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Abstract

Spatial and Temporal Predictions for positive vectors

Omar Graja

Predicting a given pixel from surrounding neighboring pixels is of great interest for

several image processing tasks. To model images, many researchers use Gaussian

distributions. However, some data are obviously non-Gaussian, such as the image

clutter and texture. In such cases, predictors are hard to derive and to obtain. In this

thesis, we analytically derive a new non-linear predictor based on inverted Dirichlet

mixture. The non-linear combination of the neighbouring pixels and the combination

of the mixture parameters demonstrate a good efficiency in predicting pixels. In order

to prove the efficacy of our predictor, we use two challenging tasks, which are; object

detection and image restoration.

We also develop a pixel prediction framework based on a finite generalized in-

verted Dirichlet (GID) mixture model that has proven its efficiency in several ma-

chine learning applications. We propose a GID optimal predictor, and we learn its

parameters using a likelihood-based approach combined with the Newton-Raphson

method. We demonstrate the efficiency of our proposed approach through a challeng-

ing application, namely image inpainting, and we compare the experimental results

with related-work methods.

Finally, we build a new time series state space model based on inverted Dirichlet

distribution. We use the power steady modeling approach and we derive an analytical

expression of the model latent variable using the maximum a posteriori technique.

We also approximate the predictive density using local variational inference, and we

validate our model on the electricity consumption time series dataset of Germany.

A comparison with the Generalized Dirichlet state space model is conducted, and

the results demonstrate the merits of our approach in modeling continuous positive

vectors.
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Chapter 1

Introduction

1.1 Background

Pixel prediction has shown to be one of the most needed tools to perform several

applications in image processing such as anomaly detection [1, 2], object detection

[3, 4], edge detection [5], video compression [6, 7], semantic segmentation [8, 9],

image restoration [10, 11] and keypoint prediction [12]. Meanwhile, pixel prediction

is represented by approximating the predicted pixel using its neighbors. It is usually

represented by a linear or a non-linear combination of the neighboring pixels plus an

error value [13, 14]. In our second chapter, inspired by the work proposed in [15], we

take the optimal predictor of xn as the conditional expectation E
(
xij | ∀xi′j′ ∈ Ni,j

)
,

where xi′j′ are the neighbors of xij within the set of pixels Ni,j.

Exploiting the ease of analytical derivations, the authors in [16] derived optimal

predictors for Gaussian distribution and a mixture of Gaussians. However, the field

of non-Gaussian distributions exhibited an exciting expansion in terms of mathemat-

ical theorems [17, 18]. Indeed, a large number of researchers proved that Gaussian

assumption is generally inappropriate and other alternative distributions are more

effective in modeling data than Gaussian distribution by unveiling more appropriate

patterns and correlations among data features [19, 20, 21, 22]. However, the image

clutter and texture are usually non Gaussian. Thus, to handle the problem cited

above, we propose to model an image with a mixture of inverted Dirichlet distri-

butions that has shown outperforming results compared to the Gaussian mixture in

modelling positive vectors [23]. This is due to the fact that the inverted Dirichlet
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distribution is more scalable and flexible, compared to the Gaussian, and presents

different symmetric and asymmetric modes.

In the second work, we have used the same approach as our first publication to cre-

ate the Generalized inverted Dirichlet optimum predictor [24]. We proved that finite

inverted Dirichlet mixture model effectively represents positive vectors [25, 26, 27].

However, it suffers from significant drawbacks such as its minimal, strictly positive

covariance structure. The generalized inverted Dirichlet which is part of the Liou-

ville family of distributions will be applied to overcome this limitation [28]. This

distribution provides a more decent representation of the variability of the data [29].

Indeed, considering the fact that generalized inverted Dirichlet could be factorized

into a set of inverted Beta distributions [30], gives more flexibility for modeling data

in real-world applications. Therefore, we derive a novel optimal predictor based on

generalized inverted Dirichlet distribution which results in a linear combination of the

neighboring pixels. Meanwhile, we evaluate the proposed approach on image inpaint-

ing application. We choose a publicly available dataset namely Paris StreetView to

validate our approach [31]. For the purpose of proving the efficiency of our proposed

optimal predictor, we consider two types of pixel discarding. The first pixel removal

is random, whereas, in the second experiment, we discard lines from the image. We

use a 3rd order non-symmetrical half-plane casual (NSHP) neighborhood system to

compute the missing pixel [10]. Then, we perform two image comparison metrics to

evaluate our proposed model and compare it to other similar optimal based predictors.

Finally, our optimal predictors can be applied within a wide range of neighboring

systems. Hence, we derive an analytical expression for the optimal predictor from a

mixture of inverted Dirichlet distributions and Generalized inverted Dirichlet that is

a linear combination of the neighboring pixels. To test the performance of our pre-

dictor, we conduct two challenging tasks, which are object detection and image pixel

restoration for the Inverted Dirichlet model and image inpainting for the Generalized

inverted Dirichlet model.

The third work is about time series forecasting. A novel state space model based

on Inverted Dirichlet power state model is proposed. The main purpose of the state

space model (SSM) is to infer the relation between the relevant properties of a series

of such observations. Other well known targets of SSM are forecasting, smoothing ,

and parameters estimation. Indeed, state space models are known by their efficiency
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in forecasting the missing data of multivariate dynamic systems with deterministic in-

puts. However, the challenging side when building the model is the optimization and

inference of parameters. State space models are tractable and by the introduction

of the latent variable we can decouple past from future observations. The gener-

ally known state space models include autoregressive moving average (ARMA) time

series, autoregressive integrated moving average (ARIMA) models [32], exponential

smoothing (ES) [33], and Kalman filters [34]. The state space formulation for ARMA

and ARIMA models are formulated as stationary time series where the characteristic

properties remains unchanged through time changing. However, the simple form of

these models does not provide an explicit information about trend and periodicity as

the structural time series approaches [35]. In the same line, the exponential smooth-

ing approach is proposed basically for forecasting purpose. ES models with a simple

structure are able to predict the future time series given univariate time series in one

step. Though these approaches are practical for forecasting times series in various

fields, they are based on linear Gaussian model for the estimation of parameters.

When we move to a more complex times series, linear state space models are not

adequate for forecasting and smoothing. In this regard, Grunwald et al. [36] pro-

posed a new approach for forecasting time series where the observations are supposed

to follow a Dirichlet distribution. Given the limitations of the Dirichlet distribution

related to the structure of the covariance and the correlation of the variables, the

generalized Dirichlet was proposed also for the state space model in [37]. The gener-

alized Dirichlet power steady model (GDPSM) [37] presents a new forecasting model

for compositional time series data where the authors applied the new GDPSM to web

service selection application. Indeed, considering applications with positive vectors,

it becomes of great interest to consider an adequate distribution. For this purpose,

we address in this paper the case of time series of positive vectors where we consider

the inverted Dirichlet distribution for modeling the observations.

1.2 Contributions

In this thesis, we derive two optimal predictors based on Inverted Dirichlet and Gen-

eralized Inverted Dirichlet. We also develop a methodology for modeling, forecasting,
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and estimating times series of continuous positive vectors assumed to follow an in-

verted Dirichlet distribution. We summarize our contributions as the following:

1. Finite Inverted Dirichlet Mixture Optimal Pixel Predictor:

We analytically derive a new non-linear predictor based on inverted Dirichlet

mixture. The non-linear combination of the neighbouring pixels and the com-

bination of the mixture parameters demonstrate a good efficiency in predicting

pixels. In order to prove the efficacy of our predictor, we use two challenging

tasks, which are; object detection and image restoration.

This work has been published in the 7th IEEE Global Conference on Signal and

Information Processing (GlobalSIP) [38].

2. Generalized Inverted Dirichlet optimal predictor for image pixel pre-

diction:

In this work, we develop a pixel prediction framework based on a finite gen-

eralized inverted Dirichlet (GID) mixture model that has proven its efficiency

in several machine learning applications. We propose a GID optimal predictor,

and we learn its parameters using a likelihood-based approach combined with

the Newton-Raphson method. We demonstrate the efficiency of our proposed

approach through a challenging application, namely image inpainting, and we

compare the experimental results with related-work methods.

This work is going to be published in the 15th International Symposium on

Visual Computing (ISVC 2020).

3. Inverted Dirichlet power steady model for continuous positive time

series forecasting:

We propose an inverted Dirichlet power steady state space model. While build-

ing the model, we introduce a new maximum a posteriori estimation of Inverted

Dirichlet state space model’s parameters and we estimate the prediction density

by local variational inference. We validate our model on time series application

by forecasting the electricity consumption.
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1.3 Thesis Overview

� In chapter 1, we introduce the optimal predictors that we derived and the state

space time series model. It includes a brief overview of various concepts related

to the work. It also includes the motivations behind the conducted research

work.

� In chapter 2, we explain in detail the derivation of the optimal predictor finite

inverted Dirichlet based distribution. We perform two different applications,

object detection and image restoration to prove the efficiency of the proposed

model.

� In chapter 3, we explain again the derivation of the generalized inverted Dirichlet

optimal predictor and we perform image inpainting application to demonstrate

the performance of the proposed method. We explain the outstanding perfor-

mance of the model and we compare it to other related models including the

inverted Dirichlet optimal predictor.

� In chapter 4, we explain the building of the inverted Dirichlet state space power

steady model in details. Maximum a posteriori was applied to estimate the la-

tent variable of the model. We also apply local variational inference to approxi-

mate the predictive density. We perform different simulations on the electricity

consumption time series dataset of Germany and we validate the performance

of our proposed approach by averaging the results over the multiple simulations.

� In conclusion, we briefly summarize our contributions.
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Chapter 2

Finite Inverted Dirichlet Mixture

Optimal Pixel Predictor

In this chapter, we detail the derivation of the inverted Dirichlet optimal predictor.

We demonstrate our model and learning algorithm with some real applications for

image processing. A comparisons with comparable recent approaches have shown the

worth of our proposed model.

2.1 Model specification

In this section, we first present the inverted Dirichlet mixture model. A significant

step that we discuss next is the learning method that is based on a maximum likeli-

hood estimation, and we present analytical derivations of the optimal predictor.

2.1.1 Parameter learning method

Let us consider that we have N independent identically distributed vectors gener-
ated from Inverted Dirichlet distribution X =

(
~X1, . . . , ~XN

)
. Each sample is a D-

dimensional vector ~Xn =
(
xn1, . . . , xnD

)
having a probability density function given

by:

ID( ~Xn | ~ak) =
Γ
(
| ~ak |

)∏D+1
d=1 Γ

(
akd
) D∏

d=1

x
akd−1
nd (1 +

D∑
d=1

xnd)−
∑D+1

d=1
akd (1)

where xnd > 0 for d = 1, ..., D. The shape parameters are ~ak = (ak1, . . . , akD+1), akd >

0 for d = 1, ..., D + 1 and | ~ak |=
∑D+1

d=1 akd.

Considering X as the composition of K different clusters, we can model it by a
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finite Inverted Dirichlet mixture model, where the weight of component k is denoted

by pk, with the constraints pk ≥ 0 and
∑K

k=1 pk = 1. We note that Θk = {pk,~ak}, for

k = 1, . . . , K, represents the set of weight and shape parameters of component k and

the complete model parameters are denoted by Θ = {p1, . . . , pk,~a1 , . . . ,~ak}.

p
(
~Xn|Θ

)
=

K∑
k=1

pkID( ~Xn|~ak) (2)

where the ID is the inverted Dirichlet distribution.

In mixture models, a latent indicator vector ~Z is commonly introduced to represent

the cluster to which the vector ~Xn is assigned. Mathematically, ~Zn =
(
Zn1, . . . , ZnK

)
where Znk is 1 if the expectation that ~Xn belongs to the component k is higher than

the other components and 0, elsewhere.

We have the following complete log-likelihood:

L(Θ, Z,X ) =
K∑
k=1

N∑
n=1

Znk

(
log pk + log p( ~Xn|~ak)

)
(3)

To estimate the mixture parameter, the gradient of the log-likelihood has to be

maximized. To solve this optimization problem, we need to find a solution of the

following equation:
∂ logL(Θ, Z,X )

∂Θ
= 0 (4)

After calculating the first and second derivatives of the complete log likelihood, we

do not reach a closed-form solution. Therefore, we solve it using an iterative approach

namely Newton-Raphson method, that is defined as follows:

âk
new = âk

old −Hk
−1Gk (5)

where Gk is the first derivatives vector with respect to akd, k = 1, . . . , K, and Hk is

a Hessian matrix that is expressed as follow:

Hk =
∑N

n=1 p
(
k | ~Xn,~ak

)
×

Ψ′(| ~ak |)−Ψ′(~ak1) · · · Ψ′(| ~ak |)
Ψ′(| ~ak |) Ψ′(| ~ak |)−Ψ′(~ak2) Ψ′(| ~ak |)

...
...

...

Ψ′(| ~ak |) · · · Ψ′(| ~ak |)−Ψ′(~akd+1)

 (6)
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Algorithm 1 Initialization algorithm

1: Apply the k-means on the N D-dimensional vectors to obtain initial M clusters.
2: Calculate pk = number of elements in class

N

3: Apply the moments method for each component k to obtain a vector of parame-
ters ~αk and ~βk using Eq (1) and Eq (2).

Ψ(.) and Ψ′(.) denote the digamma and trigamma functions, respectively. Those

functions are defined as follow:

Ψ(X) =
Γ′(X)

Γ(X)
,Ψ′(X) =

Γ′′(X)

Γ(X)
− Γ′(X)2

Γ(X)2
(7)

We initiate our learning method by using the method of moments defined in [39]

by:

akD+1 =
E( ~Xd)

2 + E( ~Xd)

V ar( ~Xd)
+ 2 (8)

akd = E( ~Xd)(akd+1 − 1) (9)

Where ~Xd is a D dimensional sample of observations.

Finally, the estimated values of mixing proportions are expressed, in the following,

as it has a closed-form solution:

pk =

∑N
n=1 p(k| ~Xn,~ak)

N
(10)

The initialization and estimation steps are define by algorithm 1 and algorithm 2

respectively.

2.1.2 Optimal predictor

As defined in the introduction, the optimal predictor is the conditional expected value

of a pixel given its neighbors:

x̂n = E
(
xn | xn−1, xn−2, . . . , x1

)
(11)

We suppose that:

x
n
∼ ID(an+1, an, . . . , a1)

8



Algorithm 2 Estimation algorithm

1: INPUT: D-dimensional data ~Xn, n = 1, . . . , N and a specified number of clusters
K.

2: Initialization algorithm 1
3: E-step: Compute the posterior probability p(k| ~Xn, ~ak).
4: Maximization step:

� Update the ~ak Eq (5), k = 1, . . . , K.

� Update the pk using Eq (10), k = 1, . . . , K.

5: If pk < ε, discard component k and go to 3.
6: If the convergence criterion passes terminate,

else go to 3.

As given in [40] (see page 179), we note that any marginal distribution of a subvector

of the inverted Dirichlet follows an inverted Dirichlet distribution:

x′
n

=
x
n

1 +
∑n−1

j=1 xj
(12)

(
x′n | x1, x2, . . . , xn−1

)
∼ ID(an,

n−1∑
j=1

aj + an+1) (13)

Knowing that:

E(x
i
) =

ai
an+1 − 1

, an+1 > 1 (14)

Thus, we obtain the following equation:

E
(
x′n | x1, . . . , xn−1

)
=

an∑n−1
k=1 ak + an+1 − 1

(15)

Based on the equations given by Eq (12) and Eq (14), we conclude that:

E
(
xn | x1, . . . , xn−1

)
=

(
1 +

n−1∑
j=1

xj

)
an∑n−1

j=1 aj + an+1 − 1
(16)

Since:

E
(
xn | xn−1, . . . , x1

)
=

∫
xnp(xn | xn−1, . . . , x1) dxn (17)

9



Then, following the proposal given in [41]:

E
(
xn | xn−1, . . . , x1

)
= (18)

K∑
k=1

p′k

∫
xnpk(xn | x1, . . . , xn−1) dxn =

K∑
k=1

p′kEk
(
xn | x1, . . . , xn−1)

where

p′k = pk

∫
pk(x1, . . . , xn) dxn∫
p(x1, . . . , xn) dxn

(19)

p′k = pk
pk(x1, . . . , xn−1)∑K

k=1 pkpk(x1, . . . , xn−1)
(20)

Finally, our optimal predictor is resumed in the following linear combination of x
n

neighbours:

x̂n =
K∑
k=1

p′k

(
1 +

n−1∑
j=1

xj

)
an∑n−1

j=1 aj + an+1 − 1
(21)

2.2 Experimental results

In order to evaluate the efficiency of the proposed technique, we consider two chal-

lenging applications, object detection and image restoration. Then, we compare the

model to the widely used Gaussian mixture [41] and to the generalized Dirichlet [42]

predictors.

We consider a 2nd order nonsymmetrical half-plane casual neighborhood sys-

tem [43], which has shown outstanding capabilities in image pixel prediction [42].

In fact, we use two defined algorithms stated in 2.1.1 to generate the mixture param-

eters. Then, we apply the analytical formula, given by Eq (49), to predict the image

pixel. Next, we perform object detection and image restoration.

2.2.1 Object detection

We use the Malaria cell images 1 for object detection. It contains two groups of cells’

image infected (see Fig 1), and Uninfected ones (see Fig 2). Our main goal is to

1https://ceb.nlm.nih.gov/repositories/malaria-datasets/
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detect the small purple dot inside the cell using three different models and compare

their performances.

(a) Original (b) Preprocessed (c) Grayscaled

Figure 1: Parasitized image

First, we start by performing the data preprocessing, in which we change zero

values of the image by the mean value of non-null pixel values, as given by Fig 1b and

Fig 2b. Then, we convert the image to grayscale, as shown in Fig 1c . Next, we apply

algorithms mentioned in section 2.1.1 to estimate the model parameters. Furthermore,

a prediction error image is generated by computing the difference between the original

and the predicted pixels values. After that, we set a threshold to detect the anomaly

in the image. We have also used the signal-to-background ratio (LSBR) of a single

object as reported in [42] to compare all models’ performance, and it is defined as:

LSBR =

∑
i,j∈object(ei,j − µn)÷ s

σ2
n

(22)

where ei,j is the prediction error, µn and σn are the mean and standard deviation of

the prediction error in the background and s is the object size.

(a) Original (b) Preprocessed

Figure 2: Uninfected image

We compare our technique with predictors generated from Gaussian and gener-

alized Dirichlet mixture models. We take the average value of 30 different infected

images and results are show in table 1.

According to table 1, it is clear that Inverted Dirichlet mixture model performs

significantly better than the two other models. In fact, this proves that inverted

11



Table 1: Different models’ LSBR for Malaria detection.

Models LSBR
Inverted Dirichlet mixture 15.03
Generalized Dirichlet mixture 6.02
Gaussian mixture 5.14

(a) Original (b) Noised (c) GMM (d) GDM (e) IDM

(f) Original (g) Noised (h) GMM (i) GDM (j) IDM

Figure 3: Image restoration using three different models.

Dirichlet mixture is more efficient than other distributions in modelling positive, semi

bounded vectors.

2.2.2 Image restoration

According to existing studies on image restoration, images can be improved but not

completely restored that is why solving image restoration problems has been subject

of several research works [44].

We consider 10 different images from UC Berkeley BSDS500 dataset [45]. First, we

blur them by adding a white noise to create our test set. Then, we use the structural

similarity index (SSIM) stated in [46] to measure the similarities between the original

images and the restored ones. In fact, image restoration is done by predicting pixels

from their neighbours using Eq (50).

Table 2: SSIM average for the different tested models.

Models SSIM
Inverted Dirichlet mixture (IDM) 0.6524
Generalized Dirichlet mixture (GDM) 0.5242
Gaussian mixture model (GMM) 0.5312
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Based on Fig 3 and Table 2, our proposed method reaches 65.24% which outper-

forms other comparable models based on Gaussian and generalized Dirichlet mixture

models.
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Chapter 3

Generalized Inverted Dirichlet

Optimal Predictor for Image

Inpainting

In this chapter, we detail the derivation of the generalized inverted Dirichlet op-

timal predictor. We illustrate the model and learning algorithm and we perform

image inpainting application to validate the performance of our proposed method.

We compare our model to other related models including our inverted Dirichlet opti-

mal predictor and we discuss the merits of using generalized inverted Dirichlet over

inverted Dirichlet.

3.1 GID prediction model

The generalized inverted Dirichlet mixture model has shown high flexibility for mod-

eling and clustering positive vectors. In this section, we start by reviewing the finite

GID mixture model. Then, we introduce the parameters learning through the EM

algorithm and, later, we extend this model to the prediction.

3.1.1 Mixture of generalized inverted Dirichlet distributions

Let X = ( ~X1, . . . , ~XN) be a set of N d-dimensional positive vectors where each

vector ~Xi follows a mixture of K generalized inverted Dirichlet (GID) distributions
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characterized by parameters ~θj = (~αj, ~βj) and mixing weight πj of the jth component.

P ( ~Xi|Θ) =
K∑
j=1

πjP ( ~Xi|~θj) (23)

where Θ = (~θ1, . . . , ~θK , π1, . . . , πK) represents the GID mixture model parameters and

P ( ~Xi|~θj) is the generalized inverted Dirichlet distribution, which has the following

form [47]:

P ( ~Xi|~θj) =
d∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)

X
αjl−1
j

(1 +
∑l

s=1Xis)γjl
(24)

where γjl = βjl + αjl − βjl+1, for l = 1, . . . , d (βjd+1 = 1). It is to be noted that the

GID is reduced to the inverted Dirichlet distribution when the parameter γjl is set to

zero (γj1 = · · · = γjd = 0).

The flexibility of the generalized inverted Dirichlet is by dint of the concept of

“Force of mortality” of the population where we introduce, here, a doubly non-central

Y independent-variables defined as

Yi1 = 1, Yjl =
Xil

Til−1

, l > 1 (25)

where Til = 1 +Xi1 +Xi2 + · · ·+Xil−1, l = 1, . . . , d

The characteristic function underlying the Y = (~Y1, . . . , ~YN) independent variables

follows a product of 2-parameters inverted Beta distribution, where θl = (αl, βl)

P (~Yi|~θ) =
d∏
l=1

PIBeta(Yil|θl) (26)

In which the probability of inverted Beta is given by:

PIBeta(Yil|θl) =
Γ(αl + βl)

Γ(αl)Γ(βl)

Y αl
il

(1 + Yil)αl+βl
(27)

Many characteristics of the distribution are defined in [48]. We mention some inter-

esting statistics for this distribution.

First, the mixed moments such as the nth moment is given by:

E(Y n) =
Γ(α + β)Γ(β − n)

Γ(α)Γ(β)
(28)
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where β − n is positive.

Then, the covariance between two variable Y1 and Y2 is defined as:

COV (Y1, Y2) =
(α1 − 1)(α2 − 1)

(α1α2 − 1)(β1 − 1)(β2 − 1)
(29)

The covariance between two features for inverted Beta is always positive, which means

that both they tend to increase or decrease together.

Finally, the variance of a variable Y is conveyed by:

V AR(Y ) =
(α− 1)(α + β − 2)

(β − 1)2(β − 2)
(30)

3.1.2 Likelihood-based learning

Theoretically, a plethora of literature agrees on the effectiveness of the likelihood-

based approach for estimating the mixture parameters. One of the well-known method-

ologies is the Expectation-Maximization technique [49], beginning with a tuned ini-

tialization for the set of parameters to the expectation step where the posterior is

inferred (named often as “responsibilities”), then the iterations are proceeded to up-

date the required variables until convergence. The heart of the matter comes with

estimating the parameters based on the second derivative of the log-likelihood func-

tion with regards to each parameter. First, we introduce the log-likelihood as follows:

logP (Y|Θ) =
N∑
i=1

log
[ K∑
j=1

πj

d∏
l=1

PIBeta(Yil|θjl)
]

(31)

Initializing process

As a first step, an unsupervised-method, namely “K-means,” is applied to obtain

the initial K clusters. Consequently, for each cluster, the method-of-moments is

implemented to get the initial ~αj and ~βj parameters of each component j. The mixing

weight is set in the initial phase as the number of elements in each cluster divided

by the total number of vectors. As mentioned earlier, with conditionally independent

features, the GID is converted by the inverted Beta distribution factorization. Thus,

given the moments of inverted Beta distribution [50], the initial αjl0 and βjl0 are

deduced by
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αjl0 =
µ2
jl(1 + µjl) + µjlσ

2
jl

σ2
jl

(32)

βjl0 =
µjl(1 + µjl) + 2σ2

jl

σ2
jl

(33)

where µjl is the mean and σjl is the standard-deviation, j = 1, . . . , K, l = 1, . . . , D

Expecting the responsibilities

The responsibilities or posterior probabilities play an essential role in the likelihood-

based estimation technique. It affects the update of the parameters in the next

following step using the current parameter value.

P (j|~Yi) =
πjP (~Yi|~θj)∑K

m=1 πmP (~Yi|~θm)
(34)

Maximizing & upgrading the GID parameters

At the beginning, we set the gradient of log-likelihood function with respect to the

mixing weight parameter equals to zero:

∂ logP (Y ,Θ)

∂πj
= 0 (35)

Then, we obtain the update formula for πj, for j = 1, . . . , K as

πj =
1

N

N∑
i=1

P (j|~Yi) (36)

where P (j|~Yi) is the posterior computed in the E-step.

To learn the parameters ~αj and ~βj, the Fisher scoring algorithm [51] is used. Thus,

we need to calculate the first and the second derivatives of the log-likelihood function

based on the following update [52]:

αt+1
jl = αtjl −

( ∂2

∂α2
jl

logP (Y ,Θ)
)−1

× ∂

∂αjl
logP (Y ,Θ) (37)

βt+1
jl = βtjl −

( ∂2

∂β2
jl

logP (Y ,Θ)
)−1

× ∂

∂βjl
logP (Y ,Θ) (38)

17



The first derivatives of logP (Y ,Θ) are given by:

∂

∂αjl
logP (Y ,Θ) =

N∑
i=1

P (j|~Yi)
(
PIBeta(Yil|θjl)[Ψ(αjl + βjl)−Ψ(αjl) + log Yil

− log(1 + Yil)]
)
, (39)

∂

∂βjl
logP (Y ,Θ) =

N∑
i=1

P (j|~Yi)
(
PIBeta(Yil|θjl)[Ψ(αjl + βjl)−Ψ(αjl)− log(1 + Yil)]

)
(40)

The second derivative with respect to αjl is given by:

∂2

∂2αjl
logP (Y ,Θ) =

N∑
i=1

P (j|~Yi)
(∂PIBeta(Yil|θjl)

∂αjl
[Ψ(αjl + βjl)−Ψ(αjl) (41)

− log(1 + Yil)] + PIBeta(Yil|θjl)[Ψ′(αjl + βjl)−Ψ′(αjl)]
)
,

The second derivative w.r.t βjl is obtained through the same development.

3.1.3 GID optimal predictor

In this section, we present our novel non-linear optimal predictor method based on

generalized inverted Dirichlet distribution. We consider the conditional expectation

property to predict one random variable from the other neighboring variables.

We consider p data points (Xi, Xi+1, . . . , Xi+p−1), knowing their values, we predict

the neighboring data point X̂i+p on the base of minimizing the mean squared error

(MSE). Therefore, we model the joint density of Xi+p and its neighbors using the

generalized inverted Dirichlet. We take i = 0 and we derive the equations.

~X ∼ GID(~θ) (42)

Considering generalized inverted Dirichlet properties [28], the conditional random

variable Yp follows an inverted Beta distribution:

Yp =
Xp

Tp−1

|Xp−1, . . . , X1, X0 ∼ IB(αp, βp) (43)
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Consequently, the conditional probability density function of Xp is

Xp | Xp−1, . . . , X0 ∼ Tp−1 IB(αp, βp) (44)

where Tp−1 = 1 +
∑p−1

k=1Xk.

Hence, the conditional expectation expression of Xp is expressed as follows.

E(Xp | Xp−1, X1, . . . , X0) = Tp−1
αp

βp − 1
(45)

In the case of mixture models, the optimal predictor expression can be derived

directly by following steps defined in [24] (more details are in [16]):

X̂p = E
(
Xp | Xp−1, . . . , X0) (46)

X̂p =

∫
Xp P (Xp | Xp−1, . . . , X0) dXp (47)

=
K∑
j=1

π′jEj
(
Xj | Xj−1, . . . , X0)

where

π′j = πj

∫
Pj(Xp , . . . , X0) dXp∫
P (Xp , . . . , X0) dXp

(48)

π′j = πj
Pj(Xp−1 , . . . , X0)∑K

j=1 πjPj(Xp−1 , . . . , X0)
(49)

Finally, the GID optimal predictor is resumed in the following linear combination of

Xp neighbors:

X̂p =
K∑
j=1

π′j

(
1 +

p−1∑
k=1

Xk

)
αp

βp − 1
(50)

3.2 Experimental results

Image inpainting is the process of restoring deteriorating, damaged or missing parts

of an image to produce a complete picture. It is an active area of image process-

ing research [11, 53, 54] where machine learning has exciting results comparable to

artists’ results. Mainly, in this process, we will be completing a missing pixel by an

approximated value that depends on its neighborhood. In our work, we use the 3rd
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order non-symmetrical half-plane casual neighborhood system [24, 43]. We apply the

model on a publicly available dataset; Paris StreetView [31]. Then, we compare it

with the widely used mixture of Gaussian predictor, generalized Dirichlet mixture

predictor and inverted Dirichlet mixture predictor. We are not trying to restore the

ground-truth image, our goal is to get an output image that is close enough or similar

to the ground-truth. Therefore, we use the structural similarity index (SSIM) [10] to

gauge the differences between the predicted images and the original ones. We also

perform signal to noise ratio (PSNR) [55] to evaluate the performance of the models.

We reduce the size of the original images to 256× 256 to minimize the complexity

of computing the model’s parameters. We train the model on 70% of the database

and we test on the rest. We apply two types of masks. The first one is randomly

distributed as shown in figure 4a. And, for the second one, we discard lines of the

images, as in figure 4b. Finally, we compute the SSIM and PSNR of each test image

with its corresponding ground-truth, and we average all over the test set.

(a) Random mask (b) Line mask

Figure 4: Types of image mask

As we mentioned earlier, we discard around 15% of the pixels randomly. Figure 5

reveals that the difference between models’ prediction is undetectable visually. More-

over, table 3 shows that the difference between the models is not significant. There

is a slight advantage for the use of GIDM model compared to the others. Thus, we
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Figure 5: Models’ performance on random masked images. 1st column is for the
ground truth images, 2nd column is for the masked images , 3rd column is for the GM
prediction, 4th column is for the DM prediction , 5th column is for the IDM prediction,
6th column is for the GIDM prediction

conclude that this approach of models’ evaluation is not appropriate. For that, we

decide to remove slightly thick lines of pixels and re-evaluate the models.

To evaluate the models’ performance, we used TensorFlow to calculate the PSNR

and Skimage python package for the SSIM metric.

After discarding lines from the images, we are able to generate back again the

missing pixels, and figure 6 demonstrates that GIDM is the most efficient model

among all the others. This is also clear in figure 6, where we can notice in the chosen

images that GIDM is the most accurate re-generator of discarded pixels. Therefore,

our work has shown that image data is better represented by generalized inverted

Dirichlet. It is noteworthy to mention that these models’ performance is hugely

dependent on the size of the masks, the hyper-parameters, the type and order of the

neighbouring system.
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Table 3: Models’ evaluation for the randomly masked images.

PSNR SSIM
GM 21.832 0.853
DM 25.963 0.878
IDM 25.672 0.875

GIDM 26.126 0.887

Table 4: Models’ evaluation for the line masked images.

PSNR SSIM
GM 20.366 0.833
DM 25.851 0.856
IDM 27.673 0.868

GIDM 29.398 0.891

Figure 6: Models’ performance on line masked images. 1st column is for the ground
truth images, 2nd column is for the masked images, 3rd column is for the GM predic-
tion, 4th column is for the DM prediction , 5th column is for the IDM prediction, 6th

column is for the GIDM prediction
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Chapter 4

Inverted Dirichlet Power Steady

model for Time series Forecast

with local Variational inference

4.1 Introduction

Time series analysis has been a challenging problem for decades [56, 57]. It is a

rich and fast growing field where many techniques have been applied for modeling

and analyzing data. It takes into consideration that data points taken over time

may have an internal pattern demonstrated in a seasonal, trend, cyclical and noise

components. For that purpose, taking advantage of state space representation for

modeling and smoothing time series has been extensively proposed in earlier years

by Akaike [58], Aoki [59, 60], Hannan [61], Kitagawa and Gersch [62]. Recently,

the application of time series using state space models has become of great interest

for various applications such as analyzing water quality [63], forecasting electricity

and traffic data [64], predicting quality of service performance of web services [37],

forecasting business demand [65, 66], and predicting supply chain planning [67].

In this chapter, we develop a methodology for modeling, forecasting, and esti-

mating times series of continuous proportions assumed to follow an inverted Dirichlet

distribution. We summarize our contributions as the following:

1. Proposing inverted Dirichlet distribution with state space model.

2. Introducing a new maximum a posteriori estimation of Inverted Dirichlet state
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space model’s parameters.

3. Predicting Inverted Dirichlet power steady model by local Variational inference.

4. Forecasting electricity consumption using Inverted Dirichlet state space model.

4.2 Exponential form of Inverted Dirichlet distri-

bution

Given a D-dimensional positive vector ~X = (X1, . . . , XD) generated from an inverted

Dirichlet distribution characterized by a D + 1-dimensional parameter vector ~α =

(α1, . . . , αD+1), the probability density function is as follows

P ( ~X|~α) =
Γ(|α|)∏D+1
d=1 Γ(αd)

D∏
d=1

Xαd−1
d (1 + | ~X|)−|α| (51)

where |α| =
∑D+1

d=1 αd, αd > 0, d = 1, . . . , D + 1, | ~X| =
∑D

d=1Xd, Xd > 0, d =

1, . . . , D, and Γ(.) is the Gamma function defined by Γ(x) =
∫∞

0
tx−1e−tdt. We

denote the inverted Dirichlet distribution by InvDir(α).

The Inverted Dirichlet is a member of the exponential family of distributions which

have the form:

p( ~X|~α) = H(X) exp[G(~α)T (X) + Φ(~α)] (52)

where T (X) is a vector of sufficient statistics and G(~α) is the vector for natural

parameters.

Then, by letting the likelihood function follows the exponential forms [68], we

write down the expression:

p( ~X|~α) = exp

[
log(Γ(|α|)−

D+1∑
d=1

log(Γ(αd)) +
D∑
d=1

αd log(Xd)−
D∑
d=1

log(Xd)

− |α| log (1 +
D∑
d=1

Xd)

]
(53)

If we consider the exponential family or Koopman–Darmois expression equation

(52), we can write the natural parameters as:
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H(X) = 1 (54)

Td(X) = log(Xd) ; d = 1, . . . , D (55)

TD+1(X) = log (1 +
D∑
d=1

Xd) (56)

Gd(~α) = αd ; d = 1, . . . , D (57)

GD+1(~α) = −|α| (58)

Φ(~α) = log(Γ(|α|))−
D+1∑
d=1

log Γ(αd) (59)

4.3 Inverted Dirichlet State Space model

We introduce in this section the new proposed state space model where the ob-

servations are to follow an Inverted Dirichlet distribution. For that purpose,using

exponential family properties, the prior distribution is defined as follows:

p(~αt) ∝ exp

[ D∑
d=1

ρdαd − ρD+1|α|+ κ
(

log(Γ(|α|))−
D+1∑
d=1

log(Γ(αd))
)]

(60)

Then, using Bayes’s rule the posterior distribution of an unobserved states is

defined by:

p(~αt|ρ, κ, ~X) ∝ p(~αt|ρ, κ)× p( ~X|~αt) (61)

∝ exp

[
D∑
d=1

(
ρd + log(Xd)αd

)
− |α|

(
ρD+1 + log(1 +

D∑
d=1

log(Xd)
)

+ (κ+ 1)
(

log(Γ(|α|))−
D+1∑
d=1

log(Γ(αd))
)]

According to steady state model, the state ~αt is assumed to evolve in time where

the new state ~αt+1 is defined by:

p(~αt+1|∆t) ∝ p(~αt|∆t)
σ ; σ ∈]0, 1[ (62)
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where ∆t = {It,∆t−1} and It = { ~Xt} are the external estimated parameters and all

the other relevant information available at t. For instance, we define D0 the values of

the externally estimated parameters and all relevant information available at t = 0.

The principle of the state space model is based on two step: the predicting step and

the updating step. First, the predicting step consists of determining the p(~αt+1|∆t)

using equation 62 where the mode of the distribution of (αt|∆t) to (αt+1|∆t) is un-

changeable whereas the dispersion gets larger.

for d = 1, . . . , D + 1

γρd{t/t} = ρd{t+1/t} (63)

κ{t/t} = κ{t+1/t} (64)

Second, the updating step consists of updating the following:

p(~αt+1|∆t+1) ∝ p(Xt+1|αt+1)p(αt+1|∆t) (65)

Using Bayes’s theorem and Markov Random Fields equations [69], we assume that

ρ and κ are independent and identically distributed variables. Then, the updating

equations are derived from the prior at t+ 1 and the following equation:

p(~αt+1|∆t+1) ∝ p(t+1|αt+1, ρt+1, κt+1)× p(~αt+1| ~Xt, ρt+1, κt+1) (66)

In regard to the above equation, we derive the updating equations of the hyper-

parameters as the following:

ρd{t+1/t+1} = γ(ρd{t+1/t} + logXd) ; d = 1, .., D (67)

ρD+1{t+1/t+1} = γ
(
ρD+1{t+1/t} + log (1 +

D∑
d=1

Xd)
)

(68)

κ{t+1/t+1} = γκ{t+1/t} + 1 (69)

We conduct two procedures to estimate the mode α̂ of the inverted Dirichlet

conjugate. We use the mixed moments characteristic of the exponential family, where

the first moment is defined as E(T (x)) = −∂φ(x)
∂x

and the second moment is given by

V AR(T (x)) = −∂2φ(x)
∂2x

. Then, with regards to Theorem.2 in [70], we have:

Ψ(~̂α)−Ψ(|α̂|)~u = ρ ; ~u = (1, . . . , 1) ∈ <D+1 (70)
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We conduct the maximum a posteriori to estimate (MAP) ~̂α [71] and we assume

that all the components of ~X are independent:

~αMAP = α(log p(~α|ρ, κ, ~X))

= α

[
D∑
d=1

(
ρd + log(Xd)αd

)
− |α|

(
ρD+1 + log(1 +

D∑
d=1

log(Xd)
)

+ (κ+ 1)
(

log(Γ(|α|))−
D+1∑
d=1

log(Γ(αd))
)]

(71)

Then, we drive the following equations for ~αMAP :

for s = 1, . . . , D

Ψ(|α̂|)−Ψ(α̂s) =
ρD+1 + log (1 +

∑D
d=1Xd)− ρs − logXs

κ+ 1

Ψ(|α̂|)−Ψ( ˆαD+1) =
ρD+1 + log (1 +

∑D
d=1 Xd)

κ+ 1
(72)

We deploy the Newthon-Raphson approach to get the estimate value of ~αMAP .

4.4 Local variational inference

In the Bayesian analysis of statistical modelling, averaging the future predictions over

the posterior densities of the unknown parameters is called the predictive distribution.

This is leads to more accurate results when comparing to point estimate method in

computing the predictive likelihood of the furthcoming data [72].

We used different approach to approximate the prediction distribution. We applied

the normal variational inference defined in [73], but, the solution was intractable

again. Thus, the new approach of local variational inference (LVI) was used to derive

an approximation of the following expression.

p( ~Xt+1|∆t) =

∫
p( ~Xt+1|~αt+1)× p(~αt+1|∆t) d~αt+1 (73)

The local variational inference requires finding limits on a subset of variables or

objective function. Hence, to apply it certain conditions must be verified.

If there exists {h(~αt+1, γ)/ h(~αt+1, γ) ≥ p(~αt+1|∆t)}. Then, Suppose we have

G(σ) given by:

G(σ) =

∫
p( ~Xt+1|~αt+1)× h(~αt+1, γ) d~αt+1 (74)
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We have p( ~Xt+1|∆t) ≤ G(σ). Thus, an upper bound of the predictive distribution

G(σ) is found. Knowing that G(σ) is only a function of σ, by calculating the optimal

value σ∗ which minimizes G(σ), we can approximate our predictive distribution.

σ∗ =σ G(σ) (75)

For that, we have to study the concavity of our posterior distribution. Thus, the

expression of the first derivative of the posterior is as follows:

∂p(~αt+1|∆t)

∂~αt+1

=

[
(ρd + log(Xd))− (ρD+1 + log(1 +

D+1∑
d=1

Xd))

+ (κ+ 1)(ψ(|α|)− ψ(αd))

]
× p(~αt+1|∆t) (76)

The sign of the first derivative gives an indication of the monotonicity of the

posterior. To study the concavity, we generate the second derivative defined by the

following expression.

∂2p(~αt+1|∆t)

∂2~αt+1

=

[[
(ρd + log(Xd))− (ρD+1 + log(1 +

D+1∑
d=1

Xd))

+ (κ+ 1)(ψ(|α|)− ψ(αd))
]2

+
[
(κ+ 1)(ψ

′
(|α|)− ψ′(αd))

]]
× p(~αt+1|∆t) (77)

where ψ
′
= ∂ψ

∂~α
, the sign of the second derivative depends on the sign of ψ

′
(|α|)−

ψ
′
(αd).

Following theorem 1 in [72], it is proven that the logarithm of Multivariate-Inverse-

Beta Function is jointly concave. Therefore, our posterior distribution is also concave

and, demonstrates the following relation.

Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

≤ Γ(
∑D+1

d=1 α̃d)∏D+1
d=1 Γ(α̃d)

× exp

(D+1∑
d=1

[
ψ(|α̃|)− ψ(α̃d)

]
(αd − α̃d)

)
(78)

where α̃d for d ∈ {1, .., D+1} is any point from the posterior distribution and |α̃| =∑D+1
d=1 α̃d. Then, by substituting this last inequality 78 in the prediction equation, we
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will have the upper bound which is given as:

p( ~Xt+1|∆t) ≤
∫

exp

[
D∑
d=1

(
ρd + log(Xd)αd

)
− |α|

(
ρD+1 + log(1 +

D∑
d=1

log(Xd)
)

(79)

+ (κ+ 2)
[(

log(Γ(|α̃|))−
D+1∑
d=1

log(Γ(α̃d))
)

+
(D+1∑
d=1

[
ψ(|α̃|)− ψ(α̃d)

]
(αd

− α̃d)
)]

+
( D∑
d=1

αd log(Xd) +
D∑
d=1

log(Xd)− |α| log (1 +
D∑
d=1

Xd)
)]
d~αt+1

≤ exp
( D∑
d=1

log(Xd) + (κ+ 2)
(

log(Γ(|α̃|))−
D+1∑
d=1

log(Γ(α̃d))

−
D+1∑
d=1

α̃d
[
ψ(|α̃|)− ψ(α̃d)

])
×
∫

exp

[
D∑
d=1

αd

(
ρd + logXd,t+1

+ logXd,t
+(κ+ 2)

[
ψ(|α̃|)− ψ(α̃d)

])
− |α|

(
ρD+1

+ log(1 +
D∑
d=1

logXd,t+1) + log(1 +
D∑
d=1

logXd,t)
)]
d~αt+1

For the ease of calculations, we suppose that B = exp
(∑D

d=1 log(Xd)+

(κ+2)
(

log(Γ(|α̃|))−
∑D+1

d=1 log(Γ(α̃d))−
∑D+1

d=1 α̃d
[
ψ(|α̃|)−ψ(α̃d)

]))
and, given that

exp a
exp b

≤ exp a for any real positive b variable. The inequality(79) will be given as

follows:

p( ~Xt+1|∆t) ≤ B×
∫ D∏

d=1

exp

[
αd

(
ρd + logXd,t+1

+ logXd,t
+(κ+ 2)

[
ψ(|α̃|) (80)

− ψ(α̃d)
])
− |α|

(
ρD+1 + log(1 +

D∑
d=1

logXd,t+1)

+ log(1 +
D∑
d=1

logXd,t)
)]
d~αt+1

We set C equal to the value of the integral and we calculate it using induction

method. Thus, C is equal to the following:
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C =
D∏
d=1

exp

[
αd

(
ρd + logXd,t+1

+ logXd,t
+(κ+ 2)

[
ψ(|α̃|)− ψ(α̃d)

])]
(
ρd + logXd,t+1

+ logXd,t
+(κ+ 2)

[
ψ(|α̃|)− ψ(α̃d)

])D (81)

Therefore, the resulting upper bound of the predictive distribution is equal to

B × C.

4.5 Experiments

In this section, we evaluate the proposed time series model Inverted Dirichlet Power

Steady Model (IDPSM) on electricity consumption dataset [74]. In this evaluation,

the proposed method is applied to forecast the future electricity production based on

previous observations. Therefore, we perform an exploratory data analysis to under-

stand the data features and behaviour. After, we compare our model performance to

the Generalized Dirichlet Power Steady Model (GDPSM) proposed in [37].

4.5.1 Exploratory data analysis

Time series analysis has been a challenging task in multiple machine learning prob-

lems. Hence, we consider the daily time series of Open Power System Data (OPSD)

for Germany to assess the performance of our model [74]. The dataset includes elec-

tricity consumption and production of Germany that are stated as daily totals in

gigawatt-hours collected from 2006 to 2015 and hourly totals from 2015 to 2020. The

columns of the dataset are defined as follows:

� Date in (yyyy-mm-dd format)

� Load actual entsoe transparency refers to Consumption in gigawatt-hours

� Wind generation actual refers to wind power in gigawatt-hours

� Solar generation actual refers to solar power in gigawatt-hours

In this work, we focus on the hourly collected part of the electricity consumption

and production time series. We start analyzing the data exploratory to study the
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variation over time in Germany. In fact, this study demonstrates some time series

features of the dataset such as the local and the long-term trends, seasonality, highest

and lowest data points.

First, we create line plot to visualize the evolution of the electricity consumption

over time. We can see in the figure 7 below that the line plot is congested and

unreadable due to the huge number of data points. Yet, we can notice a repeatable

pattern for each year known as seasonality of the time series data that oscillates

between low and high values on a yearly time scope. We can also notice that the

electricity consumption is lowest in summer and highest in winter.

Figure 7: Electricity consumption’s hourly variation for Germany 2015-2020

Then, we demonstrate the seasonality for a narrower time scale. Figure 8 shows

that the electricity consumption has a periodic pattern that is repeated on a weekly

basis.

Figure 8: Electricity consumption’s hourly variation for Germany Jan-Feb 2017

We can notice the daily oscillations. In addition, it is clear at this point that

the electricity consumption is the highest on weekdays and the lowest on weekend

and especially on early January which is a holiday. After that, we group the data
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points by month and we perform boxplot to study the seasonality of the dataset. The

following figure confirms the yearly seasonality of the data. In addition, the electricity

consumption does not present data outliers which will make it easier while learning

the pattern of the dataset.

Figure 9: Boxplot of Germany electricity consumption grouped by month

Next, we group the data on daily basis and we generate again the boxplot to

explore more the highest and lowest days of electricity consumption. Hence, figure

10 shows clearly how the electricity load is at its highest level during weekdays and

at its lowest on weekends.

Figure 10: Boxplot of Germany electricity consumption grouped by days

In the figure 11 we downsample the data but taking the average of each day. We

can notice that the time series become smoother because we reduce the frequency of

the data. Thus, we explore the daily trend.

Finally, we use the rolling window feature to explore the weekly and the long-term

trend and seasonality of the electricity load. In fact, the weekly mean resampled data

shown in figure 12 is smoother than the daily mean resampled one and it demonstrates
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Figure 11: downsampling of the dataset to daily consumption Jan-Mar 2017

again the seasonality and the trend of the time series on a weekly basis. Yet, the long-

term trend is horizontal with very small oscillations that decreases abruptly in 2020,

because of the COVID-19.

Figure 12: Overall trend of electricity consumption

The exploratory data analysis exhibits the seasonality, trend and the particular

lowest and highest curves of the time series for the electricity consumption time series

data. We compare the performance of IDPSM and GDPSM models by forecasting

the electricity consumption as 1-dimension time series data and predicting wind, solar

generation and electricity consumption as 3-dimensions time series.

4.5.2 Model Evaluation

We use the standardized residuals to evaluate the proposed IDPSM, the correlation

between the residuals at lag 0, and the mean squared error (MSE) of the predic-

tions. We demonstrate the performances of IDPSM and GDPSM. The standardized
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residuals are computed using the following expression [36]:

Rt =
Xt − E(Xt|∆t−1)

var(Xt|∆t−1)
(82)

∆t is explained recursively by ∆t = {It,∆t−1}, where It refers to the observed

data at time t as well as all other significant information at time t but not at time

t − 1. In this expression, ∆t−1 denotes all the observations provided at time t − 1.

E(Xt|∆t−1) and var(Xt|∆t−1) respectively define the posterior mean and variance of

the prediction distribution defined in equation (73).

4.5.3 Results and discussions

After exploring the dataset trends, seasonality and particular points, we evaluate our

model with the time series data of Open Power System Data (OPSD). We focus on

electricity load, wind generation and solar generation of Germany. As described in

the previous section, this dataset presents a challenge to test the performance of time

series forecasting models as it is collected hourly. Hence, we run multiple simulations

for different values of γ, which is the model’s hyperparameter. This parameter is not

interpretable, and we compare IDPSM and GDPSM with five different simulations

by varying γ, which will take the correspondent values {0.01 0.25 0.50 0.75 0.99}. We

run 15 different simulations for each value of gamma and we take the average results

for 1-dimension data.

First, we start by comparing the models by only forecasting the electricity con-

sumption time series. Table 5 demonstrates the standardized residuals for both mod-

els. We average the results over 15 simulation where we change the initial parameters

each time. Table 6 also is the average results of the 15 different runs. These two

tables below exhibit the merits of our proposed approach over GDPSM and shows

that for each γ value we may have different output as shown is figure 13. In fact,

the worst performance was for the biggest value of γ. However, this value is still

interpretable.

As future work, we can enhance the performance of the state space model by

adding dummy variables to represent covariances, trends, seasonality and interven-

tions to the predictive state distribution, we can enhance the performance of our

model [36]. In fact, the predictive state distribution of IDPSM will be represented by
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Table 5: Standardized residuals for electricity consumption

γ IDPSM GDPSM
0.01 0.581 0.638
0.25 0.621 0.696
0.50 0.682 0.661
0.75 0.592 0.613
0.99 0.727 0.751

Table 6: MSE for electricity consumption

γ IDPSM GDPSM
0.01 0.089 0.152
0.25 0.082 0.114
0.50 0.112 0.092
0.75 0.072 0.123
0.99 0.159 0.185

the following expression:

p(~̃αt+1|∆t) = p(~αt+1|∆t) +M × ~Xt+1 (83)

where M is the matrix of regression parameters and ~̃αt+1 is the new state model.

The incorporation of independent variables to the state equation will change the state

model location, and enhance the accuracy of the forecast. However, the model com-

plexity will increase, and further mathematical derivations have to be accomplished.
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Figure 13: IDPSM performance on electricity consumption dataset. 1st column is for
the smallest value of γ, ranked to the 5th column which is for the biggest value of γ
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Chapter 5

Conclusion

In this thesis, we have developed two different models for image pixel prediction and

one model for time series forecasting.

In chapter 2, a new method to model non-Gaussian positive vectors was proposed.

First, an analytic expression of the optimal predictor that is based on the inverted

Dirichlet mixture is derived. Next, we consider the NSHP neighbouring system and an

MLE expectation maximization framework to estimate the model parameters. Then,

we conduct two challenging applications to evaluate our predictor’s performance that

are image pixel restoration and objects detection. Finally, the results illustrate that

our model out-performs Gaussian Mixture and Generalized Dirichlet Mixture predic-

tors. In our future work, it would be of interest if we take into account the spatial

correlation between pixels to select the set neighbours. This could enhance more the

model’s performance.

Then, in chapter 3, we have developed a new optimal predictor based on finite

inverted Dirichlet mixtures. The GID demonstrates its efficiency in representing pos-

itive vectors due to its statistical characteristics through its covariance structure. We

learnt the model parameters using MLE approach with Newton Raphson method,

and we considered the 3 order NSHP neighbouring system to compute the predicted

pixel. We evaluated the GID optimal predictor on image inpainting and we com-

pared the proposed model to other similar related works. The experimental results

demonstrate its capability that offers reliable prediction and modeling potential.

In chapter 4, we proposed a new state space model for time series forecasting. The

model was based on inverted Dirichlet mixtures. A maximum a posteriori technique

37



is used to derive the analytical expression of the latent variable. Knowing that, the

predictive density was analytically insolvable and intractable, we have applied the

local variational inference to approximate it. Finally, we explored the features of

the time series electricity consumption dataset of Germany by an exploratory data

analysis and we compare our model to the generalized inverted Dirichlet power steady

model. The standardized residuals and mean squared error have shown the merits of

our proposed model.

The experiments with proposed models are motivating and proved to be a better

solution than inverted Dirichlet and Gaussian mixture models for appropriate data.

Future works might include trying other data distribution assumptions for image

pixel prediction and enhancing the state space model by including some dummy

variables in the latent variable equation to represents more the trend, seasonality and

interventions of the time series data.
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