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ABSTRACT

Overcoming Healthcare Transportation Barriers: A Case Study

Ehsan Sharifnia

Transportation remains a major barrier in receiving cancer treatment in Canada. The situation is
especially alarming for those living in rural areas and in the light of COVID pandemic, poses
another risk in the long list of health challenges to patients with pre-existing conditions. In this
dissertation we set out find a solution to this problem by providing a framework for a

personalized healthcare transportation system tailored to the needs of this population.

A three-step approach is proposed. First, a review of literature and initiatives employed by global
transportation providers is conducted to identify major methods used for healthcare industry.
Second, a transportation strategy is proposed, and key performance indicators identified through
analysis of data and interviews with industry best practices in order to determine key aspects of
such operations having the most impact on the overall service level. Finally, a discrete event
simulation is provided and tested through various scenarios to understand how such operations
would behave in real life and how they react as the environment evolves through time. A case
study of a major nonprofit organization for whom this strategy was originally outlined is
provided for further context. In the end, the key findings from this research are formulated as a

decision-making tool for future guidelines in managing similar operations.
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1. Introduction and problem statement

1.1 Background — Healthcare directions, new horizons and challenges

Cancer is a major cause of death in Canada. According to the Canadian cancer society [1] nearly
one in two Canadians are expected to be diagnosed with the disease at some point during their
lifetime and even more alarming is the fact that 1 in 4 die from it. Despite the most rapid rate of
technological advancements in history, the horizon is not looking good. Although death rates are
decreasing, the total number of Canadians diagnosed with cancer has continuously been rising.

In 2017, over a span of ~30 years, cancer death rates had decreased by 32% and 17% among men
and women, respectively. However, it is projected that by 2030, the number of cancer diagnoses

in Canada will be 80% greater than what the number diagnosed in 2005.

This alarming situation has caused immense efforts for cancer control. Fairly consistent progress
has been achieved as a result of advances in prevention and screenings that enable earlier
detection and treatment (Canadian Cancer society, 2018). The progress is reflected in the
consistent decline in mortality rates since the past 30 years. Although trends seem to be variable
across genders and cancer types, incidence rates have been constantly decreasing among all

cancer types combined.

Although great advancements have been achieved in treatment and reducing fatalities, problems
still remain. With the overall number of cancer diagnoses constantly increasing, healthcare
infrastructure will naturally have to expand in service offerings to be able to respond to the

increasing demand. Obviously, the latter requires considerable costs, time and innovations to



maintain on par with the raising standards in healthcare and sustainability. Unfortunately,
healthcare and transportation advancements do not seem to be progressing nearly at the same rate
as the growing number of diagnosed patients demanding such services. In fact, with more
patients vying for fewer resources and increasing personalization trends in treatment, the current

healthcare system is at risk of falling short to provide the required patient experience, in the least.

Patients today, similar to their other daily tasks, want a certain degree of comfort and
personalization in their treatment process. They can make purchases without having to have their
wallets or exchange physical money, or make restaurant reservations instantly without having to
line outside the restaurant, or, in the very important area of transportation, today we can have
access to on-demand transportation services within the reach of our palms, at roughly any place
in the city, any time of the day. This level of gradual but certain transformation in daily activities
has brought about a culture to bypass certain logistical barriers allowing us to focus on the task at
hand and is expanding to the healthcare industry as well. David Roberts, a global health leader at
EY [2], defines this challenge for businesses as the duality of growth; the challenge of
strengthening today’s core business while preparing to meet the challenges of an increasingly
more connected, consumer-centric health ecosystem. Roberts further elaborates on this
“connection” as the main theme spreading across the whole healthcare ecosystem relationships,
among consumers, physicians, and health businesses to each other. Examples could include
connecting people to goods and services that promote and maintain their health, to physicians
when they need clinical intervention; and to each other to stay engaged in the trends and best

practices. The benefits of this connected vision of the health ecosystem becomes especially



important as the North American average population age increases, and logistical barriers of

distance and time show themselves with a clearer image.

The promise of a connected ecosystem in the healthcare sector has emerged, like other sectors,
with the advancements in digital technologies. Data analytics and machine learning techniques
have been few of the driving forces allowing insights into how this future can be shaped. Using
survey data gathered from several countries enabled decision makers to gain a holistic big picture
of customer and physician expectations and to lay out those expectations in a digitally connected
ecosystem [2]. That being said, there still seems to be a gap between those expectations and
implementation to this date [2]. Unprecedented problems arise when strategies are moved into
implementation phases. Problems such as financial hardships and lack of appropriate

infrastructure are among the greatest hurdles for implementing digital strategies in healthcare

[3,4,5].

Based on a demographic analysis of breast cancer patients’ overhead costs during treatment [3]
and the Quebec Breast Cancer Foundation’s patient data, we know that in Canada, transportation
counts as one of the major hurdles for breast cancer patients receiving treatment both in terms of
overhead costs and accessibility. According to a study conducted in 2011 on out of pocket costs
imposed to 800 Canadian women with breast cancer while receiving adjuvant radiotherapy [4],
within total net costs after receiving assistance, transportation approximately comprised about

93% for home living patients and 40% for patients lodging away from home. The numbers



become more extreme for the suburban population. Taxi and public transportation become
expensive and inaccessible as the travel distances increase. As we move away from metropolitan
areas holding the majority of these cancer treatment centers, regular commuting becomes more
difficult. In fact, based on the same study [3], the average breast cancer patient in Quebec will
have to travel ~20 km for an average of ~23 days to receive treatment — which given the physical
and emotional state such patients already hold (especially for those in shock of early stages of
cancer), will undoubtedly result in deteriorating the treatment experience for both patients and

those involved.

Transportation hurdles also act as one of the top 3 major reasons for cancer treatment non
receipt, according to a research conducted in Ontario in 2017 [4]. According to a survey on that
study, ~20% of patients identified transportation as the major reason why they could not attend
their treatment appointments. The situation becomes worse for rural patients, comprising 46% of
the national patient population, as they are typically more distanced from specialized healthcare
facilities. In fact, according to the same study, 20% of rural patients travel above 200km to see a
doctor. In some cases, travel barriers prevent individuals from attending their jobs. Up until the
time these lines are being written, we know the need for transportation is growing. We
personally interviewed several nonprofit executives who seeked out to offer transportation
services within Quebec. Our overall findings from those interviews [6], indicate that in the light
of the COVID-19 pandemic, traditional means of transportation are riskier for this already
vulnerable population and the number of people vying for a more secure, stable and accessible

means of transportation is increasing.



In short, there seems to be a need for an appropriate means of transportation for breast cancer
patients during the treatment period throughout Canada. One that not only helps reduce the
already huge imposed costs (~$435 and ~$376 per month on average for living-away and home-
living patients respectively [4]), but also makes this experience more accessible through a more

seamless and personal process.

1.2. Problem Statement

Based on a real case study, this research aims to develop and discuss a novel operational strategy
for a tailored on-demand transportations system to improve the breast cancer treatment process.
Since 2018, we partnered with a major non profit organization, Quebec Breast Cancer
Foundation (Ruban Rose), as part of their research and development program for the same
purpose. On a high level, the main focus area of this particular project is to reduce the barrier of
transportation for breast cancer patients for receiving therapy and those barriers, based on the
foundations previously conducted market research and as our literature review confirms, have
been defined as economical and accessibility barriers. In order to tackle those barriers, we
focused broadly on three main areas—minimizing patient out of pocket costs during treatment and
logistic barriers, while ensuring required health and safety conditions are maintained to make
sure the service is tailored to the specific needs of this patient segment, among other services that

are already out there.

There are a range of existing business models to choose for this purpose. In the following lines,
we identified a list of potential models and will then highlight the model we will be considering

for this project and the reasons behind that. Today, when it comes to transportation, there is a



range of potential solutions available in order to accommodate different customer segments.
Operational models are made subsequently differently. At the time this research was done, some

available examples within the region include the following:

e Local carpooling services (e.g. Netlift)

e On-demand transportation services (e.g. Uber)
e Volunteer based operating models

e Public transportation system

e Ride sharing models

We had to choose the operating model that is an appropriate balance between the client’s
capabilities and also, being effective enough to tackle the problem and be able answer to the
unique problems of the patient population. Based on the client’s capabilities for the starting
phase of this project, a volunteer based operating model was selected with the following
attributes: The service would be 1 on 1 (1 driver per patient). Second, based on the types of
patients and their treatment plans, it was decided that patients could book rides between a day to
6 hours in advance of the ride time. Therefore, ample time would be given to coordinate
administrative operations prior to the ride, such as selecting an available driver and connecting
them with the patient requesting the ride. We will talk about further assumptions in the

Methodology section.

1.3. Thesis Contribution

In summary, the following dissertation presents a novel healthcare transportation strategy in the



region of Quebec tailored to the unmet needs of a specific patient segment (breast cancer) in
order to improve accessibility for that population and have a positive social and economic
impact. This would be the initial phase of our case study client Ruban Rose’s long-term project
that will set out to use this strategy to develop a digital offering including a mobile application

for this service.

1.4. Outline of the Thesis

In the next chapter we will study the previous work within this field and identify where the gaps
are and where our research sits in this context. In the following chapters, we will introduce our
methodology in detail with the main objective of increased accessibility in mind. We will
introduce a diagnostic simulation model of business operations as our methodology to forecast
variabilities in the system and how resources should be coordinated to respond to those
variabilities in the best way possible, in the form of potential recommendations. We will then
assess the feasibility and impact of each recommendation to best achieve the client’s goals. We
will finish by additional material used for our case study to hopefully inspire future researchers
or business leaders to pursue similar actions to leave a positive social impact in their

geographical region.

2. Literature Review

2.1 Introduction
Various mathematical and simulation models have been developed to model transportation

systems throughout the world. In context of healthcare industry in Canada and specifically in the



Quebec region, however, further research and solution development are required to address
various practical issues that have long been present. We will study current transportation models
and methods used to study them. Then we dig deeper into the simulation method and how it has
been used in literature for this context. We will finish with touching upon the pricing methods

used in transportation for healthcare.

2.2 Transportation models

Transportation nourishes economic and social activity and is one of the most research topics in
management and operations research [7]. There are various transportation models practiced in
today’s world and they are evolving to solve different transportation problems. Overall, it
appears that transportation is moving towards decentralization allowing both servers and user to

enjoy more flexibility and more control over all aspects such as timing, costs, locations, etc.

Transportation models are contextual in nature and were evolved in order to solve specific
problems revolving around transportation. Berger et al [8] combine simulation and dynamic
pricing to reach the optimum seat allocation mixture in order to maximize revenue. Friesz et al
[9] use dynamic game theory modeling and dynamic pricing to determine the behavior of

uncertain ad stochastic demand for urban freight development.

Another problem commonly faced in transportation is cost minimization. This is also relatable
in our own case. Researchers look into what factors of costs are most important in a specific
transportation problem. For instance, Zheng, Geroliminis 2015 [10], in a study to investigate the

impact of parking limitations and costs on mobility seek out to identify novel parking policies



with the goal of cost minimization. In another example, Melachrinoudis et al [11] provide a dial
aride (DAR) model with flexible time windows and apply it in the healthcare industry with the

objective of minimizing cost and achieving the most time efficiency.

2.2.1 Ride Sharing

Ride sharing is a transportation model that has gained special popularity. Along with the
decentralization trend that was visible in other industries as well, such as housing and TV
broadcast, this also came along as a new trend that has so far, been growing in popularity
because it allows in many cases for both servers and user to enjoy more flexibility and more

control over all aspects such as timing, costs, locations, etc.

Ride sharing also helps with solving other transportation problems. For instance, Xu. H et el
[12], discuss the relationship between ride sharing models and traffic congestion, explaining how

the model helps reducing the congestion and improving the flow of urban mobility.

Having less cars on the ground, this also has environmental benefits. This is studied in a case
study by Caulfield et al [13], where they conducted an experiment in Dublin to estimate the
environmental benefits and reduction go greenhouse gas emissions and how it falls along the
lines of future mobility and increased sustainability. Fagnant et al [14], confirms that by studying
fleet size comparisons using simulations. Agatz et al [15] also certify how ride sharing
transportation models provide significant societal and environmental benefits by reducing the

number of cars needed for personal travel and improving utilization of seat space.



2.3 Transportation in healthcare industry

Transportation is one of the major elements in healthcare delivery. It is perhaps one the most
important kinds of transportation as the nature of the job is within the process of healing or
receiving treatment. Therefore, in case where the patient is involved in the transportation
process, it requires the utmost care in patient experience to make sure the situation fits the needs.
Those needs can be safety, reliable accessibility, manageable cost, speed of travel and many

other features depending on the context.

Accessibility can be referred to as the larger umbrella definition covering components such as
time flexibility, costs, etc. Melachrinoudis et al [11] study a dial-a-ride model with flexible time
windows and its application to their case study, the CAB Health and Recovery Services, Inc., a
non-profit organization, with the objective of minimizing transportation costs and clients’
inconvenience time. They use Mathematical modeling to test and verify their findings. Using
LINGO modeling language and using the Branch and Bound (B&B) algorithm they certify dial a

ride model to be an useful and promising model of healthcare transportation.

In terms of safety, it may be required that healthcare transportation would have some differences
with regular personal use. Sometimes it may be required for the patient to have access to
emergency or relatable help en route. O’Neil et al [16] provide a plan to provide the most current
and proper support to children with special transportation needs to be developed by the

Individualized Education Program team, including the parent, school transportation director, and

10



school nurse, in conjunction with physician orders and recommendations. Using Qualitative data,
surveys, historical references, they Provided basis for a comprehensive guidance for
implementation inclusive of staff training, provision of nurses or aides if needed, and
establishment of a written emergency evacuation plan as well as an infection control program.
Zhang Z. et al, study a practical patient transportation problem provided by Hong Kong Hospital
Authority. Their methodology includes Mathematical modeling, memetic algorithm, a
customized crossover operator in order to Model the problem as a multi-trip dial-a-ride problem
(MTDARP), which requires designing several routes for each ambulance. Novel crossover
operator customized and tailor fitted to the problem, use of real world data that were specifically

used for this problem.

Speed of travel is not the most crucial factor in nonmedical healthcare transportation, and the
other aspects become more important and seems to be not as well researched as other types of
healthcare transportation. Wallace et al [18] Address the gap that is the access to non-emergency
medical transportation, characteristics of the problem and the population that experiences those
accessibility issues. They conduct National level demographic case study and surveys (U.S.) and
provide recommendations to address issues focused on social benefits and quality of life. They
link their findings across different demographics across the country and matching with
appropriate opportunities to respond to these shortcomings. The research gap in non medical
healthcare transportation lays the ground open for emergence of innovative solutions and
technologies. For instance, Boulos et al [19] gives us an overview of GeoAl technologies
(methods, tools and softwares), and their current and potential applications in several disciplines

within public health, precision medicine, and Internet of Things-powered smart healthy cities.
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They posit clear explanation of potential opportunities for GeoAl technologies to step into in

different industries, especially healthcare research, linkages to applications in healthcare.

A common service in Canada is volunteer driver transportation assistance for people with cancer
and is offering from various foundations for a variety of clientele such as elder adults, handicaps,
cancer patients, and patients with other different pre existing conditions. Each of these groups
have their own specific characteristics that affect coordination and scheduling of the services
from the management point of view. For instance, cancer patients usually have regular
appointments while elder adults might have occasional requests for commute to far less frequent
doctor visits. According to our research [1], the average projected growth of senior population in
Canada can be one of the need more attention. As much as this proves to be a crucial subject to
improve, there appears to be a lack of research considering optimization methodologies for
volunteer ride systems. Similarly, organization and usage data among rural volunteer driving

programs do not appear to have been previously systematically collected and analyzed [21].

Another promising method in healthcare seems to be the Dial-A-Ride model. According to the
literature [21], in customized transportation services where customers call in requests to a call
center and the transportation is carried out from door to door is called Dial-A-Ride (DAR)
service. This method of can be designed in various ways depending on the purpose and level of
service. Two relatable and key components could be service level and operational costs. Due to
their rather inexpensive nature, there are various applications for DAR services and this is
particularly a reason it has gained attention in the non-profit sector and for the elderly and

disabled people. Tailored transportation for seniors or injured passengers are among another

12



examples. Another application is for healthcare including external and internal hospital
transportation. According to the application, the structure of service provider organization and
their vehicle type would vary. It also affects the objectives and constraints in simulation and
optimization models. Ride and waiting time, pickup/delivery time-windows, and vehicle capacity
are some of the considerable elements of these systems [22]. DAR systems often have multiple
(and sometimes conflicting) goals, necessitating multi-criteria. An emerging application area is
in public transportation. There are similarities between the volunteer ride system for patients and
the usual DAR services while there are differences as well. In DAR systems considered in the
literature usually, the vehicle is shared while in the volunteer-based system the priority is to
service the clientele and sharing might come in the future potential consideration. DAR systems
own the fleet of vehicles while in volunteer-based works the driver owns the vehicle. The
existing work also does not have a considerable variety of availability of staff while it is a very

important constraint for volunteer-based ones.

2.3.1 Regions

There seems to be a gap for sufficient studies in the area of nonmedical healthcare transportation
in Canada. Specifically, in Quebec, we did not find related work and seeing as there is a
significantly large transportation problem occurring, we became inspired to help contribute to

solving this socioeconomical issue.

Among the rest of the world, there are numerous case studies in Asia and U.S. For instance,

Zhang et al provided promising results for their healthcare transportation solution in Hong Kong.
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In another example, Mao et al [20], measures special accessibility for healthcare in Florida, U.S.

in order to provide guidance for policy makers to mitigate health inequity issues.

2.4 Simulation

Simulation methods such as system dynamics, discrete event simulation and agent-based
modeling have been increasingly used to analyze healthcare systems and find solutions for
problems around both the world and also in this area [23]. Simulation has been used to evaluate
the important aspects and factors and for modeling of worst-case scenarios in DAR services [22,
23, 24, 25, 26]. The purpose of simulation might not be necessarily finding exact values for the
variables, but rather showing the parameters that have a significant effect on KPIs, the way they
affect the process, and providing a combination of what-if scenarios. For example [21] studied
the trade-off between customer service level (waiting times, maximum allowed ride times or
deviations from desired departure and arrival times) and vehicle costs in the scheduling and
assigning time windows. They considered the time window of pick-up at the exact requested
time and another one while the driver makes some delay to share a vehicle with another customer
requested service from a nearby area. They concluded that before making any changes in
scheduling policies, the service level or cost of customer should be analyzed to not be decreased

drastically.

Simulation is a useful tool to help decision-makers by providing various scenarios and analysis.

Nevertheless, it does not necessarily provide the optimum solution. The objective of the problem

depends on the application. The basic mathematic model provided by [27] has formed a basic
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and expanded by some other researchers in their models. According to [28] in the optimization
models for DAR problem typically the features such as vehicle capacity, ride time, route
duration, and selective visits are considered. Other elements include the number of vehicles used,
the number of objective functions considered, and numbers of trips allowed in a] single day. In a
survey of DAR problems [28], presented models are categorized into four groups according to
the modeling methodology. Majority of models are static and deterministic [ex. 29,20] which is
based on previous data and the uncertainty is not considered. Some static models also considered
uncertainty like [31]. Much fewer studies modeled the problem as dynamic and deterministic

[21] and fewer are considered uncertainty in dynamic models similar to [32].

2.5. Pricing

As we mentioned, one major factor in healthcare transportation accessibility is financial planning
and pricing aspects. Although pricing is not covered as a part of the present thesis research, we
felt this might become useful for future research. There are some budgets based on charity while
the pricing and financial management is still an issue. The questions are if the hosting
organizations were to charge the clients, how should they charge? — per ride or ask for an annual
subscription fee. One method could be to charge the clients per ride and based on the
characteristics such as distance. As an example, we noticed some researchers [33] proposed a
dynamic pricing and optimization model to make an equilibrium between social impact and
profit-maximization for the host organization. Based on the price quoted by the system, an
arriving customer will join the queue if and only if the benefit is greater than the expected

waiting cost. They also analyzed the effect of different strategies on the pricing equilibrium.
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Another highly relatable method to model pricing is dynamic pricing. This is a demand-based
approach that serves as solutions to equip businesses to optimize pricing by detecting and
responding to changes in demand. The logic behind this has been the norm for most of human
history as traditionally it was referred to as price negotiation. The two parties would negotiate on
what the price would be by taking into account a number of factors affecting it, which is exactly
what variable pricing does and how it is set. Throughout time, the basic logic still remained true
and evolved to respond to the requirements of time. As retail industry expanded in the industrial
revolution, business owners were facing challenges with scaling the traditional haggling system
over the price of each product. One could argue that economies of scale caused corporations to
think of a time efficient system to set prices. That led to the invention of price tag; a fixed price
for everyone [5], with the idea behind as being fair to all regardless of wealth and smoothing
their retail experience by being time and cost efficient in the back end for the corporation. Of
course, one thing this approach did not consider among many others, was the variability of
demand. Although, what was interesting was this fixed price approach would go on to rule the
retail business for many years. Dynamic pricing as we know it today was only re-introduced
during the 1980s with the help of technological advances, which makes sense since it would not
have been possible to deploy without having access to strong data processing tools used today

without much hassle.

The approach was created with a mission to empower firms to grow revenue without sacrificing

customers’ loyalty and without giving up control of pricing strategy. By enabling companies to

develop their own customized solutions that fit their market position dynamic prices is flexible
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enough to respect the limitations of a business, allowing for ample customization to fit specific
objectives and business characteristics in high detail [34].
Although, it should be mentioned that this technique is highly proprietary and works best if

certain conditions hold.

2.5.1 Fixed Pricing vs Dynamic Pricing

More often than not, in real life situations, the demand level for a product or service varies
throughout time. Consumer behavior, economic changes and technological advances are to name
a few reasons. Fixed pricing, as the name suggests, us keeping the price of an attraction fixed
throughout a certain time. Although this approach has shown good responses in some real life
cases (some commodities), essentially, that is equivalent to some-what ignoring the demand
changes in the course of time all together [34]. Dygonex, a pricing firm descirbes this situation as
in this case, “the pricing would not be “demand-based” and is merely a product of taking into
account the costs that went through to create that attraction and possibly an initial analysis of the
market at the time this price was being set.” The point being, once the business is facing a
relatively high variability in demand, naturally, there will be periods of lower demand where the
value of the product/service produced are not regarded by the market’s eyes quite as high as in
other periods or at least not as much as the corporate initially intended it to be. Likewise, on the
flip side, there could also be periods in which the demand will be higher, and the value of the
product/service will be regarded higher than other times, i.e. the product/service is in high
demand. In both of the mentioned situation, charging a single flat price could mean leaving a
huge amount of possible revenues on the table.

One might argue that the solution to such an issue would be to identify a few periods in which
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we expect the demand to be higher or lower than usual and charge accordingly with a discount or
surge. You might have witnessed examples of this approach in local bars or restaurants putting
up discounted offers for certain days of the week (ex. Taco Tuesday discounts) or certain hours
of the day (ex. Happy Hour). However, we will discuss in the following section in detail how
these discount programs alone would not be able to capture the full potential to respond to high
or low demand periods in cases where the demand in more variable and the stakes are higher for

the corporation.

3. Solution Approach

Let us remind ourselves once again of the problem we are setting out to find a solution for. This
research aims to evaluate various patient transportation operational coordinations and seeks out
for techniques to optimize and/or refine those operations for both sides of the equation; the
patients and the serving organizations. By “optimize”, we mean to understand and identify the
best operational strategies and coordination of resources as the different variabilities occur
throughout the system. And by “best” we mean the highest impact, highest feasibility solutions

for the current environment.

As for the overall research methodology structure, the overall solution roadmap of this project

was created around answering the following three questions:

1. What should the overall transportation process look like?

2. How to ensure it works as the environment evolves?
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3. How can we implement this strategy and what risks should we consider?

Let us go through each of these buckets and explain what they mean for this project and how we

went through them.

To answer the first question, the overall transportation system, we will introduce supply chain
process maps for ERP (Enterprise Resource Management), keeping in mind that they were
designed in a way to be used by the future developers for continuing phases of the project. To
answer the second question, how to test and make sure the process can work, with the main
objective of increased accessibility in mind, we will introduce a diagnostic simulation model of
such business operations to forecast variabilities in the system. By doing so, we will make an
effort to answer the third question, how the client’s resources should be coordinated to respond
to those variabilities in the best way possible, in the form of potential recommendations. We will
then assess the feasibility and impact of each recommendation to best achieve the client’s goals.
It is noteworthy to mention this research acts as the infant stage of a long term project.
Therefore, answering the third question on implementation issues requires more information on
the clients capabilities and more trial and testing over time, and counts as an unavoidable
limitation at this stage of this project and the present research. That being said, we tried our best
to paint a picture for the client through testing a wide range of variabilities and resource patterns,

along with interviewing executives who had run similar initiatives within the region of Quebec.

Now that we know the overall road map taken for the solution approach, we present below

(Figure 1) a general scope of the process. This will allow us to gain an understanding of the
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simulation model in a simplified manner, understanding only the main steps to be taken

throughout a typical transportation journey.

Patient makes a
booking for a single or
multiple rides prior to
the travel time

An available driver is
introduced to the patient,
confirming details of the
travel and establishing a
personal connection

Driver

Patient will be delivered
to the treatment center;
driver ensures further
assistance is met prior
to the start of treatment
session

Assignment

Driver picks up the patient,
either to or from a hospital
within a promised time

window with respect to the
patient's appointment time

Figure 1 — High level scope of identified transportation process

In order to understand the figure, let us explain the process briefly and why we came to choose

this among other alternatives. First, in order to answer the question of why we came to design

such process, let us remind ourselves once again of the problem statement. As mentioned in that

section, we researched and proposed a range of tried and tested operational models available in
the region (including but not limited to ride sharing, public transportation, etc.). We had to

choose the operating model that is an appropriate balance between the client’s capabilities and

also, being effective enough to tackle the problem and be able answer to the unique problems of

the patient population. Based on the client’s capabilities for the starting phase of this project, a

volunteer based operating model was selected with the following attributes: the service would be
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1 on 1 (1 driver per patient). Second, based on the types of patients and their treatment plans, it

was decided that patients could book rides between a day to 6 hours in advance of the ride time.

In short, the methodology of this project is to create a simulation model to model the system and
test possible scenarios. The first step is to gather data about the system. Majority of simulation
models imitate a real existing situation. In this case, the system (volunteer ride service to breast
cancer patients) is not implemented yet. However, information of clienteles, their addresses, and
their treatment destination can be extracted. Information about potential volunteer drivers can be
assumed based on assumptions from literature and interviews with industry best practices and
benchmark with other operating systems. Various numbers of volunteers and their related
attributes can be assumed, tested and analyzed. Based on the results, decision-makers would be
able to anticipate the outcomes and effects of each combination. After creation of the model, the
next steps are model verification and validation. Verification can be achieved by correcting any
syntax error in programming and testing the model in various situations. Validation could be
achieved by comparing the results of the model with a sample that contains all the details of the
system. Moreover, the model can be tested with an existing close system. After assuring the

validation, various scenarios would be tested.

In the following section, we dig deeper in the process model, introducing the generic model used

to create the diagnostic operational simulation model which will be rich in more detailed than the

process we just introduced and then introduce the input parameters for the model.
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3.1. Input Modeling & Scope

In this section we will study the simulation model deeper, explaining the input variables and
parameters. First, starting with a more detailed look of the simulation model. Figure 2 shows a
generic version of the previously introduced model in more detail. The process works in the
same main steps that we explained previously in figure 1 along with some added features and
inputs that will be the topic of this section.

These parameters were deemed relevant according to the needs of the needs of the client within
the space of breast cancer in Quebec along with what we found out to be critical in the literature

review and market research. Let us address the parameters used as follows:

- Type of booking:
o Scheduled: refers to patients who would be more interested to book their trip in
advanced (at least a day prior)

o On-the-spot: refers to patients who would need to be served on the same day

- Type of patients:
o Radiotherapy: will typically need more than one regular bookings in a given week

o Chemotherapy: will typically need 1-2 bookings in a given week

- Type of service:
It was decided for to run the service initially as a one-on-one serving type. Meaning that
1 driver will be connected to 1 patient for each request, as opposed to a driver picking up

multiple patient at a time. The reasons behind this decision were as follows:
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1. It would fit the client’s capabilities at the initial phase. Setting up a ride sharing system
poses heavier coordination weight on the hosting organization and the client that we did

the project with did not intend to make such an investment at least in the earliest phases.

2. There are health limitations toward this specific demographic at this specific time for
the foreseeable future. The breast cancer population typically require some degree of
physical and/or mental health sensitivity. Specifically, at a time of COVID this becomes
even more critical to serve them with the utmost care and make sure the process runs as
smooth as possible, cutting away any extra delays or bottlenecks, as it was the very

intention of this project which would differentiate it from existing transportation models.

Also, in terms of timing, with respect to the difference between the types of patients and
how the treatment plans and need for transportation would differ according to that, the
client’s executive team decided they will be able to handle booking requests at least 6
hours in advance for Chemotherapy patients and at least 1 day in advance for
Radiotherapy patients to the day of travel. This decision was incorporated in the

simulation to test for the extreme conditions and study the results.

Drivers:
As explained above, due to the client’s initial investment decisions and the intended type

of service, it was decided for the service to be volunteer run at this stage. Meaning that
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drivers would be volunteers for specific locations at the start of this project which would
be in line with the client’s ability to acquire a sufficient number of them. The sufficient
number to run the system would obviously depend on how many patients are to be served
in a given day and is something that we tested for different scenarios in the next sections.
Based on the interviews we held with industry experts and firms who had done similar
volunteer run projects in Quebec, we decided to give every volunteer one ride job per

day.

Simulation Method & Strategy:

We developed a diagnostic discrete event simulation using AnyLogic simulation software
in order to model the operations and help with the strategic decision making down the
line. The reasons behind choosing that type of simulation was made because it would fit
the ultimate diagnostic goals we had in mind better, as opposed to the other relevant types
of simulations because. For instance, we did not have an extensive amount of agent
individual decision making in this business model and almost everything will go on as a
chain of procedures in advance. If any step fails, the system either iterates to redo the step
or stops for that agent completely. We also decided to use AnyLogic as it is one the most
powerful simulation tools on the market right now and has proven time and again to

provide accurate and reliable results for such purposes.

The simulation is based on a set number of scenarios to be tested, all agreed upon and

discussed with the client executives, in order to paint a picture of how such operational

model would behave as the environment around it evolves, and as variabilities affect it.
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We defined 4 main buckets of simulation that portray the key needs of the client,

explained with detail later on in the next section.

Bookings:

In order to simplify the process as much as possible for the patient and make similar to
the current existing type of bookings they already are familiar with, we decided to create
bookings on a time slot basis. Basically, patients will be promised a time window to be
served within, according to their own schedule and how early they will want to be at the
treatment center. The reason for this is very important to understand first how patients
want to be served, then come up with the plan to best serve them, as was the main goal of
this research. We noticed through interviews with the client and literature review that
breast cancer treatment transportation consists of at times a stressful mental state for the
patient, causing them to try to make sure no other source of stress is present, for example,
being late to the appointment. Therefore, a good number of these patients actually try to
eliminate that by being a bit early to the appointment, while some don’t. In choosing a
timeslot-based booking model, wanted to respect that flexibility by letting the patient
choose a timeslot that is appropriate for them according to their appointment with their
cancer center. Now in a real world condition, there may be delays causing a driver not to
reach a patient in time. Regardless of how large of a threshold that should be (discussed
in a specific scenario), based on the client data, we found out that 40% of patients would
agree to be picked up at a later time than their initial pick up time expectation, and we

incorporated that through the simulation. The remaining 60% are modeled to reject and
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will therefore exit the model upon that situation.

Hours of operation were set at 7:30 AM through 5:30 PM where most appointments
usually take place within Quebec. Length of each timeslot was set at 90 minutes in the
base model, happening throughout the day every 30 minutes. Length of timeslot was
calculated as follows. While of course this is not constant, we wanted to gain an
understanding of how long every ride should take on average. This depends on a lot of
things, but two key variables is the average distance to be traveled and the speed at which
the travel is taking place. Seeing as this service was expected to serve the Island of
Montreal, we aimed to calculate for that region taking into account a central driver
dispatcher in downtown, patients randomly scattered throughout the island (collectively,
and separately tested for each side of the island, Montreal North, South, and center), and
an expected number of cancer treatment centers within the island and Laval and Longueil
(as expected from the client). Now as we mentioned, there are other variables affecting
how long it takes to travel to such areas, one being traffic level, so we took that into
consideration and reduced speed travel to ~30 KM/Hour on average. Using mapping
tools of Google and Microsoft Excel, we iteratively calculated such scenario for 15000
times, and reach 90 minutes on average. Again, since this was only an average and that
we noticed in a real world condition,1 there may be other variables affecting this, such as
time of day and the traffic or any other barriers that are present at some specific times of
day and not present in others, we took this number as a base model and created a
simulation scenario only around that, which will be explained in the following section

along with other scenarios.
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In order to make sure patients will not experience delays, we had to make sure drivers
will get to them in time, as promised in the booking timeslot. Therefore, we defined
driver shifts 30 minutes longer than the timeslot, 2 hours. This was tested in Anylogic
within the validation phase of the simulation for 5000 patients and proved to be the least
amount of time a driver has to start driving earlier than the timeslot in order to make it in
time within the Island of Montreal region, in order to be 100% successful. Therefore,
driver shifts were defined in 2-hour slots. Also seeing as they are volunteers, we did want
to consider that to be attractive for numerous profiles in order to want to take part in this
project. Making a volunteer shift too long for a working-class profile would be making it
difficult to attract them. Making it too short would risk not being fully utilized in certain
hours were patient demands were not as high. 2-hour shifts proved to respond well to

both situations.

In this section we explained the assumptions and input parameters used to create and
validate the simulation model to give logical results. In the following section we study

the simulation model deeper and how it was tested.
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3.2. Simulation Model Design

In this chapter we will further investigate the simulation model and explain how it was used.

After that we introduce each scenario and why they were deemed critical, and also what each of

them will test. Then we will finish off with the simulation results for the baseline scenario which

was used as a point of reference to compare with the results of each scenario.

An overall scheme of the model is presented once again in the figure below. This is the generic

process map that we designed in order to create an equivalent model in Anylogic, with the idea

in mind that it would be able to serve all scenarios, with minimal change. In Figure 3 you can see

a snapshot of the same model in Anylogic language.
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Figure 3 — Simulation model in Anylogic software space

As we mentioned, the aim of the simulation is to create preliminary guidelines as to how the
model can be created in real life, and how the change of the internal or external variables will
result the outcome. For that we have to first define what we mean by “outcome” and then what
are the key variables, and how should they be varied. Once we find out of the overall situation,
we will go ahead with testing the simulation for the baseline scenario in order to use as a point of

reference for every other scenario and drive useful insights.

First, let us start by defining the desired outcome of the simulation. From the point of view of an
executive, the key objectives behind a simulation of business operations is seeing how important
performance factors will look like, the desired output. And then there are two questions that
comes to mind,

1. What structure of inputs will give the system the desired output?

29



2. How does change in those inputs affect the output, and what can we do to make sure the
output remains desirable?

Answering these two core questions is the fundamental reason behind the simulation, along with
the fact that this service within this region was not done before. So, no valid data that would be

applicable to this situation was available, hence we turned into the simulation method.

Now, what is the output? After studying relevant literature and interviewing the client executives
and industry best practices within this region, we came up with a set of key performance
indicators (KPI) that will directly impact the overall decision criteria. The decision criteria are
made up of the most important set of factors impacting key stakeholders in this system, from
patients, to drivers, to the hosting organization. They are; resource constraint, time horizon to
implement changes, patient impact and appreciation. The KPIs we chose that will directly affect

the decision criteria break up into two main categories are listed and defined as follows:

1. Time KPIs

- Service time = Drop off time — slot start time

How long will the service take for the patient, from the start time of their booked timeslot

to the time they are actually dropped off safely at their destination.

- Ride time = Drop off time — Pick up time

The duration of the ride for the patient
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- Pick up wait time = Pick up — Slot start time

The duration a patient has to wait to be picked up, starting from the slot start time

- Driver wait time: in case a driver reaches early to the patient, how they have to wait for

the patient (assumed patients are ready at their booked slot start time)

- Driver ride time: Duration of the work for the driver, from the time they start driving to

pick up to the time they drop off the patient

2. Service level KPIs:

- Total patients served

- Total patients served within promised time limit

- Capacity utilization: Real time capacity being defined as number of drivers available
multiplied by the number of hours they are expected to work.

- Number of delayed patients

- Number of patient refusals: Number of patients who will choose to cancel the service in

case the pick up wait time passes their expected pick up time window.

Now that we know the output KPIs we will introduce a baseline scenario that will be used a point

of comparison to the upcoming scenarios to ultimately help us draw insights from the scenarios.

From this point forward, the data is generated to simulate a realistic situation. We were not able
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to find sufficient existing data to support our simulation thus we generated the data using the

interviews we conducted with industry experts and literature review. The outline parameters of

the base level scenario is shown below.

Base level scenario

Parameters Values

« Booking rate ~5 [ hour

« Patient distribution Poisson, peaking at ~8 AM
« Slots available 54

* No. of patients 20

« Choice of slot Random

« Travel speed 30 km/hour

« Expected avg service time 1.4 hour (84m)

« Patient location Entire greater Montreal area

* Driver distribution Level 3

Figure 4 — Baseline scenario parameters

Let us explain how each value parameter was chosen. Booking rate was generated as the average

volume of requests for treatment visits in the patient data at Ruban Rose, taking into account the
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current volume of their patients who the expected would want to opt in for this service. Patient
distribution was also set as a Poisson distribution peaking at 8 am due to the way cancer
treatment centers operate in Quebec. We started with 54 slots available per day as we calculated
the hours of operations to be from 7:30 AM to around 5 PM, judging again by the way hours of
treatment work for cancer treatment centers and to fit the expected profile of working volunteers,
making sure we can attract as most volunteers as we can. We started with 20 patients because we
were identified by the client this will be the amount that will fall in balance with how many
patients they could attract to use this service initially per day, and also what their capacity can
handle. Choice of slot has been identified as random to give the most flexibility to patients to
pick the desired timeslot, making the simulation more realistic. Travel speed was set as 30
KM/hour, lower than usual travel speed within the city in order to take into account the speed
limiting factors such as construction and traffic. Expected average service time was set as a
baseline level of 84 minutes, as we mentioned in the previous section, this was set taking into
account the amount of time it will take on average for a patient to go to one of the cancer
treatment centers around Montreal, with the speed that we set. The distance was set on average
20 KM, using the data we gathered from literature [3], which was confirmed by the client and
their current data. Patient location was set as Greater Montreal area in general, randomly
scattered, as this will be where the client will start the service. In terms of driver distribution, we
generated different levels of distributions, based on the profile of volunteers we gathered from
the volunteers industry practices within this region [3]. We generated one of the most fitting
distributions to the realistic situation of current volunteers in Quebec as we identified from our
findings which we named level 3. Details of the levels will follow in Figure 8 and in the

verification section.
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Now we will show the simulation output values, which will be the KPIs that we introduced in

Key performance indicators

Time (averaged, minutes) Service level
« Service time 85m » Total served 100%
(drop off — slot start time) (20/20)
* Ride time 52m « Total served
(drop off — pick up) within time limit  100%

 Pickup waittime 7m
(pick up — slot start time)

» Capacity utilization 100%
« Driver wait time 3.5m * No. delayed patients 0

* Driver ride time 56m * No. refused patients 0
(ride time + driver wait time)

Figure 5 — Output of baseline scenario

The numbers for time KPIs are averages. We will show ranges and standard deviations in
appendix section. As is visible we can see the pick up wait time is manageable and within

standards of today’s on demand transportation services, and also everyone was served with no
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delays. That is due to two main reasons, one the demand was within expected capacity and
second, in our validation, we made sure of reducing the risks of drivers reaching patients later
than the promised time window as much as possible. We achieved that by extending the driver’s
shifts by 30 minutes more than the timeslot they would be serving at. Having that as a unified
recommendation results in all drivers being able to start driving to the patients a bit earlier in
order to take into account the reduced speed that may be caused by various factors en route, e.g.
traffic, construction, etc. This will also have another benefit and that is enabling drivers to fill in
for each other, because each one of them will be available for 30 minutes longer than the rate the
slots will be filling in at. This will result in increasing driver utilization in potential situations
when if a driver may not be matched with a patient within 1.5 hours, thus improving the service
level KPIs. This was one of our main recommendations to the client as well, to make it

mandatory for driver shifts to be slightly extended over the timeslots.

Next we finally study the scenarios and what they will test, and how that matters in order to
impact the mentioned KPIs. Scenarios test four key parts of this system that could change within
time in a real life situation. Our hypothesis was to see the impact of their variations on the major
KPIs we just mentioned, to measure their impact and propose recommendations for running this
operation in the present and future. Variations will broadly test 2 situations, one having less
extensive load on the system than the base level scenario, and the other one pushing more load
on the system. We are hopeful our insights will be helpful for future researchers and business

strategists in following similar efforts within transportation services.
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List of Scenarios:

1. Demand

2. Capacity

3. Pick up time window

4. Timeslot Length

We will explain each scenario in the following points:

1. Demand

We will test how changes in patient demand characteristics impact our service level and time
KPIs. We will test changes in volume of patient demand, locations they come from, and the
distribution at which they enter the system, throughout the cycle of the simulation. We hope this
scenario would help ease future decision makings by providing senior management with insights
on the effect of an increased daily booking requests on the organization’s operations. The

detailed values for demand levels are as follows, having the baseline levels as a reference.

- Location (see Figure 7)

o Montreal East

o Montreal West

o Centreville

- Distribution

36



o Single mode Poisson, peaking at ~8§ AM

o Bimodal Poisson, peaking both at ~8 AM & ~1 PM

- Volume
o Low capacity, 10 patients per day

o High capacity, 50 patients per day

2. System Capacity

As we mentioned there are a number of components forming up capacity. Volume, time worked
and distributions. We are not testing variations in time worked, which will translate into the
length of driver shifts due to, as we mentioned, our findings from industry experts experiences
with volunteers working in transportation in the region of Quebec. We will test the other two
components, that are changes in volume and distribution of drivers in each day. Our goal would
be to see how they will impact our KPIs, specially time KPIs such as driver response rates and

patient wait times that are critical in this context.

- Volume
o Low capacity, 10 drivers per day
o High capacity, 40 drivers per day
- Distribution (see Figure 8)
o Levell

o Level 2
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o Level3

3. Pick up time window

We will analyze changes in patient time sensitivities, specifically for pick up, which will be
critical in determining the success level of such transportation services, and is most in control.
Once the patient is picked up, there is not much in control of the driver in terms of timing of drop
off, as long as they do their best in setting a balance between driving safely and with an
acceptable speed. Our goal for this scenario is to find optimized time windows we expect and
propose to patients in advance of the ride in order to maintain acceptable service levels

(whatever level they may be, based on a transportation provider preferences).

- Time sensitive profile: 30 min
- 1 hour

- 1.5 hour (or equal to timeslot length)

4. Timeslot length

We tested changes in length of expected service times, in order to make sure we propose the
right amount of timeslots to the patients for booking. This is the backbone of our system, since
this will affect everything else: such as how long a service should take, and how should every
driver shift be set accordingly. The reason we decide to make such scenario was in a response to
the location scenario. In reality service times would be different naturally according to the
locations and distances. Therefore, we expect to see different regions of Montreal area to have

different expected service times, and therefore timeslot lengths. Our goal in this scenario is to
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coordinate guidelines to choose the best estimations of service times under different conditions,

one of the most important ones being the patient locations.

- 1.5 hour (normal)

- 1 hour (short)

We should mention again that all the numeric values for scenarios were generated in comparison
to the referenced base level scenario to see how the system would react in heavier and more
flexible conditions. In the following sections we will verify some of the parameters and explain

the results of our tests.

8 Patient distributions
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Figure 6 — Generated patient distributions (based on patient data observations)
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3.2.1. Verification & Validation

In the previous section, we provided a description of the paramters used and how they were
validated to maintain realistic, relevant and logical. Here we will provide the list of the

parameters we validated and how they were validated.

Service time / timeslot length: As mentioned, there are other variables affecting how long it
takes to travel to such areas, one being traffic level, so we took that into consideration and
reduced speed travel to ~30 KM/Hour on average. Using mapping tools of Google and Microsoft
Excel, we iteratively calculated such scenario for 15000 times, and reach 90 minutes on average.
Again, since this was only an average and that we noticed in a real world condition,1 there may
be other variables affecting this, such as time of day and the traffic or any other barriers that are
present at some specific times of day and not present in others, we took this number as a base
model and created a simulation scenario only around that, which will be explained in the

following section along with other scenarios.

Number of patients: In the base level scenario, we started with 20 patients because we were
identified by the client this will be the amount that will fall in balance with how many patients
they could attract to use this service initially per day, and also what their capacity can handle. In
order to consider other variations across time as the service grows, we tested a situation for
almost double the amount (50 per day) and also, one for potential easier days (10 per day) to see
how the organization has to coordinate its resources in both conditions, which may most likely

happen more often than other values in between this range.
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Demand distributions: We identified from our client patient information that the patient
distribution would closely follow a Poisson distribution throughout the hours of 7:30 am to
around 5 pm. The peak however would be variable but mostly happens either during the morning
or at noon, then falling down for the rest of the evening. We matched that distribution with our
proposed volumes. This however might not be entirely accurate for other regions or other

treatments but according to our source of information, was correct.

Capacity distributions: We studied volunteer profiles from different non profits in Montreal
and Quebec, and proposed 3 distributions to match different individual profiles to show how
busy or available they would be depending on their free time. For instance, level 1 could fit a
working class profile how would not be available for volunteer work during business hours.
Level 2 would be a different profile, resembling the profile of a student or someone more
flexible (students are one major population of volunteers in Canada) and level 3 would be

another profile, a mixture of the two.

Hours of operation: We started with 54 slots available per day as we calculated the hours of
operations to be from 7:30 AM to around 5 PM, judging again by the way hours of treatment
work for cancer treatment centers in the Montreal area and to fit the expected profile of working

volunteers, making sure we can attract as most volunteers as we can

Treatment centers (number and location): At the time this project was done, our client had or
was in the process of setting up agreements to work with 5 treatment centers within the Montreal

region, and asked to have one in each region as specified in figure (?).
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Driver dispatcher (no, and location): At the time this project was done, our client had or was
in the process of setting up agreements to work with one central third party driver dispatcher

within the Montreal region, and asked to have one in each region as specified in figure (?).

Speed of travel: Travel speed was set as 30 KM/hour, lower than usual travel speed within the

city in order to take into account the speed limiting factors such as construction and traffic.

Patient time sensitivity: In a survey identified by the client, we came to an understanding on
what will be the most viable number on pick up time window, and we reached the number of 30
minutes. Also, based on the client data, we found out that 40% of patients would agree to be
picked up at equally a later time than their initial pick up time expectation, and we incorporated

that through the simulation.

Time of bookings: with respect to the difference between the types of patients and how the
treatment plans and need for transportation would differ according to that, the client’s executive
team decided they will be able to handle booking requests at least 6 hours in advance for
Chemotherapy patients and at least 1 day in advance for Radiotherapy patients to the day of
travel. This decision was incorporated in the simulation to test for the extreme conditions and

study the results.
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3.3. Output Analysis

In this section we synthesize the outputs of the simulation model and the insights we gathered
from the results of the scenarios. We will prioritize scenarios based on the impact they had on the
set performance KPIs and talk about the most interesting results that led to our final
recommendations and guidelines for managing such operations. The full details of all scenario

results are presented in Appendix sections.

The two most impactful scenarios were related to demand (scenario 1) and pick up wait time

(scenario 3). Let us dig deeper into each of them and explain our takeaways from the results.

A. Scenario 1.1.

Demand Location — Montreal East and West sections

These configurations gave highly similar results that can be talked about in a cluster. The
greatest observations we saw for these regions was represented in service time and pick up wait
time. Comparing to the base level scenario, average service time increased by 8% to 92 minutes
and pick up wait time on average increase 43% with a range of 0 — 37 minutes. This means
patient location greatly impacts our time KPIs and overall patient experience and we need to
adjust either resources or system configurations accordingly. In terms of service level, results
were not optimistic as well. We noticed 10% decrease in service level (90%) and in a sample size
of 20 patients in a day, 2 patients were lost due to longer wait times than their expected wait
time. Since increasing resources (drivers) to service patients would be cost extensive and the
obvious solution, the key takeaway that we got from this section of the demand scenario was that

expected duration of service should be adjusted based on area to prevent potential delays.
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B. Scenario 1.2.
Demand Distribution — Bi modal demand distribution matched with level 3 capacity

distribution

For this specific configuration we noticed interesting results that we deemed crucial for
mentioning in order to make sure senior management is prepared to face potential delay risks. In
terms of time KPIs, we noticed service time decreased by 14%, down to 73 minutes on average,
and patient wait time increased by 10%, up to average 7.7 minutes, holding a range of 0-90
minutes. You can see that although the average is relatively low, the range can at times get
increasingly higher. If we want to maintain high service levels we need to make sure we address

such discrepancies as well.

In terms of service level KPIs, we noticed service level on average decreased by 5% (95%) and
we lost 2 patients out of 20 in a typical day due to long delays in pick up. The key takeaway we
got from this part of the simulation was that variabilities in patient arrival distribution require
adjustments in capacity distribution mix in order to match the right distributions together and

ensure timely matching of the two stakeholders.

B. Scenario 3.

Pick up wait time — 30-minute threshold

In this scenario we tried different patient time sensitivities because in reality possibly not every
patient has the same expectations. In terms of time KPIs, we noticed that while service time and
pick up wait time remained stable at respectively, 84 minutes and 7.7 minutes on average, pick

up wait time stretched its range to 124 minutes in rare cases of overtime pick-ups (up by 148%).
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This was alarming to us if the organization wants to set a value proposition to serve every
patient. Also, in terms of service level KPIs, we saw negative results. Number of served patients
fell by 30% from 100% base level, and number of delayed patients increased to 6 out of 20
comprising 30% of total daily commuters. The key takeaway that we got from this part of the
simulation was that the estimated average patient pick up wait time, with current resources

should be greater than 30 minutes if we are considering the entire Montreal island area.

Now that we explained the most critical and impactful scenarios, we will work to explain our key
recommendations and guidelines to cover all the mentioned situations. It is noteworthy to
mention while other scenarios also had changes to the KPIs, they were not as impactful (refer to
Appendix for full result tables). Nonetheless, we will include their results in the guidelines that

we set for future decision makings.

In order to improve the system results, there are numerous potential actions to take. Figure below
charts some of those actions in terms of their potential impact versus their feasibility for the
hosting corporation. The definitions of impact and feasibility can take many translations
depending on the type of resources an organization will spend and the types of results they or the
patients as clients, deem important. What we offered is only an example to what we thought

would be some of the most important definitions for these two terms.

As we identified and matched the following actions with our client and industry experts, we

found out that putting efforts into two parameters would have the most impact and would be

most feasible for similar clients to our own. They are, adjusting time of pick up and
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communicating a realistic pick up time window to the patients, depending on what segment they
come from. Let us walk our readers through both and explain what specific recommendations we

came through for this project.

Time of pickup

Adjust expected pick
up time window

Length of time slot

—_—

*8 Increase Round trips

g service hours

N
> = _
= f Travel speed Increase capacity
o
)
% S Tweak driver distribution
LE -

>

Impact +

(Patient and Performance Impact)

Figure 9 — Identified potential actions and parameters to improve performance

Our recommendations to improve the performance of such system based on the capabilities of

our client for this project, and without considering obvious choices like increasing capacity,

would be within two main buckets;
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1. To urge all drivers to ensure pick up at the start of timeslots

2. To actively adjust the pick up time window

To explain the first one, in order to maintain consistent performance, this simple rule of ensuring
pick ups are occurring at the beginning of timeslot as much as possible, if followed throughout
the day will make a considerable difference. The reason for that follows within the lines that we
previously mentioned: it makes more sense all the delay factors that are easily within control,
before trying to change more difficult exterior delay factors that are mostly uncontrollable and

sometimes even a surprise.

In order to explain the second recommendation, we noticed how different variabilities can cause
patient delays. We think the organization should actively communicate tailored expected wait
times at least with respect to the patients clustered geographical area prior to the time of the ride.
That is if the system would be expected to operate with the current settings of limited volunteer
resources. Our results show the following brackets to be promising and safe; 1-1.5 hour seems to
be the safe zone for all regions within Montreal island without any delays. 30 minutes or less

would risk ~25-30% of patients to be delayed and could increase wait times by ~x2.5 on average.

The two recommendations we mentioned are generalized, in the next steps we will consider them
for more specific situations, taking into account more data we gathered from the simulations. The
approximate outcome of such recommendations based on our calculations will result in service

levels above 95%, pick up wait times less than 15 minutes and no delays in drop off.

49



3.4. Alternative Configurations

In this section we will take our simulation insights further to provide guidelines for future
strategic decision making under different configurations. We came up with the following
numbers (presented in the following page) by iterating variables as explained above in order to
reach the desired outcome. Needless to say, the desired outcome is subjective to different

business expectations but what we provide here can be easily adjusted to different needs.

50



Potential Situation

Patient distribution: single peaked (morning)

Volume: 20-50 / day
55-70 / day

Patient distribution: double peaked (morning & afternoon)

Volume: 20-50 / day
55-70 / day

Patient location cluster

* Greater Montreal area
* Centre & downtown area

« Montreal East & Quest area

Suggested Course of Action

Expected Outcome

Suggested driver distribution mix

50% level 2, 50% level 1
60% level 2, 40% level 1

Suggested driver distribution mix

50% level 2, 50% level 1
60% level 2, 40% level 1

Suggested pick up time window

Use 1-1.5h window
Use 1-0.5h window

Use 1-1.5h window

>95% service level
10m or less pick up wait time
No delays in drop off

>95% service level
10m or less pick up wait time
No delays in drop off

>95% service level
15m or less pick up wait time
No delays in drop off
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4. Limitations, Risks & Future Outlook

This project was the initiation phase of a larger projected expected to maintain for the next two
years with our client. Therefore, we only set out to lay out the bedrock for future researchers to
follow and improve. There are naturally some limitations to what we set out to solve. We will

explain them by structuring them within 4 main components of that will be our sources of risks:

1. Drivers

Our main operators in this system were set to be volunteers doing one job per day according to
our client’s preferences. This will make the results more susceptible showing delay risks or
lowering the response rates. The good news is our recommendations were suggested to a tighter
situation which could make them more reliable in a real life situation were there are added
sources of risks. Also, the data we used for driver distributions were generated by our own
observations from similar volunteers within this region. We tried to make it more realistic by
breaking them down into three different types to fit different volunteer profiles (working class,
flexible, students, etc.) The accuracy of their detailed distribution is also a source of risk, but
with the current simulation, it is very well adjustable. Hopefully that will be a way to mitigate
this risk as we gather more confident data and feed it to the simulation. The future outlook for
this section could show different coordination for drivers such as working more shifts per day, or
doing multiple pick ups similar to current ride sharing business models. The location of drivers
could in that case, also be decentralized and scattered across the city, as they will be self-

employed.
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2. Methodology

We chose to use simulation because this was a novel strategy that was not done before in this
context in Quebec. We did not have reliable data to test this strategy with. Although we took the
effort to minimize the risks of our results being inaccurate through testing different
configurations and scenarios, along with choosing one of the best in the market simulation tools

at the moment (Anylogic software) that chance still remains.

3. Patients

Patients will have more characteristics in real life and therefore, making more decisions
individually. While we did try to consider the most common ones, like different expectations in
windows of wait time, it is possible we did not take into account enough alternatives. Also, we
did not consider patients changing their minds and making cancellations prior to the day of
travel. Patients might also ask for the volunteer driver to do more than driving and perhaps help
them with taking them outside their residence or folding a wheelchair before starting the pick up,
or ask for a volunteer to wait at the treatment center for the return trip. This might take a few
minutes and add to the service time. We did not consider this and assumed their impact will be
negligible according to the patient profiles we currently saw from the client’s data. But this may

very well change in future.

4. Environment
There numerous external sources of risks in real life. We will mention a few that relate most to
the choices we made and the context of our project. One of them could be the number of cancer

treatment centers, we used 3 as per our client’s preferences. Adding more or placing them in
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locations that are further away from the central driver dispatcher will undoubtedly add more
delay risks for the patients. In that case it is recommended that the senior management work with
more than one driver dispatcher or change their policies in how the drivers operate, for instance,
using local volunteers without the need for a centralized dispatcher location. As mentioned there
may very well be other external sources of risks such as uncontrollable risks of constructions in

certain roads that will cause the drivers to take another route, heavier than calculated traffic, etc.

5. Case Study

Since August 2018, we partnered with a major non profit organization in Quebec, the Quebec
Breast Cancer Foundation (Ruban Rose), as part of their research and development program for
the same purpose that will continue for at least the next two years. We were on the start of the
initiation phase at the time this research was conducted. On a high level, the main focus area of
this particular project is to reduce the barrier of transportation for breast cancer patients for
receiving therapy and those barriers, based on the foundations previously conducted market
research and as our literature review confirms, have been defined as economical and accessibility
barriers. In order to tackle those barriers, we focused broadly on three main areas—minimizing
patient out of pocket costs during treatment and logistic barriers, while ensuring required health
and safety conditions are maintained to make sure the service is tailored to the specific needs of

this patient segment, among other services that are already out there.

The Quebec Breast Cancer Foundation (Ruban Rose), based in Montreal, is the only non-profit

charitable organization dedicated to investments for the benefit of the province’s breast cancer
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patients in the region of Quebec. For over 25 years, they have been committed to defending the
interests and well-being of people affected by breast cancer and their loved ones. The
contribution is especially noteworthy in the area of medical and scientific advances. Also, they
invest in innovation and cutting-edge research and in patient-support programs, ranging from
prevention to cure [24]. Currently, one of Ruban Rose’s main operation consists of supporting its
clientele with allowances for their transportation costs. They are planning to implement a system
of applying volunteer or paid drivers to service breast cancer patients. As the future phases of
this project, they also consider offering managing the lodging services to the patients coming
from other areas of the province who need accommodation. They believe that offering this
service does not only provide transportation service but also some comfort of being accompanied

by another human being who is willing to help.
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Operations
Centralized
Booking
On the spot

Scheduling

Scheduled

Transportation Driver

Time Flexible

Drop off

Figure 10 — Issue tree structure of proposed operations

Ruban Rose is interested in considering both strategic and operational issues before and during
implementing the desired service. Issues such as pricing, capacity planning, scheduling, lodging,
data management, service level and many other details. According to [21], the drive attribute
data typically included: drive ID, volunteer ID, start time, volunteer hours, travel distance (client
travel only), client ID(s), presence of companion/helper, origin/destination, stop purposes and
number of stops (including whether they returned home), and other groups specific information

(e.g., fee per ride). All these details should be taken into account at the operational level. Our
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proposed research aims to address the aforementioned issues in several collaborative projects and

provide an integrated decision-making solution.

We also provided UML diagrams to chart process maps for making clear enterprise resource

management (ERP) roadmaps for future steps of this service that include making a mobile

application to allow patients to book their rides. (Figure 11)
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Scenario 1: P2P Driver Selection

Foundation

+ Support persons info
+ drivers info
+patients info

+ Sends support Person
+ Receives Payment info
+ Reviews and stores trip information

Patient

+Time & Location of demand
+ The kind of ride needed

+ Special insturcitons

+ Priority of Demand

The Platform

+ Demand info

+ Sends request ()

Sends Support Person

Driver

+ Real time location

+receives demand info ()

+ sends demand info ()

+ stores geo location information of the
patient and nearby drivers

Generales

Fare estimation

+ driver location
+ passenger location

Cancer Center

+Receives information

Price estimation can be
done using systems such
as Fare Quote now used

by companies like Uber

+ time and traffic of the route
+ travel duration

Pickd up:

Drivers t

+ location
+ Type of car + empty beds
K
+ First Aid + assigned physician
+ Acceplts ride

Figure 11 — Preliminary UML class diagram of P2P transportation business operation

58



Scenario 2: Manual Driver Assign

Foundation

Y

Patient

+ Support persons info
+ drivers info
+patients info

+ Sends support Person
+ Receives Payment info

+ Reviews and stores trip information

Assigns / Calls

+Time & Location of demand
+ The kind of ride needed

+ Special insturcitons

+ Priority of Demand

The Platform

|

+ Demand info

+ Sends request ()

"| +receives demand info ()

+ sends demand info ()

+ stores geo location information of the

patient and nearby drivers

Determines

ends Suppor Person

Driver

Cancer Center

+ Real time location
+ Type of car
+ First Aid Knowledge?

+ location
+ empty beds
+ assigned physician

+ Accepls ride
+Receives information

Fare estimation

k on Ride info

+ driver location

+ passenger location

+ time and traffic of the route
+ travel duration

Pick up-

Drop off-

Figure 12 — Preliminary UML class diagram of manual matching transportation operations

5. Conclusions

This research addresses the problem on transportation accessibility for patients with pre-existing

conditions in the Montreal area. We set out to offer a transportation strategy with the goal of

making transportation more accessible for breast cancer patients residing in Quebec. Our

definitions of accessibility were set around overhead costs imposed to the patients and ease of
service according to the specific needs of this population. First, we reviewed the literature and

initiatives employed by global transportation providers and identified major methods used for

healthcare industry. Second, an overall transportation strategy was proposed, and key

performance indicators were identified through our analysis of data and interviews with industry
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best practices in order to determine key aspects of such operations having the most impact on the
overall service level. Finally, a discrete event simulation was provided and tested through 3 main
scenarios to understand how such operations would behave in real life and how they react as the
environment evolves through time. Next we analyzed the limitations and risks associated with
our method to hopefully lay a bedrock for future work. A case study of a major nonprofit
organization for whom this strategy was originally outlined was provided. On a high level, the
main focus area of this particular project is to reduce the barrier of transportation for breast
cancer patients for receiving therapy and those barriers, based on the foundations previously
conducted market research and as our literature review confirms, have been defined as
economical and accessibility barriers. In order to tackle those barriers, we proposed a discrete
event simulation method, focused broadly on three main areas—minimizing patient out of pocket
costs during treatment and logistic barriers, while ensuring required health and safety conditions

are maintained to make sure the service is tailored to the specific needs of this patient segment.

This research is naturally built around the case study we offered, our we partnership with a major
non profit organization in Quebec, the Quebec Breast Cancer Foundation (Ruban Rose), as part
of their research and development program for the same purpose that will continue for at least
the next two years. We were on the start of the initiation phase at the time this research was
conducted. Based on literature and our client’s key preferences, we coordinated specific KPIs
and tested different scenarios in our simulation of these operations. Test data results show
promising outcomes within our recommendations and the boundaries the simulations were tested
within. Our recommendations to improve the performance of such system based on the

capabilities of our client for this project, and without considering obvious choices like increasing
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capacity, would be within two main buckets; 1. To urge all drivers to ensure pick up at the start
of timeslot and 2. To actively adjust the pick up time window. We proposed different

configurations as guidelines for future decision making to maintain the desired KPIs.

Because this was the preliminary phase of this project, our results are subject to inaccuracies as
the project and the environment around it evolves. We explained the risks and mitigations in a
specific section within this research thesis. In the same section, we talked about how future work
can add on to our work to address more relatable situations and consider more realistic data. We
will generally mention here that future efforts could build on giving each stakeholder of our
system more characteristics and more individual decision-making abilities, and also to expand
this work to larger regions with heavier loads of service. We hope our work would be a bedrock
of inspiration to future researchers and leaders within the healthcare space at this critical time of

COVID crisis in order to leave a greater social impact on our world.
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6. Appendix

A. Simulation Results

Scenario 1.1. Demand distribution

Time Results (m)

Service time (dropoff

mean

min

42

max

159

51.1.1 BASE MODEL - patient arrival distribution - Medium - Rate: poisson (lambda 5) / hour

dev Service level results

31

Table 1 — Base level scenario (reference)

No. of patients served

100%
- slot start time) Total Served (%)
Ride time (Dropoff - 52 8 97 23 Total served within desired time 100%
pickup) limit (%)
Driver Ride time
(Ride time + driver 55.5 8 113 21 100%%
wait time) Driver utlization ;
Pickup wait time @ bt T
(pickup time - slot 7 0 37 10 37%
start time) Capacity utli
35 0 16 5 1]
Driver wait time Number of delayed patients
@ e T
o
no. of Patients refused
20

Table 2 — Scenario 1.1 High demand distribution

5$1.1.2 patient arrival distribution - High - Rate: poisson (lambda 7} / hour » W
| 0
Time Results (m) mean min max [~ ] deV Il service level resuts [~ el - |
Service time (dropoff 85 45 173 287 100% ‘ !
- slot start time) Total Served (%) @ Sorvice T
Ride time (Dropoff - a 106 108 3 Total served within desired time 100%
pickup) limit (%)
Driver Ride time
(Ride time + driver 523 10.6 126.5 232 7%
wait time) Capacity utlization
Pickup wait time
(pickup time - slot 3 0 38.59 88 0
start time) Number of delayed patients — — — — —
@ Rice Time
93 0 215 76 )
Driver wait time no. of Patients refused
20
No. of patients served
«

Pickup wai time
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51.1.3 patient arrival distribution - Low - Rate: poisson (lambda 2) / hour

Time Results (m) B

B service tevel results

Service time (dropoff 83 47 1336 21

@ Senvice Time

100%
- slot start time) Total Served (%)
Ride time (Dropoff - 50 105 79 185 Total served within desired time 100%
pickup) limit (%)
Driver Ride time
(Ride time + driver 59.2 10.5 103 18 37%
wait time) Driver
Pickup wait time
{pickup time - slot 27 0 244 6.1 @ Rice Tme
start time) Number of delayed patients
Driver wait time Ll 0 24 8 no. of Patients refused

No. of patients served
Pickup wad tme
1

Table 3 — Scenario 1.2 Low demand distribution

Scenario 1.2 Demand Volume

1.2.1 Medium 20 patients

mean min max dev Amount
Time Results (m) n u n Service level results n :
Service time (dropoff - slot start 84 42 159 31 100%
time) Total Served (%)
52 8 97 23 Total served within desired time limit 100%
Ride time (Dropoff - pickup) (%)
Driver Ride time (Ride time + driver 55.5 8 113 28 3%
wait time) Capacity utlization
Pickup wait time (pickup time - slot 7 0 37 10 0
start time) Number of delayed patients
35 0 16 5 0
Driver wait time no. of Patients refused
20

No. of patients served

Table 4 — Low demand volume

1.2.2 High 50 patients

Time Results (m) mean n min n max n dev n Service level results n Amount u
Service time (dropoff - slot start
75 43 159 21 100%
time) Total Served (%)
Total served within desired time limit
47 5.5 98 23 100%
Ride time (Dropoff - pickup) (%)
Driver Ride time (Ride time + driver 53.3 55 119.4 235 03%
wait time) Capacity utlization
Pickup wait time (pickup time - slot 3 0 37 7.2 0
start time) Number of delayed patients
6.3 0 21.4 6.4 0
Driver wait time no. of Patients refused
50
No. of patients served
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Table 5 — High demand volume

Scenario 2.1. Capacity volume

2.1.1 Half 10 Drivers

n‘ﬂrvke level results

Service time (dropoff - slot start 94 42 149 3z 100%
time) Total Served (%)
53 8 87 1 Total served within desired time limit 100%
Ride time (Dropoff - pickup) %)
Driver Ride time (Ride time + driver 54 L] a7 135 1%
wait time) Capacity utization
Pickup wait time (pickup time - siot 1 0 - 5 100%
start time) Driver utization
1 0 10 25 0
Driver wait time Number of delayed patients
0
no. of Patients refused
20

Table 6 — Low capacity volume

2.1.2 Double 40 Drivers

No. of patients served

-

B service leve resurs =

Service time (dropoff - slot start 84 41 160 31 100%
time) Total Served (%)
Total served within desired time limit
52 8 98 24 100%
Ride time (Dropoff - pickup) (%)
Driver Ride time (Ride time + driver 55.5 8 114 24 1%
wait time) Capacity utlization
Pickup wait time (pickup time - slot 6 0 37 100%
start time) Driver utization
3.5 0 16 5 0
Driver wait time Number of
o
. no. of Patients refused
20

Table 7 — High capacity volume

No. of patients served
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54 patients with 54

At capacity

capacity
nghwice level results
Service time (dropoff - slot start n %0 48 5 el
time) Total Served (%)
& 12 0 2n Total served within desired time limit ® sonvea Time
Ride time (Dropoff - pickup) %)
Driver Ride time (Ride time + driver 52 12 114 2 100%
walt time) Capacity utlzation
Pickup wait time (pickup time - slot 85 0 30 135 100%
start time) i i Driver utlization
7 [ 2 64 0
Driver wait time Number of delayed patients ®renes
no. of Patients refused °
54
No. of patients served
Table 8 — At capacity volume
Scenario 2.2 Capacity distribution
2.2.1 Level 1
Service level
results
Service time (dropoff - 77 47 113 18 Total Served (%) 100% (20/20)
slot start time) ol
Total served ‘
@ Servics Time
Ride time (Dropoff - 44 15 76 17.2 ! within desired 100% (20/20)
pickup) time limit (%)
LT 52.5 15 100.37 16  Driver utlization 100%
time + driver wait time)
Number of
Pickup wait time (pickup 8 0 n & | delayed patients 0%
time - slot start time)
no. of Patients ¢ ’
! 24.37 o
Driver wait time 8s ° 3 8 refused L @ e Tene
No. i
0. of patients 20
served
Capacity utlization 51% «

Pickup wal tima

Table 9 — Capacity distribution level 1



2.2.2 Level 2

EService level
|results
Service time (dropoff - 77 47 113 18 Total Served (%) 100% (20/20)
slot start time)
Total served @ Service Tme
Ride time (Dropoff - 44 14.7 76 17.2 ' within desired 100% (20/20)
pickup) time limit (%)
Driver Rids tima (Ride 532 147 100.37 16 Driver utlization 100%
time + driver wait time)
Number of
Pickup wait time (pickup 2 0 24 6.1 delayed patients 0%
time - slot start time)
92 0 24.37 A e 0% @RdeTine
refused
Driver wait time
No.
0. of patients 20
served
Capacity utlization 18%
Pickup wait tma
Table 10 — Capacity distribution level 2
Scenario 3. Pick up wait time
3.1 .5h threshold and 1h
overtime threshold
ISenrice level
Time Results (m) |results
Service time (dropoff - 84 35 163 34.65  Total Served (%) 90% (18/20) b
slot start time) 100
Total served
Ride time (Dropoff - 45 5.6 79 174  within desired 70% (7/10)
pickup) time limit (%)
TR 58 1 10337 231 Driver utlization 100% @ service Time
time + driver wait time)
Number of
‘. o a2 o % .
lTlckup wait time .(p|:kq> 15.44 0 84 14 delayed patients 30% (6/20)
time - slot start time)
no. of Patients
13 5.4 24.37 5.7 10% (2/20]
Driver wait time refused (2/20)
No. of patients 18 .
served
*over time wait stats Capacity utlization 20% pr
@ Ride Time
avg 40m
max 54
min 31

** Disregarded those who refused overtime service.
(Refused population included: 17.44m)

Table 11 — 30 minutes threshold
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3.2 1hthreshold and .5h

overtime threshold
mean min max Amount
Time Results (m)
Service time (dropoff - 76 46 112 34.65 Total Served (%) 100% (20/20)
slot start time)
Total served
Ride time (Dropoff - 44 15 76 17.25  within desired 100% (20/20)
pickup) time limit (%)
RGOS (A 53 15 100 18 Driver utlization 100%
time + driver wait time)
) o . Number of
Pickup wait time (pickup 7 0 29 6 delayed patients 0
time - slot start time)
no. of Patients
L 0 24 8 0
Driver wait time refused
No. of patients
20
served
Capacity utlization 22%

Table 12 — 60 minutes threshold

Scenario 4. Timeslot length

4.1: Timeslot & wait
threshold = 1h

Results (m

Service level
results

Table 13 — 60 minutes time slot

Service time (dropoff - 76.6 45 112 18 Total Served (%) 100% (20/20)
slot start time)
Total served
Ride time (Dropoff - a4 15 76 17.2  |within desired 100% (20/20)
pickup) time limit (%)
Driver Ride time (Ride
53 15 100.37 18 Driver utlizati 100%
time + driver wait time) ver utiization
Number of
" " 4
Pickup wait time (pickup 2 0 24, ] cislayed patients 0%
time - slot start time)
9 0 237 B |RelREnD 0%
Driver wait time [refused
No. of patients 20
served
Capacity utlization 22%

a0

500

@ Sewvice Time

o

@ Ride Time

Pickup wait time

@ Servico Time

@ fido Time

Pickup wast e
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B. Simulation Model Documentation

General

Model time units minutes
Numerical methods

Differention Equations Method Euler
Algebraic Equations Method Modified Newton
Mixed Equations Method RK45+Newton
Absolute accuracy 1.0E-5

Time accuracy 1.0E-5
Relative accuracy 1.0E-5

Fixed time step 0.001
Advanced

Java package name

time_slots_demo

File Name

/Users/ehsansharif/Models/Transportation Simulation Model/Time
Slots Demo vé.alp

Agent Type: Main

Agent actions
Startup code List<Tuple> rows = selectFrom(schedule).list();
for (Tuple row : rows) {
int tsn = row.get( schedule.timeslots );
for( int i=0; i<tsn; i++ ){
TimeSlot ts = add_timeSlots( row.get( schedule.start_of_shift ),
row.get( schedule.end_of_shift ),
false, null );
enter.take( ts );
}
Agent in flowcharts
Use in flowcharts as [ Agent
Dimensions and movement
Speed (10 : MPS)
Rotate animation towards movement true
Rotate vertically as well (along Z-axis) false
Space and network
Enable steps | false
Advanced Java
Import import org.eclipse.jetty.websocket.api.SuspendToken;
import org.eclipse.jetty.websocket.api.SuspendToken;
import java.util.concurrent.DelayQueue;
Generic false
Advanced
Logging true
Auto-create datasets true

AOC_DATASETS_UPDATE_TIME_PR
OPERTIES

- Recurring Event Properties

Limit the number of data samples

false
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Scale: scale
General
Unit meters
Scale 10.0
Type Defined graphically




Name Value

Length, pixels 100.0
Show at runtime false
Lock false
Public false
X 0.0

y -150.0
Rotation 0.0

Parameter: NumberOfPatients

Name Value

Array false

Default value 0

Type int

Show at runtime true

Show name true

Label NumberOfPatients
Editor control Text

System dynamics units false

Save in snapshot true

Parameter: NumberOfDrivers

Name Value
Array false
Default value 0
Type int
Show at runtime true
Show name true
System dynamics units false
Save in snapshot true
Dynamic Event: Go
Name Value
Logging true
Show at runtime true
Show name true
Action waitingForMyTime.stopDelay( patient );
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Parameters:

|

patient Patient

Function: toString

Name Value

Return type String

Return type: Returns value
Show at runtime true

Show name true

Body return
"hospital_locations = " + hospital_locations;

Access type public
System dynamics units false

Schedule: DriverSchedule

Show at runtime true
Show name true
o
Value type integer
The schedule defines Intervals (Start, End)
Representation type Days/Weeks
Repeat time 1
Repeat time interval days
Is snapped to date false
Default value 0
Load From Database true
Intervals Query - Database Schedule Interval Query

A | Orverset_capacty(Drwercapacty +vlve

SCHEDULE_PREVIEW_START_DAT | 1604971110762
E

System dynamics units

Collection: hospital_locations

Name Value

Initial contents { gisPoint1, gisPoint2, gisPoint3, gisPoint4 }
Initial contents { gisPoint1, gisPoint2, gisPoint3, gisPoint4 }
Element class GISPoint
Collection class ArraylList
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Show at runtime true
Show name true
Access type public
Save in snapshot true
Enter: enter
Name Value
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: TimeSlot]
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: TimeSlot]
Show name true

Place gl

Show at runtime true
Public false
Logging true

Agent Parameters:

New location self. LOCATION_NOT_SPECIFIED
Change dimensions false

Add newborns to: false

Forced pushing true

Queue: timeSlotsQueue

Name Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: TimeSlot]
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: TimeSlot]
Show name true

Place agent(s) at the agent animation location

Show at runtime true
Public false
Logging true

Agent Parameters:

Capacity

100

Maximum capacity

false
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Agent Parameters:

Queuing self. QUEUING_FIFO
Enable exit on timeout false

Enable preemption false

Restore agent location on exit true

Force statistics collection false

TimeSlot: timeSlots

Name

Value

Initialization Type Initially empty
Population of agents true
Initialization Type Initially empty
Population of agents true
Show name true

Place agent(s) at the agent animation location

Statistics

Show at runtime true

Public false

Embedded object collection type Access by index (ArrayList)
Logging true

Source: patients_book

Name

Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name true

Place agent(s) at the agent animation location

Show at runtime true
Public false
Logging true

Agent Parameters:

Arrivals defined by self.RATE
Arrival rate poisson(5)
Set agent parameters from DB false
Multiple agents per arrival false
Limited number of arrivals true

73



Agent Parameters:

Maximum number of arrivals NumberOfPatients

Location of arrival self LOCATION_NODE

Node East

Speed 1

New agent new time_slots_demo.Patient()

Change dimensions false

Custom time of start false

Add agents to: true

Population patients

Forced pushing true

On at exit TimeSlot ts = findFirst(timeSlotsQueue, t ->
It.isBooked);
if( ts 1= null )}{
ts.isBooked = true;
ts.bookedBy = agent;
agent.slot = ts;
}

Patient: patients

Name

Value

Replication NumberOfPatients
Initialization Type Contains a given number of agents
Population of agents true
Replication NumberOfPatients
Initialization Type Contains a given number of agents
Population of agents true
Show name true
(1:wps)
Place agent(s) in the node
Node Montreal
Node Montreal
Show at runtime true
Public false
Embedded object collection type Access by index (ArrayList)
Logging true
Sink: sink
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false
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Show at runtime true

Public false

Logging true
Agent Parameters:

Name Value

Type self. MANUAL

Maximum capacity true

Forced pushing false

Restore agent location on exit true

Force statistics collection false

On enter

double s = dateToTime( agent.slot.start);
double dt = s - 30 - time();
create_Go( dt, agent );

TimeMeasureStart: timeMeasureStart

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name false

Initial location

Place agent(s) at the agent animation location
Advanced

Show at runtime true

Public false

Logging true

TimeMeasureEnd: timeMeasureEnd

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name false
Initial location
Place agent(s) at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
TimeMeasureStart blocks { timeMeasureStart }
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Agent Parameters:

Name Value

Dataset capacity 100
ResourcePool: Driver

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Initial location
Place agent(s) at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
Resource type self RESOURCE_MOVING
Capacity defined self. CAPACITY_DIRECT
Capacity NumberOfDrivers
When capacity decreases false

New resource unit

new time_slots_demo.Driver()

Speed 30
Home location is self HOME_SINGLE_NODE
Home location (nodes) { dispatcher }
Specified by ;elf.DOWNTIME_RESOURCE_POOL_PROPERTIE
Maintenance false
Failures / repairs false
Breaks false
Custom tasks false
'End of shift' priority 1
'End of shift' may preempt false
'End of shift' preemption policy self.PP_NO_PREEMPTION
Customize request choice false
Add units to: false
Force statistics collection false
MoveTo: moveTo
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false
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Name Value
Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name true

Place agent(s) at the agent animation location

Show at runtime true
Public false
Logging true

Agent Parameters:

Agent self. MODE_MOVE_TO
Destination: self. DEST_AGENT
Agent hospitals.random()

... with offset false

Straight movement false

Movement is defined by: self MOVE_SPEED
Set agent's speed true

Speed 30

Release: dropoff

Name Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name true

Place agent(s) at the agent animation location

Show at runtime true
Public false
Logging true

Agent Parameters:

Release

self ALL

Moving resources

false

Wrap-up (e.g. move home)

self WRAP_UP_ALWAYS

‘Wrap-up' usage statistics are:

self. USAGE_BUSY

hospital: hospitals

Name Value

Replication

hospital_locations.size()

Initialization Type

Contains a given number of agents
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Population of agents true

Replication hospital_locations.size()
Initialization Type Contains a given number of agents
Population of agents

Show name

S

i

izg

Place agent(s) in the node

Node hospital_locations.get(index)
Node hospital_locations.get(index)
Show at runtime true

Public false

Embedded object collection type Access by index (ArrayList)
Logging true

Dispatcher: Dispatcher

Value

=
[

Population of agents false
Population of agents false
Show name

i g

Place agent(s) in the node
Node dispatcher
Node dispatcher
Show at runtime true
Public false
Logging true
Seize: Pickup
Name Value
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: ]
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name true

at the agent animation location
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Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
Seize false
Resource sets
{ Driver }
Seize policy self. SEIZE_UNITS_ONE_BY_ONE
Maximum queue capacity true
Send seized resources true
Destination is self. DEST_ENTITY
Attach seized resources true
Task priority 0
Task may preempt false
Task preemption policy self.PP_NO_PREEMPTION
Customize resource choice false

Resource selection

self RESOURCE_SELECTION_NEAREST_BY_ROU
TE

Define preparation tasks by false
Enable exit on timeout true
Timeout 60
Enable preemption false

Canceled units: self. CANCELED_UNITS_RETURN_TO_HOME_LOC
ATION

Forced pushing false

Restore agent location on exit true

Force statistics collection true

"agent1 is preferred to agent2" false

TimeMeasureStart: timeMeasureStart1

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name false

Initial location

Place agent(s) at the agent animation location
Advanced

Show at runtime true

Public false

Logging true

TimeMeasureEnd: Pickup_waitTime
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Name Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name true

Place agent(s) at the agent animation location

Show at runtime true
Public false
Logging true

Agent Parameters:

TimeMeasureStart blocks { timeMeasureStart1 }
Dataset capacity 100
SelectOutput: overtime

Name

Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name true

Place agen)

Show at runtime true
Public false
Logging true

Agent Parameters:

Select True output true
Probability 0.5
Sink: sink1
Name Value
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name false
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Name

Place agent(s)

Value
at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
Destroy policy: com.anylogic.libraries.processmodeling.Sink. DESTR

OY_ONLY_CREATED_IN_SOURCE

Queue: overtimes_queue

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Initial location
Place agent(s) at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
Maximum capacity true
Queuing self QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false
Delay: delay
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true

Initial location

Place agent(s) at the agent animation location
Advanced

Show at runtime true

Public false
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Name Value

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name true

Place agent(s) at the agent animation location
Show at runtime true

Public false

Logging true

Agent Parameters:

Destroy policy: com.anylogic.libraries.processmodeling.Sink.DESTR
OY_ONLY_CREATED_IN_SOURCE

Pickup: ReadyToPickup

Name Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: , Generic Parameter Substitute: ]
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: , Generic Parameter Substitute: ]
Show name true

Place agent(s) at the agent animation location

Show at runtime true

Public false

Logging true

Agent Parameters:

Pickup self.BY_CONDITION

Condition container.slot == agent

Pick from true

Forced pushing false

On exit traceln( date()+": slot start - "+container.slot.start );

Delay: waitingForMyTime

Name Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name true

Place agent(s) at the agent animation location
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TimeMeasureStart: timeMeasureStart3

Name Value

Population of agents

Generic Parameters Substitutes [Ganenc Parameter Substitute: ]
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name false

Place agent(s) at the agent animation location
Show at runtime true

Public false

Logging true

TimeMeasureEnd: Service_Time

Name Value

Population of agents

Generic Parameters Substitutes [Genenc Parameter Substitute: Patient]
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: Patient]
Show name true

Place agent(s) at the agent animation location

Show at runtime true

Public false

Logging true

Agent Parameters:

TimeMeasureStart blocks { timeMeasureStart3 }
Dataset capacity 1000

TimeMeasureEnd: Ride_Time

Name Value

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: Patient]
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: Patient]
Show name true

Place agent(s) at the agent animation location

Show at runtime true
Public false




Name Value
Logging true

Agent Parameters:
Name Value
TimeMeasureStart blocks { timeMeasureStart2 }
Dataset capacity 100

TimeMeasureStart: timeMeasureStart2

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name false

Initial location

Place agent(s) [ at the agent animation location
Advanced

Show at runtime true

Public false

Logging true

TimeMeasureStart: timeMeasureStart5

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name

false

Initial location
Place agent(s) { at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
Seize: Pickup_overtime
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name

true

Initial location
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Name
Place agent(s)

Value
at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
Seize false
Resource sets
{ Driver }
Seize policy self. SEIZE_UNITS_ONE_BY_ONE
Maximum queue capacity true
Send seized resources true
Destination is self. DEST_ENTITY
Attach seized resources true
Task priority 0
Task may preempt false
Task preemption policy self.PP_NO_PREEMPTION
Customize resource choice false

Resource selection

selfl. RESOURCE_SELECTION_NEAREST_BY_ROU
TE

Define preparation tasks by false
Enable exit on timeout true
Timeout 30
Enable preemption false

Canceled units:

self. CANCELED_UNITS_RETURN_TO_HOME_LOC
ATION

Forced pushing false
Restore agent location on exit true
Force statistics collection true
"agent1 is preferred to agent2" false

TimeMeasureEnd: WaitTime_overtime

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name true

Initial location

Place agent(s) at the agent animation location
Advanced

Show at runtime true

Public false

Logging true

Agent Parameters:
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Agent Parameters:

TimeMeasureStart blocks { timeMeasureStart5 }
Dataset capacity 100
Sink: sink2

Name

Value

Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: |
Show name false

Place agent(s) at the agent animation location

Show at runtime true
Public false
Logging true

Agent Parameters:

Destroy policy:

com.anylogic.libraries.processmodeling.Sink. DESTR
OY_ONLY_CREATED_IN_SOURCE

Plot: plot1

Name

Value

Lock false
Public true
Analysis auto update false
Dataset Samples To Keep 100
Horizontal scale Auto
Vertical scale Auto

Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line true
Interpolation Linear
Postonendsze
x 810.0
Width 440.0
y 370.0
Height 210.0
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Name Value

Show legend true
Legend size 30.0
Legend text color black
Chart Area: X Offset 50.0
Chart Area: Width 360.0
Chart Area: Y Offset 30.0
Chart Area: Height 120.0
Chart Area: Background Color white
Chart area border color black
Show name false
Logging true
Plot Items:

Service Time dataset Service_Time.dataset CIRCLE blue true 3.0 LINEAR

Plot: plot2

Name Value

Lock false
Public true
Analysis auto update false
Dataset Samples To Keep 100
Horizontal scale Auto
Vertical scale Auto
Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line true
Interpolation Linear

X 810.0
Width 430.0

¥ 820.0
Height 230.0
Show legend true
Legend size 30.0
Legend text color black
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Chart Area: X Offset 50.0
Chart Area: Width 350.0
Chart Area: Y Offset 30.0
Chart Area: Height 140.0
Chart Area: Background Color white
Chart area border color black
Show name false
Logging true
Plot ltems:

Pickup wait time dataset Pickup_waitTime.dataset CIRCLE goldenRod true | 3.0 LINEAR

Plot: plot3

Name

Lock false
Public true
Analysis auto update false
Dataset Samples To Keep 100
Horizontal scale Auto
Vertical scale Auto
Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line true
Interpolation Linear

X 810.0
Width 430.0

y 580.0
Height 250.0
Show legend true
Legend size 30.0
Legend text color black

Chart Area: X Offset 50.0
Chart Area: Width 350.0
Chart Area: Y Offset 30.0
Chart Area: Height 160.0
Chart Area: Background Color white
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Name Value
Logging true
Agent Parameters:
Name Value
Type self. TIMEOUT
Delay time dateToTime(agent.slot.start) - time();

Maximum capacity

true

Agent location Montreal
Forced pushing false
Restore agent location on exit true
Force statistics collection false

TimeMeasureEnd: Driver_wait

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Initial location
Place agent(s) at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
Agent Parameters:
Name Value
TimeMeasureStart blocks { timeMeasureStart4 }
Dataset capacity 100

TimeMeasureStart; timeMeasureStart4

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name false

Initial location

Place agent(s) [ at the agent animation location
Advanced

Show at runtime true

Public false

Logging true
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C. Comparable Analysis

OVPAC Volunteer program was a similar program done in 2014-2015 in Montreal with the

purpose of offering transportation services to seniors.

Scope:

1. 525 volunteers — duties:
+ Driving senior patients to their treatment centers
* Mentoring

2. Equipment loans (wheelchairs, walkers, etc.)

3. Emotional support program
« Conferences
« Follow up with people affected through confidential
system, allowing meetings or telephone interviews
with personalized follow-ups as needed.

Goals:

1. Social inclusion of patients and those affected,
particularly seniors (66% > 65 y/o0)

2. Make transportation more accessible (one of the
biggest hurdles in the treatment process, costly and
inaccessible)

3. Train potential future professional staff (drivers
and attendants)
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