
License Plate Detection Using One-stage Object
Detection Algorithms

Niloofar Baghdadi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

November 2020

© Niloofar Baghdadi, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Niloofar Baghdadi

Entitled: License Plate Detection Using One-stage Object Detection

Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Chair
Dr. Tse-Hsun Chen

Examiner
Dr. Adam Krzyzak

Examiner
Dr. Tse-Hsun Chen

Supervisor
Dr. Ching Y. Suen

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

November 30, 2020
Mourad Debbabi, Interim Dean
Faculty of Engineering and Computer Science

Abstract

License Plate Detection Using One-stage Object Detection Algorithms

Niloofar Baghdadi

Automatic License Plate Detection and Recognition (ALPR) has many practical applications

such as traffic control and parking tickets; for this reason, it has been one of the exciting research

topics. Environmental factors such as lighting and dust, make automatic license plate detection

and recognition challenging, especially for traditional image processing methods. Although much

research has been conducted on ALPR systems using image processing and computer vision tools

and algorithms, the need for more research on this topic with deep-learning algorithms has not

been satisfied yet. Among different and in succession phases of ALPR, the license plate detection

phase is of great importance because it is the first phase, and its performance affects the result

of other stages. Moreover, due to the advent of technology and artificial intelligence in everyday

life, having reliable real-time ALPR systems is necessary. Hence, this work empirically studies

the mean Average Precision (mAP) of Single Shot MultiBox Detector (SSD) and You Only Look

Once (YOLOv4) on CENPARMI and UFPR-ALPR datasets. Although we achieved good mAP

results of 95.47 % (ResNet-SSD) and 95.45 % (InceptionV2-SSD) with the SSD model during this

experiment, we have reached the highest mAP of 97.46 % and 97.78 % with the newly released

YOLOv4 model on CENPARMI and UFPR-ALPR datasets, respectively. However, in object

detection, high precision is not the only essential criterion anymore. Hence, we scrutinized the

object-detectors mentioned above to find a model that can balance mAP, speed, and memory. We

learned that the higher the number of parameters of a model, the better the detection results. On

the other hand, the number of parameters of a model can affect an object detection task’s speed.

iii

Acknowledgments

I want to give my deepest and sincerest gratitude to those who have helped me in this endeavor.

I will never forget my supervisor Dr. Ching Y. Suen, whom his guidance, patience, understanding,

and kindness helped me through all the challenges. I was truly fortunate to work under his

supervision and be rewarded with lifelong lessons. I remain thankful to my family and friends,

who gave me the courage and support to continue to walk toward my dreams. I am also forever

grateful to anyone who had taught me anything throughout my journey.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Literature Review 4

2.1 License Plate Transformation . 4

2.2 License Plate Detection and Recognition . 7

2.2.1 ALPR with Template Matching . 8

2.2.2 ALPR with Neural Networks . 8

3 Methodology 15

3.1 Object Recognition Overview . 15

3.1.1 Convolutional Neural Networks (CNNs/ConvNets) 16

3.1.2 Accurate Detection Models . 20

3.1.3 Fast Detection Models . 20

3.2 Object Detection Measuring Metric . 20

3.3 The Choice of Algorithm . 24

3.4 Single Shot Multi-box Detector(SSD) . 25

3.4.1 The Choice of Feature Extractor . 28

3.4.1.1 MobileNet-V1 . 30

3.4.1.2 MobileNet-V2 . 31

3.4.1.3 Inception-V2 . 32

3.4.1.4 ResNet-50 . 33

v

3.5 You Only Look Once (YOLOv4) . 34

4 Experiments and Results 35

4.1 Dataset . 35

4.1.1 UFPR-ALPR dataset . 35

4.1.2 CENPARMI dataset . 36

4.1.3 Pre-processing . 38

4.2 Experiment . 40

4.3 Results . 44

5 Conclusions and Future Work 56

5.1 Conclusions . 56

5.2 Limitations and Future Work . 57

Bibliography 58

vi

List of Figures

Figure 2.1 Sample license plate in American vs. European countries. 4

Figure 3.1 Architecture of a CNN. 17

Figure 3.2 Effect of Convolutional Layer with a 5×5×3 filter. 17

Figure 3.3 Different activation functions and their associated graphs. 18

Figure 3.4 Max pooling operation. 18

Figure 3.5 The activations of an example ConvNet architecture. 19

Figure 3.6 Precision vs. Recall . 22

Figure 3.7 Intersection over Union . 23

Figure 3.8 Single Shot Multi-Box Object Detector Architecture 26

Figure 3.9 SSD framework: (a) ground truth, (b) fine-grained feature map 8× 8, (c)

coarse-grained feature map 4×4. 27

Figure 3.10 Result of different object detectors tested with different feature extractors

on the COCO dataset. 28

Figure 3.11 Accuracy of detector vs accuracy of feature extractor 29

Figure 3.12 Properties of six feature extractors used in object detection API 29

Figure 3.13 MobileNet-V1’s Convolution block . 30

Figure 3.14 MobileNet-V2’s Convolution block . 31

Figure 3.15 (a) Original Inception Module from [1], (b) is the first module of Inception-

V2, (c) is the second module of Inception-V2, and (d) is the third module

of Inception-V2. Images (b),(c), and (d) are from [2] 32

Figure 3.16 Bottleneck building block for ResNet-50 33

Figure 3.17 Building blocks of one-stage or two-stage object detectors. 34

Figure 4.1 Example of UFPR-ALPR dataset . 36

Figure 4.2 Example of CENPARMI dataset . 37

vii

Figure 4.3 Example of removed images from CENPARMI dataset. License plates in

(a) are not visible, and license plates in (b) are too close to the camera. . . 38

Figure 4.4 (a) and (b) are two examples of cropped images from CENPARMI dataset

into 5 regions. 39

Figure 4.5 Example of annotating an image with LabelImg tool. 40

Figure 4.6 Ground-truth bounding box width versus height of training data for

CENPARMI and UFPR-ALPR datasets 41

Figure 4.7 Object Detection Work Flow. 43

Figure 4.8 (a) Precision-recall curve of models on the CENPARMI dataset, (b)

Precision-recall curve of models on the UFPR-ALPR dataset. 45

Figure 4.9 (a) Test result of the CENPARMI dataset, (b) Test result of UFPR-ALPR

dataset. 46

Figure 4.10 (a) is the test result of SSD model with different feature extractors on

CENPARMI dataset, (b) is the test result of SSD model with different

feature extractors on UFPR-ALPR dataset. 48

Figure 4.11 (a) False Negatives vs IoU on the CENPARMI dataset, (b) False Negatives

vs IoU on the UFPR-ALPR dataset. 50

Figure 4.12 Test data from CENPARMI dataset showing that (a) SSD-ResNet50 could

not detect the second license plate in the image, (b) SSD-InceptionV2

could not detect the license plate in the image. 51

Figure 4.13 The result of CENPARMI and UFPR-ALPR test sets on different fast

detection models. 52

Figure 4.14 Different attempts to train the MobileNetV2-SSD model on the UFPR-

ALPR dataset and the number of false negatives corresponding to each

model. 54

Figure 4.15 Number of false negatives of MobileNetV2-SSD models trained on UFPR-

ALPR dataset at IoU threshold 0.5 and their corresponding mAP results. . 55

viii

List of Tables

Table 4.1 The datasets and the train, validation, and test splits. 37

Table 4.2 The input size, optimizer, batch size, and learning rate of models trained

on CENPARMI and UFPR-ALPR datasets. 42

Table 4.3 Classification accuracy, number of parameters, and speed of each feature

extractor reported by OpenVINO and Object Detection API. 47

ix

Chapter 1

Introduction

License Plate Detection and Recognition is essential for many purposes, such as traffic control,

finding stolen vehicles, issuing parking tickets, and so forth. There is quite a few research studies

in license plate detection and recognition; however, there is always a need for improved and robust

techniques to replace the old ones. In the field of license plate detection and recognition, we are

dealing with still images or videos of vehicles passing by.

To have an Automatic License Plate Detection and Recognition (ALPR), one should accomplish

different phases. License plate detection, character segmentation, and recognition are among the

main phases that are in succession. Hence, the performance in one phase affects the result of

the other. If we acquire good results in the early stages, having a reliable ALPR system can be

promising. Besides, every jurisdiction uses different background colors, graphics, and fonts in

license plates to make them unique and recognizable; however, this can affect the ALPR systems’

recognition phase [3].

The use of artificial intelligence, especially deep learning, in science and technology, is

becoming prevailing. Many researchers studied license plate detection and recognition systems

using image processing and computer vision tools and algorithms, while more research is required

using brand-new deep learning algorithms. To this extent, this study is devoted to the detection of

license plates using very recent object detection algorithms in the area of deep learning.

1

Since the ALPR systems are more applicable in real-time environments, we concluded

work on one-stage detection models that are remarkably faster than two-stage detection

models. After a careful review of research conducted by scholars about license plate detection

with Single Shot MultiBox Detector (SSD) algorithm [4][5][6], variants of YouOnly Look

Once (YOLO) algorithm [7][8][9][10][11], and Vanilla Convolutional Neural Network(CNN)

[12][13][14][15][16][17][18][19], we noticed there is plenty of research done with the CNN and

YOLO models. In contrast, we found less research on the SSD model for license plate detection.

Therefore, we examined two of the one-stage object detection algorithms, the SSD and YOLOv4,

with two different datasets during this study. While in this research, the emphasis is more on the

SSD algorithm by scrutinizing different feature extractors.

The challenge with deep learning algorithms is that much data is required to have a valid

prediction. In this study, we used two different datasets to train our models. Except for the Center

for Pattern Recognition and Machine Intelligence (CENPARMI), the Federal University of Parana

dataset for Automatic License Plate Recognition (UFPR-ALPR)1 is publicly available upon request

for non-business purposes. The CENPARMI dataset consists of license plates’ images from the

United States and Canada, while the UFPR-ALPR dataset consists of license plates’ images from

Brazil.

We learned that the higher the number of parameters of a model, the better the detection results.

On the other hand, the number of parameters of a model can affect an object detection task’s speed.

Although we trained the selected models on pre-trained networks, we presume more data can help

the model to generalize better and provide better results.

In the end, we reached promising results from both SSD and YOLOv4 object detection models

on the aforementioned datasets. However, depending on an ALPR system’s application, one should

try to balance and choose between speed, accuracy, and memory. If the speed and accuracy are

1https://web.inf.ufpr.br/vri/databases/ufpr-alpr/

2

https://web.inf.ufpr.br/vri/databases/ufpr-alpr/

essential, YOLOv4 can be an option for the detection phase, and if speed and memory are essential

SSD model can be a better option.

Following is the structure of this project: We review some related works regarding ALPR

systems in chapter 2. Chapter 3 encompasses details of different models that we employ in our

project. Then, we discuss and report the results we acquired in this project in chapter 4. Eventually,

in chapter 5, we conclude our work and propose some ideas for future works.

3

Chapter 2

Literature Review

2.1 License Plate Transformation

A license plate or vehicle registration plate is a metallic plate used to identify a motor vehicle.

As is shown in Figure 2.1, North America’s plate size is 12× 6 inches and narrower than most

license plates used in Europe with 20.5×4.5 inches. The creation and evolution of license plates

alongside the issues they have in legibility and readability are areas in which researchers should

dive in more. In the following, we describe the history of the license plate on a short scale.

Figure 2.1: Sample license plate in American vs. European countries.

Figure from: https://www.autoweek.com/car-life/a2138056/autoweek-asks-should-
european-format-plates-be-option-america/

4

• Issuance

Many changes have taken place related to the issuance of vehicles’ license plates in terms of

fonts, background color, graphic, and base materials. The very first license plate had been issued

in Philadelphia, Pennsylvania, in the 1850s. [3].

Later in 1901, the state of New York required vehicles to have license plates, and in 1903 a

standard license plate was issued through Massachusetts. In the long run, in 1915, most of the

states required license plates for vehicles and charged the owners for a registration fee every year

as a source of transportation revenue [3].

• Retro-Reflective Technology

As stated by [3], the growth of the population, the number of motor vehicles increased. Hence,

other than vehicle identification, vehicle safety became important. Hence, retro-reflective license

plates were issued by New Mexico in 1936 to increase vehicles’ visibility at night.

Eventually, all of the U.S. states, two provinces of Newfoundland and Alberta in Canada, and

countries like San Marino, Peru, and Costa Rica made use of the retro-reflective technology, which

reduced the number of accidents at night by improving the legibility of license plates of vehicles

[3].

5

• Material

According to [3], steel was the primary material used to make license plates in the early 20th

century; however, due to the second world war and the high steel demand, States jurisdictions

issued only one license plate for each vehicle.

Nevertheless, after the second world war, some states switched to using license plates for the

front and rear in motor vehicles, while others kept the tradition of having only one license plate to

save costs. It is worth mentioning that nowadays, aluminum is the primary material used in making

license plates of vehicles [3].

• Background Color, Graphics, and Fonts

Different jurisdictions use different colors for the background and the alphanumeric characters

to recognize their plates easier. By increasing the number of vehicles, graphics were added to

the license plates to make them distinct and recognizable by the State’s jurisdictions. However,

nowadays, by a myriad of graphics, background and alphanumeric colors, and fonts, the license

plates’ legibility is becoming problematic.

As stated by the authors in [20], there is no official font for license plates used by North

American countries despite European countries and elsewhere. Although the fonts that jurisdiction

uses for the license plates in North America look consistent, the necessity of having a standard font

in Northern American countries will be of great help in legibility and readability of license plates.

In agreement with [3], “the lack of national standards regarding the design and manufacturing

of license plates, limits the effectiveness of ALPR technology.”

6

2.2 License Plate Detection and Recognition

Although consistent changes to the manufacturing by the advent of technology help to have

more readable and legible license plates, the Automatic License Plate Detection and Recognition

(ALPR) System will be another solution to improve the readability of the license plates of vehicles.

As stated by [3], the main stages of constructing an ALPR system are as follows:

• Detecting and locating the license plate

• Extracting the characters from the license plate

• Identifying the license plate and jurisdiction

It should be noted that most of the research has been conducted in the area of ALPR is on the

first two stages mentioned above. ALPR system has different applications such as detecting stolen

cars by law enforcement, traffic and border control, and parking security, for instance.

It is always easier to have a text on the computer screen and transform it into a physical piece of

paper than vice versa. Optical Character Recognition (OCR) is a technique that converts images

of handwritten or machine-printed text into machine-readable characters. This technique can be

utilized in license plate detection and recognition as well. Many scholars conducted exciting

research on implementing an ALPR system with the help of OCR technology.

Therefore, it is worth evaluating distinct ways of detecting and recognizing vehicles’ license

plates and comparing them to help organizations using this application. There are numerous ways

to implement an ALPR system; however, we only review some of the research studies conducted

in the Neural Network (NN) and Template Matching methods of Optical Character Recognition

(OCR) in this study.

7

2.2.1 ALPR with Template Matching

The authors in [21] proposed a technique for the detection and recognition of Indian license

plates. They used the template matching technique, which recognizes the characters inside an

image by comparing them with the given templates. The authors integrated the English and Hindi

characters in their work, and before performing the template matching method, they performed the

morphological and threshold operations on images as their proposed method. If the characters do

not exist in any of the templates, they described it as an invalid license plate. The authors achieved

the localization, segmentation, and recognition rate of 92 %, 97 %, and 98 %.

In another work, authors in [22] conducted an empirical study on license plate detection and

recognition with three approaches. The authors used OCR with template matching,multi-class

support vector machine (SVM), and convolutional neural network (CNN) in their study. They

compared each of the approaches’ performance and noticed that the CNN approach performs better

than the other two approaches. This study achieved an accuracy of 88.23 %, 92.64 %, and97.06

% for template matching, multi-class support vector machine, and convolutional neural network,

respectively.

Besides, authors in [22] stated that CNN’s perform better because they can learn from any license

plates with different fonts and designs. Consequently, it can be valuable and of great importance

to scrutinize license plate detection and recognition tasks in the novel neural Network way.

2.2.2 ALPR with Neural Networks

Different scholars researched Automatic License Plate Detection and recognition based on

image processing, computer vision algorithms, and Optical Character Recognition (OCR)

technology. However, according to [23], there is a great deal of information in an image that

deep Learning algorithms consider them for visual recognition while computer vision algorithms

do not.

8

Moreover, by the increasing popularity of Machine Learning and Deep Learning fields, many

exciting research studies about ALPR are being conducted in those fields. Although in demand,

Deep Learning algorithms need massive datasets to perform reasonably well. Nonetheless, an

abundance of exceptional work in the Deep Learning field has been done to either syntactically

expand the data or create powerful ways to overcome the issues.

Based on the stages mentioned above in implementing an ALPR system, some scholars

conducted research only in the first phase, the detection phase, and some others worked on both

detection and recognition phases. All the phases are critical, yet satisfactory detection can lead the

way to a robust ALPR system.

• Detection based on Single Shot MultiBox Detector(SSD)

The work in [4] presented implementing the Single Shot Detection (SSD) algorithm for license

plate detection. The authors stated that by replacing the base algorithm of SSD, the VGG Network,

with the Residual Network (ResNet), they could better detect license plates. Hence, they use

ResNet due to its characteristic that does not allow the gradient to vanish despite being a deep

network. The authors achieved an 85.5 % average accuracy score with ResNet, whereas they

achieved an average accuracy of 83.6 % with the VGG network.

The authors in [5] studied the license plate localization phase of an ALPR system and compared

four different algorithms on a new dataset. The dataset is labeled for both cars and license plates.

The author compared the SSD algorithm once with MobileNet and another time with Resnet50

feature extractors, Faster R-CNN algorithm with the Inception base, and R-FCN algorithm with

Resnet101 base. They observed that SSD’s accuracy with MobileNet was higher than the others

for car detection and the accuracy of FasterR-CNN with Inception was higher for License Plate

detection. The author achieved an accuracy of 98 % on SSD and 90 % on Faster R-CNN.

9

In general, the Single Shot Multibox Detector (SSD) is a small and easy algorithm to train

that can be used for real-time applications. The authors in [6] used the SSD algorithm with the

MobileNet feature extractor for localizing the license plates, and on top of the SSD algorithm,

they used the Convolutional Neural Network (CNN) for character recognition. The authors aimed

to show that new deep-learning algorithms tend to have better results than previous traditional

methods. They evaluated the final model with different test sets, called standard and side view

sets. They achieved the detection accuracy of 92 % on the standard set and 85 % on the side view

set.

Although researchers have done numerous research in License plate detection with deep learning

algorithms, some different scenarios and algorithms are still worth exploring for the detection

phase of an ALPR system.

• Detection based on You Only Look Once (YOLO)

The authors in [7] proposed Multi-Directional Car Plate Detection, using You Only Look Once

(YOLO) architecture. The authors performed some refinements on the YOLO object detection

architecture to make it work in situations that cameras have different degrees of rotation while

taking videos or pictures. They call the model mentioned above, Multi-Directional YOLO (MD-

YOLO). The authors applied the attention method to estimate the precise location of the license

plates. Afterward, the estimated region is passed to the MD-YOLO. The authors achieved

acceptable results on different subsets of the AOLP1 dataset. They achieved the precision of 99.51

%, 99.43 %, and 99.46 % on Access Control, Traffic Law Enforcement, and Road Patrol subsets

of AOLP, respectively.

The authors in [8] applied the YOLO object detector on the SSIG dataset for detection, and for

the recognition, they used three CNN networks, one for character segmentation and two others for

1Application Oriented License Plate (AOLP): http://aolpr.ntust.edu.tw/lab/

10

http://aolpr.ntust.edu.tw/lab/

digit and letter recognition. They achieved a better result than two commercial systems, such as

Sighthound and OpenALPR. Then the authors introduced a public dataset named UFPR-ALPR.

They achieved the recognition rate of 78.33 % on the new dataset with their system, while the

commercial systems achieved below 70 % recognition rate.

In [9], the authors refined the FAST-YOLO network to extract both frontal views of the car and

the license plate. They adjusted the Fast-YOLO to output both of car and license plate for the

detection phase. For character detection and recognition, the authors modified YOLO architecture

and applied a heuristic approach to improving their final result. The authors stated that they

achieved 63.18 % accuracy, while the Sighthound achieved 55.47 % for correctly detected and

recognized license plates.

The authors in [10] represented their work by implementing an ALPR system using three YOLO

networks for car detection, license plate detection, and character detection, respectively. In the

end, the authors used a CNN network for character recognition. They made their dataset of 604

car images and tested their work on them. The authors stated that all the stages’ overall validation

accuracy exceeded 90 %; however, the system accuracy on 50 test images reached only 82 % with

some fault tolerance.

In [11], the authors researched on multilingual license plate detection and recognition on

two datasets. They proposed an end-to-end license plate detection and recognition system.

For the detection phase, the authors used YOLOv2 and for the recognition phase; however,

in the recognition phase, they examined segmentation-free (i.e., Recurrent Neural Network)and

segmentation-based (i.e., YOLOv2) algorithms. The authors compared the result of the recognition

phase and noticed that segmentation-based algorithms perform better for multilingual license

plates. They achieved a recall rate of 99.09 % and 100 % on Radar and GAP-LP datasets for the IoU

threshold of 0.5, respectively. Moreover, the authors achieved 91.46 % and 95 % recognition rate

with the YOLO algorithm and recognition rate of 42.88 % and 95.88 % with the RNN algorithm

on Radar and GAP-LP datasets.

11

• Detection based on Convolutional Neural Network (CNN)

Not all the researchers put an end to their exploration after the license plate detection phase.

A great deal of valuable work has been done in the ALPR system’s recognition phase, similarly.

The work in [12] implemented a Convolutional Neural Network (CNN) for feature extraction,

and the result of the CNN is passed to a Recurrent Neural Network (RNN) with36 hidden units

for sequencing the characters of license plates. They achieved 76 % accuracy in recognizing the

characters in license plates and 95.1 % accuracy per character.

The authors in [13] trained a 37-classes CNN to detect license plates, and in order to remove

the false positives, they trained another two classes of CNN. In the end, they trained an RNN for

character recognition with a precision of 97.56 % and a recall of 95.24 %. Another time, Li and

Shen, with the company of Wang, tackled the Automatic License Plate Detection and Recognition.

They proposed a single network mainly containing layers of CNN and RNN alongside other

required layers to design an end-to-end ALPR system. They showed that they improved the

performance2 of their previous work (two-stage CNN-RNN network with the performance of 94.09

%) and achieved the performance of 97.13 % [14].

The authors in [15] used the Generative Adversarial Network (GAN) to improve their system

accuracy by generating images. They trained a CNN and RNN with images generated byGAN to

create a pre-trained network and fine-tuned the pre-trained network on their dataset. They were

able to achieve 92.1 % of recognition accuracy and 98 % of character recognition accuracy.

The authors in [16] proposed an end-to-end commercial ALPR system named Sighthound with

three CNN networks for license plate detection, character detection, and recognition. The first

CNN used to localize the license Plates, the second CNN, which has two classes used for detecting

plates versus non-plate images, and the third CNN, which has 35 classes used for recognizing the

2Measured by Intersection over Union (IoU)

12

characters inside the license plates. The authors achieved the recall3 of 99.09 % on the US license

plates and 99.64 % on European license plates.

In [17], the authors performed some preprocessing with edge-based methods to find the potential

regions for license plates, then two classes CNN is used to remove the false positives. Later on,

the authors used 11 parallel CNN (the reason was that the license plates they were dealing with

had 11 alphanumeric characters) with 37 classes for character recognition. The authors were able

to accomplish license plate recognition accuracy of 97 % for single line license plates.

Moreover, the authors in [18] used some image processing methods as a preprocessing step to

localize the region of interest in images. Afterward, they used 2-class CNN to distinguish plates

and non-plate regions. Segmentation of characters in detected license plates from the previous

task is another step of their work. The authors used image processing methods to do character

segmentation before character recognition with a 37-class CNN. In the end, the authors were able

to achieve an accuracy rate of 94.8 % on the Caltech dataset and the accuracy rate of 96.2 %, 95.4

%, and 95.1 % on Access Control, Traffic Law Enforcement, and Road Patrol subsets of the AOLP

dataset, respectively.

The work in [19] presented a new baseline named The Roadside Parking Net (RPnet)for

Automatic License Plate Detection and Recognition on a large dataset named CCPD4. The authors

introduced the RPnet as a single network which is composed of the detection and recognition

modules. In the first module, a ten layer CNN creates feature maps and passes the feature maps

to 3 fully connected layers to predict boxes. In the second module, there are some ROI pooling

layers and classifiers to predict the license plate alphanumeric characters. The authors illustrated

that their model achieved better results in terms of speed and accuracy than other state-of-the-art

approaches on a similar dataset. The authors achieved the detection precision of 94.5 % and the

recognition accuracy of 95.5 %.

3Recall is a fraction of true positive over predicted results
4Chinese City Parking Dataset

13

Last but not least, License plate detection and recognition has been studied from different

perspectives. Nevertheless, their improvement hinges on the advancement of technology and

demands. Hence, as the technology evolves, one would want to explore more on the topic.

14

Chapter 3

Methodology

3.1 Object Recognition Overview

Object Recognition is a term that encompasses other computer vision tasks; however, it mostly

refers to "object detection" when it is used [24]. Object recognition includes but is not limited to:

• Image Classification: Image classification is a task which predicts the class of an object

in the image. The mean classification error assesses an image classification model’s

performance over the predicted class labels.

• Object Localization: Object localization finds the object with its bounding box information.

An object localization model’s performance is assessed by the distance between the expected

and predicted bounding box.

• Object Detection: Object detection proposes the class of the object and its location with a

bounding box. The precision and recall assess an object detection model’s performance over

each of the best matching bounding boxes for the image’s known object.

To better understand how object detection in the field of neural networks works, one should dive

more into the Convolutional Neural Networks(CNNs) that pave the way for the recent progress in

image classification hence object detection.

15

3.1.1 Convolutional Neural Networks (CNNs/ConvNets)

Convolutional Neural Network [25] is a neural network that implements a mathematical

operation called convolution in at least one of their layers [26]. The convolution operation is

written as follows:

s(t) =
∫︂

x(a)w(t −a)da (1)

In the above equation, x is the input, w is the kernel, and s(t) is the feature map or output. Since

we work with data on computers, the time is discrete, and the convolution we are interested in is

the discrete convolution [26]. Moreover, as we work with 2-D image I, the kernel K should be 2-D

consequently.

Listed below is the discrete convolution formula for 2-D images:

S(i, j) = (I∗K)(i, j) = ΣmΣn I(m,n)K(i−m, j−n). (2)

Convolutional Neural Network or ConvNet consists of three main layers, Convolutional Layer,

Pooling Layer, and Fully-Connected Layer. Figure 3.1 shows the architecture of CNN.

16

Figure 3.1: Architecture of a CNN.

Figure from: https://www.mathworks.com/videos/introduction-to-deep-learning-what-
are-convolutional-neural-networks–1489512765771.html

Convolutional Layer is the core building block of a convolutional network and performs

convolution operation spatially on the input volume with a set of learnable filters1. As it is clear

from Figure 3.2, each filter produces a 2-dimensional activation map, and the output volume will

be produced by stacking the activation maps.

Figure 3.2: Effect of Convolutional Layer with a 5×5×3 filter.

Figure from [27]

1Denoted as K in the equation (2)

17

A non-linear activation function always follows a convolutional layer in ConvNets. Activation

functions have a significant effect on the output of neural networks. Rectified LinearUnit Layer

(RELU) is an activation function mostly used in many types of neural networks because it is proven

that a model that uses this function is more comfortable to train and often achieves better results

[28]. Figure 3.3 shows popular activation functions.

Figure 3.3: Different activation functions and their associated graphs.

Figure from: https://mc.ai/complete-guide-of-activation-functions/

The pooling layer is another layer in the convolutional network, which downsamples the feature

map (or activation map) to make it invariant to small translations of the input image, reduce the

number of parameters and computation of the network. The most popular downsampling operation

is max pooling, as shown in Figure 3.4, in which a 2×2 filter, usually with a stride of 2 along width

and height, will downsample the activation maps.

Figure 3.4: Max pooling operation.

Figure from [27]

18

Despite convolutional layers, neurons in a Fully-Connected Layer have full connection to the

feature map in the previous layer. The fully-connected layer aims to classify the input image into

different classes when convolutional, and pooling layers have performed feature extraction. By

stacking the layers mentioned above, we can make a ConvNet architecture. Figure 3.5 shows a

sequence of layers in a ConvNet that transform one volume of activation to another.

Figure 3.5: The activations of an example ConvNet architecture.

Figure from [27]

Being well acquainted with ConvNets, many scientists have developed and are developing

different object detection algorithms by enriching the ConvNets as feature extractors with different

modules, all of which have their pros and cons over the other. Hence, depending on the application,

selecting one object detector might be advantageous to the other. Nevertheless, one should consider

that accuracy is not the only criterion of interest or importance in object detection applications.

Memory and speed are another crucial basis which would affect the selection of a proper object

detector.

For instance, fast detection algorithms are more efficient if the application is similar to

autonomous driving, which needs the objects to be detected faster. Some other applications require

higher accuracy than speed, so in that case, accurate detection models are of interest.

19

3.1.2 Accurate Detection Models

Region-Based Convolutional Neural Network (R-CNN) family consists of R-CNN [29], FastR-

CNN [30], Faster R-CNN [31], and Mask R-CNN [32], each of which can be used for object

recognition. R-CNN, the first algorithm in this family, was introduced in 2014. Afterward, the Fast

R-CNN was introduced in 2015 and improved the R-CNN. Likewise, the Faster R-CNN presented

in 2017 boosted the Fast R-CNN algorithm, and lastly, the mask R-CNN algorithm was introduced

in 2017 and extended the Faster R-CNN algorithm to pixel-level image segmentation. Although

object recognition with the R-CNN family is accurate, these algorithms are slow because of the

region proposal step involved in each of the algorithms mentioned above.

3.1.3 Fast Detection Models

Notwithstanding the R-CNN family that the object detection happens in two stages2, the Single

Shot Multi-box Detector (SSD) [33] and You Only Look Once (YOLO) [34] family are one-stage

object recognition algorithms, which led them to be known as fast detection algorithms and hence

real-time object detectors.

3.2 Object Detection Measuring Metric

Object detection metrics that are being used, established throughout the object detection

challenges such as the PASCAL VOC Challenge3, the COCO Object Detection Challenge4,

the Open Images Challenge5, and the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)6.

2Region or box proposal stage which is done by the Selective Search algorithm or Region Proposal Network (RPN),
and the classification stage.

3http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html
4http://cocodataset.org/#detection-eval
5https://storage.googleapis.com/openimages/web/object_detection_metric.html
6http://www.image-net.org/challenges/LSVRC/

20

The mean Average Precision (mAP) is an essential metric for the object detection tasks;

however, some of the challenges, as mentioned earlier, like the COCO Object Detection Challenge,

also include other metrics such as mean Average Recall(mAR) for evaluating object detection. To

better understand the mAP, it is better to first dive more into the concept of True Positive (TP),

False Positive (FP), False Negative (FN), True Negative (TN), Precision, Recall, and Intersection

over Union (IoU).

The following are the necessary components of other metrics used in the object detection task, so

in order to better grasp other metrics, one should digest the concept of each of the items concerning

the object detection. According to the author in [35], the threshold can be set to 50 %, 75 %, or 95

%, depending on the metric.

• True Positive (TP): A correct detection. Detection with IOU ≥ threshold

• False Positive (FP): A false detection. Detection with IOU < threshold

• False Negative (FN): A ground truth not detected

• True Negative (TN): Does not apply to an object detection task.

Having the metrics mentioned above in mind, one can better understand what precision and

recall could mean in the object detection task.

Precision is depicted in Figure 3.6 and shows how accurate the prediction is. As is illustrated in

equation(3), precision is the number of true positives divided by the sum of true positives(TP) and

false positives(FP).

Precision =
T P

T P+FP
=

True Ob ject Detection
All Detections

(3)

21

Recall is depicted in Figure 3.6 and shows how good the model finds positive cases. As is

shown in equation(4), recall is defined as the number of true positives(TP) divided by the sum of

true positives(TP) and false negatives(FN).

Recall =
T P

T P+FN
=

True Ob ject Detection
All Groundtruth

(4)

Figure 3.6: Precision vs. Recall

Figure from: https://en.wikipedia.org/wiki/Precision_and_recall

22

The Intersection over Union (IoU) computes the overlap between the predicted bounding box

and the ground truth bounding. A predefined threshold determines whether the predicted bounding

box is acceptable or not. Figure 3.7 is the graphical representation of the IoU.

Figure 3.7: Intersection over Union

Figure from: https://www.kaggle.com/c/3d-object-detection-for-autonomous-
vehicles/overview/evaluation

Being well-acquainted with the evaluation metrics mentioned above, we can better grasp the

concept of other evaluation metrics such as average precision(AP) and thence the mean average

precision (mAP).

A precision-recall curve can also be used for evaluating the performance of an object detector;

however, having a numerical value is better when comparing the results of an object detector.

Hence, the average precision is being used, which is the area under the precision-recall curve.

The AP is shown mathematically in the equation (5), where Pn and Rn are the precision and

recall at the nth threshold [36].

23

AP = ∑
n
(Rn −Rn−1)Pn (5)

The mean average precision(mAP) is the mean of average precision over all distinct C classes in

the object detection task and is shown in equation (6).

mAP =
∑

C
i=1 APi

C
(6)

To have a better understanding of how well different object detectors are performing, it is better

to have a unique evaluation metric as is provided by the authors of object detection algorithms.

3.3 The Choice of Algorithm

License Plate Detection and Recognition (LPDR) is a real-life and real-time application. For

this reason, we have decided to evaluate a model to see how we can balance out the speed and

accuracy. Although the selection of the algorithm for speed and accuracy trade-off is essential,

other critical components exist that should be considered, such as the dataset, the type of feature

extractor, the deep learning software platform, training configuration, and so on forth.

Moreover, we cannot compare different object detection algorithms because even though the

authors’ announced results are on identical datasets such as COCO7 and PASCAL VOC8, they

7http://cocodataset.org/#home
8http://host.robots.ox.ac.uk/pascal/VOC/

24

performed the experiments in different settings. Hence, depending on the application, one should

select an object detector to a trade-off between accuracy and speed.

For Automatic License Plate detection and recognition(ALPR), we decided to examine the SSD

model, one of the single-stage networks, and a fast detection model. Another reason behind

choosing this network is that the speed is crucial in ALPR, so when we combine SSD with a

feature extractor with fewer parameters, it can compete with other fast and accurate detection

algorithms. This characteristic helps to avoid over-fitting during training the model when there is

an insufficient amount of data.

As mentioned earlier, we cannot compare different object detection algorithms with different

base feature extractors9 in different settings. However, an extensive survey [37] has been done by

the Google Research team in a more controlled environment about the trade-off between accuracy,

memory, and speed of some object detection algorithms such as the Faster R-CNN, R-FCN [38],

and SSD. The authors designed a unified platform named Object Detection API10, in which the

architecture of the Faster R-CNN, R-FCN, and SSD object detection algorithms are available in

the TensorFlow Deep Learning library. As we examine the SSD model for the ALPR project, a

more detailed explanation about the SSD model is provided in the following.

3.4 Single Shot Multi-box Detector(SSD)

Although two-stage detection models are known to be accurate, they are not computationally

suitable for embedded systems and not fast enough for real-time applications. As a one-stage

detector, the SSD has a higher speed in the detection and can compete with other accurate detection

models.

9e.g., VGG, Mobilenet, Residual Networks
10https://github.com/tensorflow/models/tree/master/research/object_detection

25

By eliminating the region or box proposal stage of the two-stage object detectors, we can have a

single-stage model that is simple, fast, easy to train, and straightforward to integrate into systems.

SSD30011 achieves 74.3 % mAP on VOC2007 test at 59 FPS12 and SSD50013 achieves 76.9 %

mAP [33].

Figure 3.8: Single Shot Multi-Box Object Detector Architecture

Figure from [33]

During the feed-forward process, the SSD produces a fixed-size group of bounding boxes and

object class instance scores in those boxes. The original SSD model uses the VGG-16 [39] model

pre-trained on ImageNet as the base model; however, substituting networks such as MobileNet

and Inception is also possible. On top of the VGG-16 (truncated before classification), there are

convolutional feature layers of decreasing sizes that allow the prediction of detections at multiple

scales. There is a non-maximum suppression step in the final layer to produce the final detections

and remove the boxes whose score falls below a certain threshold [33]. Figure 3.8 illustrates the

architecture of the SSD model with the VGG backbone.

11Input size 300×300
12Frame per second
13Input size 512×512

26

Figure 3.9 shows that a small set of default boxes with different aspect ratios in two feature maps

(e.g. 8×8 and 4×4 in (b) and (c)) with different scales are evaluated. For each of the default boxes

in (b) and (c), the model predicts shape offsets and a confidence score. During the training, each of

the default boxes is matched with the ground truth boxes like in (a) by the Jaccard overlap14 higher

than a threshold of 0.5. As it is also clear from the Figure, small objects can be captured by large

fine-grained feature maps, and large objects can be captured by small coarse-grained feature maps

[33].

Figure 3.9: SSD framework: (a) ground truth, (b) fine-grained feature map 8×8, (c)
coarse-grained feature map 4×4.

Figure from [33]

For the ALPR detection, we are using the SSD architecture embedded in Google’s object

detection API. It should be noted that the implementation of SSD architecture in the API is

followed by the methodology section of the SSD paper, except that in the prediction part of the

network, batch normalization15 is used [37].

14a.k.a Intersection over Union (IoU)
15Batch normalization is used to reduce the effect of internal covariate shift and thence stabilize and accelerate the

learning process.

27

3.4.1 The Choice of Feature Extractor

Different feature extractors have been examined as the backbone for some object detectors by

Google’s research team, and the result is shown in Figure 3.10. The SSD algorithm performs

slightly better than the other two algorithms in terms of GPU time and satisfactorily in terms of the

overall mAP. When trained with Resnet101 [40] and MobileNet [41] feature extractors, the SSD

model is the most accurate of the fastest models.

Figure 3.10: Result of different object detectors tested with different feature extractors
on the COCO dataset.

Figure from [33]

Authors in [37] verified that the performance of the models in object detection is somehow

correlated to the performance of the models in the classification task. Figure 3.11 indicates the

accuracy of detectors on COCO versus the accuracy of the feature extractors which is measured

by top-1 accuracy on ImageNet. However, the authors noticed that the SSDs performance is less

sensitive to the quality of the feature extractor than the faster R-CNN and R-FCN.

28

Figure 3.11: Accuracy of detector vs accuracy of feature extractor

Figure from [33]

For each object detector, one can choose a variety of feature extractor models. The choice of

feature extractor is essential as the number of parameters affects the object detector’s performance.

Figure 3.12 shows each model’s top-1 accuracy on ImageNet besides the number of parameters for

each model. As the number of parameters increases, the accuracy of the model also increases.

However, other factors should be taken into consideration when choosing any of the feature

extractor models.

Figure 3.12: Properties of six feature extractors used in object detection API

Figure from [33]

29

3.4.1.1 MobileNet-V1

The MobileNet-V1 [41] ’s main feature is its implementation with the depth-wise separable

convolutions block, which consists of a depth-wise convolution layer followed by a point-wise

(a.k.a. 1×1) convolution layer. The depth-wise separable convolution is similar to the traditional

convolution; however, it is computationally faster.

The first layer of MobileNet-V1 consists of a 3×3 standard convolution layer, followed by 13

depth-wise separable convolution layers, making it nine times faster than any comparable neural

network with the same accuracy. Figure 3.13 depicts the convolution block used in MobileNet-V1

architecture.

Figure 3.13: MobileNet-V1’s Convolution block

Figure from:https://machinethink.net/blog/mobilenet-v2/

30

3.4.1.2 MobileNet-V2

MobileNet-V2 [42] is similar to MobileNet-V1 in terms of using depth-wise separable

convolutions. However, the convolution block in MobileNet-V2 is a bit different and consists

of three convolutional layers. The block in MobileNet-V2, which is shown in Figure 3.14, is

called the Bottleneck Residual Block. The first layer in the block is called the expansion layer16,

and it is followed by depth-wise convolution and projection layers17, respectively. Like ResNet

architecture, MobileNet-v2 also contains the residual connection, which helps the flow of gradients

through the network.

Figure 3.14: MobileNet-V2’s Convolution block

Figure from:https://machinethink.net/blog/mobilenet-v2/

16Expands the number of channels.
17a.k.a. bottleneck layer and reduces the number of channels.

31

3.4.1.3 Inception-V2

Inception network was one of the earliest attempts of researchers in developing CNN networks.

The networks before Inception models were only convolution layers stacked deeper together,

making them more prone to over-fitting. The idea behind inception models is to get wider rather

than deeper networks to reduce the deep neural networks’ computational burden while obtaining

good performance.

Authors in Inception-V2 [2] tried to make the neural network wider to reduce the loss of

information, so they proposed three different modules to build the Inception-V2 network. The

first module, Figure 3.15(b), is to factorize 5×5 convolution to two 3×3 convolution operations.

The second module, Figure 3.15(c), is to factorize convolutions of filter size n×n to a combination

of 1×n and n×1 convolutions. The third module, Figure 3.15(d), expands the filter bank to make

it wider instead of deeper to lessen the loss of information.

(a) (b) (c)

(d)

Figure 3.15: (a) Original Inception Module from [1], (b) is the first module of
Inception-V2, (c) is the second module of Inception-V2, and (d) is the third module of

Inception-V2. Images (b),(c), and (d) are from [2]

32

3.4.1.4 ResNet-50

So far, we have learned that increasing the network’s depth should increase the model’s accuracy.

Even if the over-fitting problem is being taken care of, we will encounter the vanishing gradients

problem by stacking so many layers to the neural network.

ResNet-50 is a widely used variant of ResNet [43] models. Due to the ResNet models’

framework, it is possible to train deep neural networks without having any concern about vanishing

gradients. The residual building block in ResNet-50/101/152 models is shown in Figure 3.16.

Residual connection adds value from the beginning of the block to the end of the block and does

not go through the activation functions. Hence, during the back-propagation step, the network

would have higher derivatives.

Figure 3.16: Bottleneck building block for ResNet-50

Figure from [43]

33

3.5 You Only Look Once (YOLOv4)

In recent years, object detectors’ development was in a direction to add some layers (a.k.a. neck)

between the feature extractor (a.k.a. backbone) and the detector (a.k.a. head) to collect feature

maps of different stages to help increase the detection rate [44]. However, some researchers try to

build a new object detection model, while others try to create a new backbone.

Another one-stage detection model is the YOLOv4 [44] which was released in April 2020. Like

RCNN family, each member of the YOLO family is built upon the previous model and tried to

improve the former model. The authors of YOLOv4 model use a combination of the CSPNet [45]

and Darknet-53 (backbone of the YOLOv3 model) as the feature extractor for the YOLOv4 model.

For the neck of the model, the authors uses the Spatial Pyramid Pooling [46] after CSPDarknet53

to increase the receptive field and separate out the most important features from the backbone.

Afterward, they use Path Aggregation Network (PAN) [47] to perform feature aggregation. As for

the head of the network the authors used the same YOLO head as YOLOv3 for detection. Figure

3.17 depicts the connection between backbone, neck, and head in one-stage and two-stage object

detectors.

Figure 3.17: Building blocks of one-stage or two-stage object detectors.

Figure from [44]

34

Chapter 4

Experiments and Results

4.1 Dataset

The collection of images we use to train deep-learning models have great impact on the result.

The size, resolution, and total number of images in a dataset are some of the factors that can affect

the result of training a deep-learning model. The license plate datasets used during this research

are UFPR-ALPR1 and CENPARMI2 datasets.

4.1.1 UFPR-ALPR dataset

The UFPR-ALPR [8] dataset consists of 4500 images from 150 vehicles (150 videos with a

duration of 1 second and frame rate of 30 FPS), captured by GoPro Hero4 Silver, Huawei P9 Lite,

and iPhone 7 Plus cameras. The dataset, table 4.1, is split as 40 % training,20 % for validation, and

40 % for testing. The split is done in a way that every split has the same distribution of images.

Figure 4.1 shows some examples of this dataset.

1https://web.inf.ufpr.br/vri/databases/ufpr-alpr/
2Center for Pattern Recognition and Machine Intelligence

35

Figure 4.1: Example of UFPR-ALPR dataset

4.1.2 CENPARMI dataset

The CENPARMI dataset consists of license plate images from the United States and Canada,

captured by iPhone 6, Nexus 5X, Canon, and Sony cameras. The images are annotated with the

LabelImg [48] tool by the author of this research. First, 10 % of the whole dataset, table 4.1, is test

data, and from the remaining images, the train and validation split created (80 % of the remaining

for train data and 20 % of remaining for validation). Figure 4.2 represents some examples from

the CENPARMI dataset.

36

Figure 4.2: Example of CENPARMI dataset

Dataset Train Validation test total
UFPR-ALPR 1800 900 1800 4500
CENPARMI 1486 372 206 2064

Table 4.1: The datasets and the train, validation, and test splits.

37

4.1.3 Pre-processing

As mentioned earlier, the amount of data and resolution are among the factors that affect the

performance of a deep learning model. For the UFPR-ALPR dataset to be comparable with other

works, we decided to work with it as is. However, the CENPARMI dataset needed to be refined in

order to be fed to a neural network. The CENPARMI dataset consisted of 1270 images of license

plates from the US and Canada with very high resolution. After the cleaning and downsampling

process, the number of images in this dataset changed to 1006. Figure 4.3 shows some images of

license plate that have been removed from the dataset.

Figure 4.3: Example of removed images from CENPARMI dataset. License plates in (a)
are not visible, and license plates in (b) are too close to the camera.

The number of images in CENPARMI dataset is not sufficient when we deal with deep-learning

models which need a lot of data for promising results. Hence, to increase the number of images,

we cropped every image relative to its width and height into five regions of top-right, bottom-right,

top-left, bottom-left, and centre. Figure 4.4 illustrates two samples with their five crops.

38

(a) (b)

Figure 4.4: (a) and (b) are two examples of cropped images from CENPARMI dataset
into 5 regions.

During the image cropping process, some images without any license plates were generated.

Therefore, we were required to clean the dataset again. After all, the total number of images in

the CENPARMI dataset added up to 2064. Moreover, we labeled all the images with the LabelImg

tool as is shown in Figure 4.5.

Figure 4.6 shows the ground-truth bounding box width versus height of the training data. The

slope shows how different are the aspect ratios of the bounding boxes. From the Figure, we can

acquire that the License plates in UFPR-ALPR dataset are a tiny part of the images, and two

separate mass of orange dots show car’s license plates, which are rectangular, vs. motorcycle’s

license plates, which are squarish. In contrast, the license plates in the the CENPARMI dataset

have various sizes, and this is due to the way the images are taken from the vehicles and not that

the license plates themselves are of various sizes in the North American countries.

39

Figure 4.5: Example of annotating an image with LabelImg tool.

4.2 Experiment

We experimented two different object detection models with CENPARMI and UFPR-ALPR

datasets. SSD model with MobileNetV1, MobileNetV2, InceptionV2, and ResNet50 feature

extractors and the very recent YOLOv4 model have investigated in this project. The reason for

choosing the above mentioned feature extractors rather than the others is that they have less number

of parameters, thus they are faster and more acceptable for the purpose of our project.

Moreover, having a limited amount of data leads us to choose feature extractors with fewer

parameters and networks3 pre-trained on the COCO dataset to avoid over-fitting for both SSD and

YOLOv4 object detection models. There are several methods to reduce the chance of over-fitting,

such as data augmentation, feature selection, L1/L2 regularization, early stopping, and dropout,

each of which approaches the over-fitting problem differently.

3Network is implemented using the TensorFlow Detection Model Zoo framework: https://github.com/
tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md

40

 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md

Figure 4.6: Ground-truth bounding box width versus height of training data for
CENPARMI and UFPR-ALPR datasets

In our experiment on SSD models, we have used data augmentation, batch normalization, and

L2 regularization methods to handle the over-fitting issue. As data augmentation, we used random

horizontal flip, random crop, and random patch Gaussian to make our datasets larger and help the

networks to generalize better. Batch Normalization is used to standardize the input to layers and

reduce the number of training epochs. As for regularization method, We used L2 regularization

with weight decay of 4×10−5 to reduce the possibility of over-fitting.

We scrutinized the SSD model more because we believed that the SSD model performs better in

detecting smaller objects than YOLO models (up to YOLOv3) when performing this project. The

SSD model takes feature maps of different stages to perform detection; the number of parameters

41

it consists of when used with very light feature extractors leads to better results. However, after

the release of YOLOv4 in April 2020, we decided to train our datasets and check the new model’s

result. The improvement done on YOLOv4 is enormous, and the result we got on datasets are

promising.

The license plate detection with SSD model is performed through the TensorFlow Object

Detection API4 which is built on top of TensorFlow framework for localizing objects. On the

other hand, YOLOv45 is performed through the OpenCV framework. The SSD models evaluated

on-premise on octa-core Intel Core i7-9700 with 16 GB RAM, and GeForce RTX 2070 GPU while

the YOLOv4 model evaluated on Google Colab6 which is a cloud service.

A lot of experiments and hyper-parameter tuning have been conducted throughout this research

to examine the SSD and YOLOv4 models and get favorable results on the CENPARMI and UFPR-

ALPR datasets. The Table 4.2 illustrates the main configurations we used to achieve the final

results, and Figure 4.7 demonstrates the steps we took from installing libraries and dependencies

to making predictions. In the following section, we will discuss the results.

CENPARMI / UFPR-ALPR
Models Input Size Optimizer Batch size Learning rate

MobileNetV1+SSD 300×300 / 640×640 Adam / Momentum 64/8 0.008/0.0004
MobileNetV2+SSD 300×300 / 600×600 RMSprop/Adam 24/10 0.004/0.01
InceptionV2+SSD 300×300 / 600×600 RMSprop 24/12 0.004/0.0004

ResNet50+SSD 640×640 / 640×640 Momentum 4/2 0.001/0.004
YOLOv4 416×416 / 416×416 Momentum 64/64 0.001/0.001

Table 4.2: The input size, optimizer, batch size, and learning rate of
models trained on CENPARMI and UFPR-ALPR datasets.

4https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/
5https://github.com/AlexeyAB/darknet
6https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE

42

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/
https://github.com/AlexeyAB/darknet
https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE

Figure 4.7: Object Detection Work Flow.

*https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/

43

4.3 Results

Precision-recall curves are useful when we are trying to decide which model is appropriate

for our needs. Some applications need a system with few predictions but mostly correct (High

Precision - Low Recall). Some other applications require numerous results, while few are correct

(High Recall - Low Precision). In the latter, results are more likely to contain false positives.

An ideal system is the one with high precision and high recall, in which there are plenty of

predicted labels with all results labeled correctly. As the precision-recall curve in Figure 4.8(a)

illustrates, all of the four SSD models perform reasonably well on the CENPARMI dataset.

However, Figure 4.8(b) shows that the mentioned models perform slightly differently on the

UFPR-ALPR dataset. The difference between the two datasets and the size of license plates in the

UFPR-ALPR dataset concerning each image’s total size makes the feature extraction and hence

detection a bit harder, which means we do need to do more hyperparameter tuning if we want to

have better results than what we already have.

44

(a)

(b)

Figure 4.8: (a) Precision-recall curve of models on the CENPARMI dataset, (b)
Precision-recall curve of models on the UFPR-ALPR dataset.

45

Although the precision-recall curve can show us the detectors’ performance, having a numerical

value is also of great importance. Figure 4.9 shows the mAP of the test data on the trained SSD

models. Figure 4.9(a) is the test result of the CENPARMI dataset (the blue bar chart), and Figure

4.9(b) is the test result of the UFPR-ALPR dataset (the orange bar chart).

(a)

(b)

Figure 4.9: (a) Test result of the CENPARMI dataset, (b) Test result of UFPR-ALPR
dataset.

46

We examined the SSD model with four different feature extractors, and as it is clear from Figure

4.9, the result of mAP is more promising when the model has trained with feature extractors with

a higher number of parameters. Table 4.3 lists all the feature extractors with their classification

accuracy and the number of parameters. From Figure 4.9 and table 4.3, we can infer a correlation

between the number of parameters, classification accuracy, speed of a specific feature extractor,

and the detection performance. The higher the number of parameters of a feature extractor, the

higher the classification accuracy and lower the speed.

Classification Accuracy Speed
Feature Extractor top-1/top-5* mParam (ms)

MobileNetV1 71.03 %/89.94 % 4.221 30 (GTX TITAN X)
MobileNetV2 74.09 %/91.97 % 6.087 31 (GTX TITAN X)
InceptionV2 74.084 %/91.798 % 11.185 58 (GTX TITAN X)

ResNet50 76.17 %/92.98 % 25.53 89 (GTX TITAN X)
CSPDarknet53 - 27.6 65 (Tesla V100)

* Top-N accuracy means that the correct class gets to be in the Top-N probabilities for it to
count as “correct”.

Table 4.3: Classification accuracy, number of parameters, and speed of
each feature extractor reported by OpenVINO and Object Detection API.

In addition, as it is clear from the Figure 4.9(b), we expected that the SSD-ResNet50 model gives

a better result than SSD-InceptionV2; however, the fact is that we should do more hyperparameter

tuning for the SSD-ResNet50 on the UFPR-ALPR dataset7. Figure 4.10 shows the test result of

the above mentioned feature extractors used in SSD model on test images of CENPARMI and

UFPR-ALPR datasets.

7The combination of images with high resolution for training in the UFPR-ALPR dataset and the number of SSD-
ResNet50 model’s parameters led us to face memory issues.

47

(a)

(b)

Figure 4.10: (a) is the test result of SSD model with different feature extractors on
CENPARMI dataset, (b) is the test result of SSD model with different feature extractors

on UFPR-ALPR dataset.

48

In the test set of the CENPARMI dataset, there are images with more than one license plate

in them; however, mostly the SSD-InceptionV2 and SSD-ResNet50 could not detect at least one

of the license plates like in Figures 4.12. Again this does not mean SSD-InceptionV2 and SSD-

ResNet50 are performing poorly, but that they are deeper networks and need more tuning.

Deeper networks should work better than shallower networks; however during the course of this

experiment, we have seen that deep feature extractors did not perform as expected in detecting

license plates. This does not mean shallow networks perform better than deep networks in general,

only that deep networks are harder to optimize [1].

Figure 4.11 shows the number of False Negatives (FN) concerning the Intersection over

Union (IoU) for CENPARMI and UFPR-ALPR datasets. The higher number of False Negatives

corresponds to the lower recall, and as the IoU increases, recall decreases, which shows the

effectiveness of detection proposals.

49

(a)

(b)

Figure 4.11: (a) False Negatives vs IoU on the CENPARMI dataset, (b) False Negatives
vs IoU on the UFPR-ALPR dataset.

50

(a)

(b)

Figure 4.12: Test data from CENPARMI dataset showing that (a) SSD-ResNet50 could
not detect the second license plate in the image, (b) SSD-InceptionV2 could not detect

the license plate in the image.

51

The CENPARMI and UFPR-ALPR datasets have been previously tested with the YOLOv2

detection model by the CENPARMI lab’s researchers, which also presented an acceptable result on

the mentioned datasets. However, in this study we have decided to evaluate a wider range of fast

detection models to better conclude the need for an ALPR system. Consequently, we have tested

two of the fast detection models, the SSD model with different feature extractors as explained

earlier, and YOLOv4. The result of each model is shown in Figure 4.13.

Figure 4.13: The result of CENPARMI and UFPR-ALPR test sets on different fast
detection models.

As it is clear from the Figure 4.13, the SSD model performed better on the CENPARMI dataset

than in UFPR-ALPR dataset. The license plates in UFPR-ALPR dataset encompass a very small

portion of images and this is one of the reasons that the performance of SSD model is not as good

as the performance on CENPARMI dataset.

52

As mentioned earlier the SSD model uses the upper layers for detection of fine objects and lower

layers for detection of coarse objects. This feature helps to detect objects of different scales and

is one of the earliest attempts of pyramidal feature hierarchy. However, SSD model builds the

pyramid from higher layers of the network. Hence, it avoids low level features and then loose the

chance of using high resolution feature maps [49]. Thus, the SSD model performs insufficiently

when there are very small objects in the image.

Moreover, as it is clear from the Figure 4.13, the YOLOv4 model performance is slightly better

in both datasets and one reason is that the authors in YOLOv4 used Path Aggregation Network

(PANet) [47] which is based on the Feature Pyramidal Network (FPN)[49]. PANet is a method for

boosting information flow from all feature levels which can help detection models perform better.

During this experiment, we had difficulty training some of the models, especially on the UFPR-

ALPR datasets. License plates in the UFPR-ALPR dataset are a tiny proportion of the images;

hence training models on this dataset were trickier. Figure 4.14 shows different attempts that

we took to train the MobileNetV2-SSD on the UFPR-ALPR dataset. To get better results, we

performed some hyper-parameter tuning. The main hyper-parameters that we tuned were learning

rate, optimizer, and batch size.

For example, for attempt#1 to attempt#6, we used the RMSprop optimizer, but we kept changing

the model’s learning rate and batch size, and for attempt#7 and attempt#8, we used the Adam

optimizer and tried these two models with different learning rates. Finally, as shown in Figure

4.14, our attempt on MobileNetV2-SSD with the Adam optimizer resulted in fewer false negatives,

which means the model successfully detected most of the ground-truth labels.

53

Figure 4.14: Different attempts to train the MobileNetV2-SSD model on the
UFPR-ALPR dataset and the number of false negatives corresponding to each model.

Figure 4.15 shows the number of false negatives of the attempts mentioned above at the IoU

threshold 0.5 and their corresponding mean average precision (mAP) results. As shown in the

figure, the model in attempt#4 has the highest mAP; however, its number of false negatives is

high. Depending on the application, one can choose this model or the other. Nevertheless, It is

always preferable to have fewer false negatives in the ALPR system alongside high precision. In

attempt#8, the model with 90.61 % mAP and eight false negatives is desirable than the model in

attempt#4 with a precision of 91.36 % and 78 false negatives.

54

Figure 4.15: Number of false negatives of MobileNetV2-SSD models trained on
UFPR-ALPR dataset at IoU threshold 0.5 and their corresponding mAP results.

55

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Automatic License Plates Detection and Recognition (ALPR) systems are useful for different

purposes, such as helping law enforcement, traffic control, and parking lot security. ALPR systems

mostly deal with complex scenes, whether in real-time or offline mode. Dust, rain, illumination,

and many other environmental factors, and the fact that license plates are usually a small proportion

of input video or image, can make the situation a bit harder for the ALPR systems.

Object detection is the first and foremost step in ALPR, which we investigated in this project.

In object detection, high precision is not the only essential criterion anymore. Nevertheless,

leveraging a model that can balance accuracy, speed, and memory is crucial.

Since the ALPR systems are mostly useful in real-time applications, we evaluated the SSD

and YOLOv4 models known as fast detection models on CENPARMI and UFPR-ALPR datasets.

Feature extraction is a sub-task of object detection; hence we examined different feature extractors

with the SSD model and found out that algorithms perform differently over different datasets [50].

We received good results with both algorithms on both datasets, although the SSD model results

with different feature extractors varied a lot on the UFPR-ALPR dataset.

56

We learned that the higher the number of parameters of a model, the better the detection results.

On the other hand, the number of parameters of a model can affect an object detection task’s speed.

Although we trained the selected models on pre-trained networks, we presume that more data can

help the model generalize better and provide better results.

Accordingly, to have the desired ALPR system, one should consider the dataset characteristics,

the model, and the hardware system for accuracy, speed, and memory performance.

5.2 Limitations and Future Work

During this experiment, we dealt with some limitations with inadequate on-premise hardware

systems and datasets. In training Deep Learning algorithms, it is always better to have a bigger

amount of data. The more the amount of data, the better the model can learn.

With the advent of technology and hence the emergence of autonomous vehicles, having a

reliable real-time ALPR system is crucial. To further extend this work, we propose to evaluate

and compare other fast detection algorithms with various other populated datasets.

We also recommend that it is beneficial to evaluate each model’s memory usage and speed during

the further investigation of fast detection algorithms. Moreover, for the next step, we propose to

add a model such as a Recurrent Neural Network (RNN) for the recognition phase on top of the

fast detection models and to evaluate each model’s performance on various datasets.

57

Bibliography

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol. abs/1409.4842, 2014.

[Online]. Available: http://arxiv.org/abs/1409.4842

[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception

architecture for computer vision,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 2818–2826.

[3] M. Biswas and H. Gore. (2012) Best practices guide for improving automated license

plate reader effectiveness through uniform license plate design and manufacture. [Online].

Available: https://www.aamva.org/WorkArea/DownloadAsset.aspx?id=2911

[4] P. Wu and Y. Lin, “Research on license plate detection algorithm based on ssd,” in

Proceedings of the 2nd International Conference on Advances in Image Processing, 2018,

pp. 19–23.

[5] M. Peker, “Comparison of tensorflow object detection networks for licence plate

localization,” in 2019 1st Global Power, Energy and Communication Conference

(GPECOM). IEEE, 2019, pp. 101–105.

[6] X. Peng, L. Wen, D. Bai, and B. Peng, “Reformative vehicle license plate recognition

algorithm based on deep learning,” in International Conference on Cognitive Systems and

Signal Processing. Springer, 2018, pp. 243–255.

58

http://arxiv.org/abs/1409.4842
https://www.aamva.org/WorkArea/DownloadAsset.aspx?id=2911

[7] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, “A new cnn-based method for multi-

directional car license plate detection,” IEEE Transactions on Intelligent Transportation

Systems, vol. 19, no. 2, pp. 507–517, 2018.

[8] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz,

and D. Menotti, “A robust real-time automatic license plate recognition based on the yolo

detector,” in 2018 International Joint Conference on Neural Networks (IJCNN). IEEE,

2018, pp. 1–10.

[9] S. M. Silva and C. R. Jung, “Real-time brazilian license plate detection and recognition

using deep convolutional neural networks,” in 2017 30th SIBGRAPI Conference on Graphics,

Patterns and Images (SIBGRAPI). IEEE, 2017, pp. 55–62.

[10] B. Dhedhi, P. Datar, A. Chiplunkar, K. Jain, A. Rangarajan, and J. Kundargi, Automatic

License Plate Recognition Using Deep Learning: Third International Conference on

Intelligent Information Technologies, ICIIT 2018, Chennai, India, December 11–14, 2018,

Proceedings. Springer, 01 2019, pp. 46–58.

[11] Y. Kessentini, M. D. Besbes, S. Ammar, and A. Chabbouh, “A two-stage deep neural network

for multi-norm license plate detection and recognition,” Expert Systems with Applications,

vol. 136, pp. 159–170, 2019.

[12] T. K. Cheang, Y. S. Chong, and Y. H. Tay, “Segmentation-free vehicle license plate

recognition using convnet-rnn,” arXiv preprint arXiv:1701.06439, 2017.

[13] H. Li and C. Shen, “Reading car license plates using deep convolutional neural networks and

lstms,” arXiv preprint arXiv:1601.05610, 2016.

[14] H. Li, P. Wang, and C. Shen, “Toward end-to-end car license plate detection and recognition

with deep neural networks,” IEEE Transactions on Intelligent Transportation Systems,

vol. 20, no. 3, pp. 1126–1136, 2018.

[15] X. Wang, Z. Man, M. You, and C. Shen, “Adversarial generation of training examples:

applications to moving vehicle license plate recognition,” arXiv preprint arXiv:1707.03124,

2017.

59

[16] S. Z. Masood, G. Shu, A. Dehghan, and E. G. Ortiz, “License plate detection and recognition

using deeply learned convolutional neural networks,” arXiv preprint arXiv:1703.07330,

2017.

[17] V. Jain, Z. Sasindran, A. Rajagopal, S. Biswas, H. S. Bharadwaj, and K. Ramakrishnan,

“Deep automatic license plate recognition system,” in Proceedings of the Tenth Indian

Conference on Computer Vision, Graphics and Image Processing. ACM, 2016, p. 6.

[18] Z. Selmi, M. B. Halima, and A. M. Alimi, “Deep learning system for automatic license

plate detection and recognition,” in 2017 14th IAPR International Conference on Document

Analysis and Recognition (ICDAR), vol. 1. IEEE, 2017, pp. 1132–1138.

[19] Z. Xu, W. Yang, A. Meng, N. Lu, H. Huang, C. Ying, and L. Huang, “Towards end-to-end

license plate detection and recognition: A large dataset and baseline,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 255–271.

[20] W. Nicholson. (2011) License plate fonts of the western world: History, samples,

and download info. [Online]. Available: https://www.leewardpro.com/articles/licplatefonts/

licplate-fonts-intro.html

[21] A. Vaishnav and M. Mandot, “An integrated automatic number plate recognition for

recognizing multi language fonts,” in 2018 7th International Conference on Reliability,

Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE,

2018, pp. 551–556.

[22] M. J. Rahman, S. Beauchemin, and M. Bauer, “License plate detection and recognition: An

empirical study,” in Science and Information Conference. Springer, 2019, pp. 339–349.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object

detection and semantic segmentation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2014, pp. 580–587.

[24] J. Brownlee. (2019) A gentle introduction to object recognition with deep learning. [Online].

Available: https://machinelearningmastery.com/object-recognition-with-deep-learning/

60

https://www.leewardpro.com/articles/licplatefonts/licplate-fonts-intro.html
https://www.leewardpro.com/articles/licplatefonts/licplate-fonts-intro.html
https://machinelearningmastery.com/object-recognition-with-deep-learning/

[25] Y. LeCun et al., “Generalization and network design strategies. connectionism in

perspective,” Zurich, Switzerland, Elsiever, 1989.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.

deeplearningbook.org.

[27] L. Fei-Fei, A. Karpathy, and J. Johnson. Cs231n: Convolutional neural networks for visual

recognition. [Online]. Available: http://cs231n.stanford.edu/index.html

[28] J. Brownlee. (2019) A gentle introduction to the rectified

linear unit (relu). [Online]. Available: https://machinelearningmastery.com/

rectified-linear-activation-function-for-deep-learning-neural-networks/

[29] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” CoRR, vol. abs/1311.2524, 2013. [Online].

Available: http://arxiv.org/abs/1311.2524

[30] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online]. Available:

http://arxiv.org/abs/1504.08083

[31] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection

with region proposal networks,” CoRR, vol. abs/1506.01497, 2015. [Online]. Available:

http://arxiv.org/abs/1506.01497

[32] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR, vol.

abs/1703.06870, 2017. [Online]. Available: http://arxiv.org/abs/1703.06870

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, “SSD:

single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015. [Online]. Available:

http://arxiv.org/abs/1512.02325

[34] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. [Online]. Available:

http://arxiv.org/abs/1506.02640

61

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://cs231n.stanford.edu/index.html
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1506.02640

[35] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance metrics for object-

detection algorithms,” in 2020 International Conference on Systems, Signals and Image

Processing (IWSSIP), 2020, pp. 237–242.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python ,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[37] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,

Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for modern

convolutional object detectors,” CoRR, vol. abs/1611.10012, 2016. [Online]. Available:

http://arxiv.org/abs/1611.10012

[38] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based

fully convolutional networks,” CoRR, vol. abs/1605.06409, 2016. [Online]. Available:

http://arxiv.org/abs/1605.06409

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,

vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[41] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,

and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision

applications,” arXiv preprint arXiv:1704.04861, 2017.

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 4510–4520.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770–778.

62

http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1512.03385

[44] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of

object detection,” arXiv preprint arXiv:2004.10934, 2020.

[45] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “Cspnet: A

new backbone that can enhance learning capability of cnn,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 390–391.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional

networks for visual recognition,” Lecture Notes in Computer Science, p. 346–361, 2014.

[Online]. Available: http://dx.doi.org/10.1007/978-3-319-10578-9_23

[47] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,”

CoRR, vol. abs/1803.01534, 2018. [Online]. Available: http://arxiv.org/abs/1803.01534

[48] Tzutalin, “Labelimg,” https://github.com/tzutalin/labelImg, 2015.

[49] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature pyramid

networks for object detection,” CoRR, vol. abs/1612.03144, 2016. [Online]. Available:

http://arxiv.org/abs/1612.03144

[50] D. Oreski, S. Oreski, and B. Klicek, “Effects of dataset characteristics on the performance of

feature selection techniques,” Applied Soft Computing, vol. 52, pp. 109–119, 2017.

63

http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/abs/1803.01534
https://github.com/tzutalin/labelImg
http://arxiv.org/abs/1612.03144

	List of Figures
	List of Tables
	Introduction
	Literature Review
	License Plate Transformation
	License Plate Detection and Recognition
	ALPR with Template Matching
	ALPR with Neural Networks

	Methodology
	Object Recognition Overview
	Convolutional Neural Networks (CNNs/ConvNets)
	Accurate Detection Models
	Fast Detection Models

	Object Detection Measuring Metric
	The Choice of Algorithm
	Single Shot Multi-box Detector(SSD)
	The Choice of Feature Extractor
	MobileNet-V1
	MobileNet-V2
	Inception-V2
	ResNet-50

	You Only Look Once (YOLOv4)

	Experiments and Results
	Dataset
	UFPR-ALPR dataset
	CENPARMI dataset
	Pre-processing

	Experiment
	Results

	Conclusions and Future Work
	Conclusions
	Limitations and Future Work

	Bibliography

