
Optimal Sampling-Based Trajectory Planning For

Autonomous Systems in Urban Environments

Mitchell Lichocki

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science

(Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

October 2020

c©Mitchell Lichocki, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mitchell Lichocki

Entitled: Optimal Sampling-Based Trajectory Planning For

Autonomous Systems in Urban Environments

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to originality

and quality.

Signed by the final Examining Committee:

Chair

Dr. Y. R. Shayan

External Examiner

Dr. W. Lucia

Examiner

Dr. R. Selmic

Supervisor

Dr. L. Rodrigues

Approved by

Dr. Y. R. Shayan, Chair

Department of Electrical and Computer Engineering

2020

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

ABSTRACT

Optimal Sampling-Based Trajectory Planning For

Autonomous Systems in Urban Environments

Mitchell Lichocki

Motivated by autonomous aerial vehicles, this thesis provides a methodology for optimal trajectory

planning of affine systems in non-convex environments. The resulting approximation of the optimal trajectory

can then be provided to a flight controller as a reference trajectory, which compares the actual state of the

system with the reference trajectory and performs the necessary control input corrections. More specifically,

a modified trajectory planner inspired by Kinodynamic RRT* is presented to solve optimal control problems

for input constrained affine systems with non-convex state spaces. As a result, if a solution is obtained then

the solution is guaranteed to verify the state and control input constraints of the problem. Additionally, a

randomized sampler function is proposed for Kinodynamic RRT* using a Gaussian distribution across the

system’s state space. When the distribution is adequately sized lower cost approximate solutions of the

optimal trajectory problem is obtained in less computation time when compared with other methods in the

literature. The results are successfully applied to optimal control problems for an affine double integrator

with drift that is subject to a maximum control input magnitude in non-convex environments.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my family for the unending and limitless love and support they have provided

me throughout my studies. To my parents, who continue to encourage and inspire me to be the best I can

every day. To my girlfriend, Marieve you have supported me beyond what I could have ever imagined. I

could never thank you all enough nor express just how valuable you are to all that I have accomplished.

I also owe an abundance of gratitude and acknowledgement to the never-ending hard work of my super-

visor Dr. Rodrigues. His guidance, advice, and professionalism has inspired me to push the boundaries of

my research and to elevate the quality of my work to the highest levels. I would also like to thank Marinvent

Corporation and MITACS for their generosity and willingness to fund my research.

To my good friend Paul, thank you for the fascinating coffee break talks and for always teaching me

something new about the aerospace industry. You have provided me with valuable insights for my research

and I thank you for that. Last but not least, I would like to thank Bruno, Weihong, and Steven who have

been nothing short of the greatest colleagues I could have asked for. The three of you were always willing

to give my research a fresh perspective and always motivated me in my work.

iv

Contents

List of Figures viii

List of Tables ix

Introduction 1

1.1 Motivation . 1

1.2 Literature Survey . 4

1.3 Contributions . 8

1.4 Thesis Structure . 9

1.5 Publications . 10

Optimal Control and Rapidly-Exploring Random Trees 11

2.1 Review of Optimal Control Theory . 11

2.1.1 Optimal Control of Affine Systems and the Minimization of a Cost Trading Off Control

Effort and Time . 15

2.2 Optimal Trajectory Planning and Non-Convex State Constraints 18

2.2.1 Review of Graph Theory . 19

2.2.2 Review of Kinodynamic RRT* . 20

2.2.2.1 Efficient Techniques for Expanding the Tree of RRT* 24

2.2.2.2 Kinodynamic RRT* Algorithm . 26

2.2.2.3 Kinodynamic RRT* Pseudocode . 28

2.2.2.4 RRT* Example . 31

2.2.2.5 Kinodynamic RRT* MATLAB Implementation 33

2.3 Optimal Trajectory Planning For a Double Integrator With Drift 42

2.3.1 Optimal Trajectory Planning in Unconstrained Convex State Spaces 43

2.3.2 Optimal Trajectory Planning in Non-Convex State Spaces 47

2.3.2.1 Validation and Study of Optimality . 52

2.3.2.2 Example . 62

Optimal Control of Input Constrained Affine Systems 68

3.1 Problem Formulation . 68

v

3.2 Problem Solution . 69

3.3 Optimal Trajectory Planning: Input Constrained Double Integrator with Drift 76

3.3.1 Validation and Study of Optimality . 79

3.3.2 Example . 84

Directed Sampling for Kinodynamic RRT* 89

4.1 Preliminaries . 89

4.2 Problem Formulation . 90

4.3 Problem Solution . 91

4.4 Directed Random Sampling For Optimal Trajectory Planning of an Input Constrained Double

Integrator with Drift . 101

Conclusions and Future Work 118

5.1 Future Work . 119

Appendix A - Roots of Double Integrator Hamiltonian 121

Appendix B - Double Integrator With Drift: Optimal Control 128

Appendix C - Double Integrator with Drift: Vertex and Obstacle Classes 137

vi

List of Figures

1 Technologies of self-driving cars [1]. 1

2 Future aerial cargo delivery vehicles [2]. 2

3 Future urban air mobility networks [3]. 3

4 Trajectory planning block diagram. 7

5 RRT* flow chart. 26

6 RRT* example with failed iteration. 31

7 RRT example sketch successful iteration. 32

8 General obstacle class. 33

9 General vertex class. 34

10 Trajectory class. 35

11 Tree class. 37

12 Position vectors of optimal state trajectories of double integrator and constant velocity winds. 47

13 1D double integrator: optimal state and Kinodynamic RRT* approximate state trajectories. . 60

14 1D double integrator: optimal state and Kinodynamic RRT* approximate input trajectories. 61

15 1D double integrator: Kinodynamic RRT* tree in the state space. 61

16 Double integrator with drift: RRT* tree in position subspace. 63

17 Double integrator with drift: RRT* tree in position subspace top-down view. 64

18 Double integrator with drift: optimal position trajectory. 64

19 Double integrator with drift: optimal velocity trajectory. 65

20 Double integrator with drift: optimal control input trajectory u∗x(t). 65

21 Double integrator with drift: optimal control input trajectory u∗y(t). 66

22 Double integrator with drift: optimal control input trajectory u∗z(t). 66

23 Double integrator with drift: optimal control input trajectory magnitude. 67

24 1D double integrator: optimal state and Kinodynamic RRT* approximate state trajectories. . 81

25 1D double integrator: optimal state and Kinodynamic RRT* approximate input trajectories. 82

26 1D double integrator: Kinodynamic RRT* tree in the state space. 82

27 1D double integrator: Kinodynamic RRT* input trajectories. 83

28 1D double integrator: modified Kinodynamic RRT* input trajectories. 83

29 Input constrained double integrator with drift: optimal position trajectory. 86

30 Input constrained double integrator with drift: optimal velocity components. 86

vii

31 Input constrained double integrator with drift: optimal control input u∗x(t). 87

32 Input constrained double integrator with drift: optimal control input u∗y(t). 87

33 Input constrained double integrator with drift: optimal control input u∗z(t). 88

34 Input constrained double integrator with drift: optimal control input magnitude. 88

35 Ellipsoid rotation matrix: XYZ frame. 93

36 Ellipsoid rotation matrix: X’Y’Z’ frame. 93

37 Ellipsoid rotation matrix: projection of pf0 onto the X’Y’ plane. 95

38 Ellipsoid rotation matrix: X”Y”Z” frame. 95

39 Ellipsoid rotation matrix: X”’Y”’Z”’ frame. 97

40 Gaussian distribution directed sampling ellipsoidal region. 100

41 Gaussian distribution directed sampling position vectors. 106

42 Input constrained double integrator with drift: cost versus number of iterations. 109

43 Input constrained double integrator: cost and success percentage versus number of iterations. 111

44 Input constrained double integrator with drift: cost versus computation time. 113

45 Input constrained double integrator with drift: success percentage versus computation time. . 115

46 Input constrained double integrator with drift: cost versus computation time. 115

47 Double integrator with drift: obstacle class. 137

48 Double integrator with drift: vertex class. 138

viii

List of Tables

1 Double integrator with drift: local trajectory function roots. 51

2 Input constrained double integrator with drift: first approximate solution for iterations count. 107

3 Input constrained double integrator with drift: final approximate cost. 111

4 Input constrained double integrator with drift: first approximate solutions time results. . . . 114

5 Input constrained double integrator with drift: first approximate solution. 116

ix

Chapter 1

Introduction

1.1 Motivation

Figure 1: Technologies of self-driving cars [1].

Advancements in computer capabilities, manufacturing, and materials have resulted in powerful tech-

nologies becoming increasingly used in the civilian market throughout the past few decades. For example,

about 130 years ago, when the primary mode of transportation was horseback, the car was invented - a

technology that few could afford. Today, many of the largest car manufacturers and technology companies

around the globe are testing and producing semi-autonomous and fully autonomous cars [4]. These vehicles

use complex systems to navigate urban roadways and avoid accidents by predicting the motion of nearby

vehicles and pedestrians. However, despite the convenience and benefits that many of these technologies

present, our growing dependence on them has also led to the emergence of other problems.

Today, many urban areas suffer from road congestion due to the increasing presence of ground vehicles.

One study found that, of the 25 most congested cities across the globe, the average driver spends about 100

hours annually in congestion with some cities exceeding 200 hours [5] annually. The growth of e-commerce

in particular, which has seen a year-over-year growth of 15% between 2018 and 2019 [6], has had significant

impact on road congestion due to its dependence on large ground-based distribution networks.

1

Figure 2: Future aerial cargo delivery vehicles [2].

One effort to mitigate the issue of urban road congestion is the use of urban aerial vehicles. For example,

ride-sharing mogul Uber is collaborating with some of the world’s leading aerospace manufacturers to achieve

their Uber Elevate objective of developing urban air taxis [7]. Additionally, e-commerce giant Amazon has

been developing a drone delivery system called Prime Air [8] for fast on-time delivery of goods. However, prior

to the COVID-19 pandemic, the aerospace sector was already suffering from pilot shortages, which Airbus

estimated as requiring as many as 560,000 new pilots by 2035 [9]. The unprecedented reduction of global air

travel brought on by COVID-19 has likely alleviated this demand temporarily, but it is difficult to estimate

by how much and for how long. For example, IATA initially estimated that global air passenger traffic would

return to pre-COVID-19 numbers by 2023, but within months of announcing this estimate it was extended

to 2024 [10]. Contrary to this prediction, some speculate that, given the extent of which airlines have

placed pilots on furlough and have encouraged early pilot retirements, and the closure and reduced capacity

of pilot training centers, the forecast pilot shortages may occur sooner rather than later [11]. Although

the predictions of how quickly the demand for pilots will return to pre-COVID-19 estimates may vary, the

problem of pilot shortages remains a significant concern of the future. In addition to the impending pilot

shortage, autonomous aerial vehicles may significantly reduce aircraft accidents as well as operating costs.

For these reasons, significant efforts are being applied toward the development of fully autonomous aircraft.

Autonomy is not entirely new in aerospace. For example, the first autopilot system was demonstrated

for nearly the full duration of a flight in 1930 [12]. This system is designed as follows. A flight management

system (FMS) stores all of the route information. This information originates from a sequence of waypoints

entered by the pilot, which are pre-defined points in the airspace. Given a specific cost index (a ratio between

the unit cost of time and the unit cost of fuel), the route is then calculated by the FMS such that the flight

2

Figure 3: Future urban air mobility networks [3].

path minimizes the direct operating costs and passes through the waypoints in the order that they were

entered. This information is then made accessible to the autopilot system, which controls the engines and

flight control surfaces to keep the aircraft flying along the route of the FMS. Although this implementation

has had significant success in long-haul flights at altitudes of up to 45,000 feet, it is highly impractical for

autonomous urban mobility. The first reason for this is that a planner (typically a pilot) is required to plan

the sequence of waypoints that the vehicle will fly through. Second, the route is limited by the network of

waypoints. Third, the FMS assumes the absence of obstacles in the airspace.

When considering the development of large-scale autonomous urban air mobility networks, manual route

planning for each vehicle is a daunting task - especially when considering that the future could see hundreds

of vehicles in a concentrated urban airspace at any given instant. Furthermore, although the density of

commercial airports for the current civil aviation sector is low enough to support the “roadway” structure

created by the waypoint system, the density of these airports in an urban environment may be significantly

higher. For this reason, the waypoint flight planning structure common in commercial aviation is impractical

for urban air mobility. Finally, urban obstacles such as topography and buildings must be considered by

the flight planner, since it would be impractical for vehicles flying short ground distances to ascend to

altitudes high enough to avoid such obstacles. Therefore, a modernized FMS system that is capable of fully

autonomous trajectory planning is a critical technology that is required to ensure the safe operation of urban

aerial vehicles.

3

1.2 Literature Survey

Path planning is described as the search for a geometric path through a space such that the path begins

at an initial point in the space and ends at a final point, and avoids all obstacles. If the resulting path is

required to be a function of time, then the problem is described as trajectory planning. The problem is known

as kinodynamic trajectory planning when the trajectory is required to satisfy the kinematic or the dynamic

constraints of the system. If the resulting kinodynamic trajectory is required to minimize a given cost

function, then the problem is described as optimal kinodynamic trajectory planning. Optimal kinodynamic

trajectory planning is an important domain of motion planning that meets the needs of aerospace route

planning for a number of reasons. First, the time parametrization of the trajectory provides insight as to

where each vehicle will be in space at any given time instant. Also, the consideration of the kinematic or the

dynamic constraints of the vehicle results in trajectories that are feasible. Finally, optimization is a natural

component of vehicle operation. For example, operators of emergency vehicles may prefer to minimize flight

time whereas operators of cargo delivery vehicles may prefer to minimize fuel consumption and operators of

passenger vehicles may prefer to minimize a cost trading off fuel consumption and time.

Traditionally, optimal control theory [13] has demonstrated enormous success for solving optimal trajec-

tory planning problems. However, it becomes increasingly difficult to obtain a solution when the system is

subject to state and/or control input constraints. This is particularly true when the constraints cause the

problem to be non-convex. As a consequence of this many alternative approaches have been developed to

solve or to find approximate solutions to these problems. An in-depth survey of some of the most successful

motion planning algorithms is presented in [14]. Gradient-based approaches such as artificial potential fields

have been applied to optimal trajectory planning problems [15–17]. However, these planners may fail when

local minima are present, which are points in the space where the gradient is zero but is not the desired

final point. Genetic algorithms have also been used [18–21], which is an evolutionary algorithm inspired by

natural selection. However, these algorithms generally require long computation times. Another approach

involves first representing the path generated by a discretized path-planner such as A* [22] or D* Lite [23] by

a series of waypoints. Then, Bezier curves are used to generate trajectories through these waypoints [24–27].

However, the Bezier curves generally do not depend explicitly on the differential equations of the system and

therefore the resulting trajectory cannot always be proven to be feasible. Additionally, the result obtained

is sub-optimal due to the discretization of the space. Particle swarm optimization, an iterative technique

of solving optimization problems, has also been used in [28–32]. However, these solutions often attempt to

optimize the entire trajectory at each iteration and therefore also demonstrate slow convergence. Neural net-

works have also been used to solve optimal trajectory planning problems in [33–37]. However, these systems

4

require lengthy training and it is difficult to prove that the resulting trajectory is feasible and optimal.

Another class of motion planners that have demonstrated success are sampling-based planners. These

planners iteratively sample the system’s state space and connect the samples to build a graph. The vertices

of the graph describe states in the system’s state space, and the edges describe trajectories between states.

Edges between two states are generated by a steering function. These trajectories are then evaluated for

collisions with obstacles in the system’s state space by a collision-checker function, and any trajectories found

to result in a collision are discarded. Following the completion of a pre-determined number of iterations,

an attempt is made to connect the final state with the graph. If the final state can be connected, then the

sequence of edges from the initial state to the final state through the graph describes the trajectory. If it

cannot be connected, then the trajectory planner is considered to have failed.

The success of sampling-based trajectory planners is largely attributed to their ability to converge to

solutions quickly, to accommodate systems with large numbers of degrees of freedom, and to perform well

for environments with many obstacles. One of the first and most highly regarded sampling-based trajectory

planners is probabilistic roadmaps (PRM) [38]. PRM is a multiple-query trajectory planner, which means

that it can be used to obtain multiple trajectories from various initial states to various final states. This is

accomplished by the development of a graph through the system’s state space without the consideration of an

initial and a final state. As a consequence, multiple trajectories can be obtained from the graph by selecting

the initial and final states as vertices of the graph and applying Dijkstra’s shortest path algorithm [39] to find

the minimum-cost trajectory. PRM has demonstrated success in applications such as warehouse inventory

management that use autonomous ground robots to transport goods. Despite the success of PRM, there was

a need for single-query trajectory planners that could address more complex systems and quickly plan optimal

trajectories between two distinct states. This led to the development of another highly regarded sampling-

based trajectory planner called rapidly-exploring random tree (RRT) [40]. In its original design, RRT is a

sub-optimal trajectory planner [41]. However, in [42] it is extended to the asymptotically optimal RRT*,

which guarantees that, if an optimal solution exists to the motion planning problem, then the probability of

finding such a solution approaches one as the number of iterations approaches infinity. This is accomplished

via an optimal steering function and additional optimization steps. In [43] Kinodynamic RRT* is presented

to approximate the solution of optimal kinodynamic trajectory planning problems. This is accomplished

by the development of a steering function that produces trajectories that satisfy the system’s kinematic or

dynamic constraints, and minimizes a given objective function. Despite the success of Kinodynamic RRT*,

there are two main issues in the open literature. First, a steering function is required to generate optimal

trajectories between two arbitrary states that satisfy the system’s differential equations. Second, although

the computation time typically required to obtain an approximate solution of the optimal control problem

5

is generally less than many other methods, it is still insufficient for many real-time systems.

One of the benefits of RRT* is that it does not require that the steering function consider obstacles in the

environment. Rather, trajectories generated by this function are evaluated by a collision-checker function.

This allows to significantly simplify the design of the steering function, for which the solution can often be

obtained directly using optimal control theory. Furthermore, a steering function that applies optimal control

theory not only produces a reference state trajectory, but a reference control input trajectory as well. Despite

this convenience, only a small number of contributions in the open literature have applied optimal control

theory to the RRT* steering function. The minimization of a finite-horizon linear-quadratic regulator (LQR)

problem is addressed for affine systems in [44]. The minimization of an infinite-horizon LQR problem for

nonlinear systems is presented in [45]. The minimization of a cost trading off control effort and time has also

been addressed. In [46,47] the steering function compares the zero-input trajectory with the desired terminal

state, and in [48] the steering function obtains the trajectory directly from optimal control theory. These

solutions assume that the final time is fixed, and for problems where the final time is free a numerical solver

is used to evaluate the trajectory that minimizes the cost function. In most of the open literature the control

input constraints of the system are seldom addressed. In [44, 45] the system’s control input constraints are

discussed, but not addressed. In [46,48] the system is assumed to have unconstrained control inputs. In [47]

the control input weighting matrix of the objective function is selected for particular problems such that the

control input constraints are rarely violated. Therefore, there does not appear to exist a Kinodynamic RRT*

trajectory planner that guarantees that the approximate solution satisfies the control input constraints of

the system.

Many contributions have also been made toward reducing the convergence time of RRT and RRT*. Goal-

directed sampling is proposed in [49] to encourage random state space sampling closer to the final state.

Artificial potential fields have been applied to bias the random sampling further from obstacles and closer

the final state [50,51]. A measure of quality is applied to Voronoi regions in the system’s state space in [52]

to favour random sampling in regions of higher quality. Similarly, visibility regions have been used to bias

the random sampling in [53]. Pre-planed discretized paths obtained from planners such as A* have also been

used to bias the sampling around the discretized path in [54, 55]. Bounding regions have been applied to

restrict the search space in [56]. Additionally, multi-tree planners have been proposed in [57], which execute

multiple RRT algorithms in parallel and connect them when possible.

A notable trajectory planner worth mentioning is inspired by sampling-based motion planners and is called

LQR-Trees [58]. This planner obtains a nonlinear feedback control policy for smooth nonlinear systems.

The edges of the tree are described by optimal trajectory segments that minimize a finite-horizon LQR

cost function. A Lyapunov function based on an infinite-horizon LQR cost function and a sum-of-squares

6

method are used to generate planning “funnels”, which describe a broad set of initial conditions that are

capable of reaching a smaller set of goal states. As a consequence of this, a basin of attraction can be

approximated around the tree using semi-definite programming. Rather than planning optimal trajectories

from a given initial state to a given final state, the LQR-Trees planner simply attempts to probabilistically

cover the entire state space with the basin of attraction, where the term “probabilitically” implies that a

“high enough” percentage of the state space can reach the goal state. Despite the success of this planner,

there are a number of drawbacks when compared with single-query trajectory planners such as RRT*. The

first, and arguably the most significant, is that LQR-Trees cannot guarantee optimality of a trajectory from

a given initial state to a given final state. Second, no discussion is made with respect to obstacles in the

system’s state space. Finally, the system is assumed to have unconstrained control inputs.

Although mathematical models can sometimes closely represent the true kinematics or dynamics of a

system, they are never perfect. For example, many aircraft models are simplified with the assumption of

level flight and drag is often simplified to be a linear function of velocity. However, even if the perfect model

were to be used, there are often various disturbances that cannot be accounted for. For example, some

of these disturbances may include wind gusts, changes in temperature, and changes in air pressure. For

this reason, trajectory planners are often responsible for computing a reference trajectory. This reference

trajectory can then be provided to a flight controller, which compares the current state of the system with

the reference state and performs a control input correction. An example of the implementation of such a

system is provided in Figure 4.

Figure 4: Trajectory planning block diagram.

7

1.3 Contributions

The work presented in this thesis provides a methodology to plan optimal trajectories for affine systems

with non-convex state spaces and convex control input spaces. This thesis has the following contributions:

• In Chapter 2 Kinodyamic RRT* is used to approximate the solutions of optimal trajectory planning

problems for a double integrator with drift such that the optimal trajectory minimizes a cost trading

off control effort and time. Similar work has been presented in [47,48]. However, these results assume

either a fixed final time or require the use of numerical optimization to obtain the optimal final time

for problems with free final time. By contrast, the work of [59] presents an approach to solve optimal

control problems for general affine systems with unconstrained state and control input spaces where

the final time of the trajectory is assumed to be free. This is an important result since the final time of

trajectories in sampling-based kinodynamic trajectory planners is often a free variable. Furthermore,

the task of computing trajectories is typically the most time-consuming step of each iteration and

reducing the use of numerical solvers can improve the convergence speed of the algorithm. The work

of Chapter 2 uses the technique of [59] together with Kinodynamic RRT* to solve a similar problem

to that discussed in [47, 48] and a comparison of the computation time required by both methods is

made. The comparison is made using MATLAB where the roots in [59] are obtained using the roots

function and the numerical minimization of the cost function is obtained using fmincon with a bounded

time variable between 0 and infinity. The results from 10, 000 randomized simulations for a double

integrator with drift show that for this particular example the approach in [59] requires on average

only 2.2% the computation time of the numerical minimization approach.

• A modified Kinodynamic RRT* trajectory planner is proposed to approximate the solutions of optimal

trajectory planning problems with non-convex state constraints and convex control input constraints

in Chapter 3. Traditionally, Kinodynamic RRT* assumes unconstrained control inputs, which is not

representative of many systems. The proposed planner produces trajectories such that the input

constraints are guaranteed to be satisfied. This is accomplished by using unconstrained optimal control

theory to obtain analytic solutions of the optimal control input in terms of the optimal final time. Two

RRT* functions are then augmented. The augmented collision-checker function rejects optimal control

input trajectories that do not satisfy the control input constraints of the system. The local trajectory

function is augmented such that a new vertex of the tree is established along the optimal state trajectory

to a given state and the optimal control input to the new vertex satisfies the control input constraints of

the system. As a result, the methodology of Kindodynamic RRT* is maintained, but the modifications

8

allow to find approximate solutions to input constrained optimal control problems. The proposed

planner is demonstrated for an optimal control problem of a double integrator with drift where the

magnitude of the control input is upper bounded, which is a problem that cannot be solved using the

traditional Kinodynamic RRT* algorithm.

• A directed sampling technique for Kinodynamic RRT* is proposed in Chapter 4 using a Gaussian dis-

tribution across the system’s state space to generate random states rather than a uniform distribution.

As a result of this, the randomly generated states can be concentrated in a region where the optimal

solution is likely to exist. The proposed sampling method is demonstrated for an optimal trajectory

planning problem of an input constrained double integrator with drift. The results show that when the

proposed Gaussian distributed sampling method is used, the Kinodynamic RRT* algorithm obtains

lower cost approximate solutions of the optimal trajectory planning problem in less iterations and less

computation time than other methods.

1.4 Thesis Structure

A review of optimal control theory and kinodynamic RRT* is presented in Chapter 2. Optimal control

theory is then used with Kinodynamic RRT* to approximate the solution of optimal trajectory planning

problems of a double integrator with drift such that the optimal trajectory minimizes a cost trading off

control effort and time. Various references in the literature either use numerical optimization to compute the

optimal final time of a trajectory, or use a linear change of coordinates to transform the system into a linear

system. By contrast, in [59] the optimal final time of a trajectory is obtained by evaluating the roots of a

polynomial. This approach is used with Kinodynamic RRT* and compared with similar work in the literature.

Simulation results show that, for the double integrator with drift, the technique of [59] calculates the optimal

final time of trajectories in just 2.2% the computation time when compared with similar work in the literature.

Furthermore, using the results of [59] it is shown that a linear change of coordinates is not always effective to

solve the optimal trajectory planning problem. Chapter 3 presents a modified Kinodynamic RRT* trajectory

planner for control input constrained systems. Two RRT* functions are modified such that all edges of the

RRT* tree are described by trajectories that are guaranteed to satisfy the control input constraints of the

system. Simulation results are presented for the minimization of a cost trading off control effort and time

for a double integrator with drift that is constrained by a maximum control input magnitude. Optimal

control theory is used to obtain an analytical expression for the unconstrained optimal control input of the

system. The analytical expression of the optimal control input allows one to evaluate an initial time interval

of the optimal trajectory that satisfies the control input constraints. The results show that the traditional

9

Kinodynamic RRT* delivers trajectories that violate the control input constraints of the system and that

the modified Kinodynamic RRT* delivers trajectories that satisfy these constraints. Chapter 4 presents a

randomized state space sampling approach that uses a Gaussian distribution to iteratively generate random

states in a region where an optimal solution is likely to exist. As a consequence, a solution may be obtained

in less iterations, and therefore in less computation time when compared with other sampling methods in the

literature. Simulation results and a comparison with previous work in the open literature are also provided.

Conclusions and a brief overview of future work are presented in Chapter 5.

1.5 Publications

The work of Chapter 4 was published for two-dimensional problems in [60]:

M. Lichocki and L. Rodrigues, “A Gaussian-biased heuristic for stochastic sampling-based 2D trajectory

planning algorithms,” in 2020 European Control Conference (ECC). Saint Petersburg, Russia: IEEE, 2020,

pp. 1949-1954, DOI 10.23919/ECC51009.2020.9143947.

10

Chapter 2

Optimal Control and Rapidly-

Exploring Random Trees

This chapter presents a review of optimal control theory followed by a review of Kinodynamic RRT*.

Optimal control theory is then used with Kinodynamic RRT* to approximate the solution of a trajectory

planning problem of a double integrator with drift and non-convex state space such that the optimal tra-

jectory minimizes a cost trading off control effort and time. Similar work has already been presented in

references [47,48]. Optimal control theory is used to design an RRT* steering function, which solves the un-

constrained optimal control problem to steer the system between two states. In [47,48] the steering function

is designed with the assumption that the final time of the trajectory is fixed. The optimal final time is then

computed using numerical optimization to search for the final time that minimizes the cost. The steering

function designed in this section is taken from the result of [59], which solves unconstrained optimal control

problems of general affine systems with the assumption that the final time is free. Rather than searching

for the optimal final time by minimizing the expression of the cost using numerical optimization, a set of

candidate optimal final times are obtained as the positive real roots of the Hamiltonian. Then, using an

analytical expression for the cost, the optimal final time is obtained as the candidate that minimizes the cost.

Simulation results show that, for a double integrator with drift, the method to obtain the optimal final time

presented in [59] requires only 2.2% the computation time when compared with the method used in [47,48].

As a consequence of this, when the steering function designed in this chapter is used, the Kinodynamic RRT*

trajectory planner requires less computation time to complete a given number of iterations when compared

with the steering function designed in [47,48].

2.1 Review of Optimal Control Theory

The system’s state is described by the vector x ∈ Rn and its control input by the vector u ∈ Rm, where

n,m ∈ N>0 and where N>0 is the set of positive natural numbers. Also, the system’s state space is denoted

by X and its control input space is denoted by U . The system’s state transition equation is described by

ẋ = f (x,u) . (1)

11

A control input trajectory is denoted by u(t), which produces a state trajectory x(t). Without loss of

generality, the trajectory is assumed to occur for t ∈ [0, tf], where tf is known as the final time of the

trajectory. Given x(t), u(t), and tf , the cost of the trajectory is

C (x (t) ,u (t) , tf) = φ (tf ,x (tf)) +

tf∫
0

L (τ,x (τ) ,u (τ)) dτ, (2)

where φ(tf ,x(tf)) is the terminal state cost. Given an initial state x0 and a final state xf , the objective

of optimal control theory is to obtain the control input trajectory u∗(t), ∀ t ∈ [0, tf] such that x(0) = x0,

x(tf) = xf , x(t) satisfies (1) for all t ∈ [0, tf], and the cost in (2) is minimized. The optimal control problem

for X = Rn, U = Rm, and free tf is defined as

min
u(t),tf

φ (tf ,x (tf)) +
tf∫
0

L (τ,x (τ) ,u (τ)) dτ

s.t. ẋ (t) = f (x (t) ,u (t))

ψ(x0,xf) = 0

, (3)

where the boundary conditions are described by

ψ (x0,xf) =

 x(0)− x0

x(tf)− xf

 . (4)

The Hamiltonian of the optimal control problem in (3) is described by

H (t,x (t) ,u (t) ,λ (t)) = L (t,x (t) ,u (t)) + λ (t)
T
f (x (t) ,u (t)) , (5)

where λ(t) is known as the Lagrange multiplier at time t. The components of λ are known as the costates

of the system, and λ(t) describes the costate trajectories. Additionally, let

Φ (x0,xf , tf ,ν) = φ (tf ,xf) + νTψ(x0,xf), (6)

where ν is a boundary condition multiplier.

Theorem 1. If f(x(t),u(t)), φ(tf ,xf), L(t,x(t),u(t)) and ψ(x0,xf) are all class C1 functions, X = Rn

and U = Rm, and u∗(t), ∀ t ∈ [0, t∗f] is the optimal control input trajectory with optimal state and costate

trajectories x∗(t) and λ∗(t), ∀ t ∈ [0, t∗f], where t∗f is the optimal final time, then

12

1. The Hamiltonian is minimized by the optimal control input trajectory, which implies that

H (t,x∗ (t) ,u∗ (t) ,λ∗ (t)) ≤ H (t,x∗ (t) ,u,λ∗ (t)) , ∀ u ∈ U , ∀ t ∈ [0, t∗f]. (7)

2. If the final time tf is a free variable, then

H
(
t∗f ,x

∗ (t∗f) ,u∗ (t∗f) ,λ∗ (t∗f)) = −∂Φ (x0,xf , tf ,ν)

∂tf

∣∣∣∣
tf=t∗f

, (8)

which is known as the transversality condition.

3. The optimal Lagrange multiplier satisfies Hamilton’s equation

λ̇∗ (t) = − ∂H (t,x (t) ,u (t) ,λ (t))

∂x (t)

∣∣∣∣
x(t)=x∗(t), u(t)=u∗(t), λ(t)=λ∗(t)

. (9)

Proof. This theorem is the result of Pontryagin’s principle of optimality and a proof is provided in [61].

From (7) it can be seen that, if the Hamiltonian in (5) is a class C1 function and U = Rm, then the first

order necessary condition for u (t) to minimize (5) is

∂H (t,x (t) ,u (t) ,λ (t))

∂u (t)
= 0, ∀ t ∈

[
0, t∗f

]
. (10)

Also, if (5) is a class C2 function and U = Rm, then the second order necessary condition is

∂2H (t,x (t) ,u (t) ,λ (t))

∂u2 (t)
≥ 0, ∀ t ∈

[
0, t∗f

]
. (11)

Theorem 2. If the boundary conditions in (4) and the Hamiltonian in (5) are class C1 functions that do

not depend explicitly on time, U = Rm, there is no terminal state cost, and tf is free, then

H (t,x∗ (t) ,u∗ (t) ,λ∗ (t)) = 0, ∀ t ∈
[
0, t∗f

]
, (12)

where u∗(t), ∀ t ∈ [0, t∗f] is the optimal control input trajectory that minimizes the Hamiltonian, x∗(t) and

λ∗(t), ∀ t ∈ [0, t∗f] are the optimal state and costate trajectories, and t∗f is the optimal final time.

Proof. Given the assumption that ψ(x0,xf) is a class C1 function that does not depend explicitly on time,

if there is no terminal penalty cost, which leads to Φ (x0,xf ,ν) = νTψ(x0,xf), then it can be seen from

13

the transversality condition (8) that

H
(
t∗f ,x

∗ (t∗f) ,u∗ (t∗f) ,λ∗ (t∗f)) = 0. (13)

The time-derivative of the Hamiltonian can be evaluated as

dH∗ (·)
dt

=
∂H∗ (·)
∂t

+
∂H∗ (·)
∂x∗ (t)

dx∗ (t)

dt
+
∂H∗ (·)
∂u∗ (t)

du∗ (t)

dt
+
∂H∗ (·)
∂λ∗ (t)

dλ∗ (t)

dt
, (14)

where H∗(·) = H(t,x∗(t),u∗(t),λ∗(t)). Given the assumption that the Hamiltonian does not explicitly

depend on time it can be seen that ∂H∗(·)
∂t = 0. Given the assumption that U = Rm, if u∗(t) minimizes the

Hamiltonian, then it can be seen from (10) that ∂H∗(·)
∂u∗(t) = 0. If x∗(t) and λ∗(t) are the optimal state and

costate trajectories then it can be seen from (9) that ∂H∗(·)
∂x∗(t) = −λ̇∗(t). Finally, it can be seen from (5) that

∂H∗(·)
∂λ∗(t) = f(x∗(t),u∗(t))T = ẋ∗(t)T . Applying these observations to (14) yields

dH (x∗ (t) ,u∗ (t) ,λ∗ (t))

dt
= −λ̇∗ (t) ẋ∗ (t)

T
+ ẋ∗ (t)

T
λ̇∗ (t) = 0, (15)

because of the relationship

ẋ∗ (t)
T
λ̇∗ (t) = λ̇∗ (t) ẋ∗ (t)

T
. (16)

Given that the Hamiltonian is zero at t∗f , as shown in (13), and since the Hamiltonian is constant ∀ t ∈ [0, t∗f],

as shown in (15), then

H (x∗ (t) ,u∗ (t) ,λ∗ (t)) = 0, ∀ t ∈
[
0, t∗f

]
. (17)

Theorem 3. Given an optimal control input trajectory u∗(t), optimal state trajectory x∗(t), and final time

t∗f , the optimal control input and state trajectories from x∗(0) to x∗(t̃∗f) ∀ t̃∗f ∈ [0, t∗f] are ũ∗(t) = u∗(t) and

x̃∗(t) = x∗(t),∀ t ∈ [0, t̃∗f], respectively.

Proof. This theorem is a consequence of Bellman’s principle of optimality [62].

Theorem 4. Given an optimal control input trajectory u∗(t), optimal state trajectory x∗(t), and optimal

final time t∗f , the cost of the optimal trajectory from x∗(0) to x∗(t̃∗f) ∀ t̃∗f ∈ [0, t∗f] is C(x∗(t),u∗(t), t̃∗f), where

the cost function is defined in (2).

14

Proof. It can be seen from Theorem 3 that the optimal control input and state trajectories to steer the

system from x∗(0) to x∗(t̃∗f), ∀ t̃∗f ∈ [0, t∗f] are ũ∗(t) = u∗(t) and x̃∗(t) = x∗(t), ∀ t ∈ [0, t̃∗f], respectively.

The cost of the optimal trajectory from x∗(0) to x∗(t̃∗f) is obtained according to (2) as

C
(
x̃∗ (t) , ũ∗ (t) , t̃∗f

)
= φ

(
t̃∗f , x̃

∗ (t̃∗f))+

t̃∗f∫
0

L (τ, x̃∗ (τ) , ũ∗ (τ)) dτ. (18)

Given that x̃∗(t) = x∗(t) and ũ∗(t) = u∗(t), ∀ t ∈ [0, t̃∗f], equation (18) may be expressed as

C
(
x̃∗ (t) , ũ∗ (t) , t̃∗f

)
= φ

(
t̃∗f ,x

∗ (t̃∗f))+

t̃∗f∫
0

L (τ,x∗ (τ) ,u∗ (τ)) dτ = C(x∗(t),u∗(t), t̃∗f). (19)

2.1.1 Optimal Control of Affine Systems and the Minimization of a Cost Trading Off Control

Effort and Time

This section presents a review of optimal control theory of affine systems and the minimization of a cost

trading off control effort and time and is based on references [47, 48, 59]. Let the system be a point-mass

that verifies Newton’s second law of motion. This implies that

F +mg = ma, (20)

where F is the vector of input forces acting on the system, m is the mass of the system, and a is the

acceleration of the system. From (20) it can be seen that

a =
1

m
F + g. (21)

Next, assume that the system is subject to a constant wind velocity vector cv. The time-derivative of the

relative position of the system may therefore before described by

ṗ = v + cv, (22)

15

where p is the system’s position, v is its velocity, and cv is the constant wind velocity vector. Similarly, the

time-derivative of the velocity of the system may be described by

v̇ = a =
1

m
F + g. (23)

If the control input is u = F it can be seen that

ṗ
v̇

 =

0 I

0 0


p
v

+

 0

1
mI

u+

cv
g

 , (24)

which is an affine system. Let the system’s state transition equation be described by the more general form

ẋ = Ax+Bu+ c, (25)

where A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn, and the pair (A,B) is assumed controllable. The system’s state space

is assumed to be X = Rn and its control input space is assumed to be U = Rm. Given a control input

trajectory u(t), a state trajectory x(t), and a final time tf , the cost of the trajectory is

C (x(t),u(t), tf) =

tf∫
0

(
1

2
u (τ)

T
Ru (τ) + CI

)
dτ, (26)

where R ∈ Rm×m is a symmetric and positive definite matrix known as the control input weighting matrix

and CI ∈ R>0 is a trade-off parameter between control effort and time. Given an initial state x0 and a

final state xf , the optimal control problem to steer the system from x0 to xf for a free tf such that (26) is

minimized is defined as [59]

min
u(t),tf

tf∫
0

(
1
2u (τ)

T
Ru (τ) + CI

)
dτ

s.t. ẋ (t) = Ax (t) +Bu (t) + c

ψ (x0,xf) = 0

, (27)

where ψ (x0,xf) is given by (4).

Theorem 5. If R ∈ Rn×n is symmetric and positive definite, CI ∈ R>0, and the pair (A,B) is controllable,

then the solution for the optimal control input trajectory of (27) is

u∗ (t) = −R−1BT eA
T (t∗f−t)λ∗(t∗f), (28)

16

where t∗f is the optimal final time,

λ∗
(
t∗f
)

= −Gc
(
0, t∗f

)−1xf − eAt∗fx0 −

t∗f∫
0

eA(t∗f−τ)cdτ

 , (29)

and where the controllability Grammian is

Gc
(
0, t∗f

)
=

t∗f∫
0

eA(t∗f−τ)BR−1BT eA
T (t∗f−τ)dτ. (30)

Additionally, the solution for the optimal Hamiltonian at t∗f is

H
(
t∗f ,x

∗ (t∗f) ,u∗ (t∗f) ,λ∗ (t∗f)) = −1

2
λ∗
(
t∗f
)T
BR−1BTλ∗

(
t∗f
)

+ λ∗
(
t∗f
)T

(Axf + c) + CI , (31)

where the solution for the optimal final time of (27) satisfies

H
(
t∗f ,x

∗ (t∗f) ,u∗ (t∗f) ,λ∗ (t∗f)) = 0. (32)

Proof. A proof of this result is presented in [59].

Theorem 6. Let u∗(t) and x∗(t), ∀ t ∈ [0, t∗f] denote the optimal control input and state trajectories,

respectively, to steer the system from x0 to xf , where t∗f is the optimal final time. For a system of the form

(25) and the cost function in (26), if the pair (A,B) is controllable, R ∈ Rn×n is symmetric and positive

definite, and CI ∈ R>0, then the cost-to-go from x0 to x∗(t̃∗f) is a strictly increasing function of t̃∗f that

satisfies

C(x∗(t),u∗(t), t̃∗f) = 0 , t̃∗f = 0

C(x∗(t),u∗(t), t̃∗f) > 0 , ∀ t̃∗f ∈ (0, t∗f]
. (33)

Proof. From Theorem 4 it can be seen that the cost-to-go from x0 to x∗(t̃∗f) is C(x∗(t),u∗(t), t̃∗f). Given

the definition of the optimal control input trajectory in (28), the cost-to-go from x0 to x∗(t̃∗f) is

C(x∗(t),u∗(t), t̃∗f) =
1

2
λ∗

T (
t∗f
)
eAt

∗
f

 t̃∗f∫
0

e−AτBR−1BT e−A
T τdτ

 eA
T t∗fλ∗

(
t∗f
)

+ t̃∗fCI . (34)

It can be seen that (34) is equivalent to

C(x∗(t),u∗(t), t̃∗f) =
1

2
XT
c D(t̃∗f)Xc + t̃∗fCI , (35)

17

where

Xc = eA
T t∗fλ∗

(
t∗f

)
, D(t̃∗f) =

t̃∗f∫
0

e−AτBR−1BT e−A
T τdτ. (36)

Given the assumption that R is symmetric and positive definite it can be seen that D(t̃∗f) is positive definite

∀ t̃∗f ∈ (0, t∗f] and is equal to 0n when t̃∗f = 0. Furthermore, given the assumption that CI ∈ R>0 it can be

seen that t̃∗fCI > 0, ∀ t̃∗f > 0 and is equal to 0 when t̃∗f = 0. Therefore,

C(x∗(t),u∗(t), t̃∗f) = 0 , t̃∗f = 0

C(x∗(t),u∗(t), t̃∗f) > 0 , ∀ t̃∗f ∈ (0, t∗f]
. (37)

The derivative of (35) with respect to t̃∗f is

dC(x∗(t),u∗(t), t̃∗f)

dt̃∗f
=

1

2
XT
c D(t̃∗f)′Xc + CI , (38)

where

D(t̃∗f)′ = e−At̃
∗
fBR−1BT e−A

T t̃∗f . (39)

Given the assumption that R is symmetric and positive definite it can be seen that D(t̃∗f)′ is positive definite.

Therefore, given the assumption that CI ∈ R>0, it can be seen that (38) is positive ∀ t̃∗f ∈ [0, t∗f], which

implies that the cost-to-go from x0 to x∗(t̃∗f) is a strictly increasing function of t̃∗f .

2.2 Optimal Trajectory Planning and Non-Convex State Constraints

Many optimal trajectory planning problems can be solved using optimal control theory. However, the

difficulty of finding an optimal control input trajectory u∗(t) that minimizes the Hamiltonian increases

significantly when the system is subject to state constraints. This is especially true when these constraints

cause the problem to become non-convex. Obtaining a solution directly from optimal control theory is

impossible for many of these problems. Because of this, various techniques have been proposed to solve or

to approximate the solutions of non-convex optimal control problems.

The system’s state is described by the vector x ∈ Rn and its control input by the vector u ∈ Rm, where

n,m ∈ N>0. The system’s state transition equation is given by (1), where the system’s state space is assumed

to be X ⊆ Rn and it’s control input space is assumed to be U = Rm. A control input trajectory is denoted

by u(t), which produces a state trajectory x(t). Without loss of generality, the trajectory is assumed to

occur for t ∈ [0, tf], where tf is known as the final time. Given x(t), u(t), and tf , the cost of the trajectory

is given by (2). It is assumed that a set of obstacles must be avoided, which is described by the open set

18

X obs ⊂ X . The obstacle-free space is therefore defined as

X free = X \X obs, (40)

which is the set of states that do not result in a collision with any obstacles. Planning optimal collision-free

trajectories in X is therefore equivalent to planning optimal trajectories in X free, which is often a non-convex

space. The optimal collision-free trajectory planning problem can therefore be defined as an extension of (3)

according to

min
u(t),tf

φ (tf ,xf) +
tf∫
0

L (τ,x (τ) ,u (τ)) dτ

s.t. ẋ (t) = f (x (t) ,u (t))

x : [0, tf]→ X free

ψ (x0,xf) = 0

, (41)

where ψ (x0,xf) is given by (4). Evidently, no guarantee can be made that the solution obtained from the

theory in Section 2.1 will satisfy the collision-avoidance constraint x : [0, tf] → X free. Iterative sampling-

based solvers such as Kinodynamic RRT* attempt to approximate the solution of (41) by applying the theory

of Section 2.1 to a graph. The remainder of this section is as follows. First, a review of graph theory is

presented with emphasis on the material applicable to Kinodynamic RRT*. Then, the Kinodynamic RRT*

trajectory planning algorithm is presented and an example is provided for a double integrator with drift.

2.2.1 Review of Graph Theory

The definitions presented in this section are taken from [63]. A graph G consists of a set of vertices V

and edges E, where each edge connects two (not necessarily distinct) vertices in V . If the edges in E have

no direction associated with them then G is called an undirected graph. A path in an undirected graph is

defined as a sequence of edges in E connecting a sequence of (not necessarily distinct) vertices in V . If there

exists exactly one path between all pairs of distinct vertices in V then G is known as a tree. If the edges in

E have a direction associated with them then G is called a directed graph. The underlying undirected graph

of a directed graph is obtained when the directed edges are replaced with undirected edges. Let eij ∈ E be

the edge that is directed from vi ∈ V to vj ∈ V . The vertex vi is called the tail of eij and vj is called the

head of eij . A directed path is similar to a path in an undirected graph, except that the head of each edge

is the tail of the succeeding edge in the sequence. If, for all v ∈ V , there does not exist a directed path

that begins and ends at v ∈ V , then G is called a directed acyclic graph. If G is a directed acyclic graph

and its underlying undirected graph is a tree then G is called a directed tree. If G is a directed tree then,

19

for the edge eij , the vertex vi is called the parent vertex of vj , and vj is called the child vertex of vi. If G

is a directed tree, and if all of the edges of E are directed either away or toward a vertex v0 ∈ V , then G

is called a directed rooted tree, where v0 is the root. Finally, if G is a directed rooted tree and all edges are

directed away from the root, then G is called an arborescence.

Theorem 7. If G is an arborescence, which is comprised of a set of vertices V and directed edges E, and

is rooted at v0 ∈ V , then any v ∈ V \ {v0} is the child of exactly one vertex in V \ {v}.

Proof. A proof of this result is presented in [64].

2.2.2 Review of Kinodynamic RRT*

RRT* is a powerful sampling-based motion planner developed to plan trajectories through non-convex

spaces. Kinodynamic RRT* searches for a solution of (41) by incrementally growing an arborescence in

X free [42]. The tree is rooted at x0 ∈ X free and is incrementally expanded in search of xf ∈ X free.

Following the completion of a given number of iterations, Niter ∈ R>0, an attempt is made to optimally

connect xf with the tree. If this attempt is successful then the approximate solution of (41) is obtained as

the concatenation of the sequence of trajectories described by the edges along the directed path from x0 to

xf through the tree. If this attempt is unsuccessful then no solution is obtained.

Definition 1. The arborescence created by RRT* is denoted by T , which is comprised of a set of vertices

V ⊂ X free and edges E. The i-th edge of T is denoted by ei ∈ E. Let vi0 ∈ V denote the tail of the edge

and vif ∈ V the head. The edge ei is characterized by the triple (x∗i (t),u
∗
i (t), t

∗
fi

), where u∗i (t), ∀ t ∈ [0, t∗fi]

is the optimal control input trajectory to steer the system from vi0 to vif , x∗i (t), ∀ t ∈ [0, t∗fi] is the optimal

state trajectory such that x∗i (0) = vi0 , x∗i (t
∗
fi

) = vif and x∗i : [0, t∗fi] → X free, and t∗fi is the optimal final

time of the trajectory. �

Definition 2. The following list taken from [43] defines the functions required by RRT*.

• Edge Components Function: Given an edge ei ∈ E, where ei = (x∗i (t),u
∗
i (t), t

∗
fi

), the components of

the edge are retrieved by the function

x∗i (t),u
∗
i (t), t

∗
fi ← GetComponents (ei) .

20

• Edge Cost Function: Given an edge ei ∈ E, the cost of ei is obtained from the function

cei ← Cost (ei) ,

which obtains x∗i (t), u∗i (t), and t∗fi from the edge components function and returns the cost

cei = C
(
x∗i (t) ,u∗i (t) , t∗fi

)
. (42)

• “In” Edge Function: Given a vertex vi ∈ V \ {v0}, the edge that is directed to vi is obtained from the

function

ei ← T .GetInEdge (vi) ,

which returns the edge ei ∈ E, where vi is the head of ei. It can be seen from Theorem 7 that, since

the tree generated by RRT* is an arborescence, each v ∈ V \ {v0} is the child of exactly one vertex in

V \ {v}. This implies that there exists exactly one ei ∈ E directed to vi.

• Sampling Function: Random state space samples are obtained from the function

x← Sample () ,

which returns a randomly generated state x ∈ X free. Unless otherwise stated, the sampling function is

assumed to generate independent identically distributed (IID) states according to a uniform distribution

across X free.

• Steering Function: Let u∗1,2(t), ∀ t ∈ [0, t∗f1,2] be the unconstrained optimal control input trajectory to

steer the system from x1 to x2, where t∗f1,2 is the unconstrained optimal final time. The trajectory

u∗1,2(t) and the time t∗f1,2 are obtained as the solution of

min
u1,2(t),tf1,2

φ
(
tf1,2 ,x2

)
+

tf1,2∫
0

L (τ,x1,2 (τ) ,u1,2 (τ)) dτ

s.t. ẋ1,2 (t) = f (x1,2 (t) ,u1,2 (t))

ψ (x1,x2) = 0

, (43)

and x∗1,2(t), ∀ t ∈ [0, t∗f1,2] is the unconstrained optimal state trajectory obtained by integrating (1) for

the control input u∗1,2(t) from t = 0 to t = t∗f1,2 . Given an initial state x1 ∈ X and a final state

x2 ∈ X , the unconstrained optimal state trajectory x∗1,2(t), ∀ t ∈ [0, t∗f1,2], the unconstrained optimal

21

control input trajectory u∗1,2(t), ∀ t ∈ [0, t∗f1,2], and the unconstrained optimal final time t∗f1,2 to steer

the system from x1 to x2 are obtained from the function

x∗1,2(t),u∗1,2(t), t∗f1,2 ← Steer(x1,x2).

• Unconstrained Cost-to-Go Function: Given an initial state x1 ∈ X and a final state x2 ∈ X , the

unconstrained cost-to-go from x1 to x2 is obtained from the function

cTG1,2 ← CTG(x1,x2),

which returns the cost

cTG1,2 = C
(
x∗1,2 (t) ,u∗1,2 (t) , t∗f1,2

)
, (44)

where the cost function is defined in (2) and where x∗1,2(t) and u∗1,2(t), ∀t ∈ [0, t∗f1,2] are the uncon-

strained optimal state and control input trajectories, and t∗f1,2 is the unconstrained optimal final time

to steer the system from x1 to x2 .

• Vertex Cost Function: Let Ei ⊆ E be the set of edges that describe the directed path from v0 to

vi ∈ V through T . Note that, since the tree generated by RRT* is an arborescence, it can be seen from

the definition of an arborescence in Section 2.2.1 that there exists exactly one path from x0 to every

v ∈ V \ {x0}. The cost of vi is obtained from the function

cvi ← T .Cost (vi) ,

which first obtains the set Ei and returns the cost

cvi =
∑
e∈Ei

Cost (e) . (45)

Note that the cost of vi is not necessarily equal to that returned by CTG(x0,vi). The reason for this

is that the unconstrained cost-to-go function evaluates state trajectories in Rn, rather than in X free.

Because of this, the trajectory considered by the unconstrained cost-to-go function may not be feasible,

whereas the trajectories described by the edges in Ei are. Additionally, the trajectories described by the

edges in Ei may not necessarily describe the optimal trajectory from v0 to vi through X free. However,

when a set of conditions are met (which are discussed later), the trajectories described by the edges in

Ei converge to the optimal trajectory from x0 to vi through X free as Niter →∞.

22

• Local Trajectory Function: Given an optimal control input trajectory u∗1,2(t), ∀ t ∈ [0, t∗f1,2], an optimal

state trajectory x∗1,2(t), ∀ t ∈ [0, t∗f1,2], and an optimal final time t∗f1,2 to steer the system from x1 ∈ X

to x2 ∈ X , and an upper bound on the cost-to-go η ∈ R>0, the local control input and state trajectories

are described by ũ∗1,2(t) = u∗1,2(t) and x̃∗1,2(t) = x∗1,2(t), ∀ t ∈ [0, t̃∗f1,2], where the local trajectory final

time is

t̃∗f1,2 = argmax
τ∈
[
0,t∗f1,2

]C (x∗1,2(t),u∗1,2(t), τ
)

s.t. C
(
x∗1,2(t),u∗1,2(t), τ

)
≤ η

(46)

and where the cost function is given by (2). In other words, [0, t̃∗f1,2] is the maximum time interval

such that the cost of the trajectory described by ũ∗1,2(t) and x̃∗1,2(t), ∀ t ∈ [0, t̃∗f1,2] is less than, or equal

to, η. The local trajectories and their final time are obtained from the function

x̃∗1,2(t), ũ∗1,2(t), t̃∗f1,2 ← LocalTraj
(
x∗1,2(t),u∗1,2(t), t∗f1,2 , η

)
.

Note that it can be seen from Theorem 3 that ũ∗1,2(t) and x̃∗1,2(t), ∀ t ∈ [0, t̃∗f1,2] are the optimal control

input and state trajectories to steer the system from x∗1,2(0) to x∗1,2(t̃∗f1,2). Additionally, given the cost

function in (2), it can be seen from Theorem 4 that C(x∗1,2(t),u∗1,2(t), t̃∗f1,2) = C(x̃∗1,2(t), ũ∗1,2(t), t̃∗f1,2).

• Nearest Vertex Function: Given a state x ∈ X , the vertex vmin ∈ V is defined as that for which the

unconstrained cost-to-go from vmin to x is the minimum of all vertices in V . This vertex is obtained

from the function

vmin ← Nearest (V ,x) ,

which returns the vertex

vmin = argmin
v∈V

CTG (v,x) . (47)

• Nearby Vertices Function: Given a state x ∈ X and an upper bound on the unconstrained cost-to-go

cmax ∈ R≥0, the set of vertices Vmax ⊆ V is defined as that for which the unconstrained cost-to-go from

each v ∈ Vmax to x is less than, or equal to, cmax. This set of vertices is obtained from the function

Vmax ← Nearby (V ,x, cmax)

which returns the set

Vmax = {v ∈ V : CTG (v,x) ≤ cmax} . (48)

23

• Collision-Checker Function: Given an unconstrained optimal state trajectory x∗1,2(t), ∀ t ∈ [0, t∗f1,2] to

steer the system from x1 to x2, where t∗f1,2 is the unconstrained optimal final time, x∗1,2(t) is evaluated

for collisions with X obs according to the function

β ← CollisionFree
(
x∗1,2 (t) , t∗f1,2

)
,

which returns the boolean

β =

 true, x∗1,2 :
[
0, t∗f1,2

]
→ X free

false, otherwise

. (49)

• Get Solution Function: Given an arborescence T , initial state x0 ∈ V , and final state xf ∈ V , the

suboptimal state and control input trajectories, x∗(t) and u∗(t), ∀ t ∈ [0, t∗f], and the suboptimal final

time t∗f obtained by RRT* to steer the system from x0 to xf through X free are obtained from the

function

x∗(t),u∗(t), t∗f ← GetSol (T ,x0,xf) ,

where the function GetSol(·) is presented in Algorithm 1 on page 29. �

2.2.2.1 Efficient Techniques for Expanding the Tree of RRT*

1. Cost-to-go upper bound η: Let xrand ∈ X free denote a randomly generated state space sample and

let vmin ∈ V denote the vertex obtained according to (47), where x = xrand. The vertex xrand can

be added to V if and only if the state trajectory from vmin to xrand is collision-free. However, in

environments with many obstacles, it may be difficult to generate random samples such that the state

trajectory from vmin to xrand is collision-free. RRT* therefore defines a reachability region in X around

each v ∈ V such that the parameter η is an upper bound on the unconstrained cost-to-go from each v.

The tree is then limited in growth by only adding vertices that lie within this region. RRT* uses the

local trajectory function in Definition 2 to steer the system from vmin toward xrand up to a maximum

cost η. As a consequence of this, a new candidate sample xnew is obtained along this trajectory within

the reachability region of vmin.

2. Cost-to-go upper bound cmax: Let xnew ∈ X free denote a new candidate state space sample and let

vmin ∈ V denote the vertex obtained according to (47), where x = xnew. If the trajectory from vmin

to xnew is collision-free, then xnew is added to V and two optimization procedures are performed. The

first procedure tries to find a v ∈ V \ {vmin} that minimizes the cost of xnew, where the cost of a

vertex is described by the vertex cost function in Definition 2. The second procedure attempts to

24

minimize the cost of other vertices due to the addition of xnew to V . However, if all v ∈ V \ {xnew}

are considered, then the steering function is required to produce trajectories from xnew to all v ∈ V

and from each v ∈ V to xnew, which can be very time-consuming. RRT* uses the parameter cmax to

define a reachability region in X around xnew such that cmax is an upper bound on the unconstrained

cost-to-go to xnew. Let X new denote this region. RRT* therefore reduces the computation time of these

two procedures by only considering the vertices in the set V
⋂

X new, which is obtained from the nearby

vertices function in Definition 2. However, observe that

lim
Niter→∞

V = X free. (50)

Therefore, since X free

⋂
X new has an infinite number of points for a constant non-zero cmax, in the limit

of the number of iterations converging to infinity it can be seen that the number of vertices in V
⋂

X new

approaches infinity. To circumvent this problem it is proposed in [42] that cmax be a decreasing function

of |V | described by

cmax = min

{
η, γ

(
log (|V |)
|V |

) 1
n

}
, (51)

where γ is a tuning parameter selected to scale the decrease of cmax. As a result, the reachability region

considered around xnew decreases as |V | increases, and consequently

lim
|V |→∞

cmax = 0. (52)

Theorem 8. Let µ
(
X free

)
be the Lebesgue measure of X free and let ζn be the volume of a n-

dimensional unit ball obtained as

ζn =
π
n
2

Γ
(
n
2 + 1

) , (53)

where Γ(·) is the Euler Gamma function. If X ⊂ Rn is a compact set and

γ >

(
2

(
1 +

1

n

)
µ
(
X free

)
ζn

) 1
n

, (54)

then the probability that the RRT* trajectory planner returns the optimal solution of (41), provided

one exists, approaches one as the number of iterations approaches infinity.

Proof. A proof of this theorem is provided in references [42] and [43].

25

2.2.2.2 Kinodynamic RRT* Algorithm

V ← {x0}

E ← ∅

i← 0

Initialize

i← i+ 1
Iterate

Sample()

Sample

Nearest(V ,xrand)

Nearest Vertex

Steer(vmin,xrand)

Steer to Nearest

LocalTraj
(
x∗rand(t),u

∗
rand(t), t

∗
frand

, η
)

xnew ← x̃∗rand(t̃
∗
f)

Move Sample

Collision

Free

Collision Check

V ← V ∪ {xnew}

E ← E ∪ {(x̃∗rand(t), ũ∗rand(t), t̃∗frand)}

Add xnew to T

Edge Optimization

to xnew

Tree Optimization

Edge Optimization

to xf
xf ∈ V

Success Check

GetSol (T ,x0,xf)

Return fail

Output

i ≤ Niter

true

false

i > Niter

true

false

Figure 5: RRT* flow chart.

The RRT* algorithm requires the following inputs:

• The initial and final states: x0,xf ∈ X free.

• The number of iterations to be performed: Niter.

• The cost-to-go upper bound: η.

• The reachability region tuning parameter: γ.

A flow chart of the RRT* algorithm is shown in Figure 5. The decision steps are shown as diamond boxes

with the result of the decision shown at each output, and the processes are shown as rectangular boxes. The

following list describes the steps of each RRT* iteration, where all functions were introduced in Definition 2.

1. A random state space sample xrand ∈ X free is obtained from the sampling function.

2. The minimum cost-to-go vertex vmin ∈ V is obtained from the nearest vertex function.

3. The unconstrained optimal state and control input trajectories, x∗rand(t) and u∗rand(t), ∀ t ∈ [0, t∗frand],

and the unconstrained optimal final time t∗frand to steer the system from vmin to xrand are obtained from

the steering function.

4. The local trajectories ũ∗rand(t) and x̃∗rand(t), ∀ t ∈ [0, t̃∗frand] and their final time t̃∗frand are obtained from

u∗rand(t), x
∗
rand(t), and t∗frand to steer the system from vmin toward xrand up to a maximum cost η using

the local trajectory function.

26

5. The new candidate vertex is obtained as xnew = x̃∗rand(t̃
∗
frand

).

6. The collision-checker function evaluates if x̃∗rand : [0, t̃∗frand] → X free. If the collision-checker function

returns false, then the algorithm proceeds to the next iteration (Step 1). If the collision-checker function

returns true, then the algorithm continues to Step 7.

7. The state xnew is added to V , and the edge enew = (x̃∗rand(t), ũ
∗
rand(t), t̃

∗
frand

) is added to E.

8. An edge optimization procedure determines the best connection of xnew with T . First, the set Vmax for

xnew is obtained from the nearby vertices function using the parameters η and γ. Then, the optimal

vertex to connect xnew with T is obtained as

vopt = argmin
v∈Vmax

(T .Cost (v) + CTG (v,xnew))

s.t. x∗opt(t),u
∗
opt(t), t

∗
fopt
← Steer(v,xnew)

CollisionFree
(
x∗opt (t) , t∗fopt

)
= true

. (55)

If a vopt is found, then the edge enew is replaced by eopt = (x∗opt(t),u
∗
opt(t), t

∗
fopt

), where x∗opt(t) and

u∗opt(t), ∀ t ∈ [0, t∗fopt] are the optimal state and control input trajectories and t∗fopt is the optimal final

time to steer the system from vopt to xnew.

9. A tree optimization procedure attempts to minimize the cost of any v ∈ Vmax using xnew. Let vmaxi

denote the i-th vertex of Vmax. Additionally, let x∗i (t), ∀ t ∈ [0, t∗fi] denote the unconstrained optimal

state trajectory to move the system from xnew to vmaxi , where t∗fi is the unconstrained optimal final

time. For each i ∈ [1, 2, . . . , |Vmax|], if

T .Cost(xnew) + CTG(xnew,vmaxi) < T .Cost(vmaxi) (56)

and x∗i (t), ∀ t ∈ [0, t∗fi] is evaluated as collision-free, then the edge directed to vmaxi is replaced by one

characterized by the unconstrained optimal trajectory from xnew to vmaxi .

After the completion of Niter iterations, the set Vmax is obtained for xf from the nearby vertices function.

An attempt is then made to find a vopt for xf according to (55), where xnew = xf . If no vopt can be found,

then xf cannot be connected with T and no solution is obtained. If a vopt is found, then xf is added to

V and an edge characterized by (x∗f (t),u∗f (t), t∗ff) is added to E, where x∗f (t) and u∗f (t), ∀ t ∈ [0, t∗ff] are

the optimal control input and state trajectories to steer the system from vopt to xf , and t∗ff is the optimal

final time. The reason that the algorithm does not assign xrand = xf and repeat Steps 2 – 8 is because of

Step 6, which terminates the attempt to connect xrand with T if the trajectory from vmin to xrand is not

27

collision-free. However, after Niter iterations the task addressed by the planner is to attempt to connect xf

with T , which warrants additional computational efforts since there may exists a v ∈ Vmax where v 6= vmin

and the trajectory from v to xf is collision free, and therefore an approximate solution of the optimal control

problem can be obtained. The approximate solution of (41) can then be obtained as the concatenation of

the trajectories described by the sequence of directed edges from x0 to xf through T , which is accomplished

by the get solution function in Definition 2.

2.2.2.3 Kinodynamic RRT* Pseudocode

The pseudocode for Kinodynamic RRT* is shown in Algorithm 2 on page 30, which describes the im-

plementation of the flow chart in Figure 5. The initialization of the tree occurs on lines 2 – 3, where x0

is established as the root. The iterative procedure of the algorithm occurs on lines 4 – 31. The random

state space sample xrand ∈ X free is obtained on line 5. The minimum cost-to-go vertex vmin is obtained on

line 6. The unconstrained optimal state and control input trajectories and the unconstrained final time to

move the system from vmin to xrand are obtained on line 7. The unconstrained optimal state and control

input trajectories and the unconstrained optimal final time to steer the system from vmin toward xrand up

to a maximum cost η are obtained on line 8. The new candidate state xnew is established on line 9. The

unconstrained state trajectory from vmin to xnew is evaluated for collisions with obstacles on line 10. If this

trajectory is evaluated as being collision-free, then it is added to T on lines 11 – 13. The set Vmax is obtained

on lines 14 – 15. The edge optimization procedure for xnew occurs on lines 16 – 23, and the tree optimization

procedure occurs on lines 24 – 31. After the completion of Niter iterations, an attempt is made to optimally

connect xf with T , which occurs on lines 33 – 42. If xf can be connected with T then the approximate

solution of (41) is retrieved and returned by the planner, as shown on lines 43 – 47, where the pseudocode

for the function GetSol(·) is provided in Algorithm 1. If xf cannot be connected with T , then a fail is

returned by the planner, as show on line 48.

28

Algorithm 1 Get RRT* solution

1: function GetSol(T , x0, xf)
2: ein ← T .GetInEdge(xf);
3: x∗(t),u∗(t), t∗f ← GetComponents(ein);

4: x∗end(t)← x∗(t);
5: u∗end(t)← u∗(t);
6: t∗end ← t∗f ;

7: xparent ← x∗(0);
8: ein ← T .GetInEdge(xparent);
9: x∗(t),u∗(t), t∗f ← GetComponents(ein);

10: x∗mid(t)← x∗(t);
11: u∗mid(t)← u∗(t);
12: t∗mid ← t∗f ;

13: xparent ← x∗(0);
14: while xparent 6= x0 do
15: ein ← T .GetInEdge(xparent);
16: x∗(t),u∗(t), t∗f ← GetComponents(ein);
17: t∗mid ← t∗mid + t∗f ;

18: x∗mid(t)←
{
x∗(t) , t ∈ [0, t∗f)
x∗mid(t) , t ∈ [t∗f , t

∗
mid)

;

19: u∗mid(t)←
{
u∗(t) , t ∈ [0, t∗f)
u∗mid(t) , t ∈ [t∗f , t

∗
mid)

;

20: xparent ← x∗(0);

21: ein ← T .GetInEdge(x∗(t∗f));

22: x∗(t),u∗(t), t∗f ← GetComponents(ein);
23: t∗mid ← t∗mid + t∗f ;
24: t∗sol ← t∗mid + t∗end;

25: x∗sol(t)←

 x∗(t) , t ∈ [0, t∗f)
x∗mid(t) , t ∈ [t∗f , t

∗
mid)

x∗end(t) , t ∈ [t∗mid, t
∗
sol]

;

26: u∗sol(t)←

 u∗(t) , t ∈ [0, t∗f)
u∗mid(t) , t ∈ [t∗f , t

∗
mid)

u∗end(t) , t ∈ [t∗mid, t
∗
sol]

;

27: return x∗sol(t),u
∗
sol(t), t

∗
sol;

29

Algorithm 2 Kinodynamic RRT* algorithm

1: function RRT*(x0, xf , Niter, η, γ)
2: V ← {x0};
3: E ← ∅;
4: for i = 1 to Niter do
5: xrand ← Sample();
6: vmin ← Nearest(V ,xrand);
7: x∗(t),u∗(t), t∗f ← Steer(vmin,xrand);

8: x̃∗(t), ũ∗(t), t̃∗f ← LocalTraj(x∗(t), t∗f , η);

9: xnew ← x̃∗(t̃∗f);

10: if CollisionFree(x̃∗(t), t̃∗f) then

11: enew ← (x̃∗(t), ũ∗(t), t̃∗f);

12: V ← V ∪ {xnew};
13: E ← E ∪ {enew};
14: cmax = min{η, γ(log(|V |)

|V |)
1
n };

15: Vmax ← Nearby(V \ {xnew},xnew, cmax);
16: for each v ∈ Vmax do
17: x∗(t),u∗(t), t∗f ← Steer(v,xnew);

18: if CollisionFree(x∗(t), t∗f) then

19: etemp ← (x∗(t),u∗(t), t∗f);

20: ce ← Cost(etemp);
21: if T .Cost(v)+ce < T .Cost(xnew) then
22: E ← E ∪ {etemp} \ {enew};
23: enew ← etemp;

24: for each v ∈ Vmax do
25: x∗(t),u∗(t), t∗f ← Steer(xnew,v);

26: if CollisionFree(x∗(t), t∗f) then

27: etemp ← (x∗(t),u∗(t), t∗f);

28: ce ← Cost(etemp);
29: if T .Cost(xnew)+ce < T .Cost(v) then
30: eold ← T .GetInEdge(v);
31: E ← E ∪ {etemp} \ {eold};
32: cmax = min{η, γ(log(|V |)

|V |)
1
n };

33: Vmax ← Nearby(V ,xf , cmax);
34: cf ← T .Cost(xf);
35: for each v ∈ Vnearby do
36: x∗(t),u∗(t), t∗f ← Steer(v,xf);

37: if CollisionFree(x∗(t), t∗f) then

38: etemp ← (x∗(t),u∗(t), t∗f);

39: ce ← Cost(etemp);
40: if T .Cost(v) + ce < cf then
41: cf ← T .Cost(v) + ce;
42: enew ← etemp;

43: if cf 6=∞ then
44: V ← V ∪ {xf};
45: E ← E ∪ {enew};
46: x∗(t),u∗(t), t∗f ← GetSol(T ,x0,xf);

47: return x∗(t),u∗(t), t∗f
48: return fail ;

30

2.2.2.4 RRT* Example

Figures 6 and 7 demonstrate two successive iterations of RRT*. These figures show the growth of the

tree through X free, where Niter = 7 and n = 2. The vertices of V are shown as the filled circles with the

notation vi, where i denotes their index. T is rooted at x0, which is shown as v0. Also, the state xf is

assumed to be far from all vertices in V and is omitted for simplicity. The directed edges in E are shown

as the solid arrows, where the cost of each edge is shown adjacent to it. The space X obs describes a single

circular obstacle, which is shown as the larger circle filled with dots. The dashed arrows show optimal state

trajectories obtained from the steering function, where the cost of each trajectory is shown adjacent to it.

States that are not members of V , i.e. xrand and xnew, are shown as the dashed circles. Finally, in this

example η = 5 and γ = 14 such that cmax = 5 from (51).

Figure 6 shows a failed iteration, where the optimal state trajectory from vmin to xnew is rejected by the

collision-checker function. In Figure 6a the random state xrand is generated. In Figure 6b the optimal state

trajectory from each v ∈ V is shown, along with their corresponding costs. From this figure it can be seen

that the vertex that results in the minimum cost-to-go to xrand is v3, and therefore vmin = v3. Figure 6c

shows the optimal state trajectory from v3 to xrand, which has a cost of 6. Since the cost of this trajectory

is greater than η = 5, xnew 6= xrand, as shown in Figure 6d. Observe that the optimal state trajectory from

v3 to xnew intersects with X obs. Therefore, the collision-checker function returns false when evaluating this

trajectory and the algorithm proceeds to the next iteration.

v0

v1

v2

v3

v4

xrand

5

3

5
2

(a) Generate xrand.

v0

v1

v2

v3

v4

xrand

5

3

5
2

7

8

9 6

14

(b) Find vmin.

v0

v1

v2

v3

v4

xrand

5

3

5
2

6

(c) Steer from vmin to
xrand.

v0

v1

v2

v3

v4

xnew

5

3

5
2

5

(d) Establish xnew.

Figure 6: RRT* example with failed iteration.

Figure 7 shows a successful iteration where xnew is added to V and is used to optimize T . In Figure 7a

the random state xrand is generated. In Figure 7b the optimal state trajectory from each v ∈ V is shown,

along with their corresponding costs. From this figure it can be seen that the vertex that results in the

minimum cost-to-go to xrand is v2, and therefore vmin = v2. Figure 7c shows the optimal state trajectory

31

from v2 to xrand, which has a cost of 1. Since the cost of this trajectory is less than η = 5, xnew = xrand, as

shown in Figure 7d. Observe that the optimal state trajectory from v2 to xnew does not intersect with X obs,

and therefore the collision-checker function returns true when evaluating this trajectory. In Figure 7e xnew

is added to V and a directed edge is added from v2 to xnew. The edge optimization procedure then attempts

to minimize the cost of xnew. Figure 7f shows the optimal trajectories from all v ∈ Vmax and their associated

costs, where Vmax = {v0,v1,v2}. It can be seen that the cost of xnew is 9. However if the edge arriving at

xnew were to originate from v1, then the state trajectory component of this edge would be collision-free and

the cost of xnew would be reduced to 7. Similarly, if the edge arriving at xnew were to originate from v0, then

the state trajectory component of this edge would be collision-free and the cost of xnew would be reduced to

5. Therefore, the edge optimization procedure replaces the edge from v2 to xnew with one from v0 to xnew,

as shown in Figure 7g. Finally, the tree optimization procedure evaluates if xnew can be used to reduce the

cost of any v ∈ Vmax. It can be seen from Figure 7g that, if the edge from v1 to v2 is replaced by one from

xnew to v2 then the cost of v2 is reduced from 8 to 6. Since this is an improvement of the cost of v2, this

edge replacement is made, as shown in Figure 7h. This concludes the iteration.

v0

v1

v2

v3

v4

xrand

5

3

5
2

(a) Generate xrand.

v0

v1

v2

v3

v4

xrand

5

3

5
2

5

2

1 7
9

(b) Find vmin.

v0

v1

v2

v3

v4

xrand

5

3

5
2

1

(c) Steer from vmin to
xrand.

v0

v1

v2

v3

v4

xnew

5

3

5
2

1

(d) Establish xnew.

v0

v1

v2

v3

v4

xnew

5

3

5
2

1

(e) Add xnew to T .

v0

v1

v2

v3

v4

xnew

5

3

5
2

1

5

2

(f) Get Vmax.

v0

v1

v2

v3

v4

xnew

5

3

5
2

5

2

1

(g) Edge optimization to
xnew

v0

v1

v2

v3

v4

xnew

5

5
2

5

1

(h) Tree optimization.

Figure 7: RRT example sketch successful iteration.

32

2.2.2.5 Kinodynamic RRT* MATLAB Implementation

This section presents an overview of the implementation of Kinodynamic RRT* in MATLAB [65] using

object-oriented programming. Four classes are used: (i) a tree class, (ii) a vertex class, (iii) a trajectory

class, and (iv) an obstacle class. The reason for selecting this design approach is first and foremost because

it facilitates solving different problems since all function implementations regarding specific problems are

fully contained in the vertex and obstacle classes. Therefore, when solving specific problems only the vertex

and obstacle classes require modifications. The remainder of this section is as follows. First, a generalization

of the obstacle and vertex classes are presented, which change according to the problem being solved. Then,

the trajectory and the tree classes are presented, which are consistent for all problems. A more specific

implementation of the vertex and obstacle classes for the minimization of the cost function in (26) for a

double integrator with drift is provided in Appendix C. Also, note that the following functions are native to

MATLAB:

• length (·) • vecnorm (·) • min (·) • log (·) • isempty (·)

Obstacle

Functions:

self = Obstacle (varargin)

β = CollisionCheck (self , x)

Figure 8: General obstacle class.

A generalization of the obstacle class is shown in Figure 8. Generally speaking, the obstacle class has the

following member functions:

• Obstacle (varargin): This function is the class constructor, which receives one or more inputs de-

scribed by varargin . Each input corresponds to a property of the obstacle class, and is assigned

accordingly.

• CollisionCheck (self , x): The input of this function is an n row double precision array x, where

each column of x describes a state. This function evaluates if any column of x describes a state that

intersects with the obstacle. If no states described by the columns of x intersect with the obstacle then

the function returns true, and it returns false otherwise.

33

Vertex

Properties: Functions:

x self = Vertex (varargin)

X x = GetState (self)

c∗ SetCost (self , c∗)

c∗ = GetCost (self)

enew = Steer (self ,x2)

[xnew, enew] = LocalTraj (self , e, cmax)

CTG = CTG (self ,x2)

xrand = Sample (self)

β = CollisionCheck (self , x)

Figure 9: General vertex class.

A generalization of the vertex class is shown in Figure 9. Generally speaking, the vertex class has the

following member properties:

• x: An n row single-column double precision array that describes the state of the vertex.

• X : A double precision array that describes the bounds on the state space of the system.

• c∗: A double precision variable that describes the cost of the vertex, where the vertex cost is introduced

in Definition 2.

Furthermore, the vertex class has the following member functions:

• Vertex (varargin): This function is the class constructor, which receives all or some of the class

properties from the input varargin and assigns them accordingly. Also, the vertex cost is initialized

to infinity.

• GetState (self): This function returns the property x.

• SetCost (self , c∗): The input of this function is a double precision variable c∗, which is assigned to

the property c∗.

• GetCost (self): This function returns the property c∗.

• Steer (self ,x2): The input of this function is the vertex object x2. This function computes the

unconstrained optimal state and control input trajectories, and the unconstrained optimal final time

34

to steer the system from the state of the vertex object (self) to the state of the vertex object x2. This

function returns the trajectory object enew describing the unconstrained optimal trajectory.

• LocalTraj (self , e, cmax): The input of this function is the trajectory object e and the double precision

variable cmax. This function computes the unconstrained optimal trajectory from the initial state of e

toward the final state of e up to a maximum cost cmax, and returns the new vertex object xnew as the

end vertex of this trajectory and the new trajectory enew.

• CTG (self ,x2): The input of this function is a vertex object x2. This function calculates the uncon-

strained optimal cost-to-go from the the state of the vertex object (self) to the state of the vertex

object property x2, and returns this value as the double precision variable CTG.

• Sample (self): This function returns a randomly generated vertex object xrand that has a state that

lies in the region described by the bounds in the property X .

• CollisionCheck (self , x): The input of this function is an n row double precision array x, where

each column of x describes a state. This function evaluates if any column of x describes a state that

lies outside of the bounds described by the property X . If no state described by the columns of x lies

outside of these bounds then the function returns true, and it returns false otherwise.

Trajectory

Properties: Functions:

x1 self = Trajectory
(
x1,x2, x∗1,2, u

∗
1,2, t

∗
1,2, c

∗
1,2

)
x2 x1 = GetStartVertex (self)

x∗1,2 x2 = GetEndVertex (self)

u∗1,2 x∗1,2 = GetStateTrajectory (self)

t∗1,2 u∗1,2 = GetInputTrajectory (self)

c∗1,2 t∗1,2 = GetTime (self)

c∗1,2 = GetCost (self)

Figure 10: Trajectory class.

The trajectory class is shown in Figure 10. The trajectory class has the following member properties:

• x1: A vertex object that is associated with the initial state of the trajectory.

• x2: A vertex object that is associated with the final state of the trajectory.

35

• x∗1,2: An n row double precision array describing the discretized state trajectory to steer the system

from the state of the vertex object property x1 to the state of the vertex object property x2.

• u∗1,2: An m row double precision array describing the discretized control input trajectory to steer the

system from the state of the vertex object property x1 to the state of the vertex object property x2.

• t∗1,2: A single-row double precision array describing the discretized time span of the state and control

input trajectories.

• c∗1,2: A double precision variable describing the cost of the trajectory to steer the system from the state

of the vertex object property x1 to the state of the vertex object property x2.

Furthermore, the trajectory class has the following member functions:

• Trajectory
(
x1,x2, x

∗
1,2, u

∗
1,2, t

∗
1,2, c

∗
1,2

)
: This function is the class constructor, which receives all of the

class properties as inputs and assigns them accordingly.

• GetStartVertex (self): This function returns the property x1.

• GetEndVertex (self): This function returns the property x2.

• GetStateTrajectory (self): This function returns the array x∗1,2.

• GetInputTrajectory (self): This function returns the array u∗1,2.

• GetTime (self): This function returns the array t∗1,2.

• GetCost (self): This function returns the property c∗1,2.

36

Tree

Properties: Functions:

xf self = Tree
(
x0,xf ,X obs, η, γ

)
V β = CollisionFree (self , x)

Vx xrand = Sample (self)

E vmin = NearestVertex (self ,x)

Eend enew = Steer (self ,x1,x2)

X obs [xnew, enew] = LocalTraj (self , e, cmax)

η Vmax = Nearby (self , cmax)

γ OptimizeTo (self ,x,Vmax)

Ivopt = OptimizeFrom (self ,x,Vmax)

Iterate (self)

ConnectGoal (self)[
x∗, u∗, t∗f

]
= GetSol (self)

Figure 11: Tree class.

The tree class is shown in Figure 11. The tree class has the following member properties:

• xf : A vertex object that is associated with the final state of the motion planning problem.

• V : A single-row multi-column array of vertex objects.

• Vx: An n row double precision array, where each column represents the state of each vertex in V . This

array is used to reduce the computation time required to find specific vertices.

• E: A single-row multi-column array of trajectory objects.

• Eend: An n row double precision array, where each column represents the final state of each trajectory

in E. This array is used to reduce the computation time required to find specific trajectories.

• X obs: A single-row multi-column array of obstacle objects.

• η: A double precision variable that describes the cost-to-go upper bound from Section 2.2.2.1.

• γ: A double precision variable that describes the scaling factor of cmax from Section 2.2.2.1.

37

Furthermore, the tree class has the following member functions:

• Tree (x0,xf ,X obs, η, γ): This function is the class constructor, which is shown in Algorithm 3.

• CollisionFree (self , x): This is the collision-checker function that was introduced in Definition 2.

This function receives an n row double precision array, where each column of x describes a state.

The function output is the boolean variable β. The MATLAB implementation of the collision-checker

function is in Algorithm 4.

• Sample (self): This is the sampling function that was introduced in Definition 2. The output of

this function is the vertex object xrand. The MATLAB implementation of the sampling function is in

Algorithm 5.

• NearestVertex (self ,x): This is the nearest vertex function that was introduced in Definition 2. The

input of this function is the vertex object x and the output is the vertex object vmin. The MATLAB

implementation of the sampling function is in Algorithm 6.

• Steer (self ,x1,x2): This is the steering function that was introduced in Definition 2. The inputs of

this function are the vertex object x1 and x2. This function simply invokes the steering function on x1

to obtain the unconstrained optimal trajectory to steer the system from the state of the vertex objects

x1 to the state of the vertex object x2.

• LocalTraj (self , e, cmax): This is the local trajectory function that was introduced in Definition 2.

The input of this function is the trajectory object e and an upper bound on the cost of the trajectory

cmax. The output of this function is the vertex object xnew and the trajectory object enew. This function

simply invokes the local trajectory function of the vertex class.

• Nearby (self , cmax): This is the nearby vertices function that was introduced in Definition 2. The

input of this function is the vertex object x and the double precision variable cmax. The output of this

function is the single-row multi-column array of vertex objects Vmax. The MATLAB implementation

of this function is in Algorithm 7.

• OptimizeTo (self ,x,Vmax): The inputs of this function are the vertex object x and the single-row

multi-column array of vertex objects Vmax. This function determines the optimal vertex in Vmax to

connect with x. The MATLAB implementation of this function is in Algorithm 8.

• OptimizeFrom (self ,x,Vmax): The inputs of this function are the vertex objects x and the single-row

multi-column array of vertex objects Vmax. This function improves the tree by minimizing the cost of

38

the vertices in Vmax by arriving from x. The MATLAB implementation of this function is in Algorithm

9.

• Iterate (self): This function performs an iteration of the Kinodynamic RRT* algorithm. The MAT-

LAB implementation of this function is in Algorithm 10.

• ConnectGoal (self): This function attempts to connect the vertex object property xf with the tree.

The MATLAB implementation of this function is in Algorithm 11.

• GetSol (self): This is the function used to retrieve the approximate solution obtained using Kinody-

namic RRT*. This function can only be used if the ConnectGoal (self) returns true, which implies

that the final state was successfully connected with the tree. The MATLAB implementation of this

function is in Algorithm 12.

Algorithm 3 Tree Class: Constructor

1: function Tree(x0,xf ,X obs, η, γ)
2: self .V = x0;
3: self .Vx = x0.GetState;
4: self .E = [];
5: self .Eend = [];
6: self .xf = xf ;
7: self .X obs = X obs;
8: self .η = η;
9: self .γ = γ;

10: return self ;

Algorithm 4 Tree Class: Collision Free

1: function CollisionFree(self , x)
2: β = self .xf .CollisionCheck (x);
3: if ∼ β then
4: return false ;

5: for i = 1 : length (self .X obs) do
6: o = self .X obs (i);
7: β = o.CollisionCheck (x);
8: if ∼ β then
9: return false ;

10: return true

Algorithm 5 Tree Class: Sample Function

1: function Sample(self)
2: xrand = self .xf .Sample;
3: xrand = xrand.GetState;
4: while ∼ self .CollisionFree (xrand) do
5: xrand = self .xf .Sample;
6: xrand = xrand.GetState;

7: return xrand;

Algorithm 6 Tree Class: Nearest Vertex Function

1: function NearestVertex(self ,x)
2: dmin =∞;
3: for i = 1 : length (self .V) do
4: v = self .V (i);
5: d = v.CTG (x);
6: if d < dmin then
7: dmin = d;
8: Imin = i;

9: return self .V (Imin);

Algorithm 7 Tree Class: Nearby Function

1: function Nearby(self ,x, cmax)
2: Imax = [];
3: for i = 1 : length (self .V) do
4: v = self .V (i);
5: d = v.CTG (x);
6: if d <= cmax then
7: Imax (end + 1) = i;

8: return self .V (Imax);

39

Algorithm 8 Tree Class: Optimize To Function

1: function OptimizeTo(self ,x,Vmax)
2: [∼, Ix] = min (vecnorm (self .Vx − x.GetState, 2, 1));
3: [∼, Ie] = min (vecnorm (self .Eend − x.GetState, 2, 1));
4: cx = x.GetCost;
5: for i = 1 : length (Vmax) do
6: v = Vmax (i);
7: enew = v.Steer (x);
8: x∗ = enew.GetStateTrajectory;
9: if self .CollisionFree (x∗) then

10: cv = v.GetCost;
11: ce = enew.GetCost;
12: if cv + ce < cx then
13: cx = cv + ce;
14: self .V (Ix) .SetCost (cx);
15: self .E (Ie) = enew;

16: return ;

Algorithm 9 Tree Class: Optimize From Function

1: function OptimizeFrom(self ,x,Vmax)
2: cx = x.GetCost;
3: Iopt = [];
4: for i = 1 : length (Vmax) do
5: v = Vmax (i);
6: enew = x.Steer (v);
7: x∗ = enew.GetStateTrajectory;
8: if self .CollisionFree (x∗) then
9: cv = v.GetCost;

10: ce = enew.GetCost;
11: if cx + ce < cv then
12: cv = cx + ce;
13: [∼, Iv] = min (vecnorm (self .Vx − v.GetState, 2, 1));
14: [∼, Ie] = min (vecnorm (self .Eend − v.GetState, 2, 1));
15: self .V (Iv) .SetCost (cv);
16: self .E (Ie) = enew;
17: Iopt (end + 1) = Iv;

18: return Iopt;

40

Algorithm 10 Tree Class: Iterate Function

1: function Iterate(self)
2: xrand = self .Sample;
3: vmin = self .NearestVertex (xrand);
4: enew = self .Steer (vmin,xrand);
5: [xnew, enew] = self .LocalTraj (enew, self .η);
6: x∗new = enew.GetStateTrajectory;
7: if ∼ self .CollisionFree (x∗new) then
8: return ;

9: V (end + 1) = xnew;
10: Vx (end + 1) = xnew.GetState;
11: E (end + 1) = enew;
12: Eend (end + 1) = enew.GetEndVertex.GetState;
13: n = length (self .xf .GetState);

14: cmax = min

(
self .η, self .γ

(
log(length(self .V))

length(self .V)

) 1
n

)
;

15: Vmax = Nearby (xnew, cmax);
16: self .OptimizeTo (xnew,Vmax

);
17: Iopt = self .OptimizeFrom (xnew,Vmax);

18: while ∼ isempty
(
Iopt

)
do

19: v = self .V
(
Iopt (1)

)
;

20: Iopt (1) = [];
21: Vmax = Nearby (vnew, cmax);
22: Inew = self .OptimizeFrom (v,Vmax);
23: Iopt = [Iopt; Inew];

24: return ;

Algorithm 11 Tree Class: Connect Goal Function

1: function ConnectGoal(self)
2: n = length (self .xf .GetState);

3: cmax = min

(
self .η, self .γ

(
log(length(self .V))

length(self .V)

) 1
n

)
;

4: Vmax = Nearby (self .xf , cmax);
5: cf = self .xf .GetCost;
6: for i = 1 : length (Vmax) do
7: v = Vmax (i);
8: ef = v.Steer (self .xf);
9: x∗ = ef .GetStateTrajectory;

10: if self .CollisionFree (x∗) then
11: cv = v.GetCost;
12: ce = ef .GetCost;
13: if cv + ce < cf then
14: cf = cv + ce;
15: self .xf .SetCost (cf);
16: ef = enew;

17: if cf ==∞ then
18: return false;
19: else
20: V (end + 1) = self .xf ;
21: Vx (end + 1) = self .xf .GetState;
22: E (end + 1) = ef ;
23: Eend (end + 1) = self .xf .GetState;
24: return true;

41

Algorithm 12 Tree Class: Get Solution Function

1: function GetSol(self)
2: x0 = self .V (1).GetState;
3: xf = self .xf .GetState;
4: x∗ = [];
5: u∗ = [];
6: t∗ = [];
7: v = xf ;
8: while vecnorm (x0 − v, 2, 1) ∼= 0 do
9: [∼, Ie] = min (vecnorm (self .Eend − v, 2, 1));

10: e = self .E (Ie);
11: x∗ = [e.GetStateTrajectory, x∗];
12: u∗ = [e.GetInputTrajectory, u∗];
13: t∗ = [e.GetTime, t∗];
14: v = e.GetStartVertex.GetState;

15: return [x∗, u∗, t∗];

2.3 Optimal Trajectory Planning For a Double Integrator With Drift

This section addresses optimal trajectory planning of a double integrator with drift such that the optimal

trajectory minimizes a cost trading off control effort and time. The system’s state is described by the vector

x =

p
v

 , (57)

where p = [px, py, pz]
T ∈ R3 is the system’s position in meters, and v = [vx, vy, vz]

T ∈ R3 is its velocity in

meters per second. The system’s control input is denoted by u = [ux, uy, uz]
T ∈ R3, which is the system’s

acceleration in meters per second squared. The state transition equation of the system is

ẋ = Ax+Bu+ c, A =

03 I3

03 03

 , B =

03

I3

 , (58)

where c = [cTv , c
T
a]T , cv, ca ∈ R3 are the velocity and acceleration vectors of the drift term, and where 0k

and Ik denote a k × k zero and identity matrix, respectively, for k ∈ N>0. Given a control input trajectory

u(t), a state trajectory x(t), and a final time tf , the cost of the trajectory is evaluated according to (26),

where R ∈ R3×3 is assumed to be symmetric and positive definite and CI ∈ R>0.

Optimal trajectory planning for a double integrator with drift is not a new topic in the open literature.

For example, the optimal trajectory planning problem in (41) for a cost function (26) has been addressed

in [59] for general affine systems when X free = Rn, which can be solved directly using optimal control

theory. The optimal final time of an optimal trajectory is obtained as the root of a polynomial, which is

42

a quartic for systems of the form (58). In [66] the problem described by (41) with the cost function (26)

where R = I3 is addressed for the particular system described by (58) when c = [0, 0, 0, 0, 0,−g]T and X free

is convex and constrained by a maximum velocity. The same problem is addressed for a general system

of the form (58) in [67] where it is assumed that R = I3. Furthermore, the work in references [47, 48]

obtains an approximate solution of (41) for the cost function in (26) and for the system described by (58)

when X free is a non-convex bounded space. This is accomplished by combining optimal control theory with

Kinodynamic RRT* to search for the optimal trajectory from a given initial state to a given final state as a

sequence of unconstrained optimal trajectory segments through X free. The final time of the unconstrained

optimal trajectories found in references [47,48,66] is assumed to be fixed. For problems with free final time

the optimal final time is obtained using numerical optimization to evaluate the time that minimizes the

cost function. What is proposed in this section is to apply the result of [59] to Kinodynamic RRT*, which

assumes a free final time in the problem of the unconstrained optimal trajectory planning problem. As a

result, the optimal final time of optimal trajectories can be obtained as the root of the Hamiltonian, which

avoids the need of numerical optimization to minimize the cost function.

2.3.1 Optimal Trajectory Planning in Unconstrained Convex State Spaces

The problem solved in this section is that of (27) for the system in (58). One approach to solve this

problem is to apply a change of coordinates to transform the affine system into a linear system. However,

in [59] it is stated and proved that “whenever xf is chosen such that Axf + c is not in the range of B the

change of coordinates is ineffective”. This implies that, for a change of coordinates to be effective, then there

must exist a z ∈ R3 such that

Bz = Axf + c, (59)

which is equivalent to 03

I3

 z =

vf + cv

ca

 . (60)

This result implies that a change of coordinates is only possible when vf = −cv. However, this is a very

specific case for a small subset of states in X free, for example when there is wind and the final desired

velocity compensates the wind velocity. Therefore, the general case for all xf ∈ X free is considered, which

includes vf 6= −cv for which a change of coordinates is ineffective.

43

Definition 3. Controllability [59]: For a system of the form

ẋ = Ax+Bu+ c, (61)

where A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn, n,m ∈ N>0, the controllability matrix is defined as

C =

[
B AB A2B . . . An−1B

]
. (62)

If the matrix C has maximum rank n then the system, or equivalently the pair (A,B), is controllable. �

It can be seen from Definition 3 that, for the system in (58), the controllability matrix is

C =

03 I3 03 03 03 03

I3 03 03 03 03 03

 , (63)

which has maximum rank. Since the controllability matrix for the system in (58) is full rank the system is

controllable. As a consequence of this, the solution of (27) is presented using Theorem 5, which is detailed

in Appendix B. Given x0, xf , and c, the optimal control input to steer the system from x0 to xf through

X is given by equation (28) as

u∗(t) =

[
6

(
2t−t∗f
t∗

3

f

)
I3 2

(
3t−2t∗f
t∗

2

f

)
I3 −6

(
2t−t∗f
t∗

3

f

)
I3 2

(
3t−t∗f
t∗

2

f

)
I3 6

(
2t−t∗f
t∗

2

f

)
I3 −I3

]
x0

xf

c

 . (64)

Additionally, the cost of the optimal trajectory is given by equation (26) as

C
(
x∗(t),u∗(t), t∗f

)
=

1

2


x0

xf

c


T



12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

6

t∗
2

f

R 4
t∗f
R − 6

t∗
2

f

R 2
t∗f
R 6

t∗f
R R

− 12

t∗
3

f

R − 6

t∗
2

f

R 12

t∗
3

f

R − 6

t∗
2

f

R − 12

t∗
2

f

R 03

6

t∗
2

f

R 2
t∗f
R − 6

t∗
2

f

R 4
t∗f
R 6

t∗f
R −R

12

t∗
2

f

R 6
t∗f
R − 12

t∗
2

f

R 6
t∗f
R 12

t∗f
R 03

03 R 03 −R 03 t∗fR




x0

xf

c

+ t∗fCI . (65)

44

Furthermore, the Hamiltonian at t∗f is given by equation (31) as

H
(
t∗f
)

=
1

t∗
4

f


CIt
∗4
f +


x0

xf

c


T



−18R −6t∗fR 18R −6t∗fR −12t∗fR 03

−6t∗fR −2t∗
2

f R 6t∗fR −t∗2f R −3t∗
2

f R 03

18R 6t∗fR −18R 6t∗fR 12t∗fR 03

−6t∗fR −t∗2f R 6t∗fR −2t∗
2

f R −3t∗
2

f R 03

−12t∗fR −3t∗
2

f R 12t∗fR −3t∗
2

f R −6t∗
2

f R 03

03 03 03 03 03
t∗

4

f

2 R




x0

xf

c




. (66)

The derivation of the results given by (64), (65), and (66) is detailed in Appendix B.

A similar problem is solved in [67] when R = I3 and cv = 0, and where cv may be time-variant. In [67] the

optimal final time is obtained by minimizing the cost function, which is accomplished by finding the positive

real roots of the derivative of the cost function with respect to t∗f that result in the second derivative of the

cost function with respect to t∗f being positive. When R = I3, cv = 0, and constant ċv the optimal control

input, optimal trajectory cost, and the Hamiltonian given in (64), (65), and (66) are the same as those

in [67] for the same conditions. The result of [67] is more general than the result of this section in the sense

that it provides solutions for time-variant affine terms when R = I3 and cv = 0. However, the result of this

section is more general than that in [67] in the sense that the solution is provided for a general symmetric

and positive definite control input weighting matrix R and time-invariant affine terms where cv 6= 0. In

references [47, 48, 66] numerical optimization is used to evaluate the optimal final time as the positive final

time that minimizes (65). However, in [59] it is shown that the optimal final time of the optimal trajectory

is a real positive root of (66). As a consequence of this result, a finite number of candidate final times can be

computed as the real positive roots of (66). Then, the optimal final time can be obtained as the candidate

that minimizes (65). A discussion on the existence of real roots of (66) is presented in Appendix A, where

under certain circumstances these roots may be computed analytically.

The proposed technique to obtain the optimal final time of the optimal trajectory proposed in [59] is

compared with the numerical approach used in references [47,48,66]. For this comparison 10, 000 simulations

are performed where each component of x0, xf , and c, are randomly drawn from [−1000, 1000] for each

simulation. Additionally, the cost index is randomly drawn from (0, 10] for each simulation, and the control

input weighting matrix is obtained according to

R = I3 + R̃R̃T , (67)

45

where each element of the matrix R̃ is randomly drawn from [0, 1]. The simulation is performed in MATLAB

R2018a on an Intel Core i5 2.9 GHz processor with 16GB of RAM. The numerical solver used to evaluate

the performance of the techniques of [47, 48, 66] is fmincon, which uses an interior point algorithm [68] to

minimize (65) subject to 0 ≤ t∗f <∞. Furthermore, the roots of (66) are obtained using the roots function.

In Theorem 16 of Appendix A it is shown that under certain circumstances the real roots of (66) can

be obtained analytically. For the cases where this is not possible, the roots are obtained using the roots

function, which finds the roots of a polynomial as the eigenvalues of the companion matrix [69]. When using

the approach discussed in [59], the optimal final time for the optimal trajectory is obtained in an average

of 6.97 × 10−4 seconds. By contrast, the numerical approach used in [47, 48, 66] required on average 0.032

seconds to obtain the optimal final time. Therefore, the method from [59] required on average only 2.2% the

computation time to obtain the optimal final time of a trajectory when compared with the methods used

in [47,48,66].

Figure 12 shows the effect of cv on the position vector of the optimal state trajectory when gravity is

present. For this example the initial state, final state, and affine term are

x0 = [0, 0, 0, 0, 0, 0]
T

xf = [10, 10, 10, 0, 0, 0]
T

c = [cTv , 0, 0,−9.8]T

, (68)

where the constant wind velocity vector cv for each state trajectory is shown in the legend of Figure 12.

Note that the direction of each cv vector is the same and the magnitude is decreased from
√

350 to 0. The

initial position is shown as the green diamond, the final position is shown as the red diamond, the direction

of the wind is shown by the black arrows, and the position vector of each optimal trajectory is shown as a

coloured curve.

46

Figure 12: Position vectors of optimal state trajectories of double integrator and constant velocity winds.

2.3.2 Optimal Trajectory Planning in Non-Convex State Spaces

Recall from (41) that, when X free 6= Rn, the optimal trajectory planning problem addressed in Section

2.3.1 can be described by

min
u(t),tf

tf∫
0

(
1
2u (τ)

T
Ru (τ) + CI

)
dτ

s.t. ẋ = Ax+Bu+ c

x : [0, tf]→ X free

ψ (x0,xf) = 0

, (69)

where ψ (x0,xf) is defined in (4).

Three functions must be defined so that the Kinodynamic RRT* may be used to solve (69): the cost-to-go

function, the steering function, and the local trajectory function. The results obtained in Section 2.3.1 may

be used to design these functions. Given an initial state x1 ∈ X and a final state x2 ∈ X , let u∗1,2(t),

x∗1,2(t), and t∗f1,2 denote the optimal control input, state trajectories and the optimal final time to steer the

system from x1 to x2. For the cost-to-go and steering functions t∗f1,2 is obtained from Definition 2 as the

47

real positive solution of

1

t∗
4

f1,2


CIt
∗4
f1,2

+


x1

x2

c


T



−18R −6t∗f1,2R 18R −6t∗f1,2R −12t∗f1,2R 03

−6t∗f1,2R −2t∗
2

f1,2
R 6t∗f1,2R −t∗2f1,2R −3t∗

2

f1,2
R 03

18R 6t∗f1,2R −18R 6t∗f1,2R 12t∗f1,2R 03

−6t∗f1,2R −t∗2f1,2R 6t∗f1,2R −2t∗
2

f1,2
R −3t∗

2

f1,2
R 03

−12t∗f1,2R −3t∗
2

f1,2
R 12t∗f1,2R −3t∗

2

f1,2
R −6t∗

2

f1,2
R 03

03 03 03 03 03
t∗

4

f1,2

2 R




x1

x2

c




= 0, (70)

which minimizes

C
(
x∗1,2(t),u∗1,2(t), t∗f1,2

)
=

1
2


x1

x2

c


T



12

t∗
3

f1,2

R 6

t∗
2

f1,2

R − 12

t∗
3

f1,2

R 6

t∗
2

f1,2

R 12

t∗
2

f1,2

R 03

6

t∗
2

f1,2

R 4
t∗f1,2

R − 6

t∗
2

f1,2

R 2
t∗f1,2

R 6
t∗f1,2

R R

− 12

t∗
3

f1,2

R − 6

t∗
2

f1,2

R 12

t∗
3

f1,2

R − 6

t∗
2

f1,2

R − 12

t∗
2

f1,2

R 03

6

t∗
2

f1,2

R 2
t∗f1,2

R − 6

t∗
2

f1,2

R 4
t∗f1,2

R 6
t∗f1,2

R −R

12

t∗
2

f1,2

R 6
t∗f1,2

R − 12

t∗
2

f1,2

R 6
t∗f1,2

R 12
t∗f1,2

R 03

03 R 03 −R 03 t∗f1,2R




x1

x2

c

+ t∗f1,2CI
. (71)

The derivation of the results given by (70) and (71) is detailed in Appendix B. A discussion on the existence

of real solutions of (70) is presented in Appendix A, where under certain circumstances these roots may be

computed analytically. Once t∗f1,2 is computed, the cost-to-go function returns the cost given by (71). The

steering function computes u∗1,2(t) according to (64), which yields

u∗1,2(t) =

[
6

(
2t−t∗f1,2
t∗

3

f1,2

)
I3 2

(
3t−2t∗f1,2
t∗

2

f1,2

)
I3 −6

(
2t−t∗f1,2
t∗

3

f1,2

)
I3 2

(
3t−t∗f1,2
t∗

2

f1,2

)
I3 6

(
2t−t∗f1,2
t∗

2

f1,2

)
I3 −I3

]
x1

x2

c

. (72)

The optimal state trajectory x∗1,2(t) is then obtained by replacing u by u∗1,2(t) in (58) and integrating from

t = 0 to t = t∗f1,2 . Given u∗1,2(t), x∗1,2(t), and t∗f1,2 , it can be seen from equation (19) that the cost of the

optimal trajectory from x1 to x∗1,2(t̃∗f1,2), where t̃∗f1,2 ∈ [0, t∗f1,2], is evaluated according to

C
(
x∗1,2(t),u∗1,2(t), t̃∗f1,2

)
=

t̃∗f1,2∫
0

(
1

2
u∗1,2 (τ)

T
Ru∗1,2 (τ) + CI

)
dτ. (73)

48

From equation (35) it can be seen that

C(x∗1,2(t),u∗1,2(t), t̃∗f1,2) =
1

2
XT
c1,2D(t̃∗f1,2)Xc1,2 + t̃∗f1,2CI , (74)

where

Xc1,2 = e
AT t∗f1,2λ∗1,2

(
t∗f

)
, D

(
t̃∗f1,2

)
=

 t̃∗
3

f1,2

3 R−1 −
t̃∗

2

f1,2

2 R−1

−
t̃∗

2

f1,2

2 R−1 t̃∗f1,2R
−1

 , (75)

and where the final costates are obtained using equation (29) such that

λ∗1,2

(
t∗f1,2

)
=


12

t∗
3

f1,2

R 6

t∗
2

f1,2

R − 12

t∗
3

f1,2

R 6

t∗
2

f1,2

R 12

t∗
2

f1,2

R 03

− 6

t∗
2

f1,2

R − 2
t∗f1,2

R 6

t∗
2

f1,2

R − 4
t∗f1,2

R − 6
t∗f1,2

R R



x1

x2

c

 . (76)

Observe that D(t̃∗f1,2) in (75) can be expressed as

D
(
t̃∗f1,2

)
=

1

3

R−1 03

03 03

 t̃∗3f1,2 − 1

2

 03 R−1

R−1 03

 t̃∗2f1,2 +

03 03

03 R−1

 t̃∗f1,2 , (77)

which allows to recast the cost in (74) as the polynomial

C
(
x∗1,2(t),u∗1,2(t), t̃∗f1,2

)
= C3t̃

∗3
f1,2 + C2t̃

∗2
f1,2 + C1t̃

∗
f1,2 , (78)

where

C3 = 1
6X

T
c1,2

R−1 03

03 03

Xc1,2

C2 = − 1
4X

T
c1,2

 03 R−1

R−1 03

Xc1,2

C1 = 1
2X

T
c1,2

03 03

03 R−1

Xc1,2 + CI

. (79)

49

Lemma 1. If R is symmetric and positive definite and CI > 0 then the coefficients in (79) satisfy

C3 ≥ 0

C1 > 0
. (80)

Proof. It can be seen from (79) that C3 is a quadratic form and C1 is the sum of a quadratic form and CI .

Given the assumption that R is symmetric and positive definite it can be seen that the matrices

R−1 03

03 03

 ,

03 03

03 R−1

 (81)

are positive semi-definite. Given this result, and the assumption that CI > 0, it can be seen that C3 ≥ 0

and C1 > 0.

Given u∗1,2(t), x∗1,2(t), t∗f1,2 , and a maximum cost-to-go η ∈ R>0, the local trajectory function from

Definition 2 calculates the time t̃∗f1,2 as the non-negative real solution of

C3t̃
∗3
f1,2 + C2t̃

∗2
f1,2 + C1t̃

∗
f1,2 − η̃ = 0, (82)

where

η̃ = min
{
C
(
x∗1,2(t),u∗1,2(t), t∗f1,2

)
, η
}
. (83)

The local trajectory function from Definition 2 calculates t̃∗f1,2 as the smallest non-negative real solution

of (82) and returns the optimal state and control input trajectories, x̃∗1,2(t) = x∗1,2(t) and ũ∗1,2(t) = u∗1,2(t),

∀ t ∈ [0, t̃∗f1,2], and the optimal final time t̃∗f1,2 . Evidently, if η̃ = 0 then it can be seen that t̃∗f1,2 = 0

is the smallest non-negative real solution of (82). Furthermore, it can be seen from Theorem 6 that

C
(
x∗1,2(t),u∗1,2(t), t∗f1,2

)
≥ 0. Therefore, given the assumption that η > 0, it can be seen that η̃ ≥ 0.

The existence of non-negative real solutions of (82) is now studied when η̃ > 0.

Lemma 2. Descarte’s Rule of Signs [70]: Let f(x) be a polynomial described by

f(x) =
m∑
k=0

akx
k, ak ∈ R ∀ k ∈ {0, 1, . . . ,m}. (84)

The number of positive real zeros of f(x) is either equal to the number of variations of nonzero coefficient

signs in the sequence a0, a1, . . . , am or less than that by an even number. Additionally, if the number of sign

changes is zero, then the number of positive real roots is zero. The number of real negative roots is obtained

50

similarly for the coefficients of f(−x).

Theorem 9. If R is symmetric and positive definite, CI > 0, and η̃ > 0 then there exists at least one

positive real solution of (82).

Proof. It can be seen from Lemma 1 that C3 ≥ 0 and C1 > 0. Descarte’s rule of signs from Lemma 2 can

be used to determine the number of positive real roots in (82), which are shown in Table 1.

Case
C3 > 0

C2 > 0

C3 > 0

C2 = 0

C3 > 0

C2 < 0

C3 = 0

C2 > 0

C3 = 0

C2 = 0

C3 = 0

C2 < 0

Positive Real Roots 1 1 1 or 3 1 1 0 or 2

Table 1: Double integrator with drift: local trajectory function roots.

It can be seen from Table 1 that all cases except for C3 = 0, C2 < 0 have at least one positive real root.

This case is now studied.

If C3 = 0 then (82) simplifies to

C2t̃
∗2
f1,2 + C1t̃

∗
f1,2 − η̃ = 0, (85)

which has the solutions

t̃∗f1,2 =
−C1

2C2
±
√
C2

1 + 4C2η̃

2C2
. (86)

It can be seen that the solutions in (86) are real if C2
1 + 4C2η̃ ≥ 0. Observe from Theorem 6 that

C(x∗1,2(t),u∗1,2(t), t∗f1,2) ≥ 0. Given the assumption that η̃ > 0, it can be seen that, if C2 ≥ 0, then

C2
1 + 4C2η̃ > 0. Observe that, if C3 = 0 and C2 < 0, then (78) may be expressed as

C∗ = − |C2| t̃∗
2

f1,2 + C1t̃
∗
f1,2 , (87)

where | · | denotes the absolute value. Furthermore, if C2 < 0 then

C2
1 + 4C2η̃ = C2

1 − 4 |C2| η̃. (88)

Observe from (83) and (87) that

0 ≤ η̃ ≤ C∗ ⇒ 0 ≤ η̃ ≤ − |C2| t̃∗
2

f1,2 + C1t̃
∗
f1,2 , (89)

51

which can be used with (88) to yield

C2
1 + 4C2η̃ = C2

1 − 4 |C2| η̃ ≥ C2
1 + 4 |C2|2 t̃∗

2

f1,2 − 4C1 |C2| t̃∗f1,2 . (90)

It can be seen that

C2
1 + 4 |C2|2 t̃∗

2

f1,2 − 4C1 |C2| t̃∗f1,2 =
(
C1 − 2 |C2| t̃∗f1,2

)2
, (91)

which yields the inequality

C2
1 + 4C2η̃ ≥

(
C1 − 2 |C2| t̃∗f1,2

)2
≥ 0. (92)

Descarte’s theorem from Lemma 2 can then be used to determine the number of negative real roots in

(85) when C2 < 0, which is 0. Since both of the roots of (82) for the case C3 = 0 and C2 < 0 have been

proven to be real, and since it was shown that neither of these roots are negative, then both roots must be

positive real. Combining this result with those outlined in Table 1 proves that if R is symmetric and positive

definite, CI > 0, η̃ > 0, then the solutions of (82) are real positive numbers.

2.3.2.1 Validation and Study of Optimality

This section validates and studies the optimality of Kinodynamic RRT* for a simple one dimensional

double integrator problem for which an analytical solution can be obtained. The system’s state space is

described by

X =

x ∈ R6 :
−1 ≤ px ≤ 2, py = 0, pz = 0,

|vx| ≤ 1, vy = 0, vz = 0

 (93)

and the obstacle space is described by X = ∅, which implies that X free = X . It can be seen from (172) that

this problem is identical to the double integrator with drift, where the state space is constrained to a plane

in R6. The position of the system lies along the x-axis between −1 and 2, and its velocity is constrained to

be between −1 and 1. Let the initial and final state be described by

x0 =

[
0 0 0 0 0 0

]T
xf =

[
pf 0 0 0 0 0

]T , (94)

where pf 6= 0. Also, let the drift term be

c =

[
0 0 0 0 0 0

]T
. (95)

52

Finally, the control input weighting matrix is R = I3.

The optimal control solution is obtained as follows. The Hamiltonian at t = t∗f is evaluated according to

(70), which yields

H
(
t∗f
)

=
1

t∗
4

f

(
CIt
∗4
f − 18p2f

)
= 0. (96)

The optimal final time is therefore

t∗f =
4

√
18p2f
CI

. (97)

The cost of the optimal can then be obtained according to (71), which yields the optimal trajectory cost

C
(
x∗1,2(t),u∗1,2(t), t̃∗f1,2

)
=
CIt
∗4
f + 6p2f

t∗
3

f

m2

s3
. (98)

The optimal control input can then be obtained according to (64), which yields

u∗ (t) =


6pf t

∗
f−12pf t
t∗

3

f

0

0

 . (99)

Therefore, it can be seen that py, pz, vy, and vz are equal to zero ∀ t ∈ [0, t∗f], which confirms that the

system remains on the plane of px and vx. Furthermore, it can be seen that

ṗx (t) = vx, v̇x (t) =
6pf t

∗
f−12pf t
t∗

3

f

. (100)

Integrating with respect to time yields the trajectories

px (t) =
3pf t

∗
f t

2−2pf t3

t∗
3

f

, vx (t) =
6pf t

∗
f t−6pf t

2

t∗
3

f

. (101)

It can be seen that

px (t) =
vx (t)

2
t+

pf

t∗
3

f

t3, (102)

which can be used to obtain the expression

t3 =
px (t) t∗

3

f

pf
−
vx (t) t∗

3

f

2pf
t. (103)

53

Applying the result of (103) to px(t) in (101) yields

px (t) = vx (t) t− 2px (t) +
3pf

t∗
2

f

t2 (104)

which can be used to obtain the result

t2 +
vx (t) t∗

2

f

3pf
t−

px (t) t∗
2

f

pf
= 0. (105)

Since (105) is a quadratic equation it has two solutions, which are

t = −
vx (t) t∗

2

f

6pf
±

√
v2x(t)t

∗4
f

9p2f
+

4px(t)t∗
2

f

pf

2
. (106)

It can be seen from (101) that

v2x (t) t∗
4

f

9p2f
+

4px (t) t∗
2

f

pf
=

2t
(
t− 2t∗f

)
t∗f

2

(107)

which allows to simplify (106) to

t = −
vx (t) t∗

2

f

6pf
±
t
(
t− 2t∗f

)
t∗f

(108)

Given the boundary condition vx(t) = 0 when t = t∗f it can be seen that only one solution is consistent,

which leads to

t = −
vx (t) t∗

2

f

6pf
−
t
(
t− 2t∗f

)
t∗f

= − 1

t∗f
t2 + 2t−

vx (t) t∗
2

f

6pf
. (109)

It can be seen from (105) that

t2 = −
vx (t) t∗

2

f

3pf
t+

px (t) t∗
2

f

pf
(110)

which can be used in (109) to yield

t =
6px (t) t∗f + t∗

2

f vx (t)

2
(

3pf + t∗fvx (t)
) (111)

The result in (111) can then be applied to (110) to yield

t2 =
t∗

2

f

(
18px (t) pf − t∗

2

f v
2
x (t)

)
6pf

(
3pf + t∗fvx (t)

) (112)

54

Equation (112) can then be equated to the square of (111), which results in the expression

−
t∗

2

f

(
108p2x (t) pf − 108px (t) p2f + 9pf t

∗2
f v

2
x (t) + 2t∗

3

f v
3
x (t)

)
12pf (3pf + tfvx (t))

2 = 0. (113)

Observe that equation (113) is inconsistent if the denominator is equal to zero. It can be seen from (101)

that

t2 − t∗f t+
t∗

3

f vx (t)

6pf
= 0, (114)

which can be used to evaluate the times when vx (t) =
−3pf
t∗f

. Observe that

t2 − t∗f t+
t∗

3

f

6pf

(
−−3pf

t∗f

)
= t2 − t∗f t−

t∗
2

f

2
= 0, (115)

which has the solutions

t =


(

1−
√
3

2

)
t∗f < 0(

1+
√
3

2

)
t∗f > t∗f

. (116)

Therefore, given this result and the assumption that pc 6= 0, it can be seen that (113) is consistent ∀ t ∈ [0, t∗f].

Observe from (97) that t∗f 6= 0, which allows to simplify (113) to yield

2t∗
3

f v
3
x (t) + 9pf t

∗2
f v

2
x (t) + 108pfpx (t) (px (t)− pf) = 0. (117)

Therefore, the velocity trajectory satisfies (117) and an analytical velocity trajectory may be obtained in

terms of px(t) as a real root of this equation.

Lemma 3. The solutions of

ax3 + bx2 + cx+ d = 0, (118)

are equal to

x = y − b

3a
, (119)

where y is the solutions of

y3 + Py +Q = 0 (120)

and where

P = 3ac−b2
3a2

Q = 2b3−9abc+27a2d
27a3

(121)

Proof. Equation (118) is the general form of a cubic polynomial where (120) is known as the depressed cubic.

55

A proof of this result is provided in [71].

Lemma 4. Given a cubic equation

y3 + Py +Q = 0, (122)

the discriminant is

∆ = −
(
4P 3 + 27Q2

)
(123)

and if ∆ > 0, or equivalently 4P 3 + 27Q2 < 0, then there are three real solutions of (122). If ∆ = 0 then

there is either a double or a triple root.

Proof. A proof of this result is provided in [72].

Lemma 3 can be used to obtain the depressed cubic of (117) as

v̄3x (t) + P v̄x (t) +Q = 0, (124)

where

vx (t) = v̄x (t)− 3pf
2tf

P = − 27p2f

4t∗
2

f

Q (px (t)) =
27pf(8p2x(t)−8px(t)pf+p

2
f)

4t∗
3

f

Q (t) =
27p3f

(
32t6−96t∗f t

5+72t∗
2

f t4+16t∗
3

f t3−24t∗
4

f t2+t∗
6

f

)
4t∗

9

f

. (125)

∆ (t) = −
(
4P 3 + 27Q2

)
= −

19683p6f t
2(2t−t∗f)

2
(2t−3t∗f)(t−t

∗
f)

2
(2t+t∗f)

(
2t2−2tt∗f−t

∗2
f

)2

t∗
18

f

. (126)

It can be seen that equation (126) is equal to zero when

t ∈

{
0,
t∗f
2
,

3

2
t∗f , t

∗
f ,−

1

2
t∗f ,−

t∗f
(
1−
√

3
)

2
,
t∗f
(
1−
√

3
)

2

}
(127)

Given that px(t) and vx(t) are known at the boundary times t = 0 and t = t∗f , it is necessary to investigate

the sign of the discriminant ∀ t ∈ (0, t∗f) to determine the real root(s) of (124). It can be seen from (127)

that, for the interval t ∈ (0, t∗f), there is at most one possible sign change of the discriminant and one point

when the discriminant is equal to zero. The sign of the discriminant for the time intervals t ∈ (0,
t∗f
2) and

t ∈ (
t∗f
2 , t
∗
f) is therefore investigated by evaluating ∆(t) at t =

t∗f
4 and t =

3t∗f
4 , which yields

∆

(
t∗f
4

)
= ∆

(
3t∗f
4

)
=

321521805p6f

262144t∗
6

f

> 0. (128)

56

From Lemma 4 it can be seen that there are 3 real solutions of (124).

Lemma 5. The roots of the depressed cubic

y3 + Py +Q = 0 (129)

are

yk = 2

√
−P

3
cos

accos
(

3Q
√
−3

2P
√
P

)
− 2πk

3

 . (130)

Proof. A proof of this result is provided in [73].

It can be seen from Lemma 5 that the solutions of (124) are

v̄x0
(px (t)) =

3|pf |
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

pf |pf |

)
3


v̄x1

(px (t)) =
3|pf |
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

pf |pf |

)
−2π

3


v̄x2

(px (t)) =
3|pf |
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

pf |pf |

)
−4π

3


. (131)

Then, using the relationships between v̄x(px(t)) and vx(px(t)) in (125), the solutions of vx(px(t)) in (113)

are obtained as

vx0
(px (t)) =

3|pf |
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

pf |pf |

)
3

− 3pf
2t∗f

vx1
(px (t)) =

3|pf |
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

pf |pf |

)
−2π

3

− 3pf
2t∗f

vx2
(px (t)) =

3|pf |
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

pf |pf |

)
−4π

3

− 3pf
2t∗f

. (132)

The boundary conditions of px(t) and vx(t) are then used to determine which solution in (132) is the one that

describes the velocity trajectory of the system. Applying the boundary conditions px(t) = 0 and vx(t) = 0

57

for t = 0 yields

vx0 (px (t))|t=0 =

6|pf |cos


π−acos

 pf

|pf |


3

−3pf
t∗f

=

 0 if pf > 0

− 9pf
2t∗f

if pf < 0

vx1 (px (t))|t=0 =

6|pf |cos


π+acos

 pf

|pf |


3

−3pf
t∗f

=

 0 if pf > 0

0 if pf < 0

vx2
(px (t))|t=0 =

−6|pf |cos


acos

 pf

|pf |


3

−3pf
t∗f

=

 −
9pf
2t∗f

if pf > 0

0 if pf < 0

(133)

Additionally, analysing the boundary conditions px(t) = pf and vx(t) = 0 for t = t∗f yields

vx0 (px (t))|t=t∗f =

6|pf |cos


π−acos

 pf

|pf |


3

−3pf
t∗f

=

 0 if pf > 0

− 9pf
2t∗f

if pf < 0

vx1 (px (t))|t=t∗f =

6|pf |cos


π+acos

 pf

|pf |


3

−3pf
t∗f

=

 0 if pf > 0

0 if pf < 0

vx2 (px (t))|t=t∗f =

−6|pf |cos


acos

 pf

|pf |


3

−3pf
t∗f

=

 −
9pf
2t∗f

if pf > 0

0 if pf < 0

(134)

Observe that no conclusion can be drawn from these results, since the velocity trajectory may be described

by either vx0(px(t)) or vx1(px(t)) if pf > 0, and it may be described by either vx1(px(t)) or vx2(px(t)) if

pf < 0. Therefore, we look at the point t =
t∗f
2 , where

px (t)|
t=

t∗
f
2

=
pf
2

vx (t)|
t=

t∗
f
2

=
3pf
2t∗f

(135)

are obtained from (101) and we compare these results with the points of the velocity trajectories in (132).

58

It can be seen that

vx0 (px (t))|
t=

t∗
f
2

=

6|pf |cos


acos

 pf

|pf |


3

−3pf
t∗f

=


3pf
2t∗f

if pf > 0

− 3pf
t∗f

if pf < 0

vx1 (px (t))|
t=

t∗
f
2

=

6|pf |cos


2π+acos

 pf

|pf |


3

−3pf
t∗f

=


− 3pf

t∗f
if pf > 0

− 3pf
t∗f

if pf < 0

vx2 (px (t))|
t=

t∗
f
2

=

−6|pf |cos


acos

π− pf

|pf |


3

−3pf
t∗f

=


− 3pf

t∗f
if pf > 0

3pf
2t∗f

if pf < 0

(136)

Therefore, the velocity trajectory can be expressed as a function of px(t) according to

vx (px (t)) =



3pf
t∗f

cos

 arccos

(
−

8p2x(t)−8px(t)pf+p2f

p2
f

)
3

− 3pf
2t∗f

if pf > 0

− 3pf
t∗f

cos

 arccos

(
8p2x(t)−8px(t)pf+p2f

p2
f

)
−4π

3

− 3pf
2t∗f

if pf < 0

(137)

Let the final state of the system be described by

xf =

[
1 0 0 0 0 0

]T
. (138)

The number of iterations of the Kinodynamic RRT* solver was selected as Niter = 1000, the cost-to-

go upper bound was selected as η = 1, and the reachability tuning parameter as γ = 1000. The following

simulation results were obtained using MATLAB R2018a on an Intel Core i5 2.9 GHz processor with 16GB of

RAM. Figure 13 shows the optimal state trajectory and compares it with the approximate solution obtained

using Kinodynamic RRT*. The initial state is shown as the green diamond and the final state is shown

as the red diamond. The optimal state trajectory is described by the green curve, which has a trajectory

cost of 2.7464 m2

s3 . The first approximate solution of the Kinodynamic RRT* algorithm was obtained in

4 iterations. This result is shown in blue, which has a cost of 2.7978 m2

s3 and represents an error of 1.9%.

This approximation was then improved as the solver iterated to the state trajectory shown in red, which

has a cost of 2.7896 m2

s3 and represents an error of 1.6%. The approximation was then improved three more

times, where the cost of each approximation is shown in the legend of Figure 13. The curve shown in purple

59

shows the final approximation obtained by the solver following the completion of 1000 iterations. It can be

seen that this approximation closely matches the optimal solution, and consists of an error of only 0.025%.

Figure 14 shows the optimal control input trajectory in green that produces the state trajectory shown in

green in Figure 13. Additionally, the approximate control input trajectory obtained from the Kinodynamic

RRT* algorithm is shown in black, which produces the state trajectory shown in purple in Figure 13. Figure

15 shows T , where the initial state is shown as the green diamond and the final state is shown as the red

diamond, the vertices of the graph are represented by the points, and the solid curves describe the state

trajectory components of each edge. Furthermore, the approximate solution obtained by the solver is shown

as the solid green curve. From these results it can be seen that the Kinodynamic RRT* quickly obtains an

approximate solution of the optimal control problem, which is iteratively improved and converges toward

the optimal solution.

Figure 13: 1D double integrator: optimal state and Kinodynamic RRT* approximate state trajectories.

60

Figure 14: 1D double integrator: optimal state and Kinodynamic RRT* approximate input trajectories.

Figure 15: 1D double integrator: Kinodynamic RRT* tree in the state space.

61

2.3.2.2 Example

An optimal trajectory planning problem in a non-convex bounded state space is now addressed, which is

solved using optimal control theory and Kinodynamic RRT*. The system’s state space is

X =

x ∈ R6 :
−100 ≤ px, py ≤ 100, 0 ≤ pz ≤ 100,

‖v‖ ≤ 20

 (139)

and the obstacle space is described by

X obs =
i=4⋃
i=1

j=4⋃
j=1

X obsij , (140)

where

X obsij =

x ∈ R6 :

∥∥∥∥∥∥∥
px + 100− 40i

py + 100− 40j


∥∥∥∥∥∥∥ < 10

 . (141)

The obstacle free space X free is obtained according to (40). The initial and final states of the system are

x0 =

[
−40 −40 40 0 0 0

]T
xf =

[
40 40 80 0 0 0

]T , (142)

and the affine term is

c =

[
cTv 0 0 −g

]T
cv =

[
3 −2 0.5

]T
, (143)

where g = 9.8 m
s2 is the acceleration due to gravity and the vector cv describes a constant wind velocity in

meters per second. Finally, the control input weighting matrix is R = I3 and the cost index is CI = 10. The

maximum number of iterations was selected as Niter = 3000, the cost-to-go upper bound as η = 300, and the

reachability region tuning parameter as γ = 1000. The simulation is performed in MATLAB R2018a on an

Intel Core i5 2.9 GHz processor with 16GB of RAM. Figures 16 and 17 show the RRT* tree in the position

subspace of X . In these figures the red cylinders represent X obs, the solid black curves show the position

vectors of the set of edges E, the smaller black circles show the position of the set of vertices V , the green

diamond indicates p0, the red diamond indicates pf , and the green curve represents the optimal position

trajectory. Figure 18 shows the optimal position trajectory, where the blue vectors indicate the constant

wind velocity vector cv. Figure 19 shows the velocity vector components of the optimal state trajectory,

the optimal velocity magnitude, and the maximum velocity. Figures 20 – 22 present the optimal control

input trajectory components, and Figure 23 shows the optimal control input trajectory magnitude. In these

figures the solid lines describe the optimal control input of each trajectory segment, and the dashed lines

62

represent discontinuities between two segments.

These results demonstrate how the Kinodynamic RRT* trajectory planning algorithm is capable of

obtaining an approximate solution of optimal control problems with non-convex state constraints where

optimal control theory struggles. Obtaining a solution of (69) using optimal control theory directly is

very difficult. However, combining optimal control theory with Kinodynamic RRT* provides the ability to

efficiently obtain approximate solutions of such problems.

Figure 16: Double integrator with drift: RRT* tree in position subspace.

63

Figure 17: Double integrator with drift: RRT* tree in position subspace top-down view.

Figure 18: Double integrator with drift: optimal position trajectory.

64

Figure 19: Double integrator with drift: optimal velocity trajectory.

Figure 20: Double integrator with drift: optimal control input trajectory u∗x(t).

65

Figure 21: Double integrator with drift: optimal control input trajectory u∗y(t).

Figure 22: Double integrator with drift: optimal control input trajectory u∗z(t).

66

Figure 23: Double integrator with drift: optimal control input trajectory magnitude.

67

Chapter 3

Optimal Control of Input Constrained

Affine Systems

Numerous contributions in the open literature have been made toward improving RRT*, but the majority

of these extensions assume systems with unconstrained control inputs. However, in reality, the majority of

systems are subject to such constraints. This chapter addresses this gap in the literature by proposing a

modified Kinodynamic RRT* that solves optimal control problems for affine systems with non-convex state

spaces that are subject to convex control input constraints. Optimal control theory is used to obtain the

explicit unconstrained control input trajectory to steer the system between arbitrary states such that the

resulting trajectory minimizes a cost. Then, two augmented RRT* functions are proposed to evaluate if

and when the control input constraints of the system are violated. As a result of this, all edges of the

modified Kinodynamic RRT* trajectory planner are guaranteed to verify the control input constraints of

the system. The remainder of this chapter is organized as follows. First, the optimal trajectory planning

problem is formulated for affine systems with non-convex state spaces that are subject to convex control

input constraints. This problem is formulated as an extension of that in (69). Since Kinodynamic RRT*

does not consider the control input constraints of the system the problem is solved by proposing an extension

of two RRT* functions. Finally, a modified version of the problem discussed in Section 2.3.2.2 is presented

where the system’s control input is assumed to be constrained by a maximum control input magnitude,

which cannot be solved using the Kinodynamic RRT* that was discussed in Chapter 2.

3.1 Problem Formulation

The system’s state is denoted by the vector x ∈ Rn and its control input is denoted by the vector u ∈ Rm,

where n,m ∈ N>0. The system’s state space is denoted by X ⊆ Rn, and its control input space is denoted

by U ⊂ Rm, where U is assumed to be a closed convex set. The state transition equation of the system is

assumed to be of the form

ẋ = Ax+Bu+ c, (144)

68

where A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn, and the pair (A,B) is assumed to be controllable. Furthermore, given

a control input trajectory u(t), a state trajectory x(t), and a final time tf , the cost is evaluated as

C (x(t),u(t), tf) =

tf∫
0

(
1

2
u (τ)

T
Ru (τ) + CI

)
dτ, (145)

where R ∈ Rm×m is the control input weighting matrix and is assumed to be symmetric and positive definite,

and CI ∈ R>0 is the cost index. It is assumed that there is a subspace of X to be avoided, which is described

by the open set X obs ⊂ X . The obstacle-free subspace of X can then be described by

X free = X \X obs. (146)

Given an initial state x0 ∈ X free and final state xf ∈ X free the optimal control problem is defined as

min
u(t),tf

tf∫
0

(
1
2u (τ)

T
Ru (τ) + CI

)
dτ

s.t. ẋ (t) = Ax (t) +Bu (t) + c

x : [0, tf]→ X free

u : [0, tf]→ U

ψ(x0,xf) = 0

, (147)

where the boundary conditions are described by

ψ(x0,xf) =

 x(0)− x0

x(tf)− xf

 . (148)

3.2 Problem Solution

As discussed in Chapter 2, optimal control theory has had success in solving optimal control problems.

However, this theory struggles at obtaining a solution when the system is subject to state or control input

constraints - particularly when these constraints cause the problem to be non-convex. As a consequence,

many alternative approaches have been developed to solve such problems. Kinodynamic RRT* is one such

technique, which is an iterative solver that uses optimal control theory and a tree to obtain approximate

solutions of problems of the form (69). A brief overview of the methodology of Kinodynamic RRT* is

presented next, while the algorithm is described in detail in Section 2.2. The tree is denoted by T , which is

comprised of a set of vertices V ⊂ X free, and a set of edges E. A detailed definition of the tree, vertices, and

69

edges is presented in Definition 1 of Section 2.2.2. The tree is rooted at x0 and is iteratively grown through

X free. At each iteration the sampling function generates a new state sample xrand ∈ X free. Then, the vertex

vmin ∈ V is obtained from the nearest vertex function. The unconstrained optimal control input trajectory,

unconstrained optimal state trajectory, and the final time to steer the system from vmin to xrand are then

obtained from the steering function. Then, the local trajectory function is used to establish a new candidate

state xnew along the unconstrained optimal state trajectory from vmin to xrand such that the cost-to-go from

vmin to xnew is maximized while constrained by an upper bound η ∈ R>0. A description of the parameter

η is presented in Section 2.2.2.1. If the trajectory from vmin to xnew is evaluated as collision-free by the

collision-checker function, then xnew is added to V and an edge characterised by the unconstrained optimal

trajectory components to steer the system from vmin to xnew is added to E. Two optimization steps follow.

The first determines the best v ∈ V to connect with xnew. The second attempts to minimize the cost of the

vertices in V due to the addition of xnew to V . After a given number of iterations, Niter ∈ R>0, the planner

attempts to connect xf with T . If this connection fails then no solution is obtained. If the connection

is successful, then the solution is obtained as the concatenation of the edges from x0 to xf . A detailed

description of all functions is provided in Definition 2 of Section 2.2.2. Despite the success of Kinodynamic

RRT*, the algorithm is designed for systems where U = Rm. The problem (147) will therefore be solved

using a modified Kinodynamic RRT*. The modifications will be in two functions from Definition 2: the

collision-checker function, and the local trajectory function.

Definition 4. Steering Function: Given an initial state x1 ∈ X and final state x2 ∈ X , the steering function

for the optimal control problem described in (147) obtains the unconstrained optimal control input trajectory

and the final time of the trajectory as the solution of

min
u1,2(t),tf1,2

tf1,2∫
0

(
1
2u1,2 (τ)

T
Ru1,2 (τ) + CI

)
dτ

s.t. ẋ1,2 (t) = Ax1,2 (t) +Bu1,2 (t) + c

ψ(x1,x2) = 0

. (149)

The unconstrained optimal state trajectory x∗1,2 (t) is then obtained by integrating (144) from t = 0 to t = t∗f1,2

for the control input u∗1,2(t), where u∗1,2(t) and t∗f1,2 are the solutions of (149). �

Lemma 6. Using the collision-checker function in Algorithm 2 on page 30, all edges in E are characterized

by trajectories that satisfy the constraints for the collision-checker function to return true.

Proof. Observe in Algorithm 2 that unconstrained optimal trajectories are obtained from the steering func-

tion and then used to define edges. However, immediately prior to the generation of these edges, the

70

trajectories are required to be validated by the collision-checker function. Therefore, if an edge is added

to E, then its trajectory components satisfy the constraints necessary for the collision-checker function to

return true.

The collision-checker function in Definition 2 of Section 2.2.2 considers only unconstrained optimal state

trajectories, as shown in (49). However, it can be seen from Lemma 6 that, if the condition for the collision-

checker function to return true also requires that the control input trajectory satisfy u∗1,2(t) ∈ U , ∀ t ∈

[0, t∗f1,2], where u∗1,2(t) is the unconstrained optimal control input trajectory and t∗f1,2 is the final time of

the trajectory, then all edges in E would also be characterized by control input trajectories that satisfy the

control input constraints of the system. An augmented collision-checker function is therefore proposed in

Definition 5 to consider the control input constraints of the system.

Definition 5. Augmented Collision-Checker Function: Given an unconstrained optimal control input tra-

jectory u∗1,2(t), unconstrained optimal state trajectory x∗1,2(t), and final time t∗f1,2 obtained from the steering

function in Definition 4 to steer the system from x1 ∈ X to x2 ∈ X , the proposed augmented collision-checker

function

β ← AugCollisionFree(u∗1,2(t),x∗1,2(t), t∗f1,2)

returns the boolean

β =


true, if

x∗1,2 : [0, t∗f1,2]→ X free,

u∗1,2 : [0, t∗f1,2]→ U

false, otherwise

. (150)

�

It can be seen from Lemma 6 that, if the augmented collision-checker function in Definition 5 is used in

place of that from Definition 2 of Section 2.2.2 in Algorithm 2 on page 30, then all edges in E would be

characterized by optimal state trajectories that satisfy the obstacle-avoidance state constraints of the optimal

control problem, as well as optimal control input trajectories that satisfy the control input constraints of the

system. However, it may be difficult to generate a random state space sample xrand such that the optimal

control input trajectory from vmin ∈ V to xrand satisfies the constraints for the augmented collision-checker

function to return true. The parameter η ∈ R>0, which is discussed in Section 2.2.2.1, is used with the local

trajectory function in Definition 2 of Section 2.2.2 to address a similar issue related to the obstacle-avoidance

state constraints of the problem. This is accomplished by steering the system from vmin toward xrand up to

a maximum cost η. An augmentation of the local trajectory function is now proposed to also consider the

control input constraints of the system. The augmented function steers the system from vmin toward xrand

71

up to a maximum cost η or up to the time instant when the control input trajectory reaches the boundary

of U , whichever occurs first. If the resulting control input trajectory lies outside of U then it can be seen

from Lemma 6 that this trajectory will be discarded by the planner.

Definition 6. Augmented Local Trajectory Function: Given an unconstrained optimal control input trajec-

tory u∗1,2(t), unconstrained optimal state trajectory x∗1,2(t), and final time t∗f1,2 obtained from the steering

function in Definition 4 to steer the system from x1 ∈ X to x2 ∈ X , and an upper bound on the cost-to-go

η ∈ R>0, the augmented local trajectory function returns the unconstrained optimal control input and state

trajectories ũ∗1,2(t) = u∗1,2(t) and x̃∗1,2(t) = x∗1,2(t), ∀ t ∈ [0, t̃∗f1,2], and the final time t̃∗f1,2 , where

t̃∗f1,2 = argmax
τ∈
(
0,t∗f1,2

]C (x∗1,2(t),u∗1,2(t), τ
)

s.t. C
(
x∗1,2(t),u∗1,2(t), τ

)
≤ η

u∗1,2 : [0, τ]→ U

(151)

If no solution of (151) exists then the augmented local trajectory function assigns t̃∗f1,2 = 0. The augmented

local trajectory function is denoted by

x̃∗(t), ũ∗(t), t̃∗f ← AugLocalTraj(x∗(t),u∗(t), t∗f , η)

�

The conditions that are required to be satisfied for a solution of (151) to exist are now studied. Let

u∗1,2(t), x∗1,2(t), and t∗f1,2 denote the unconstrained optimal control input and state trajectories and the final

time to steer the system from x1 ∈ X to x2 ∈ X . From Theorem 6 it can be seen that, for t̃∗f1,2 ∈ [0, t∗f1,2],

the function C(x∗1,2(t),u∗1,2(t), t̃∗f1,2) is a strictly increasing function that satisfies

0 ≤ C(x∗1,2(t),u∗1,2(t), t̃∗f1,2) ≤ C(x∗1,2(t),u∗1,2(t), t∗f1,2), ∀ t̃∗f1,2 ∈ [0, t∗f1,2]. (152)

Because of this, and given the assumption that η > 0, (151) is equivalent to

t̃∗f1,2 = argmax
τ∈
(
0,t∗f1,2

] τ
s.t. C

(
x∗1,2(t),u∗1,2(t), τ

)
≤ η

u∗1,2 : [0, τ]→ U

(153)

72

Let

tη1,2 = argmax
τ∈
(
0,t∗f1,2

] τ
s.t. C

(
x∗1,2(t),u∗1,2(t), τ

)
≤ η

(154)

and

tu1,2 = argmax
τ∈
(
0,t∗f1,2

] τ
s.t. u∗1,2 : [0, τ]→ U

. (155)

It can be seen that (153) is equivalent to

t̃∗f1,2 = min
{
tη1,2 , tu1,2

}
s.t. (154)

(155)

. (156)

Since C(x∗1,2(t),u∗1,2(t), t̃∗f1,2) is a strictly increasing function that is bounded according to (152), it can be

seen that, if η ∈ R>0 then there is a solution of (154). Therefore, if η ∈ R>0 and a solution of (155) exists,

then a solution of (151) is guaranteed to exist.

Theorem 10. Using the collision-checker function from Definition 5 and the local trajectory function from

Definition 6 in place of those from Definition 2 on page 20, all edges in E are characterized by optimal

trajectories.

Proof. Observe from Theorem 3 on page 14 that the control input, state trajectories, and the final time

returned by the augmented local trajectory function in Definition 6 are the unconstrained optimal trajectories

and final time to steer the system from x̃∗1,2(0) to x̃∗1,2(t̃∗f1,2). Furthermore, from the definition of the

augmented collision-checker function in Definition 5 and the result of Lemma 6 it can be seen that states

and trajectories are only added to T if the trajectory satisfies both the state and control input constraints

of (147). Therefore, it can be seen that any state in V can feasibly be reached from x0 along a sequence

of edges in E such that each edge in the sequence is characterised by (i) an unconstrained optimal state

trajectory that satisfies the collision-avoidance state constraints of (147) and (ii) an unconstrained optimal

control input trajectory that satisfies the control input constraints of (147). If the unconstrained optimal

state and control input trajectories satisfy the state and control input constraints of (147), then they are

also the optimal state and control input trajectories of the constrained optimal control problem because the

cost is the same. As a result of this, all edges in E are characterised by optimal trajectories.

It can be seen from Algorithm 1 on page 29 that the state and control input trajectories obtained by the

73

Kinodynamic RRT* to steer the system from x0 to xf consist of piecewise continuous optimal trajectories.

Let the the approximate solution of (147) obtained by Kinodynamic RRT* be described by K piecewise

continuous optimal trajectories, where each continuous optimal state trajectory piece is denoted by x∗i (t)

and each continuous optimal control input trajectory piece is denoted by u∗i (t), where i ∈ {1, 2, . . . ,K}.

Also, let t∗fi denote the final time of the i-th continuous trajectory piece. The solution of (147) obtained

using Kinodynamic RRT* may therefore be described according to

x∗(t) =



x∗1(t) , t ∈
[
0, t∗f1

)
x∗2(t− t∗f1) , t ∈

[
t∗f1 , t

∗
f1

+ t∗f2

)
...

...
...

x∗K(t−
K−1∑
i=1

t∗fi) , t ∈
[
K−1∑
i=1

t∗fi ,
K∑
i=1

t∗fi

] ,

u∗(t) =



u∗1(t) , t ∈
[
0, t∗f1

)
u∗2(t− t∗f1) , t ∈

[
t∗f1 , t

∗
f1

+ t∗f2

)
...

...
...

u∗K(t−
K−1∑
i=1

t∗fi) , t ∈
[
K−1∑
i=1

t∗fi ,
K∑
i=1

t∗fi

] ,

t∗f =
K∑
i=1

t∗fi

. (157)

It can be seen from Theorem 10 that x∗i (t) and u∗i (t), ∀ t ∈ [0, t∗fi], ∀ i ∈ {1, 2, . . . ,K} are the optimal

trajectories of the constrained optimal control problem to steer the system from x∗i (0) to x∗i (t
∗
fi

). However,

this does not imply that the concatenation of these trajectories is also an optimal trajectory of the constrained

optimal control problem. Namely, this does not imply that x∗(t) and u∗(t), ∀ t ∈ [0, t∗f] are optimal

trajectories from x∗(0) to x∗(t∗f). Because of this, the solution described by (157) is an approximate solution.

The modified Kinodynamic RRT* is shown in Algorithm 13 on page 75. The augmented collision-checker

function from Definition 5 is used in place of that from Definition 2 on lines 11, 19, 27, and 39. The

augmented local trajectory function from Definition 6 is used in place of that from Definition 2 on line 9.

74

Algorithm 13 Modified RRT* algorithm

1: function RRT*(x0, xf , Niter, η, γ)
2: V ← {x0};
3: E ← ∅;
4: for i = 1 to Niter do
5: xrand ← Sample();
6: vmin ← Nearest(V ,xrand);
7: x∗(t),u∗(t), t∗f ← Steer(vmin,xrand);

8: x̃∗(t), ũ∗(t), t̃∗f ← AugLocalTraj(x∗(t),u∗(t), t∗f , η);

9: xnew ← x̃∗(t̃∗f);

10: if AugCollisionFree(ũ∗(t), x̃∗(t), t̃∗f) then

11: enew ← (x̃∗(t), ũ∗(t), t̃∗f);

12: V ← V ∪ {xnew};
13: E ← E ∪ {enew};
14: cmax = min{η, γ(log(|V |)

|V |)
1
n };

15: Vmax ← Nearby(V \ {xnew},xnew, cmax);
16: for each v ∈ Vmax do
17: x∗(t),u∗(t), t∗f ← Steer(v,xnew);

18: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

19: etemp ← (x∗(t),u∗(t), t∗f);

20: ce ← Cost(etemp);
21: if T .Cost(v) + ce < T .Cost(xnew) then
22: E ← E ∪ {etemp} \ {enew};
23: enew ← etemp;

24: for each v ∈ Vmax do
25: x∗(t),u∗(t), t∗f ← Steer(xnew,v);

26: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

27: etemp ← (x∗(t),u∗(t), t∗f);

28: ce ← Cost(etemp);
29: if T .Cost(xnew) + ce < T .Cost(v) then
30: eold ← T .GetInEdge(v);
31: E ← E ∪ {etemp} \ {eold};
32: cmax = min{η, γ(log(|V |)

|V |)
1
n };

33: Vmax ← Nearby(V ,xf , cmax);
34: cf ← T .Cost(xf);
35: for each v ∈ Vnearby do
36: x∗(t),u∗(t), t∗f ← Steer(v,xf);

37: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

38: etemp ← (x∗(t),u∗(t), t∗f);

39: ce ← Cost(etemp);
40: if T .Cost(v) + ce < cf then
41: cf ← T .Cost(v) + ce;
42: enew ← etemp;

43: if cf 6=∞ then
44: V ← V ∪ {xf};
45: E ← E ∪ {enew};
46: x∗(t),u∗(t), t∗f ← GetSol(T ,x0,xf);

47: return x∗(t),u∗(t), t∗f
48: return fail ;

75

3.3 Optimal Trajectory Planning: Input Constrained Double Integrator with

Drift

This section addresses optimal trajectory planning of a double integrator with drift such that the optimal

trajectory minimizes a cost trading off control effort and time. The system’s state is

x =

p
v

 , (158)

where p = [px, py, pz]
T ∈ R3 is the system’s position in meters, and v = [vx, vy, vz]

T ∈ R3 is its velocity in

meters per second. The system’s control input is u = [ux, uy, uz]
T ∈ R3, which is the system’s acceleration

in meters per second squared. The control input of the system is assumed to be constrained in magnitude

such that

U =
{
u ∈ R3 : ‖u‖ ≤ umax

}
, (159)

where ‖·‖ denotes the 2-norm and umax ∈ R>0. The state transition equation of the system is described by

ẋ = Ax+Bu+ c, A =

03 I3

03 03

 , B =

03

I3

 , (160)

where c = [cTv , c
T
a]T , cv, ca ∈ R3 are the velocity and acceleration components of the drift term, and where

0k and Ik denote a k×k zero and identity matrix for k ∈ N>0, respectively. Given a control input trajectory

u(t), a state trajectory x(t), and a final time tf , the cost of the trajectory is evaluated according to (145),

where R ∈ R3×3 is assumed to be symmetric and positive definite and CI ∈ R>0. Three functions are

required to be defined so that Kinodynamic RRT* may be used to solve (147): the cost-to-go function,

the steering function, and the local trajectory function. The cost-to-go function and the steering function

have previously been defined in Section 2.3.2. Therefore, only the augmented local trajectory function from

Definition 6 is required to be designed in this section.

Given an initial state x1 ∈ X and a final state x2 ∈ X , let u∗1,2(t), x∗1,2(t), and t∗f1,2 denote the

unconstrained optimal control input and state trajectories and the optimal final time to steer the system

from x1 to x2. The final time t̃∗f1,2 is obtained from the augmented local trajectory function as the solution

of (151). It is shown in Section 3.2 that the solution of (151) can be obtained according to

t̃∗f1,2 = min
{
tη1,2 , tu1,2

}
, (161)

76

where tη1,2 is given by (154) and tu1,2 is given by (155). The solution of (154) is discussed in Section 2.3.2,

where tη1,2 is obtained as the positive real solution of

C3t
3
η1,2 + C2t

2
η1,2 + C1tη1,2 − η̃ = 0, (162)

where the coefficients Ci, i ∈ {1, 2, 3}, are given by (79) and η̃ is given by (83). It can also be seen that,

given (159), (155) is equivalent to

tu1,2 = argmax
τ∈
(
0,t∗f1,2

] τ
s.t. u∗

T

1,2 (t)u∗1,2 (t) ≤ u2max, ∀ t ∈ [0, τ]

. (163)

Using the expression of u∗1,2 (t) from (72) yields

u∗
T

1,2 (t)u∗1,2 (t) = U2t
2 + U1t+ U0, (164)

where

U2 =


x1

x2

c


T



144

t∗
6

f1,2

I3
72

t∗
5

f1,2

I3 − 144

t∗
6

f1,2

I3
72

t∗
5

f1,2

I3
144

t∗
5

f1,2

I3 03

72

t∗
5

f1,2

I3
36

t∗
4

f1,2

I3 − 72

t∗
5

f1,2

I3
36

t∗
4

f1,2

I3
72

t∗
4

f1,2

I3 03

− 144

t∗
6

f1,2

I3 − 72

t∗
5

f1,2

I3
144

t∗
6

f1,2

I3 − 72

t∗
5

f1,2

I3 − 144

t∗
5

f1,2

I3 03

72

t∗
5

f1,2

I3
36

t∗
4

f1,2

I3 − 72

t∗
5

f1,2

I3
36

t∗
4

f1,2

I3
72

t∗
4

f1,2

I3 03

144

t∗
5

f1,2

I3
72

t∗
4

f1,2

I3 − 144

t∗
5

f1,2

I3
72

t∗
4

f1,2

I3
144

t∗
4

f1,2

I3 03

03 03 03 03 03 03




x1

x2

c



= 36

t∗
6

f1,2

(
2 (p1 − p2) + t∗f1,2 (2cv + v1 + v2)

)2

(165a)

77

U1 =


x1

x2

c


T



− 144

t∗
5

f1,2

I3 − 84

t∗
4

f1,2

I3
144

t∗
5

f1,2

I3 − 60

t∗
4

f1,2

I3 − 144

t∗
4

f1,2

I3 − 12

t∗
3

f1,2

I3

− 84

t∗
4

f1,2

I3 − 48

t∗
3

f1,2

I3
84

t∗
4

f1,2

I3 − 36

t∗
3

f1,2

I3 − 84

t∗
3

f1,2

I3 − 6

t∗
2

f1,2

I3

144

t∗
5

f1,2

I3
84

t∗
4

f1,2

I3 − 144

t∗
5

f1,2

I3
60

t∗
4

f1,2

I3
144

t∗
4

f1,2

I3
12

t∗
3

f1,2

I3

− 60

t∗
4

f1,2

I3 − 36

t∗
3

f1,2

I3
60

t∗
4

f1,2

I3 − 24

t∗
3

f1,2

I3 − 60

t∗
3

f1,2

I3 − 6

t∗
2

f1,2

I3

− 144

t∗
4

f1,2

I3 − 84

t∗
3

f1,2

I3
144

t∗
4

f1,2

I3 − 60

t∗
3

f1,2

I3 − 144

t∗
3

f1,2

I3 − 12

t∗
2

f1,2

I3

− 12

t∗
3

f1,2

I3 − 6

t∗
2

f1,2

I3
12

t∗
3

f1,2

I3 − 6

t∗
2

f1,2

I3 − 12

t∗
2

f1,2

I3 03




x1

x2

c



= − 12

t∗
5

f1,2

(
2 (p1 − p2) + t∗f1,2 (2cv + v1 + v2)

)(
6 (p1 − p2) + t∗f1,2 (6cv + 4v1 + 2v2) + t∗

2

f1,2
ca

)

(165b)

U0 =


x1

x2

c


T



36

t∗
4

f1,2

I3
24

t∗
3

f1,2

I3 − 36

t∗
4

f1,2

I3
12

t∗
3

f1,2

I3
36

t∗
3

f1,2

I3
6

t∗
2

f1,2

I3

24

t∗
3

f1,2

I3
16

t∗
2

f1,2

I3 − 24

t∗
3

f1,2

I3
8

t∗
2

f1,2

I3
24

t∗
2

f1,2

I3
4

t∗f1,2
I3

− 36

t∗
4

f1,2

I3 − 24

t∗
3

f1,2

I3
36

t∗
4

f1,2

I3 − 12

t∗
3

f1,2

I3 − 36

t∗
3

f1,2

I3 − 6

t∗
2

f1,2

I3

12

t∗
3

f1,2

I3
8

t∗
2

f1,2

I3 − 12

t∗
3

f1,2

I3
4

t∗
2

f1,2

I3
12

t∗
2

f1,2

I3
2

t∗f1,2
I3

36

t∗
3

f1,2

I3
24

t∗
2

f1,2

I3 − 36

t∗
3

f1,2

I3
12

t∗
2

f1,2

I3
36

t∗
2

f1,2

I3
6

t∗f1,2
I3

6

t∗
2

f1,2

I3
4

t∗f1,2
I3 − 6

t∗
2

f1,2

I3
2

t∗f1,2
I3

6
t∗f1,2

I3 I3




x1

x2

c



= 1

t∗
4

f1,2

(
6 (p1 − p2) + t∗f1,2 (6cv + 4v1 + 2v2) + t∗

2

f1,2
ca

)2

(165c)

It can be seen from (165) that U0 ≥ 0, U2 ≥ 0, and U2
1 = 4U2U0. The set of time instants when the inputs

are at the boundary of U can be obtained as the real solutions of

U2t
2 + U1t+ U0 − u2max = 0. (166)

It can be seen from (164) that the control input magnitude at t = 0 is equal to U0. Therefore, if U0 > u2max

then u∗1,2(0) 6∈ U and no solution of (163) exists. Given that U2
1 = 4U2U0, if U2 = 0 then U1 = 0 and (164)

is constant and equal to U0 ∀ t ∈ [0, t∗f1,2]. For this case the solution of (163) is tu1,2
= t∗f1,2 if U0 ≤ u2max and

does not exist otherwise. If U2 6= 0, which implies that U2 > 0 since U2 ≥ 0, then the time instants that the

control inputs are at the boundary of U can be evaluated as

t =
−U1

2U2
±
√
U2
1 − 4U2 (U0 − u2max)

2U2
. (167)

78

If U2 > 0 and U0 < u2max then, given that U2
1 = 4U2U0, it can be seen that (167) simplifies to

t =
−U1 ± 2umax

√
U2

2U2
. (168)

Furthermore, it can be seen from (164) that the control input magnitude at t = 0 is an interior point of U

and there exists a positive real solution of (167). Since U2 > 0 it can be seen that the solution of (163) is

tu1,2 = −U1−2umax

√
U2

2U2
if −U1 − 2umax

√
U2 > 0

tu1,2 = −U1+2umax

√
U2

2U2
if |U1| < 2umax

√
U2

, (169)

and no solution exists otherwise. If U0 = u2max the the control input magnitude is at the boundary of U at

t = 0 and (167) simplifies to

t =
−U1

2U2
± U1

2U2
. (170)

Since U2 > 0 it can be seen that the solution of (163) for this case is tu1,2
= −U1

U2
if U1 < 0, and no solution

exists otherwise. In summary, the positive real solution of (163) can therefore be obtained as

tu1,2
=



t∗f1,2 if U2 = U1 = 0, U0 ≤ u2max
−U1−2umax

√
U2

2U2
if U2 > 0, U1 < −2umax

√
U2, U0 < u2max

−U1+2umax

√
U2

2U2
if U2 > 0, |U1| < 2umax

√
U2, U0 < u2max

−U1

U2
if U2 > 0, U1 < 0, U0 = u2max

no solution if otherwise

. (171)

3.3.1 Validation and Study of Optimality

This section shows that the modified Kinodynamic RRT* algorithm consists of edges that are charac-

terized by trajectories that satisfy the state constraints of the system and that the Kinodynamic RRT*

trajectory planner from Chapter 2 does not. The system’s state space is described by

X =

x ∈ R6 :
−1 ≤ px ≤ 2, py = 0, pz = 0,

|vx| ≤ 1, vy = 0, vz = 0

 (172)

and the obstacle space is described by X = ∅, which implies that X free = X . Additionally, the control

input space is

U = {‖u‖ ≤ 1.5} . (173)

79

The initial state and final state are

x0 =

[
0 0 0 0 0 0

]T
xf =

[
1 0 0 0 0 0

]T (174)

and the drift term is

c =

[
0 0 0 0 0 0

]T
. (175)

Finally, the control input weighting matrix is R = I3 and the cost index is CI = 1.

The unconstrained optimal control solution was derived in Section 2.3.2.1, where it can be seen that the

resulting state and control input trajectories satisfy the state and control input constraints of the problem

proposed in this section. As a consequence of this, the resulting unconstrained optimal control solution of

Section 2.3.2.1 is also the optimal control solution of the constrained problem. The number of iterations of the

Kinodynamic RRT* solver was selected as Niter = 1000, the cost-to-go upper bound was selected as η = 1,

and the reachability tuning parameter as γ = 1000. It can be seen that the problem addressed in this section

is the same as that in Section 2.3.2.1, except that the control input of the system is constrained to belong to

U . The simulation is performed in MATLAB R2018a on an Intel Core i5 2.9 GHz processor with 16GB of

RAM. Figure 24 shows the optimal state trajectory and compares it with the approximate solution obtained

using the modified Kinodynamic RRT*. The initial state is shown as the green diamond and the final state

is shown as the red diamond. The optimal state trajectory is described by the green curve, which has a

trajectory cost of 2.7464 m2

s3 . The first approximate solution obtained by the modified Kinodynamic RRT*

algorithm was obtained in 94 iterations. This result is shown in dark blue, which has a cost of 2.8008 m2

s3

and represents an error of 2%. This approximation was then improved as the solver continued to iterate and

found the state trajectory shown in red, which has a cost of 2.7896 m2

s3 and represents an error of 0.4%. The

approximation was then improved four more times, where the cost of each approximation is shown in the

legend of Figure 24. The curve in light blue shows the final approximation found by the solver following the

completion of 1000 iterations. It can be seen that this approximation closely matches the optimal solution

and consists of an error of less than 0.004%. Figure 25 shows the optimal control input trajectory in green,

which produces the state trajectory shown in green in Figure 24. Additionally, the approximate control input

trajectory obtained from the modified Kinodynamic RRT* algorithm is shown in black, which produces the

state trajectory shown in light blue in Figure 24. Figure 26 shows T , where the initial state is shown as the

green diamond and the final state is shown as the red diamond, the vertices of the graph are represented

by the points, and the solid curves describe the state trajectory components of each edge. Finally, Figures

80

27 and 28 compare the edges of the modified Kinodynamic RRT* with those obtained from Section 2.3.2.1.

Each line segment in these figures describes an unconstrained optimal control input trajectory of an edge in

the tree. Segments of edges that satisfy the control input constraints described by U are shown in green,

whereas those that do not satisfy the constraints are shown in red. It can be seen from Figure 27 that, since

the Kinodynamic RRT* algorithm in Chapter 2 assumes unconstrained control inputs, many of the edges of

the tree do not satisfy the control input constraints described by U . However, it can be seen from Figure

28 that, due to the modifications that address systems with constrained inputs, all edges of the tree are

described by unconstrained optimal control input trajectories that satisfy the constraints described by U .

Figure 24: 1D double integrator: optimal state and Kinodynamic RRT* approximate state trajectories.

81

Figure 25: 1D double integrator: optimal state and Kinodynamic RRT* approximate input trajectories.

Figure 26: 1D double integrator: Kinodynamic RRT* tree in the state space.

82

Figure 27: 1D double integrator: Kinodynamic RRT* input trajectories.

Figure 28: 1D double integrator: modified Kinodynamic RRT* input trajectories.

83

3.3.2 Example

An optimal trajectory planning problem in a non-convex bounded state space subject to a maximum

control input magnitude is now addressed, which is solved using optimal control theory and Kinodynamic

RRT*. The system’s state space is constrained to

X =

x ∈ R6 :
−100 ≤ px, py ≤ 100, 0 ≤ pz ≤ 100,

‖v‖ ≤ 20

 (176)

and the obstacle space is described by

X obs =
i=4⋃
i=1

j=4⋃
j=1

X obsij , (177)

where

X obsij =

x ∈ R6 :

∥∥∥∥∥∥∥
px + 100− 40i

py + 100− 40j


∥∥∥∥∥∥∥ < 10

 . (178)

The obstacle free space X free is obtained according to (146). Additionally, the control input space is defined

according to (159), where umax is 20. The initial and final states of the system are

x0 =

[
−40 −40 40 0 0 0

]T
xf =

[
40 40 80 0 0 0

]T , (179)

and the affine term is set to

c =

[
wT 0 0 −g

]T
w =

[
3 −2 0.5

]T , (180)

where g = 9.8 m
s2 is the acceleration due to gravity and the vector w describes a constant wind velocity in

meters per second. Finally, the control input weighting matrix is chosen as R = I3 and the cost index as

CI = 10. Note that this is an extension of the problem addressed in Section 2.3.2.2 with the additional

constraint on the control input magnitude. The simulation is performed in MATLAB R2018a on an Intel

Core i5 2.9 GHz processor with 16GB of RAM.

The maximum number of iterations was selected as Niter = 3000, the cost-to-go upper bound as η = 300,

and the reachability region tuning parameter as γ = 1000. Figure 29 shows the position vector of the optimal

state trajectory as the solid black curve, where the points along the curve denote the vertices in V along the

optimal trajectory, the green diamond indicates p0, the red diamond indicates pf , the blue vectors represent

84

the constant wind velocity vector w, and the red cylinders represent the obstacles of X obs. Figure 30 shows

the velocity components of the optimal state trajectory, the optimal velocity magnitude, and the maximum

velocity. Figures 31 – 33 present the optimal control input trajectory components, and Figure 34 shows

the optimal control input trajectory magnitude. In these figures the solid lines describe the optimal control

input of each trajectory segment, the dashed lines represent discontinuities between two segments, the empty

circles show the terminal control input of a segment, and the filled circles show the initial control input of a

segment. Furthermore, in Figure 34 the maximum control input magnitude is shown as the dashed red line.

These results show how the modified Kinodynamic RRT* trajectory planner is capable of efficiently

planning optimal control trajectories of input constrained affine systems. In particular, the optimal control

input magnitude shown in Figure 34 can be compared with that of Figure 23 on page 67. The augmenta-

tions made to the Kinodynamic RRT* trajectory planner guarantee that all edges of the tree are described

by trajectories that satisfy both the obstacle-avoidance state constraints of the problem and the control

input constraints of the system. As a result, any solution obtained using the modified Kinodynamic RRT*

algorithm is guaranteed to satisfy the control input constraints of the system.

85

Figure 29: Input constrained double integrator with drift: optimal position trajectory.

Figure 30: Input constrained double integrator with drift: optimal velocity components.

86

Figure 31: Input constrained double integrator with drift: optimal control input u∗x(t).

Figure 32: Input constrained double integrator with drift: optimal control input u∗y(t).

87

Figure 33: Input constrained double integrator with drift: optimal control input u∗z(t).

Figure 34: Input constrained double integrator with drift: optimal control input magnitude.

88

Chapter 4

Directed Sampling for Kinodynamic RRT*

Slow convergence is a common problem for many trajectory planning algorithms. Although sampling-

based trajectory planners generally demonstrate faster convergence speeds than many alternative techniques,

they still struggle to meet the convergence speeds necessary for real-time trajectory planning of many systems.

Typically, random state space samples are generated according to a uniform distribution on X free, where

each component of the sample is generated independently of the others. As a consequence of this, a large

number of randomly generated state space samples lie in regions where a solution is unlikely to exist. This

results in wasted computation time expended on generating, connecting, and optimizing these samples.

This chapter proposes a sampling method that applies a Gaussian distribution to the position subspace

of the system’s state space, rather than a uniform distribution. This allows to direct the randomly generated

position vectors of the state samples to a region where a solution is likely to exist. As a result of this,

an approximate solution of the trajectory planning problem is obtained in less iterations and with less

computation time when compared with other approaches proposed in the literature. Furthermore, given a

maximum number of iterations or a maximum computation time, the approximate solution is on average a

lower cost approximation compared to other sampling methods. This chapter is organized as follows. First,

some preliminary notions are introduced. Then, the directed sampling problem is formulated and solved.

Finally, simulations results and a comparison with other techniques proposed in the literature are discussed.

4.1 Preliminaries

The diagonal matrix of a vector v ∈ Rn, where n ∈ N>0 and v = [v1, v2, . . . , vn], is described by the

function

Λ : Rn → Rn×n,Λ (v) =



v1 0 . . . 0

0 v2 . . . 0

...
...

. . .
...

0 . . . 0 vn


. (181)

89

Let p ∈ R3 denote a position in three-dimensional Euclidean space. The closed convex hull of an ellipsoid

in this space is described by

Ω (pc, S) =
{
p ∈ R3 : (p− pc)T S (p− pc) ≤ 1

}
, (182)

where pc ∈ R3 is the center of the ellipsoid and S ∈ R3×3 is a positive-definite symmetric matrix describing

the rotation and the semi-axis lengths of the ellipsoid. The matrix S may be described by

S = ReΛ (s)
−2
R−1e , (183)

where Re ∈ R3×3 is an orthogonal matrix that describes the rotation of the ellipsoid, and s = [sx, sy, sz]

is the vector of semi-axis lengths of the ellipsoid, where sx, sy, sz ∈ R>0 are the semi-axis lengths along

the ellipsoid’s x, y, and z-axes respectively. Let pr ∈ R3 denote a random vector of independent Gaussian

random variables with mean µ ∈ R3 and covariance Σ ∈ R3×3. The set of random position vectors of a

Gaussian distribution with mean µ and covariance Σ that have a probability of being generated that is less

than, or equal to, ρ is described by

Pr =
{
pr ∈ R3 : (pr − µ)

T
Σ−1 (pr − µ) ≤ χ2

3 (1− ρ)
}
, (184)

where χ2
3 (1− ρ) is the 3 degree of freedom chi-squared statistic for probability 1 − ρ. Therefore, given an

ellipsoid with center pc, vector of semi-axes lengths s, and rotation matrix Re, and the sampling probability

ρ, the ellipsoid can be transformed into a Gaussian distribution according to

µ = pc

Σ = 1
χ2
3(1−ρ)

R−1e Λ (s)
2
Re

. (185)

4.2 Problem Formulation

The system’s state is denoted by

x =

p
v

 , (186)

where p ∈ X p ⊂ R3 is the position and v ∈ X v ⊂ R3 is the velocity, and X p and X v are bounded closed

sets. The system’s state space is defined as the Cartesian product of the position and velocity spaces, or

90

equivalently

X = X p ×X v. (187)

There is a space of obstacles to be avoided, which is denoted by X obs and is assumed to be a bounded open

set. The obstacle-free space can then be defined as

X free = X \X obs. (188)

The position subspace of X free is denoted by X pfree and the velocity subspace is denoted by X vfree . Given

an initial state x0 ∈ X free with position p0 ∈ X pfree , a final state xf ∈ X free with position pf ∈ X pfree , the

scaling parameters ζy, ζz ∈ R>0, the ratio Υ ∈ (0, 1], and the probability ρ ∈ (0, 1) from (184), the problem

is to design a Kinodynamic RRT* sampling function that applies a Gaussian distribution in X p such that:

1. the mean of the distribution is at the midpoint between p0 and pf ,

2. the x-axis of the ellipsoid that describes the distribution is aligned with the vector pf − p0,

3. the ratio of the semi-axis length of the ellipsoid that describes the distribution along its y-axis to that

along its x-axis is ζy, and similarly the ratio of the semi-axis length along its z-axis to that along its

x-axis is ζz,

4. the ratio of the volume of the ellipsoid to the volume of X p is Υ,

5. the ratio of the number of randomly generated samples that are in the closed convex hull of the ellipsoid

to those are that not is ρ.

4.3 Problem Solution

The problem presented in Section 4.2 is solved by defining an ellipsoid in R3 that meets the design criteria

1 – 4, where an example is carried through this section to demonstrate the geometric manipulation of the

ellipsoidal region. Then, the ellipsoid is converted to a Gaussian distribution according to (185) to address

the criteria 5. Finally, an algorithmic sampling function is presented to use the Gaussian distribution to

generate the position vector of the state and a uniform distribution to generate the velocity vector of the

state such that the randomly generated state lies in χfree.

91

For the example carried through this section let

p0 =

[
−40 −40 40

]T
pf =

[
40 40 80

]T
ζy = 0.5

ζz = 0.3

γ = 0.1

(189)

The center of the ellipsoid is taken as the midpoint between p0 and pf , which is obtained according to

pc =
1

2
(p0 + pf) . (190)

Next, the rotation matrix must be computed such that the x-axis of the ellipsoid aligns with the x-axis of

the inertial frame. From the third design criteria it can be seen that the x-axis of the ellipsoid should be

aligned with the vector

pf0 = pf − p0. (191)

Figure 35 shows p0 as the green diamond, pf as the red diamond, pc as the purple point, pf0 as the black

vector, and the axes of the inertial frame as the blue vectors for the parameters in (189), where the unit

basis vectors of the inertial frame are described by

ex =


1

0

0

 , ey =


0

1

0

 , ez =


0

0

1

 . (192)

The reference frame X’Y’Z is then defined as a translation of the XYZ frame to the center of the ellipsoid.

This can be seen for the example of this section in Figure 36. Note that, since the transformation from the

XYZ frame to the X’Y’Z’ frame is simply a translation, the unit basis vectors of the X’Y’Z’ frame are the

same as those in (192). The next task is to defined the rotation matrix Re that aligns the vector pf0 with

the X’-axis. However, the approach taken here is to determine the rotation matrix that aligns the X’-axis

with the vector pf0, at which point the inverse of this rotation matrix, Re, can easily be obtained. This

can be accomplished in two steps using Euler angles [74]. First, the the X’Y’Z’ frame is rotated around the

Z’-axis to define a new X”Y”Z” frame. Then the X”Y”Z” frame is rotated around the Y” axis to align the

X’-axis with the vector pf0.

92

Figure 35: Ellipsoid rotation matrix: XYZ frame.

Figure 36: Ellipsoid rotation matrix: X’Y’Z’ frame.

93

The rotation matrix that describes the rotation around the Z’-axis can be obtained by computing the

angle from the X’-axis to the projection of pf0 onto the X’Y’ plane, which has the unit normal vector ez.

The projection of pf0 onto the X’Y’ plane is describe by

Pez (pf0) = pf0 − (pf0 · ez) ez. (193)

The rotation angle can then be obtained as

ψ = atan2 (Pez (pf0) · ey, Pez (pf0) · ex) , (194)

where atan2(y, x) is the function found in many programming languages that produces the angle in radians

corresponding to the arctangent of y
x while also considering the signs of both x and y. The rotation matrix

around the Z’-axis is

Rz′ =


c (ψ) −s (ψ) 0

s (ψ) c (ψ) 0

0 0 1

 , (195)

where c(·) and s(·) denote the cosine and sine functions, respectively. The X”Y”Z” frame is then described

as a rotation of the X’Y’Z’ according to the rotation matrix Rz. As a result, the standard basis vectors of

the X”Y”Z” frame are

ex′′ = Rz′


1

0

0

 , ey′′ = Rz′


0

1

0

 , ez′′ = Rz′


0

0

1

 . (196)

The projection of the vector pf0 onto the X’Y’ plane for the example of this section is

Pez (pf0) =

[
80 80 0

]T
(197)

which is shown in Figure 37. The rotation angle around the Z’-axis is then evaluated as ψ = π
4 radians,

which yields the rotation matrix

Rz′ =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 . (198)

The resulting X”Y”Z” frame is shown in Figure 38.

94

Figure 37: Ellipsoid rotation matrix: projection of pf0 onto the X’Y’ plane.

Figure 38: Ellipsoid rotation matrix: X”Y”Z” frame.

95

The next step is to rotate the X”Y”Z” frame around Y” to obtain the ellipsoidal reference frame such

that the rotation of the X”-axis aligns with the vector pf0. This is accomplished using a similar approach

to that which was used to obtain Rz′ . The projection of pf0 onto the X”Z” plane, which has unit normal

vector ey′′ is

Pey′′ (pf0) = pf0 − (pf0 · ey′′) ey′′ . (199)

The rotation angle can then be obtained as

φ = atan2
(
Pey′′ (pf0) · ez′′ , Pey′′ (pf0) · ex′′

)
(200)

and the rotation matrix around the Y”-axis is

Ry′′ =


c (φ) 0 −s (φ)

0 1 0

s (φ) 0 c (φ)

 . (201)

The projection of the vector pf0 onto the X”Z” plane for the example of this section is

Pey′′ (pf0) = pf0, (202)

which yields the rotation angle φ ≈ 716π
6619 and the rotation matrix

Ry′′ ≈


544
577 0 − 1

3

0 1 0

1
3 0 544

577

 . (203)

As a result, the rotation matrix describing the rotation from the X’Y’Z’ frame to the X”’Y”’Z”’ frame is

described by

RX
′′′Z′′′Y ′′′

X′Y ′Z′ = Rz′Ry′′ , (204)

where the X”’Y”’Z”’ for the example is shown in Figure 39.

96

Figure 39: Ellipsoid rotation matrix: X”’Y”’Z”’ frame.

Theorem 11. Given the rotation matrix Rz′ in (195) with the rotation angle given by (194), and given the

rotation matrix Ry′′ in (201) with the rotation angle given by (200), the rotation matrix described by

R = Rz′Ry′′ (205)

aligns the standard basis vector ex given by (192) with the vector pf0.

Proof. Let the vector pf0 be described by

pf0 =

[
px py pz

]T
. (206)

If the rotation described by Rz′Ry′′ aligns ex with pf0 then

Rz′Ry′′ex ‖pf0‖ = pf0. (207)

97

It can be seen from (195) and (201) that

Rz′Ry′′ex ‖pf0‖ =


c (ψ) c (φ)

s (ψ) c (φ)

s (φ)

 ‖pf0‖ . (208)

Recall the following relationship

cos (atan (α)) = 1√
1+α2

sin (atan (α)) = α√
1+α2

. (209)

It can be seen from (194) that

ψ = atan

(
py
px

)
, (210)

which can be used with the relationships in (209) to yield

c (ψ) = px√
p2x+p

2
y

s (ψ) =
py√
p2x+p

2
y

. (211)

It can also be seen that (199) reduces to

Pey′′ (pf0) = pf00 (pf0 ·Rz′ey)Rz′ef =


pxc

2 (ψ) + pys (ψ) c (ψ)

pxs (ψ) c (ψ) + pys
2 (ψ)

pz

 . (212)

This result can then be used with (200) to yield

φ = atan

(
Pey′′ (pf0) ·Rz′ez
Pey′′ (pf0) ·Rz′ex

)
= atan

(
pz

pxc (ψ) + pys (ψ)

)
, (213)

which can then be used with (209) to obtain the result

c (φ) =
pxc(ψ)+pys(ψ)√

(pxc(ψ)+pys(ψ))
2+p2z

=

√
p2x+p

2
y

‖pf0‖

s (φ) = pz√
(pxc(ψ)+pys(ψ))

2+p2z
= pz

‖pf0‖

. (214)

Applying the results of (214) and (211) to (208) yields the condition in (207) and proves that a rotation

described by Rz′Ry′′ aligns ex with pf0.

98

It can be seen from Theorem 11 that the rotation matrix described by Rz′Ry′′ is sufficient to align ex

with pf0. However, the rotation matrix that is required is that which aligns pf0 with ex. Therefore, the

rotation matrix of the ellipsoid is

Re = RTy′′R
T
z′ . (215)

Now that the location and the orientation of the ellipsoidal region has been established to meet the design

criteria 1 and 2, the ellipsoidal region needs to be properly sized and then transformed into the Gaussian

distribution. The volume of the ellipsoid is described by [75]

Ve =
4

3
π

∏
i={x,y,z}

si, (216)

where, according to the third design criteria,

sy = ζysx, sz = ζzsx . (217)

Note that the Lebesgue measure of a bounded closed three dimensional Euclidean space is equivalent to its

volume. Therefore, the volume of X p is denoted by L(X p). According to the fourth design criteria, the ratio

of the volume of the ellipsoid to the volume of X p is Υ. The semi-axis length sx can therefore be evaluated

as

sx =

(
3ΥL(X p)

4πζyζz

) 1
3

(218)

Using the result of (218) with the relationships in (217), the rotation matrix in (215), and the ellipsoid center

position in (190), the Gaussian distribution may be obtained according to (185) for a given ρ ∈ (0, 1), where

s =

[
sx sy sz

]T
. (219)

Figure 41 shows the resulting ellipsoidal region for the example discussed in this section, where

s =

[(
2×106
π

) 1
3
(

2.5×105
π

) 1
3
(

5.4×104
π

) 1
3

]T
. (220)

99

Figure 40: Gaussian distribution directed sampling ellipsoidal region.

Observe that the sampling function in Definition 2 of Section 2.2.2 produces random state space samples

xrand ∈ X free. There is no guarantee that random states obtained according to the Gaussian distribution

in (185) will lie in X pfree . Therefore, a verification is required to ensure that the position vectors of the

randomly generated samples are members of X pfree . Additionally, the proposed Gaussian distribution does

not generate the velocity vectors of the state. Therefore, a normal distribution is applied to X v to generate

the velocity vectors of the state. Additionally, a verification is used to validate that the randomly generated

states, which consists of a position vector obtained from the Gaussian distribution on X p and a velocity

vector obtained from the uniform distribution on .X v, lies in X pfree . The proposed sampler function is given

in Algorithm 14 on page 101, where the random state component generators are defined in Definition 7.

100

Definition 7. The following functions are used to generate random vectors in Algorithm 14.

• Uniform State Sampler: Given a bounded closed space X , a random element of X is obtained according

to a uniform distribution across X from the function

x← Uniform (X)

such that x ∈ X .

• Gaussian State Sampler: Given a mean µ and covariance matrix Σ, a random state is generated ac-

cording to a Gaussian distribution described by µ and Σ from the function

x← Gaussian (µ,Σ) .

Algorithm 14 Directed Sampler Function

1: function DirectedSample(µ, Σ)
2: p← Gaussian (µ,Σ);
3: v ← Uniform (X v);
4: x = [pT ,vT]T ;
5: while x 6∈ X free do
6: p← Gaussian (µ,Σ);
7: v ← Uniform (X v);
8: x = [pT ,vT]T ;

9: return x;

4.4 Directed Random Sampling For Optimal Trajectory Planning of an Input

Constrained Double Integrator with Drift

This section studies the directed sampling technique developed in Section 4.3 applied to an optimal

trajectory planning problem of an input constrained double integrator with drift. The problem used in this

section is equivalent to that addressed in Section 3.3.1. The system’s state is described by the vector

x =

p
v

 , (221)

where p = [px, py, pz]
T ∈ R3 is the system’s position in meters, and v = [vx, vy, vz]

T ∈ R3 is its velocity in

meters per second. The system’s control input is u = [ux, uy, uz]
T ∈ R3, which is its acceleration in meters

101

per second squared. The system’s state space is constrained to

X =

x ∈ R6 :
−100 ≤ px, py ≤ 100, 0 ≤ pz ≤ 100,

‖v‖ ≤ 20

 (222)

and the obstacle space is described by

X obs =
i=4⋃
i=1

j=4⋃
j=1

X obsij , (223)

where

X obsij =

x ∈ R6 :

∥∥∥∥∥∥∥
px + 100− 40i

py + 100− 40j


∥∥∥∥∥∥∥ < 10

 . (224)

The obstacle free space X free is obtained according to (188). The control input of the system is assumed to

be constrained in magnitude such that

U =
{
u ∈ R3 : ‖u‖ < 20

}
, (225)

where ‖·‖ denotes the 2-norm. The state transition equation of the system is described by

ẋ = Ax+Bu+ c, A =

03 I3

03 03

 , B =

03

I3

 , (226)

where c = [cTv , c
T
a]T , cv, ca ∈ R3 are the velocity and acceleration components of the drift term, and where

0k and Ik denote a k×k zero and identity matrix for k ∈ N>0, respectively. Given a control input trajectory

u(t), a state trajectory x(t), and a final time tf , the cost of the trajectory is evaluated according to

C (x(t),u(t), tf) =

tf∫
0

(
1

2
u (τ)

T
Ru (τ) + CI

)
dτ, (227)

where R = I3 and CI = 10. The initial and final states of the system are

x0 =

[
−40 −40 40 0 0 0

]T
xf =

[
40 40 80 0 0 0

]T , (228)

102

and the affine term is set to

c =

[
cTv 0 0 −g

]T
cv =

[
3 −2 0.5

]T
, (229)

where g = 9.8 m
s2 is the acceleration due to gravity and the vector cv describes a constant wind velocity in

meters per second. The optimal control problem is defined as

min
u,tf

tf∫
0

(
1
2u (τ)

T
Ru (τ) + CI

)
dτ

s.t. ẋ (t) = Ax (t) +Bu (t) + c

x : [0, tf]→ X free

u : [0, tf]→ U

ψ(x0,xf) = 0

, (230)

where the boundary conditions are described by

ψ(x0,xf) =

 x(0)− x0

x(tf)− xf

 . (231)

All of the Kinodynamic RRT* functions used to approximate the solution of (230) are discussed in

Section 2.3.2 and Section 3.3. The maximum number of iterations was selected as Niter = 2000, the cost-

to-go upper bound as η = 300, and the reachability region tuning parameter as γ = 1000, where the

parameter γ is discussed in Section 2.2.2.1 on page 24. Furthermore, for the Gaussian distributed sampling

technique proposed in this chapter the parameters ζy and ζz were selected as 0.5 and 0.3, respectively, and

the parameters Υ and ρ were selected as 0.1 and 0.75, respectively.

An example of 3000 position vectors generated according to the proposed state sampler given by Algo-

rithm 14 on page 101 is shown in Figure 41, where different perspectives are provided to show the ellipsoidal

region created by the random samples. In this figure the initial position is shown as the green diamond, the

final position is shown as the red diamond, the red cylinders describe the obstacles, and the black points

describe randomly generated positions obtained from the Gaussian distributed sampling function. Further-

more, the red rectangles represent the side view of the rows of cylindrical obstacles. A comparison of the

proposed Gaussian distributed sampling technique is made with a uniformly distributed sampling technique,

the goal-directed technique of [49], and Informed-RRT* from [56] through the repetition of 100 simulations

for each sampling method using the modified Kinodynamic RRT* trajectory planner in Chapter 3. The

reason why the problem in (230) is solved using the modified Kinodynamic RRT* algorithm 100 times for

103

each sampling method is to minimize the effects of randomness in the algorithm by analyzing the average

performance of each sampling method. Also, Algorithm 13 on page 75 was modified to collect information

that is important for the comparison of each sampling method. The data collection pseudocode is shown in

Algorithm 15 and the data collection version of the modified Kinodynamic RRT* is shown in Algorithm 16.

Note that the functions tic and toc(·) are MATLAB functions that are used to measure time by comparing

the CPU time when tic was called to that when toc(·) is called. Once the code has terminated all of

the data relating to iterations, computation time, and cost of xf can be retrieved from the array Data in

Algorithm 15.

Algorithm 15 RRT* Data Collection

1: function T .DataCollect(τ , i)

2: cmax = min{η, γ(log(|V |)
|V |)

1
n };

3: Vmax ← Nearby(V ,xf , cmax);
4: cf ← T .Cost(xf);
5: for each v ∈ Vmax do
6: x∗(t),u∗(t), t∗f ← Steer(v,xf);

7: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

8: e← (x∗(t),u∗(t), t∗f);

9: ce ← Cost(e);
10: if T .Cost(v) + ce < cf then
11: cf ← T .Cost(v) + ce;

12: if cf < T .Cost(xf) then
13: TempData← [i, toc(τ), cf]T ;
14: if i = 1 then
15: Data← TempData;
16: else
17: Data← [Data, TempData];

18: return

104

Algorithm 16 Modified RRT* algorithm with data collec-
tion

1: function RRT*(x0, xf , Niter, η, γ)
2: τ ← tic;
3: V ← {x0};
4: E ← ∅;
5: for i = 1 to Niter do
6: xrand ← Sample();
7: vmin ← Nearest(V ,xrand);
8: x∗(t),u∗(t), t∗f ← Steer(vmin,xrand);

9: x̃∗(t), ũ∗(t), t̃∗f ← AugLocalTraj(x∗(t),u∗(t), t∗f , η);

10: xnew ← x̃∗(t̃∗f);

11: if AugCollisionFree(ũ∗(t), x̃∗(t), t̃∗f) then

12: enew ← (x̃∗(t), ũ∗(t), t̃∗f);

13: V ← V ∪ {xnew};
14: E ← E ∪ {enew};
15: cmax = min{η, γ(log(|V |)

|V |)
1
n };

16: Vmax ← Nearby(V \ {xnew},xnew, cmax);
17: for each v ∈ Vmax do
18: x∗(t),u∗(t), t∗f ← Steer(v,xnew);

19: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

20: etemp ← (x∗(t),u∗(t), t∗f);

21: ce ← Cost(etemp);
22: if T .Cost(v) + ce < T .Cost(xnew) then
23: E ← E ∪ {etemp} \ {enew};
24: enew ← etemp;

25: for each v ∈ Vmax do
26: x∗(t),u∗(t), t∗f ← Steer(xnew,v);

27: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

28: etemp ← (x∗(t),u∗(t), t∗f);

29: ce ← Cost(etemp);
30: if T .Cost(xnew) + ce < T .Cost(v) then
31: eold ← T .GetInEdge(v);
32: E ← E ∪ {etemp} \ {eold};
33: T .DataCollect(τ, i);

34: cmax = min{η, γ(log(|V |)
|V |)

1
n };

35: Vmax ← Nearby(V ,xf , cmax);
36: cf ← T .Cost(xf);
37: for each v ∈ Vnearby do
38: x∗(t),u∗(t), t∗f ← Steer(v,xf);

39: if AugCollisionFree(u∗(t),x∗(t), t∗f) then

40: etemp ← (x∗(t),u∗(t), t∗f);

41: ce ← Cost(etemp);
42: if T .Cost(v) + ce < cf then
43: cf ← T .Cost(v) + ce;
44: enew ← etemp;

45: if cf 6=∞ then
46: V ← V ∪ {xf};
47: E ← E ∪ {enew};
48: x∗(t),u∗(t), t∗f ← GetSol(T ,x0,xf);

49: return x∗(t),u∗(t), t∗f
50: return fail ;

105

Figure 41: Gaussian distribution directed sampling position vectors.

106

Figure 42 shows the cost of the approximate solution for each simulation versus the number of iterations

completed. The results of the uniformly distributed sampling method are shown in Figure 42a, the results

of the sampling method from [49] are shown in Figure 42b, the results of Informed-RRT* [56] are shown in

Figure 42c, and the results of the proposed Gaussian distributed sampling technique are shown in Figure

42d. These plots allow to study the behaviour of the solver for each sampling technique in terms of the cost

of the approximate solution obtained versus the number of iterations completed. Note that, since RRT* is

an iterative solver, multiple approximate solutions are typically obtained for each simulation. However, as

the number of iterations increases the approximate solution is improved and its cost decreases. Therefore

a study is performed on characteristics of the first approximate solution and its trend toward lower cost

approximations. Table 4 presents the mean and the standard deviation of the number of iterations for

each sampling method to obtain an initial approximate solution of (230). Additionally, the mean and the

standard deviation of the cost of the solution is provided, which are in m2

s3 . This is important because it

shows the average number of iterations required for each method to obtain an approximate solution and a

comparative measure in terms of the cost of the solutions. It can be seen from Table 4 that the uniformly

distributed and the Informed-RRT* [56] sampling techniques demonstrated the weakest performance for the

first approximate solutions when compared with the other sampling methods. This is because the mean and

the standard deviation of the number of iterations required to obtain an initial approximate solution is the

largest, as well as the mean and the standard deviation of the cost of the solutions. Note that these two

results are similar due to the use of the uniformly distributed sampling approach in Informed-RRT* until

an initial approximate solution is obtained. The goal-direct sampling technique of [49] showed a significant

improvement in terms of the number of iterations required to obtain an initial approximate solution, and a

minor improvement of the cost of the approximate solutions. The proposed Gaussian distributed sampling

technique demonstrated the best performance of all methods in terms of the average number of iterations

required to obtain an initial approximate solution of (230) as well as in terms of the cost of the first

approximate solution.

First Approximate Solution Result For 100 Simulations

Uniformly Distributed [49] [56] Gaussian Distributed

Iterations
Cost(
m2

s3

) Iterations
Cost(
m2

s3

) Iterations
Cost(
m2

s3

) Iterations
Cost(
m2

s3

)
Mean 198.5 1571.4 126.8 1461.5 211.5 1573.8 50.0 1258.8

Std. Dev. 157.2 443.3 75.8 403.6 144.4 415.1 37.8 220.2

Table 2: Input constrained double integrator with drift: first approximate solution for iterations count.

107

(a) Uniformly distributed sampling trajectory costs v.s. number of iterations.

(b) Goal-directed sampling [49] trajectory costs v.s. number of iterations.

108

(c) Informed-RRT* [56] trajectory costs v.s. number of iterations.

(d) Gaussian distributed sampling trajectory costs v.s. number of iterations.

Figure 42: Input constrained double integrator with drift: cost versus number of iterations.

109

Another important characteristic worth discussing is the decrease of the cost of the approximate solution

as the number of iterations increases. Additionally, it is important to study the change in the success

percentage as the number of iterations increases, where the success percentage for a given number of iterations

is defined as the percentage of simulations that have obtained an approximate solution for the given number

of iterations. These results are shown in Figure 43 where the results of the uniformly distributed sampling

method are shown in blue, the results of the sampling method proposed in [49] are shown in yellow, the

results of Informed-RRT* [56] are shown in orange, and the results of the proposed Gaussian distributed

sampling technique are shown in green. The large dots show the average trajectory cost for a given number

of iterations and are associated with the left axis. The curves show the change in the success percentage as

the number of iterations increases and are associated with the right axis. In this figure it can be seen that

the initial set of data points are outlier data that are not representative of the overall performance of each

method. The reason for this is due to the low success percentage for small numbers of iterations, where a

small percentage of the simulations obtained approximate solutions that were very low cost. For this reason,

these data are not considered when discussing the overall performance of each sampling technique. It can be

seen from Figure 43 that the uniformly distributed sampling technique provides the worst performance in

terms of average cost of the approximate solutions and success rate. The majority of successful simulations

obtained an initial approximate solution with a cost of 1400m
2

s3 , and as the number of iterations increased

the cost of the approximate solution slowly decreases toward 1100m
2

s3 . Furthermore, 90% of simulations

were successful at around 450 iterations. The sampling approach in [49] demonstrated an improvement

when compared with the uniformly distributed sampling technique, where the initial approximate solution

had a cost of around 1400m
2

s3 and decreases toward 1000m
2

s3 . Additionally, the success percentage of the

goal-directed technique is significantly better than that of the uniformly distributed technique. Informed-

RRT* from reference [56] uses a uniformly distributed sampling technique until an initial approximation is

obtained, and because of this the results up to about 600 iterations are very similar to those of the uniformly

distributed sampling method. However, the technique then restricts the sampling to an ellipsoidal region

and the average approximate solution cost versus number of iterations curve decreases more rapidly than

that of the uniformly distributed and approaches that of the goal-directed approach. It can be seen that

that Gaussian distributed sampling technique outperforms all other methods in terms of cost and success

percentage. The initial approximate solution has a cost of around 1200m
2

s3 and quickly decreases toward

850m
2

s3 . The average approximate solution cost following 2000 iterations for each sampling method are

shown in Table 5. It can be seen from this table that the proposed Gaussian distributed sampling technique

obtained approximate solutions of (230) that had an average cost that was significantly lower than the other

sampling methods and also had significantly lower standard deviation than the other methods.

110

Approximate Solution Cost
(
m2

s3

)
After 2000 Iterations

Uniformly Distributed [49] [56] Gaussian Distributed

Mean 1117.3 1030.7 1035.4 862.3

Std. Dev. 152.8 112.9 124.4 67.3

Table 3: Input constrained double integrator with drift: final approximate cost.

Figure 43: Input constrained double integrator: cost and success percentage versus number of iterations.

A comparison of cost and success percentage versus the number of iterations is common in many research

papers that study sampling-based trajectory planners. However, the number of iterations doesn’t directly

translate into computation time. For example, it can be seen from Figure 41 that the proposed Gaussian

distributed sampling technique causes the position vectors of the randomly generated state space samples

to be very concentrated around the mean of the distribution and less so as the distance from the mean

increases. As a consequence of this, when a new state is added to the tree, there may be more nearby

vertices to consider when optimizing the tree, which may result in longer computation times as the number

of iterations increases. Figure 44 shows the results of 100 simulations performed for each sampling method,

where each point denotes the time instant and that the cost of the approximate solution was improved.

Figure 44a shows the results for the uniformly distributed sampling method, Figure 44b shows the results

of the sampling method proposed in [49], Figure 44c shows the results of Informed-RRT* [56], and Figure

44d shows the results of the proposed Gaussian distributed sampling method. It can be seen from Figure

111

44d that some of the simulations using a Gaussian distribuetd sampling method required more computation

time than those of the other methods. Additionally, this is also apparent in the results using the Informed-

RRT* sampling method. This is largely due to the high concentration of samples around the mean and the

optimization steps of Kinodynamic RRT*. An analysis is therefore performed to study the relationship of

the approximate solution cost versus computation time for each sampling method.

(a) Uniformly distributed sampling trajectory costs v.s. computation time.

(b) Goal-directed random sampling [49] trajectory costs v.s. computation time.

112

(c) Informed-RRT* [56] trajectory costs v.s. computation time.

(d) Gaussian distributed sampling trajectory costs v.s. computation time.

Figure 44: Input constrained double integrator with drift: cost versus computation time.

113

Figure 45 shows the change in success percentage of each sampling method versus time. Additionally,

Figure 46 shows the change in the average cost of the approximate solutions of (230) obtained using each

sampling method versus time. In these figures the results for the uniformly distributed sampling method

are shown in blue, the results of the sampling method proposed in [49] are shown in yellow, the results

of Informed-RRT* [56] are shown in orange, and the results of the proposed Gaussian distributed sampling

technique are shown in green. From Figure 45 it can be seen that the uniformly distributed and the Informed-

RRT* state samplers required the longest computation times to achieve 100% success, which was greater than

40 seconds. The goal-directed approach in [49] was an improvement compared to these methods and required

about 8 seconds to reach 100% success. The proposed Gaussian distributed sampler outperformed all other

methods, where an approximate solution of (230) was obtained by all simulations in just 5.9 seconds. Table

4 shows the mean and standard deviation of the computation time required to obtain an initial approximate

solution of (230) for each sampling method as well as the mean and standard deviation of the cost of the

initial solution of each method. The units of computation time are in seconds and the units of the cost are in

m2

s3 . From this table it can be seen that the uniformly distributed and the Informed-RRT* sampling methods

required the longest average computation time to obtain an initial approximate solution and the standard

deviation of the computation times are also the largest. Additionally, the mean and standard deviation of the

cost of the solution obtained using these methods are also the largest. The goal-directed approach from [49]

demonstrated a significant improvement of the computation time when compared with these methods, and a

reasonable improvement on the cost of the initial approximate solution. The proposed Gaussian distributed

sampling method demonstrated the best performance since it required a significantly lower computation

time to find an approximate solution and the average cost of the solution was also significantly lower when

compared with all other sampling methods.

First Approximate Solution For 100 Simulations

Uniformly Distributed [49] [56] Gaussian Distributed

Time
Cost(
m2

s3

) Time
Cost(
m2

s3

) Time
Cost(
m2

s3

) Time
Cost(
m2

s3

)
Mean 5.8 1571.4 1.9 1461.5 5.8 1573.8 0.9 1258.8

Std. Dev. 9.4 443.3 1.9 403.6 7.5 415.1 1.2 220.2

Table 4: Input constrained double integrator with drift: first approximate solutions time results.

114

Figure 45: Input constrained double integrator with drift: success percentage versus computation time.

Figure 46: Input constrained double integrator with drift: cost versus computation time.

115

In Figure 46 it can be seen that for low computation times each sampling method obtains low cost

approximate solutions, which then rapidly rise and steadily fall. However, in Figure 45 it can be seen that

for small computation times all sampling methods have low success percentages. For this reason the initial

set of data in Figure 46 for very small computation times are considered as outlier data and are omitted

when discussing the behaviour of each sampling method. It can be seen from Figure 46 that the uniformly

distributed sampling technique provides the worst performance of all sampling methods in terms of the

average cost of the approximate solutions and the computation time. The goal-directed sampling technique

from [49] provides an improvement of this characteristic. The Informed-RRT* method in [56] appears to

perform as a hybrid of these two methods, which initially yields results similar to the uniformly distributed

method and quickly converges toward those of the goal-directed method. The proposed Gaussian distributed

approach however demonstrates the best approximate solution cost versus computation time when compared

with all other methods, which is evident since the curve of these results are significantly lower than all other

methods. Table 5 shows the mean and standard deviation of the cost of the approximate solution and the

computation time after 2000 iterations. The units of the computation time is seconds and the units of

the cost is m2

s3 . It can be seen from this table that on average the uniformly distributed sampling method

completed the 2000 iterations the fastest, but also had the highest approximate solution cost. The goal-

directed sampling technique from [49] took longer, but provided lower cost approximations on average.

The Informed-RRT* method took slightly longer than the goal-directed method and obtained approximate

solutions that had an average cost that was similar to that of the goal-directed method. The proposed

Gaussian distributed sampling technique takes the longest to complete 2000 iterations, however the cost

is the smallest. Figures 45 and 43 demonstrate that, given a maximum computation time, the proposed

Gaussian distributed sampling method yielded the lowest average approximate solution cost, followed by

the goal-directed sampling method in [49], then the Informed-RRT* method in [56], and then the uniformly

distributed method.

Approximate Solution Computation Time For 100 Simulations

Uniformly Distributed [49] [56] Gaussian Distributed

Time
Cost(
m2

s3

) Time
Cost(
m2

s3

) Time
Cost(
m2

s3

) Time
Cost(
m2

s3

)
Mean 291.6 1117.3 338.1 1030.7 482.9 1035.4 681.8 862.3

Std. Dev. 238.7 152.8 277.5 112.9 421.4 124.4 489.2 67.3

Table 5: Input constrained double integrator with drift: first approximate solution.

116

In summary, for the optimal control problem described by (230), the proposed Gaussian distributed di-

rected sampling technique found an initial approximate solution in less iterations and in less computation

time than the three other sampling methods and the initial approximate solution had an average cost that

was lower than the other methods as well. The proposed sampling method also had a higher success rate

for a given number of iterations and a given computation time when compared with the other methods.

Additionally, the curve of the approximate solution cost versus the number of iterations and versus the

computation time was significantly lower for the proposed Gaussian sampling technique, which shows that,

given a maximum number of iterations or a maximum computation time, the proposed sampling method

produces approximate solutions that are lower cost than the three other methods. This sampling technique

significantly reduces the computation time to find approximate solutions of optimal control problems. For

trajectory planning of aerial vehicles in particular, this sampling technique brings sampling-based trajectory

planning techniques closer to real-time trajectory planning than before. For networks that consist of way-

points, such as the long-haul fixed-wing aviation system in place today, this technique makes quasi real-time

trajectory planning attainable. This is because the sequence of waypoints decomposes the optimal trajectory

planning problem into sequential optimal trajectory planning subproblems. As a consequence of this, the

aircraft is only required to plan the initial segment prior to take-off and can iteratively plan the optimal

trajectory of each segment while en-route to the initial waypoint of that segment.

117

Chapter 5

Conclusions and Future Work

Inspired by real-time trajectory planning for autonomous urban aerial mobility, this thesis addressed

problems of optimal trajectory planning of affine systems in non-convex state spaces with convex control

input constraints. Traditionally optimal control theory has been successful in obtaining solutions of optimal

control problems. However, alternative approaches have been developed for problems where optimal control

theory struggles, such as problems with non-convex state spaces. One approach is Kinodynamic RRT*,

which is a sampling-based trajectory planner that attempts to approximate the solution of optimal control

problems with non-convex state spaces by using optimal control theory and a tree in the state space.

Although many contributions have been made to approximate solutions of optimal control problems

for affine systems using Kinodynamic RRT*, the unconstrained problem solved by the steering function is

typically formulated for a fixed final time. As a consequence, numerical optimization is required to compute

the optimal final time for free final time trajectories. By contrast, similar problems are solved in [59] with

the assumption that the final time is free. As a consequence, the optimal final time of the trajectory can

be obtained as the root of a polynomial. Chapter 2 used the result of [59] with Kinodynamic RRT* to plan

optimal trajectories of affine systems with unconstrained control inputs. It was shown that, for a double

integrator with drift, trajectories that are computed using the method presented in [59] require on average

just 2.2% the computation time when compared with other methods in the literature.

One of the most significant drawbacks of Kinodynamic RRT* is that it assumes systems with uncon-

strained control inputs. However, the majority of real systems are subject to input constraints and therefore

no guarantee can be made that the approximate solution obtained using Kinodynamic RRT* satisfies these

constraints. This was addressed in Chapter 3, where two modified RRT* functions are proposed. As a result,

the modified Kinodynamic RRT* trajectory planner is capable of approximating solutions of optimal control

problems in non-convex state spaces for affine systems with convex control input constraints. Simulation

results are shown for a double integrator with drift that has an upper bound on the control input magnitude.

When compared with the traditional Kinodynamic RRT* it is shown that the modified algorithm is capable

of finding approximate solutions to the constrained optimal control problem, which could not be found by

other methods.

Finally, Chapter 4 addresses the problem of convergence speed of Kinodynamic RRT*. Typically, a

118

uniform distribution is applied to the non-convex state space to randomly grow the tree. However, this

method is inefficient since extensive computation resources are expended on computing trajectories and

optimizing the tree in regions where a solution is unlikely to exist. A novel sampling approach is proposed

that uses a Gaussian distribution rather than the uniform distribution, and a comparison is made with other

work in the literature. The comparison is made for optimal trajectory planning of a double integrator with

drift where the state space is non-convex and the control input of the system in constrained in magnitude.

The results show that the proposed sampling method is capable of obtaining initial approximate solutions

of lower average cost in less iterations and less computation time when compared with various methods.

Additionally, given a maximum number of iterations or a maximum computation time, the proposed method

obtained lower cost approximate solutions than other methods.

In summary, the main contribution of this thesis is a modified trajectory planner for affine systems

with control input constraints in non-convex state spaces. A steering function was designed for a double

integrator system with drift using the theory of [59], which calculates the optimal final time of a trajectory

in just 2.2% the computation time of similar methods in the literature. A modified Kinodynamic RRT* was

then developed to solve optimal trajectory problems of affine systems with convex control input constraints.

Finally, a directed sampling approach was designed using a Gaussian distribution in the state space, which

showed improvements of the cost of the approximate solution for a given number of iterations and a given

computation time when compared with other methods.

5.1 Future Work

Some possible extensions of the work presented in this thesis include:

1. Artificial intelligence (AI) and machine learning has begun to find applications in sampling-based

motion planners largely due to the ”brute force” approach exhibited by these planners. This is apparent

in Chapter 2, where it can be seen that the tree is expanded into regions of the system’s state space

where intuition says the optimal solution does not lie. In Chapter 4 a Gaussian distribution is obtained

from an ellipsoid defined in the state space to reduce this undesirable growth. However, the tuning

parameters of the ellipsoid must be input by the operator, which may not necessarily be intuitive. AI

and machine learning could add value to this by computing these tuning parameters and determining

the optimal sizing according to a pre-defined metric.

2. Multi-agent trajectory planning is another significant obstacle that must be overcome to make com-

plex autonomous UAV networks a reality. Some contributions have been made toward this objective

using sampling-based motion planning. However, to the best of the author’s knowledge no work

119

has approached real-time computation. It would be an interesting extension to apply the directed

sampling-based approach to multi-agent trajectory planning.

3. Some work has been performed to study the optimality of RRT*, however no proof to the best of the

author’s knowledge has studied the optimality of general problems solved using Kinodynamic RRT*. It

would be an important extension to study the optimality of the modified Kinodynamic RRT* discussed

in this thesis to determine if it provably converges to the optimal solution for input constrained affine

systems.

4. It would be a valuable contribution to extend the work of the modified Kinodynamic RRT* trajectory

planning to general nonlinear systems that are subject to control input constraints.

120

Appendix A - Roots of Double Integra-

tor Hamiltonian

This appendix studies the existence of non-negative real roots of

H
(
t∗f
)

=
1

t∗
4

f


CIt
∗4
f +


x0

xf

c


T



−18R −6t∗fR 18R −6t∗fR −12t∗fR 03

−6t∗fR −2t∗
2

f R 6t∗fR −t∗2f R −3t∗
2

f R 03

18R 6t∗fR −18R 6t∗fR 12t∗fR 03

−6t∗fR −t∗2f R 6t∗fR −2t∗
2

f R −3t∗
2

f R 03

−12t∗fR −3t∗
2

f R 12t∗fR −3t∗
2

f R −6t∗
2

f R 03

03 03 03 03 03
t∗

4

f

2 R




x0

xf

c




, (232)

where x0,xf , c ∈ R6, R ∈ R3×3 is assumed to be symmetric and positive definite, CI ∈ R>0, and t∗f ∈ R≥0.

Observe that

lim
t∗f→∞

H
(
t∗f
)

= CI + cT

03 03

03
1
2R

 c > 0 (233)

since R is positive definite and CI > 0. This result implies that there does not exist a root at t∗f → ∞.

Therefore, all roots of (232) must satisfy

H4t
∗4
f +H2t

∗2
f +H1t

∗
f +H0 = 0, (234)

where

121

H4 = CI +


x0

xf

c


T



03 03 03 03 03 03

03 03 03 03 03 03

03 03 03 03 03 03

03 03 03 03 03 03

03 03 03 03 03 03

03 03 03 03 03
1
2R




x0

xf

c



H2 =


x0

xf

c


T



03 03 03 03 03 03

03 −2R 03 −R −3R 03

03 03 03 03 03 03

03 −R 03 −2R −3R 03

03 −3R 03 −3R −6R 03

03 03 03 03 03 03




x0

xf

c



H1 =


x0

xf

c


T



03 −6R 03 −6R −12R 03

−6R 03 6R 03 03 03

03 6R 03 6R 12R 03

−6R 03 6R 03 03 03

−12R 03 12R 03 03 03

03 03 03 03 03 03




x0

xf

c



H0 =


x0

xf

c


T



−18R 03 18R 03 03 03

03 03 03 03 03 03

18R 03 −18R 03 03 03

03 03 03 03 03 03

03 03 03 03 03 03

03 03 03 03 03 03




x0

xf

c



. (235)

122

Definition 8. Kronecker Product [76]: Given the matrices A ∈ Rp×q and B ∈ Rr×s, where p, q, r, s ∈ N>0,

A =



a11 a12 . . . a1q

a21 a22 . . . a2q
...

...
. . .

...

ap1 ap2 . . . apq


, (236)

the Kronecker product of A with B is defined as

A⊗B =



a11B a12B . . . a1qB

a21B a22B . . . a2qB

...
...

. . .
...

ap1B ap2B . . . apqB


. (237)

�

Lemma 7. Eigenvalues of a Kronecker Product [76]: Let λA denote the set of eigenvalues of A ∈ Rp×p and

let λB denote that of B ∈ Rr×r, where p, r ∈ N>0. The set of eigenvalues of the matrix

C = A⊗B. (238)

is described by the set

λC = {λAλB : ∀ λA ∈ λA, ∀ λB ∈ λB} . (239)

�

Theorem 12. For the coefficients defined in (235), if R ∈ R3×3 is symmetric and positive definite and

CI ∈ R>0, then H4 is positive, H2 is non-positive, and H0 is non-positive ∀ x0,xf , c ∈ R6.

Proof. Let the following substitutions be made

x0 =

p0
v0

 , xf =

pf
vf

 , c =

cv
ca

 , (240)

where p0,pf ,v0,vf , cv, ca ∈ R3. Also, let λR denote the set of eigenvalues of R. Given the assumption that

R is a symmetric and positive definite matrix

λR > 0 ∀ λR ∈ λR. (241)

123

Observe that

H4 = CI +
1

2
cTaRca. (242)

Since R is assumed to be a symmetric and positive definite matrix,

cTaRca > 0 ∀ ca ∈ R3 \ 0. (243)

Therefore, given the assumption that CI ∈ R>0, it can be seen that H4 is positive ∀ x0,xf , c ∈ R6.

It can be seen from (240) that

H2 = XT
2 H̄2X2, (244)

where

X2 =


v0

vf

cv

 , H̄2 =


−2R −R −3R

−R −2R −3R

−3R −3R −6R

 =


−2 −1 −3

−1 −2 −3

−3 −3 −6

⊗R . (245)

The eigenvalues of H̄2 can be obtained according to Lemma 7 as

λ̄2 = {λλR : ∀ λ ∈ {−9,−1, 0} , ∀ λR ∈ λR} , (246)

where, given the result of (241), it can be seen that

λ̄2 ≤ 0 ∀ λ̄2 ∈ λ̄2. (247)

Therefore H2 is non-positive ∀ x0,xf , c ∈ R6. Similarly, it can be seen from (240) that

H0 = XT
0 H̄0X0,

X0 =

p0
pf

 , H̄0 =

−18R 18R

18R −18R

 =

−18 18

18 −18

⊗R
, (248)

where it can be seen that the eigenvalues of H̄0 verify

λ̄0 = {λλR : ∀ λ ∈ {−36, 0} , ∀ λR ∈ λR} . (249)

124

Furthermore, it can be seen that

λ̄0 ≤ 0 ∀ λ̄0 ∈ λ̄0, (250)

which implies that H0 is non-positive ∀ x0,xf , c ∈ R6.

Theorem 13. If H2 = 0 and R ∈ R3×3 is symmetric and positive definite, then the following condition is

satisfied

v0 = vf = −cv. (251)

Proof. Since R is assumed to be symmetric it can be seen that

yT1 Ry2 = yT2 Ry1 ∀ y1,y2 ∈ R3. (252)

Using (240) and (252) it can be seen that

−H2 = 2vT0 Rv0 + 2vTf Rvf + 6cTv Rcv + 2vT0 Rvf + 6vT0 Rcv + 6vTf Rcv

= 6
(
cv + 1

2v0 + 1
2vf

)T
R
(
cv + 1

2v0 + 1
2vf

)
+ 1

2 (v0 − vf)
T
R (v0 − vf)

, (253)

which shows that, since R is assumed to be symmetric and positive definite, H2 is the sum of two non-positive

terms. Therefore, if H2 = 0 then

cv + 1
2v0 + 1

2vf = 0

v0 − vf = 0
⇒ v0 = vf = −cv. (254)

Theorem 14. If H0 = 0 and R ∈ R3×3 is symmetric and positive definite, then the following condition is

satisfied

p0 = pf . (255)

Proof. From (240) and (252), expanding (248) yields

H0 (x0,xf , c) = −18pT0 Rp0 + 36pT0 Rpf − 18pTf Rpf

= −18 (p0 − pf)
T
R (p0 − pf) .

(256)

Since R is assumed to be symmetric and positive definite, if H0 = 0 then

p0 = pf . (257)

125

Theorem 15. If R ∈ R3×3 is symmetric and positive definite then H1 = 0 if either H0 = 0 or H2 = 0.

Proof. Expanding the definition of H1 in (235) and using (240) yields

H1 = −12pT0 Rv0 + 12vT0 Rpf − 12pT0 Rvf + 12pTf Rvf − 24pT0 Rcv + 24pTf Rcv, (258)

which is equivalent to

H1 = −24 (p0 − pf)
T
R

(
cv +

1

2
v0 +

1

2
vf

)
, (259)

given the result in (252). Therefore, since R is assumed to be positive definite, H1 = 0 if either p0 = pf or

v0 = vf = −cv. It can be seen from Theorems 13 and 14 that this happens if H0 = 0 or H2 = 0.

Theorem 16. If R ∈ R3×3 is symmetric and positive definite and CI ∈ R>0, then there is at least one

non-negative real root of (234) for all x0,xf , c ∈ R6.

Proof. From Theorem 12 it can be seen that

H4 > 0 ∀ x0,xf , c ∈ R6

H2 ≤ 0 ∀ x0,xf , c ∈ R6

H0 ≤ 0 ∀ x0,xf , c ∈ R6

. (260)

Additionally, from Theorems 13 – 15 it can be seen that

H1 = 0 if either H2 = 0 or H0 = 0 . (261)

Given (260) and (261) it can be seen that there exist multiple cases of the solutions of (234). These cases

can be evaluated using Descarte’s Rule of Signs from Lemma 2 on page 50. Let the function in (234) be

denoted by

f
(
t∗f
)

= H4t
∗4
f +H2t

∗2
f +H1t

∗
f +H0. (262)

Case 1: H2 = 0, H1 = 0, H0 = 0.

For this case it can be seen that there are four roots of (262) at t∗f = 0.

Case 2: H2 < 0, H1 > 0, H0 < 0.

For this case it can be seen that there are three sign changes in the sequence of coefficients in f(t∗f). Therefore,

from Lemma 2, (234) either has one or three positive real roots.

126

Case 3: H2 < 0, H1 < 0, H0 < 0. For this case it can be seen that there is one sign change in the sequence

of coefficients in f(t∗f). Therefore, from Lemma 2, (234) has one positive real root.

Case 4: H2(·) < 0, H1(·) = 0, and H0(·) = 0.

For this case it can be seen that there is one sign change in the sequence of coefficients in f(t∗f), which implies

that there is one positive real root of (262). Furthermore, (262) simplifies to

f
(
t∗f
)

= t∗2f

(
H4t

∗2
f +H2

)
. (263)

Therefore, there exists two roots at t∗f = 0 and the positive real root is

t∗f =

√
−H2

H4
. (264)

Case 5: H2(·) = 0, H1(·) = 0, and H0(·) < 0.

For this case it can be seen that there is one sign change in the sequence of coefficients in f(t∗f), which implies

that there is one positive real root of (262). Furthermore, (262) simplifies to the biquadratic equation

f
(
t∗f
)

= H4t
∗4
f +H0. (265)

Therefore, the single positive real root is

t∗f = 4

√
−H0

H4
. (266)

Case 6: H2(·) < 0, H1(·) = 0, and H0(·) < 0.

For this case it can be seen that there is one sign change in the sequence of coefficients in f(t), which implies

that there is one positive real root of (262). Furthermore, (262) simplifies to

f
(
τ∗f
)

= H4τ
∗2
f +H2τ

∗
f +H0, (267)

where τ∗f = t∗
2

f . Therefore, the single positive real root is

t∗f =

√
−H2 +

√
H2

2 − 4H4H0

2H4
. (268)

127

Appendix B - Double Integrator With

Drift: Optimal Control

The system is described by

ẋ = Ax+Bu+ c, A =

03 I3

03 03

 , B =

03

I3

 , (269)

where c ∈ R6. It can be seen that

eAτ =

I3 τI3

03 I3

 . (270)

The controllability Grammian in (30) can therefore be evaluated as

Gc

(
0, t∗f

)
=

t∗f∫
0

eA(t∗f−τ)BR−1BT eA
T (t∗f−τ)dτ

=
t∗f∫
0

I3
(
t∗f − τ

)
I3

03 I3


03

I3

R−1 [03 I3

] I3 03(
t∗f − τ

)
I3 I3

 dτ

=
t∗f∫
0

I3
(
t∗f − τ

)
I3

03 I3


 03

R−1

[03 I3

] I3 03(
t∗f − τ

)
I3 I3

 dτ

=
t∗f∫
0

I3
(
t∗f − τ

)
I3

03 I3


03 03

03 R−1


 I3 03(
t∗f − τ

)
I3 I3

 dτ

=
t∗f∫
0

03

(
t∗f − τ

)
R−1

03 R−1


 I3 03(
t∗f − τ

)
I3 I3

 dτ

=
t∗f∫
0


(
t∗f − τ

)2
R−1

(
t∗f − τ

)
R−1(

t∗f − τ
)
R−1 R−1

 dτ =

 t∗
3

f

3 R
−1 t∗

2

f

2 R
−1

t∗
2

f

2 R
−1 t∗fR

−1



(271)

128

and its inverse as

Gc
(
0, t∗f

)−1
=

 12

t∗
3

f

R − 6

t∗
2

f

R

− 6

t∗
2

f

R 4
t∗f
R

 . (272)

It can be seen that
t∗f∫
0

eA(t∗f−τ)dτ =

t∗f∫
0

I3
(
t∗f − τ

)
I3

03 I3

 dτ =

t∗fI3 t∗
2

f

2 I3

03 t∗fI3

 . (273)

The vector of costates at t = t∗f in (29) can then be evaluated as

λ∗
(
t∗f

)
= −Gc

(
0, t∗f

)−1(
xf − eAt

∗
fx0 −

t∗f∫
0

eA(t∗f−τ)cdτ

)

= −

 12

t∗
3

f

R − 6

t∗
2

f

R

− 6

t∗
2

f

R 4
t∗f
R


xf −

I3 t∗fI3

03 I3

x0 −

t∗fI3 t∗
2

f

2 I3

03 t∗fI3

 c


=

− 12

t∗
3

f

R 6

t∗
2

f

R

6

t∗
2

f

R − 4
t∗f
R

xf +

 12

t∗
3

f

R − 6

t∗
2

f

R

− 6

t∗
2

f

R 4
t∗f
R


I3 t∗fI3

03 I3

x0

+

 12

t∗
3

f

R − 6

t∗
2

f

R

− 6

t∗
2

f

R 4
t∗f
R


t∗fI3 t∗

2

f

2 I3

03 t∗fI3

 c

=

− 12

t∗
3

f

R 6

t∗
2

f

R

6

t∗
2

f

R − 4
t∗f
R

xf +

 12

t∗
3

f

R 6

t∗
2

f

R

− 6

t∗
2

f

R − 2
t∗f
R

x0 +

 12

t∗
2

f

R 03

− 6
t∗f
R R

 c

=

 12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

− 6

t∗
2

f

R − 2
t∗f
R 6

t∗
2

f

R − 4
t∗f
R − 6

t∗f
R R



x0

xf

c



(274)

129

The optimal control input trajectory in (28) can then be obtained as

u∗ (t) = −R−1BT eA
T (t∗f−t)λ∗(t∗f)

= −R−1
[
03 I3

] I3 03(
t∗f − t

)
I3 I3


 12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

− 6

t∗
2

f

R − 2
t∗f
R 6

t∗
2

f

R − 4
t∗f
R − 6

t∗f
R R



x0

xf

c



=

[
03 −R−1

] I3 03(
t∗f − t

)
I3 I3


 12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

− 6

t∗
2

f

R − 2
t∗f
R 6

t∗
2

f

R − 4
t∗f
R − 6

t∗f
R R



x0

xf

c



=

[(
t− t∗f

)
R−1 −R−1

] 12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

− 6

t∗
2

f

R − 2
t∗f
R 6

t∗
2

f

R − 4
t∗f
R − 6

t∗f
R R



x0

xf

c



=

[
6(2t−t∗f)

t∗
3

f

I3
2(3t−2t∗f)

t∗
2

f

I3 − 6(2t−t∗f)
t∗

3

f

I3
2(3t−t∗f)

t∗
2

f

I3
6(2t−t∗f)

t∗
2

f

I3 −I3
]
x0

xf

c

 .

(275)

130

It can be seen that

u∗ (t)
T
Ru∗ (t)

=


x0

xf

c


T



6(2t−t∗f)
t∗

3

f

I3

2(3t−2t∗f)
t∗

2

f

I3

− 6(2t−t∗f)
t∗

3

f

I3

2(3t−t∗f)
t∗

2

f

I3

6(2t−t∗f)
t∗

2

f

I3

−I3


R

[
6(2t−t∗f)

t∗
3

f

I3
2(3t−2t∗f)

t∗
2

f

I3 − 6(2t−t∗f)
t∗

3

f

I3
2(3t−t∗f)

t∗
2

f

I3
6(2t−t∗f)

t∗
2

f

I3 −I3
]
x0

xf

c



=


x0

xf

c


T



36(2t−t∗f)
2

t∗
6

f

R
12(2t−t∗f)(3t−2t

∗
f)

t∗
5

f

R − 36(2t−t∗f)
2

t∗
6

f

R
12(2t−t∗f)(3t−t

∗
f)

t∗
5

f

R
36(2t−t∗f)

2

t∗
5

f

R − 6(2t−t∗f)
t∗

3

f

R

12(3t−2t∗f)(2t−t
∗
f)

t∗
5

f

R
4(3t−2t∗f)

2

t∗
4

f

R − 12(3t−2t∗f)(2t−t
∗
f)

t∗
5

f

R
4(3t−2t∗f)(3t−t

∗
f)

t∗
4

f

R
12(3t−2t∗f)(2t−t

∗
f)

t∗
4

f

R − 2(3t−2t∗f)
t∗

2

f

R

− 36(2t−t∗f)
2

t∗
6

f

R − 12(2t−t∗f)(3t−2t
∗
f)

t∗
5

f

R
36(2t−t∗f)

2

t∗
6

f

R − 12(2t−t∗f)(3t−t
∗
f)

t∗
5

f

R − 36(2t−t∗f)
2

t∗
5

f

R
6(2t−t∗f)

t∗
3

f

R

12(3t−t∗f)(2t−t
∗
f)

t∗
5

f

R
4(3t−t∗f)(3t−2t

∗
f)

t∗
4

f

R − 12(3t−t∗f)(2t−t
∗
f)

t∗
5

f

R
4(3t−t∗f)

2

t∗
4

f

R
12(3t−t∗f)(2t−t

∗
f)

t∗
4

f

R − 2(3t−t∗f)
t∗

2

f

R

36(2t−t∗f)
2

t∗
5

f

R
12(2t−t∗f)(3t−2t

∗
f)

t∗
4

f

R − 36(2t−t∗f)
2

t∗
5

f

R
12(2t−t∗f)(3t−t

∗
f)

t∗
4

f

R
36(2t−t∗f)

2

t∗
4

f

R − 6(2t−t∗f)
t∗

2

f

R

− 6(2t−t∗f)
t∗

3

f

R − 2(3t−2t∗f)
t∗

2

f

R
6(2t−t∗f)

t∗
3

f

R − 2(3t−t∗f)
t∗

2

f

R − 6(2t−t∗f)
t∗

2

f

R R




x0

xf

c



(276)

and

t∗f∫
0

u∗ (τ)
T
Ru∗ (τ) dτ =


x0

xf

c


T



12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

6

t∗
2

f

R 4
t∗f
R − 6

t∗
2

f

R 2
t∗f
R 6

t∗f
R R

− 12

t∗
3

f

R − 6

t∗
2

f

R 12

t∗
3

f

R − 6

t∗
2

f

R − 12

t∗
2

f

R 03

6

t∗
2

f

R 2
t∗f
R − 6

t∗
2

f

R 4
t∗f
R 6

t∗f
R −R

12

t∗
2

f

R 6
t∗f
R − 12

t∗
2

f

R 6
t∗f
R 12

t∗f
R 03

03 R 03 −R 03 t∗fR




x0

xf

c

 . (277)

131

This allows to evaluate the cost as

C
(
x∗(t),u∗(t), t∗f

)
=

tf∫
0

(
1
2u
∗ (τ)

T
Ru∗ (τ) + CI

)
dτ

= 1
2


x0

xf

c


T



12

t∗
3

f

R 6

t∗
2

f

R − 12

t∗
3

f

R 6

t∗
2

f

R 12

t∗
2

f

R 03

6

t∗
2

f

R 4
t∗f
R − 6

t∗
2

f

R 2
t∗f
R 6

t∗f
R R

− 12

t∗
3

f

R − 6

t∗
2

f

R 12

t∗
3

f

R − 6

t∗
2

f

R − 12

t∗
2

f

R 03

6

t∗
2

f

R 2
t∗f
R − 6

t∗
2

f

R 4
t∗f
R 6

t∗f
R −R

12

t∗
2

f

R 6
t∗f
R − 12

t∗
2

f

R 6
t∗f
R 12

t∗f
R 03

03 R 03 −R 03 t∗fR




x0

xf

c

+ t∗fCI , .

(278)

From (275) it can be seen that

u∗
(
t∗f
)

=

[
6

t∗
2

f

I3
2
t∗f
I3 − 6

t∗
2

f

I3
4
t∗f
I3

6
t∗f
I3 −I3

]
x0

xf

c

 . (279)

Given this result one can write

1
2u
∗
(
t∗f

)T
Ru∗

(
t∗f

)
= 1

2


x0

xf

c


T



6

t∗
2

f

I3

2
t∗f
I3

− 6

t∗
2

f

I3

4
t∗f
I3

6
t∗f
I3

−I3


R

[
6

t∗
2

f

I3
2
t∗f
I3 − 6

t∗
2

f

I3
4
t∗f
I3

6
t∗f
I3 −I3

]
x0

xf

c



=


x0

xf

c


T



18

t∗
4

f

R 6

t∗
3

f

R − 18

t∗
4

f

R 12

t∗
3

f

R 18

t∗
3

f

R − 3

t∗
2

f

R

6

t∗
3

f

R 2

t∗
2

f

R − 6

t∗
3

f

R 4

t∗
2

f

R 6

t∗
2

f

R − 1
t∗f
R

− 18

t∗
4

f

R − 6

t∗
3

f

R 18

t∗
4

f

R − 12

t∗
3

f

R − 18

t∗
3

f

R 3

t∗
2

f

R

12

t∗
3

f

R 4

t∗
2

f

R − 12

t∗
3

f

R 8

t∗
2

f

R 12

t∗
2

f

R − 2
t∗f
R

18

t∗
3

f

R 6

t∗
2

f

R − 18

t∗
3

f

R 12

t∗
2

f

R 18

t∗
2

f

R − 3
t∗f
R

− 3

t∗
2

f

R − 1
t∗f
R 3

t∗
2

f

R − 2
t∗f
R − 3

t∗f
R 1

2R




x0

xf

c



(280)

132

and

λ∗
(
t∗f

)T
Bu∗

(
t∗f

)

=


x0

xf

c


T



12

t∗
3

f

R − 6

t∗
2

f

R

6

t∗
2

f

R − 2
t∗f
R

− 12

t∗
3

f

R 6

t∗
2

f

R

6

t∗
2

f

R − 4
t∗f
R

12

t∗
2

f

R − 6
t∗f
R

03 R



03

I3

[6

t∗
2

f

I3
2
t∗f
I3 − 6

t∗
2

f

I3
4
t∗f
I3

6
t∗f
I3 −I3

]
x0

xf

c



=


x0

xf

c


T



− 6

t∗
2

f

R

− 2
t∗f
R

6

t∗
2

f

R

− 4
t∗f
R

− 6
t∗f
R

R



[
6

t∗
2

f

I3
2
t∗f
I3 − 6

t∗
2

f

I3
4
t∗f
I3

6
t∗f
I3 −I3

]
x0

xf

c



=


x0

xf

c


T



− 36

t∗
4

f

R − 12

t∗
3

f

R 36

t∗
4

f

R − 24

t∗
3

f

R − 36

t∗
3

f

R 6

t∗
2

f

R

− 12

t∗
3

f

R − 4

t∗
2

f

R 12

t∗
3

f

R − 8

t∗
2

f

R − 12

t∗
2

f

R 2
t∗f
R

36

t∗
4

f

R 12

t∗
3

f

R − 36

t∗
4

f

R 24

t∗
3

f

R 36

t∗
3

f

R − 6

t∗
2

f

R

− 24

t∗
3

f

R − 8

t∗
2

f

R 24

t∗
3

f

R − 16

t∗
2

f

R − 24

t∗
2

f

R 4
t∗f
R

− 36

t∗
3

f

R − 12

t∗
2

f

R 36

t∗
3

f

R − 24

t∗
2

f

R − 36

t∗
2

f

R 6
t∗f
R

6

t∗
2

f

R 2
t∗f
R − 6

t∗
2

f

R 4
t∗f
R 6

t∗f
R −R




x0

xf

c



(281)

133

Furthermore, it can be seen that

λ∗
(
t∗f

)T
(Axf + c) = λ∗

(
t∗f

)T 03 03 03 I3 I3 03

03 03 03 03 03 I3



x0

xf

c



=


x0

xf

c


T



12

t∗
3

f

R − 6

t∗
2

f

R

6

t∗
2

f

R − 2
t∗f
R

− 12

t∗
3

f

R 6

t∗
2

f

R

6

t∗
2

f

R − 4
t∗f
R

12

t∗
2

f

R − 6
t∗f
R

03 R



03 03 03 I3 I3 03

03 03 03 03 03 I3



x0

xf

c



=


x0

xf

c


T



03 03 03
12

t∗
3

f

R 12

t∗
3

f

R − 6

t∗
2

f

R

03 03 03
6

t∗
2

f

R 6

t∗
2

f

R − 2
t∗f
R

03 03 03 − 12

t∗
3

f

R − 12

t∗
3

f

R 6

t∗
2

f

R

03 03 03
6

t∗
2

f

R 6

t∗
2

f

R − 4
t∗f
R

03 03 03
12

t∗
2

f

R 12

t∗
2

f

R − 6
t∗f
R

03 03 03 03 03 R




x0

xf

c



=


x0

xf

c


T



03 03 03
6

t∗
3

f

R 6

t∗
3

f

R − 3

t∗
2

f

R

03 03 03
3

t∗
2

f

R 3

t∗
2

f

R − 1
t∗f
R

03 03 03 − 6

t∗
3

f

R − 6

t∗
3

f

R 3

t∗
2

f

R

6

t∗
3

f

R 3

t∗
2

f

R − 6

t∗
3

f

R 6

t∗
2

f

R 9

t∗
2

f

R − 2
t∗f
R

6

t∗
3

f

R 3

t∗
2

f

R − 6

t∗
3

f

R 9

t∗
2

f

R 12

t∗
2

f

R − 3
t∗f
R

− 3

t∗
2

f

R − 1
t∗f
R 3

t∗
2

f

R − 2
t∗f
R − 3

t∗f
R R




x0

xf

c

 .

(282)

134

The Hamiltonian at t = t∗f in (5) can be computed as

H
(
t∗f

)
= 1

2u
∗
(
t∗f

)T
Ru∗

(
t∗f

)
+ CI + λ∗

(
t∗f

)T (
Axf +Bu∗

(
t∗f

)
+ c
)

= CI + 1
2u
∗
(
t∗f

)T
Ru∗

(
t∗f

)
+ λ∗

(
t∗f

)T
Bu∗

(
t∗f

)
+ λ∗

(
t∗f

)T
(Axf + c)

= CI +


x0

xf

c


T





18

t∗
4

f

R 6

t∗
3

f

R − 18

t∗
4

f

R 12

t∗
3

f

R 18

t∗
3

f

R − 3

t∗
2

f

R

6

t∗
3

f

R 2

t∗
2

f

R − 6

t∗
3

f

R 4

t∗
2

f

R 6

t∗
2

f

R − 1
t∗f
R

− 18

t∗
4

f

R − 6

t∗
3

f

R 18

t∗
4

f

R − 12

t∗
3

f

R − 18

t∗
3

f

R 3

t∗
2

f

R

12

t∗
3

f

R 4

t∗
2

f

R − 12

t∗
3

f

R 8

t∗
2

f

R 12

t∗
2

f

R − 2
t∗f
R

18

t∗
3

f

R 6

t∗
2

f

R − 18

t∗
3

f

R 12

t∗
2

f

R 18

t∗
2

f

R − 3
t∗f
R

− 3

t∗
2

f

R − 1
t∗f
R 3

t∗
2

f

R − 2
t∗f
R − 3

t∗f
R 1

2R



+



− 36

t∗
4

f

R − 12

t∗
3

f

R 36

t∗
4

f

R − 24

t∗
3

f

R − 36

t∗
3

f

R 6

t∗
2

f

R

− 12

t∗
3

f

R − 4

t∗
2

f

R 12

t∗
3

f

R − 8

t∗
2

f

R − 12

t∗
2

f

R 2
t∗f
R

36

t∗
4

f

R 12

t∗
3

f

R − 36

t∗
4

f

R 24

t∗
3

f

R 36

t∗
3

f

R − 6

t∗
2

f

R

− 24

t∗
3

f

R − 8

t∗
2

f

R 24

t∗
3

f

R − 16

t∗
2

f

R − 24

t∗
2

f

R 4
t∗f
R

− 36

t∗
3

f

R − 12

t∗
2

f

R 36

t∗
3

f

R − 24

t∗
2

f

R − 36

t∗
2

f

R 6
t∗f
R

6

t∗
2

f

R 2
t∗f
R − 6

t∗
2

f

R 4
t∗f
R 6

t∗f
R −R



+



03 03 03
6

t∗
3

f

R 6

t∗
3

f

R − 3

t∗
2

f

R

03 03 03
3

t∗
2

f

R 3

t∗
2

f

R − 1
t∗f
R

03 03 03 − 6

t∗
3

f

R − 6

t∗
3

f

R 3

t∗
2

f

R

6

t∗
3

f

R 3

t∗
2

f

R − 6

t∗
3

f

R 6

t∗
2

f

R 9

t∗
2

f

R − 2
t∗f
R

6

t∗
3

f

R 3

t∗
2

f

R − 6

t∗
3

f

R 9

t∗
2

f

R 12

t∗
2

f

R − 3
t∗f
R

− 3

t∗
2

f

R − 1
t∗f
R 3

t∗
2

f

R − 2
t∗f
R − 3

t∗f
R R






x0

xf

c



(283)

135

= CI +


x0

xf

c


T



− 18

t∗
4

f

R − 6

t∗
3

f

R 18

t∗
4

f

R − 6

t∗
3

f

R − 12

t∗
3

f

R 03

− 6

t∗
3

f

R − 2

t∗
2

f

R 6

t∗
3

f

R − 1

t∗
2

f

R − 3

t∗
2

f

R 03

18

t∗
4

f

R 6

t∗
3

f

R − 18

t∗
4

f

R 6

t∗
3

f

R 12

t∗
3

f

R 03

− 6

t∗
3

f

R − 1

t∗
2

f

R 6

t∗
3

f

R − 2

t∗
2

f

R − 3

t∗
2

f

R 03

− 12

t∗
3

f

R − 3

t∗
2

f

R 12

t∗
3

f

R − 3

t∗
2

f

R − 6

t∗
2

f

R 03

03 03 03 03 03
1
2R




x0

xf

c



= 1

t∗
4

f


CIt
∗4
f +


x0

xf

c


T



−18R −6t∗fR 18R −6t∗fR −12t∗fR 03

−6t∗fR −2t∗
2

f R 6t∗fR −t∗2f R −3t∗
2

f R 03

18R 6t∗fR −18R 6t∗fR 12t∗fR 03

−6t∗fR −t∗2f R 6t∗fR −2t∗
2

f R −3t∗
2

f R 03

−12t∗fR −3t∗
2

f R 12t∗fR −3t∗
2

f R −6t∗
2

f R 03

03 03 03 03 03
t∗

4

f

2 R




x0

xf

c




.

136

Appendix C - Double Integrator with

Drift: Vertex and Obstacle Classes

This section describes the implementation of the vertex and obstacle classes for the problem addressed in

Section 2.3.2.2. Note that these classes are designed for specific optimal control problems, and may require

minor or significant changes when the problem is different than that of Section 2.3.2.2. Therefore, the specific

classes presented in this section are not considered general, but may be applicable to a variety of systems.

They may also provide valuable insight for the implementation of these classes for other problems. Also,

note that the following functions are native to MATLAB [65]:

• vecnorm (·)

• zeros (·)

• eye (·)

• sqrt (·)

• roots (·)

• imag (·)

• length (·)

• ode45 (·)

• min (·)

• rand (·)

• cos (·)

• sin (·)

Obstacle

Properties: Methods:

pc self = Obstacle (pc, r, h)

r β = CollisionCheck (self , x)

h

Figure 47: Double integrator with drift: obstacle class.

The obstacle class for the double integrator with drift of Section 2.3.2.2 is shown in Figure 47. Since the

obstacles are described by cylinders in Euclidean space, they are characterized by a center position, a radius,

and a height. The obstacle class has the following properties:

• pc: A double precision three row single-column array that describes the three-dimensional position of

the center of the cylindrical obstacle.

• r: A double precision variable that describes the radius of the cylindrical obstacle.

• h: a double precision variable that describes the height of the cylindrical obstacle.

137

Furthermore, the obstacle class has the following member functions:

• Obstacle (pc, r, h): This is the class constructor, which receives each property as an input and assigns

them accordingly.

• CollisionCheck (self , x): The input of this function

is an n row double precision array x, where each column of x describes a state. This function evaluates

if any column of x describes a state that intersects with the obstacle. If no states described by the

columns of x intersect with the obstacle then the function returns true, and it returns false otherwise.

The pseudocode for this function is shown in Algorithm 17.

Algorithm 17 Obstacle Class: Collision Check

1: function CollisionCheck(self , x)
2: d = vecnorm (self .pc (1 : 2)− x (1 : 2, :) , 2, 1);
3: Ic = d < self .r;

4: Ic = x (3, Ic) > self .pc (3)− self .h
2 ;

5: Ic = x (3, Ic) < self .pc (3) + self .h
2 ;

6: return ∼ any (Ic);

Vertex

Properties: Methods:

x self = Vertex (x, c, R,CI)

X x = GetState (self)

c∗ SetCost (self , c∗)

c c∗ = GetCost (self)

R enew = Steer (self ,x2)

CI [xnew, enew] = LocalTraj (self , e, cmax)

CTG = CTG (self ,x2)

xrand = Sample (self)

β = CollisionCheck (self , x)

c = GetAffine (self)

R = GetR (self)

CI = GetCi (self)

SetState (self , x)

Figure 48: Double integrator with drift: vertex class.

138

The vertex class for the double integrator with drift of Section 2.3.2.2 is shown in Figure 48. The vertex

class has the following properties:

• x: An n row single-column double precision array that describes the state of the vertex.

• X : A double precision array that describes the bounds on the state space of the system. For the

particular problem addressed in section 2.3.2.2, where the state space is given by (139), this array is

formatted as

X =



−100 100

−100 100

0 100

0 20


,

where the first three rows describe the lower (first column) and upper (second column) bounds on the

system’s position, and the fourth row describes the bounds on the velocity.

• c∗: A double precision variable that describes the cost of the vertex as is introduced in Definition 2.

• c: An n row single-column double precision array that describes the drift term of the system.

• R: An n row n column double precision array describing the symmetric and positive definite control

input weighting matrix in the cost function (26).

• CI : A positive double precision variable describing the cost index in the cost function (26).

Additionally, the vertex class has the following member functions:

• Vertex (x,X , c, R,CI): This function is the class constructor, which receives all of the class properties

except for c∗ as inputs and assigns them accordingly. Also, the property c∗ is initialized to infinity.

• GetState (self): This function returns the property x.

• SetCost (self , c∗): The input of this function is a double precision variable c∗ that is assigned to the

property c∗.

• GetCost (self): This function returns the property c∗.

• Steer (self ,x2): The input of this function is the vertex object x2. This function computes the

unconstrained optimal state and control input trajectories, and the unconstrained optimal final time

to steer the system from the state of the vertex object (self) to the state of x2. This function returns

the trajectory object enew describing the unconstrained optimal trajectory. The pseudocode for this

function is given in Algorithm 19.

139

• LocalTraj (self , e, cmax): The input of this function is the trajectory object e and the double precision

variable cmax. This function computes the unconstrained optimal trajectory from the initial state of e

toward the final state of e up to a maximum cost cmax, and returns the new vertex object xnew as the

end vertex of this trajectory and the new trajectory enew. The pseudocode for this function is given in

Algorithm 20.

• CTG (self ,x2): The input of this function is a vertex object x2. This function calculates the uncon-

strained optimal cost-to-go from the the state of vertex object (self) to the state of the vertex object

x2, and returns this value as the double precision variable CTG. The pseudocode for this function is

given in Algorithm 21.

• Sample (self): This function returns a randomly generated vertex object xrand that has a state that

lies in the region described by the bounds in the property X . The pseudocode for this function is given

in Algorithm 22.

• CollisionCheck (self , x): The input of this function is an n row double precision array x, where

each column of x describes a state. This function evaluates if any column of x describes a state that

lies outside of the bounds described by the property X . If no state described by the columns of x lies

outside of these bounds then the function returns true, and it returns false otherwise. The pseudocode

for this function is given in Algorithm 23.

• GetAffine (self): This function returns the property c.

• GetR (self): This function returns the property R.

• GetCi (self): This function returns the property CI .

• SetState (self , x): The input of this function is the n row single-column double precision array x,

which is assigned to the property x.

Additionally, a function describing the ordinary differential equations of the system is required, which is

detailed in Algorithm 18. The input t is a double precision variable describing the time of the system, x is a

n row single-column double precision array describing the state of the system, t∗f is a double precision variable

describing the final time of the trajectory, x0 is a n row single-column double precision array describing the

initial state of the system, xf is a n row single-column double precision array describing the final state of

the system, c is a n row single-column double precision array describing the drift of the system, and R is the

140

control input weighting matrix in the cost function given by (26). The function is described by

[dxdt, u∗t] = ODEFun
(
t, x, t∗f , x0, xf , c, R

)
.

Algorithm 18 Double Integrator with Drift: ODE Function

1: function ODEFun(t, x, t∗f , x0, xf , c, R)

2: A = [zeros (3) , eye (3) ; zeros (3) , zeros (3)];
3: B = [zeros (3) , eye (3)];
4: u∗t = (64);
5: dxdt = A ∗ x+B ∗ u+ c;
6: return [dxdt, u∗t];

141

Algorithm 19 Vertex Class: Steering Function

1: function Steer(self ,x2)
2: x0 = self .x;
3: xf = x2.GetState;
4: c = self .c;
5: CI = self .CI ;
6: R = self .R;
7: H4, H2, H1, H0 from (235);
8: if H2 == 0 && H1 == 0 && H0 == 0 then
9: tc = 0;

10: else if H2 < 0 && H1 == 0 && H0 == 0 then

11: tc = sqrt
(
−H2

H4

)
;

12: tc =
[
0; t∗f

]
;

13: else if H2 == 0 && H1 == 0 && H0 < 0 then

14: tc = sqrt
(
sqrt

(
−H2

H4

))
;

15: else if H2 < 0 && H1 == 0 && H0 < 0 then

16: tc = sqrt

(
−H2+sqrt(H2

2−4∗H4∗H0)
2∗H4

)
;

17: else
18: tc = roots ([H4, 0, H2, H1, H0]);

19: tc = t∗f

(
imag

(
t∗f

)
== 0

)
;

20: tc = t∗f

(
t∗f >= 0

)
;

21: cmin =∞;
22: for i = 1 : length (tc) do
23: t∗f = tc (i);

24: cf = (65);
25: if cf < cmin then
26: cmin = cf ;
27: tmin = t∗f
28: c∗1,2 = cmin;
29: t∗f = tmin;

30:
[
t∗1,2, x

∗
1,2

]
= ode45

(
@ (t, x) ODEFun

(
t, x, t∗f , x0, xf , c, R

)
,
[
0, t∗f

]
, x0

)
;

31: x∗1,2 = x∗1,2’;
32: u∗1,2 = [];

33: for i = 1 : length
(
t∗1,2
)

do
34: t = t∗1,2 (i);

35:
[
∼, u∗1,2 (:, end + 1)

]
= ODEFun

(
t, x∗1,2 (:, i) , t∗f , x0, xf , c, R

)
;

36: return Trajectory
(
self ,x2, x

∗
1,2, u

∗
1,2, t

∗
1,2, c

∗
1,2

)
;

142

Algorithm 20 Vertex Class: Local Trajectory Function

1: function LocalTraj(self , e, cmax)
2: x1 = e.GetStartVertex;
3: x2 = e.GetEndVertex;
4: ce = e.GetCost;
5: if ce <= cmax then
6: return [x2, e];

7: x1 = x1.GetState;
8: c = x1.GetAffine;
9: CI = x1.GetCi;

10: R = x1.GetR;
11: x2 = x2.GetState;
12: C3, C2, C1 from (79);
13: t̃f = roots ([C3, C2, C1, cmax]);
14: t̃f = t̃f

(
imag

(
t̃f
)

== 0
)
;

15: t̃f = t̃f
(
t̃f >= 0

)
;

16: t̃f = min
(
t̃f
)
;

17: tf = e.GetTime;
18: tf = tf (end);
19:

[
t∗1,2, x

∗
1,2

]
= ode45

(
@ (t, x) ODEFun (t, x, tf , x1, x2, c, R) ,

[
0, t̃f

]
, x1
)
;

20: x∗1,2 = x∗1,2’;
21: u∗1,2 = [];

22: for i = 1 : length
(
t∗1,2
)

do
23: t = t∗1,2 (i);

24:
[
∼, u∗1,2 (:, end + 1)

]
= ODEFun

(
t, x∗1,2 (:, i) , t̃f , x1, x2, c, R

)
;

25: x2 = x∗1,2 (:, end);
26: x2.SetState (x2);
27: c∗1,2 = x1.CTG (x2);
28: c1 = x1.GetCost;
29: x2.SetCost

(
c1 + c∗1,2

)
;

30: enew = Trajectory
(
x1,x2, x

∗
1,2, u

∗
1,2, t

∗
1,2, c

∗
1,2

)
;

31: return [x2, enew];

143

Algorithm 21 Vertex Class: Cost-to-Go Function

1: function CTG(self ,x2)
2: x0 = self .x;
3: xf = x2.GetState;
4: c = self .c;
5: CI = self .CI ;
6: R = self .R;
7: H4, H2, H1, H0 from (235);
8: if H2 == 0 && H1 == 0 && H0 == 0 then
9: tc = 0;

10: else if H2 < 0 && H1 == 0 && H0 == 0 then

11: tc = sqrt
(
−H2

H4

)
;

12: tc =
[
0; t∗f

]
;

13: else if H2 == 0 && H1 == 0 && H0 < 0 then

14: tc = sqrt
(
sqrt

(
−H2

H4

))
;

15: else if H2 < 0 && H1 == 0 && H0 < 0 then

16: tc = sqrt

(
−H2+sqrt(H2

2−4∗H4∗H0)
2∗H4

)
;

17: else
18: tc = roots ([H4, 0, H2, H1, H0]);

19: tc = t∗f

(
imag

(
t∗f

)
== 0

)
;

20: tc = t∗f

(
t∗f >= 0

)
;

21: CTG =∞;
22: for i = 1 : length (tc) do
23: t∗f = tc (i);

24: cf = (65);
25: if cf < CTG then
26: CTG = cf ;

27: return CTG;

Algorithm 22 Vertex Class: Sampling Function (Uniform Sampling)

1: function Sample(self)
2: X p = self .X (1 : end− 1, :);
3: X v = self .X (end, :);
4: p = X p (:, 1) + rand (size (X p, 1) , 1) ∗ (X p (:, 2)−X p (:, 1));
5: φ = rand (1, 1) ∗ 2 ∗ π;
6: θ = rand (1, 1) ∗ 2 ∗ π;
7: rv = X v (1, 1) + rand (1, 1) ∗ (X v (1, 2)−X v (1, 1));
8: v = rv ∗ [cos (φ) ∗ sin (θ) ; sin (φ) ∗ sin (θ) ; cos (θ)];
9: x = [p; v];

10: while ∼ self .CollisionFree (x) do
11: p = X p (:, 1) + rand (size (X p, 1) , 1) ∗ (X p (:, 2)−X p (:, 1));
12: φ = rand (1, 1) ∗ 2 ∗ π;
13: θ = rand (1, 1) ∗ 2 ∗ π;
14: rv = X v (1, 1) + rand (1, 1) ∗ (X v (1, 2)−X v (1, 1));
15: v = rv ∗ [cos (φ) ∗ sin (θ) ; sin (φ) ∗ sin (θ) ; cos (θ)];
16: x = [p; v];

17: return x;

144

Algorithm 23 Vertex Class: Collision Check Function (Uniform Sampling)

1: function CollisionCheck(self , x)
2: for i = 1 : 3 do
3: if any (x (i, :) < self .X (i, 1)) then
4: return false;
5: else if any (x (i, :) > self .X (i, 2)) then
6: return false;

7: v = vecnorm (x (4 : 6, :) , 2, 1);
8: if any (v < self .X (4, 1)) then
9: return false;

10: else if any (v > self .X (4, 2)) then
11: return false;

12: return true;

145

References

[1] J. Paulsen, “Only data at the edge will make driverless cars safe,” Seagate Blog. [Online]. Available:

https://blog.seagate.com/human/only-data-at-the-edge-will-make-driverless-cars-safe

[2] S. Baur, M. Hader, and T. Schönberg, “Cargo drones: the urban parcel delivery network of

tomorrow,” Roland Berger. [Online]. Available: https://www.rolandberger.com/sv/Point-of-View/

Cargo-drones-The-urban-parcel-delivery-network-of-tomorrow.html

[3] A. Tabor, “NASA and Uber test system for future urban air transport,” NASA. [Online]. Available:

https://www.nasa.gov/feature/ames/nasa-and-uber-test-system-for-future-urban-air-transport

[4] CB Insights, “40 corporations working on autonomous vehicles,” Mar 2020. [Online]. Available:

https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list

[5] T. Reed and J. Kidd, “INRIX global traffic scorecard,” 2019.

[6] J. Young, “US ecommerce sales grow 14.9% in 2019,” 2020. [Online]. Available:

https://www.digitalcommerce360.com/article/us-ecommerce-sales/#:∼:text=Consumers%20spent%

20%24601.75%20billion%20online,quarterly%20ecommerce%20figures%20released%20Wednesday

[7] M. Moore, “Uber elevate: eVTOL urban mobility,” Rotorcraft Business & Technology Summit, 2017.

[8] Day One Staff, “Another new frontier for Prime Air,” 2019. [Online]. Available: https:

//blog.aboutamazon.com/transportation/another-new-frontier-for-prime-air

[9] Airbus, “Airbus forecasts $3 trillion commercial aviation aftermarket services over the next

20 years,” 2016. [Online]. Available: https://www.airbus.com/newsroom/press-releases/en/2016/07/

airbus-forecasts-3-trillion-commercial-aviation-aftermarket-services-over-the-next-20-years.html

[10] IATA, “Recovery delayed as international travel remains locked down,” Jul 2020. [Online]. Available:

https://www.iata.org/en/pressroom/pr/2020-07-28-02/

[11] S. Barden, “AINsight: is the pilot shortage over?” Sep 2020. [Online]. Available: https:

//www.ainonline.com/aviation-news/blogs/ainsight-pilot-shortage-over

[12] Popular Science Monthly, “Now - the automatic pilot,” 1930.

[13] A. E. Bryson, Applied optimal control: optimization, estimation and control. CRC Press, 2018.

146

[14] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[15] Y. Chen, G. Luo, Y. Mei, J. Yu, and X. Su, “UAV path planning using artificial potential field method

updated by optimal control theory,” International Journal of Systems Science, vol. 47, no. 6, pp. 1407–

1420, 2016, DOI 10.1080/00207721.2014.929191.

[16] J. Tisdale, Z. Kim, and J. K. Hedrick, “Autonomous UAV path planning and estimation,” IEEE Robotics

Automation Magazine, vol. 16, no. 2, pp. 35–42, 2009, DOI 10.1109/MRA.2009.932529.

[17] M. Iwamura, M. Yamamoto, and A. Mohri, “A gradient-based approach to collision-free quasi-optimal

trajectory planning of nonholonomic systems,” in Proceedings. 2000 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), vol. 3, 2000, pp. 1734–1740

vol.3, DOI 10.1109/IROS.2000.895222.

[18] M. Bagherian and A. Alos, “3D UAV trajectory planning using evolutionary algorithms: a com-

parison study,” The Aeronautical Journal (1968), vol. 119, no. 1220, p. 1271–1285, 2015, DOI

10.1017/S0001924000011246.

[19] E. Shintaku, “Minimum energy trajectory for an underwater manipulator and its simple planning

method by using a genetic algorithm,” Advanced robotics, vol. 13, no. 2, pp. 115–138, 1998.

[20] T. Chettibi, “Synthesis of dynamic motions for robotic manipulators with geometric path

constraints,” Mechatronics, vol. 16, no. 9, pp. 547 – 563, 2006. [Online]. Available: https:

//doi.org/10.1016/j.mechatronics.2006.03.012

[21] A. Ghanbari and S. Noorani, “Optimal trajectory planning for design of a crawling gait in a robot using

genetic algorithm,” International Journal of Advanced Robotic Systems, vol. 8, no. 1, p. 6, 2011, DOI

10.5772/10526.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum

cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968,

DOI 10.1109/TSSC.1968.300136.

[23] S. Koenig and M. Likhachev, “Dˆ* lite,” AAAI/IAAI, vol. 15, 2002. [Online]. Available:

https://aaai.org/Papers/AAAI/2002/AAAI02-072.pdf

[24] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning for mobile robots using splines,”

in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 2427–2433,

DOI 10.1109/IROS.2009.5354805.

147

[25] S. Liu and D. Sun, “Minimizing energy consumption of wheeled mobile robots via optimal mo-

tion planning,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 401–411, 2014, DOI

10.1109/TMECH.2013.2241777.

[26] D. Jung and P. Tsiotras, “On-line path generation for unmanned aerial vehicles using B-spline path

templates,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 6, pp. 1642–1653, 2013, DOI

10.2514/1.60780.

[27] Z. Wang, X. Xiang, J. Yang, and S. Yang, “Composite Astar and B-spline algorithm for path planning

of autonomous underwater vehicle,” in 2017 IEEE 7th International Conference on Underwater System

Technology: Theory and Applications (USYS), 2017, pp. 1–6, DOI 10.1109/USYS.2017.8309463.

[28] M. Wang, J. Luo, and U. Walter, “Trajectory planning of free-floating space robot using particle

swarm optimization (PSO),” Acta Astronautica, vol. 112, pp. 77 – 88, 2015. [Online]. Available:

https://doi.org/10.1016/j.actaastro.2015.03.008

[29] B. Song, Z. Wang, L. Zou, L. Xu, and F. E. Alsaadi, “A new approach to smooth global path planning of

mobile robots with kinematic constraints,” International Journal of Machine Learning and Cybernetics,

vol. 10, no. 1, pp. 107–119, 2019. [Online]. Available: https://doi.org/10.1007/s13042-017-0703-7

[30] M. Pontani and B. A. Conway, “Particle swarm optimization applied to space trajectories,” Journal of

Guidance, Control, and Dynamics, vol. 33, no. 5, pp. 1429–1441, 2010, DOI 10.2514/1.48475.

[31] M. Saska, M. Macas, L. Preucil, and L. Lhotska, “Robot path planning using particle swarm optimization

of Ferguson splines,” in 2006 IEEE Conference on Emerging Technologies and Factory Automation,

2006, pp. 833–839, DOI 10.1109/ETFA.2006.355416.

[32] A. Rahimi, K. Dev Kumar, and H. Alighanbari, “Particle swarm optimization applied to spacecraft

reentry trajectory,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 1, pp. 307–310, 2013,

DOI 10.2514/1.56387.

[33] B. Geiger and J. Horn, “Neural network based trajectory optimization for unmanned aerial vehicles,” in

47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition,

DOI 10.2514/6.2009-54.

[34] J. F. Horn, E. M. Schmidt, B. R. Geiger, and M. P. DeAngelo, “Neural network-based trajectory

optimization for unmanned aerial vehicles,” Journal of Guidance, Control, and Dynamics, vol. 35,

no. 2, pp. 548–562, 2012, DOI 10.2514/1.53889.

148

[35] S. A. Gautam and N. Verma, “Path planning for unmanned aerial vehicle based on genetic algorithm

& artificial neural network in 3D,” in 2014 International Conference on Data Mining and Intelligent

Computing (ICDMIC), 2014, pp. 1–5, DOI 10.1109/ICDMIC.2014.6954257.

[36] H. Eslamiat, Y. Li, N. Wang, A. K. Sanyal, and Q. Qiu, “Autonomous waypoint planning, optimal

trajectory generation and nonlinear tracking control for multi-rotor UAVs,” in 2019 18th European

Control Conference (ECC), 2019, pp. 2695–2700, DOI 10.23919/ECC.2019.8795855.

[37] R. Wai and A. S. Prasetia, “Adaptive neural network control and optimal path planning of UAV

surveillance system with energy consumption prediction,” IEEE Access, vol. 7, pp. 126 137–126 153,

2019, DOI 10.1109/ACCESS.2019.2938273.

[38] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning

in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12,

no. 4, pp. 566–580, 1996, DOI 10.1109/70.508439.

[39] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Numerische mathematik,

vol. 1, no. 1, pp. 269–271, 1959. [Online]. Available: https://doi.org/10.1007/BF01386390

[40] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic planning,” The International Journal

of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001, DOI 10.1177/02783640122067453.

[41] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal motion plan-

ning,” in Proceedings of Robotics: Science and Systems, Zaragoza, Spain, June 2010, DOI

10.15607/RSS.2010.VI.034.

[42] ——, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics

Research, vol. 30, no. 7, pp. 846–894, 2011, DOI 10.1177/0278364911406761.

[43] ——, “Optimal kinodynamic motion planning using incremental sampling-based methods,”

in 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 7681–7687, DOI

10.1109/CDC.2010.5717430.

[44] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-based planning for linear-

quadratic kinodynamic systems,” in 2013 IEEE International Conference on Robotics and Automation,

2013, pp. 2429–2436, DOI 10.1109/ICRA.2013.6630907.

[45] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “LQR-RRT*: optimal sampling-

based motion planning with automatically derived extension heuristics,” in 2012 IEEE International

Conference on Robotics and Automation, 2012, pp. 2537–2542, DOI 10.1109/ICRA.2012.6225177.

149

[46] E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion planning under differential

constraints: the drift case with linear affine dynamics,” in 2015 54th IEEE Conference on Decision and

Control (CDC), 2015, pp. 2574–2581, DOI 10.1109/CDC.2015.7402604.

[47] D. J. Webb and J. v. d. Berg, “Kinodynamic RRT*: optimal motion planning for systems with linear

differential constraints,” arXiv preprint arXiv:1205.5088, 2012.

[48] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic for rapidly exploring state space,”

in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 5021–5028, DOI

10.1109/ROBOT.2010.5509718.

[49] D. B. Moses and G. Anitha, “Goal directed approach to autonomous motion planning for unmanned

vehicles,” Defence Science Journal, vol. 67, no. 1, pp. 45–49, Dec. 2016, DOI 10.14429/dsj.67.10295.

[50] I. Garcia and J. P. How, “Improving the efficiency of rapidly-exploring random trees using a potential

function planner,” in Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp.

7965–7970, DOI 10.1109/CDC.2005.1583450.

[51] A. H. Qureshi and Y. Ayaz, “Potential functions based sampling heuristic for optimal path

planning,” Autonomous Robots, vol. 40, no. 6, pp. 1079–1093, 2016. [Online]. Available:

https://doi.org/10.1007/s10514-015-9518-0

[52] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT growth,” in Proceedings

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.

No.03CH37453), vol. 2, 2003, pp. 1178–1183 vol.2, DOI 10.1109/IROS.2003.1248805.

[53] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato, “Adapting RRT growth for heterogeneous

environments,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013,

pp. 1772–1778, DOI 10.1109/IROS.2013.6696589.

[54] V. Vonásek, J. Faigl, T. Krajńık, and L. Přeučil, “RRT-Path – a guided rapidly exploring random tree,”

in Robot Motion and Control 2009. Springer, 2009, pp. 307–316.

[55] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic motion planning using any-angle

path biasing,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp.

2775–2781, DOI 10.1109/ICRA.2016.7487439.

[56] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: optimal sampling-based path plan-

ning focused via direct sampling of an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004, DOI 10.1109/IROS.2014.6942976.

150

[57] J. J. Kuffner and S. M. LaValle, “RRT-Connect: an efficient approach to single-query path plan-

ning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics

and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, pp. 995–1001, DOI

10.1109/ROBOT.2000.844730.

[58] R. Tedrake, “LQR-Trees: feedback motion planning on sparse randomized trees,” 2009, DOI

10.15607/RSS.2009.V.003.

[59] L. Rodrigues, “On affine quadratic optimal control and aerospace applications,” IEEE Transactions on

Aerospace & Electronic Systems, in press for publication.

[60] M. Lichocki and L. Rodrigues, “A Gaussian-biased heuristic for stochastic sampling-based 2D trajec-

tory planning algorithms,” in 2020 European Control Conference (ECC), 2020, pp. 1949–1954, DOI

10.23919/ECC51009.2020.9143947.

[61] L. S. Pontryagin, Mathematical theory of optimal processes. Routledge, 2018.

[62] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2004.

[63] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks. Princeton University

Press, 2010, vol. 33.

[64] L. Liu and M. T. Özsu, Encyclopedia of database systems. Springer New York, NY, USA:, 2009, vol. 6.

[65] MATLAB, version 9.4.0 (R2018a). Natick, Massachusetts: The MathWorks Inc., 2018.

[66] W. Yuan and L. Rodrigues, “Onboard generation of optimal flight trajectory for delivery of fragile

packages,” in 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 2019, pp. 1–8,

DOI 10.1109/ICUAS.2019.8798130.

[67] C. de Paiva, B. Carvalho, and L. Rodrigues, “UAV optimal guidance in wind fields using ZEM/ZEV

with generalized performance index,” IEEE Transactions on Aerospace and Electronic Systems, 2020,

DOI 10.1109/TAES.2020.3005302.

[68] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques

for nonlinear programming,” Mathematical programming, vol. 89, no. 1, pp. 149–185, 2000. [Online].

Available: https://doi.org/10.1007/PL00011391

[69] A. Edelman and H. Murakami, “Polynomial roots from companion matrix eigenvalues,”

Mathematics of Computation, vol. 64, no. 210, pp. 763–776, 1995. [Online]. Available: https:

//doi.org/10.1090/S0025-5718-1995-1262279-2

151

[70] X. Wang, “A simple proof of Descartes’s rule of signs,” The American Mathematical Monthly, vol. 111,

no. 6, pp. 525–526, 2004, DOI 10.2307/4145072.

[71] A. G. Kurosh, Higher algebra. Mir Publishers, 1972.

[72] R. S. Irving, Integers, polynomials, and rings: a course in algebra. Springer Science & Business Media,

2003.

[73] R. W. Nickalls, “A new approach to solving the cubic: Cardan’s solution revealed,” The Mathematical

Gazette, vol. 77, no. 480, pp. 354–359, 1993.

[74] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,” Matrix, vol. 58,

no. 15-16, pp. 1–35, 2006.

[75] J. Wilson, “Volume of n-dimensional ellipsoid,” Sciencia Acta Xaveriana, vol. 1, no. 1, pp. 101–106,

2010.

[76] K. Schacke, “On the kronecker product,” Master’s thesis, University of Waterloo, 2004.

152

