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Abstract

3-D simulation of suppressed vortex shedding from bridge pier at high
Reynolds number using attached splitter plate

Salar Kheshtgar Darvazeh

Turbulent flow around in-stream bridge piers in open channels is complicated, with

vortices and eddy motions of various length and time scales. These vortices cause signif-

icant channel-bed erosion and sediment transport, known as the scour problem. Conse-

quences of scour include bridge failures, which can cause losses of property and, in some

cases, of human life. Sediment scour from around the bridge piers has been a primary

reason for all bridge failures and has incurred costs of millions of dollars to repair and re-

build. Researchers have tried to find ways to suppress vortices and reduce scour. They have

suggested active and passive methods of suppressing vortices. One of the practical passive

methods is to attach a splitter plate to the pier on either the downstream or the upstream

side of the pier.

This research uses the computational fluid dynamic (CFD) method to simulate three-

dimensional turbulent flow around a cylinder with or without an attached splitter plate. The

objectives are to understand how effective the attached splitter plate is in reducing vortices,

Turbulence Kinetic Energy (TKE), channel-bed shear stress around the cylinder, and to

explore the optimal splitter plate length and direction. So far, detailed knowledge of the

above-mentioned aspects is incomplete. This study provides a comparison of performance

between splitter plates attached on the downstream and upstream side and having different

lengths. The CFD simulations used the mesh-based numerical method, with sufficiently
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fine resolutions for flow regions around the cylinder and near the channel-bed in order to

capture detailed turbulence structures. The simulations solved the three-dimensional un-

steady Navier-Stokes equations. The scope of work covers an assessment of the suitability

of the shear-stress transport (SST) k-ω, the k-ω model, and the k-ε model for turbulence

closure, as well as sensitivity tests to ensure the independence of numerical results on mesh

configuration and time step.

The results show that a splitter plate fitted on the downstream or the upstream side of

the cylinder can reduce drag and lift force coefficients. In particular, a downstream splitter

plate with a longitudinal length of the pier diameter is the most desirable for minimizing the

force coefficients. The downstream splitter plate can reduce TKE and channel-bed shear

stress values by 38.7% and 32.81%, respectively. The downstream splitter plate shifts the

peak TKE region further downstream, which has positive effect for in-stream pier stability.

The force coefficients and TKE value are shown to compare well with the results from

other studies reported in the literature. Splitter plates are shown to reduce cross-channel

velocities in the channel-centre plane, compared to the case of no plate. The findings from

this research are of practical values for the safe protection of bridge piers.
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Chapter 1

Introduction

1.1 Background

Water flows in a river channel under the influence of gravity. If there is an obstacle in

the flow path, the flow changes its direction in response. One significant instance is the

flow patterns in river channels where there are bridge piers. Most of the bridge piers which

have built in rivers are in cylindrical shape. Up on approaching the solid cylinder, the flow

makes some changes in its path. The cylindrical body geometry is quite simple. However,

the changing flow patterns are complicated. The complexity arises from such phenom-

ena as flow separation, vortex shedding, and turbulence fluctuations. The pier structures

are vulnerable to damage, if affected by strong, persistent vortices and severe turbulence.

There have been many examples of damages to other types of structures by vortices and

turbulence, including major fatigue damages to onshore wind turbine towers and offshore

structures. Regarding bridge piers, the main problem has been river-bed sediment scour

and bed erosion. Sediment scour occurs due to local increase in flow velocities near the

bed boundary around the structure foundation.

There have been many cases of bridge failures caused by bridge pier scour. About 80%

of all bridge failures around the world is because of scour around bridge piers Pasiok and
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Stilger-szydlo (2010). Local scour caused 60% of an average of 50 to 60 bridges to fail per

year in the United States Ettema, Melville, and Barkdoll (1998). More than 500 bridges

were damaged by floods resulting from storm Alberto in 1994, and nearly one third of the

failures were proved to be caused by scour damage Arneson (2013). In 1993, 23 bridges

collapsed by floods in the upper Mississippi basin, of which 14 failures were due to scour.

The damages from this flood were estimated to be about $15 million Wu, Balachandar,

and Ramamurthy (2018). Nearly 70% of bridge damage costs in New Zealand were for

repairing scour around the piers Melville (1997).

Scour can be characterized into two types: general scour or local scour. General scour is

the transport of channel-bed materials due to seasonal changes or environmental conditions

in flow velocity, or changes in channel shape or geological features. Local scour is caused

by the presence of bridge piers or other obstacles in the flow. When these structures are

constructed in the flow environment, they cause flow disturbances; these disturbances result

in an increase in the transport of local sediments, triggering scour holes to develop. In spite

of extensive research efforts on the issue of scour, scour-related failures of bridge structures

remain problematic. There still is a lack of knowledge about the processes of scour. More

significantly, there is insufficient research on finding applicable ways to reduce scour. A

schematic sample of scour around a cylindrical pier presented in Figure 1.1 shows two

kinds of vertices around bridge piers: a wake vortex which swirls horizontally and a horse-

shoe vortex that rotates in the vertical direction. Furthermore, a photo of scour around an

oval shape bridge pier is illustrated in Figure 1.2. Even if the flow is intermittent on the

seasonal cycle and there is no or little flow of water in the dry season (Figure 1.2), the

occurrence of a flood in the wet season can wash away the soil and sediments around the

pier.

Turbulent flow around a bridge pier is very complicated with vortices and eddy mo-

tions of various length and time scales. With small variations in turbulence and bed shear

2



Figure 1.1: Schematic view of scour around a cylindrical pier. https://guardian
retentionsystems.com/bridge-piers/ (n.d.)
.
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Figure 1.2: Scour hole around a bridge pier in a natural channel www.researchgate.net
(n.d.)
.
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stress, the scouring process becomes erratic in many folds. In three-dimensional turbulent

flow, the number of unknowns is more than the number of physical-law-based equations,

therefore it is impossible to solve for unknowns Wilcox et al. (1998). Field studies and

experimental studies are very expensive and time consuming. Numerical modelling like

Computational Fluid Dynamics (CFD) is an acceptable alternative approach.

The CFD approach can lead to an improved understanding of the processes of turbulent

flow and vortices around bridge piers. Previously, researchers have tried to find ways to

suppress these vortices and as a result, to minimize the scour depth. A review of the lit-

erature shows two main ways to suppress vortices for general applications (not limited to

bridge pier scour problems): 1) active methods; 2) passive methods. The active methods

used base-flow blowing Schumm, Berger, and Monkewitz (1994), base-flow suction Chen,

Xin, and Li (2013), electrical heating of cylinder surface Lecordier, Hamma, and Paran-

thoen (1991) and optimal control Homescu, Navon, and Li (2002) etc. These methods

appeared to be useful for suppressing vortices in laboratory experiments at low Reynolds

numbers, but they were not practical in large scale applications due to excessive energy

demands, high costs, a lack of resilience, and complexity. The passive methods were found

to be applicable at large scale. The methods included the use of helical strakes Bearman

and Branković (2004); Zhou, Razali, Hao, and Cheng (2011), ribbons Kwon, Cho, Park,

and Choi (2002) and base splitter plate Apelt and West (1975); Dai et al. (2018); Dash,

Triantafyllou, and Alvarado (2020); Soumya and Prakash (2017).

Among the above-mentioned methods for suppressing vortices, a splitter plate attached

to a cylinder are useful. This is a simple device and easy to implement to new and existing

bridge piers of large scale. The questions are: Is there an optimal longitudinal length (L)

for the splitter plate attached to a pier of diameter (D)? In other words, what should the

(L/D) be for the maximum suppression of turbulence?. Is it better to attach a plate to

the pier on the upstream side or the downstream side? How do turbulence characteristics

5



change in response to the presence of a plate? These questions provide the context of this

research.

1.2 Objectives

The objectives of this thesis study are:

• to achieve an improved understanding of the 3-D turbulent flow structures around a

circular bridge pier;

• to reveal how the flow structures respond to the presence of a splitter plate attached

to the circular bridge pier; and

• to find the optimum plate length and direction in order to minimize the drag and lift

force coefficients, turbulence kinetic energy (TKE) and channel-bed shear stress in

the vicinity of the bridge pier.

1.3 Contributions from this work

The contributions from this work can be summarized as:

• an improved understanding of the effects of a splitter plate on the suppression of flow

turbulence around a pier in open channels;

• exploration of computational strategies for simulations of flow around a pier and the

demonstration of proper turbulence closure method for modelling flow around a pier;

• quantification of the difference in turbulence characteristics between splitter plates

fitted on the downstream and upstream sides of the pier.

• detailed predictions of near-bed TKE and channel-bed shear stress, which are the key

factors in studies of channel-bed sediment scour;
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• the creation of new knowledge that a splitter plate fitted on the upstream side of the

cylinder is more capable of reducing the drag coefficient CD than a splitter plate

fitted on the downstream side.

1.4 Organization of the thesis

The rest of this thesis is organized as follows in order to achieve the above-mentioned

objectives.

Chapter Two gives a review of turbulent flow and bridge pier scour processes. The

review of the literature covers experimental, numerical and analytical research work on the

topic of flow and scour around bridge piers as well as proposed methods for suppression

of vortices in the vicinity of bridge piers. Notable progress that have been made from the

previous researchers will be discussed.

Chapter Three presents the governing equations in modelling flow and computational

methods for different turbulence closure, including the k-ε, the k-ω model, and the SST k-

ω model. This chapter discusses the advantages of the SST k-ω as the choice of turbulence

closure in this study. Additionally, this chapter describes the computational domain, mesh,

boundary conditions and control parameters used in this thesis.

Chapter Four discusses the results from CFD modelling, along with comparisons of the

CFD results with data from other independent sources. This chapter begins with discus-

sion of sensitivity test results, followed by the results of average drag coefficients CD and

fluctuating lift coefficients C ′l . Discussions of the results cover such important variables as

TKE, channel-bed shear stress, turbulent eddy viscosity and frequency, and secondary flow

in the cross-channel direction.

Finally, Chapter Five give highlights of concluding remarks from this study. The high-

lights emphasise on the beneficial effects of a splitter plate fitted to a cylinder on suppress-

ing vortex shedding and scour potential. This chapter makes suggestions for future studies
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on the topic of using splitter plates of various lengths for turbulence suppression in more

realistic channel geometry.
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Chapter 2

Literature Review

2.1 Description of turbulent flow

The velocity of water flow around bridge piers fluctuates in time and varies in space.

The flow is defined as turbulent in open-channel hydraulics when the Reynolds number,

Re, is high (Re≥3000). At high Reynolds number, disturbances not only do not stops

but also are amplified Bradshaw (2003). Turbulent flow contains considerable vorticity

and is dominated by inertial forces which yields chaotic eddies, vortices and other flow

instabilities.

2.2 Bridge scour process

Richardson and Davis (2001) suggested that the most common cause of bridge failures

is the the local scour around bridge piers. The three dimensional flow around a circular pier

is presented in Figure 2.1.

Just upstream of the pier where the flow reaches the pier, the flow divides into two

parts. One part goes to upward direction and the other goes to downward direction. The

9



Figure 2.1: Representation of flow around a circular pier Choi and Choi (2016).

upward flow forms a bow-wave circulation. The downward flow driven by a strong pres-

sure gradient causes a horseshoe vortex at the riverbed. This is destructive and one of the

consequences is the formation of scour holes. Since the rate of sediments removed away

from the pier base is greater than the rate of sediments supplied from upstream, a scour

hole develops gradually until an equilibrium is reached Richardson and Davis (2001). The

equilibrium is defined as the time that velocity of flow circulation inside the scour hole is

incapable of removing bed sediments from the hole or the time that the rate of sediments

transporting inside the hole is equal to sediments removed from the scour hole. The wake

vortices occur in addition to the horseshoe vortex which rotates horizontally at the down-

stream of the pier. Both of these vortices cause a degradation on the riverbed and removed

sediments from around the pier region.
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2.3 Flow and pier scour investigation

The sediment erosion around bridge piers have been a difficult issue to deal with, there-

fore, scholars and scientists have tried to model and understand the process of scouring

around piers. Previous investigations include experimental and numerical approaches to

understand the velocity field, turbulence, bed shear stress, and vortex shedding around

bridge piers.

2.3.1 Experimental investigations

Investigators have used a wide variety of laboratory experiments. Sadeque, Rajarat-

nam, and Loewen (2008) studied the flow around circular objects in an open channel. Four

piers of cylindrical shape with the same diameter but different heights were tested under a

similar flow condition. Four different levels of submergence, including a surface piercing

bridge-pier-like cylinder were investigated. The flow characteristics like bed shear stress

were identified using a set of visualization tests. The results showed that the destructive

horse-shoe vortices were found to appear closer to the submerged cylinders in comparison

to a surface piercing cylinder. The bed shear stress was found to decreased with increasing

level of submergence. Ettema, Kirkil, and Muste (2006) investigated a local scour at differ-

ent size piers that were placed in a sand bed. The outcomes revealed that there was a direct

relationship between the cylinder diameter and the scour depth. The authors argued that the

cylinder diameter, bed sediment size, and flow depth should be taken as a three indepen-

dent factors in laboratory experiments. Recently, Dias, Fael, and Nunez-Gonzalez (2019)

focused on the effect of debris carried by natural streams on the maximum scour depth.

This was neglected in the most recent studies. The experiments paid special attention to

the development of scour hole as the accumulated debris increased. The focus of the labo-

ratory experiments was on the development of scour hole by gradually accumulating debris

around bridge piers. The results revealed that the accumulated shape and the position of
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the debris had significance impacts on the final scour depth. The triangular shape debris on

the bottom and upstream of the pier acted as a scour countermeasure, reducing the max-

imum scour depth up to 26% in their experiments. Using high-resolution Particle Image

Velocimetry (PIV), Guan, Chiew, Wei, and Hsieh (2019) tried to obtain and investigate the

detailed turbulent flow and the development of the horseshoe vortex in a developing scour

hole around bridge pier. They also presented the distributions of the velocity field, turbu-

lence intensities, and Reynolds shear stresses of the horseshoe vortex in their study. The

main findings were: 1) The region of the maximum turbulence intensity and the maximum

Reynolds shear stress occurred upstream of the main vortex, in the place where the largest

turbulent eddy is expected to occur; 2) The horseshoe vortices evolved from a small vortex

upstream of the pier and developed into three vortices at equilibrium. Dargahi (1989) ex-

perimentally investigated a cylinder of circular shape on a flat bottom at Reynolds numbers

between 6600 and 65000. The author reported that the number of vortices and the flow

patterns in the wake of the cylinder depended on the Reynolds number. The author also ob-

served that wake vortices disappeared downstream of the cylinder. Graf and Istiarto (2002)

studied the three-dimensional flow field around a cylinder was placed in a scour hole. They

used an Acoustic-Doppler Velocity-Profiler (ADVP) to measure velocity components in a

vertical plane upstream and downstream of the cylinder. The results showed that a vortex

system and a strong turbulence, formed at the wake of the cylinder.

2.3.2 Numerical investigations

Using Large Eddy Simulation (LES) , Yen et al. (2001) tried to model flow velocity

and the river-bed evolution under scouring condition around circular piers. Then, they

compared LES flow velocity with the results of Laser Doppler Velocimeter (LDV) mea-

surements made by Yeh (1996). They also compared the final scour levels obtained from

LES with the laboratory measurements of Yeh (1996). The LES result agreed well with the

12



experimental data. The modelled and measured velocity fields and bed-level contours from

the researches are shown in Figure 2.2 and 2.3, respectively.

Figure 2.2: simulated velocity field (upper half) and measured (lower half) Yen et al.
(2001).

Huang, Yang, and Xiao (2009) carried out a numerical simulation to access the scale

effect on turbulent flow and sediment scour around cylindrical bridge pier by using (FLU-

ENT 2007). The results of flow and scour were obtained using two different approaches:

a) Physical modelling based on Froude number similarity; b) three-dimensional CFD mod-

elling. In the physical modeling the effect of turbulent Reynolds number is ignored. The

CFD model uses the 2nd order turbulence model to calculate turbulent velocity and sedi-

ment scour. The results from the three-dimensional CFD model were compared with the

physical modelling. The authors concluded that the predicted flow patterns around a circu-

lar cylinder using Fluent were better than the results from Froude number similarity.

Salaheldin, Imran, and Chaudhry (2004) used FLUENT to simulate the separated turbu-

lent flow and bed shear stress around a circular pier using different turbulence models and

compared them with experimental results available in literature. The authors reported poor

13



Figure 2.3: Compared final bed elevation Yen et al. (2001).

performance of k − ε in estimating near-bed shear stress but satisfactory performance in

producing velocity profile results, despite commonly perceived weakness of the k−εmodel

in simulating 3D open channel flows. Moreover, the Reynolds stress model produced the

most acceptable results of velocity profiles, bed shear stress in flat bottom channel around a

circular cylinder. Ali and Karim (2002) used FLUENT to model the three-dimensional flow

field around a circular cylinder. The goal of their study was to find an expression of scour

depth as a function of time using the variation of bed shear-stress around the cylinder. The

results showed that the scour depth was dependent of three dimensionless numbers: 1) the

sediment size number around the cylinder; 2) the pile number; 3) the duration time number.

Moreover, the magnitude of TKE was reported to be a significant contributor to scouring.

Jia et al. (2018) simulated a local scouring around bridge piers and reported that the pow-

erful turbulent fluctuations and the down-flows around the cylinder were significant factors

to bed scouring. Furthermore, they extracted scour hole contours and compared them to

the experimental results 2.4.

Using Reynolds-averaged Navier-Stokes Equation k − ε approach, Zaid et al. (2019)

modelled three dimensional flow around a bridge pier fixed on a flat bed. The main purpose

of their study was to validate the model against available experimental data. The validations
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Figure 2.4: Contours of the simulated scour hole (left) and the live-bed photograph (right)
Jia et al. (2018)

proved that the CFD modelling approach is reliable in reproducing flow characteristics

around bridge piers of different shapes. The average velocity contours at the Reynolds

number of 39000 are shown in Figure 2.5. In panel (d) the wake of the cylinder is visible

in blue color.

Figure 2.5: Velocity field contours for different time steps Zaid et al. (2019)

15



2.4 Modelling flow around multiple bridge piers

Some of the bridge abutments in rivers have multiple cylindrical piers in a row. These

piers can be exposed to scouring all over the year, especially during the flood season. Fig-

ure 2.6 shows the scour around multiple abutment piers of cylindrical shape due to their

exposure to scouring.

Figure 2.6: Scouring around an arrangement of cylindrical piers Pasiok and Stilger-szydlo
(2010)

Da Silva et al. (2019) numerically investigated a 3D flow around cylinders in different

arrangements at critical Reynolds number using LES. Their goal was to evaluate flow char-

acteristics and patterns, in addition to TKE and force coefficients like CD and C ′l for each

of arrangements. The numerical results were in good agreement with the experimental data

in the literature. The computational domain including the four different arrangements of

cylinders and the normalized TKE are shown in Figure 2.7 and 2.8, respectively.

For the case showing in panel (a) 2.8, the TKE was very low at the first two rows but
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Figure 2.7: Computational domain and different arrangements of cylinders Da Silva et al.
(2019)

Figure 2.8: Normalized TKE for the different arrangements Da Silva et al. (2019)
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increased from the fourth row and reached the maximum at the fifth row. This is due to

vortex shedding effects. In panel (b), the TKE was approximately the same, except in the

first row where TKE was high. Panels (c) and (d) shows relatively high intensities of TKE at

the middle cylinders due to a lack of wall interference. Overall, the cylinder rows of panel

(d) performed better in terms of the TKE intensity compared to the other arrangements.

2.5 Vortex suppression using splitter plates

After realizing the destructive effects of vortices around bridge piers, researchers tried

to find ways to suppress these vortices and ultimately reduce or eliminate scouring. The

simplest, cost-effective and most applicable way to suppress vortices is to use splitter plates

either at the upstream or the downstream of the piers. Many researchers simulated the flow

around a circular pier with a splitter plate experimentally or numerically.

2.5.1 Downstream splitter plate

De Araujo et al. (2018) used two-dimensional (2D) numerical simulations to model a

cylinder fitted with a splitter plate of different lengths. They covered Reynolds numbers

of 100, 160, 300 and 1250. They compared the Strouhal number, CD and C ′l to each

other in order to find the optimum plate length. The results showed the splitter plate was

effective in attenuating the vortex shedding. When the flow is laminar (Re ≤ 300), the flow

characteristics were reported to be dependant of the splitter plate length. However, below

the critical Reynolds number (Re = 1250) the splitter plate length was less influential.

Figure 2.9 shows the streamlines in the wake of cylinders. The authors reported that when

the splitter plate length was L/D = 1, vortices shifted location towards downstream.

Abdi et al. (2017) conducted 2D modeling of a cylinder fitted with up to 3 splitter plates

on the wake side. The splitter plate length was fixed to the cylinder diameter. They also
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Figure 2.9: Streamlines of flow with and without splitter plate De Araujo et al. (2018).
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investigated the force coefficients. The positions of splitter plates are shown in Figure 2.10.

The results showed that an increase in the number of splitter plates from 1 to 2 caused a

decrease in the drag coefficient, Strouhal number and C ′l . However, a further increase in

the number of splitter plates did not have substantial effect on those quantities. In the case

of a single splitter plate, the minimum Strouhal number was observed when the angle of

attached splitter plate was zero degree. Overall, the results of their study suggested that the

vortex shedding frequency, CD,C ′l and strouhal number could be substantially decreased

with using one or more splitter plates.

Figure 2.10: The position and the angle of the plates for Abdi et al. (2017)

Akilli et al. (2008) experimentally studied passive control of vortex shedding by using

splitter plates of different lengths fromL/D = 0.2 toL/D = 2.4 atRe = 6300. The results

revealed that the turbulent flow characteristics such as TKE, Reynolds shear and normal

stress were highly affected by the length of the splitter plates and drastically changed up

to L/D = 1.2. However, above this plate length, changes were small. Up to L/D = 0.6,

the vortex shedding frequency was highly reduced and the large-scale vortex shedding at

the wake of the cylinder completely vanished when the splitter plate length was larger than

critical length L/D = 1.2. The TKE and normalized Reynolds shear stress contours are

shown in Figure 2.11 and 2.12, respectively.

Dai et al. (2018) studied both 2D and 3D flows at the fully turbulent regime and inves-

tigated the dependence of vortex-shedding suppression on the ratio of splitter-plate width

and height to cylinder diameter and length. First, a 2D flow was modelled in order to find
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Figure 2.11: TKE cotours for different splitter plate length Akilli et al. (2008)
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Figure 2.12: Normalized Reynolds shear stress for different splitter plate lengths at the bed
surface Akilli et al. (2008)
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an optimum plate length (W) to cylinder diameter (D). The results indicated that splitter

plates provided a real solution for vortex suppression at high Reynolds number. When the

ratio of splitter plate width (W) to cylinder diameter (D) was 0.5 < W/D < 0.75, the

degree of suppression could be maximized. Therefore, the authors decided to hold the con-

dition of W/D = 0.6 and find the optimum plate height (H) to cylinder length (L) with the

ratio varying between 0 < H/L < 1 using 3D numerical modelling. For clarification, the

domain and boundary conditions are shown in Figure 2.13. When H/L = 1 which means

a cylinder with a full length splitter plate, the CD and C ′l showed the minimum values. The

results of C ′l for the 2D modelling case, which showed the degree of vortex suppression,

are shown in Figure 2.14.

Figure 2.13: Domain and boundary conditions Dai et al. (2018)

Therefore, for fixed W/D of 0.6, the ratio of splitter-plate height (H) to cylinder length

(L) was investigated. The results revealed that the optimum value was H/L = 1. Vu,

Ahn, and Hwang (2015) investigated the effects of splitter plate of different lengths on the

flow characteristics like vortex shedding, drag coefficient, lift coefficient, separation angle,

pressure, and friction coefficients of the cylinder at several Reynolds numbers. The results

revealed that the vortex shedding could be completely suppressed in the case that the split-

ter plate length was longer than the critical value. This value is proportional to the Reynolds
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Figure 2.14: Fluctuating lift coefficient with variation of W/D Dai et al. (2018)

number. De Araujo, Camano Schettini, and Silvestrini (2016) performed a direct numer-

ical simulations of a cylinder with a fixed plate of up to twice of the cylinder diameter at

Re = 1250. The results revealed that the splitter plate was effective in suppressing the tur-

bulence intensity, which was in a good agreement with the experimental data. Furthermore,

the vortex shedding frequency was reduced by 5% . Shaligram, Chakraborty, Gautam, and

Pradipta (2005) performed a numerical study to analyze the effect of the downstream split-

ter plate on the flow characteristics. They showed that using splitter plate could change the

wake characteristics and also decrease the size of the wake.

Liu et al. (2016) carried out an experimental study to investigate the effect of a splitter

plate on the downstream of the cylinder which was placed symmetrically in submergence

in a channel. PIV measurements were used to capture the flow structure and to analyze

the vortex shedding process. The Reynolds number was from 2400 and 3000. The results

showed that the splitter plate was capable of stabilizing wake turbulence. For the splitter
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plates of L/D = 0.5 and 0.75, the vorex shedding frequency decreased and the flow struc-

tures were significantly modified, in comparison to a bare cylinder. For the splitter plates

from L/D = 1 to 1.5, the secondary vortex was generated based on the snapshot proper

orthogonal decomposition (snapshot POD). Moreover, the TKE and Reynolds shear stress

became minimum and the vortex shedding frequency disappeared. The TKE along the cen-

ter line of the domain is shown in Figure 2.15. At both of the Re numbers, adding a splitter

plate could significantly reduce the peak of TKE around the cylinder, especially for longer

length of splitter plates (L/D = 1, 1.25 and 1.5. From Figure 2.15 the authors made the

conclusion that the optimal length of splitter plate length was L/D = 1.

Figure 2.15: Variation of normalized TKE along the wake centerline at (a) ReD = 2400
and (b) ReD = 3000 (Liu et al. (2016))
.

An et al. (2019) utilized two-dimensional unsteady incompressible Reynolds-averaged

Navier-Stokes (URANS) equations at the Reynolds numbers from 5 × 104 to 9 × 104 to

investigate the effect of different length of splitter plate on the wake of cylinder. The turbu-

lence closure used was SST k− ω with three different grid resolutions. The computational

domain and boundary conditions are shown in Figure 2.16. The boundary conditions of this

study are similar to the boundary conditions of our study. It was revealed that the vortex
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Figure 2.16: Computational domain and boundary conditions from top view An et al.
(2019)
.

shedding was strongly suppressed when the splitter plate length was longer than a criti-

cal value. Furthermore, the lift coefficient reached the maximum value when the splitter

plate length was 2 times of the cylinder diameter. The separation angle was reportedly not

dependant of the splitter plate length.

Ozkan, Firat, and Akilli (2017) investigated the suppression of the vortex shedding

using an attached permeable splitter plate. Two important parameters of their study were

porosity β and the angle between the plate and freestream θ. The results revealed that

using the permeable plate could successfully suppress the vortex shedding at the wake of

the cylinder and elongate the vortex formation further downstream. The maximum TKE

and CD were reduced for almost all of the porosity ratios when θ < 30◦.
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2.5.2 Upstream splitter plate

Using the PIV measurements, Chutkey et al. (2018) studied the flow past a circular

cylinder with upstream splitter plates at the Reynolds number of 5.1 ∗ 104. The length of

the splitter plate was adjusted to the cylinder diameter (L/D = 1). The results showed

a 22% reduction in streamwise velocity fluctuations, in comparison to the bare cylinder.

Furthermore, the upstream splitter plate substantially changed the wake characteristics,

reducedCD by 13%, and delayed the flow separation. More importantly, the depth averaged

velocity from PIV measurements indicated that the strength of vortices was weaker in the

upstream splitter plate (labeled as FSP) cylinder in comparison to a plane cylinder. The

Reynolds stress decreased by 34% as shown in Figure 2.17. Panel (a) is for the plane

cylinder, which reveals two symmetrical regions of high Reynolds stress (red and blue) just

behind the cylinder. However, panel (b) shows two regions of low Reynolds stress (light

red and light blue colors), which means the Reynolds stress is lower than the bare cylinder.

Khaple, Hanmaiahgari, Gaudio, and Dey (2017) experimentally investigated the up-

stream splitter plate’s capability in reducing the maximum scour depth. The plate was at-

tached at the upstream vertical plane of symmetry. Two kinds of sediment sizes (d50 = 0.96

and 1.8mm) and multiple combinations of splitter plate lengths and thicknesses were con-

sidered. The results indicated that with a increasing splitter plate length, the maximum

scour depth decreased consistently. However, the scour depth was independent of splitter

plate thickness. The best combination of splitter plate length and thickness was 2D and

D/5, respectively. Moreover, the splitter plate could deflect the flow and therefore weaken

TKE, vortex shedding and horseshoe vortices.

In summary, key results from previous studies are impressive, including: 1) Splitter

plates can effectively suppress vortex shedding and decrease scour hole depth; 2) Down-

stream splitter plates have been most often used as methods for suppressing vortex shed-

ding. However, there are some knowledge gaps that need to be filled. The most important
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Figure 2.17: Time averaged contours of Reynolds stress Chutkey et al. (2018)
.
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gap is that most of the previous modellings are 2D at low Reynolds number. Another im-

portant gap is a lack of comparing upstream and downstream splitter plate under the same

flow configuration. To our best knowledge, the present study is the first study that considers

3D, high Reynolds number, cylinders with full length splitter plates at both upstream and

downstream sides.
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Chapter 3

Methodologies

3.1 Introduction

Computations of three-dimensional transient turbulent flows can be performed using

direct numerical simulation (DNS), large eddy simulation (LES), or simulation based on

the Reynolds-averaged Navier-Stokes momentum and continuity equations. In DNS, the

spatial and temporal resolutions must be so small that they resolve fluid motions down

to the Kolmogorov length, time and velocity scales. Currently, applications of DNS are

limited to low Reynolds number flows. In LES, which was introduced by Smagorinsky

(1963), the cell is required to be sufficiently fine to capture most of the energy-bearing

motions. Furthermore, the time-step size should be minimal compared to the time scale of

the vortex shedding process when considering the stability of explicit differencing schemes.

Because of the high computational cost of LES as Reynolds number (Re) increases, most

LES investigations have been performed at low Re numbers. The Re number used in this

study is high (similar to river condition). Therefore, the LES method is not computationally

efficient for simulations of this study.
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In this study, computations of the flow field were performed using the unsteady Reynolds-

averaged Navier-Stokes (URANS) equations. This computational approach incurs consid-

erably lower costs than the DNS and LES approaches. In the URAN approach, it is im-

portant to determine both the appropriate time step and control volume size. The solutions

should be free of dependence on cell and time-step sizes. Although the computing power

has increased noticeably during the last decades, the URANS approach has remained to be

the most commonly used approach in CFD applications as it offers the most economical

numerical solutions to industrial and engineering problems of complex turbulent flows.

The URANS approach requires the use of a model for turbulence closure. Commonly

used turbulence closure models include: the k − ε model (Jones and Launder (1972)), the

k − ω model (Wilcox (1993)), and the shear stress transport (SST) k − ω model (Menter

(1994)). This study made a comparison of performance among these three turbulence clo-

sure models. Previously, some numerical studies of turbulent flows demonstrated the ad-

vantage of SST k − ω model. It has been reported that the SSTk − ω model produces

more accurate results of flow in a near-wall region than the other two turbulence closure

models. The governing equations of these turbulence closure models are given in Sections

3.3 - 3.5. Nguyen, Ahn, and Park (2018) used the three mostly used turbulence closure

models, namely the k − ε, k − ω, and SST k − ω in modelling flow around a scour hole.

The results showed that the SST k − ω was the most suitable turbulence closure model for

simulating flow around scour holes.

In this study, the finite volume code ANSYS Fluent 19.2 (ANSYS 2019b (n.d.)) was

used to solve the URANS equations. Concordia University’s High-Performance Comput-

ing (HPC) Facility (Concordia HPC (n.d.)) was used to run the cases of this study. This

chapter represents a description of the turbulence closure model equations and the govern-

ing URANS equations. This chapter also presents the imposed boundary conditions.
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3.2 Governing equations

Let (u, v, w) denote the three orthogonal components of the instantaneous velocity in

the x-, y-, and z-directions, the continuity equation for an incompressible fluid flow is given

by:
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1)

By using Reynolds decomposition, the instantaneous velocity components can be split into

time-averaged velocity components (U, V,W ) (or the mean flow components) and velocity

fluctuations (u′, v′, w′) as below:

u = U + u′, (2)

v = V + v′ (3)

w = W + w′ (4)

The momentum equations for an open-channel flow are as follows:

ρ

[
∂u

∂t
+ u

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
= −∂p

∂x
+ µ(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) (5)

ρ

[
∂v

∂t
+ v

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(6)

ρ

[
∂w

∂t
+ w

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(7)

where t represents time; ρ denotes the density of water; P denotes the pressure of water; µ

is the dynamic viscosity of water. The pressure p can be also decomposed into time-average
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value P and the turbulent fluctuation p′ as

p = P + p′ (8)

Substituting equations 2, 3, 4, and 8 into equations 5, 6, and 7 and taking time average give

the Reynolds-averaged momentum equations

ρ

[
∂U

∂t
+ U

(
∂U

∂x
+
∂V

∂y
+
∂W

∂z

)]
= −∂P

∂x
+ µ

(
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2

)
−ρ
[
∂

∂x

(
u′u′
)

+
∂

∂y

(
u′v′
)

+
∂

∂z

(
u′w′

)] (9)

ρ

[
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+
∂V

∂y
+
∂W

∂z

)]
= −∂P

∂y
+ µ

(
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∂x2
+
∂2V

∂y2
+
∂2V

∂z2

)
−ρ
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∂
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(
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)

+
∂

∂y

(
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)

+
∂
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(
v′w′

)] (10)

ρ

[
∂W
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+W
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+
∂V

∂y
+
∂W

∂z
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= −∂P
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+ µ

(
∂2W

∂x2
+
∂2W
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+
∂2W
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)
−ρ
[
∂
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(
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)
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∂

∂y

(
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)
+

∂
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(
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)] (11)

Similarly, the Reynolds-averaged continuity equation is given by

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 (12)

The Reynolds decomposition and time average give rise to correlations of turbulence

fluctuation motions, which can be expressed as a stress tensor:
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τij =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 = −ρ


u′u′ u′v′ u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

 (13)

The nine components of this stress tensor are extra unknowns. They need to be formu-

lated using appropriate model equations in order to close the system of partial differential

equations that govern the flow field. This is the so called turbulence closure problem. For

the purpose of turbulence closure, the mean flow strain rates are written as:

Sxx =
1

2

(
∂U

∂x
+
∂U

∂x

)
, Sxy =

1

2

(
∂U

∂y
+
∂V

∂x

)
, Sxz =

1

2

(
∂U

∂z
+
∂W

∂x

)
(14)

Syx = Sxy, Syy =
1

2

(
∂V

∂y
+
∂V

∂y

)
, Syz =

1

2

(
∂V

∂z
+
∂W

∂x

)
(15)

Szx = Sxz, Szy = Syz, Szz =
1

2

(
∂W

∂z
+
∂W

∂z

)
(16)

Using the the concept of the eddy viscosity (vt), which was introduce by Boussinesq

(1887), the Reynolds stress tensor (Equation 13) can be related to mean flow strain rates

(equations 14, 15, and 16) as

τxx = 2vtSxx, τxy = 2vtSxy, τxz = 2vtSxz (17)

τyx = 2vtSyx, τyy = 2vtSyy, τyz = 2vtSyz (18)

τzx = 2vtSzx, τzy = 2vtSzy, τzz = 2vtSzz (19)
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From Equations 1 to 19, the Reynolds-averaged Navier–Stokes equations in tensor form

can be written as:

∂Uj
∂xj

= 0 (20)

ρ

[
∂Ui
∂t

+
∂

∂xj
(UiUj)

]
= −∂P

∂xi
+

∂

∂xj

(
2µSji − ρu′ju′i

)
(21)

where Ui, with i = 1, 2, 3, denotes the Reynolds-averaged (or mean flow) velocity compo-

nent in the xi-direction. Now, the turbulence closure problem centres at how to formulate

the kinetic eddy viscosity, νt (or equivalently the dynamic eddy viscosity, µt = ρνt).

3.3 The k − ε model

For calculations of the eddy viscosity, the k − ε model is the simplest and one of the

most widely used turbulence models. It is a two-equation model. One of the two transport

equations is written for the determination of the turbulence kinetic energy or TKE (K).

The other equation is written for the determination of the TKE dissipation rate (ε). The

combination of K and ε specifies the length, time and velocity scales of turbulence. There

are three different kinds of k − ε model, namely the standard k − ε model, realizable k − ε

model, and re-normalization group model (RNG). All the k − ε models approximate the

turbulent eddy viscosity using:

µt =
ρCuK

2

ε
(22)

The standard k − ε model calculates TKE (K) and its dissipation rate (ε) from,

∂

∂t
(ρk) +

∂

∂xi
(uiρk) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Gk +Gb + Sk − ρε (23)
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∂

∂t
(ρε)+

∂

∂xi
(uiρε) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+C1ε

ε

k
(Gk+C3εGb)−C2ε

ε2

k
+Sε (24)

where Gb and Gk are the generation terms of turbulence kinetic energy caused by buoy-

ancy effects and gradients of average (or mean flow) velocity, respectively. The turbulence

closure constants proposed by Jones and Launder (1972), which are applicable for high

Reynolds number flows, are as follows C1ε = 1.44, C2ε = 1.92, C3ε = −0.33, Cµ = 0.09,

σk = 1 and σε = 1.3

The k − ε model gives the best results in flow regions with high Reynolds number.

Therefore, it has a limitation in solving flows in near-wall regions since the Reynolds num-

ber is usually low.

3.4 The k − ω model

The URANS k − ω, which is generally classified into two types, the standard k − ω

model and the shear stress transport (SST) model, is a two-equation model, first developed

by Wilcox (1993). It uses the same approach as k − ε to find K, but instead of using

turbulent energy dissipation ε, it uses the so-called specific dissipation rate, ω. The k − ε

model is known to have shortcomings in modeling low Reynolds number. The k−ω can be

used in near-wall regions where the Reynolds number is very low, and K tends to be zero

because of non-slippery conditions on the wall surface. The K and ω are computed from:

∂

∂t
(ρk) +

∂

∂xi
(uiρk) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Gk + Sk (25)

∂

∂t
(ρω) +

∂

∂xi
(uiρω) =

∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+Gω + Sω (26)
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where Gk is the generation of TKE that arises due to mean velocity gradients; Gω is the

generation of specific dissipation rate due to the mean velocity; Sω is the modulus of the

mean rate of strain tensor of ω. The constants σk and σω were chosen to be 0.5 as stated in

Wilcox (1993). The turbulent eddy viscosity in this model is calculated by:

vt =
k

ω
(27)

3.5 The SST k − ω turbulence model

The URANS SST k−ω model is a two-equation turbulence model that was introduced

by Menter (1994). It is based on the k−ω model and a transformed k− ε model. The main

difference between this model and a standard k − ω model is how the model calculates the

turbulent eddy viscosity to account for the transport of the principle turbulent shear stress.

It effectively uses the mix of the k − ω model in the near-wall region with the free-stream

independence of the k − ε model in flow regions far from the walls. Therefore, it reduces

the computational demands (Stahlmann (2014)). The equation of K is the same as the

standard k − ω model, but the equation of ω is slightly different and is given by:

∂

∂t
(ρω) +

∂

∂xi
(uiρω) =

∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+Gω + Sω +Dω (28)

where Dω is a cross diffusion term that blends the standard k − ε model and the standard

k − ω model.

3.6 Model channel and boundary conditions

The computational model channel is shown in Figure 3.1. The model channel had six

boundaries: 1) one later open inlet at upstream; 2) one later open outlet at downstream; 3)

37



Table 3.1: Geometric elements of the computational model channel in this study
Parameter Value Unit
Pier diameter (D) 10 cm
Cylinder height 50 cm
Channel length downstream of the pier centre 110 cm
Channel length upstream of the pier centre 40 cm
Channel width on both sides of the pier centre 30 cm

one flat solid bed; 4) one horizontal opening at the top; 5) two parallel solid sidewalls. A

cylinder (or a circular pier) of diameter D = 10 cm was placed vertically from the solid

bed to the top opening. The cylinder was fitted with a splitter plate of 0.2 cm thick on

either the upstream side or the downstream side. In the x-direction, the longitudinal length

of the plat ranged from 0.5D to 1D. In the z-direction (or the lateral direction), the model

channel had a width of 6D between the two parallel sidewalls. The cylinder was located

in the middle of the channel. Therefore, the flow width between the channel sidewall and

cylinder’s side surface was equal to 2.5D. The sidewalls were far enough from the cylinder,

to avoid significant effects of the artificial sidewalls on the flow characteristics around the

cylinder. The model channel had a total longitudinal length of 15D; the lengths were 3.5D

and 10.5D upstream and downstream of the cylinder, respectively. The downstream length

was large enough to allow the development of turbulent eddies and flow patterns, which are

of interest in this study. The upstream length accommodated the development of inlet flow

approaching the cylinder. Furthermore, a UDF function was used at the inlet to get a fully

developed flow before cylinder. In the y-direction (or the vertical direction), the channel

dimension was 5D. This choice was made to have a similar cylinder condition to Dai et al.

(2018). Nevertheless, the focus of this study was on the near-bed flow characteristics. The

geometric elements of the model channel are summarised in Table 3.1.

A structured prism mesh with a triangular base was generated around the cylinder (Fig-

ure 3.3) and near-bed level (Figure 3.5) to get accurate result at those regions. This kind of

mesh has six nodes. A structured mesh contains much more elements than an unstructured
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Figure 3.1: Geometry of the computational model channel for simulation of flow around a
cylinder fitted with a splitter plate on the downstream side.

mesh. As we are more interested in regions near the cylinder and close to the bed level,

and to prevent high computational cost, a simple tetrahedron mesh with four nodes was

generated using the Ansys meshing software to cover the remaining computational model

channel (Figure 3.1). The mesh generation used a cell size of 0.5 cm for some CFD runs

and 1 cm for other runs. The mesh with 1-cm cell size had about four million cells. The

regions near the cylinder and bed level were of particular interest. Therefore, inflation lay-

ers were used in these regions to obtain fine cell resolutions and hence to capture boundary

layer flow characteristics. Various views of the tetrahedron mesh used in this study are

shown in Figures 3.2 and 3.4. A close-up view of the inflation layers near the bed level

and around the cylinder is provided in Figures 3.3 and 3.5. The average mesh quality pa-

rameters for C1—C6 were as follows: aspect ratio for all the cells was equal to 2.57. The

skewness was equal to 0.2. The element quality and orthogonal quality was 0.78 and 0.79,

respectively. All the parameters of mesh quality were in the excellent range.

The following conditions were imposed at the model channel boundaries:
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Figure 3.2: Side view of the mesh showing inflation layers near the channel-bed.

Figure 3.3: Close-up view of the mesh showing inflation layers near the channel-bed.
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Figure 3.4: Top view of the mesh showing inflation layers around the cylinder.

Figure 3.5: Close-up view of inflation layers around the cylinder.
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• At the upstream inlet, a user defined function (UDF) was used to prescribe the ve-

locity component U in the x-direction. The vertical profile of U followed the 1/7th

power law for turbulent velocity distribution (De Chant (2005)). The velocity com-

ponents V and W in the vertical and lateral directions were set to zero. This means

that the inlet velocity was normal to the boundary. U was zero at the channel bed

(non-slippery condition), increased with vertical distance, and reached the maximum

velocity of 1.8 m/s at the water surface (or at y = δ), where δ is the thickness of

boundary layer. The turbulence intensity was set to 5% of the mean flow.

• At the downstream outlet, the pressure was set to zero.

• At the channel-bed, non-slippery boundary conditions were applied (or U = V =

W = 0)

• On the top and two parallel sidewalls, free-slippery boundary conditions were ap-

plied. This means that shear stresses in all three directions were set to be zero.

No-slip boundary conditions were also applied at the cylinder surface.

3.7 Simulations

This study aims to determine the optimal value for the splitter plate length, L, for re-

ducing turbulence, which is known to be responsible for scour around bridge piers. For this

purpose, ten runs (Table 3.2 were performed. Runs T1 – T4 were test runs that were in-

tended to demonstrate the independence of numerical results on mesh configuration (spatial

resolution), time step ∆T , and the choice of turbulence closure models. Run C1 simulated

turbulent flow around a bare cylinder as the base case. Runs C2 – C4 simulated the effects

of splitter plates of different lengths L, fitted on the downstream side of the cylinder, on the
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Table 3.2: A summary of conditions for ten numerical simulations.
Run L/D Plate position Mesh size ∆ T Turbulence Node Element
ID (mm) (s) model
T1 0.5 Downstream 5 0.0025 SST k-ω 1671200 7836245
T2 0.5 Downstream 10 0.00125 SST k-ω 848957 3980770
T3 0.5 Downstream 10 0.0025 k-ε 848957 3980770
T4 0.5 Downstream 10 0.0025 k-ω 848957 3980770
C1 0 Absent 10 0.0025 SST k-ω 857614 4002085
C2 0.5 Downstream 10 0.0025 SST k-ω 848957 3980770
C3 0.6 Downstream 10 0.0025 SST k-ω 852479 3983780
C4 1.0 Downstream 10 0.0025 SST k-ω 851118 3982153
C5 0.5 Upstream 10 0.0025 SST k-ω 854212 3989147
C6 1.0 Upstream 10 0.0025 SST k-ω 849160 3978663

flow. Runs C5 and C6 simulated the effects of splitter plates fitted on the upstream side of

the cylinder.

Table 3.2 lists the conditions of the ten runs. For all the runs, the convergence criterion

was set to 10−6 at each time step during the integration over time. On the basis of the

maximum longitudinal velocity (1.8 m/s) at the velocity inlet (Figure 3.1), the flow depth

(0.5 m) (Table 3.2), and the kinetic viscosity of water (ν = 1 × 10−6 m/s2), the Reynolds

number has a value of ReD = 1.8 × 105. This Re value is sufficiently high to ensure

fully turbulent flow around the cylinder, which reflects the nature of turbulent flows in

river channels. The conditions of Runs C3 and C4 listed in Table 3.2 match those of Dai

et al. (2018), which allows a comparison of data from our study and theirs. To our best

knowledge, Dai et al. (2018) is the only study reported in the literature, which addressed

the issue of vortex shedding suppression using a splitter plate in 3-D turbulent flow.
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Chapter 4

Results and discussions

4.1 Sensitivity test

Runs T1 and C2 (Table 3.2) used the same simulation conditions, except the mesh size.

The mesh size was 5 mm for T1 and 10 mm for C2. Values of the longitudinal velocity

U were extracted from the model results for these two runs at the model time of t = 2 s,

for ten selected x locations along each of the nine lines shown in Figure 4.1. The ten x

locations are listed in Table 4.1. For each of the ten x locations, the U values at the nine

z coordinates on the red lines in Figure 4.1 were averaged. The averages are compared

in Table 4.1. The relative difference, ∆U1, of the average values between the two runs is

smaller than 5%. The mesh for Run T1 consisted of almost two times the nodes of the

mesh for Run C2 and thus incurred much higher computing costs. It is desirable to use the

C2 mesh with a spatial resolution of 10 mm. Note that the C2 mesh allowed for the same

inflation layers to resolve near-wall regions as the T1 mesh.

The conditions for Runs T2 and C2 differed only in time step ∆T . ∆T was 0.00125

s for T2 and 0.0025 s for C2. The average velocities are compared in Table 4.1 between

Runs T2 and C2, in the same way as the comparison of the average velocities between

Runs T1 and C2 in the table. For most of the x locations, the relative difference, ∆U2, of
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the corresponding average velocities between the two runs are smaller than 5%. For only

one location (x = 0.5), the relative difference is 6.9%. It is acceptable to use the time step

of ∆T = 0.0025 s.

Runs T3, T4 and C2 differed in the choice of turbulence closure models. The k-ε

model, the k-ω model and the SST k-ω model were used for turbulence closure for the

three runs, respectively. The average velocities were compared in Table 4.1. The relative

differences, 4U3, between T3 and C2, and 4U4, between T4 and C2 are also small. Rel-

atively speaking, the SST k-ω model is known to give a better performance in simulations

of complicated turbulent flow. For this reason and on the basis of comparison, the SST k-ω

model was used in subsequent runs in this study.

Figure 4.1: Middle-depth lines at nine selected z locations where values of velocity U were
compared among Runs T1 – T4 and C2. The vertical coordinates of the lines are y = 25
cm (or the middle depth).

4.2 Drag and lift coefficients

In order to validate the CFD results from this study, values of the averaged drag coef-

ficient CD and the fluctuating lift coefficient C ′L were compared with the numerical results
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Table 4.1: Comparison of average velocities at ten selected x locations among Runs T1 –
T4 and C2. The model time of the velocities was t = 2 s.

Points X (m)
Average velocity (m/s) Relative difference (%)

C2 T1 T2 T3 T4 4U1 4U2 4U3 4U4

1 0 1.8 1.8 1.8 1.8 1.8 0 0 0 0
2 0.17 1.77 1.75 1.77 1.77 1.77 1.1 0 0 0
3 0.33 1.67 1.63 1.7 1.65 1.64 2.4 1.8 1.2 1.5
4 0.5 1.3 1.35 1.44 1.51 1.6 3.9 6.9 16.5 2.3
5 0.67 1.48 1.55 1.43 1.64 1.58 4.7 3.4 10.7 6.8
6 0.83 1.58 1.64 1.52 1.72 1.79 3.8 3.8 8.6 1.3
7 1 1.63 1.66 1.6 1.73 1.78 1.8 1.8 6.1 9.2
8 1.17 1.66 1.68 1.69 1.73 1.8 1.2 1.8 4 8.4
9 1.33 1.63 1.7 1.7 1.72 1.78 4.3 4.3 5.8 9.2

10 1.5 1.66 1.68 1.72 1.7 1.79 1.2 3.6 3.8 7.8

from another independent study by Dai et al. (2018). The values of CD (Equation 29) and

CL (Equation 30) varied from time step to time step. In this study, the CD values were

averaged over the simulation time period and over the length of the cylinder.

CD =
2FD
ρAU2

(29)

CL =
2FL
ρAU2

(30)

where FD is the drag force in the direction of flow; FL is the lift force normal to the flow

direction; ρ is the density of the fluid which is 1000 kg/m3 in this study; U is the depth-

averaged speed of flow approaching the cylinder and A is the projected frontal area of the

cylinder, which is the height times to diameter of the cylinder HD. FD and FL are defined

as:

FD =

∫
A

dFD =

∫
A

PxcosθdA (31)
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FL =

∫
A

dFL =

∫
A

PzcosθdA (32)

where Px is the local pressure in the x-direction; Pz is the local pressure in the z-direction;

θ is the angle between the cylinder and the flow. Since the flow is normal to the cylinder,

θ = 0 and cosθ = 1.

The C ′l was obtained by taking the root mean square (RMS) (Equation 33) of all the

CL values over the entire simulation period. The reason behind using C ′l instead of CL is

that some CL values were negative. Statistically, we are interested in the magnitude of CL,

therefore, take the RMS of all the CL values. This treatment avoids negative CL values.

The results of (CD) and (C ′l) are shown in Table 4.2.

RMSCL
=

√
C2
L1 + C2

L2 + . . .+ C2
LN

N
(33)

The CD and C ′l values for Case 1 (Table 3.2) were 0.888 and 0.638, respectively. This

is consistent with the results of Dai et al. (2018). They reported the CD and C ′l values to

be 0.897 and 0.644, respectively. To further validate the CD and C ′l values from this study,

Case 3 (Table 3.2) was modelled for a comparison with the results of Dai et al. (2018).

The values of CD and C ′l for Case 3 from this study were 0.687 and 0.142, respectively,

compared with 0.644 and 0.176 from Dai et al. (2018). To our best knowledge, Dai et al.

(2018) is the only study that used the same Reynolds number and tail length. The best

agreement in terms of CD values is for Cases 5 and 6. Both Cases 5 and 6 reduced CD

values by 45%, compared to the CD value for Case 1. For Cases 4, 3 and 2 (Table 3.2), the

CD values reduced by 24.5%, 22.6% and 21.15%, respectively. This study showed that a

tail fitted at the upstream side of the cylinder is more capable of reducing CD values than

a tail fitted at the downstream side of the cylinder. This is consistent with the finding of

Qiu, Sun, Wu, and Tamura (2014). They reported that at Reynolds numbers in the range of
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Table 4.2: Force coefficients and their reduction by using upstream and downstream splitter
plate

Cases (Table 3.2) 1 2 3 4 5 6
CD 0.889 0.7 0.687 0.669 0.482 0.49
Reduction (%) - 21.15 22.6 24.5 45.65 44.8
C ,
l 0.638 0.132 0.142 0.116 0.195 0.182

Reduction (%) - 79.3 77.78 81.87 69.41 71.45
CD (Dai et al. (2018)) 0.897 - 0.634 - - -
C ,
l (Dai et al. (2018)) 0.644 - 0.176 - - -

6.9 ∗ 104 to 8.28 ∗ 105, a tail fitted at the upstream side of the cylinder was more capable in

diminishing CD, in comparison to the cylinders fitted with a tail at the downstream side.

In terms of C ′l , the maximum reduction was achieved for Case 4. The reduction was

almost 82% compared to Case 1. Good reductions were also achieved for Cases 2 and 3.

The reductions were 77.78% and 79.3%, respectively. Cases 5 and 6 gave reductions of

69.41% and 71.45% of C ′l , respectively. Designs of in-stream hydraulic engineering struc-

tures, engineers should pay more attention to C ′l than CD. The fluctuating lift coefficient is

of greater importance because the lift forces cause vibrations on the structures and increase

vortex shedding power. Overall, the value of C ′l should be considered as the most important

parameter and therefore Case 4 is recommended.

4.3 Turbulence Kinetic Energy (TKE)

One of the most important parameters causing degradation the riverbed is the existence

of high TKE near the bed level. In order to reduce scour depth, we have to reduce TKE

close to the bed level. To improve the accuracy of TKE calculations, the TKE contours at

a vertical distance of 2 cm above the bed level were investigated instead of the TKE at the

bed level. The TKE contours are plotted in Figures 4.2 to 4.7 for assessment of Cases 2 to

6 in terms of reduction of TKE.

From Figure 4.2, it is clear that there was a region of high TKE values immediately
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downstream of the cylinder for Case 1 (Table 3.2). Figures 4.3 to 4.7 show horizontal

planes of TKE, where high TKE regions were visible. In Figure 4.3, there were two re-

gions of high TKE values (red color regions). Interactions between the low-pressure region

behind the cylinder with high-pressure region from the sides of the cylinder created power-

ful vortices. As a result, the TKE increased. These high magnitudes of TKE removed the

sediments in flow direction and transported them to downstream. Figure 2.4b shows the

experimental results of scouring downstream of the circular cylinder. From the scouring

regions of sediments in Figure 2.4b, one can notice that these regions were the areas of

high TKE (Figure 4.3).

Figures 4.4 and 4.5 show the TKE contours for Cases 2 and 4, respectively. The con-

tours show a region of weaker TKE on the downstream side of the cylinder, compared to

Case 1. Adding a plate can significantly suppress vortices and reduce TKE in the wake of

the cylinder. Case 5 (Figure 4.6) gave a weaker performance in comparison to Cases 2 and

4. Case 6 (Figure 4.7) gave some improvement in terms of TKE reduction. For quantifica-

tion of TKE values, the average of TKE values at 9 Z locations (Figure 4.8) was calculated.

The results are plotted in (Figure 4.9).

Figure 4.2: 3D view of TKE contour in the 2cm distance of Case 1

Figure 4.9 shows the average TKE values at a vertical distance of 2 cm from the bed
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Figure 4.3: TKE contours in the horizontal plane at a vertical distance of 2 cm from the
river bed for Case 1

Figure 4.4: TKE contours in the horizontal plane at a vertical distance of 2 cm from the
river bed for Case 2
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Figure 4.5: TKE contours in the horizontal plane at a vertical distance of 2 cm from the
river bed for Case 4

Figure 4.6: TKE contours in the horizontal plane at a vertical distance of 2 cm from the
river bed for Case 5
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Figure 4.7: TKE contours in the horizontal plane at a vertical distance of 2 cm from the
river bed for Case 6

Figure 4.8: 9 lines located at 2 cm from the bed
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Figure 4.9: Distributions of average TKE values at a vertical distance of 2 cm from the bed.
The bridge pier is located at x = 0.35− 0.45 m

level. Case 1 (the black curve) produced a peak TKE of 0.142 m2/s2. Case 5 reduced

the peak TKE to 0.12 m2/s2. This is a 14% reduction in the peak value of TKE. Cases

2, 4 and 6 decreased the peak value of TKE to about 0.087 m2/s2 that is equal to 38.7%

reduction in peak TKE value. Case 4 led to a shift of the location of peak TKE value

towards downstream and a gradual variations of TKE values around the peak. De Araujo

et al. (2018) and Ozkan et al. (2017) demonstrated that when the L/D = 1 the vortex

formation shifted location towards downstream of the cylinder. Since the formation of

vortices increases the TKE, therefore, the results from this study are consistent with those

of De Araujo et al. (2018) and Ozkan et al. (2017).
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4.4 Bed shear stress

There are four different methods of calculating bed shear stress: 1) Depth-averaged

flow method; 2) Eddy viscosity method; 3) The law of the wall method; 4) Reynolds shear

stress method. In this study, the eddy viscosity and Reynolds shear stress at the bed level

were investigated. These two parameters are a significant quantity for determining scour,

in addition to TKE. Regions of high shear stress are more likely to experience scouring.

Let u∗ denote the friction velocity. The bed shear stress is given by:

τb = ρ u∗ (34)

Contours of the bed shear stress for Cases 1, 2, 4, 5 and 6 are shown in Figures 4.10 to

4.14. Just downstream of the cylinder where the velocities had very low magnitude and

some of them were in the negative direction (towards upstream), the blue region shows

zero or negative bed shear stresses. This means that the shear stresses were in the direction

towards the upstream side because the vortices in the wake of the cylinder generated flow

reversal.

Figure 4.10: Bed shear stress contours for Case 1
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Figure 4.11: Bed shear stress contours for Case 2

Figure 4.12: Bed shear stress contours for Case 4

Figure 4.13: Bed shear stress contours for Case 5
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Figure 4.14: Bed shear stress contours for Case 6

Figures (4.11–4.13) are snapshots from the last time step of the simulation. We mod-

eled C4 for more than 5 seconds to recognize if there is any difference in the snapshots.

Figure 4.15 shows C4 after 6s of simulation. Comparing Figure 4.15 to 4.12 shows the

minimal differences in high bed shear stress regions. Therefore, the contours after 5s of the

simulation are approximately the same.

Figure 4.15: Bed shear stress contours for C4 at 6s of simulation

The values of the bed shear stress at 9 selected z locations (Figure 4.16) are analyzed

in detail. The 9 z locations evenly spaced. The results are plotted in Figure 4.17.

In Figure 4.17, the black curve is the averaged (over the 9 z locations) bed shear stress
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Figure 4.16: The 9 selected z locations where the bed shear stress values were discussed

Figure 4.17: The average bed shear stress throughout the domain. The cylinder is located
at x = 0.35− 0.45 m
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along the length of the channel for Case 1. The peak value of the bed shear stress occurred

immediately downstream of the cylinder. The peak value was 11Pa. For Cases 2, 4, 5 and

6, one can notice that the use of a splitter plate at either the downstream or the upstream

side of cylinder could effectively reduce the bed shear stress around the cylinder, compared

to Case 1. However, the curve for Case 4 shows the most effective decrease in the bed

shear stress. The peak value of the bed shear stress dropped to 7.39 Pa. In other words,

Case 4 reduced the peak bed shear stress by 32.8%. The interesting point of Case 4 is that

the peak bed shear stress occur immediately in front of the cylinder. For Cases 2, 5 and

6, the peak bed shear stresses appeared immediately downstream of the cylinder. Cases 2,

5 and 6 gave approximately the same performance in terms of diminishing the peak bed

shear stress. Downstream of the locations of the peak bed shear stress values for all cases

(1, 2, 4, 5 and 6), the bed shear stresses decreased to the minimum values. Cases 2, 4

and 5 demonstrated effectiveness in achieving the minimum value. Further downstream, at

increasing distance from the cylinder, the bed shear stresses for all the cases (1, 2, 4, 5 and

6) gradually increased to the value of around 5 Pa. Overall, Case 4 appeared to be the most

effective case to decrease the bed shear stress around the cylinder.

4.5 Eddy Viscosity

The eddy viscosity is a property of the flow, not the fluid. It is the ratio of Reynolds

shear stress within the turbulent flow of water to the velocity shear. The higher the eddy

viscosity, the more significant the sediment transport.

For Case 1, Figure 4.18 shows that immediately downstream of the cylinder there was a

region of high eddy viscosity. This region (red color) is likely to be subject to scour. Down-

stream of this region the eddy viscosity decreased. We are interested in suppressing eddy

viscosity just downstream of the cylinder, therefore the eddy viscosity downstream of the

cylinder fitted with a splitter plate at the downstream or the upstream side was investigated.
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Figure 4.18: The horizontal plane at vertical distance of 2 cm above the bed, showing
distributions of eddy viscosity for Case 1

Figure 4.19: The horizontal plane at vertical distance of 2 cm above the bed, showing
distributions of eddy viscosity for Case 2.
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In Figures 4.19 and 4.20, Cases 2 and 4 are shown to be capable of reducing most of

the high eddy viscosity region compared to Case 1. Case 4 is seen to shift the region of

relatively high eddy viscosity towards downstream of the cylinder.

Figure 4.20: The horizontal plane at vertical distance of 2 cm above the bed, showing
distributions of eddy viscosity for Case 4.

Figure 4.21: The horizontal plane at vertical distance of 2 cm above the bed, showing
distributions of eddy viscosity for Case 5.

Both Cases 5 and 6 are reduced the high eddy viscosity regions in comparison to Case

1 but they are not as effective as Cases 2 and 4. Case 4 reduce greatly the region of high

eddy viscosity.
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Figure 4.22: The horizontal plane at vertical distance of 2 cm above the bed, showing
distributions of eddy viscosity for Case 6.

4.6 Turbulence eddy frequency

Turbulence eddy frequency (F) is the number of eddies occurring per second. There-

fore, the unit of F is 1/s. Eddy frequency is essential when considering small-sized bridge

piers or bridge piers made up of wood or weaker materials. High eddy frequency around

these kinds of bridge piers would cause significant vibrations and ultimately causes dam-

age to the bridge. Therefore, finding a way to decrease the high volume of eddy frequency

is important. For Case 1, F had high values at the upstream side and close to the cylinder

until the separation point. The separation points are identified on Figure 4.23. For cases 2,

4, 5 and 6, F was significantly reduced by fitting a splitter plate either at the downstream or

upstream side of the cylinder. However, F had relatively high values in the region close to

the separation point.
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Figure 4.23: Contours of turbulence eddy frequency in the horizontal plane at a vertical
distance of 2 cm from the bed level for Case 1.

Figure 4.24: Contours of turbulence eddy frequency in the horizontal plane at a vertical
distance of 2 cm from the bed level for Case 2.
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Figure 4.25: Contours of turbulence eddy frequency in the horizontal plane at a vertical
distance of 2 cm from the bed level for Case 4.

Figure 4.26: Contours of turbulence eddy frequency in the horizontal plane at a vertical
distance of 2 cm from the bed level for Case 5.
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Figure 4.27: Contours of turbulence eddy frequency in the horizontal plane at a vertical
distance of 2 cm from the bed level for Case 6.

4.7 Cross-channel velocity in the middle vertical plane

The Velocities in the z-direction (cross-channel direction) in the middle vertical plane

(Figure 4.28) are discussed in this study. It is desirable to suppress the z-direction veloc-

ities as much as possible, because this will reduce the vibrations of the cylinder and help

suppress the turbulent intensity. The red regions in Figures 4.29, 4.30, 4.31, 4.32 and 4.33

indicate z-direction velocities coming out of the paper and blue regions indicate z-direction

velocities going into the paper.

Figure 4.28: 3D view of the middle vertical plane
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Figure 4.29: Distributions of cross-channel velocities for Case 1.

For Case 1 (Figure 4.29, the alternating red and blue regions extend from the surface

to the bed level, showing the existence of vortices with high velocities downstream of the

cylinder. The high velocities pointed at opposite directions with destructive impacts on the

bed. The high velocities in the positive z-direction are visible from Figure 4.29, acting on

the bed. This would enhance sediment transport and bed scouring.

Figure 4.30: Distributions of cross-channel velocities for Case 2.

In Figure 4.30 for Case 2 (3.2), adding a plate of 0.5D in length reduced the regions

of high back and forth velocities in the z-direction although ther was a small region (blue

color near the bed) of high velocities going into the paper. Some high velocity regions
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remained to be seen near the water surface but the motions were far away from the bed and

also from the cylinder. Therefore, they are of low importance for the bed scour issues.

Figure 4.31: Distributions of cross-channel velocities for Case 4.

From Figure 4.31 for Case 4, one can notice suppressions of all vortices downstream of

the cylinder. All of the red and blue regions in Figure 4.29 and 4.30 for Cases 1 and 2 did

not appear in Figure 4.31 for Case 4.

Figure 4.32: Distributions of cross-channel velocities for Case 5.

For Case 5, the velocities in the z-direction were reduced compared to Case 1. A

comparison of Cases 2 and 4 to Case 5, it is clear that Case 5 is not as capable as Cases 2

and 4 in suppressing the velocities in z-direction. Some regions of red and blue still exist
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near the bed level, which has important implications.

Figure 4.33: Distributions of cross-channel velocities for Case 6.

A comparison of Case 6 with Cases 2, 4 and 5 indicates that Case 6 is better than

Cases 2 and 5, in terms of suppressing the velocities in z-direction. Cases 6 and 4 gave

approximately the same performance. In conclusion, both Cases 4 and 6 are highly capa-

ble of reducing vortices and therefore, minimizing the velocities in the z-direction at the

downstream side of the cylinder.

4.8 Vorticity

Figures 4.34, 4.35, 4.36, 4.37 and 4.38 show contours of vorticity in the horizontal

plane at a vertical distance of 2cm from the bed level. All Cases (C1, C2, C4, C5 and C6)

show a region of high vorticity at the wake of the cylinder and close to the cylinder. C1

shows more fluctuation at the downstream of the cylinder with multiple regions of high

vorticity. C2 and C4 show less fluctuation in the downstream compared to C5 and C6.
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Figure 4.34: Contours of vorticity in the horizontal plane at a vertical distance of 2 cm from
the bed level for Case 1.

Figure 4.35: Contours of vorticity in the horizontal plane at a vertical distance of 2 cm from
the bed level for Case 2.
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Figure 4.36: Contours of vorticity in the horizontal plane at a vertical distance of 2 cm from
the bed level for Case 4.

Figure 4.37: Contours of vorticity in the horizontal plane at a vertical distance of 2 cm from
the bed level for Case 5.
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Figure 4.38: Contours of vorticity in the horizontal plane at a vertical distance of 2 cm from
the bed level for Case 6.
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Chapter 5

Conclusions and suggestions for further

research

5.1 Concluding remarks

This thesis presents numerical simulations of turbulent flow around a cylinder. The

numerical results of drag and lift coefficients are obtained and compared with the results

from an independent source. The numerical simulations cover both the case of a bare

cylinder and cases of a cylinder fitted with a splitter plate on the upstream or downstream

side. An analysis of the numerical results has reached the following conclusions:

(1) For a reduction of drag coefficient CD values, fitting a splitter plate on the upstream

side of the cylinder (Runs C5 and C6, listed in Table 3.2) is the most effective, com-

pared to the cases of no splitter plate (Run C1) and of a splitter plate fitted on the

downstream side (Runs C2–C4). The CD values for C5 and C6 drop to 0.48 and

0.49, respectively, which are a reduction of approximately 45% from the case of C1.

The values ofCD for C1 and C3 are in agreement with the results of Dai et al. (2018).

A reduction of the drag coefficient means reduced drag forces exerted by the flow on

71



piers.

(2) Regarding the lift coefficient, the C ′l values decrease by 79 – 82% by fitting a splitter

plate on the downstream side of the cylinder (Runs C2 and C4), compared to the

case of no splitter plate (Run C1). Lift forces would cause vibrations on piers and

increase vortex shedding power. This finding has implications for the design of in-

stream bridge piers and deserves the attention of design engineers. The case of Run

C4 appears desirable with respect to reducing both drag and lift forces. This finding

is a new contribution.

(3) In the absence of a splitter plate (Run C1), the peak value of turbulence kinetic energy

occurs immediately downstream of the cylinder. The numerical results for C1 gives

a peak value of K = 0.142 m2/s2. Fitting a splitter plate on the downstream side

of the cylinder (Run C4) reduces the peak value to 0.087 m2/s2. This is a 39%

reduction. The reduced peak value shifts location towards downstream. This finding

is in agreement with those of De Araujo et al. (2018) and Ozkan et al. (2017). A

reduction ofK values helps reduce the erosion of channel-bed sediments by turbulent

flow.

(4) The channel-bed shear stresses vary around the cylinder, and their spatial distribu-

tions show maximum and minimum values on the downstream side. Without a split-

ter plate (Run C1), the maximum value reaches 11 Pa. Fitting a splitter plate on the

downstream of the cylinder (Run C4) reduces the maximum value by 33% to 7.4

Pa; it also reduces the minimum value by 28%. A reduction of channel-bed shear

stresses has beneficial effects, preventing channel-bed sediments from suspension

and erosion, and controlling water turbidity.

(5) Turbulent eddy viscosity is an indicator of the strength of eddy motions. Fitting

a splitter plate on the downstream side of the cylinder (Runs C2 and C4) is more
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effective in reducing the magnitude of turbulent eddy viscosity than fitting a splitter

plate on the upstream side (Runs C5 and C6).

(6) The absence of a splitter plate (Run C1) incurs high values of turbulence eddy fre-

quency (Figure 4.23). A splitter plate fitted on either the upstream or downstream

side of the cylinder (Runs C2, and C4 – C6) has the capability to reduce turbulence

eddy frequency in the vicinity of the cylinder. However, there still exist regions of

relatively high turbulence eddy frequency in the points of flow separation, even in

the presence of a splitter plate.

(7) In the absence of a splitter plate (Run C1), alternating high flow velocities in the

cross-channel direction take place in the channel-centre plane (Figure 4.29). This is

undesirable. The presence of a splitter plate (Runs C2, and C4 – C6) produces an

improvement. C4 and C6 (Table 4.1) give the best improvement of suppressing the

high flow velocities.

5.2 Future work

Future studies should investigate

• the effect of a larger splitter plate fitted on both the upstream and downstream sides

of a cylinder;

• flow turbulence in the presence of a scour hole around a cylinder;

• situations where bridge piers have different shapes;

• experimentally flow turbulence at high Reynolds numbers over a mobile channel-bed

around one or more piers.

All these are a challenging task.
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