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Abstract

Domain Adversarial Transfer Learning for Robust Cyber-Physical Attack
Detection in the Smart Grid

Yongxuan Zhang

Thanks to the increasing availability of high-quality data and the success of deep learn-

ing algorithms, machine learning (ML)-based classifiers have become increasingly appeal-

ing and investigated against sophisticated attacks in complex cyber-physical systems like

the smart grid. However, many of these techniques rely on the assumption that the training

and testing datasets share the same distribution and class labels in a stationary environment.

As such assumption may fail to hold when the system dynamics shift and new threat vari-

ants emerge in a non-stationary environment, the capability of trained ML models to adapt

in complex operating scenarios will be critical to their deployment in real-world applica-

tions. Using cyber-physical attack detection in the smart grid as the targeted application,

this research aims to leverage transfer learning-based strategies to improve the robustness

of ML classifiers against variations in threat types, locations, and timing in a complex dy-

namic CPS.

To this end, this research investigates and develops domain-adversarial transfer learning

schemes for robust intrusion detection against smart grid attacks.

The main contributions include: (i) A domain-adversarial transfer learning scheme

with customized classifiers for attack detection based on realistic smart grid data collected

from a hardware-in-the-loop testbed; (ii) A semi-supervised transfer learning to transfer

the knowledge of limited known attack incidences to detect returning threats at a later

time with different system dynamics; (iii) A divergence-based transferability analysis and
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a spatiotemporal domain-adversarial transfer learning scheme for robust detection against

spatial and temporal variants. Experiments were conducted on standardized IEEE bench-

marks, and the results have demonstrated the promising capability of domain adversarial

transfer learning to improve ML robustness against system and attack variations.
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Chapter 1

Introduction

In this chapter, we first introduce the background of the research in Section 1.1. Then

we describe the problem statement in Section 1.2. Finally, the structure of this research is

presented in Section 1.4.

1.1 Background

1.1.1 Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) are the integration of computation, networking, and

physical processes. The embedded computers and networks monitor and control the phys-

ical processes, usually with feedback loops where physical processes affect computations

and vice versa [6]. The CPS, as illustrated in Fig. 1, include computing, communication,

sensors, actuators, and storage, and are connected to human-machine interfaces and multi-

ple systems [1, 7].

The rapid development of computing technology, communication technology, and con-

trol technology has induced profound changes in human social life. With the in-depth in-

tegration and development of informatization and industrialization, traditional single-point
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Figure 1: The cyber-physical system [1].

technology can no longer adapt to the demand for next-generation production equipment.

In this context, CPS are regarded as the current frontier research direction in the field of

automation. The emerging smart grid, being one of the most complex CPS ever built in his-

tory, witnesses such transformations during the ongoing integration of power and energy

systems with information and communication technologies (ICTs) [8].

1.1.2 Smart Grid and Cyber Security Challenges

The smart grid has been recognized as the next-generation infrastructure that will power

modern society with efficient, reliable, and sustainable electricity [9, 10, 11]. The digitiza-

tion of power equipment and integration of communication networks establishes a cyber-

physical infrastructure with ubiquitous automation and intelligence. Compared to tradi-

tional power grids, the smart grid will fully leverage high-speed two-way communications

among utilities, regulators, and customers to better-informed and interactive electricity gen-

eration, transmission, distribution, and consumption, through new energy management ca-

pabilities such as wide-area monitoring, protection, and control (WAMPAC) [12], advanced
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Figure 2: The cyber-physical architecture of the smart grid [2].

metering infrastructure (AMI) [13], and demand response [14], among others.

The resulting cyber-physical architecture, as illustrated in Fig. 2, will interconnect

power and energy systems, intelligent field devices, substation automation systems, and

control centers, among others. The smart grid communication networks will encompass:

• Wired and wireless networks of consumer-end smart meters;

• Local area networks in power plants, substations, and control centers;

• Field area networks over small regions;

• Wide area networks across regions and utilities;

• Satellite communications for time synchronization.

Millions of networked devices of different locations, manufacturers, standards, proto-

cols, topology, and ownership will create massive complex information flow for situation

analysis, decision making, and event logging.
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Thanks to the cyber-physical integration, next-generation power and energy systems

will empower modern society with more efficient, resilient, and sustainable electricity.

However, the growing interconnection among billions of interacting systems, devices, and

processes creates complex interdependence and vulnerabilities that will be inevitably ex-

posed to cyber-attackers in the wild. The threat of a cyber-attack could be both sophis-

ticated and disastrous, as demonstrated by recent research efforts [15, 16, 17], business

studies [18], and real-world incidents [19]. From field devices to communication channels

and control rooms, smart grid may expose many critical systems and processes that are

both vulnerable and valuable to adversaries with terrorism, monetary, or other purposes.

The objectives and requirements of smart grid cyber security can be viewed as the fol-

lowing aspects: availability, integrity and confidentiality [20]. Where availability ensures

timely and reliable access to the use of information. Integrity guards against improper infor-

mation modification or destruction to ensure information non-repudiation and authenticity.

And confidentiality protects personal privacy and proprietary information.

To meet the requirements of smart grid cyber security, proper mechanisms need to be

designed and adopted, which have been commonly orchestrated in three stages: protection,

detection, and mitigation [8].

1.1.3 Intrusion Detection System

Intrusion detection system (IDS) is a critical layer in the defense of smart grid security.

Buczak et al. conducted a detailed study on data mining methods used for intrusion detec-

tion and identified three types of traditional IDS: signature-based IDS, the anomaly-based

IDS and the hybrid-based IDS [21, 22].

• Signature-based IDS: Signature-based techniques are designed to detect known at-

tacks by using signatures of those attacks [23, 24, 25, 26, 27]. They are effective

for detecting known types of attacks without generating an overwhelming number of

4



false alarms. They require frequent manual updates of the database with rules and

signatures.

• Anomaly-based IDS: Anomaly-based techniques model the normal network and

system behavior, and identify anomalies as deviations from normal behavior [28, 29,

30, 31, 32]. They are appealing because of their ability to detect zero-day attacks.

Another advantage is that the profiles of normal activity are customized for every sys-

tem, application, or network, thereby making it difficult for attackers to know which

activities they can carry out undetected. Additionally, the data on which anomaly-

based techniques alert (novel attacks) can be used to define the signatures for misuse

detectors. The main disadvantage of anomaly-based techniques is the potential for

high false alarm rates (FARs) because previously unseen (yet legitimate) system be-

haviors may be categorized as anomalies.

• Hybrid IDS: Hybrid techniques combine signature-based and anomaly detection.

They are employed to raise detection rates of known intrusions and decrease the

false positive (FP) rate for unknown attacks [33, 34, 35, 36, 37].

Traditional IDS need to adapt to emerging and diversifying patterns in the smart grid to

effectively identify malicious attempts. However, due to the lack of attack records and

challenges from system dynamics and attack variants, traditional IDS can face low de-

tection rates in a changing environment. Such challenges call for advanced self-adaptive

techniques like transfer learning. Transfer learning is designed to generalize models to

adapt a new but related domain and has the potential to improve the robustness of IDS.
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1.2 Problem Statement

The objective of this research is to design, implement and evaluate domain adversarial-

based transfer learning intrusion detection schemes to identify unknown threats, data dis-

tribution shifts, and false data injection threats with spatial and temporal variations in the

smart grid.

The highly changing system dynamics and unknown attack variants of smart grid post

challenges to robust IDS. Among the existing intrusion detection methods, machine learn-

ing has been recognized as one of the most promising and reliable solutions. Nonetheless,

with the assumption that training and testing data follow the same or similar data distri-

bution, traditional machine learning models may not maintain the performance and suffer

degraded detection accuracy when facing the lack of sufficient labeled data, system varia-

tions and attack variations. Transfer learning, in contrast, allows the distributions used in

training and testing to be different. Transfer learning will leverage the knowledge learned

from the source domain to generalize to a related target domain.

To this end, we investigated one of the state-of-the-art transfer learning frameworks,

domain adversarial training of neural network (DANN) [38], and propose to modify the

DANN framework according to the specific sub-problems for the smart grid IDS. Specif-

ically, for detection threats with unseen types and locations, we leverage classic machine

learning classifiers to replace the label predictor in DANN to achieve better accuracy.

However, in realistic smart grid systems, labeled normal data is sufficient but attack

data is limited. This will create a class mismatching challenge for unsupervised domain

adversarial transfer learning. In addition, temporal variants will introduce data distribution

shifts. Aware of these challenges, we propose to formulate the intrusion detection in smart

grid as a semi-supervised transfer learning problem by transferring the invariant represen-

tations between normal data of source and target domain.
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To further improve the accuracy and robustness of our scheme, we propose a divergence-

based transferability analysis for the smart grid to determine when to apply transfer learn-

ing. Then taken temporal and spatial information of smart grid data into consideration, we

design a spatiotemporal feature extractor for the DANN framework.

1.3 Contributions

The major contributions of this research are as follows:

• We formulate a transfer learning problem for the intrusion detection in the smart grid;

• We propose a domain adversarial transfer learning-based intrusion detection scheme

with customized classifiers for the problem;

• We set up different cases regarding the false data injection attack, different trends of

power demand in the source domain as well as different time windows in target do-

main and evaluate the accuracy of the proposed semi-supervised domain-adversarial

transfer learning scheme;

• We propose a divergence-based transferability analysis for CPS applications to de-

termine when to apply transfer learning;

• We formulate a spatiotemporal multivariate time series transfer learning problem for

the intrusion detection in CPS, considering the situation where attacks may happen

at different time and/or locations during the power system operation, and tackle this

problem by introducing a spatiotemporal domain-adversarial training scheme.

1.4 Thesis Structure

The thesis is organized into 6 chapters with an overall structure illustrated in Figure 3.
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Chapter 1 presents the introduction and background of the thesis. Chapter 2 presents a

literature review of intrusion detection and transfer learning for intrusion detection in the

smart grid.

We proposed the transfer learning-based IDS to address unknown variants with dif-

ferent types and locations, temporal variations, and spatiotemporal variations within the

following 3 chapters. The work of Chapter 3 and 4 reveal the potential of leveraging

transfer learning to improve the robustness of IDS against threats with spatial and temporal

variations, and the work of Chapter 5 considers the both. Chapter 3 presents an overview

of the domain-adversarial training of neural network framework (DANN), implements and

evaluates a robust detection method based on DANN with customized label predictor. The

work of Chapter 3 has been published in SmartGridComm 2019 [2]. Chapter 4 presents

the semi-supervised domain-adversarial training (SSDAT) for intrusion detection against

false data injection in the smart grid with temporal variations. The work of Chapter 4

has been published in IJCNN 2020 [39]. Chapter 5 presents and evaluates the proposed

divergence-based transferability analysis and spatiotemporal domain-adversarial training

(STDAT) scheme for FDI detection. Chapter 6 summarizes the thesis and proposes future

work.

8



Figure 3: Overall structure of the thesis.
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Chapter 2

Literature Review

2.1 Intrusion Detection in the Smart Grid

2.1.1 Non-learning-based Techniques

Generic detection methods were also developed and integrated into CPS control sys-

tems for smart gird. In this section, we will first review some existing studies that apply

non-learning-based techniques for intrusion detection against attacks.

A rich line of model-based techniques capable of detecting integrity attacks on the sen-

sors of a control system were investigated and discussed by Mo et al. [40]. Kyriakos et

al. [41] proposed novel game-theoretic approaches to estimate a binary random variable

based on a vector of binary sensor measurements that may have been corrupted by an at-

tacker, also known as the Byzantine problem. Mitchell et al. [42] proposed a behavior-rule

specification-based IDS technique for intrusion detection of physical devices. The utility of

headends, distribution access points/data aggregation points and subscriber energy meters

has been exemplified in their work. Lolo et al. [43] introduced a hybrid detection frame-

work to detect anomalous and malicious activities by incorporating their proposed grid

10



sensor placement algorithm with observability analysis to increase the detection rate. Sim-

ulations have shown that the network observability and detection accuracy can be improved

utilizing grid-placed sensor deployment. Jokar et al. [44] proposed a layered specification-

based IDS targeting the IEEE 802.15.4 standard. They have also introduced some known

attacks against IEEE 802.15.4 and evaluated detection capabilities of our proposed IDS

against them. Results have shown that their proposed IDS has the potential to successfully

detect several known attacks. Faisa et al. [45] conducted a performance analysis experiment

of some existing state-of-the-art data stream mining algorithms on a public IDS dataset. A

run-time semantic analysis has also been developed to provide early warnings on altered

control commands in the SCADA system by Lin et al. [46]With an efficient look-ahead

power flow analysis, the semantic analysis simulates the execution consequence of control

packets to issue alerts if the execution would result in unfavorable impacts such as line out-

ages. A model-based IDS has been developed against the input attacks on the AGC system

by Sridhar et al. [47]. The IDS utilizes RT load forecast to predict the ACEs over time, and

their performances are compared with that of the actual ACEs obtained. With statistical

and temporal characterizations of these performances, attack detector in the IDS is able to

detect scaled and ramped inputs before they are sent into the AGC system.

While traditional non-learning-based IDS relies on system specifications[48] and at-

tacks signatures to identify the adversaries, recent efforts [49] have developed advanced

IDS based on machine learning and deep learning techniques to extract informative fea-

tures and tackle system complexities in the detection and classification of cyber-physical

attacks.

2.1.2 Learning-based Techniques

Machine learning (ML) can be categorized into mainly three types: unsupervised, semi-

supervised, and supervised. For unsupervised learning, the assumption is that labeled data

11



is missing and the task is to find out the hidden patterns from unlabeled data through learn-

ing. When partially labeled data is given during the training stage, the problem is trans-

formed into semi-supervised learning. The addition of the labeled data greatly helps to

solve the problem. When the training data are all labeled, the problem is called supervised

learning and generally the task is to utilize a labeled dataset to build a model via the training

process and evaluate its performance on another unlabeled set during the testing process.

Following the increasing availability of data and computing power, ML has been ex-

tensively investigated in contemporary literature as an intrusion detection and classification

technique in communication/network security [49] as well as smart grid security [22, 50,

51]. This trend comes from the fact that cyber security has become more sophisticated and

complex than before, and traditional approaches are no longer effective [52], and machine

learning has non-linear analysis capabilities to detect stealthy cyber-attacks in complex

systems [51].

Classic ML approaches have been applied in IDS. Le et al. [53] proposed a method to

incorporate the FAIR’s LEF into Bayesian Network (BN) to derive the numerical assess-

ments to rank the threat severity. A Bayesian network [54, 55] is a model that encodes

probabilistic relationships among important variables. This technique is generally used for

intrusion detection in combination with statistical schemes. Jiang et al. [56] leveraged Hid-

den Markov Model (HMM) of real-time frequency and voltage variation features as well

as other approaches to build a fault detection, identification, and location approach. Arti-

ficial neural network (ANN), designed to simulate the way the human brain analyzes and

processes information, has demonstrated the powerful ability to reproduce and model non-

linear processes. ANN has found applications in many disciplines including IDS in smart

grid [57, 58, 59].

To detect FDIA, general machine learning techniques such as Perceptron [60], k-Nearest

Neighbor (kNN) [61] and Support Vector Machines (SVM) [62] were also investigated by
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Ozay et al. [63]. The results showed that machine learning algorithms can detect attacks

with higher performance than traditional non-learning methods. Manandhar et al. [64]

adopted the Kalman filter to estimate the variables of a wide range of state processes in

the model. In 2014, Oak Ridge National Laboratory has conducted a comprehensive eval-

uation of several classic machine learning approaches in binary classification tasks [65],

which established a benchmark for different machine learning approaches on power system

disturbance and cyber-attack discrimination. Subsequent studies based on neural networks

and ensemble learning have reached over 95% overall accuracy [66, 67].

However, these existing approaches took the default assumption that training and testing

datasets are from the same distribution and the same attacks have appeared in both datasets.

While traditional machine learning can suffer degrading accuracy when the assumption

fails to hold. In the context of smart grid, labeled attack data is rare and system variations

will introduce different data distribution. The trained machine learning model may not be

able to adapt such a situation.

2.2 Transfer Learning

2.2.1 Overview of Transfer Learning

Most of the machine learning methods assume that the distributions of the labeled train-

ing and unlabeled testing data follow the same distribution. Transfer learning (TL), in con-

trast, allows the domains, tasks, and distributions used in training and testing to be different.

TL aims at applying knowledge or patterns learned in a certain domain (or task) to a

different but related domain (or task) [68]. The “transfer" is similar to the process where

a graduate tries to apply what he/she learns in class to a practical problem, and the key

is to find a mapping between the problems so that the learned knowledge can be adapted

to the practical situation and resolve the problem. TL approaches can be grouped into
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three categories as illustrated in Fig. 4: inductive TL, transductive TL, and unsupervised

TL. Now TL has been successfully applied in image recognition, document classification,

sentiment classification, and language processing.

• Inductive TL: The target task is different from the source task, no matter when the

source and target domains are the same or not [69, 70, 71, 72, 73]. In this case, some

labeled data in the target domain are required to induce an objective predictive model

function for use in the target domain.

• Transductive TL: The source and target tasks are the same, while the source and

target domains are different [74, 75, 76, 77, 78]. In this situation, no labeled data in

the target domain is available while labeled data in the source domain is available. In

addition, according to different situations between the source and target domains, we

can further categorize the transductive TL setting into two cases, either the feature

space is different or the marginal probability distributions are different.

• Unsupervised TL: Similar to inductive TL setting, the target task is different from

but related to the source task [79, 80, 81, 82]. However, the unsupervised TL focus

on solving unsupervised learning tasks in the target domain, such as clustering, di-

mensionality reduction and density estimation. In this case, there are no labeled data

available in both source and target domains in training.

2.2.2 Domain Adaptation in Transfer Learning

Domain adaptation is a transductive TL technique, where the marginal probability dis-

tributions of input data from the source and target domains are different while the feature

spaces are the same [68]. Existing domain adaptation approaches can be categorized into

unsupervised [83, 84, 38], semi-supervised [85, 86, 87], and supervised domain adapta-

tion [88, 89, 90].
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Figure 4: An overview of transfer learning.

• Unsupervised domain adaptation (UDA): The UDA leverages labeled source do-

main data and unlabeled target domain data to decrease domain discrepancy or find

domain invariant representations. Thus models trained on the source domain can

generalize well on the target domain. Fang et al. [83] proposed to reduce distribution

discrepancy and increases inter-class margins via Sphere Retracting Transformation.

Ganin et al. [38] introduced adversarial training into domain adaptation to find do-

main invariant features. A domain classifier is utilized to distinguish data from two

domains. A feature extractor is trained to confuse the domain classifier by reversing

the gradient from the domain classifier. Li et al. [84] proposed category transfer to

improve the adversarial domain adaptation. It iteratively estimates and minimizes

Wasserstein distance between categories in multi-category structures to avoid nega-

tive transfer between different category data from source and target.

• Semi-supervised domain adaptation (SSDA): SSDA assumes that limited labeled

target data is available and can be used to support domain adaptation during the

training stage. Wang et al. [87] proposed a transfer Fredholm multiple kernel learning

approach. Fredholm integrals from two domains are calculated by labeled data to

learn a kernel predictive model across two domains. Pereira et al. [86] made use
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of labeled data from two domains to minimize squared induced distance between

instances from different classes and different domains and maximize squared induced

distance between instances from different classes and different domains. Similarly

Li et al. [85] considered to highlight the discrimination information of the labeled

samples, which takes into account the class connections between source samples and

target samples.

• Supervised Domain Adaptation (SDA): For SDA, the assumption is that only very

few target labeled samples per class are available and the goal is to learn a prediction

function from the source domain and generalize well on the target domain. Moti-

ian et al. [90] exploited the Siamese architecture to learn an embedding subspace

that is discriminative, and where mapped visual domains are semantically aligned

and yet maximally separated. And under the supervised setting, they found that re-

verting to point-wise surrogates of distribution distances and similarities provides an

effective solution. Garcia et al. [88] presented a comprehensive study on supervised

domain adaptation of PLDA based i-vector speaker recognition systems, including

fully Bayesian adaptation, approximate MAP adaptation, weighted likelihood and

SPLDA parameter interpolation.

Most of the existing domain invariant adaptation approaches focus on aligning distribu-

tions through minimizing the divergence between domains or employ adversarial training.

Sun et al. [91] used Correlation alignment (CORAL) to learn a nonlinear transformation

that aligns correlations of layer activations in deep neural networks. Long et al. [92] pro-

posed to minimize the joint maximum mean discrepancy (JMMD) criterion through a trans-

fer network by aligning the distributions of multiple domain-specific layers across domains.

Domain-adversarial training is one of the latest domain adaptation techniques inspired

by the highly-successful generative adversarial networks (GANs) [93], which trains a gen-

erative network and a discriminator network concurrently in a competitive/adversarial way.
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The generative network tries to “fool" the discriminator network by learning to find a new

feature set not distinguishable by the latter. This adversarial process allows the learning

of a feature set that better captures the patterns in the data distribution for various tasks.

Inspired by the highly-successful generative adversarial networks (GANs) [93], Tzeng et

al. considered a similar setup for domain adaptation in [94], which improves the results

by incorporating some labeled target examples and matching label distributions. Mean-

while, Ganin et al. proposed the domain-adversarial training based on neural networks

(DANN) [38] as a UDA technique for image applications. DANN is one of the most stud-

ied UDA frameworks and has been recognized as a promising solution in computer vision.

Although an extensive literature of UDA has been applied to computer vision, only a

few studies have considered the time series data in the content of domain adaptation. Pu-

rushotham et al. [95] proposed variational recurrent adversarial deep domain adaptation

(VRADA) and recurrent domain adversarial neural network (R-DANN) with RNNs as fea-

ture extractors and tested on time series medical data. Wilson et al. [96] propose a novel

Convolutional deep Domain Adaptation model for Time Series data. Existing works reveal

the potential of incorporating time series analysis into domain adaptation.

2.3 Transfer Learning for Learning-Based Intrusion De-

tection

Researchers have recently started to introduce TL in cyber-security. Bartos et al. [97]

computed a self-similarity measure of the network traffic logs for the domain adaptation

problems with conditional shift in network security. Juan et al. proposed a feature-based

TL framework that was able to boost classifier performance on the well-known NSL-KDD

dataset of TCP traffic [98], demonstrating the potential merit for cyber-security analysis.

D. Nahmias et al. [99] applied feature TL from pre-trained VGG19 neural network mode
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on malware detection.

For TL in IDS, different approaches were also investigated. Mathew et al. [100] lever-

aged a pretrained deep convolutional neural network and transfer it to the target domain

for IDS on ATM surveillance dataset. Tariq et al. [101] proposed CANTransfer, an intru-

sion detection method using Transfer Learning for Controller Area Network bus, where a

Convolutional LSTM based model is trained using known intrusion to detect new attacks.

Singla et al. [102] investigated the viability of TL, compared the detection accuracy of a

network IDS model trained using TL with a network IDS model trained from scratch, and

showed that TL enables detection models to perform much better at identifying new attacks

when there is relatively less training data available. Motivated by the existing efforts, we

investigate several directions to further improve the detection accuracy of learning-based

IDS.
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Chapter 3

Domain-Adversarial Transfer Learning

Scheme

3.1 Background

As mentioned in Section 2.2, TL has been widely adopted in various image/video appli-

cations [103, 104] as a promising solution to transfer a learned model into new but related

domains or tasks. Given a source domain with labeled data and a target domain with new

unlabeled data, TL methods are tasked to learn the mappings of both domains. By learning

a new feature space where inner-class similarity and inter-class distance are preserved, TL

methods allow machine learning-based classifiers to retain their performance on incoming

data with new distributions. However, such capacity has not been extended or validated

in complex cyber-physical systems like the smart grid to improve the robustness of IDS,

where the common practice is still to manually select and test different feature subsets. In

addition, as discussed in Section 1.2, traditional learning-based IDS assume that training

and testing data follow the same or similar data distribution and they may not maintain

the performance and suffer degraded detection accuracy when facing the lack of sufficient

labeled data, attack variations and system variations.
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Motivated by these gaps, this chapter proposes a domain-adversarial framework based

on the latest deep adversarial learning technique [38] to extract novel features and trans-

fer different machine learning classifiers for new operation scenarios and attack threats.

A realistic smart grid security dataset, collected over hardware-in-the-loop simulators [3]

with multiple attack and normal scenarios as well as cyber and physical system informa-

tion, has been chosen to evaluate the performance of the proposed scheme. The dataset

allows the study to leverage deep packet inspection (DPI) of the payloads (measurements),

system logs, and snort alerts, instead of packet headers or traffic statistics, to utilize the

cyber-physical information against unknown threats. The dataset assumes that the data

is unencrypted. Similar DPI methods have also been adopted in [105], [106] to extract

voltages and currents for detecting false data injection and fault localization. To validate

the effectiveness of DANN on improving the robustness of IDS, we set up experiments on

detecting unknown types of attack threats and same attacks with different locations. Abla-

tion analysis has been performed to provide insights on the choice and influence of critical

hyper-parameters. The results have shown that the domain-adversarial TL scheme can sig-

nificantly improve classification accuracy against unknown threats of different types and

locations. Discussions on hyper-parameters are also provided for practical uses.

3.2 Problem Formulation

In TL, a domain D consists of two components: a feature space X and a marginal

probability distribution P(X). Given a specific domainD= {X ,P(X)}, a task consists of two

components: a label space Y and an objective predictive function f(·) to be learned from

the training data.

The source domain and target domain denote different data extracted from the control

center. Labeled source domain data is used to train the classifiers. We collect unlabeled data

in the target domain for domain adaptation so that the TL model can map the data of two
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domains into the same new feature space and decrease the distribution distance between

projected source data and target data.

We model the attack detection of smart grid as a binary classification problem, that is, to

classify the events as an attack or a natural event. The source domainDS and target domain

DT have the same feature space X but different combination of attack types and normal

events. The marginal probability distribution P(X) is thus different. We denote the labeled

source domain as DS = {(xS1 , yS1), ..., (xSnS
, ySnS

)} and the unlabeled target-domain as

DT = {(xT1 , yT1), ..., (xSnT
, ySnT

)}. The goal is to learn a predictive function f(·) from

the training data that predicts labels in the target domain.

The following problems will be considered in this chapter:

• One threat appears only in DS and another new threat appears only in DT ;

• The same type of threats appears in bothDS andDT but each domain contains attacks

at different locations.

3.3 Methodology

3.3.1 Domain-Adversarial Training

The DANN architecture consists of three neural networks: a feature extractor, a domain

classifier, and a label predictor. Note that each network can be implemented as a single or

multi-layer perceptron, where the simplest structure was used in this chapter, as by Ganin

et al. in [38].

The feature extractor learns a function Gf : X → RD that maps an m-dimensional

input into a D-dimensional feature:

Gf (x) = sigmoid(Wx + b) (1)

21



Target Domain
Unlabeled Training Data

(unknown
threats/variants）

Source Domain
Labeled Training Data

(known threats)
Projected
Labeled

Source Data

Selected
Classifier

Model Training

Model Testing

Feature Extractor
Label Predictor

Domain Classifier

Feature

Step 1: Data Preprocess

Step 2: Transfer Learning Model (DANN) Training

Class 
Label

Domain
Label

Target Domain
Unlabeled Testing Data

(unknown
threats/variants）

Trained Feature Extractor

Trained
Classifier

Predict
Label

Step 4: Predict target domain data

Domian Adaption Loss

Label prediction loss

Step 3: Classifier Traning

Tuning

Tuning

Figure 5: Domain-adversarial transfer learning for IDS in smart grid.

where sigmoid(a) = [ 1
1+e−ai

]
|a|
i=1, (W,b) ∈ RD×m × RD is a matrix-vector pair of the

weights W and the bias b of the feature extractor. As with other deep learning techniques,

there is no direct loss function associated with the feature extractor; the losses of the label

predictor and domain classifier will be back-propagated to adjust the weights of the feature

extractor.

Similarly, the label predictor aims to learn a function Gy from the extracted features to

the class labels:

Gy (x) = softmax(VGf (x) + c) (2)

where softmax(a) = [ eai∑|a|
j=1 e

aj
]
|a|
i=1, (V, c) ∈ RL×D × RL is a matrix-vector pair of the

weights V and the bias c of the label predictor.

Given a sample-label pair (x, y), the loss function of the binary classification problem

is given as:

Ly(x, y) = −y log[Gy(x)]− (1− y) log[1−Gy(x)] (3)
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For the source domain, the domain-adversarial training can thus be formulated as the

following optimization problem:

min
W,b,V,c

[
1

nS

∑
x∈DS

Ly(x, y) + λ ·R(W,b)

]
(4)

where R(W,b) is a regularizer weighted by a hyper-parameter λ. The regularizer deter-

mines the penalty for the feature extractor, which provides the mapping from the source/

target domains to a new feature space where the domain adaption loss, or the dissimilarity

of samples mapped from the source and target domains, are minimized.

The domain classifier learns a logistic regression GD → [0, 1] that predicts whether an

input x is from DS or DT :

Gd(x) = sigmoid(uTGf (x) + z) (5)

where (u, z) ∈ RD×R is a vector-scalar pair of the weights u and the bias z of the domain

classifier.

Given a sample x, the domain adaption loss Ld is given as:

Ld(x, dx) = −dx log[Gd(x)]− (1− dx) log[1−Gd(x)] (6)

where dx = 0 if x ∈ DS and dx = 1 if x ∈ DT .

Subsequently, the regularizer R(W,b) can be defined as:

R(W,b) = − 1

nS

∑
x∈DS

Ld(x, dx)− 1

nT

∑
x∈DT

Ld(x, dx) (7)
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and the optimization problem in (4) can be rewritten as:

min
W,V,b,c,u,z

[
1

nS

∑
x∈DS

Ly(x, y)− λ

nS

∑
x∈DS

Ld(x, dx)

− λ

nT

∑
x∈DT

Ld(x, dx)

] (8)

3.3.2 DANN with Customized Label Predictor

The overall architecture, as illustrated in Fig. 5, consists of four steps: (1) collect labeled

source data and unlabeled target data; (2) train the model over both domains to obtain a new

feature space in a domain-adversarial manner; (3) use the new feature representations of

the labeled data in the source domain to train classifiers; (4) map the new data to the new

feature space and predict their class labels.

The original DANN employed simple perceptron networks and a softmax layer as the

label predictor/classifier. The design can be easily extended to integrate different alternative

classifiers which may perform better in different domain-specific tasks [49]. For example,

the k-Nearest Neighbour classifier is more suitable for data with cluster characteristics, low

dimension, and no need for parametric assumptions. The decision tree is more advanced

when the task requires intuitive knowledge expression and simple implementation.

Aware of this potential, we adopt a two-phase domain-adversarial training. The first

phase consists of Steps 1 and 2 in Fig. 5, in which a rough training process is performed

with the original DANN so that the errors can be back-propagated to the feature extractor

based on both label prediction and domain adaption losses. The second phase consists

of Step 3 in Fig. 5, in which the label predictor is replaced with an alternative ML-based

binary classifier. The new classifier can be trained using the extracted features to exploit

the knowledge transferred between the source and target domains. The final class label

(normal vs. attack) will be given by the alternative classifier in Step 4 using the extracted

24



features.

3.4 Experiments and Results

3.4.1 Attack Model

We choose the standardized smart grid Industrial Control System (ICS) Cyber Attack

Datasets [3] (more details therein) for training and testing. The data is collected by the

University of Alabama in Huntsville and Oak Ridge National Laboratory on a hardware-in-

the-loop testbed. Illustrated in Fig. 6, the testbed implemented a high-level wide-area power

grid abstracted into 3 buses, 2 generators (G1 and G2), and 4 PMU-embedded intelligent

relays (R1-R4) connected to four circuit breakers (BR1-BR4). Measurements of the relays

are sent through a simulated wide-area network to the phasor data concentrator (PDC) and

then forwarded through a security gateway to the control room. Attack scenarios were built

and simulated with the assumption that an actor had already gained access to the substation

network and poses an insider threat by issuing commands from the substation switch.

Remote tripping command injection (RTCI): RTCI is an attack that sends a com-

mand to a relay which causes a breaker to open. It can only be done once an attacker has

penetrated outside defenses. Attackers remotely send unexpected relay trip commands to

closely mimic the line maintenance scenarios. The malicious trip command originates from

another node on the communications network with a spoofed legitimate IP address. Such

malicious attacks would cause breakers to unpredictable open, and attackers could appear

as penetrating outsides defenses. The remote tripping command injection is injected into

each single relay, or two relays on the same line (R1 and R2, or R3 and R4 respectively).

Data Injection (DI): For the DI attack, an attacker aims to manipulate the sensor mea-

surements to induce an arbitrary change in the estimated value of state variables without

being detected by the bad measurement detection algorithm of the state estimator. Hence,
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this attack could blind the operator and causes a blackout by changing values to param-

eters such as current, voltage, and frequency, among others. Here in the ICS dataset, a

valid fault is imitated by changing values to parameters such as current, voltage, sequence

components etc., in order to blind the operator and cause a blackout.

RTCI and DI attack are selected as the attack models in our experiments from this ICS

dataset for two reasons: 1) The two attack model are both injection attack, which meet

the formulation of source domain and target domain in TL; 2) Remote tripping command

injection contains attacks with different locations and could help to investigate the case of

detecting attacks at a different location.

3.4.2 Experiments Setup

The 128 features of this dataset are explained as follows. There are 29 types of measure-

ments from each phasor measurement units (PMU). A PMU or synchrophasor is a device

which measures the electrical waves on an electricity grid, using a common time source for

synchronization. In the system, there are 4 PMUs which measure 29 features for 116 PMU

measurement columns total. There are 12 features for control panel logs, snort alerts and

relay logs of the 4 PMU.

As shown in Table 9, this chapter considers a binary classification problem between

Table 1: Summary of Classes and Scenarios Used in the Study

Classes Scenarios Descriptions
Normal No Events Normal operation with load vari-

ation

Attack

Data Injection (DI) Attacker manipulates current,
voltage, etc. to mislead con-
trollers and/or operators into
mal-operations.

Remote Tripping
Command Injection
(RTCI)

Attacker sends a command to a
relay and open a circuit breaker,
directly causing a line outage.
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Figure 6: The data collection testbed and the attack threats [3].

normal and attack events; the attack class further consists of two threat scenarios, i.e., DI

and RTCI. Each sample contains 128 features: 116 from four PMUs (29 each) and 12 from

relay/control panel logs and the snort alert. We select two main attack categories DI, RTCI

combined with Normal Events (Natural events and No events) as our domains.

Table 2 shows the cases of threats in the source domain (known/labeled) and threats

in the target domain(unknown/unlabeled). The normal-class is present in all cases and

accounts for 50% of both training and testing data, respectively. Classifiers in Cases 1 and

2 are trained on false data injection and faced by unseen remote tripping commands. The

Table 2: Case Setup for Domain Adaption.
Cases Threat in Source Domain Threat(s) in Target Domain

1 DI RTCI
2 DI DI and RTCI
3 RTCI DI
4 RTCI DI and RTCI
5 RTCI-15 (Relay R1) RTCI-16 (Relay R2)
6 RTCI-17 (Relay R3) RTCI-18 (Relay R4)
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Table 3: Hyperparameter Setting

Classifiers Hyperparameter

AdB
base learner = DecisionTree;

learning rate = 1;
algorithm = ’SAMME’.

kNN N neighbors = 9
SVM kernel = ’rbf’; C = 1.
RF number of estimators = 100

CART max depth = 5
ANN architecture of hidden layers = 50-25-10

unlabeled target domain in Case 1 contains only RTCI threat while in Case 2 a mixture of

both the known DI and the unknown RTCI threat; the combination of both cases will allow

more comprehensive evaluation of the performance. Similarly, classifiers in Cases 3 and

4 are trained on RTCI threats are faced by unseen DI threats. Classifiers in Cases 5 and 6

are trained on RTCI threat on one relay and faced by unseen threats launched on the other

one on the same line. The extractor will extract 60 features from the original 128; for other

parameters, the domain adaptation regularizer is set as 0.5, the learning rate as 0.1, and the

number of epochs as 1,000.

Similar to [65, 98], we choose AdaBoost (AdB), k-Nearest Neighbor (kNN) [61], Sup-

port Vector Machine (SVM) [107], Random Forest (RF) [108], Classification and Regres-

sion Tree (CART) [109], and Artificial Neural Network (ANN) [110] as the baseline classi-

fiers and implement them with the Python Scikit-learn library [111]. The hyperparameters

are shown in Table 3. The experiments are running on Windows 10 64 bit operating system

with Intel Core i7-8700 CPU, 16GB ram and NVIDIA Quadro P620 GPU.
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Table 4: Comparison of original and domain-adversarial machine learning classifiers
against unknown threat variants

Cases Methods AdB kNN SVM RF CART ANN

1
Original 72.0% 77.6% 57.9% 51.4% 53.2% 83.0%

Domain-Adversarial 86.8% 86.0% 82.9% 88.2% 76.3% 84.5%
Improvement +14.8% +8.5% +25.0% +36.8% +23.1% +1.5%

2
Original 77.3% 82.7% 71.0% 84.5% 76.7% 86.5%

Domain-Adversarial 94.2% 90.4% 85.5% 95.2% 79.2% 87.8%
Improvement +16.9% +7.8% +14.5% +10.7% +2.5% +1.3%

3
Original 73.0% 75.1% 64.8% 76.0% 61.3% 81.7%

Domain-Adversarial 83.6% 82.2% 80.9% 84.5% 75.7% 83.6%
Improvement +10.6% +7.1% +16.1% +8.5% +14.4% +1.9%

4
Original 71.2% 80.5% 66.7% 83.0% 69.5% 85.9%

Domain-Adversarial 89.3% 88.2% 85.3% 90.0% 79.6% 87.6%
Improvement +18.1% +7.7% +18.6% +7.0% +10.1% +1.6%

3.4.3 Detection of Unknown Threats Types

To evaluate the performance of detecting an unseen attack in the power system, we

recreate the datasets from original ICS datasets based on the assumption that a new attack

type exists in the target domain. Each dataset contains 3,000 samples. To make the dataset

balanced, attack class and normal class account for 50% separately. The two attack classes

are also set to 50% in combined attack class DI+RTCI. We first evaluate the case where the

normal and attack classes are balanced, each accounting for 50% of the training and the

testing data, respectively.

Table 4 shows the accuracy with the original and the domain-adversarial trained clas-

sifiers, along with the performance improvement, for Cases 1 to 4 with unknown threat

types. It can be seen that while different baseline classifiers demonstrated accuracy among

these cases, all have benefited from the domain-adversarial training to various extents. The

significant improvements were observed on AdB, kNN, SVM, and RF classifiers, with im-

provements from 7% up to 36.8%; even for the less significant ones, the CART and the
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ANN, the average improvement is over 2.5%. Comparing between Cases 1 and 2, as well

as between Cases 3 and 4, it can be seen that although all baseline classifiers demonstrated

boosted accuracy (and less improvement) in the presence of known threats in the unlabeled

target domain, they are still unable to handle unknown threats alone and would still bene-

fit from the domain adaptability from domain-adversarial training. In practical smart grid

communications where the threats are expected to evolve/revolve frequently, such capacity

can allow a trained/deployed model to remain robust/resilient against the unknown threats

for better situational awareness.

3.4.4 Detection of Unseen Threats Locations

Fig. 7a and Fig. 7b show the accuracy of Cases 5 and 6 where the same type of at-

tacks are launched at two different locations, among which the classifiers are only partially

trained for attacks on one location. The accuracy of all baseline classifiers mostly range

only within 50% to 70%, which have all been improved to close to 80% after domain-

adversarial training. It has been noted that such performance may not meet the practical

requirement for deployment, and the limited number of samples (less than 2,000) for these

two cases have been identified as the main reason. Nevertheless, the results have still

demonstrated that the domain-adversarial training would allow trained models to extend

their learned knowledge to attack events at different locations. In a large-scale network

that expect more device connections, especially with increasing customer participation via

smart meters, the adaptability provided by the TL framework can allow the learned models

to handle known threats occurred on new devices and locations in the network, improv-

ing the resiliency against attacks while reducing the costs of an exhaustive point-by-point

re-training.
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(a)

(b)

Figure 7: Detection of threats on unseen locations in (a) Case 5 and (b) Case 6.
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3.5 Discussions

3.5.1 Choice of Hyperparameters

Figure 8: Accuracy with different Nf and λ.

Hyperparameters are controlled variables to be preset for machine learning algorithms,

which can significantly affect the performance of machine learning algorithms. We recog-

nize the number of extracted features (Nf ) and the value of domain adaptation regularizer

(λ) as two such key hyper-parameters and conduct ablation analysis of their influence. As

an example, 50 independent experiments were run on Case 3 with random initial weights

and following values:

• Nf : from 5 to 95 with a step size of 5;

• λ: from 0.01 to 2.00 at the 1st, 2nd, and 5th decile (0.01, 0.02, 0.05, 0.1, ...).
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The results are shown in Fig. 8, with two x-axes above and below the figure. The

accuracy increases as Nf increases or λ decreases; the value peaked at 83.7% when Nf =

60 and at 83.6% for λ = 0.5, respectively, which were chosen as the best-performing

parameter for the experiments. The comparison suggested that a relatively large Nf and a

small λ may be the suitable choice for future studies.

3.5.2 Other Discussions

Results have shown that all baseline classifiers can benefit significantly from the domain-

adversarial training and demonstrate robust performance against unseen types and locations

of threats. Discussions on the hyper-parameters have also been provided for deployment in

practice.

The power of adversarial domain adaptation inspires us of extending to complex sce-

narios and larger systems. The peak load in power grid can change dynamically over time.

In this respect, the distribution of physical measurements could vary significantly. Domain

adaptation may also help withstand the change of attack pattern. The limitation would be

addressed in Chapter 4.

3.6 Summary

ML has been extensively investigated in IDS for the smart grid. However, the assump-

tion of traditional machine learning, training data and testing data have identical data dis-

tribution may not always hold in practical systems.

To address this issue, this chapter has proposed a transfer learning scheme based on

the domain-adversarial training framework [38] for intrusion detection against unknown

threat variants. The scheme is capable of integrating different baseline machine learning

classifiers to improve their detection accuracy against unknown threats of different types
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and locations. Results have shown that all baseline classifiers can benefit significantly from

the domain-adversarial training and demonstrate robust performance against unseen types

and locations of threats. Discussions on the hyper-parameters have also been provided for

deployment in practice. The results of this chapter have been published in [2].
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Chapter 4

Semi-Supervised Domain-Adversarial

Training Scheme

4.1 Background

As mentioned in Chapter 1, many machine learning approaches presume that training

and testing data will share the same feature sets and follow the same or similar distribu-

tions [63]. A potential solution to the challenge is TL. By learning a new feature space

where inner-class similarity and inter-class distance are preserved, TL methods allow ma-

chine learning-based classifiers to retain their performance on incoming data with new

classes. The effectiveness of applying TL on detecting unseen types of threats and attacks

with different locations has been presented in Chapter 3.

However, in practice, the needs for transfer may come from the data distribution shift [112],

which may occur when loads, topology, or other system dynamics change after a certain

period of time. The shift can lead to bias in the training data and render the machine learn-

ing model intractable against a returning attack after the system dynamics change. TL is

still needed to improve the robustness of IDS in such a case.

In addition, considering the real scenarios in the power grid, labeled attack data is often
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limited and normal data is sufficient. In the target domain, there may only exist normal

class data and attack data is absent. The number of classes between the source domain and

target domain may be different under such a situation. This doesn’t meet the formulation of

unsupervised TL, since it requires us to transfer between domains with a different number

of classes. For a practical system, we may be able to label some of the normal data in the

target domain because we know the system is under normal operation. This could help us

to reformulate the unsupervised TL problem into semi-supervised TL.

The aforementioned issues create a strong incentive for effective TL algorithms to lever-

age the labeled normal data in the target domain and close up the gap for robust and adaptive

intrusion detection against persistent threats with distribution shift. Based on the work of

Chapter 3, we further extend the domain-adversarial TL to detect the widely studied false

data injection (FDI) attack and propose a Semi-Supervised Domain-Adversarial Training

(SSDAT) scheme, which extracts novel features to unify data distributions across normal

data from two domains and improves classifier robustness against the shift. We tackle the

challenge where the data of the attack incidence is rare compared to normal operations

and address it by semi-supervised TL from a single-class target domain where the attack

incidence is absent.

4.2 Problem Formulation

In this chapter, we focus on a scenario where two consecutive attacks targeted the same

grid during different periods when load demands have changed. In TL, this suggests a

data distribution shift, where the distribution P (X) of inputs (samples) has changed but

the conditional distribution P (Y |X) of outputs (labels) remains the same. The concepts of

domain and task in TL are the same as Section 3.2.

We still consider binary intrusion detection, which classifies the data as attack events

or normal operations. In realistic scenarios, labeled attack data is limited and normal data
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is sufficient. The source training data will consist of labeled normal data and attack data.

For target data, we could collect normal data to conduct domain adaptation with source

data, and then test on unlabeled data from the target domain with similar data distribution.

We assume that the source domain contains labeled normal and attack data, the target do-

main contains labeled normal data and unlabeled testing data to better match the realistic

scenarios.

With the shift caused by time, the source domain DS and target domain DT will have

the same feature space X but different data distributions P(X) caused by temporal vari-

ations. We denote the labeled source domain as DS = {(xS1 , yS1), ..., (xSnS
, ySnS

)}, the

labeled normal data from target domain asDTl
= {(xTl1

, yTl1
), ..., (xTln

, yTln
)}, and the un-

labeled testing data from target domain as DTu = {(xTu1
, yTu1

), ..., (xTun
, yTun

)}. The data

within each domain are processed and trained non-sequentially and we did not apply strict

time series analysis per sample. Nonetheless, the temporal variations between domains

are counted to introduce data distribution shifts and the shifts will be alleviated during the

training process.

The goal of TL in this chapter is to learn the predictive function f(·) from the source

training data to predict labels in the unlabeled target testing data. To achieve this goal,

we conduct domain adaptation with labeled normal data from source and target domains

through semi-supervised domain-adversarial training, where the inter-class distance and

inner-class similarity are both retained. The new feature space maps the shifting data dis-

tributions into a single one, where machine learning algorithms can be trained for better

classification.

4.3 Methodology

The overall semi-supervised domain-adversarial TL scheme proposed in this chapter is

illustrated in Fig. 9. It consists of three steps:
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Figure 9: Semi-supervised domain-adversarial transfer learning for IDS in smart grid.

1. Given the rarity of labeled attack, we first collect labeled normal and attack data in

the source domain, the labeled normal data in the target domain for adaptation, and

the unlabeled target data in the target domain for testing;

2. Train the three networks with the source and target domains to obtain a new fea-

ture space via domain-adversarial training, which adapts the normal data over two

domains;

3. Map the testing dataset to the new feature space and predict their class labels.

4.3.1 Data Preprocessing

Source Domain

Since the load demand of smart grid varies with time, and the physical measurements

will also vary accordingly, we assume that the data distribution within a pre-defined time

window is similar and thus could be treated as one domain. Then labeled attack data and

normal data are combined to form the source domain, and different source domains could
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be defined according to the trends of load demand.

Target Domain

For the labeled target normal data and testing dataset, we choose the same size time

window as source domain to collect the data. The labeled target normal data is collected

one day before the testing data. It will serve as the adaptation data in the semi-supervised

domain-adversarial training to help the model to adapt to target data distribution. The

testing data will be collected online with the same time periods as labeled normal data so

the data distribution will be similar.

4.3.2 Semi-Supervised Domain-Adversarial Training

The design of SSDAT is based on the consideration that in the context of cyber-physical

security monitoring, labeled attack data can be extremely rare compared to the labeled

normal data that are constantly sampled. We will have to face a rarity of positive class

distribution problem in the target domain. The SSDAT is adopted for the following reasons:

• System dynamics will change over time and data distribution shift will occur for both

normal data and attack data;

• The source domain contains labeled normal and attack data. The target domain con-

tains labeled normal class data, the number of classes between source and target

domains are unequal during the training process. Which creates a semi-supervised

TL setting;

• As discussed in Section 4.1, normal operation data is always sufficient in smart grid

while labeled attack data is limited because of its short occurrence. On one hand, the

insufficient attack data will limit the model generalization ability. On the other hand,
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normal data could provide out-of-distribution samples similar to unlabeled testing

data and improve the robustness of TL.

To address this challenge, after the feature extraction, the normal data from the source

domain and target domain will be fed into the domain classifier. The gradient from domain

loss will be reversed when in the feature extractor to increase the domain similarity so

that the data distribution shift can be mitigated. Both normal and attack data will be used

for training the label predictor. Unlike the setting of unsupervised TL, where the source

domain contains labeled data and the target domain only contains unlabeled data, our semi-

supervised TL assumes that labeled normal data is available in the target domain.

During the training phase, the normal data from two domains is used in the domain-

adversarial training to find the mapping of both domains. For the source domain, both

labeled normal and attack data will be used for training the label predictor.

Following the same mechanism in Chapter 3, we select the random forest classifier [113]

as the new label predictor in SSDAT, which will be trained on the embeddings obtained

from the labeled source data through the feature extractor after the domain-adversarial

training.

The detailed training steps are:

1. Collect source domain, target domain, testing data according to the specifications in

Section 4.3.1;

2. Feed forward the batch of source domain data and target domain data in the feature

extractor to extract the features;

3. Feed labeled source normal data and attack data as well as class labels into the la-

bel predictor to calculate the prediction loss, feed the source normal data and target

normal data as well as domain labels into domain classifier to obtain the domain loss;
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4. Back-propagate the prediction loss and domain loss in label predictor and domain

classifier respectively, and reverse the gradient of domain loss at the last layer of

feature extractor during the backpropagation;

5. Replace the label predictor with a customized classifier and train the feature extractor

as well as the label predictor with extracted features and corresponding class labels.

4.4 Experiments and Results

4.4.1 Attack Model

Over the last two decades, various attack models have been developed to analyze and

enhance the cyber-physical security of smart grid [17]. Among them, the false data injec-

tion (FDI) attack [114] stands out as one of the most studied threat models. As FDI attacks

exploit a mathematical vulnerability in the residual-based bad data detector (BDD) to inject

false data onto measurements without raising alarms, it posed a severe threat to power sys-

tem state estimators (PSSE) and the energy management systems. Successful FDI attacks

can introduce arbitrary errors into certain state variables and cause the system operator to

perform misinformed control actions, which may result in physical damage and monetary

loss [115]. Specifically, the FDI targets the DC state estimation is defined as [116]:

z = Hx + n (9)

where z is the known measurement, H is the Jacobian matrix of power grid topology and

x is the unknown state variable. To identify corrupted measurements, the BDD utilizes

statistical tests based on the residual between observed and estimated measurements: r =

z−Hx̂, where x̂ is the estimated state variable solved by the weighted least square method.

The normalized L2-norm of r is then compared with a preset threshold τ to detect the bad
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data.

The FDI attack model can be written in the following form:

za = z + a = Hx + n + a (10)

where a is the injected attack vector and za is the manipulated measurements. In the

stealthy FDI attack, we assume the attacker has the knowledge of H. In order to bypass the

bad data detection and manipulate the states of buses, a targeted false state xa is generated

by xa = x+ c, where c ∼ N(0, σ2
c ) is the false state error injected into the system. The at-

tack vector a is computed by a = Hc and injected into the measurements z by za = z+ a.

Let r = z −Hx be the remain residual for bad data detection. Then the new residual ra

will remain the same and bypass the residual-based bad data detection:

ra = za −Hxa = z + a−H(x + c)

= (z−Hx) + (a−HC)

= z−Hx

(11)

The pre-attack measurements are obtained from realistic load demands over multiple

consecutive days, which represents the challenging data distribution shifts to classic ma-

chine learning and calls for TL against new attacks occurring at different hours of the day

with different load demands. Some data samples for normal and attack data at the same

time period are show in Fig. 10.

4.4.2 Experiments Setup

Normal Data Simulation

We chose the IEEE 30-bus system [4] for simulation and evaluation of the performance,

whose topology is illustrated in Fig. 11. There are 30 buses and 41 branches with a total
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Figure 10: The normal and attack measurements.

Figure 11: The IEEE 30-bus system by the Illinois Center for a Smarter Electric Grid
(ICSEG) [4].

43



Figure 12: Load demand of ISO New England between Aug. 24 to 30, 2019 [5].

load demand of 189.2 MW. A total of 142 measurements are used to estimate 30 state

variables under the DC model.

To set up realistic load variation on this static benchmark, we obtained public data from

ISO New England [5] and synthesized the normal operating points (OPs) over a week. We

selected one week demand from August 24 to 30, 2019, as shown in Fig. 12, to synthesize

a typical weekly load curve for the IEEE 30-bus system. The demand was reported every

5 minutes, or 288 samples per day. By assuming the default load of the 30-bus system

the peak load of the week (100%), we calculated all OPs over the 5-minute intervals us-

ing the DC optimal power flow (DC-OPF) solver in MATPOWER to collect the normal

measurement data of the system.

As illustrated in Table 9, we followed the load variations at different hours of the day to

create the source and target domains based on 4-hour time windows to best capture different

patterns of data distribution in the 30-bus system. We assumed that the attack was launched

on Day 0, and normal operations have been resumed on Day 1. We assumed that by Day

5 the data recording the attack period on Day 0 have been collected; the data recording the

same period of normal operation on Day 1 have also been collected to form the labeled

training set for the source domain. Then we assumed that day-to-day domain adaptation is
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performed until Day 6 when the attack was launched again but possibly at different hours.

The target domain thus contains data recorded at corresponding periods on Day 5 when the

last domain adaptation was performed.

Attack Data Generation

For the attack, we assumed that the attacker aims to manipulate the states with the

least efforts. Since the number of compromised meters to manipulate the states varies

between buses and depends on the topology H. We searched the number of compromised

measurements when attacking a single bus and identified three buses (Buses 11, 13, and

26) that require the minimal number of compromised measurements. The attack vectors

were then generated by the FDI attack model a = Hc and injected into the measurements

z. The false state c was set with a zero mean and a variance of σ2
c = 0.1.

Balanced Case

Considering that attacks may happen at a different time of the day when the load pat-

terns can be distinctive, we defined 4 cases according to the variation of load demand: the

valley, the ascending slope, the peak, and the descending slope. In each case, we assumed

that the attack lasted for 4 hours on Day 0 before the system is restored. Once the attack

period is located, we also extracted 4 hours of normal operation data on Day 1, recorded

during the same 4-hour periods as the attack on Day 0, to create a balanced binary classifi-

cation dataset in the source domain for SSDAT.

For the target domain, we also used the 4-hour time window but divided Days 5 and

6 into six intervals. On Day 5, we have only recorded normal operations, which contain

natural data distribution shifts from load variation. The normal data from the target domain

will be used for domain adaptation in SSDAT. For the fair comparison, target domain data

will also be treated as labeled training data for baseline classifiers. On Day 6, we assumed
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Table 5: Case 1 Setup

#

Source Domain on
Day 0 (attack) and
Day 1 (normal)

Normal Data from
Target Domain
on Day 5

Testing Dataset
from Target Domain
on Day 6

Cases Hours
1 Valley 2–5 4-hour windows of

normal operations
at different time of
the day.

2 hours of attack
followed by 2
hours of normal
operations.

2 Ascending 11–14
3 Peak 17–20
4 Descending 21–24

that the attack last for 2 hours, which starts at the beginning of one of the six intervals, and

the testing dataset is thus also a balanced set composed of 2 hours of attack data followed

by 2 hours of normal data.

For each dataset, we have 142 features of physical measurements and 96 instances.

Imbalanced Case

Based on Case 1 we further investigate imbalanced cases to explore the performance

when the attack data has different proportions in testing data. We keep the source domain

and normal data from target domain the same as Case 1. For the testing dataset, we create

cases by adjusting the percentage of 4-hour time window attack data as 25% and 75%

separately. We shift the one attack hour for 25% cases and one normal hour for 75% cases

to generate 4 sub-cases for each time window. In this chapter, We use the F1 score to

measure the accuracy of imbalanced cases [117].

Similar as Chapter 3, we have chosen four baseline classifiers to compare classic ma-

chine learning classifiers with the SSDAT: Artificial Neural Network (ANN) [110], Support

Vector Machine (SVM) [107], Classification and Regression Tree (CART) [109], and Ran-

dom Forest (RF) [113]. All classifiers are implemented in Scikit-learn [111] with manually

optimized parameters. The hyperparameters are shown in Table 7.
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Table 6: Case 2 Setup

#

Source Domain on
Day 0 (attack) and
Day 1 (normal)

Normal Data from
Target Domain
on Day 5

Testing Dataset
from Target Domain
on Day 6

Cases Hours
1 Valley 2–5 4-hour windows of

normal operations
at different time of
the day.

1 hour attack as
25% cases and 3
hours attack as
75% cases.

2 Ascending 11–14
3 Peak 17–20
4 Descending 21–24

As illustrated in Table 6, the adaptation set consists of 4 hours normal data with the

same hours on Day 5 as testing set. For data in the source domain, we set up 4 scenarios

according to the variation of load demand: the valley, the ascending slope, the peak, and

the descending slope. Each scenario contains 4 hours of data, evenly mixed with 4 hours

attack data from Day 0 and 4 hours normal data with the same time period from Day 1.

The target domain contains measurements from Day 6, which is also divided into six

4-hour time windows evenly mixed normal and attack data for each. Day 5 is assumed to

be all normal data, which is also divided into 6 slots with similar data distribution with day

6 slots as shown in Fig. 12. The sliding time window creates natural data distribution shifts

in the target domain for the evaluation of detection performance with and without TL.

Similar to Chapter 3, we choose Support Vector Machine (SVM) [107], Random For-

est (RF) [108], Classification and Regression Tree (CART) [109], and Artificial Neural

Network (ANN) [110] as the baseline classifiers and implement them with the Python

Scikit-learn library [111]. The hyperparameters are shown in Table 7. The experiments

are running on Windows 10 64 bit operating system with Intel Core i7-8700 CPU, 16GB

ram and NVIDIA Quadro P620 GPU.
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Table 7: Hyperparameter Setting

Classifiers Hyperparameter
SVM kernel = ’rbf’; C = 1.
RF number of estimators = 100

CART max depth = 5
ANN architecture of hidden layers = 50-25-10

SSDAT
domain adaptation regularizer = 0.5
number of extracted features = 60

Table 8: Comparison of SSDAT and Machine Learning Classifiers against Returning At-
tacks at Different Hours

Cases Source Hours Target Hours SSDAT ANN SVM CART RF Best-Case Margin Worst-Case Margin

1
2-5

(Valley)

1-4 82.6% 81.2% 81.3% 77.2% 81.9% +5.4% +0.7%
5–8 88.9% 84.6% 87.5% 76.3% 81.0% +12.6% +1.4%

9–12 86.6% 84.7% 81.3% 71.8% 76.2% +14.8% +1.9%
13–16 86.5% 85.1% 72.9% 69.3% 72.0% +17.2% +1.4%
17–20 82.9% 70.5% 64.6% 67.9% 66.0% +18.3% +12.4%
21–24 80.3% 70.4% 68.8% 68.3% 69.0% +12.0% +9.9%

2
11-14

(Ascending)

1-4 95.3% 91.7% 79.2% 98.1% 99.7% +16.1% -4.4%
5–8 95.9% 95.8% 87.5% 72.5% 87.3% +23.4% -0.1%

9–12 85.5% 58.3% 81.3% 71.0% 79.0% +27.2% +4.2%
13–16 81.6% 54.2% 70.8% 71.7% 78.1% +27.4% +3.5%
17–20 87.7% 51.7% 70.8% 70.1% 74.7% +36.0% +13.0%
21–24 80.2% 50.5% 68.8% 77.1% 79.8% +29.6% +0.3%

3
17-20
(Peak)

1-4 94.4% 93.7% 79.2% 91.2% 95.4% +15.2% -1.0%
5–8 96.4% 91.7% 87.5% 97.2% 97.7% +8.9% -1.3%

9–12 85.3% 75.6% 75.0% 66.8% 76.6% +18.5% +8.7%
13–16 91.1% 70.7% 75.0% 66.9% 78.0% +24.2% +13.1%
17–20 85.1% 68.9% 62.5% 62.9% 74.0% +22.6% +10.1%
21–24 94.3% 74.4% 79.2% 83.0% 84.8% +19.9% +9.5%

4
21-24

(Descending)

1-4 94.9% 97.9% 85.4% 98.1% 99.4% +9.5% -4.5%
5–8 96.9% 100.0% 91.7% 94.0% 96.5% +5.2% -3.1%

9–12 85.6% 79.0% 60.4% 76.3% 83.4% +25.2% +2.2%
13–16 85.4% 82.2% 60.4% 72.2% 83.4% +25.0% +2.0%
17–20 82.2% 63.2% 58.3% 68.0% 78.6% +23.9% +3.6%
21–24 83.6% 69.2% 56.3% 73.2% 80.8% +27.3% +2.8%
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4.4.3 Results and Analysis

The detection accuracy for balanced cases of all classifiers over the 4 cases is shown in

Table 8. Overall, the scheme shows robust performance in most of the cases and better than

other baseline classifiers in 19 of the 24 sub-cases. The best-case improvement reaches

+36.0% compared to ANN during Hours 17–20 in Case 2. The results suggested that

SSDAT can retain high accuracy when the same attack occurs at different hours while the

baseline classifiers fail to adapt.

It is notable that during Hours 1–4 and 5–8 on Day 5, the performance of some baseline

classifiers are better than the SSDAT. The reason is that most of the load demand of Days

0 and 1 in the source domain has a significant overlap with the Hours 1–4 and 5–8 on Days

5 and 6. The overlapping demand suggests limited distribution shifts, which contributes to

the performance of baseline classifiers. Outside of these hours, however, SSDAT achieves

better accuracy. The observation poses an interesting question on when the adaptation is

indeed needed and how to identify such moments.

The averaged F1 scores over 4 sub-cases of imbalanced cases with "valley" as source

domain are illustrated in Fig. 13a and Fig. 13b. The results suggest that when the source

domain is "Valley" data, SSDAT can outperform other baseline classifiers among 6 time

windows. Especially when there is limited attack data, the SSDAT demonstrates significant

improvements. The reason is that the source valley data has no overlap with the target

domain. For other source domains not presented, there are still some cases in Hours 1–4

and 5–8 when some baseline classifiers achieve better accuracy. The reason is consistent

with balanced cases.

The results have shown that the proposed scheme can effectively tackle the rarity of

attack samples and achieve robust performance against data distribution shifts than classic

machine learning classifiers.
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Figure 13: F1 scores for the "Valley" period as the source domain and (a) 25% attack data
in testing and (b) 75% attack data in testing.
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4.5 Discussions

The results have been published in [39], however, after the publication, we noticed that

there is one limitation in the experiments, which is that regarding the use of labeled target

data, there could be another case in the results to evaluate the performance of using the

normal data from both source and target as well as the attack data from the source during

the SSDAT, and present the results on the unlabeled target domain.

4.6 Summary

The smart grid faces increasingly sophisticated cyber-physical threats, against which

machine learning (ML)-based intrusion detection systems have become a powerful and

promising solution to smart grid security monitoring.

However, many ML algorithms presume that training and testing data follow the same

or similar data distributions, which may not hold in the dynamic time-varying systems like

the smart grid. The effectiveness of transfer learning on detecting unknown types of threats

and attacks at different locations has been presented in Chapter 3.

In practical power systems, as operating points may change dramatically over time,

the resulting data distribution shifts could lead to degraded detection performance and de-

layed incidence responses. Besides, unsupervised transfer learning requirements may not

hold when the number of classes between source and target domain is different due to the

absence of attack data in the target domain.

To address these challenges, this chapter has presented a semi-supervised scheme based

on domain-adversarial training to transfer the knowledge of known attack incidences to

detect returning threats at different hours and load patterns. Using normal operation data

of the ISO New England grids, the proposed scheme leverages adversarial training to adapt

learned models against new attacks launched at different times of the day. The effectiveness
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of the proposed detection scheme is evaluated against the well-studied false data injection

attacks synthesized on the IEEE 30-bus system, and the results demonstrated the superiority

of the scheme against persistent threats recurring in the highly dynamic smart grid. The

results of this chapter have been published in [39]
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Chapter 5

Spatiotemporal Domain-Adversarial

Training Scheme

5.1 Background

As discussed in Chapter 3 and Chapter 4, TL aims at aligning the data distribution shift

between different domains and could improve the robustness of machine learning models.

However, most of the existing TL works focus on implementing sophisticated models to

achieve better performance and little attention has been paid to the determination of when

to transfer. Especially in the field of CPS, data distribution shift may or may not occur

and the techniques of detecting such shifts will help to reduce the overhead of frequent

transferring.

Since most real world data in CPS are rich in spatiotemporal information, domain adap-

tation TL may also need to consider both by extracting spatial and temporal features con-

currently. The domain adversarial training technique can help in such an extraction process.

Motivated by the remaining gaps, this chapter proposes a Spatiotemporal Domain-

Adversarial Training (STDAT) scheme based on DANN [38]. The proposed scheme is

two-fold, the first step is to collect classification accuracy on known benchmark datasets,
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and leverage Kullback–Leibler (KL) divergence [118] and Maximum Mean Discrepancy

(MMD) [119] as the divergence measurement metrics between training and testing datasets

to build connections with computed accuracy, and perform transferability analysis by pro-

viding a detector to determine when to apply TL. Then the second step is to apply a spa-

tiotemporal feature extractor in domain adversarial training to alleviate the data distribution

shift between source and target domains and improve the detection accuracy of the classi-

fier.

5.2 Problem Formulation

Same as Chapter 4, this chapter considers the covariate shift, where only the input dis-

tribution P (X) changes and the conditional distribution P (Y |X) remains the same. The

covariate shifts often occur in CPS intrusion detection scenarios because the system vari-

ations and attack variations will have an influence on the normal and attack data distribu-

tion. The system variations may be caused by different load demands, normal operations,

or topology changes. The attack variations could arise when either the load or the locations

of attack launched differ from benchmark datasets. Such variations will inevitably lead to

shifts in CPS data, which can be challenging for traditional learning-based IDS.

Aware of the aforementioned scenarios, this chapter investigates the attack detection in

smart grid taking both temporal and spatial characteristics into consideration and propose

the Spatiotemporal Domain-Adversarial Transfer Learning (STDAT) model to alleviate the

impact of data distribution shift. We focus on the scenarios where two consecutive attacks

targeted the same grid during different periods when load demands have changed and/or

the injected bus of the two attacks vary.

Same as previous Chapters, the intrusion detection in smart grid is formulated in the

context of TL as follows. A domainD consists a feature spaceX and a marginal probability

distribution P(X). Given a specific domain D= {X ,P(X)}, a task consists of a label space Y
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and an objective predictive function f(·) from X to Y that will be learned from the training

data.

This chapter considers the binary intrusion detection problem in smart grid, which clas-

sifies the multivariate time series measurements data as attack events or normal operations.

The source domainDS and target domainDT will have the same feature spaceX but differ-

ent data distributions P(X) with the shift caused by system or attack dynamics. We denote

the labeled source domain as DS = {(xS1 , yS1), ..., (xSnS
, ySnS

)}, and the unlabeled target

domain as DTs = {(xTs1
), ..., (xTsn

)}, Where x ∈ RC×T , C is the dimension of feature

space, and T is the length of the time series. For the problem of intrusion detection in

smart grids, we assume that source domain data consists of labeled normal operations and

attack data. Unlabeled target domain contains normal data and attack data with different

data distribution from the source domain.

Similar to the previous chapters, to generalize a classifier trained on source domain to

a target domain, the main challenges are to determine when to apply transfer leaning and

how to find the best-performing mapping for multivariate time series CPS data, which is

tackled by the STDAT as follows.

5.3 Methodology

5.3.1 Divergence-based Transferability Analysis

The transferability analysis is the approach to conduct analysis on the data and deter-

mine if there is a need to apply TL. Since when to transfer depends on whether there is a

data distribution shift in target domain. Such analysis could lead to a data distribution shift

detection problem.

The first step in our proposed scheme is to apply the data distribution shift detection

between the target domain and the source domain.
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Current approaches of detecting data distribution shift are mainly targeting identifying

the out-of-distribution samples and ignore to build the connection between the distribution

detection and answering when to apply TL. Rabanser et al. [120] investigated methods for

detecting data distribution shift, and revealed that a two-sample-testing-based approach,

using pre-trained classifiers for dimensionality reduction, performs best. Yet the compari-

son results are mostly reported on image and video datasets, whereas the characteristics of

CPS data will vary significantly. Unlike the RGB values that have uniform color space and

pixel connectivity, CPS data are multivariate and contain spatiotemporal information. This

creates a strong incentive to adopt transferability analysis for CPS applications.

The objective of our data distribution shift detection is to not only identify the shift but

also provide the intensity of divergence so we could utilize the empirical data to measure

and test if the divergence is considerable enough to apply TL. To this end, we investigate

the applicable divergence measurements and conduct experiments simulated multivariate

CPS data to validate the performance.

We select two widely used divergence metrics, KL divergence and MMD, in this paper

as the approaches for measuring the distance between two data distributions. In existing

works, KL divergence is commonly used to calculate the divergence between two distri-

butions [121] or as the regularizer in the loss function to minimize the distance between

domains [122, 123]. The MMD-based method is one of the most fruitful lines for domain

adaptation [124, 125, 126], which could also act as the regularizer in the objective function

and help to decrease the distribution divergence between extracted features. In our trans-

ferability analysis, KL divergence and MMD will be mainly used to measure the distance

between domains in the smart grid and provide insights to answer when to apply TL.

The KL-divergence, also known as the relative entropy, between two probability density
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functions p(x) and q(x),

DKL(P ||Q) =

∫
p(x)log

p(x)

q(x)
dx (12)

Since directly calculating the KL divergence between two multivariate datasets is non-

trivial, we choose two methods for KL divergence estimation.

Gaussian Mixture Models based KL estimation

For the first solution, we adopt the work of and J.R. Hershey et al. [127] and consider

the two datasets are Gaussian Mixture Models (GMM). The marginal densities of x ∈ Rd

under p and q are

p(x) =
∑
a

πaN (x;µa; Σa)

q(x) =
∑
b

πbN (x;µb; Σb)

(13)

To estimateD(P ||Q) for large values of dwe could conduct Monte Carlo simulation. Using

n i.i.d. samples {xi}i=1
n , we have:

DMC(P ||Q) =
1

n

n∑
i=1

log
p(xi)

q(xi)
→ D(P ||Q) (14)

The variance of the estimation error could be decreased when n→∞.

k-Nearest-Neighbour based KL estimation

For the second solution, we choose the Fernando et al.’s work [128] and use kNN

density estimation as an intermediate step to estimate the KL divergence. Given a set with

n i.i.d. samples from p(x) and m i.i.d. samples from q(x), we can estimate the D(P ||Q)
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from a k-NN density estimate as follows:

Dk(P ||Q) =
1

n

n∑
i=1

log
pk(xi)

qk(xi)
=
d

n

i=1∑
n

log
rk(xi)

sk(xi)
+ log

m

n− 1
(15)

where

pk(xi) =
k

n− 1
×

Γ(d
2

+ 1)

π
2
d (rk(xi))d

(16)

qk(xi) =
k

m
×

Γ(d
2

+ 1)

π
2
d (sk(xi))d

(17)

rk(xi) and sk(xi) are the Euclidean distances to the kth nearest-neighbour of xi and

π
2
d/Γ(d

2
+ 1) is the volume of the unit-ball in Rd.

Maximum Mean Discrepancy

MMD is a non-parametric distance estimate between distributions based on the Repro-

ducing Kernel Hilbert Space (RKHS) proposed by Borgwardt et al. The empirical estimate

of the distance between P and Q, as defined by MMD, is

DMMD(P ||Q) =

∥∥∥∥∥ 1

n1

n1∑
i=1

ϕ(xi)−
1

n2

n1∑
j=1

ϕ(xj)

∥∥∥∥∥
H

(18)

where ϕ(x) is the feature space map from x to H .

Then we will leverage the selected metrics to calculate data distribution divergence and

build the connections with classification performance. As illustrated in Fig 14, followings

are the steps of our proposed data distribution detection method:

1. Define the domains: Sample normal data with specific sample rate, time period.

Simulate attack data and combine it with normal data as a domain for binary classi-

fication. Generate several domains across different time periods.

2. Generate dataset pairs between domains: one domain as source training and another
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Figure 14: Divergence-based transferability analysis.

as target testing. Use the base model(e.g. SVM) to get the binary classification

accuracy on target domain. Set certain accuracy (e.g. below 90%) as the threshold to

binarize the accuracy matrix with 1 as accuracy above the threshold and 0 as accuracy

below the threshold. The labels are the indicators to identify data distribution change;

3. Use Kullback–Leibler divergence and Maximum Mean Discrepancy (MMD) with

different kernels to calculate the divergence between domains of each pair matching.

Find the threshold t to binarize the divergence matrix and minimize the mismatching

between binarized divergence matrix and binarized accuracy matrix. The divergence

no greater than t will be the cases where data distribution is identical.

4. Use the metrics with high matching accuracy in Step 3 as features to form a new

dataset for training and validation. Use the binarized accuracy matrix as labels and

apply another base classifier to train a new detector.

5.3.2 Spatiotemporal Domain-Adversarial Training

As mentioned in previous chapters, domain invariant TL is a widely studied domain

adaptation method, the goal is to learn and transfer the domain invariant features from
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Figure 15: Spatiotemporal domain-adversarial transfer learning for IDS in smart grid.

source domain to target domain so the model trained on labeled source data could gener-

alize well on unlabeled target domain data. The most commonly used domain-invariant

method is the domain adversarial neural network (DANN), which usually consists of three

components: a feature extractor, a domain classifier, and a label predictor. Each component

consists of several layers of neural network in the original design.

As discussed in Section 2.2, only a few studies have considered the time series data

in the content of domain adaptation. Purushotham et al. [95] proposed variational recur-

rent adversarial deep domain adaptation (VRADA) and recurrent domain adversarial neu-

ral network (R-DANN) and revealed the possibility to incorporate time series analysis into

DANN. Wilson et al. [96] proposed a Convolutional deep Domain Adaptation model for

Time Series data (CoDATS). They select three layers of fully convolutional network in-

stead of RNN as the feature extractor and achieved state-of-the-art performance on Human

Activity Recognition dataset. The CoDATS is also selected as our comparison method.

Our proposed STDAT differs from existing work in that STDAT considers both the

spatial and temporal information of CPS data by customizing the feature extractor with

two parallel fully convolutional networks

60



Motivated by the success of convolution neural networks on time series classification

problems, in order to extract invariant spatiotemporal features, we proposed to leverage

two fully convolution neural networks (FCN) [129] as parallel feature extractors to extract

spatiotemporal features from the multivariate time series data on time and space dimen-

sions. Specifically, each FCN block consists of 3 layers of 1-D CNN followed by a batch

normalization layer [130] and a ReLU activation layer, where the kernel size of each layer

is 8, 5, 3 without striding. The basic convolution block is

y = W ⊗ x+ b

s = BN(y)

h = ReLU(S)

(19)

Following is the global average pooling layer and fully connected layer. The extracted

features are concatenated horizontally as the last fusion layer of the feature extractor.

After the feature extractor, same as Chapter 4, the label predictor, consisting of layers of

neural networks, utilizes the labeled source data for back-propagation training to retain the

inter-class distance. The divergence of data from two domains in the embedding space will

be mitigated so the trained label predictor will not suffer severe impact of data distribution

shift and achieve acceptable performance.

The overall STDAT proposed in this chapter is illustrated in Fig. 15. The scheme con-

sists of four steps:

1. Follow the proposed data distribution shift detection method to obtain the detector;

2. For the new target domain data, determine if there is a data distribution shift where

we need to apply the STDAT via data distribution shift detector;

3. Train the three networks with the source and target domains to obtain a new fea-

ture space via domain-adversarial training, which eliminates the divergence between

61



domains;

4. Map the testing dataset to the new feature space and predict their class labels.

The main difference of this scheme compared to Chapter 3 and Chapter 4 is that, con-

sider the spatial and temporal information of smart grid, we propose a novel fully convolu-

tional neural network-based spatiotemporal feature extractor to replace the original neural

network-based feature extractor to process the multivariate time series CPS data.

5.4 Experiments and Results

In this section, we first introduce the attack model and then experiments setup on trans-

ferability analysis. Then we will elaborate our experiment setting to evaluate our proposed

methods as well as other baseline models. We choose the IEEE-30 bus system for simula-

tion and the real system load demand data to generate normal operations points to introduce

time variations. And we study the False Data Injection (FDI) attack detection problem and

demonstrate the binary classification accuracy on selected models. We also perform abla-

tion studies of the proposed method with respect to random initial parameters.

5.4.1 Attack Model

For the attack model, similar to Chapter 4 we choose FDI attack in a multivariate time

series context.

For the attack in different time cases, we assumed that the goal of the attacker is to alter

the states with the least efforts and launch the attack vector at the same locations across

different time periods. We conducted a search over different combinations of buses and

identified three buses (Buses 11, 13, and 26) that require the minimal number of compro-

mised measurements. Then the attack vectors were generated by a = Hc and the false
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state c was set with a zero mean and a variance of σ2
c = 0.1. Then we select 10 minutes as

the time step to transform the attack data into time series data.

For the attack in different locations cases, we choose the same mechanism to generate

attack vector, but we assume that the attacker only inject 1 bus when launching the attack,

hence for the IEEE 30 bus system we will have 30 source domains and 30 target domains.

5.4.2 Experiments Setup

Divergence-based Transferability Analysis

For the data distribution shift detection, in order to test the method on real CPS sce-

narios, we select 1 week real load demand (from Jan 1st to 7th 2020) from ISO New

England [5] for data simulation and use 4 hours sliding time window to divide each day

to 21 domains separately. Each domain consists of normal data and simulated attack data.

The domains from day 1 are used for training and day 2 for validation. And data from other

days are used for testing. For the domains on day 1, we train an SVM on 1 domain and

test on the other domain to acquire the classification accuracy matrix. We use 90% as the

threshold to binarize the matrix to 0 and 1 labels which indicate whether there is a data

distribution shift that could have a negative effect on traditional machine learning models.

Then we calculate the KL divergence and MMD with different kernels between domains

as new features for training.

FDI Detection Dataset setup

This chapter selects the IEEE 30-bus system [4] as the simulation scenario and lever-

ages Matlab toolbox MATPOWER to generate data. As illustrated in Fig. 11, the system

consists of 30 buses and 41 branches with a total load demand of 189.2 MW. A total of 142

measurements are used to estimate 30 state variables under DC model.

To establish experiments based on realistic scenarios, we obtained public load demand
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Figure 16: The load demand of ISO New England between Jan. 1 to 7, 2020 [5].

data from ISO New England [5] and synthesize the load demand from January 1 to 7, 2020

as shown in Fig. 16. The demand was reported every 5 minutes, in order to increase the

sampling rate and maintain the trend of demand curve, load demand data is interpolated

with 1-minute interval by Spline method in MATLAB. We calculated and collected all

the normal measurement data over 1-minute intervals through the DC optimal power flow

(DC-OPF) solver in MATPOWER, with the assumption that the default load of the 30-bus

system is the peak load of the week (100%). To generate time series data, we conducted a

sliding window with 10 minutes as the length size and 1 minute as stride size to transform

the normal measurement data into sequential data.

To validate the effectiveness of our proposed model, we set up 3 categories of cases as

follows. For each dataset of these cases, we have 142 features of physical measurements

from the IEEE-30 bus system and 480 instances.

Temporal Variations Cases

Since the load demand and its patterns vary significantly throughout one day, we select

the 4-hour time window data as the source domains and target domains to best capture

the characteristics of data distributions. As illustrated in Table 9, the source data consists

of attack data launched on Day 1 and normal data with the same hours collected on Day

2. Same as our previous work[2], considering that attacks may happen at a different time

64



of the day when the load patterns can be distinctive, we defined 4 cases according to the

variation of load demand: the valley, the ascending slope, the peak, and the descending

slope.

For the target domain and testing dataset, without loss of generality, we assumed that

the attack was launched on Day 5, we also used the 4-hour time window but divided Day 5

into six intervals.

Spatial Variations Cases

For spatial cases, we assume that the load demand pattern will be identical in source

and target domains. We select the same 4 hours time window for source and target data

whereas choosing different attack locations for the target data. The attack is injected only

on one single bus for each domain. By conducting training and testing on 29 × 29 pairs

experiment, the non-transfer methods perform worse when the target bus is 3, 5, 6, thus we

select 1-30 buses as the source domain separately and bus 3, 5, 6 as target domain;

Spatiotemporal Variations Cases

For spatiotemporal cases, we assume that time and locations of attack in the target

domain both vary from the source domain. To this end, we select "valley" as the source

load demand pattern and "9-12" as the target load demand pattern. And we inject 1-30

buses for the source domains and 3, 5, 6 buses for the target domains.

To compare classic machine learning classifiers with the SSDAT, we have chosen four

baseline classifiers: We choose Multilayer Perceptron (MLP) [110] and Support Vector

Machine (SVM) [107] as the non-transfer machine learning methods. The two methods

have demonstrated superior accuracy and computation efficiency in detecting FDI attack.

Further, we select the state-of-the-art multivariate time series classification method FCN

as a time series non-transfer baseline model. We also choose FCN and Convolutional
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Table 9: Temporal Case Setup

#

Source Domain on
Day 0 (attack) and
Day 1 (normal)

Target Domain Testing Dataset

Cases Hours
1 Valley 2–5 2 hours of attack

followed by 2hours
of normal on Day
5.

Balanced data from
target domain

2 Ascending 11–14
3 Peak 17–20
4 Descending 21–24

Table 10: Hyperparameter Setting

Classifiers Hyperparameter
SVM kernel = ’rbf’; C = 1.
MLP architecture of hidden layers = 50-25-10

FCN

Conv1D (filters, kernel size):
(128, 8)-(256, 5)-(128, 3);

padding = ’same’;
activation = ’relu’.

CoDATS
domain adaptation regularizer = 0.5
number of extracted features = 128

STDAT
domain adaptation regularizer = 0.5
number of extracted features = 256

deep Domain Adaptation model for Time Series data (CoDATS) as the comparison method

which only extracts features from the temporal dimension . All classifiers are implemented

in Scikit-learn [111] and Keras with optimized parameters. The hyperparameters are shown

in Table 10. The experiments are running on Windows 10 64 bit operating system with Intel

Core i7-8700 CPU, 16GB ram and NVIDIA Quadro P620 GPU.
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Table 11: Results of Transferability Analysis
Metric KL+GMM KL+kNN MMD (linear) MMD (poly) MMD (rbf) MMD (linear+poly)+SVM MMD (linear+poly)+RF

Train Accuracy 93.1% 56.3% 97.3% 97.0% 52.1% 98.6% 98.0%
Validation Accuracy 86.5% 51.7% 95.4% 93.7% 76.3% 96.2% 95.7%

Test Accuracy 81.4% 38.2% 91.6% 91.1% 64.4% 95.0% 94.8%

Table 12: Results of SVM for transferability analysis
Domains 1 2 3 4 5 6 7 8 9 10

1 100.0% 100.0% 100.0% 99.6% 99.6% 87.3% 74.8% 62.7% 50.2% 50.0%
2 100.0% 100.0% 100.0% 99.6% 99.2% 86.7% 74.2% 62.1% 50.0% 50.0%
3 97.3% 99.8% 100.0% 99.6% 99.6% 91.7% 79.2% 67.1% 54.6% 50.0%
4 81.5% 94.0% 100.0% 100.0% 100.0% 99.8% 87.9% 75.4% 62.9% 50.6%
5 78.5% 91.0% 100.0% 100.0% 100.0% 99.8% 99.8% 94.6% 82.1% 69.8%
6 73.8% 86.3% 98.8% 100.0% 100.0% 100.0% 100.0% 100.0% 99.6% 89.8%
7 68.1% 80.6% 92.9% 99.4% 99.8% 99.8% 100.0% 100.0% 99.6% 99.6%
8 50.0% 58.1% 70.4% 82.9% 95.4% 99.8% 100.0% 100.0% 100.0% 100.0%
9 50.0% 50.0% 58.1% 70.4% 82.9% 95.4% 99.8% 100.0% 100.0% 100.0%
10 50.0% 50.0% 50.0% 51.9% 64.4% 76.9% 89.4% 100.0% 100.0% 100.0%

5.4.3 Results and Analysis

We first evaluate different data shift detection methods for transferability analysis on

ISO New England data.

Transferability Analysis:

Partial classification results of SVM for transferability analysis are shown in Table 12.

By changing the temporal variations through sliding time windows, the classification ac-

curacy will degrade with the increasing temporal divergence between source and target

domains. The results suggest that ml classifiers could retain the accuracy when data distri-

bution divergence is not significant and the transferability analysis could help to avoid the

overhead of applying transfer learning.

The results of transferability analysis are summarized in Table 11. From the table, we

can observe that the MMD with linear and poly kernel have superior performance among

the single divergence detection methods. And the combination of MMD linear and poly

kernel with SVM as the shift detector could achieve the highest testing accuracy. The latter

method takes the advantage of two superior metrics and leverages the SVM to find out the
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Table 13: Comparison of STDAT and Machine Learning Classifiers against Returning At-
tacks at Different Hours

Cases Source Hours Target Hours STDAT CoDATS FCN SVM MLP Best-Case Margin Worst-Case Margin

1
2-5

(Valley)

1-4 97.0% 90.3% 69.6% 67.9% 78.3% +29.0% +6.7%
5–8 100.0% 90.1% 73.8% 66.7% 77.7% +33.3% +9.9%

9–12 100.0% 90.0% 63.6% 65.4% 77.3% +36.4% +10.0%
13–16 98.5% 95.4% 84.3% 65.0% 76.7% +33.5% +3.1%
17–20 90.0% 83.8% 67.4% 64.2% 76.3% +25.8% +6.2%
21–24 86.8% 82.1% 71.9% 62.7% 74.4% +24.1% +4.7%

2
11-14

(Ascending)

1-4 100.0% 97.7% 75.6% 79.0% 74.2% +25.8% +2.3%
5–8 100.0% 94.6% 78.5% 77.7% 73.8% +26.4% +5.4%

9–12 82.7% 80.0% 81.8% 76.5% 72.9% +9.8% +0.9%
13–16 90.0% 71.4% 77.3% 74.4% 71.5% +18.6% +12.7%
17–20 100.0% 100.0% 68.2% 72.5% 70.2% +31.8% +0.0%
21–24 90.0% 83.3% 67.1% 71.0% 69.0% +22.9% +6.7%

3
17-20
(Peak)

1-4 98.3% 89.9% 77.7% 82.9% 73.8% +24.5% +8.4%
5–8 86.7% 84.7% 67.5% 80.4% 71.5% +19.2% +2.0%

9–12 100.0% 80.0% 72.7% 80.4% 71.5% +28.5% +19.6%
13–16 88.8% 80.8% 85.8% 79.9% 70.2% +18.6% +3.0%
17–20 96.3% 89.9% 77.3% 77.1% 69.0% +27.3% +6.4%
21–24 83.2% 80.2% 75.6% 75.0% 68.1% +15.1% +3.0%

4
21-24

(Descending)

1-4 97.5% 92.7% 59.2% 90.0% 77.5% +38.3% +4.9%
5–8 90.5% 85.5% 66.3% 89.8% 75.8% +24.3% +0.7%

9–12 90.0% 80.2% 72.2% 89.4% 75.4% +17.8% +0.6%
13–16 87.8% 85.2% 67.6% 87.5% 74.4% +20.1% +0.3%
17–20 87.2% 85.0% 72.7% 86.3% 72.9% +15.1% +1.6%
21–24 89.5% 85.1% 63.6% 85.0% 71.5% +25.9% +4.4%

nonlinear decision boundary for data distribution shift detection.

FDI Detection with Temporal Variations:

The detection accuracy of STDAT and 4 baseline methods over the 4 cases is illustrated

in Table 13. Overall, the STDAT shows an advanced detection accuracy over other baseline

classifiers in all of the cases. The best-case improvement reaches +38.3% compared to FCN

during Hours 1–4 in Case 4.

The results suggested that STDAT can extract domain-invariant and features and sig-

nificantly improve the FDI detection performance while the non-transfer classifiers fail to

adapt when there is a data distribution shift caused by variations in load demand. The

STDAT achieves better accuracy than CoDATS via extracting discriminative spatial fea-

tures in parallel to further improve the accuracy.

FDI Detection with Spatial Variations:

Then we further test out the classifiers on spatial cases. The results of classification
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(a)

(b)

(c)

Figure 17: Box plot of accuracy with source attack launched on Buses 1-30 and (a) target
attack on Bus 3 (b) target attack on Bus 5 and (c) target attack on Bus 6.
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accuracy as well as the average score of accuracy are reported in Fig. 17a, Fig. 17b and

Fig. 17c. For the spatial cases, since the data distribution of normal data is similar between

source and target domain, the non-transfer methods can identify more attack samples and

achieve higher accuracy compared to temporal cases. However, STDAT still demonstrates

improvements in all of the cases.

The best-case and worst-case average improvements on non-transfer methods reach

23.1% compared to MLP when the target bus is 5 and 6.5% compared to FCN when the

target bus is 5. For CoDATS, the best-case and the worst-case average improvements are

6.7% when the target bus is 3 and 5.3% when the target bus is 5 respectively. The results

suggest that STDAT show a robust performance in spatial cases.

FDI Detection with Spatiotemporal Variations:

We further test out the classifiers on spatiotemporal cases. We report the best per-

formance of SVM, MLP and FCN as comparison and demonstrate the average accuracy of

1-30 bus as the source domain and another bus on target domain for each method in Fig. 18.

For the spatiotemporal cases, the data distribution of both spatial and temporal dimen-

sions further degrades the baseline methods and the proposed STDAT could demonstrate

a better improvement. The averaged improvement is 17.4% and 5.6% compared to the

best of non-transfer methods and CoDATS respectively. The best-case and worst-case av-

erage improvements on non-transfer methods reach 29.9% when the target bus is 28 and

4.7% when the target bus is 6. Through sorting by the margin of STDAT over the best

of other methods, there are 7 out of the top 12 buses are between 20-30. The buses with

the most improvements share similar location information. This indicates that the non-

transfer methods perform worse on buses within this region while STDAT could maintain

a higher accuracy. For CoDATS, the best-case and worst-case average improvements are

12.3% when the target bus is 27 and 0.2% when the target bus is 4. The results suggest

that STDAT show a robust performance on detecting FDI attack with spatial and temporal
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Figure 18: Spatiotemporal cases accuracy.
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variants.

5.5 Discussions

The results have shown that the proposed method can effectively tackle the spatiotem-

poral variations and achieve robust performance against data distribution shifts than classic

machine learning classifiers. However, the limitation of STDAT is that it still undergoes

overhead of training time when transferring between domains. Meanwhile, it is time-

consuming for the model to search initial parameters to converge, the reason may lie in

that the complexity introduced by sophisticated design of the network.

5.6 Summary

The effectiveness of transfer learning in improving robustness has been seen in pre-

vious chapters. However, when to apply transfer learning and the spatial and temporal

information of smart grid haven’t been taken into consideration.

To address those challenges, this chapter has presented a spatiotemporal domain-adversarial

training scheme to detect data distribution shifts and determine when to apply transfer

learning, and transfer the invariant representations and detect returning threats at different

hours or attack locations.

Considering the multivariate time series and spatial characteristics of false data injec-

tion in smart grid, this chapter has developed a spatiotemporal domain-adversarial training

scheme to address the challenges of limited labeled attack samples and varying system

loads and locations at the time of a second attack. To validate the effectiveness of the

proposed method, this chapter selects the widely studied false data injection (FDI) attacks
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as the attack model and simulates data on IEEE-bus system with different system and at-

tack variations. Compared with the state-of-the-art machine learning classifiers, the pro-

posed solution has demonstrated effective accuracy improvements against returning attacks

launched at different times and locations.
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Chapter 6

Conclusions

The smart grid, empowered with the advancement of declining costs in communica-

tions, advanced sensors, and distributed computing technology, is connecting utilities and

customers and providing efficiency, reliability and safety of power delivery. However, the

growing number of interconnections among billions of cyber-physical devices creates com-

plex interdependence and vulnerabilities that will inevitably raise the occurrence of cyber

attacks in power systems. The influences of a cyber-attack could be grievous and disastrous.

Intrusion detection is of great importance for the smart grid. Among the state-of-the-art

intrusion detection methods, machine learning, which undergoes the rigorous process of de-

signing and implementing algorithms with expected performance, has acclaimed significant

attention in the smart grid security research community. A rich line of ML approaches has

significantly enhanced the cyber-physical security monitoring and situational awareness ca-

pacity [49, 50]. However, general machine learning approaches presume that the training

and testing data are generated by identical independent distribution. This assumption may

not hold in many real-world applications, especially for the Cyber-Physical Systems (CPS),

since the system dynamics may alter the data distribution and thus fail the trained model.

This poses a challenge to ML in the CPS scenarios where adaptive inference is required. In

the power systems, the labeled real attack data is often rare and data distribution shift [112]
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may arise when system dynamics and attack patterns change. The trained model on limited

data is brittle, and seemingly slight changes in the data distribution may lead to accuracy

degradations. Such gaps call for effective and robust intrusion detection algorithms that

could mitigate data distribution divergence and help to target advanced persistent threats.

In this work, we first propose a transfer learning scheme based on the domain-adversarial

training framework [38] for intrusion detection against unknown threat variants. The scheme

is capable of integrating different baseline machine learning classifiers to improve their

detection accuracy against unknown threats/variants of different types and locations. Re-

sults have shown that all baseline classifiers can benefit significantly from the domain-

adversarial training and demonstrate robust performance against unseen types and locations

of threats. Discussions on the hyper-parameters have also been provided for deployment in

practice.

Then we propose a self-adaptive intrusion detection scheme based on semi-supervised

domain-adversarial training. The proposed scheme is capable of mapping data shifting

distributions into a unified feature space to improve attack detection performance under

dynamic change load demands. The results have shown that the proposed scheme can

effectively tackle the rarity of attack samples and achieve robust performance against data

distribution shifts than classic machine learning classifiers.

To answer when to apply transfer learning and take spatiotemporal information into

consideration, we propose a spatiotemporal domain-adversarial training scheme to transfer

the invariant representations and detect returning threats at different hours or/and attack

locations. To validate the effectiveness of the proposed method, we select the widely stud-

ied false data injection (FDI) attack as the attack model and simulate data on IEEE-30 bus

system with different system variations and attack variations. Compared with the state-of-

the-art machine learning classifiers, the proposed solution has demonstrated effective de-

tection accuracy improvements against returning attacks launched at different times or/and
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Table 14: Comparison of proposed TL-based IDS schemes

IDS Strengths Limitations

Domain-Adversarial
Transfer Learning

Improve the accuracy of
detection threats with

unseen types or locations.

Not consider the
rarity of attack data.

Semi-Supervised
Domain-Adversarial Training

Improve the accuracy of
detection of the same threat

with temporal variations.

Not consider the
spatial variations

of threats.

Spatiotemporal
Domain-Adversarial Training

Improve the accuracy of
detection of the same threat

with spatiotemporal variations.

Require longer
training time.

locations. The summary of proposed three methods is illustrated in 14.

For the future work, on one hand, we could extend to the current work to other smart

grid systems and CPS scenarios such as IEEE 9-bus, IEEE 14-bus, IEEE 118-bus. [131,

132, 133], and we could further investigate larger scales and more detailed specifications

of both cyber and physical systems, to extend the knowledge transfer ability among events

like normal operations, system faults, and intentional attacks as well as scenarios of hetero-

geneous manufacturers, protocols, and networks. On the other hand, it will be interesting

to investigate feature integration and fusion techniques to further improve the detection

accuracy.
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