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Abstract

A STUDY ON ENTROPY-BASED VARIATIONAL LEARNING

FOR MIXTURE MODELS

Mohammad Sadegh Ahmadzadeh

Nowadays, we observe a rapid growth of complex data in all formats due to the tech-

nological development. Thanks to the field of machine learning, we can automatically

analyze and infer useful information from these data. In particular, data clustering is

regarded as one of the most famous data analysis tools aiming at grouping data with

similar patterns into the same cluster. Among existing clustering techniques, finite

mixture models have shown great flexibility in data modeling. Mixture models are a

common unsupervised learning technique that have been widely used to statistically

approximate and analyse heterogenous data. The goal of using mixture models is

to fit the data into an appropriate distribution. A crucial point is to estimate the

prefect parameters of the distribution and the suitable number of clusters in the data.

To do so, an entropy-based variational learning algorithm is proposed for the model

selection (i.e. determination of the optimal number of components). We investigate

if a given component is genuinely distributed according to a mixture model to select

the optimal number of components that better suits our data.

In our work we have used the variational inference framework that overcomes

the over-fitting problem of maximum likelihood approaches and at the same time

convergence is guaranteed. In addition, it decreases the computational complexity of

purely Bayesian approaches. In recent researches the main concern when deploying

mixture models has been the choice of distributions. The effectiveness of Dirichlet

family of distributions has been proved in recent studies especially for non-Gaussian

data.

In this thesis, an effective mixture model-based approach for clustering and mod-

eling purposes has been proposed. Our contribution is the application of an entropy-

based variational inference algorithm to learn the mixture models, namely, generalized
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inverted Dirichlet and inverted Beta-Liouville mixture models. The performance of

the proposed model is evaluated on multiple real-world applications such as human

activity recognition, images, texture and breast cancer datasets, where in each case

we compare our results with popular and similar models.
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Chapter 1

Introduction

1.1 Cluster Analysis via Finite Mixture Models

Nowadays, large amounts of complex data in various formats (e.g., image, text,

speech) are generated increasingly at a bottleneck speed. This increase motivated

data scientists to develop tactical models in order to automatically analyze and infer

useful knowledge from these data [1].

Data mining approaches have been used to gain useful information from data by

using computational models. In general, data mining models can be grouped roughly

in two categorizes: predictive and descriptive models [2]. Descriptive models define

the relationships within the data with pattern discovery [3], and predictive models,

predict the future behaviour of data as opposed to giving information about known

behavior [4]. One of the most used methods of data mining is clustering [5]. The main

definition of clustering data, is gathering similar data in one cluster, therefore result-

ing multiple clusters where each cluster holds one group of data but is distinguished

from each-other in other words, patterns in one cluster should be more similar to each

other than patterns of other clusters [6]. It is noteworthy to mention that clustering

could be confused with classification. The difference between these two methods is

that clustering is an unsupervised learning method and classification is considered as

a supervised one. In clustering, the prior information about the clusters are unknown.

A critical challenge in clustering is selecting the number of clusters [7].

In this context, statistical modeling plays a significant role in helping machines to

interpret data with statistics. An essential approach in statistical modeling is finite
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mixture models that are effectively used for clustering purposes, separating hetero-

geneous data into homogeneous groups [8]. The usefulness of mixture models has

been widely demonstrated in many application areas including pattern recognition,

text and image analysis, and smart buildings [9, 10, 11]. However, there exist sev-

eral challenges to address when working with mixture models: (1) In finite mixture

models data samples are described by a mixture of several components, where each

component is assumed to come from one specific distribution (e.g., Gaussian distri-

bution). The objective is to estimate the unknown parameters of the distribution

which will properly suit the data [12]. Most existing related works assume that data

samples are mainly drawn from a Gaussian distribution [12, 13]. However, this as-

sumption has made the applicability of Gaussian mixture models very limited as this

type of distribution is not suitable for all kinds of data. Lately, multiple studies

have shown that other non-Gaussian statistical models (e.g., scaled Dirichlet [14],

generalized inverted Dirichlet [15], Beta [16], inverted Beta-Liouville [17], etc.) are

effective in modeling data. Thus, choosing a suitable probability distribution that

better describes the nature and the properties of the observed data is crucial to the

assessment of the validity of the model. For instance, the inverted Dirichlet mixture,

has good flexibility in accepting different symmetric and asymmetric forms that re-

sults in better generalization capabilities. But, the model usually supposes that the

features of the vectors are positively correlated, and that is not always applicable for

real-life applications. (2) In most cases, the mixture model fitting is not straightfor-

ward and analytically intractable. Methods like expectation-maximization (EM) and

maximum likelihood [1] are widely used in this context, but they remain impractical

as they are sensitive to initialization and usually lead to over-fitting [18]. An alterna-

tive approach to solve these problems is Bayesian learning, particularly, variational

inference has made the parameter estimation process more computationally efficient.

Variational learning method has been proposed and tested in different models [19, 20].

The main idea of the variational method is that it proceeds to approximate the true

posterior distribution rather than computing it. Therefore, convergence is guaranteed

as the complexity of the model is reduced [21]. In the following chapters the theory

of variational parameter estimation will be explored. (3) The selection of the number

of components is an important issue to consider in the design of mixture models, be-

cause a high number of components may lead to learning the data too much, whereas
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inference under a model with a small number of components can be biased. To this

end, multiple effective methods have been proposed, like minimum message length

criterion [22].

Furthermore, we propose an entropy-based variational learning algorithm to select

the optimal number of mixture components. Initially, we start with one component,

and continue incrementally to find the perfect number of components. We proceed

to define the model complexity and initiate a comparison between the theoretical

entropy and estimated one to approximate the prefect number of components [23].

Moreover, if a component is found to be unsuitable for our data, we proceed to split

it into two new components. This method has shown to be effective due to the

fact that it follows the variational learning approach. This method was proposed

first in [24] and followed in [25]. A full description and detailed algorithms of the

entropy-based variational approach are explained in Chapter 2 and Chapter 3. In [26]

and [25], the authors have studied the entropy-based variational learning on Beta-

Liouville and generalized Dirichlet mixture models, respectively. Our goal is to study

the entropy-based model when applied to generalized inverted Dirichlet (GID) and

inverted Beta-Liouville (IBL) mixture models. We have studied these models in

multiple applications like image categorization, breast cancer and human activity

recognition in smart buildings.

1.2 Contribution

The main purpose of this thesis is to study the efficiency of GID and IBL models when

combined with the entropy-based variational learning algorithm. The contributions

are listed as follows:

+ Entropy-based Variational Learning of Generalized Inverted Dirichlet

Mixture Model

We propose a finite generalized inverted Dirichlet mixture model for un-

supervised learning using entropy-based variational approximation proce-

dure. We validate our model on some real-world applications including

breast cancer and image categorization. This work has been submitted to

the 22nd IEEE International Conference on Industrial Technology.
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+ Entropy-based Variational Learning of Inverted Beta-Liouville Mix-

ture Model

A finite inverted Beta-Liouville mixture model merged with a splitting

process known as the entropy-based variational learning method has been

proposed. The evaluation of our model is performed by some challenging

applications, namely, human activity recognition and image categoriza-

tion. This work has been submitted to the 34th International FLAIRS

conference.

1.3 Thesis Overview

r Chapter 1 is delegated to introducing the idea of mixture models and clustering,

In addition we briefly overview several concepts that are related to our work.

r Chapter 2 is delegated to the explanation of entropy-based variational learning

of generalized inverted Dirichlet mixture model. The model has been challenged

with two applications, namely, breast cancer Wisconsin (diagnostic) dataset and

image categorization.

r In chapter 3 we extend our research on entropy-based variational for learning

the inverted Beta-Liouville mixture models. At the end, we have shown in

details the results of our experiments on human activity recognition and image

categorization applications.

r In conclusion, we briefly summarize our contributions.

4



Chapter 2

Entropy-based Variational

Learning of Finite Generalized

Inverted Dirichlet Mixture Model

2.1 Model Specification

In this chapter, we present our discoveries when entropy-based variational algorithm

is applied for learning a finite generalized inverted Dirichlet mixture model. This will

help us to study and resolve the parameter estimation and model selection problems

for a higher quality fitting. At the end we conclude the chapter by showing our re-

sults on applications, namely, breast cancer Wisconsin (diagnostic) dataset and image

categorization that demonstrate the superior performance of our proposed model.

2.1.1 Finite Generalized Inverted Dirichlet Mixture Model

Lets us assume ~Y = (~Y1, . . . , ~YN) is a set of N independent identically distributed

vectors, where every single ~Yi is defined as ~Yi = (Yi1, . . . , YiD), where D is the di-

mensionality of the vector. We are assuming that each ~Yi follows a mixture of GIDs,

where the probability density function of the GID is given by [27],[28]:

p(~Yi | ~αj, ~βj) =
D∏
d=1

Γ(αjd + βjd)

Γ(αjd)Γ(βjd)

Y
αjd−1

id

(1 +
∑d

l=1 Yil)
γjd

(1)
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where ~αj and ~βj are the parameters of the GID, and they are defined as ~αj =

(αj1, . . . , αjd) and ~βj = (βj1, . . . , βjd) with constraints αjd > 0 and βjd > 0. We

can find γid according to γid = βjd + αjd − βj(d+1). Supposing that the model con-

sists of M different components [1], we are able to define the GID mixture model as

follows:

p(~Yi | ~π, ~α, ~β) =
M∑
j=1

πjp(~Yi | ~αj, ~βj) (2)

where ~π represents its mixing coefficients correlated with the components, where, ~π =

(π1, . . . , πM) with constrains πj ≥ 0 and
∑M

j=1 πj = 1, and the shape parameters of the

distribution are denoted as ~α = (~α1, . . . , ~αM) , ~β = (~β1, . . . , ~βM) and j = 1, . . . ,M .

According to [15], we can replace the GID distribution with a product of D inverted

Beta distributions, considering that it does not change the model, therefore, equation

(2) can be rewritten as:

p(X | π, α, β) =
N∏
i=1

(
M∑
j=1

πj

D∏
l=1

piBeta(Xil | αjl, βjl)

)
(3)

By considering that X = ( ~X1, . . . , ~XN) where ~Xi = (Xi1, . . . , XiD), we have Xil =

Yil and Xil = Yil
1+

∑l−1
k=1 Yik

for l > 1. The inverted Beta distribution is defined by

PiBeta(Xil|αjl, βjl) with the parameters αjl and βjl and given by:

piBeta(Xil | αjl, βjl) =
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)

Xil
αjl−1

(1 +Xil)αjl+βjl
(4)

In proportion to this design, we are able to estimate the parameters from equation

(3) instead of the equation (2). We define the latent variables as Z = (~Z1, . . . , ~ZN)

where ~Zi = (Zi1, . . . , ZiM) with the conditions Zij ∈ {0, 1} that Zij is equal to 1 if ~Xi

is assigned to cluster j and zero otherwise, and
∑M

j=1 Zij = 1 [27]. The conditional

probability for the latent variables Z given ~π can be written as:

p(Z | ~π) =
N∏
i=1

M∏
j=1

πj
Zij (5)

We write the probability of the observed data vectors X given the latent variable and

component parameters as:

p(X | Z, ~α, ~β) =
N∏
i=1

M∏
j=1

( D∏
l=1

piBeta(Xil | αjl, βjl)
)Zij

(6)
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By assuming that the parameters are independent and positive, we can suppose that

the priors of these parameters are Gamma distributions G(.). According to [29], we

can describe them as:

p(αjl) = G(αjl | ujl, νjl) =
ν
ujl
jl

Γ(ujl)
αjl

ujl−1e−νjlαjl (7)

p(βjl) = G(βjl | gjl, hjl) =
h
gjl
jl

Γ(gjl)
βjl

gjl−1e−hjlβjl (8)

A graphical representation of GID model is shown in Fig 1. We define the joint

distribution including all random variables, as follows:

p(X ,Z, ~α, ~β | ~π) = p(X | Z, ~α, ~β)p(Z | ~π)p(~α)p(~β) (9)

p(X ,Z, ~α, ~β | ~π) =
N∏
i=1

M∏
j=1

(
D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)

X
αjl−1

il

(1 +Xil)αjl+βjl

)Zij
(

N∏
i=1

M∏
j=1

π
Zij

j

)
M∏
j=1

D∏
l=1

( ν
ujl
jl

Γ(ujl)
αjl

ujl−1e−νjlαjl ×
h
gjl
jl

Γ(gjl)
βjl

gjl−1e−hjlβjl
)

(10)

Figure 1: A graphical representation of the GID mixture model. The circles symbol-

ize the model parameters and random variables, and plates indicate the repetitions

shown in bottom left corners. The arcs symbolize the conditional dependencies of the

variables.
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2.2 Model Learning with Variational Inference

The GID mixture model contains hidden variables that can not be estimated directly.

In order to estimate them, we apply the variational inference method, in which we

aim to find an approximation of the posterior probability distribution of p(Θ|X , ~π)

by having Θ = {Z, ~α, ~β}. Inspired by [25], we introduce Q(Θ) as an approximation of

the true posterior distribution p(Θ|X , ~π). We make use of the Kullback-Leibler (KL)

divergence in order to minimize the difference between the true posterior distribution

and the approximated one, which can be expressed as follows:

KL
(
Q || P

)
= −

∫
Q
(
Θ
)

ln

(
p
(
Θ | X , ~π

)
Q
(
Θ
) )

dΘ = ln p
(
X | ~π

)
− L

(
Q
)

(11)

where L(Q) is defined as:

L
(
Q
)

=

∫
Q
(
Θ
)

ln

(
p
(
X ,Θ | ~π

)
Q
(
Θ
) )

dΘ (12)

Starting from the fact that L(Q) ≤ ln p(X|~π), we can see that L(Q) is the lower bound

of the log likelihood. Thus, we have to maximize L(Q) in order to minimize the KL

divergence. We assume a factorization assumption around Q(Θ) to apply it in vari-

ational inference. This assumption is called the Mean Field Approximation. We can

factorize the posterior distribution Q(Θ) as Q(Θ) = Q(Z)Q(~α)Q(~β)Q(~π) [30], [31].

In order to obtain a variational solution for the lower bound with respect to all the

model parameters, we consider an optimal solution for a fix parameter s that is defined

as lnQ∗s
(
Θs

)
= 〈ln p(X ,Θ)〉i 6=s where 〈·〉i 6=s refers to the expectation with respect to

all the parameters apart from Θs, if an exponential is taken from both sides, the

normalized equation is as follows.

Qs

(
Θs

)
=

exp
〈

ln p
(
X ,Θ

)〉
i 6=s∫

exp
〈

ln p
(
X ,Θ

)〉
i 6=sdΘ

(13)

We obtain the optimal variational posteriors solution that are formulated as:

Q
(
Z
)

=
N∏
i=1

M∏
j=1

r
Zij

ij (14)

Q
(
~α
)

=
M∏
j=1

D∏
l=1

G
(
αjl | u∗jl, ν∗jl

)
, Q
(
~β
)

=
M∏
j=1

D∏
l=1

G
(
βjl | g∗jl, h∗jl

)
(15)

8



rij =
r̃ij∑M
j=1 r̃ij

(16)

ln r̃ij = ln πj +
D∑
l=1

R̃jl + (ᾱjl − 1) lnXil − (ᾱjl + β̄jl) ln(1 +Xil) (17)

R̃ = ln
Γ(ᾱ + β̄)

Γ(ᾱ)Γ(β̄)
+ ᾱ[ψ(ᾱ + β̄)− ψ(ᾱ)](〈ln β〉 − ln β̄) + 0.5α2[ψ′(ᾱ + β̄)

− ψ′(ᾱ))]〈(lnα− ln ᾱ)2〉+ 0.5β2[ψ′(ᾱ + β̄)− ψ′(β̄))]〈(ln β − ln β̄)2〉

+ ᾱβ̄ψ′(ᾱ + β̄)(〈lnα〉 − ln ᾱ)(〈ln β〉 − ln β̄) (18)

u∗jl = ujl +
N∑
i=1

〈Zij〉ᾱjl

[
ψ(ᾱjl + β̄jl)− ψ(ᾱjl) + β̄jlψ

′(ᾱjl + β̄jl)(〈ln βjl〉 − ln β̄jl)

]
(19)

ν∗jl = νjl −
N∑
i=1

〈Zij〉 ln
Xil

1 +Xil

(20)

g∗jl = gjl +
N∑
i=1

〈Zij〉β̄jl

[
ψ(ᾱjl + β̄jl)− ψ(β̄jl) + ᾱjlψ

′(ᾱjl + β̄jl)(〈lnαjl〉 − ln ᾱjl)

]
(21)

h∗jl = hjl −
N∑
i=1

〈Zij〉 ln
1

1 +Xil

(22)

Furthermore ψ(.) and ψ
′
(.) are representing the Digamma and Trigamma functions,

respectively. As R = 〈ln Γ(ᾱ+β̄)

Γ(ᾱ)Γ(β̄)
〉 is intractable, we have used the second order Taylor

expansion for its approximation. The expected values of the above equations are as

follows:

〈Zij〉 = rij (23)

ᾱjl = 〈αjl〉 =
u∗jl
ν∗jl

, 〈lnαjl〉 = ψ(u∗jl)− ln ν∗jl (24)

9



β̄jl = 〈βjl〉 =
g∗jl
h∗jl

, 〈ln βjl〉 = ψ(g∗jl)− lnh∗jl (25)

〈
(lnαjl − ln ᾱjl)

2
〉

= [ψ(u∗jl)− lnu∗jl]
2 + ψ

′
(u∗jl) (26)

〈
(ln βjl − ln β̄jl)

2
〉

= [ψ(g∗jl)− ln g∗jl]
2 + ψ

′
(g∗jl) (27)

πj =
1

N

N∑
i=1

rij (28)

2.3 Entropy-based Variational Model Learning

In this section, we develop an entropy-based variational inference to learn the gener-

alized inverted Dirichlet mixture model, that is mainly motivated by [23]. The core

idea is to evaluate the quality of fitting of a component of our mixture model. Hence,

we do a comparison between the theoretical maximum entropy and the MeanNN en-

tropy [32]. In case of a significant difference, we proceed with a splitting process to

fit the component, which consists in splitting the component into two new clusters.

2.3.1 Differential Entropy Estimation

The probability density function of an observation ~Xi = ( ~X1, . . . , ~XD) is defined as

p( ~Xi), with a set of N samples { ~Xi, . . . , ~XN}, the differential entropy can be defined

as:

H( ~Xi) = −
∫
p( ~Xi)log2 p( ~Xi)d ~Xi (29)

We introduce the maximum differential entropy of the GID as follows:

HGID( ~Xi | αj, βj) =
D∑
l=1

[
− ln Γ(αjl + βjl) + ln Γ(αjl) + ln Γ(βjl) (30)

− (αjl − 1)
[
− ψ(αjl + βjl) + ψ(αjl)

]
+ (αjl + βjl)[−ψ(αjl + βjl)]

]
2.3.2 MeanNN Entropy Estimator

In order to make sure that the specified component is indeed distributed according

to a generalized inverted Dirichlet distribution, we choose the MeanNN entropy esti-

mator [23], to estimate H( ~Xi) for random variable ~Xi with D dimensions, that has
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an unknown density function P ( ~Xi) [33]. By considering the fact that the Shannon

entropy estimator in (29) can be considered equal to the average of − logP ( ~Xi), we

can exploit an unbiased estimator by estimating log P ( ~Xi) [32], [33]. We assume that

~Xi is the center of a ball with diameter ε, and that there is a point within the dis-

tance [ε, ε + dε] from ~Xi. We have k̂ − 1 points in a smaller distance, and the other

N − k̂ − 1 points are within a large distance from ~Xi. Consequently, we can define

the probability of the distances and the k-th nearest neighbor as follows:

pik̂ (ε) =
(N − 1)!(

k̂ − 1
)

!
(
N − k̂ − 1

)
!

dpi (ε)

dε
pk̂−1
i (1− pi)N−k̂−1 (31)

where pi(ε) denotes the mass of the ε-ball centered on ~Xi:

pi(ε) =

∫
|| ~X− ~Xi||<ε

p( ~Xi)d ~Xi (32)

We can easily define the expectation of log pi(ε) with respect to pi(ε) as mentioned in

equation (33):

E
(

log pi(ε)
)

=

∫ ∞
0

pik̂ log pi(ε)dε = ψ(k̂)− ψ(N) (33)

Imagine P ( ~Xi) is unchanging in the center of the ε-ball, we have pi(ε) ' Vdε
dp( ~Xi),

where d corresponds to the dimension of ~Xi, and Vd is the unit ball volume calculated

by Vd = π
d
2 Γ(1 + d/2). Now, we are able to approximate − log p( ~Xi) by substitut-

ing (32) into (33) we can get the equation (34). Hence, we get the unbiased K-NN

estimator of the differential entropy, expressed in (35):

− log p( ~Xi) ' ψ(N)− ψ(k̂) + dE(log ε) + log Vd (34)

Hk̂

(
~X
)

= ψ (N)− ψ
(
k̂
)

+
d

N

N∑
i=1

logεi + log Vd (35)

To reduce the high computational expenses of the K-NN estimator, we use an exten-

sion of the K-NN estimator called MeanNN, proposed in [24]. The main idea behind

the MeanNN entropy estimator is to average the k̂ nearest neighbor statics for all

feasible values of order k in the range of [1, N − 1]. The MeanNN estimator for the

differential entropy is calculated according to (36).
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HM

(
~X
)

=
1

N − 1

N−1∑
k̂=1

Hk̂

(
~X
)

= log Vd + ψ (N) +
1

N − 1

N−1∑
k̂=1

[
d

N

N∑
i=1

log εi,k̂ − ψ
(
k̂
)]

(36)

where εi,k̂ determines the k̂-th nearest neighbor of ~Xi. To find the maximum

differential entropy of each individual cluster, we use:

HGID =
M∑
j=1

πjHGID(j) (37)

At this point, we are able to give an accurate evaluation of the model fitting, by

evaluating and comparing the MeanNN and the theoretical maximum differential

entropy [24]. Afterwards, we define ΩGID, which is the normalized weighted sum of

the difference between the theoretical and the estimated entropy of every component

correlated with the generalized inverted Dirichlet mixture model, as expressed bellow:

ΩGID =
M∑
j=1

πj

[HGID(j)−HM(j)

HGID(j)

]
=

M∑
j=1

πj

[
1− HM (j)

HGID(j)

]
(38)

The normalized weight ΩGID operates in the range of [0, 1] and it is equal to zero, only

if the data was genuinely distributed. The splitting process is performed by choosing

the cluster j∗ with the highest ΩGID according to equation (39), and split the chosen

component j∗ into two new components.

j∗ = arg max
j

[
ΩGID(j)

]
= arg max

j

[
πj
HGID(j)−HM(j)

HGID(j)

]
(39)

The overall entropy-based variational learning algorithm of the GID mixture model

is illustrated in Algorithm 1.
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Algorithm 1 Entropy-based variational learning of GID mixture models

1. Initialization

• Set M = 1, j∗ = M , π1 = 1

• Initialize hyperparameters ujl,νjl,gjl,hjl

2. The splitting process

• Split j∗ into two new components j1 and j2 with equal proportion π∗/2.

• Set M = M + 1.

• Initialize the parameters of j1 and j2 using the same parameters of j∗.

3. Apply standard variational Bayes until convergence.

4. Determine the number of components through the evaluation of the mixing

coefficients πj according to (28).

5. If πj ≈ 0. where j ∈ 1, . . . ,M then set M = M − 1 and terminate the program.

6. Else evaluate ΩMD, choose j∗ according to (39) and go back to the splitting

process in step 2.

2.4 Experimental Results

In order to demonstrate the effectiveness of the proposed model, Entropy-Based

Variational Learning of Finite Generalized Inverted Dirichlet Mixture Model (EV-

GIDMM), we conduct several experiments on two real-world challenging applications,

including breast cancer detection and image categorization. In the first one, we used

the standard breast cancer Wisconsin dataset with numerical features, whereas in

the second one, we run our experiments on two other popular data sets, namely,

Caltech101 and Describable Texture Dataset (DTD). To validate the performance

of our model, we compared our proposed EV-GIDMM against three unsupervised

state-of-the-art mixture models, including the Entropy-based variational inference on

Multivariate Beta Mixture Model (EV-MBMM) [23], variational Dirichlet Mixture

Model (varDMM) [29] and Entropy-based variational on Dirichlet Mixture Model
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(EDMM) [25].

2.4.1 Breast Cancer

The first application that we considered to evaluate the performance of our proposed

model is breast cancer detection. According to the WHO (World Health Organiza-

tion), breast cancer has been declared as the most frequent cancer among women that

affects about 2.1 million women every year. Machine learning techniques can be of

great help in this context, in early detection of women breast cancer, thus, they can

have a great impact on the breast cancer treatment. To this end, we applied our pro-

posed model on the breast cancer Wisconsin dataset that is publicly available1. This

dataset includes 569 data samples of patients seen by Dr. Wolberg, that have been

diagnosed with either malignant or benign cancer. The number of patients having a

benign tumor is 357, whereas 212 cases with malignant tumor cancer. This data set

was obtained by applying the Fine Needle Aspiration (FNA) method [34], [35], and

it contains cases showing invasive breast cancer and no sign of distant metastases.

The first 30 features describe the characteristics of each nuclei cell in the images of

the tissue. Table 1 shows the experimental results of our model as well as the base-

line methods for the breast cancer detection task. We can see that our proposed

EV-GIDMM successfully achieved the best accuracy on this task.

Table 1: Accuracy performance of our model and the baselines on the breast cancer

dataset

Method Accuracy(%)

EV-GIDMM 93.1

EV-MBMM 90.8

EDMM 89.7

varDMM 63.5

Furthermore, we have represented the confusion matrix for the breast cancer

dataset by using the EV-GIDMM in Fig. 2. From the confusion matrix it can be

inferred that in the case of malignant class our model is showing lower accuracy in

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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comparison to the benign class. However, we have misclassification percentage, low

as 6.9%.

Figure 2: Confusion matrix of breast cancer dataset with EV-GIDMM.

2.4.2 Image analysis

We are now ready to evaluate the performance of the proposed approach on the image

categorization task, which is a significant research topic and aims at classifying images

into their corresponding category. To do so, we used two popular image data sets,

namely, Caltech101 and Describable Texture Dataset (DTD). In this experiment, we

first considered the Caltech101 image data set2 [36], which originally contains a set

of images depicting objects belonging to 101 classes, from which we selected three

main object categories: Airplane, Sea Horse and Brain. Some sample images from

this data set are illustrated in Fig. 3.

2http://www.vision.caltech.edu/Image Datasets/Caltech101/
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Figure 3: Sample images of each cluster from the Caltech101 dataset.

In order to use our model for the selected data set, we need to form a bag of visual

words model (BoVW) [37]. Before applying the BoVW, we first need to apply some

descriptor extraction method, that, we choose SIFT [38]. Therefore we extract the

features with the help of SIFT and then apply K-means clustering on the descriptors

extracted with SIFT from the image. As a result a BoVW feature vector is formed

for each image. Our experiments revealed that the SIFT method is more suitable

for our selected data set, resulting in more discriminative descriptors. After applying

SIFT to all images, we obtain a matrix that serves as an input for our model. We

report the results of this experiment in Table 5, which shows that our proposed

model outperformed all the baseline methods in image clustering, with a considerable

accuracy margin of almost 6.7%.

Table 2: Accuracy comparison of our proposed model and the baseline methods on

the Caltech101 data set.

Method Accuracy(%)

EV-GIDMM 91

EV-MBMM 84.3

EDMM 74.9

varDMM 40.3

In Fig. 4 we have illustrated the confusion matrix of Caltech101 dataset for the

EV-GIDMM, with the classes: Airplane, Brain, Sea Horse. As we can see the misclas-

sification is mostly concentrated in the Sea Horse class and the reason is that images

in this class hold objects and scenes in the background that could be mistaken with

airplane and brain. We observed that the Sea Horse is a noisy class, however, our

model has achieved a great accuracy.
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Figure 4: Confusion matrix of Caltech101 data set with EV-GIDMM.

In the second part of our experiments, we focus on texture differentiation. This

dataset will be a good challenge for our model as images are very similar. In order

to show how machines are becoming more capable of detecting and recognizing fine-

grained images, in this experiment, we chose to use the Describable Texture Data

set3 that includes 120 images per class where each class consists of different types of

textures. We have chosen Dotted, Frilly and Meshed image categories to evaluate our

model as illustrated in Fig. 5.

Figure 5: Sample images of each cluster from the DTD data set.

3https://www.robots.ox.ac.uk/ vgg/data/dtd/
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Similarly, we performed the BoVW and used SIFT, to generate a discriminative

input for our EV-GIDMM. The results of clustering evaluation on DTD are listed

in Table 3. From this table it can be confirmed that our proposed mixture model

achieves the best accuracy performance among all the other mixture models.

Table 3: Accuracy comparison of our EV-GIDMM approach and the baseline methods

on the DTD data set.

Method Accuracy(%)

EV-GIDMM 85.6

EV-MBMM 65.3

EDMM 65.8

varDMM 71.9

In addition, we have shown the confusion matrix of the DTD dataset on EV-

GIDMM. From Fig. 6 it can be concluded that the Meshed class, due to its texture,

has caused misclassification between meshed and the two other classes. However, our

model has shown greater accuracy in comparison to other mixture models.
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Figure 6: Confusion matrix of DTD data set with EV-GIDMM.
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Chapter 3

Entropy-based Variational

Learning of Finite Inverted

Beta-Liouville Mixture Model

3.1 Model Specification

In this chapter, we introduce an unsupervised entropy-based variational learning of

finite inverted Beta-Liouville mixture model for clustering positive data. We assess

our proposed algorithm on three real-world applications, human activity recognition,

breast cancer and image categorization. Furthermore, we compare the results of the

proposed model with two popular mixture models.

3.1.1 Finite Inverted Beta-Liouville Mixture Model

Let ~Xi = (Xi1, . . . , XiD) be a D dimensional vector generated from a set of N in-

dependently identically distributed data samples X = ( ~X1, . . . , ~XN), drawn from an

inverted Beta-Liouville distribution. According to [39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49], the probability density function of the inverted Beta-Liouville is defined as:

p( ~Xi | αj1, . . . , αjD, αj, βj) =
Γ(
∑D

l=1 αjl)Γ(αj + βj)

Γ(αj)Γ(βj)

×
D∏
l=1

X
αjl−1

il

Γ(αjl)

( D∑
l=1

Xil

)αj−
∑D

l=1 αjl
(

1 +
D∑
l=1

Xil

)−(αj+βj)

(40)
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The parameters of the probability density function for each component j are θj =

(αj1, . . . , αjD, αj, βj). The mean, variance and covariance of the inverted Beta-Liouville

distribution are as follows:

E(Xil) =
α

β − 1

αl∑D
l=1 αl

(41)

V ar(Xil) =
α(α + 1)

(β − 1)(β − 2)

αl(α + 1)∑D
l=1 αl(

∑D
l=1 αl + 1)

α2

(β − 1)2

αl
4

(
∑D

l=1 αl)
4

(42)

Cov(Xim, Xin) =
αmαn∑D
l=1 αl

[ α(α + 1)

(β − 1)(β − 2)(
∑D

l=1 αl + 1)
− α2

(β − 1)2(
∑D

l=1 αl)

]
(43)

By assuming that each ~Xi is generated from a mixture of inverted Beta-Liouville

distributions, we can define the mixture model as:

p(X | ~π,Θ) =
N∏
i=1

M∑
j=1

πjp( ~Xi | θj) (44)

where p( ~Xi | θj) refers to the conditional probability of the data samples with respect

to each component, Θ = (θ1, . . . , θM) and ~π = (π1, . . . .πM) is defined as the set of

mixing coefficients with the constraints
∑M

j=1 πj = 1 and 0 ≤ πj ≤ 1. Subsequently,

we define an indicator matrix Z = (~Z1, . . . , ~ZN), where ~Zi = (Zi1, . . . , ZiM) is a binary

latent vector associated with every data sample ~Xi, with constraints Zij ∈ {0, 1} and∑M
j=1 Zij = 1. We assume that Zij is equal to 1 if ~Xi belongs to the component j,

and zero otherwise. The conditional probability distribution of the indicator variable

Z is given by:

p(Z | ~π) =
N∏
i=1

M∏
j=1

πj
Zij (45)

From the equation above, we can define the conditional distribution of a dataset X
with respect to the latent variable Z and components parameters as:

p(X | Z,Θ) =
N∏
i=1

M∏
j=1

p( ~Xi | θj)Zij (46)

Since these parameters are positive, it would be convenient if we describe the priors

with the Gamma distribution G(·) as follows:

p(αjl) = G(αjl | ejl, fjl) =
f
ejl
jl

Γ(ejl)
αjl

ejl−1e−fjlαjl (47)
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p(βj) = G(βj | gj, hj) =
h
gj
j

Γ(gj)
βj
gj−1e−hjβj (48)

p(αj) = G(αj | uj, νj) =
ν
uj
j

Γ(uj)
αj

uj−1e−νjαj (49)

where all the hyperparameters are positive. At this point, we can represent the joint

distribution for all the random variables as:

p(X ,Z,Θ | ~π) = p(X | Z,Θ)p(Z | ~π)p(~αl)p(~β)p(~α) (50)

p(X ,Z,Θ | ~π) =
N∏
i=1

M∏
j=1

[Γ(
∑D

l=1 αjl)Γ(αj + βj)

Γ(αj)Γ(βj)

D∏
l=1

X
αjl−1

il

Γ(αjl)

( D∑
l=1

Xil

)αj−
∑D

l=1 αjl
(

1 +
D∑
l=1

Xil

)−(αj+βj)]Zij

×

(
N∏
i=1

M∏
j=1

π
Zij

j

)
M∏
j=1

D∏
l=1

[ ν
uj
j

Γ(uj)
αj

uj−1e−νjαj

×
h
gj
j

Γ(gj)
βj
gj−1e−hjβj ×

f
ejl
jl

Γ(ejl)
αjl

ejl−1e−fjlαjl

]
(51)

3.2 Model Learning with Variational Inference

In this section, we explain the variational inference framework that we adopted to ac-

curately learn the finite inverted Beta-Liouville mixture model based on the proposed

inference methodology in [50]. We define Q(Θ) as the approximation of the true pos-

terior p
(
Θ | X , ~π

)
. The main goal of variational inference is to minimize the difference

between the approximated distribution and the true posterior. The estimation of the

true posterior distribution is accomplished with the Kullback-Leibler (KL) divergence

between the two distributions. Therefore, the KL divergence between p
(
Θ | X , ~π

)
and Q(Θ) is defined as follows:

KL
(
Q || P

)
= −

∫
Q
(
Θ
)

ln

(
p
(
Θ | X , ~π

)
Q
(
Θ
) )

dΘ (52)

= ln p
(
X | ~π

)
− L

(
Q
)

L
(
Q
)

=

∫
Q
(
Θ
)

ln

(
p
(
X ,Θ | ~π

)
Q
(
Θ
) )

dΘ (53)
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According to the Jensen’s inequality L(Q) ≤ ln p(X | ~π), L(Q) acts as the lower

bound of the log likelihood. This means that we can minimize the KL divergence

by maximizing the lower bound L(Q) [50]. We adopt the mean field approximation

approach in order to find the optimal parameters of the fully factorizable distribution

Q, where Q(Θ) = Q(Z)Q(~α)Q(~β)Q(~π)Q(~αl). Now we perform variational optimiza-

tion with respect to each of the parameters. For a specific parameter Qs(Θs), we can

represent the optimal solution as:

Qs

(
Θs

)
=

exp
〈

ln p
(
X ,Θ

)〉
i 6=s∫

exp
〈

ln p
(
X ,Θ

)〉
i 6=sdΘ

(54)

where 〈·〉i 6=s indicates the expectation with respect to all the parameters except Qs.

We can derive the variational approximations of our model are as shown in Ap-

pendix A as:

Q
(
Z
)

=
N∏
i=1

M∏
j=1

r
Zij

ij (55)

Q
(
~α
)

=
M∏
j=1

G
(
αj | u∗j , ν∗j

)
(56)

Q
(
~β
)

=
M∏
j=1

G
(
βj | g∗j , h∗j

)
(57)

Q
(
~αl
)

=
M∏
j=1

D∏
l=1

G
(
αjl | e∗jl, f ∗jl

)
(58)

rij =
r̃ij∑M
j=1 r̃ij

(59)

r̃ij = exp
{

ln πj + R̃j + S̃j + (ᾱj −
D∑
l=1

ᾱjl) ln(
D∑
l=1

Xil)

+
D∑
l=1

[
(ᾱjl − 1) lnXil

]
− (ᾱj + β̄j) ln(1 +

D∑
l=1

Xil)
}

(60)
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R̃j = ln
Γ(
∑D

l=1 ᾱjl)∏D
l=1 Γ(ᾱjl)

+
D∑
l=1

ᾱjl

[
ψ
( D∑
l=1

ᾱjl

)
− ψ(ᾱjl)

]
×

[
〈lnαjl〉 − ln ᾱjl

]
+ 0.5

D∑
l=1

ᾱ2
jl

[
ψ
′
( D∑
l=1

ᾱjl

)
− ψ′(ᾱjl)

]
−
〈

(lnαjl − ln ᾱjl)
2
〉

+ 0.5
D∑
a=1

D∑
b=1

ᾱjaᾱjb

[
ψ
′
( D∑
l=1

ᾱjl

)
×
(
〈lnαja〉 − ln ᾱja

)(
〈lnαjb〉 − ln ᾱjb

)]
(61)

S̃j = ln
Γ(ᾱj + β̄j)

Γ(ᾱj)Γ(β̄j)
+ ᾱj

[
ψ(ᾱj + β̄j)− ψ(ᾱj)

]
×
(
〈lnαj〉 − ln ᾱj

)
+ β̄j

[
ψ(ᾱj + β̄j)− ψ(β̄j)

]
×
(
〈ln βj〉 − ln β̄j

)
+ 0.5ᾱ2

j

[
ψ
′
(ᾱj + β̄j)− ψ

′
(ᾱj)

]
×
〈

(lnαj − ln ᾱj)
2
〉

+ 0.5β̄2
j

[
ψ
′
(ᾱj + β̄j)− ψ

′
(β̄j)

]
×
〈

(ln βj − ln β̄j)
2
〉

+ β̄jᾱjψ
′
(ᾱj + β̄j)

(
〈lnαj〉 − ln ᾱj

)
×
(
〈ln βj〉 − ln β̄j

)
(62)

e∗jl = ejl +
N∑
i=1

〈Zij〉ᾱjl
[
ψ
( D∑
l=1

ᾱjl

)
− ψ(ᾱjl) + ψ

′
(
D∑
l=1

ᾱjl)
D∑
d 6=l

(
〈lnαjl〉 − ln ᾱjl

)
ᾱjl

]
(63)

f ∗jl = fjl −
N∑
i=1

〈Zij〉
[

lnXil − ln
( D∑
l=1

Xil

)]
(64)

u∗j = uj +
N∑
i=1

〈Zij〉ᾱj
[
ψ(ᾱj + β̄j)− ψ(ᾱj) + β̄jψ

′
(ᾱj + β̄j)

(
〈ln βj〉 − ln β̄j

)]
(65)

ν∗j = νj −
N∑
i=1

〈Zij〉 ln(
D∑
l=1

Xil) +
N∑
i=1

〈Zij〉 ln(1 +
D∑
l=1

Xil) (66)

g∗j = gj +
N∑
i=1

〈Zij〉β̄j
[
ψ(ᾱj + β̄j)− ψ(β̄j) + ᾱjψ

′
(ᾱj + β̄j)

(
〈lnαj〉 − ln ᾱj

)]
(67)
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h∗j = hj +
N∑
i=1

〈Zij〉
[
1 +

D∑
l=1

Xil

]
(68)

In the above equations, ψ(·) and ψ
′
(·) refer to the Digamma and Trigamma func-

tions, respectively. The terms Sj = 〈ln Γ(ᾱj+β̄j)

Γ(ᾱj)Γ(β̄j)
〉 and Rj = 〈ln Γ(

∑D
l=1 ᾱjl)∏D

l=1 Γ(ᾱjl)
〉 are indeed

intractable. To solve this problem, we use the second-order Taylor series to approxi-

mate them. The expected values of the aforementioned equations can be written as:

〈Zij〉 = rij (69)

ᾱj = 〈αj〉 =
u∗j
ν∗j

, 〈lnαj〉 = ψ(u∗j)− ln ν∗j (70)

β̄j = 〈βj〉 =
g∗j
h∗j

, 〈ln βj〉 = ψ(g∗j )− lnh∗j (71)

ᾱjl = 〈αjl〉 =
e∗jl
f ∗jl

, 〈lnαjl〉 = ψ(e∗jl)− ln f ∗jl (72)

〈
(lnαjl − ln ᾱjl)

2
〉

=
[
ψ(e∗jl)− ln e∗jl

]2

+ ψ
′
(e∗jl) (73)

〈
(ln βj − ln β̄j)

2
〉

=
[
ψ(g∗j )− ln g∗j

]2

+ ψ
′
(g∗j ) (74)

〈
(lnαj − ln ᾱj)

2
〉

=
[
ψ(u∗j)− lnu∗j

]2

+ ψ
′
(u∗j) (75)

πj =
1

N

N∑
i=1

rij (76)

3.3 Entropy-based Variational Model Learning

In this section, we develop an entropy-based variational Bayes for learning the finite

inverted Beta-Liouville mixture model (EV-IBLMM). Our main motivation comes

from the success of the entropy-based method in [51]. Initially, we start with one
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component and incrementally increase the number of components. By comparing the

theoretical maximum entropy with the MeanNN entropy [50], we conclude if a given

component was genuinely inverted Beta-Liouville distributed. If their difference is

phenomenal we proceed to split the component into two new components to fit the

component.

3.3.1 Differential Entropy Estimation

Let p( ~Xi) be the probability density function of a random variable ~Xi = ( ~X1, . . . , ~XD)

belonging to a set of N samples { ~Xi, . . . , ~XN}, i = 1, . . . , N . The differential entropy

of the continuous random variable ~Xi is defined by:

H
(
~Xi

)
= −

∫
p( ~Xi) log2 p( ~Xi)d ~Xi (77)

The maximum differential entropy of the IBL is given by:

HIBL

[
p
(
~Xi | θ

)]
= ln

[Γ(α)Γ(β)(
∏D

l=1 Γ(αl))

Γ(α + β)Γ(
∑D

l=1 αl)

]
+ (α + β)(ψ(β)− ψ(α + β)) +

D∑
l=1

[
(1− αl)(ψ(αl)

− ψ
( D∑
l=1

αl

)]
+ (D − α)(ψ(α)− ψ(α + β)) (78)

3.3.2 MeanNN Entropy Estimator

We propose to adopt a MeanNN entropy estimator [52] to evaluate if a component

was genuinely distributed according to the inverted Beta-Liouville distribution. The

MeanNN estimator proceeds to find an estimation of H( ~Xi) with an unknown den-

sity function p( ~Xi) of a D dimensional random variable ~Xi [53]. Knowing that the

Shannon differential entropy in equation (77) can be assumed equal to the average

of − log p( ~Xi), we can form an unbiased entropy estimator by estimating log p( ~Xi).

We consider a ball with diameter ε located at the center of ~Xi, there is a point within

the distance [ε, ε + dε] from ~Xi. Therefore, there is k̂ − 1 points that are in shorter

distances and N − k̂− 1 points that are in greater distances from the ~Xi. By consid-

ering the above assumptions, the probability of the distances of the variable ~Xi and
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its k̂-th nearest neighbour is given by:

pik̂ (ε) =
(N − 1)!

(k̂ − 1)!(N − k̂ − 1)!

dpi(ε)

dε
pk̂−1
i (1− pi)N−k̂−1 (79)

where pi(ε) refers to the mass of the ε-ball at ~Xi, and can be found according to

pi(ε) =
∫
|| ~X− ~Xi||<ε p(

~Xi)d ~Xi. The expectation of log pi(ε) with respect to the term

pi(ε) is given as:

E
(

log pi(ε)
)

=

∫ ∞
0

pik̂ log pi(ε)dε = ψ(k̂)− ψ(N) (80)

If we assume that the p( ~Xi) is unchanged in the center of the ε-ball, we have pi(ε) ≈
Vdε

dp( ~Xi), where d describes the dimension of ~Xi and Vd represents the volume of the

unit ball, that can be found according to Vd = πd/2/Γ(1 + d/2). By substituting the

approximation of pi(ε) into the expectation of log pi(ε) we can find the approximation

of − log p( ~Xi) as:

− log p( ~Xi) ' ψ(N)− ψ(k̂) + dE(log ε) + log Vd (81)

Furthermore, the unbiased K-NN estimator of the differential entropy can be written

as:

Hk̂

(
~X
)

= ψ (N)− ψ
(
k̂
)

+
d

N

N∑
i=1

log εi + log Vd (82)

According to [52] to maintain a lower computational cost of the K-NN estimator, an

extension to the K-NN has been proposed, known as the MeanNN entropy estimator.

The fundamental idea of the MeanNN is to average the k̂-nearest neighbour statistics

for all feasible values of order k̂ in the range of 1 to N − 1. The MeanNN estimator

of the differential entropy is given by equation (39).

HM

(
~X
)

=
1

N − 1

N−1∑
k̂=1

Hk̂

(
~X
)

= log Vd + ψ (N)

+
1

N − 1

N−1∑
k̂=1

[
d

N

N∑
i=1

log εi,k̂ − ψ
(
k̂
)]

(83)

where the k̂-th nearest neighbour of ~Xi is represented by εi,k̂. We obtain the maximum

entropy of the inverted Beta-Liouville mixture models according to:

HIBL =
M∑
j=1

πjHIBL(j) (84)
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In (84) HIBL(j) describes the maximum differential entropy of the data in compo-

nent j. Finally, with the information we have, we are able to perform a compari-

son between the theoretical maximum differential entropy and the entropy estimated

by the MeanNN estimator to examine if a given component was genuinely inverted

Beta-Liouville distributed. Motivated by [54], the normalized weighted sum of the

difference between the estimated entropy of each component correlated with the IBL

mixture model and the theoretical entropy is represented as follows:

ΩIBL =
M∑
j=1

πj

[HIBL(j)−HM(j)

HIBL(j)

]
=

M∑
j=1

πj

[
1− HM (j)

HIBL(j)

]
(85)

where ΩIBL ∈ [0, 1] and is equal to zero only if the data was genuinely inverted

Beta-Liouville distributed. We choose the target component with the highest weight

according to (85) and split it into two new components according to equation (86):

j∗ = arg max
j

[
ΩIBL(j)

]
= arg max

j

[
πj
HIBL(j)−HM(j)

HIBL(j)

]
(86)

The overall entropy-based variational learning algorithm of the IBL mixture model is

illustrated in Algorithm 2.
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Algorithm 2 Entropy-based variational learning of IBL mixture models

1. Initialization

• Set M = 1, j∗ = M , π1 = 1

• Initialize the hyperparameters ejl,fjl,uj,νj,gj,hj.

2. The splitting process.

• Split j∗ into two new components j1 and j2 with equal proportion π∗/2.

• Set M = M + 1.

• Initialize the parameters of j1 and j2 using the same parameters of j∗.

3. Apply the standard variational Bayes until convergence.

4. Determine the number of components through the evaluation of the mixing

coefficients πj according to (76)

5. If πj ≈ 0. where j ∈ 1, . . . ,M then set M = M − 1 and terminate the program.

6. Else evaluate ΩMD, choose j∗ according to (86) and go back to the splitting

process in step 2.

3.4 Experimental Results

In this section, we evaluate the performances of our proposed model EV-IBLMM

based on real-world challenging data sets for human activity recognition, breast can-

cer and image categorization applications. We compare the results of our experi-

ments with two other similar models, namely, Entropy-based Variational Dirichlet

Mixture Model (EDMM) [55] and Entropy-based Multivariate Beta Mixture Model

(EV-MBMM) [56].

3.4.1 Human Activity Recognition (HAR)

Human activity recognition in smart homes is a key factor to achieve home automa-

tion especially with the significant advancement in sensing technologies. It enables
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the smart applications to automatically react according to the human behaviour.

However, automatically recognizing human activities like walking, sleeping and cook-

ing is a challenging task, because human activities are complex by nature. In order

to validate the performance of our model on the human activity recognition task, we

used a data set proposed in [57]. This data set was collected based on several types of

wireless sensors including contact switches, pressure mats, and float sensors. While

trying to recognize activities from the sensor there could be some issues.

First of all, the start and end time of an activity is unknown. There is doubtfulness

in the observed data, that the sensor has been activated according to which activity.

For instants, getting a drink and cooking are two activities that require opening

the fridge, but it doesn’t shown which item was taken to recognize the designated

activity. Activities can be performed in many ways, therefore it makes it harder to

draw a general description of the activity. These issues have made human activity

recognition a challenging task. It is to note that the recorded data are prone to

noise because data might be lost if one of these sensors gets disconnected from the

network. The Raw time series data has discredited into T time slices with the length

of 5 minutes. It is possible that activities will overlap, for instants, a activity was

left somewhere halfway, therefore the activity that has taken up most of the time

slice is kept. The Labels of the activities were recorded with a hand written diary

or Bluetooth headset. More details about the data set is mentioned in [57] and

Appendix B.

Table 4: Accuracy comparison of our EV-IBLMM approach and the baseline methods
on the Human Activity Recognition data set.

Method Accuracy(%)
EV-IBLMM 95.00
EV-MBMM 93.30
EDMM 92.52

In this study, 20 sensors have been used, where each sensor represents a feature

to our model. Since actions can overlap, the action that lasts longer is maintained

and kept. Thus, we consider a total of 6851 entries with 4 recorded activities. These

activities include eating, sleeping, taking a shower and opening a door. The results

of our proposed model and baselines are shown in Table 4. We can see that our

model achieves the best accuracy performance among the other mixture models, which
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further demonstrates its efficiency for automatic human action recognition.

3.4.2 Image Categorization

Image categorization is considered as one of the important tasks of computer vision,

and has witnessed much attention in the last decades. In this part of our experiments,

we tested our proposed model on the image clustering task based on the Caltech101

image dataset [58]. This dataset contains images from 101 classes, with about 40-800

images in each category. For evaluation, we select a subset of 2033 data samples from

3 classes, namely, motorbikes, faces and airplanes. Some sample images from the three

considered categories are illustrated in Figure 7. In order to test our model on the

Figure 7: Sample images of each category from the considered subset of the Caltech101
dataset.

Caltech101 dataset, we use SIFT [59] to extract the features of the designated images.

This method has been shown to be a good choice for this dataset in comparison to

other feature extraction methods like, SURF [60] and HOG [61]. Then, we apply the

K-means clustering algorithm on the results of the SIFT method, and use the output

to create the Bag of Visual Words (BoVW) features. Table 5 illustrates the accu-

racy performance produced by each model. We observe that our EV-IBLMM model

outperforms the EV-MBMM and EDMM models with a considerable margin of 1.8%

and 3.2%, respectively, on the Caltech101 dataset. This highlights the effectiveness

of our model in terms of model selection and data clustering.

31



Table 5: Accuracy comparison of our EV-IBLMM approach and the baseline methods

on the Caltech101 dataset.

Method Accuracy(%)

EV-IBLMM 90.20

EV-MBMM 88.50

EDMM 87.10

In Fig. 8 we have demonstrated the confusion matrix of Caltech101 dataset for the

EV-IBLMM. In the case of the Airplane we can see that our model has clustered the

data with a 97.2% accuracy and other class are clustered with an accuracy greater

than 82%. In the case of EV-MBMM and EDMM they did not perform well clustering

the Faces class, therefore, reduced their accuracy.

Figure 8: Confusion matrix of Caltech101 data set with EV-IBLMM.
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3.4.3 Breast Cancer

In the last part of our experiments we applied the breast cancer data set that we

previously applied to the GID mixture model. According to the WHO (World Health

Organization), breast cancer has been known as the most frequent cancer among

women, this type cancer affects about 2.1 million women every year. However machine

learning techniques have shown to be effective in this context, in early detection of

women breast cancer, therefore, they can have a great impact on the breast cancer

treatment. To this end, we applied our proposed model, EV-IBLMM, on the breast

cancer Wisconsin data set that is publicly available1. The data set includes the records

of Dr. Wolberg patients that have been diagnosed with either malignant or benign

cancer. The data set includes 569 data samples of patients that includes 357 benign

and 212 malignant cases of tumor cancers. This data set was obtained by applying

the Fine Needle Aspiration (FNA) method [34], [35], and it contains cases showing

invasive breast cancer and no sign of distant metastases. The characteristics of each

nuclei cell in the images of the tissue are the first 30 features of the data. Table 6

shows the experimental results of our model as well as the baseline methods for the

breast cancer detection task. We can see that our proposed EV-IBLMM successfully

achieved the best accuracy on this task.

Table 6: Accuracy performance of our model and the baselines on the breast cancer

data set

Method Accuracy(%)

EV-IBLMM 91.2

EV-MBMM 90.8

EDMM 89.7

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Chapter 4

Conclusion

Mixture models are considered as a powerful approach for modeling complex data in

an unsupervised manner. In this thesis we have studied the entropy-based variational

learning for two mixture models and examined its efficiency with challenging data

sets. Finally, we compared our results with several popular and similar models to

demonstrate the robustness of the proposed models.

In chapter 2, we introduced an unsupervised entropy-based variational framework

that effectively learns the finite generalized inverted Dirichlet mixture model. In the

proposed method, a splitting technique called entropy was used, where we started by

comparing the theoretical maximum entropy and the resulting entropy from MeanNN.

Thereafter, we proceeded to split the component that has the highest difference into

two smaller components, since it was concluded that the mixture model is not de-

scribing the component properly. Our experimental results have demonstrated that

EV-GIDMM works very well and has outperformed other models on two real-world

applications, namely, breast cancer detection and image categorization, across three

different benchmark data sets. Considering the fact that the conducted experiments

are under the category of unsupervised learning. The method has approximated accu-

rate number of components in all experiments and has achieved accurate and compu-

tationally efficient parameter estimation of the EV-GIDMM. The results indicate that

our proposed mixture model is able to produce high quality data clusters. In com-

parison to similar approaches our model has shown high accuracy with a considerable

accuracy margin of 6.7% in the case on Caltech101 dataset and an accuracy margin

of 13.6% in the case of DTD dataset. In all of our experiments the EV-GIDMM has

34



out performed the varDMM, EDMM and EV-MBMM.

In Chapter 3, we proposed an unsupervised entropy-based variational method to

learn the finite inverted Beta-Liouville mixture model. In order to select the optimal

number of components, we used a novel entropy-based method for the splitting pro-

cess. The variational inference combined with the entropy-based variational inference

has been effective in model selection, and have predicted the correct number of com-

ponents in all of our tests. The accuracy of our experiments, on breast cancer, image

categorization and human activity recognition in smart buildings has shown the ro-

bustness of EV-IBLMM in compare to similar mixture models, namely, EV-MBMM

and EDMM. In the case of image categorization we decided to test our model on the

Caltech101 dataset due to its popularity in related works. As a result we achieved

a 90.2% accuracy with accurate number of components. In the second part of our

experiments we decided to challenge our model with another real-world application,

namely human activity recognition. We have reached a great 95% accuracy in this

case.

Both proposed frameworks have shown great results in comparison to similar

models, and have achieved high accuracy clustering. We have seen that the EV-

IBLMM has shown better performance than the EV-GIDMM in accomplishing great

accuracy. Future work could be dedicated to adding feature selection to both models.

In addition, future work could be devoted to accelerated variational learning for the

GID and IBL mixture models.
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Appendix A

Appendix

A.1 Proof of equation (51).

From eq (50) we can write the joint PDF as follows:

ln p(X ,Z) =
N∑
i=1

M∑
l=1

Zij

[
ln

Γ(
∑D

l=1 αjl)∏D
l=1 Γ(αjl)

+
Γ(αj + βj)

Γ(αj + βj)
+

D∑
l=1

(αjl − 1) lnXil

+ (αj −
D∑
l=1

αjl) ln(
D∑
l=1

Xil)− (αj + βj) ln(1 +
D∑
l=1

Xil)
]

+
N∑
i=1

M∑
j=1

Zij ln πj

+
M∑
j=1

D∑
l=1

ejl ln fjl − ln Γ(ejl) + (ejl − 1) lnαjl
−fjlαjl

+
M∑
j=1

uj ln νj − ln Γ(uj) + (uj − 1) lnαj − νjαj

+
M∑
j=1

gj lnhj − ln Γ(gj) + (gj − 1) lnαj − hjαj

In order to find the variational solutions for each parameter, we apply a logarithm with

respect to each of the parameters assuming the rest of the parameters are constant.

We explain this in the following subsection.
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A.1.1 Variational Solution for Q(Z) Eq. (60)

The logarithm with respect to Q(Zi) on the joint PDF is given by:

lnQ(Zi) =
M∑
j=1

Zij

[
lnZij +Rj + Sj +

D∑
l=1

(αjl − 1) lnXjl + (αj −
D∑
l=1

αjl) ln(
D∑
l=1

Xil)

− (αj + βj) ln(1 +
D∑
l=1

Xil)
]

(87)

Where,

Sj =
〈

ln
Γ(ᾱj + β̄j)

Γ(ᾱj)Γ(β̄j)

〉
, Rj =

〈
ln

Γ(
∑D

l=1 ᾱjl)∏D
l=1 Γ(ᾱjl)

〉
(88)

The Sj and Rj are intractable and we have used the second-order Taylor Series ap-

proximation. Therefore we find the ln r̃ij as follows:

ln r̃ij = ln πj + R̃j + S̃j + (ᾱj −
D∑
l=1

ᾱjl) ln(
D∑
l=1

Xil)

+
D∑
l=1

[
(ᾱjl − 1) lnXil

]
− (ᾱj + β̄j) ln(1 +

D∑
l=1

Xil) (89)

By taking an exponential from both sides we have:

r̃ij = exp
{

ln πj + R̃j + S̃j + (ᾱj −
D∑
l=1

ᾱjl) ln(
D∑
l=1

Xil)

+
D∑
l=1

[
(ᾱjl − 1) lnXil

]
− (ᾱj + β̄j) ln(1 +

D∑
l=1

Xil)
}

(90)

A.1.2 Proof of equation (58) : variational solution of Q(~αl)

We can find the logarithm of the variational solution Q(Ajl) according to:

lnQ(αjl) = 〈ln p(X ,Θ)〉Θ6=αjl

=
N∑
i=1

〈Zij〉[J (αjl) + αjl lnXil − αjl ln(
D∑
l=1

Xil)]

+ (ujl − 1) lnαjl − νjlαjl + const (91)
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Where,

J (αjl) =

〈
ln

Γ(αjl +
∑D+1

s6=l αjs)

Γ(αjl)
∏D+1

s6=l Γ(αjs)

〉
Θ6=αjl

(92)

The equation J (αjl) is intractable as well, we solve this problem by finding the lower

bound for the equation by calculating the first-order Taylor expansion with respect

to ᾱjl.

J (αjl) ≥ ᾱjl lnαjl

[
ψ(

D+1∑
l=1

ᾱjl)− ψ(αjl) +
D+1∑
s6=l

ᾱjs

× ψ′(
D+1∑
l=1

ᾱjl)(〈lnαjs〉 − lnαjs)
]

+ const

Substituting this equation for lower bound in equation (91) we will have:

lnQ(αjl) =
N∑
i=1

〈Zij〉ᾱjl lnαjl
[
ψ(

D∑
l=1

ᾱjl)− ψ(ᾱjl)

+ ψ
′
(
D∑
l=1

ᾱjl)
D∑
d 6=l

(〈αjd〉 − lnαjd)ᾱjd

]
+

N∑
i=1

αjl〈Zij〉
[

lnXil − ln(
D∑
l=1

Xil)
]

+ const (93)

The equation above can be written as:

lnQ(αjl) = lnαjl(ujl + ϕjl − 1)− αjl(νjl − ϑjl) + const (94)

Where,

ϕjl =
N∑
i=1

〈Zij〉ᾱjl
[
ψ(

D∑
l=1

ᾱjl)− ψ(ᾱjl)

+
[
ψ
′
(
D∑
l=1

ᾱjl)
D∑
d 6=l

(〈lnαjd〉 − ln ᾱjd)ᾱjd

]
ψ
′
(
D+1∑
l=1

ᾱjl)(〈lnαjs〉 − ln ᾱjs)
]

(95)

ϑjl =
N∑
i=1

〈Zij〉
[

lnXil − ln(
D∑
l=1

Xil)
]

(96)
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Therefore, the optimal solution for the hayperparameters ejl and fjl given by:

e∗jl = ejl + ϕjl , f
∗
jl = fjl − ϑjl (97)

We can find the optimal solution for the Q(~α) and Q(~β) by following the same pro-

cedure.
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Appendix B

Human Activity Recognition

B.1 Dataset Details

In this section, we will give some information about the human activity Recognition

Data set that helps to understand the data set represented in the paper [57]. In

table 7 we are showing the details of the recorded data sets.

Table 7: Details of recorded data sets

House A House B House C
Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment House
Rooms 3 2 6
Duration 25 days 14 days 19 days
Activities 10 13 16
Annotation Bluetooth Diary Bluetooth

B.2 Feature Representation

The raw data gained from the sensors can be transformed into a different represen-

tation form or even used directly. The authors of the paper [57] have experimented

with three different feature representations:
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Changepoint:

The raw sensor representation is directly using the sensor data. 1 indicated the sensor

has been activated and 0 otherwise.

Raw:

The change point representation specifies when a sensor has been took place, It shoes

when a senors has changed value. it gives 1 when a sensor changes state (i.e. changes

from zero to one or vice verse).

Last-fired:

The last-fired sensor representation specifies which sensor has been fired last. The

sensor that has lasted longest in the specifies timescale will continue to give 1 and

will change to 0 when another sensor changes state.
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