). Heuristic Method for Satisfying Both Deadlines and Resource

Constraints. Journal of Construction Engineering and Management, 138(6), 688–696. doi:

10.1061/(asce)co.1943-7862.0000483

 Heilmann, R. (2001). Resource–constrained project scheduling: a heuristic for the multi–mode

case. OR-Spektrum, 23(3), 335–357. doi: 10.1007/pl00013354

Heilmann, R. (2003). A branch-and-bound procedure for the multi-mode resource-constrained project

scheduling problem with minimum and maximum time lags. European Journal of Operational

Research, 144(2), 348–365. doi: 10.1016/s0377-2217(02)00136-4

74

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research

potentials. European Journal of Operational Research, 165(2), 289–306. doi:

10.1016/j.ejor.2004.04.002

Hiyassat, M. A. S. (2001). Applying Modified Minimum Moment Method to Multiple Resource

Leveling. Journal of Construction Engineering and Management, 127(3), 192–198. doi:

10.1061/(asce)0733-9364(2001)127:3(192)

Hussein, B., & Moselhi, O. (2019). An evolutionary stochastic discrete time-cost trade-off

method. Canadian Journal of Civil Engineering, 46(7), 581–600. doi: 10.1139/cjce-2018-0352

Kadam, S. U., & Kadam, N. S. (2014). Solving resource-constrained project scheduling problem by

genetic algorithm. 2014 2nd International Conference on Business and Information Management

(ICBIM). doi: 10.1109/icbim.2014.6970966

Kaiafa, S., & Chassiakos, A. P. (2015). A Genetic Algorithm for Optimal Resource-driven Project

Scheduling. Procedia Engineering, 123, 260–267. doi: 10.1016/j.proeng.2015.10.087

Kalhor, E., Khanzadi, M., Eshtehardian, E., & Afshar, A. (2011). Stochastic time–cost optimization

using non-dominated archiving ant colony approach. Automation in Construction, 20(8), 1193–

1203. doi: 10.1016/j.autcon.2011.05.003

Karaa, F. A., & Nasr, A. Y. (1986). Resource Management in Construction. Journal of Construction

Engineering and Management, 112(3), 346–357. doi: 10.1061/(asce)0733-9364(1986)112:3(346)

Khan, A., H(2017) NSGA-II.py (Version 1.0) [Python]. https://github.com/haris989/NSGA-II.git

Klir, G. J., Wang, Z., & Harmanec, D. (1997). Constructing fuzzy measures in expert systems. Fuzzy

Sets and Systems, 92(2), 251-264. https://doi.org/10.1016/s0165-0114(97)00174-7

https://doi.org/10.1016/s0165-0114(97)00174-7

75

Lee, J., Madanat, S., & Reger, D. (2016). Pavement systems reconstruction and resurfacing policies

for minimization of life‐cycle costs under greenhouse gas emissions constraints. Transportation

Research Part B: Methodological, 93, 618-630. doi:10.1016/j.trb.2016.08.016

Leu, S.-S., & Yang, C.-H. (1999). GA-Based Multicriteria Optimal Model for Construction

Scheduling. Journal of Construction Engineering and Management, 125(6), 420–427. doi:

10.1061/(asce)0733-9364(1999)125:6(420)

Li, F., Lai, C., & Shou, Y. (2011). Particle swarm optimization for preemptive project scheduling with

resource constraints. 2011 IEEE International Conference on Industrial Engineering and

Engineering Management. doi: 10.1109/ieem.2011.6118040

Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable

and nonrenewable resource constraints. Automation in Construction, 35, 431–438. doi:

10.1016/j.autcon.2013.05.030

Liang, Y., Cui, N., Hu, X., & Demeulemeester, E. (2019). The integration of resource allocation and

time buffering for bi-objective robust project scheduling. International Journal of Production

Research, 1–16. doi: 10.1080/00207543.2019.1636319

Martin, O., & Klir, G. J. (2007). Defuzzification as a special way of dealing with retranslation.

International Journal of General Systems, 36(6), 683-701. doi:10.1080/03081070701456088

Memon, A., Rahman, I., & Abdullah, M. (2010). Factors Affecting Construction Cost in Mara Large

Construction Project. Factors Affecting Construction Cost in Mara Large Construction Project.

76

Menesi, W., & Hegazy, T. (2015). Multimode Resource-Constrained Scheduling and Leveling for

Practical-Size Projects. Journal of Management in Engineering, 31(6), 04014092. doi:

10.1061/(asce)me.1943-5479.0000338

Moselhi, O., & Alshibani, A. (2013). Schedule compression using fuzzy set theory and contractor

judgment. Journal of Information Technology in Construction, (18)

Moselhi, O., & Roofigari-Esfahan, N. (2013). Project schedule compression: a multi-objective

methodology. Construction Innovation, 13(4), 374–393. doi: 10.1108/ci-03-2011-0010

Moukrim, A., Quilliot, A., & Toussaint, H. (2015). An effective branch-and-price algorithm for the

Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order

Enumeration. European Journal of Operational Research, 244(2), 360–368. doi:

10.1016/j.ejor.2014.12.037

Ouma, Y. O., Yabann, C., Kirichu, M., & Tateishi, R. (2014). Optimization of Urban Highway Bypass

Horizontal Alignment: A Methodological Overview of Intelligent Spatial MCDA Approach Using

Fuzzy AHP and GIS. Advances in Civil Engineering, 2014, 1-26. doi:10.1155/2014/182568

Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-

preemptive multi-mode resource-constrained project scheduling problem. European Journal of

Operational Research, 201(2), 409–418. doi: 10.1016/j.ejor.2009.03.034

Roca, J., Pugnaghi, E., & Libert, G. (2008). Solving an Extended Resource Leveling Problem With

Multi-Objective Evolutionary Algorithms. Computers & Industrial Engineering

77

Salama, T., & Moselhi, O. (2019). Multi-objective optimization for repetitive scheduling under

uncertainty. Engineering, Construction and Architectural Management, 26(7), 1294–1320. doi:

10.1108/ecam-05-2018-0217

Singh, A. (2014). Resource Constrained Multi-project Scheduling with Priority Rules & Analytic

Hierarchy Process. Procedia Engineering, 69, 725–734. doi: 10.1016/j.proeng.2014.03.048

Slowinski, R. (1980). Two Approaches to Problems of Resource Allocation among Project Activities

-- A Comparative Study. The Journal of the Operational Research Society, 31(8), 711. doi:

10.2307/2581688

Son, J., & Mattila, K. G. (2004). Binary Resource Leveling Model: Activity Splitting Allowed. Journal

of Construction Engineering and Management, 130(6), 887-894. doi:10.1061/(asce)0733-

9364(2004)130:6(887)

Sprecher, A., & Drexl, A. (1998). Multi-mode resource-constrained project scheduling by a simple,

general and powerful sequencing algorithm. European Journal of Operational Research, 107(2),

431–450. doi: 10.1016/s0377-2217(97)00348-2

Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using Nondominated sorting in genetic

algorithms. Evolutionary Computation, 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221

Tao, R., & Tam, C.-M. (2013). System reliability theory based multiple-objective optimization model

for construction projects. Automation in Construction, 31, 54–64. doi:

10.1016/j.autcon.2012.11.040

https://doi.org/10.1162/evco.1994.2.3.221

78

Tawalare, A., & Lalwani, R. (2012). Resource Leveling in Construction Projects using Re- Modified

Minimum Moment Approach. World Academy of Science, Engineering and Technology, 6(2),

200–202.

Tirkolaee, E. B., Goli, A., Hematian, M., Sangaiah, A. K., & Han, T. (2019). Multi-objective multi-

mode resource constrained project scheduling problem using Pareto-based

algorithms. Computing, 101(6), 547–570. doi: 10.1007/s00607-018-00693-1

Toğan, V., & Eirgash, M. A. (2018). Time-Cost Trade-off Optimization of Construction Projects using

Teaching Learning Based Optimization. KSCE Journal of Civil Engineering, 23(1), 10–20. doi:

10.1007/s12205-018-1670-6

Torres-Machi, C., Osorio-Lird, A., Chamorro, A., Videla, C., Tighe, S. L., & Mourgues, C. (2018).

Impact of environmental assessment and budgetary restrictions in pavement maintenance

decisions: Application to an urban network. Transportation Research Part D: Transport and

Environment, 59, 192-204. doi:10.1016/j.trd.2017.12.017

Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite

number of activity processing modes – A survey. European Journal of Operational

Research, 208(3), 177–205. doi: 10.1016/j.ejor.2010.03.037

Xu, X., Hao, J., & Zheng, Y. (2020). Multi-Objective Artificial Bee Colony Algorithm for Multi-

Stage Resource Leveling Problem in Sharing Logistics Network. Computers & Industrial

Engineering, 142, doi: 10.1016/j.cie.2020.106338

Yandamuri, S. R., Srinivasan, K., & Murty Bhallamudi, S. (2006). Multiobjective Optimal Waste

Load Allocation Models for Rivers Using Nondominated Sorting Genetic Algorithm-II. Journal of

79

Water Resources Planning and Management, 132(3), 133–143. doi:10.1061/(asce)0733-

9496(2006)132:3(133)

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.https://doi.org/10.1016/s0019-

9958(65)90241-x

Zahraie, B., & Tavakolan, M. (2009). Stochastic Time-Cost-Resource Utilization Optimization Using

Nondominated Sorting Genetic Algorithm and Discrete Fuzzy Sets. Journal of Construction

Engineering and Management, 135(11), 1162–1171. doi: 10.1061/(asce)co.1943-7862.0000092

Zheng, D. X. M., & Ng, S. T. (2005). Stochastic Time–Cost Optimization Model Incorporating Fuzzy

Sets Theory and Nonreplaceable Front. Journal of Construction Engineering and

Management, 131(2), 176–186. doi: 10.1061/(asce)0733-9364(2005)131:2(176)

Zheng, D. X. M., Ng, S. T., & Kumaraswamy, M. M. (2004). Applying a Genetic Algorithm-Based

Multiobjective Approach for Time-Cost Optimization. Journal of Construction Engineering and

Management, 130(2), 168–176. doi: 10.1061/(asce)0733-9364(2004)130:2(168)

Zheng, D. X. M., Ng, S. T., & Kumaraswamy, M. M. (2005). Applying Pareto Ranking and Niche

Formation to Genetic Algorithm-Based Multiobjective Time–Cost Optimization. Journal of

Construction Engineering and Management, 131(1), 81–91. doi: 10.1061/(asce)0733-

9364(2005)131:1(81)

80

Appendix I:

Program Name: NSGA-II.py

Description: This is a python implementation of Prof. Kalyanmoy Deb's popular N

SGA-II algorithm

Author: Haris Ali Khan

Supervisor: Prof. Manoj Kumar Tiwari

#Function to find index of list

def index_of(a,list):

 for i in range(0,len(list)):

 if list[i] == a:

 return i

 return -1

#Function to sort by values

def sort_by_values(list1, values):

 sorted_list = []

 while(len(sorted_list)!=len(list1)):

 if index_of(min(values),values) in list1:

 sorted_list.append(index_of(min(values),values))

 values[index_of(min(values),values)] = math.inf

 return sorted_list

#Function to carry out NSGA-II's fast non dominated sort

def fast_non_dominated_sort(values1, values2):

 S=[[] for i in range(0,len(values1))]

 front = [[]]

 n=[0 for i in range(0,len(values1))]

 rank = [0 for i in range(0, len(values1))]

 for p in range(0,len(values1)):

 S[p]=[]

 n[p]=0

 for q in range(0, len(values1)):

 if (values1[p] > values1[q] and values2[p] > values2[q]) or (values1[

p] >= values1[q] and values2[p] > values2[q]) or (values1[p] > values1[q] and val

ues2[p] >= values2[q]):

 if q not in S[p]:

 S[p].append(q)

 elif (values1[q] > values1[p] and values2[q] > values2[p]) or (values

1[q] >= values1[p] and values2[q] > values2[p]) or (values1[q] > values1[p] and v

alues2[q] >= values2[p]):

 n[p] = n[p] + 1

81

 if n[p]==0:

 rank[p] = 0

 if p not in front[0]:

 front[0].append(p)

 i = 0

 while(front[i] != []):

 Q=[]

 for p in front[i]:

 for q in S[p]:

 n[q] =n[q] - 1

 if(n[q]==0):

 rank[q]=i+1

 if q not in Q:

 Q.append(q)

 i = i+1

 front.append(Q)

 del front[len(front)-1]

 return front

#Function to calculate crowding distance

def crowding_distance(values1, values2, front):

 distance = [0 for i in range(0,len(front))]

 sorted1 = sort_by_values(front, values1[:])

 sorted2 = sort_by_values(front, values2[:])

 distance[0] = 4444444444444444

 distance[len(front) - 1] = 4444444444444444

 for k in range(1,len(front)-1):

 distance[k] = distance[k]+ (values1[sorted1[k+1]] - values2[sorted1[k-

1]])/(max(values1)-min(values1)+1000000)

 for k in range(1,len(front)-1):

 distance[k] = distance[k]+ (values1[sorted2[k+1]] - values2[sorted2[k-

1]])/(max(values2)-min(values2)+1000000)

 return distance

82

"""

#!/usr/bin/env python

2013.3.12 CKS

A simple critical path method implementation.

http://en.wikipedia.org/wiki/Critical_path_method

To run a unittest:

 python criticalpath.py Test.test_model

"""

 def get_critical_path(self, as_item=False):

 """

 Finds the longest path in among the child nodes.

 """

 if self._critical_path is not None:

 # Returned cached path.

 return self._critical_path[1]

 longest = None

 q = [(_.duration, [_], set([_])) for _ in self.first_nodes]

 while q:

83

 item = length, path, priors = q.pop(0)

 if longest is None:

 longest = item

 else:

 try:

 longest = max(longest, item)

 except TypeError:

 longest = longest

 for to_node in path[-1].to_nodes:

 if to_node in priors:

 continue

 q.append((length+to_node.duration, path+[to_node], priors.union([

to_node])))

 if longest is None:

 return

 elif as_item:

 return longest

 else:

 return longest[1]

 def print_times(self):

 w = 7

 print("""

84

+{border}+

|{blank} DUR={dur} {blank}|

+{border}+

|ES={es}|{blank}|EF={ef}|

|{segment}|{name}|{segment}|

|LS={ls}|{blank}|LF={lf}|

+{border}+

|{blank}DRAG={drag}{blank}|

+{border}+

""".format(

 blank=' '*w,

 segment='-'*w,

 border='-'*(w*3 + 2),

 dur=str(self.duration).ljust(w-4),

 es=str(self.es).ljust(w-3),

 ef=str(self.ef).ljust(w-3),

 name=str(self.name).center(w),

 ls=str(self.ls).ljust(w-3),

 lf=str(self.lf).ljust(w-3),

 drag=str(self.drag).ljust(w-5),

))

85

Author: Moaaz Elkabalawy

Description: Critical path method for generating project Gantt Chart and

 performing non-critical activities splitting

 l1 =[] # early start finishes for activities

 l2 = []# l2 is early finishes for activities

 l3 = []# l3 is late finishes for activities

 for nod in node_list:

 l1.append(nod.es)

 l2.append(nod.ef)

 l3.append(nod.lf)

 n = len(node_list) # number of activities

 m = int(p.duration) #p.duration # duration of the project

 from numpy import zeros

 A = zeros([n,m])

 i = 0

 j = 0

 r = 0

 z = 0

 while (i<=n): # this function is used to generate the project Gantt chart

 A[i][j]=1

 j = j+1

 if (j>=l2[r]):

 r = r + 1

 z = z + 1

 j = l1[z]

 i = i + 1

 if (z==n):

 break

 B = A.copy()

 i = 0

 r = 0

 j = 0

 z = 0

86

 while (i<=n): # this function is used to assign the needed resources for

each activity on each period of the project

 while (A[i][j]==1) and (j<=p.duration-1):

 A[i][j]= ind_res[r]

 j= j + 1

 if j == p.duration:

 break

 z = z + 1

 j = l1[z]

 r= r + 1

 i= i + 1

 if (z==n):

 break

 i = 0

 RD = [sum([row[i] for row in A]) for i in range(0,len(A[0]))] # resource

demand in each period of the project

 RA = np.zeros((p.duration))

 RR = np.zeros((p.duration))

 t = 1

 i = 1

 while(t<p.duration-1): # Aquiring resources in each period of the project

 RA[t]= max (0,RD[i]-RD[i-1])

 i= i + 1

 t= t + 1

 RA[0]= RD[1]

 t = 1

 i = 0

 while(t<p.duration-1): # Releasing resources in each period of the project

 RR[t]= max (0,RD[i]-RD[i+1])

 i= i + 1

 t= t + 1

 RR[0]= 0

i = len(p.get_critical_path())

 for i1, act in enumerate(A): # splitting function for non-

critical activities)

 for j1, day in enumerate(act):

 #temp as activity counter or row counter

 temp = i1

 while RD[j1] > RS and temp >= i and l2[temp] < l3[temp] :

87

 #put the resource in the early finish

 A[temp][l2[temp]] = A[temp][j1]

 #put the day resource for the non-critical activity zero

 A[temp][j1] = 0

 #the early finish is increased by one

 l2[temp] = l2[temp]+1

 RD = [sum([row[k] for row in A]) for k in range(0,len(A[0]))]

 temp = temp + 1

 Acopy = A.copy()*0

 for i, act in enumerate(A):

 for j, day in enumerate(act):

 if day > 0:

 Acopy[i][j]= 1

 split_count = 0

 for i, act in enumerate(Acopy):

 for j, day in enumerate(act):

 if j>0:

 if day < act[j-1] :

 split_count = split_count + abs(day-act[j-1])

 if j == p.duration-1 and day == 1:

 split_count = split_count + 1

 split_count = split_count - 1

88

Author: Moaaz Elkabalawy

 # Description: Triangular Fuzzy numbers representation

 with the alpha cut method

ind_dur = []

 j = 0

 result = []

 for k in Y:

 ind_dur.append(duration[j][k])

 j = j + 1

 j = 0

 while j < n:

 k = 0

 x = np.arange(ind_dur[j][k], ind_dur[j][k+2]+1)

 mfx = skfuzzy.trimf(x,(ind_dur[j]))

 xxx = fuzz.lambda_cut_boundaries(x,mfx, Choosen_risk_level)

 result.append(xxx)

 j = j + 1

 i = 0

 temp_postive = []

 temp_negative= []

 while i < n:

 if Choosen_risk_level != 1:

 temp_postive.append(result[i][0])

 temp_negative.append(result[i][1])

 if Choosen_risk_level == 1:

 temp_postive.append(result[i][0])

 temp_negative.append(result[i][0])

 i = i + 1

 alpha_final= []

 i = 0

 while i <n:

 temp = (temp_postive[i] + temp_negative[i])/2

 alpha_final.append(temp)

 i = i + 1

 set_of_durations = []

 p = Node('project')

89

 node_list= []

 i = 0

 while i< int(number_of_act):

 node_list.append(p.add(Node(act_list[i], duration=int(alpha_final[i])))

)

 i = i +1

 i = 0

 while i< Number_of_prec_relations:

 p.link(p.lookup_node(act1[i]), p.lookup_node(act2[i]))

 i = i + 1

 p.update_all()

 set_of_durations.append(p.duration)

