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ABSTRACT

Computability of Function Spaces from Harmonic Analysis

Kenzy Abdel Malek, MSc.

Concordia University, 2020

In computer science and mathematics, a computable function is one for which a computer

program exists and can give its values in finite time. We explore notions of computability

for function spaces such as the Hardy space H1(R) and the Besov space Bp(T) from har-

monic analysis. After a comprehensive introduction to computable analysis and studying

several function spaces, we establish some original results. Namely, that there exists a dense

computability structure on the Besov space.
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Chapter 1

Introduction

The theory of computation (or recursion theory) deals with the study of computable func-

tions. Broadly speaking, in computer science and mathematics, a computable function is

one for which a computer program exists and can give its values in finite time. From another

point of view, such objects are said to be computable if they can be approximated by other

objects of the same nature which are already known to be computable. The existence of

an approximation to a function, for example, can be seen as the mathematical analogue of

what computer scientists refer to as the existence of a Turing Machine for that function.

Thanks to Alan Turing, the theory of computability has been very popular within the field

of theoretical computer science. However, computability within the context of mathematical

analysis is not as common. In fact, one can see that mathematicians such as Banach and

Mazur in [1] and Grzegorczyk in [10] were studying such concepts as early as 1937. Recent

work in the field of computability involves more well-known concepts in mathematics, such

as Julia sets in [4], harmonic measure in [2], or even the Blaschke product in [15].

The interaction between computability and analysis can lead to surprising results. For

instance, it was found in [18] that there exist solutions of the form u(x1, ..., xn, t) to the wave

equation which are computable functions at time t = 0, but not at time t = 1. Moreover,

mathematicians have developed several theories and definitions in order to incorporate the

notion of computability in familiar settings such as Banach spaces, and metric spaces [3].

Despite this, the theory of computability within analysis is still not uniform and there exist
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many seemingly di↵erent schools of thought within the field. As such, the intersection

between analysis and computability remains wide open.

Our goal is to explore notions of computability for function spaces such as the Hardy space

H1(R) and the Besov space Bp(T) from harmonic analysis. Chapter 2 gives a comprehensive

overview of many notions from computable analysis (the analysis of computable objects in

mathematics), which range from the most basic notion of a computable function f : N ! N

to more advanced notions such as computable metric spaces and computability structures.

Next, Chapter 3 gives some background on the harmonic analysis side and is presented in a

way that highlights the progression of ideas and spaces for which we wish to establish notions

of computability. It begins with the Hardy space and ends with the Besov space, the latter

begin the space which our results are concerned with. Finally, Chapter 4 presents original

results, namely that there exists a dense computability structure on the Besov space.

To the best of our knowledge, notions involving the computability of function spaces

found in harmonic analysis have not previously been studied. As such, we end by noting

that our work is only the beginning of a long list of possible results concerning the intersection

between the two fields and state a couple of open questions which would be natural to address

given our results.
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Chapter 2

Background in Computability

In order to introduce concepts of computability in the context of real function spaces, one

needs to define what it is for a function from N ! R to be computable and the reason for

this will be clear in our work to follow. To do this, we build up to such a definition, starting

from the naturals and working our way up to the reals. This chapter is meant to be a self

contained introduction to computability, as it is still a new branch of mathematical logic.

Most of the notions presented in this chapter can be found in [12, 18, 17, 23, 19] and [6].

First, we begin with functions mapping to the natural numbers.

2.1 Computability on the Naturals

We denote the set N \ {0} by N+.

Definition 2.1.1. Let n 2 N+. For i 2 {1, . . . , n}, we define the functions

• Ini : Nk ! N, Ini (x1, . . . , xn) = xi, the projection function onto the i-th coordinate of

an n tuple of integers,

• s : N ! N, s(x) = x+ 1, the successor function,

• z : N ! N, z(x) = 0, the zero function.

We say that Ini , s, and z are initial functions.
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These functions are called initial functions since, as we shall see shortly, they are at the base

of all computable functions mapping to the naturals.

Definition 2.1.2. Let n, k 2 N+. Let g : Nn ! N and f1, f2, . . . , fn : Nk ! N. Now,

consider the function h : Nk ! N,

h(x1, . . . , xk) = g
�

f1(x1, . . . , xk), ..., fn(x1, . . . , xk)
�

.

We say that h is obtained by composition of the functions g and f1, ..., fn.

Definition 2.1.3. Suppose f : Nn ! N and g : Nn+2 ! N. For h : Nn+1 ! N, if

h(0, y1, . . . , yn) = f(y1, . . . , yn)

h(x+ 1, y1, . . . , yn) = g
�

h(x, y1, . . . , yn), x, y1, . . . , yn
�

,

then h is said to be obtained by primitive recursion from f and g.

Let n 2 N+ and let g : Nn+1 ! N be a function such that for any (x1, . . . , xn) 2 Nn,

there exists a y 2 N such that g(x1, . . . , xn, y) = 0. Now consider the function f : Nn ! N

be defined as:

f(x1, . . . , xn) = min{y 2 N : g(x1, . . . , xn, y) = 0}.

The process of obtaining the smallest such integer is one which will be important later on.

For this reason, we define it as the µ - operator.

Definition 2.1.4. For n 2 N+ and g defined as above, we say that f is obtained from g

using the µ-operator if

µy
�

g(x1, . . . , xn, y) = 0
�

= min{y 2 N : g(x1, . . . , xn, y) = 0} = f(x1, . . . , xn),

We have now defined the most basic operations and functions with range N and are ready

to introduce the concept of computability of a function.

Definition 2.1.5. For k 2 N+, we say a function f : Nk ! N is computable if it can be

obtained in finitely many steps from initial functions using either composition, primitive

recursion or the µ-operator.
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In the literature, the terms computable and recursive are often used interchangeably.

Each initial function is trivially computable. Because of this, there are many ways of con-

structing a computable function from simpler functions which are known to be computable.

This is in fact how one can show that a given function is computable and we illustrate this

idea below.

Example 2.1.1. Let k 2 N+. For a 2 N let ca : Nk ! N

ca(x) = a 8x 2 Nk.

Then ca is computable for any a 2 N. This can be seen by induction on a. First, we have

that c0 : Nk ! N

c0(x) = 0, 8x 2 Nk.

Since

c0(x) = z(Ik1 (x)),

where z is the zero function. From this, it follows that c0 is computable. Assume now that

ca is computable for some a 2 N. We have that

ca+1(x) = a+ 1 = s(a) = s(ca(x)),

where s is the successor function. So, as ca+1 is a composition of computable functions, it

must be computable. Thus, ca is computable for all a 2 N by induction.

Suppose we wish to show that a function on N is computable. To do so, we would need

to use Definition 2.1.3 with a suitable function whose domain is one dimension less than that

of the set N, which does not make sense. Hence, in order to show that a function on N is

computable, the following proposition and its corollary can be used instead.

Proposition 2.1.6. Let a 2 N and g : N2 ! N a computable function. Let h : N ! N be

defined by

h(0) = a

h(x+ 1) = g(h(x), x), 8x 2 N.

Then h is computable.

5



Proof. Let H : N2 ! N be defined by

H(x, y) = h(x).

Since for any x 2 N+, h(x) = H(x, 0), it su�ces to show that H is computable. To that

end, we see that

H(0, y) = h(0) = ca(y),

H(x+ 1, y) = g(H(x, y), x).

Letting now

F : N ! N, f(y) = ca(y)

G : N3 ! N, G(a, b, c) = g(I31 (a, b, c), I
3
2 (a, b, c)),

which are both computable by definition or by composition of computable functions, we get

that H is computable, since it can be obtained by primitive recursion of F and G.

Corollary 2.1.7. Let a 2 N and let g : N ! N be a computable function. Now consider

h : N ! N defined by

h(0) = a

h(x+ 1) = g(h(x)).

Then h is computable.

Proof. Define the function g0 : N2 ! N by g0(x, y) = g(x). Then g0 is computable since it

is the composition of g and the projection function onto the first coordinate. Moreover, we

have

h(0) = a

h(x+ 1) = g0(h(x), x).

Hence, by Proposition 2.1.6, it follows that h is computable.

In fact, the result which is more useful in showing that a function mapping N to N is

computable is Corollary 2.1.7, simply because it is simpler to apply. Now we show some

examples of computable functions which are obtained from other computable functions.
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Example 2.1.2. Let f : N2 ! N be a computable function and let g : N2 ! N be defined by

g(x, y) = f(y, x).

Then g is computable, since it can be obtained by composition of projection functions and f.

Namely,

g(x, y) = f(I22 (x, y), I
2
1 (x, y)).

Consider the functions sgn, sgn : N ! N defined by

sgn(x) =

8

>

<

>

:

1 if x � 1

0 otherwise

and

sgn(x) =

8

>

<

>

:

0 if x � 1

1 otherwise.

These two functions will be very useful in proofs to come, so, for the sake of exposition, we

show that they are computable.

Proposition 2.1.8. sgn and sgn are computable functions.

Proof. Define g, g0 : N2 ! N by g(x, y) = 1 and g0(x, y) = 0 8(x, y) 2 N2. We first note that

g and g0 are computable by Example 2.1.1, since they are just constant functions. Moreover,

we have

sgn(0) = 0

sgn(x+ 1) = g(sgn(x), x).

and

sgn(0) = 1

sgn(x+ 1) = g0(sgn(x), x).

Hence, by Proposition 2.1.6, sgn and sgn are computable.
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Example 2.1.3. The function s : N ! N

s(x) =

8

>

<

>

:

x� 1 if x � 1

0 otherwise

is computable. This can be seen by considering the function g : N2 ! N, g(x, y) = I22 (x, y),

which is computable since it is an initial function. Then we have that

s(0) = 0

s(x+ 1) = g(s(x), x),

Hence, by Proposition 2.1.6, s is computable.

Since, until now, we have only considered functions whose range is N, it is natural to

define a modified subtraction. That is, we require a function that, gives the di↵erence of two

natural numbers when it is nonnegative, and 0 when the di↵erence would be negative.

Definition 2.1.9. For x, y 2 N we define the modified subtraction by

x .� y =

8

>

<

>

:

x� y if x � y

0 otherwise

Proposition 2.1.10. Let f : N2 ! N, f(x, y) = x .� y. Then f is computable.

Proof. Define g : N2 ! N by

g(x, y) = f(y, x).

By Example 2.1.2, in order to show that f is computable, it is enough to show that g is

computable. To do this, we must find computable functions F : N ! N and G : N3 ! N

such that g can be obtained by primitive recursion using F and G, as in Definition 2.1.3. To

that end, we can see that

g(0, y) = y .� 0 = I11 (y)

g(x+ 1, y) = y .� (x+ 1) = s(I31 (g(x, y), x, y)),

8



where s is the computable function from Example 2.1.3. So letting F (a) = I11 (a) and

G(a, b, c) = s(I31 (a, b, c)), we have that these two functions are computable by composition

and are such that

g(0, y) = F (y)

g(x+ 1, y) = G(g(x, y), x, y).

The proposition below will be assumed to be true, without proof, but it can easily be

shown using primitive recursion. It will be useful in proving the statements to come.

Proposition 2.1.11. Suppose f, g : Nk ! N are computable functions. Then, f + g and fg

are computable as functions from Nk to N.

Corollary 2.1.12. Let f1, . . . , fn : Nk ! N be computable functions. Then f1+ · · ·+ fn and

f1 · · · · · fn : are computable as functions from Nk to N.

Another common operation is that of taking the absolute value of the di↵erence between

two natural numbers. Hence, we consider the example below, along with sketch of the proof

as to why this function is computable.

Example 2.1.4. Let A : N2 ! N, A(x, y) = |x� y|. Then A is computable, since for all

x, y 2 N, we have

|x� y| = (x .� y) + (y .� x).

Indeed, this can be seen by checking that the left and right hand sides of the equation are

equal in two cases: when x  y and when y  x. Let f, g : N2 ! N be the computable

functions from Proposition 2.1.10 and the proof of this same proposition, respectively. Then,

A(x, y) = f(x, y) + g(x, y).

So by Corollary 2.1.12, it follows that A is computable.

We continue our exposition by considering the some more common operations between

natural numbers, such as the floor and remainder of a division.
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Example 2.1.5. Let f : N2 ! N be defined by

f(x, y) =

8

>

<

>

:

j

x
y

k

if y � 1

0 if y = 0.

The fact that f is computable can be seen as follows: let x, y 2 N, y � 1 and let k =
j

x
y

k

.

Then

k  x

y
< k + 1 =) ky  x < (k + 1)y.

Thus,

k = min{z 2 N : x < (z + 1)y}.

We now note that for a, b 2 N

a < b () b .� a > 0 () sgn(b .� a) = 0.

By this fact, we have that for x, y, z 2 N

x < (z + 1)y () sgn((z + 1)y .� x) = 0. (⇤)

Now define g : N3 ! N by g(x, y, z) = sgn((z + 1)y .� x) sgn(y). We can see that g is

computable by considering the functions t, u, v : N3 ! N

t(x, y, z) = (z + 1)y = (s � I33 )I32 (x, y, z)
u(x, y, z) = t(x, y, z) .� x

v(x, y, z) = sgn(y)

which are all computable functions (since they are compositions of functions which were

previously shown to be computable). Then, g is computable since it is the product of two

computable functions, namely g(x, y, z) = u(x, y, z) · v(x, y, z). Moreover, it follows from (⇤)
that

f(x, y) = µz(g(x, y, z) = 0) 8x, y, z 2 N.

So f can be obtained using the µ-operator with a computable function, meaning that f is

computable.

10



Example 2.1.6. Let f be defined as in Example 2.1.5. Let g : N2 ! N be defined by

g(x, y) = x .� f(x, y) · y.

This function, which in fact turns out to be the remainder of the division of x by y (if

y > 0), is computable. We first note that the we know there exist u, v 2 N such that

x = yu+ v, and 0  v < y. Hence, dividing by y on both sides yields

x

y
= u+

v

y
and 0  v

y
< 1.

It can therefore be seen that
j

x
y

k

= u. Thus,

x = y ·
�

x

y

⌫

+ v =) v = x� y ·
�

x

y

⌫

.

So, this means that g(x, y) = v and hence g is computable, since the modified subtraction is

computable.

Following the work we presented, one can consider other functions with range being N

and show that they are computable. In other words, the possibilities are endless. However,

we now move on to other notions of computability within the context of the natural numbers.

For example, computability notions can also be defined when subsets of Nk are involved.

Definition 2.1.13. Let S ✓ Nk. We way that S is a computable set in Nk if the function

�S : Nk ! N is computable.

Proposition 2.1.14. Let S and T be computable sets in Nk. Then S [ T, S \ T and Sc

are computable.

Proof. Since S and T are computable, we know that the functions �S and �T are computable.

Moreover, for each x 2 Nk, we have

�S[T (x) = sgn(�S(x) + �T (x)), �S\T (x) = �S(x) · �T (x), �Sc(x) = 1 .� �S(x).

These are computable functions by either composition of functions which we know are com-

putable (for the first and last) or Corollary 2.1.13 (the second).
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Proposition 2.1.15. Suppose f : Nk ! N is computable. Then, the set

S =
�

x 2 Nk : f(x) = 0
 

is computable.

Proof. We can see that �S(x) = sgn(f(x)), and that this function is computable by argu-

ments similar to those used before.

Proposition 2.1.16. Suppose f, g : Nk ! N are computable. Then, the set

S =
�

x 2 Nk : f(x) = g(x)
 

is computable.

Proof. We can write

S =
�

x 2 Nk : A(f(x), g(x)) = 0
 

,

where A(x, y) = |x� y| is as defined in Example 2.1.4. It then follows that

�S(x) = sgn(A(f(x), g(x))),

which is computable.

Example 2.1.7. The set � = {(x, y) : y|x} is computable. This can be seen by letting g be

the function from Example 2.1.6 and x, y 2 N. We have

y|x () g(x, y) = 0.

So,

��(x, y) = sgn(g(x, y)) 8x, y 2 N.

And so since g and sgn are computable functions, it follows that �� is computable by com-

position and hence that � is a computable set.

Example 2.1.8. The set 2N = {2x : x 2 N} is computable. We can let � be the set from

Example 2.1.7 and therefore have

�2N(x) = ��(x, c2(x)),

which is a computable function by composition.

12



Our brief exposition of computable subsets of Nk now allows us consider functions which

can be defined by cases and show that they can be computable under the right assumptions.

This is in fact quite powerful, as it widens the set of functions for which computability can

be established.

Proposition 2.1.17. Let k, n 2 N+. Let f1, . . . , fn : Nk ! N be computable functions and

let S1, . . . , Sn ✓ Nk be computable sets. Assume that for each x 2 Nk there exists a unique

i 2 {1, . . . , n} such that x 2 Si. Then, the function F : Nk ! N defined by

F (x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

f1(x) if x 2 S1

...

fn(x) if x 2 Sn

is computable.

Proof. For each x 2 Nk we have

F (x) = f1(x)�S1(x) + · · ·+ fn(x)�S
n

(x).

Since all of the sets in question are computable, so are their characteristic functions. It

follows from Corollary 2.1.12 that F is a computable function.

We now turn to results involving functions who have higher dimensional ranges.

Definition 2.1.18. Let n 2 N+ and f : Nk ! Nn. Then there exist unique functions

f1, . . . , fn : Nk ! N such that for any x 2 Nk,

f(x) = (f1(x), . . . , fn(x)).

We say that f1, . . . , fn are the component functions of f .

Definition 2.1.19. A function f : Nk ! Nn is computable if and only if each of its compo-

nent functions are computable.

Proposition 2.1.20. Let n 2 N+, f : Nk ! Nn and g : Nn ! N be computable functions.

Then, g � f : Nk ! N is a computable function.

13



Proof. Let f1, . . . , fn : Nk ! N be the component functions of f and x 2 Nk. We have

g � f(x) = g(f(x)) = g(f1(x), . . . , fn(x)).

Since g and the component functions of f are computable, it follows that g �f is computable

by composition.

Proposition 2.1.21. Let n, l 2 N+, f : Nk ! Nn and g : Nn ! Nl be computable functions.

Then, g � f : Nk ! Nl is a computable function.

Proof. Let x 2 Nk. We have

g � f(x) = g(f(x)) = (g1(f(x)), . . . , gl(f(x))) = (g1 � f(x), . . . , gl � f(x)).

By Proposition 2.1.20, we have that gi � f is computable for each i 2 {1, . . . , l}. Hence, the
component functions of g � f are computable and so g � f is a computable function.

The definitions above only deal with functions whose range is the natural numbers.

Because we wish to see what it means for a function ranging on the reals to be computable,

we must therefore work our way up to such a definition. In other words, we must go from the

naturals, to the rationals, to the reals. This takes us to the next step, which is computability

on the integers.

2.2 Computability on the Integers

Here we now consider functions from Nk to Z. Since to any integer z, one can associate

a pair of natural numbers r, p via the expression z = (�1)rp, the definition of computable

functions with range Z follows quite nicely. In this subsection, we let k 2 N+, unless stated

otherwise.

Definition 2.2.1. We say that f : Nk ! Z is computable if there exist computable functions

p, r : Nk ! N such that for any x 2 Nk

f(x) = (�1)r(x)p(x).

14



It is also known that an integer can be written as the di↵erence between two natural

numbers. This yields an equivalent characterization of computable functions with range Z.

Proposition 2.2.2. Let f, g : Nk ! N be computable functions. Let h : Nk ! Z be defined

by

h(x) = f(x)� g(x).

Then h is computable in the sense of Definition 2.2.1.

Proof. We let p : Nk ! N be

p(x) = |f(x)� g(x)| = A(f(x), g(x)),

where A : N2 ! N is the function from Example 2.1.4. So, p is computable by composition,

since A, f, g are computable. Moreover, we can consider the set S = {x 2 Nk : f(x) < g(x)}
and define the function r : Nk ! N by

r(x) =

8

>

<

>

:

1 if x 2 S

0 otherwise
.

We can see that S is a computable set since we can express its characteristic function as

�S(x) = sgn(g(x) .�f(x)), which is a computable function. Thus, r is a computable function

and since we have that for any x 2 Nk

h(x) = (�1)r(x)p(x),

it follows that h is computable.

Proposition 2.2.3. Suppose f : Nk ! Z is computable. Then there exist computable

functions u, v : Nk ! N such that

f(x) = u(x)� v(x) 8x 2 Nk.

Proof. Suppose f is computable. Then, there exist computable functions p, r : Nk ! N such

that

f(x) = (�1)r(x)p(x).
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We notice now that we can write

f(x) =

8

>

<

>

:

c0(x)� p(x) if r(x) is odd

p(x)� c0(x) if r(x) is even
.

Consider the functions

u(x) =

8

>

<

>

:

c0(x) if x 2 Sc

p(x) if otherwise
.

and

v(x) =

8

>

<

>

:

p(x) if x 2 Sc

c0(x) otherwise
.

where S = {x 2 Nk : r(x) is even}. Since S is a computable set (�S(x) = �2N(r(x))), it

follows from Proposition 2.1.17 that u, v are computable functions. Finally, we have that

f = u� v.

The two previous prepositions therefore suggest that a function f : Nk ! Z is computable

if and only if it can be written as the di↵erence of tow computable functions from Nk to N.

In a similar fashion to the previous section, we now show some useful results about

computability of this wider class of functions.

Proposition 2.2.4. Let f, g : Nk ! Z be computable functions. Then the functions

�f, f + g, f · g : Nk ! Z are computable.

Proof. Since f and g are computable, there exist computable functions uf , ug, vf , vg : Nk ! N

such that

f(x) = uf (x)� vf (x), and g(x) = ug(x)� vg(x).

We can now express the functions in question as follows:

�f(x) = �(uf (x)� vf (x)) = vf (x)� uf (x),

f + g(x) = uf (x)� vf (x) + ug(x)� vg(x) = (uf + ug)(x)� (vf + vg)(x).

Moreover, we note that since f, g are computable, by Definition 2.2.1, we also have that

there exist computable functions rf , pf , rg, pg : Nk ! N such that

f(x) = (�1)rf (x)pf (x), g(x) = (�1)rg(x)pg(x).
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Finally,

fg(x) = (�1)rf (x)+r
g

(x)pf (x)pg(x).

From these expressions for the functions in question, it follows that all three are computable.

One can consider more functions with range Z and show they are computable by argu-

ments which are similar to those presented above. We now again move on to computability

notions involving subsets on the integers. The results presented may seem repetitive, and

this is because their analogues were presented in the previous section. We only re-visit them

for the sake of consistency.

Proposition 2.2.5. Suppose f : Nk ! Z be computable functions. Then the sets

S =
�

x 2 Nk : f(x) = 0
 

and T =
�

x 2 Nk : f(x) > 0
 

are computable.

Proof. Since f is computable, we have that for any x 2 Nk, f(x) = (�1)r(x)p(x), where

r, p : Nk ! N are computable functions. Now,

f(x) = 0 () p(x) = 0.

So, by Proposition 2.1.15, S is computable. Similarly,

x 2 T () f(x) > 0 () r(x) 2 2N, p(x) 6= 0.

To show T is computable, we define the sets

T1 =
�

x 2 Nk : r(x) 2 2N
 

, T2 =
�

x 2 Nk : p(x) 6= 0
 

.

T1 is computable since its characteristic function is the composition of computable func-

tions. Namely, �T1 = �2N(r(x)). Next, T2 is computable since it is the complement of the

computable set from Proposition 2.1.15. Moreover, since T = T1 \ T2, it follows that T is

computable.

Corollary 2.2.6. Let f, g : Nk ! Z be computable. Then the sets

S =
�

x 2 Nk : f(x) = g(x)
 

T =
�

x 2 Nk : f(x) < g(x)
 

V =
�

x 2 Nk : f(x)  g(x)
 

17



are computable.

Proof. Let h : Nk ! Z, h(x) = g(x)� f(x). So, h = g + (�f). Note that

h(x) = 0 () g(x) = f(x) () x 2 S.

So, it follows that

S =
�

x 2 Nk : h(x) = 0
 

,

which is computable by Proposition 2.2.5. The proof for the sets T and V is similar and is

therefore omitted.

We are now ready to move on to computability of functions whose range is the rationals.

2.3 Computability on the Rationals

The contents of this section are again presented in a similar way to the previous sections. We

begin with the key definition of a computable function from Nk to Q. Since any rational num-

ber z can be associated with a triple of natural numbers via the expression z = (�1)rp/q, this

will yield the following intuitive definition. In this section k 2 N+, unless stated otherwise.

Definition 2.3.1. We say that f : Nk ! Q is computable if there exist computable functions

p, q, r : Nk ! N such that q(x) 6= 0 8x 2 Nk and

f(x) = (�1)r(x)
p(x)

q(x)
, 8x 2 Nk.

Now, we also know that any rational number can be written as the quotient of two

integers. This yields the following proposition, which we state without proof.

Proposition 2.3.2. A function f : Nk ! Q is computable if and only if there exist com-

putable functions u : Nk ! Z and v : Nk ! N such that

f(x) =
u(x)

v(x)
, 8x 2 Nk.

So far, we have seen di↵erent definitions of computable functions depending on their

range. Since, for example, Z ⇢ Q, a natural question to ask would be, if a function is

computable as a function from Nk to Z, will is still satisfy the definition of a computable

function from Nk to Q? We address this question in the following proposition.
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Proposition 2.3.3. If f : Nk ! Z is computable, then f is computable as a function from

Nk to Q. Conversely, if f : Nk ! Z is computable as a function from Nk to Q, then f is

computable as a function Nk ! Z.

Proof. Suppose f is computable as a function from Nk ! Q. Then, by Definition 2.3.1, we

have

f(x) = (�1)r(x)
p(x)

g(x)
,

where p, q, r : Nk ! N are computable. Moreover,

f(x) 2 Z =) p(x)

q(x)
2 N

=) p(x)

q(x)
=

�

p(x)

q(x)

⌫

.

We now consider the function h : N2 ! N defined by h(x, y) =
j

x
y

k

, which is computable by

Example 2.1.5 and can conclude the following series of implications:

=) p(x)

q(x)
= h(p(x), q(x))

=) f(x) = (�1)r(x)h(p(x), q(x)).

Hence, since p, q are computable functions from Nk to N and h is a computable function from

N2 to N, it follows that h � (p, q) is a computable function from Nk to N by composition. So,

f satisfies Definition 2.2.1, from which it follows that f is computable as a function from Nk

to Z.

We now again have results involving the sum and multiplication of computable functions

mapping to the rational numbers.

Proposition 2.3.4. Let f, g : Nk ! Q be computable. Then, the functions �f, f + g, fg :

Nk ! Q are computable. Moreover, if f(x) 6= 0 8x 2 Nk, then the function 1
f
: Nk ! Q is

computable.

Proof. Since f, g : Nk ! Q are computable, we have computable functions uf , ug : Nk ! Z

and vf , vg : Nk ! N such that for any x 2 Nk,

f(x) =
uf (x)

vf (x)
, g(x) =

ug(x)

vg(x)
.
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Claim 1. �f is a computable function.

Proof of claim: For any x 2 Nk, we can write

(�f)(x) =
�uf (x)

vf (x)
.

Letting u�f = �uf , this is a computable function from Nk to Z and v�f = vf also a

computable function from Nk to N, we get that �f is computable.

Claim 2. f + g is a computable function.

Proof of claim: For any x 2 Nk, we can write

(f + g)(x) =
uf (x)

vf (x)
+

ug(x)

vg(x)
=

ufvg(x) + ugvf (x)

vfvg(x)
.

Letting uf+g = ufvg +ugvf , this is a computable from Nk to Z (since the u’s are computable

from Nk to Z and the v’s are computable from Nk to N and so to Z) and vf+g = vfvg is also

a computable function from Nk to N. From this, we get that f + g is computable.

Claim 3. fg is a computable function.

Proof of claim: For any x 2 Nk, we can write

(fg)(x) =
uf (x)

vf (x)
· ug(x)

vg(x)
=

ufug(x)

vfvg(x)
.

Letting ufg = ufug, this is a computable function from Nk to Z (since it is the product of

computable functions) and vfg = vfvg is also a computable function from Nk to N (again,

because it is the product of computable functions). From this, we get that fg is computable.

Claim 4. 1
f
is a computable function.

Proof of claim: Since f is computable, we also know that there exist functions rf , pf , qf :

Nk ! N computable such that for any x 2 Nk for which f(x) 6= 0, we can write

f(x) = (�1)rf (x)
pf (x)

qf (x)
.

Then,
✓

1

f

◆

(x) = (�1)rf (x)
qf (x)

pf (x)
.

Letting r 1
f

= rf , p 1
f

= qf and q 1
f

= pf all computable functions by definition, we get that 1
f

is computable.
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In addition to results involving the computability of functions, we can also look at analytic

properties of computable functions. Namely, that any computable function from Nk to Q is

in some sense computably bounded.

Proposition 2.3.5. Let f : Nk ! Q be computable. Then there exists a computable function

M : Nk ! N such that |f(x)| < M(x) for any x 2 Nk.

Proof. Since f is computable as a function from Nk ! Q, we can write

f(x) = (�1)r(x)
p(x)

q(x)
,

where p, q, r : Nk ! N are computable functions. Then, we have that

|f(x)| = p(x)

q(x)
 p(x) < p(x) + 1.

Letting M(x) = u(x) + 1, which is a computable function from Nk ! N yields the desired

result.

Finally, we can state the following result which ties back to our discussion of functions

with higher dimensional ranges in the first section of this chapter.

Proposition 2.3.6. Suppose f : Nk ! Q and g : Nn ! Nk are computable. Then the

function f � g : Nn ! Q is computable.

Proof. There exist computable functions r, p, g : Nk ! N such that

f(x) = (�1)r(x)
p(x)

q(x)
, 8x 2 Nk.

Hence,

f(g(x)) = (�1)r(g(x))
p(g(x))

q(g(x))
, 8x 2 Nn.

From this and Proposition 2.1.20, it follows that f � g is computable.

Now, since any real number can be approximated by a sequence of rational numbers, we

will use this fact in order to continue our exposition to functions from N to R, therefore

building our way up to finally study real-valued functions.
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2.4 Computability on the Reals

In this section we again let k 2 N+, unless otherwise stated. The exposition in this section

is of particular importance for our original results in Chapter 4.

Definition 2.4.1. A real-valued function f : Nk ! R is computable if there exists a com-

putable F : Nk+1 ! Q such that

|f(x)� F (x, i)| < 2�i, 8x 2 Nk, 8i 2 N.

We say that F is a computable approximation of f .

Hence, a computable real-valued function is one whose values can be uniformly approxi-

mated by some computable rational valued function.

Proposition 2.4.2. Let f : Nk ! R be computable. Then there exists a computable function

M : Nk ! N such that |f(x)| < M(x) for any x 2 Nk.

Proof. Since f is computable, we have that there exists a computable function F : Nk+1 ! Q

such that

|f(x)� F (x, i)| < 2�i, 8x 2 Nk, 8i 2 N.

Thus, for any i 2 N, by the reverse triangle inequality and Proposition 2.3.5 (which gives us

an upper bound on the function F ) it follows that

|f(x)|�MF (x, i) < |f(x)|� |F (x, i)| < 2�i.

In particular, for i = 0, we have

|f(x)| < 1 +MF (x, 0).

Letting M(x) = MF (x, 0) + 1, which is a computable function from Nk ! N, yields the

desired result.

Proposition 2.4.3. Suppose f : Nk ! R is computable and let F : Nk+1 ! Q be its

computable approximation. Then there exists a computable M : Nk ! N such that |F (x, i)| <
M(x) for any x 2 Nk and i 2 N.
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Proof. By definition of computable approximation, for each i 2 N, we have

|F (x, i)|� |f(x)|  |f(x)� F (x, i)| < 2�i.

By Proposition 2.4.2, we have that we can bound f above by the computable function

Mf : Nk ! N. Thus, we get

|F (x, i)|  |f(x)|+ 2�i < |f(x)|+ 1 < Mf (x) + 1.

Letting M(x) = Mf (x) + 1, which is a computable function from Nk ! N yields the desired

result.

Lemma 2.4.4. Suppose f : Nk ! R is any function (non necessarily computable) and

F : Nk+1 ! Q, M : Nk ! N are computable functions such that

|f(x)� F (x, i)| < M(x) · 2�i, 8x 2 Nk, 8i 2 N,

then f is computable.

Proof. Since M : Nk ! N, it follows that for any x 2 Nk, M(x) < 2M(x). Hence, for any x,

M(x)2�M(x) < 1 =) M(x)2�M(x)2�i < 2�i.

Thus,

|f(x)� F (x, i+M(x))| < M(x)2�(i+M(x)) < 2�i.

Defining F 0 : Nk+1 ! Q as

F 0(x, i) = F (x, i+M(x)),

it follows that F 0 is computable (by Proposition 2.3.6) and so f is computable, since there

exists a computable function F 0 : Nk+1 ! Q such that for any x and i,

|f(x)� F 0(x, i)| < 2�i.

We now turn to results involving sums and products of computable real-valued functions,

as we have done in the past. The proofs of these results are significantly more involved than

those of simpler ranges such as Z and Q.
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Proposition 2.4.5. Let f, g : Nk ! R be computable functions. Then �f, |f |, f+g : Nk ! R

are computable.

Proof. Since f, g : Nk ! R are computable, there exist F,G : Nk+1 ! Q such that

8x 2 Nk, i 2 N

|f(x)� F (x, i)| < 2�i, and |g(x)�G(x, i)| < 2�i.

Claim 1. �f is a computable function.

Proof of claim: This follows from the fact that

|�f(x)� (�F (x, i))| = |(�1)(f(x)� F (x, i)|
= |f(x)� F (x, i)|
< 2�i.

So, since �F is computable, this implies that �f is computable.

Claim 2. |f | is a computable function.

Proof of claim: We have that

||f(x)|� |F (x, i)||  |f(x)� F (x, i)| < 2�i.

Since F is computable, so is |F | by the fact that

|F (x, i)| = (�1)c0(x,i)
u(x, i)

v(x, i)
.

It now follows immediately that |f | is computable.

Claim 3. f + g is a computable function.

Proof of claim: We have that for any x 2 Nk and i 2 N,

|f(x) + g(x)� (F (x, i) +G(x, i))|  |f(x)� F (x, i)|+ |g(x)�G(x, i)| < 2 · 2�i = 2�i+1.

In particular, we have

|(f + g)(x)� (F +G)(x, i+ 1)| < 2�i.

The function (F + G)(x, i + 1) is computable since it is the composition of computable

functions. From this, it follows that f + g is computable.
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Proposition 2.4.6. Let f, g : Nk ! R be computable. Then, fg : Nk ! R is computable.

Proof. Since f and g are computable, there exist computable functions F,G : Nk+1 ! Q

such that for any x 2 Nk and i 2 N,

|f(x)� F (x, i)| < 2�i, |g(x)�G(x, i)| < 2�i.

So it follows that

|fg(x)� FG(x, i)| = |f(x)g(x)� f(x)G(x, i) + f(x)G(x, i)� F (x, i)G(x, i)|
 |f(x)g(x)� f(x)G(x, i)|+ |f(x)G(x, i)� F (x, i)G(x, i)|
= |f(x)||g(x)�G(x, i)|+ |G(x, i)||f(x)� F (x, i)|
 Mf (x)2

�i +MG(x)2
�i (⇤)

= 2�i(Mf (x) +MG(x)).

Where (⇤) follows by Propositions 2.4.2 and 2.4.3. Now, since Mf and MG are computable

functions, so is their sum. Thus, by Lemma 2.4.4, fg is computable.

Proposition 2.4.7. Let f : Nk ! R be a computable function such that f(x) 6= 0 8x 2 Nk.

Then, 1
f
: Nk ! R is computable.

Proof. Since f is computable, we have that

|f(x)� F (x, i)| < 2�i, 8x 2 Nk, i 2 N,

where F : Nk+1 ! Q is a computable function. Now, we wish to bound the following

expression
�

�

�

�

1

f(x)
� 1

F (x, i)

�

�

�

�

=
|f(x)� F (x, i)|
|f(x)F (x, i)| .

To do so, we must bound |f(x)| and |F (x, i)| from below. To this end, we first show the

following claims:

Claim 1. 8x 2 Nk 9ix 2 N such that 3 · 2�i
x < |F (x, ix)|.

Proof of claim: Let x 2 Nk, then

f(x) 6= 0 =) |f(x)| > 0

=) 9ix 4 · 2�i
x < |f(x)| (⇤)
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For this ix, by the reverse triangle inequality we also have that

|f(x)|� |F (x, ix)| < 2�i
x =) |f(x)| < 2�i

x + |F (x, ix)|. (⇤⇤)

Now, by (⇤) and (⇤⇤), it follows that

4 · 2�i
x < 2�i

x + |F (x, ix)| =) 3 · 2�i
x < |F (x, ix)|.

Claim 2. If x 2 Nk and ix 2 N are such that 3 · 2�i
x < |F (x, ix)|, then

(a) 2 · 2�i
x < |f(x)|

(b) 2�i
x < |F (x, ix)| 8i � ix

Proof of claim: Let x 2 Nk and ix 2 N be such that 3 · 2�i
x < |F (x, ix)|.

(a) By the reverse triangle inequality and the assumption, we have that

3 · 2�i
x � |f(x)| < |F (x, ix)|� |f(x)| < 2�i

x .

This implies that

|f(x)| > 2�i
x � 3 · 2�i

x � 2�i
x = 2 · 2�i

x .

(b) By the reverse triangle inequality and (a), we have that for any i,

|F (x, i)|� |f(x)| < 2�i =) |f(x)|� 2�i < |F (x, i)|
=) 2 · 2�i

x � 2�i < |f(x)|� 2�i < |F (x, i)|.

Then, it follows that for any i � ix, we have

2�i
x = 2 · 2�i

x � 2�i
x < 2 · 2�i

x � 2�i < |f(x)|� 2�i < |F (x, i)|.

Claim 3. Let S =
�

(x, y) 2 Nk+1 : 3 · 2�y < |F (x, y)| . Then, there exists a computable

function � : Nk ! N such that (x,�(x)) 2 S 8x 2 Nk.

Proof of claim: By a corollary analogous to Corollary 2.2.6, we have that S is a computable

set. Moreover, for any x 2 Nk, there is a y 2 N such that (x, y) 2 S (by our first claim). We

now construct that desired � by letting

�(x) = µy (�S(x, y)
.� 1 = 0) .

26



Indeed, this function is computable since S is a computable set, so �S : Nk+1 ! N is a

computable function and so is the modified subtraction. This concludes the proof of the

claim.

Now, letting � be the function from our last claim, we can see that for any x 2 Nk,

3 · 2��(x) < |F (x,�(x))|.

Moreover, by our second claim, we get the desired lower bounds. Namely,

(a) =) 2 · 2��(x) < |f(x)|
(b) =) 2��(x) < |F (x, i)| 8i � �(x) =) 2��(x) < |F (x, i+ �(x))| 8i 2 N.

Now, in light of the previously obtained bounds, we are ready to proceed to the proof of the

statement of this proposition. To that end, let x 2 Nk and i 2 N. We have:
�

�

�

�

1

f(x)
� 1

F (x, i+ �(x))

�

�

�

�

=
|f(x)� F (x, i+ �(x))|
|f(x)F (x, i+ �(x))|

<
|f(x)� F (x, i+ �(x))|

2 · 2��(x) · 2��(x)
<

2�(i+�(x))

2�2�(x)+1

= 2�i�1+�(x))

 2�iM(x),

where M(x) = 2�(x), which is a computable function from Nk ! N. Thus, by Lemma 2.4.4,

it follows that 1
f
is computable.

In addition to computable real-valued functions, we can also consider the definition of

computable real numbers. This concept is purely for expository purposes.

Definition 2.4.8. Let x 2 R. We say that x is a computable number if there exists a

computable function f : N ! Q such that

|x� f(k)| < 2�k 8k 2 N.

It is a known fact that if f is a computable real-valued function, then for any x in the

domain of f , f(x) is a computable real number. Moreover, we can see that there certainly

exist non computable real numbers because the number of computable functions from N to
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R is countable, so the number of computable real numbers must also be countable. Hence,

since the set of real numbers is uncountable, one can deduce that the set of computable real

numbers is but a small subset of the set of reals. The following results will be important for

our original work at the end of this thesis, however, they are presented without proof. The

complete proofs can be found in [12].

Proposition 2.4.9. Let x, y 2 R be computable numbers. Then �x, x+y, xy are computable

numbers. Moreover, if x 6= 0, then 1
x
is a computable number.

Theorem 2.4.10. If x, y are computable real numbers and x > 0, then xy is a computable

real number.

Since we are interested in function spaces in harmonic analysis, the circle is often a domain

which will be used. As such, it is useful to know that ⇡ is a computable number. This can

be intuitively explained by the fact that there exists an algorithm which can compute the

i-th digit of ⇡.

Theorem 2.4.11. ⇡ is a computable real number.

2.5 E↵ective Enumerations

Having established the fundamentals of computability theory for functions and numbers, we

now turn our attention to notions of computability within di↵erent settings. For example

given a set, one may wish enumerate the elements of this set using a computable function.

This is called an e↵ective enumeration. We first establish to basic results.

Proposition 2.5.1. There exists a computable surjection g from N to N2.

Proof. It su�ces to show that we can find ⌧1, ⌧2 : N ! N computable functions such that

S = {(⌧1(i), ⌧2(i)) : i 2 N} = N2. To that end, we can define

⌧1(i) = (i)1, ⌧2(i) = (i)2,

where the notation (i)k denotes the power of the k�th prime in the prime power factorization

of the integer i. That is, given an integer i, we can write i =
Q1

j=0 p
(i)

j

j and p0 = 2, p1 =
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3, p2 = 5 and so on. The function

(i, k) ! (i)k =

8

>

<

>

:

max{j : pjk divides i} i � 1

0 otherwise.

is computable (we state this without proof), so ⌧1 and ⌧2 are also computable.

One side of the inclusion follows immediately, since ⌧1(i), ⌧2(i) 2 N. For the other direc-

tion, let (a, b) 2 N2 and i = 3a5b. Then, (i)1 = a and (i)2 = b. So

(a, b) = (⌧1(i), ⌧2(i)) =) (a, b) 2 S.

Letting g(i) = (⌧1(i), ⌧2(i)), this completes the proof.

Proposition 2.5.2. There exists a computable surjection from N to Q.

Proof. Consider the function r : N ! Q defined by

r(i) = (�1)(i)2
(i)0

(i)1 + 1
,

where the notation (i)k denotes the power of the k�th prime in the prime power factorization

of the integer i. Since we know that (i)k is computable, then it is true that r is computable.

Now, to show r is surjective, we must show that r(N) ✓ Q and Q ✓ r(N). The first inclusion

follows immediately. For the second inclusion, let q 2 Q. Then we can find a, b, c 2 N such

that

q = (�1)c
a

b+ 1
.

Letting now i = 2a3b5c, then (i)0 = a, (i)1 = b and (i)2 = c. So, q 2 r(N).

A set for which an e↵ective enumeration would be desirable is the set of finite sequences

of natural numbers. For this, we can turn to the following result.

Proposition 2.5.3. Let S be the set of all finite sequences of natural numbers. There exist

computable functions � : N2 ! N and ⌘ : N ! N such that

{(�(i, 0), . . . , �(i, ⌘(i)) : i 2 N} = S.
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Proof. Consider the functions

�(i, k) = (i)k
.� 1, ⌘(i) =

8

>

<

>

:

max{k : pk divides i} if i � 2

0 otherwise
.

Claim 1. {(�(i, 0), . . . , �(i, ⌘(i)) : i 2 N} ✓ S.

Proof of claim: For a fixed i 2 N, the sequence (�(i, 0), . . . , �(i, ⌘(i)) is clearly a finite se-

quence of natural numbers by the definitions of � and ⌘. Hence (�(i, 0), . . . , �(i, ⌘(i)) 2 S.

Claim 2. S ✓ {(�(i, 0), . . . , �(i, ⌘(i)) : i 2 N}.

Proof of claim: Let (m0, . . . ,mn) 2 S. It is enough to find and i such that (m0, . . . ,mn) =

(�(i, 0), . . . , �(i, ⌘(i)). To that end, consider i = pm0+1
0 + · · ·+ pmn

+1
n . Then, we’ll have that

⌘(i) = n, �(i, ⌘(i)) = mn, and 8j 2 {0, . . . , n}�(i, j) = (i)j � 1 = mj + 1� 1 = mj.

Thus,

(m0, . . . ,mn) 2 {(�(i, 0), . . . , �(i, ⌘(i)) : i 2 N}.

This proposition in fact shows that we can enumerate the set of all finite sequences of

natural numbers in a computable way. The same holds for the set of all finite sequences of

rational numbers, as we shall see next.

Proposition 2.5.4. Let r : N ! Q be a fixed computable surjection (the one from Propo-

sition 2.5.2, for example) and let S be the set of all finite sequences of rational numbers.

There exist computable functions � : N2 ! N and ⌘ : N ! N such that

{�r(�(i, 0)), . . . , r(�(i, ⌘(i)))� : i 2 N} = S.

Proof. Consider the computable functions � and ⌘ as in the proof of Proposition 2.5.3.

Claim 1.
��

r(�(i, 0)), . . . , r(�(i, ⌘(i)))
�

: i 2 N
 ✓ S.

Proof of claim: For a fixed i 2 N, the sequence
�

r(�(i, 0)), . . . , r(�(i, ⌘(i)))
�

is clearly a

finite sequence of rational numbers by the definitions of the functions �, ⌘ and r. Hence
�

r(�(i, 0)), . . . , r(�(i, ⌘(i)))
� 2 S.
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Claim 2. S ✓ {�r(�(i, 0)), . . . , r(�(i, ⌘(i)))� : i 2 N}.

Proof of claim: Let (m0, . . . ,mn) 2 S. So, since r is a surjective map to Q and each mj 2 Q,

we have that 8j, 9bj 2 N such that mj = r(bj). Thus,

(m0, . . . ,mn) = (r(b0), . . . , r(bn)).

Now, (b0, . . . , bn) is a finite sequence of natural numbers. So by Proposition 2.5.3 we can

write

(b0, . . . , bn) = (�(i, 0), . . . , �(i, ⌘(i)))

for some i 2 N. I.e., 8j < n, bj = �(i, j) and bn = �(i, ⌘(i)). Thus,

(m0, . . . ,mn) = (r(�(i, 0)), . . . , r(�(i, ⌘(i)))) 2 {�r(�(i, 0)), . . . , r(�(i, ⌘(i)))� : i 2 N}.

We can also show such a result for the set of all intervals with rational endpoints, which

we will call rational intervals.

Proposition 2.5.5. Let S be the set of all rational intervals,

{(a, b) : a, b 2 Q, a < b}.

There exist computable functions s, w : N ! Q such that

{(s(i), w(i)) : i 2 N} = S.

Proof. First, let r, be some fixed computable surjection r : N ! Q (we can let r be the

enumeration of all rational numbers from Proposition 2.5.2). Since r is actually a sequence,

we will write r(i) = ri.

Consider

s(i) = r⌧1(i), wi = r⌧1(i) + f((⌧2(i)),

where ⌧1, ⌧2 are the computable functions from the proof of Proposition 2.5.1, and f : N !
Q+, f(i) =

(i)0+1
(i)1+1 is an enumeration of all positive rational numbers (this can be shown with

a proof similar to that of Proposition 2.5.2).
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Let A = {(s(i), w(i)) : i 2 N}, B = {(a, b) : a, b 2 Q, a < b}. We have A ✓ B by the fact

that for any fixed i,

s(i), w(i) 2 Q and f(i) 2 Q+ =) s(i) < w(i) =) (s(i), w(i)) 2 B.

For the inclusion B ✓ A, we take any (a, b) 2 B and define c = b � a 2 Q+. Since a, c

are both rational numbers, by the enumeration of rational numbers, we can therefore find

u, v 2 N, such that a = ru and c = f(v). Then, (u, v) 2 N2, so by Proposition 2.5.1, there

exists and i such that (u, v) = (⌧1(i), ⌧2(i)). Then for this i,

s(i) = r⌧1(i) = ru = a, w(i) = r⌧1(i) + f(⌧2(i)) = a+ f(v) = a+ c = b.

Hence, (a, b) 2 A.

Letting I(i) = (s(i), w(i)), this completes the proof.

2.6 Notions of Computability in Metric Spaces

When establishing computability within the context of metric spaces, one often desires to

establish a certain structure to the space. For example, one can define a certain subset of the

space to be computable; if an element of the space can be approximated by elements of this

subset, we can then say that this element is also computable. In the literature, a common

term is that of a computable metric space. More on computability structures can be found

in [5]. This section is of particular interest to us, as the results and definitions established

here will be incorporated in our original results in Chapter 4.

Definition 2.6.1. A tuple (X, d,↵) is a computable metric space if (X, d) is a metric space

and

• ↵ : N ! X is a sequence which is dense in X with respect to the metric d,

• the function N2 ! R, (n,m) ! d(↵(n),↵(m)) is computable.

Since a metric is a real-valued functions, one can see how our exposition of computable

real-valued functions plays an important role here. An example of a computable metric space
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is (C[0, 1], d1,↵), where ↵ is an enumeration of particular subset of the set of piecewise linear

functions. This is shown in [13].

Another way to impose computability on metric spaces is via computability structures.

We start with a few preliminary definitions.

Definition 2.6.2. If (xi) and (yj) are sequences in X, we say that ((xi), (yj)) is an e↵ective

pair in (X, d) if the function f : N2 ! R, (i, j) 7! d(xi, yj) is computable.

By (xi) ⇧ (yi), we denote the statement that ((xi), (yi)) is an e↵ective pair in (X, d) .

Definition 2.6.3. Let (X, d) be a metric space and (xi) be a sequence in X such that

(xi) ⇧ (xi). Then, we say that (xi) is an e↵ective sequence in (X, d).

Although it may seem counter-intuitive, it is not always true that (xi)⇧(xi). To illustrate this,

consider the sequence (xi) = (a, b, a, a, . . . ). Then the function N2 ! N, (i, j) 7! d(xi, xj) is

not computable if d(a, b) is an incomputable number.

We can relate this notation to computable metric spaces via the following definition.

Definition 2.6.4. Suppose ↵ is a sequence in X which is dense in (X, d). Then, (X, d,↵) is

a computable metric space if and only if ↵ ⇧↵. In this case, we call ↵ an e↵ective separating

sequence for (X, d).

Definition 2.6.5. Suppose (xi) and (yi) are sequences in X. We say that (xi) is computable

with respect to (yi) and write (xi) � (yi) if there exists a computable function f : N2 ! N

such that

d(xi, yf(i,k)) < 2�k, 8i, k 2 N.

Definition 2.6.6. Let (X, d) be a metric space and let S be a nonempty set of sequences

in X. Suppose the following holds:

1. (xi), (yi) 2 S =) (xi) ⇧ (yi),

2. (yj) 2 S, and (xi) is any sequence in X such that (xi) � (yj) =) (xi) 2 S.

Then, we say that S is a computability structure on (X, d).
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The significance of a computability structure on a metric space is, as stated before, it

allows us to in a way fix the elements in the space which are computable and in turn deduce

computability properties about the rest of the elements in the space.

Definition 2.6.7. For a computable metric space (X, d,↵) we denote the set of all sequences

in X which are computable with respect to ↵ as

S↵ = {(xi) 2 XN : (xi) � ↵}.

This is an example of a computability structure, since it can be shown that S↵ is a

computability structure on (X, d). We now give another basic example of a computability

structure.

Example 2.6.1. For a fixed a 2 X, the set S = {(xi)}, where xi = a, is a computability

structure on the metric space (X, d). In order to see this, we first can see that the map

(i, j) 7! d(xi, xj) is in fact the map (i, j) 7! 0, meaning it is computable. So, it is true

that (xi) ⇧ (xi). Next, suppose we have (yj) � (xi). This means that there exists a function

f : N2 ! N such that

d(yj, a) = d(yj, xf(j,k)) < 2�k, 8j, k 2 N.

Since the distance is nonnegative, this implies that it must be true that yj = a, 8j. Thus,

(yj) = (xi) 2 S.

This example illustrates the fact that any metric space has a computability structure.

Moreover, we can have many computability structures on any given metric space (X, d).

Definition 2.6.8. Suppose S is a computability structure on (X, d). Let (xi) be a sequence

in X. We say that (xi) is computable with respect to S if (xi) 2 S.

Definition 2.6.9. Let x 2 X. We say that x is a computable point in (X, d) with respect

to S if the sequence (x, x, x, . . . , x) 2 S.

Definition 2.6.10. For a computability structure S on a metric space (X, d), we denote the

set of all computable points in X with respect to S by S0.
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Definition 2.6.11. We say that a computability structure on (X, d) is dense if S0 is dense

in (X, d).

So, S will be a dense computability structure on X if and only if S0 is dense in X.

Note that not every metric space has a dense computability structure. Take for example

X = {0, �}, where � is an incomputable real number, with the Euclidean metric.

Theorem 2.6.12. Let (X, d) be a computable metric space, S be a computability structure

on it and x 2 X. Then the following are equivalent:

1. x is a computable point with respect to S,

2. there exist (yj) 2 S and j 2 N such that x = yj

3. there exist (yj) 2 S and a computable function f : N ! N such that d(x, yf(k)) <

2�k, 8k 2 N.

Proposition 2.6.13. Let S be a computability structure on (X, d) and a, b 2 S0. Then

d(a, b) is a computable number.

Proof. Since a, b 2 S0 we have that the sequences (a, a, a, . . . ) and (b, b, b, . . . ) are in S.
So, (a, a, a, . . . ) ⇧ (b, b, b, . . . ) and the function F : N2 ! R F (i, j) = d(a, b) is computable.

Hence, d(a, b) is a computable number.

Proposition 2.6.14. Let (X, d) be a metric space. Suppose D is a non-empty subset of X

such that d(x, y) is a computable number for all x, y 2 D. Then, there exists a computability

structure, call it S on (X, d) such that D = S0.

Proof. First, define

S = {(a, a, a, ...) : a 2 D}.

S0 = D holds trivially. Now, we must check that both conditions of a computability structure

are satisfied.

Claim 1. For any a, b 2 D, (a, a, a, . . . ) ⇧ (b, b, b, . . . ).
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Proof of claim: Let F : N2 ! R, F (i, j) = d(a, b). By the assumption, we know that d(a, b)

is a computable number. Therefore, F is a computable function, since it is just the constant

function taking on d(a, b) as its only values. Hence, (a, a, a, . . . ) ⇧ (b, b, b, . . . ).

Claim 2. If (xi) is a sequence in X and a 2 D is such that (xi) � (a, a, a, . . . ), then

(xi) 2 S.

Proof of claim: It is enough to show that there exists an element in D, call it c such that

8i, xi = c. This follows by applying a reasoning identical to that found in Example 2.6.1.

If D is dense in X, then that means S0 is a dense set in X. Hence, this directly implies

that S is a dense computability structure on (X, d).

Definition 2.6.15. A computability structure S on (X, d) is said to be separable if there

exists a sequence ↵ such that (X, d,↵) is a computable metric space and S = S↵.

From this, we can see that each separable computability structure is a dense one. Having

finished the exposition of computability and notions of computability within the context of

metric spaces, we now move on to the second part of this project, which is to gain a solid

background in spaces found in harmonic analysis. We first begin with the Hardy space,

which is an example of a metric space.
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Chapter 3

Background in Analysis

Since our work involves two very di↵erent areas of mathematics, the notation in the following

section is completely independent to that of the previous section (it restarts).

3.1 The Hardy Space

3.1.1 Complex Hardy Space on the Disk

We begin with some short background on the Hardy space. First, the complex Hp(D). For

a reference on this material see [14], [20] and [22].

Definition 3.1.1. Let D = {z 2 C : |z| < 1} denote the open unit disk in C and H(D)

denote the collection of holomorphic functions on D. Given F 2 H(D), the average Mp(F, r)

of F on a circle radius r < 1 centred at the origin is given by

Mp(F, r) =

8

>

>

>

>

>

<

>

>

>

>

>

:

exp{ 1
2⇡

R ⇡

�⇡ log
+ |F (rei✓)|d✓}, if p = 0

⇣

1
2⇡

R ⇡

�⇡ |F (rei✓)|pd✓
⌘

1
p

, if 0 < p < 1

sup
✓
|F (rei✓)|, if p = 1.

For a fixed p and F 2 H(D), Mp is a monotonically increasing function in r. In fact,

this is the main result in [11], where the author (Hardy) discusses these averages in more

detail and shows that they are log convex functions of r. It is likely for this reason that these

spaces are called Hardy spaces.
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Definition 3.1.2. For 0 < p  1, we define the complex Hardy space Hp(D) as

Hp(D) = {F 2 H(D) : kFkHp

= sup
r<1

Mp(F, r) < 1}.

When p = 0, we define the Nevanlinna class as

N (D) = {F 2 H(D) : kFkN = sup
r<1

M0(F, r) < 1}.

Moreover, if 0 < s < p < 1, H1(D) ⇢ Hp(D) ⇢ Hs(D) ⇢ N (D) by Jensen’s inequality.

3.1.2 Hardy Spaces on the Circle

For a given F 2 Hp(D), 0 < p < 1, there exists an F ⇤ 2 Lp(T) such that limr!1

�

�F ⇤(ei✓)� F (rei✓)
�

�

p
=

0. We call F ⇤ the boundary values of F .

Definition 3.1.3. We define the complex Hardy space on the circle as

Hp(T) = {F ⇤ : F 2 Hp(D)}.

Definition 3.1.4. For 1  p  1, we define the real Hardy space on the circle as

Hp(T) = {Re(F ) : F 2 Hp(T)}.

In order to obtain the full real Hardy space, one can then look at these functions and

allow multiplication by complex scalars and addition to get a vector space over the complex

numbers. Note that, for p < 1, the boundary values have to be taken in the sense of

distributions.

3.1.3 Real Hardy Spaces on the Line

Following the definition found in [8], we define the Schwartz space as

S (R) =
⇢

f 2 C1(R) : kfkNS = sup
x2R

(1 + |x|)N |(@f(x)| < 1, 8N 2 N
�

.

This space is also commonly called the space of rapidly decreasing functions, since any

function in it will itself, together with all its derivatives, vanish at infinity faster than any

power of |x|. Moreover, we denote the dual of the Schwartz space, i.e. the space of tempered
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distributions, by S 0(Rn). That is, it is the space of all functionals from S to R that are

linear and continuous.

For � 2 S (R) and t > 0 we define its dilation �t as �t(x) = t�1�(x/t). Also, we

define the maximal function M�f as M�f(x) = supt>0 |f ⇤ �t(x)|. Note that M�f is well

defined when f is a tempered distribution since the convolution of a Schwartz function and

a tempered distribution is a C1 function.

Definition 3.1.5. For 0 < p  1 and a fixed � 2 S (R) with
R

� dx = 1, we define the

real Hardy space on the real line as

Hp(R) = {f 2 S 0(R) : M�f 2 Lp(R)}.

We define

kfkHp

:= kM�fkLp

.

This is a norm for p � 1. Moreover, for 1 < p  1, it turns out that Hp(R) is equivalent to

Lp(R) and for p = 1, H1(R) ( L1(R).

Another way of defining the real Hardy space Hp(R) is via a construction which is

analogous to that of the real Hardy space Hp(T). Namely, for a function F (x, y) on R2
+ say

that F 2 Hp(R) if supy>0 kFykLp

< 1, where Fy(x) = F (x, y) for a fixed y 2 R+.

A third way of defining the real Hardy space is based o↵ functions that capture the

inherent cancellation and increased integrability properties of Hardy space functions. We

call such functions atoms, since they represent the most basic building blocks for the space

H1
at(R), which will be defined below. Note that the following definition is restricted to p = 1,

although there exists a definition for atoms corresponding to other values of p < 1.

Definition 3.1.6. For p = 1, we say a function a : R ! R is an atom if there exists a finite

interval I ⇢ R such that

1. supp(a) ⇢ I

2. |a|  1
`(I)

3.
R

I
a(x) dx = 0,
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where `(I) denotes the length of I.

We say that f 2 S 0 admits an atomic decomposition if there exists a sequence of atoms

{ak} and a sequence of scalars {�k} 2 `1(N) such that

f =
X

k

�kak, (3.1.1)

where the convergence is not only in the sense of distributions, but also in the L1 norm.

Definition 3.1.7. For p = 1, we define the atomic Hardy space on the real line as

H1
at(R) =

(

f 2 S 0 : kfkH1
at

= inf
X

k

|�k| < 1
)

,

where the infimum is taken over all atomic decompositions (3.1.1) of f .

As explained in [22], H1
at coincides with the real Hardy space H1 as defined above.

Hence, any function in the real Hardy space H1 will enjoy many properties inherited by the

elementary building blocks (the atoms).

Since atoms are quite easy to characterize and their linear combinations are dense in

H1, a space based on them seemed like a good setting in order to incorporate computability

notions in the context of Hardy spaces. However, we quickly realized that these atoms are

in fact too general for this goal. In other words, we required a set of atoms which have an

explicit formula. This lead us to consider systems of Haar wavelets, which are closely related

to H1 atoms and for which there exists an explicit formula. The choice to study wavelets

also seemed rather intuitive, as this mathematical tool is widely used in signal and image

processing, so computability should hold for such functions.

3.2 Haar Wavelets

We note that in general, wavelets (and in particular the Haar wavelets) are normalized in

L2, whereas the atoms from Definition 3.1.6 are normalized in L1. More on wavelets and

the Haar function can be found in [16]. Nonetheless, what was attractive about the Haar

system is that Haar functions, when appropriately normalized, satisfy all the conditions of
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the H1 atoms while having an explicit formula and shape which is easily adaptable in a

computability setting. Moreover, there are many results concerning convergence of linear

combinations of Haar wavelets, such as that they form a basis for C1 functions.

First, we note that families of wavelets are given by identifying two base functions (called

mother and father wavelets), then the subsequent functions (called children) in the family

will be a linear combination of the previous functions in the generation right before them.

Definition 3.2.1. For 1  k, 1  j  2k, the dyadic interval Ik,j, followed by its two

children Ik+1,2j�1 and Ik+1,2j is given by

Ik,j =



j � 1

2k
,
j

2k

◆

,

Ik+1,2j�1 =



2j � 2

2k+1
,
2j � 1

2k+1

◆

Ik+1,2j =



2j � 1

2k+1
,
2j

2k+1

◆

.

Definition 3.2.2. For 1  k, 1  j  2k, the family of Haar wavelets on the unit interval

[0, 1) is given by

Father wavelet : h00 = �[0,1),

Mother wavelet : h01 = �I1,1 � �I1,2 ,

Subsequent Haar functions : hkj = 2k/2
�

�I
k+1,2j�1

� �I
k+1,2j

�

.

It is clear that Haar wavelets inherit many nice properties from the fact that they are

based on dyadic intervals. As such, since we know that dyadic numbers are rational (and

hence computable), a natural conclusion would be that they are a good candidate for com-

putability notions. However, linear combinations of Haar wavelets are not dense in all of

H1
at. As a result, this inspired us to consider what DeSouza in his paper [7] calls the special

atoms space.

3.3 The Special Atoms Space

Since an atom from Definition 3.1.6 is a rather general term, it turns out that when require-

ments are added to the atoms which are allowed to be used as the building blocks, the space
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generated is no longer the whole Hardy space H1, but instead a subset of it, which we shall

introduce later. For the purpose of adapting our work to the computability setting, we re-

strict our definitions to one dimension, but these spaces can be studied in higher dimensions.

We begin with some basic definitions of atoms and special atoms. Our work in this section

is based on DeSouza’s work in his paper [7].

Notation 1. We think of the circle T as the interval [�⇡, ⇡).

Definition 3.3.1. For 1/2 < p < 1 and for each finite interval I in T, the special atom

aI : T ! R is defined as

aI(x) =
1

`(I)1/p
�L(x)� 1

`(I)1/p
�R(x),

where L is the left half of the interval I, R is the right half and `(I) denotes the length of

the interval.

We can see that special atoms are atoms, but with an added symmetry condition.

Consider the constant function b(x) = 1/2⇡. Despite the fact that b is not a special

atom, we shall consider b as being a special atom. This is because it must be included in

the collection of special atoms in order to generate the special atoms space. This just makes

things easier in terms of nomenclature.

We say that f : T ! R admits a special atomic decomposition if there exist a sequence

of special atoms {ak} and a sequence of scalars {�k} 2 `1(N) such that

f =
X

k

�kak, (3.3.1)

where aj is either aI
j

or b and the convergence is in the sense of distributions. When p � 1,

the convergence is also in the Lp(T) norm.

Definition 3.3.2. For 1/2 < p < 1, we define the special atoms space as the space of all

limits of linear combinations of special atoms. That is,

Bp(T) =
(

f : T ! R : kfkBp

= inf
1
X

j=0

|�j| < 1
)

,

where the infimum is taken over all special atomic decompositions (3.3.1) of f .
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The special atoms space therefore inherits many interesting attributes which come as a

consequence of the added symmetry property of the special atoms. Namely, the fact that its

building blocks are described by an explicit formula. So, Bp now seems like a good candidate

for our goal of establishing computability notions within the context of a function space in

harmonic analysis. However, the issue now comes with the fact that the norm is not at all

computable, because of the presence of the infimum. Intuitively the fact that one would

want to avoid such a norm makes sense, since calculating it involves checking all possible

representations of a given f in terms of special atoms, which can go on forever. This lead

us to search for alternative norms on the special atoms space. In the section to follow, we

study two more function spaces with their own norms and see how they relate to the special

atoms space of DeSouza in [7].

We begin by considering a space which is also generated by special atoms, called the

Besov space. This follows the work on Frazier, Jawerth and Weiss in [9]. We adapt the

results in higher dimension, although the only case of interest is when n = 1. Note that the

exposition to follow deals with functions on Rn, as opposed to on the circle.

We say a norm on a Banach space B on Rn is translation invariant if for any h 2 Rn and

f 2 B,

kf(·� h)kB = kfkB .

Similarly, we a say the norm is dilation invariant if for any t > 0 and f 2 B,

kftkb = kfkB ,

where the dilation ft is defined as ft(x) = t�nf(x/t).

Now, let us consider the following minimality problems, called problems P and P0:

• P : finding the minimal (smallest) Banach space B such that S (Rn) ⇢ B ⇢ S
0
(Rn)

and k·kB is translation and dilation invariant.

• P0: finding the minimal (smallest) Banach space B0 such that S0(Rn) ⇢ B0 ⇢ S
0
0(Rn)

and k·kB0 is translation and dilation invariant.

Here S (Rn) is the Schwartz space and S0(Rn) = {f 2 S (Rn) :
R

f = 0}.
The work in [9] (chapter 3) proves the following theorem in great detail. For our purposes,
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we only state the main result.

Theorem 3.3.3. Suppose (B, k·k) is a Banach space continuously contained in the space of

tempered distributions. If the norm of B is translation and dilation invariant and S (Rn) ⇢
B, then L1(Rn) ⇢ B and

kfkB  k�Q0kB kfkL1 .

Here �Q0 is the characteristic function of the unit cube Q0 = {x = (x1, x2, x3, . . . , xn) : 0 
xj  1, j = 1, . . . , n} in Rn.

Theorem 3.3.3 states that the solution to problem P is L1(Rn). However we know that

L1 is not a good space, since many operations often encountered in analysis (the Hardy-

Littlewood maximal operator, for example) are not bounded on L1. For this reason, the

authors then considered problem P0, which is a modification of the problem P . We shall see

later that the solution to problem P0 is the space B , which will be defined shortly.

For f, g 2 L1(Rn), we define the convolution on Rn as

f ⇤ g(x) =
Z

Rn

f(x� y)g(y)dy.

Convolutions have many properties. Namely, for f, g, h 2 L1(Rn), we have that

a) f ⇤ (g + h) = (f ⇤ g) + (f ⇤ h),

b) (cf) ⇤ g = c(f ⇤ g) = f ⇤ (cg) for any c 2 R,

c) f ⇤ g = g ⇤ f,

d) (f ⇤ g) ⇤ h = f ⇤ (g ⇤ h),

e) f ⇤ g is continuous,

f) [f ⇤ g(x) = f̂(x)ĝ(x),

where f̂ denotes the Fourier transform on the real line of f , that is, for a ⇠ 2 Rn

f̂(⇠) =

Z

Rn

f(x)e�2⇡ix·⇠ dx.

Definition 3.3.4. For a fixed N 2 Z+, we let  be a function  : Rn ! R such that:
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1. supp( ) ⇢ B1(0),

2.  is radial;

3.  2 C1(Rn),

4.
R

Rn

x� (x)dx = 0 if |�|  N, where � 2 Zn
+, x

� = x�1x�2 . . . x�n and |�| = �1 + �2 +

· · ·+ �n,

5.
R1
0 [ ̂(t⇠)]2 dt

t
= 1 if ⇠ 2 Rn\{0}.

Definition 3.3.5. For a fixed  as in Definition 3.3.4, we define the space B as

B =

⇢

f 2 S 0
0(Rn) : kfkB

 

=

Z 1

0

k t ⇤ fkL1

dt

t
< 1

�

.

The spaces B obtained using various  will all coincide. This means that the definition

above is actually defining one unique space which is independent of the choice of  .

Because of the nature of its norm, the space B will inherit many of its properties from

the Calderón reproducing formula, which gives an integral representation of the identity

operator. We give two versions of the formula below.

Theorem 3.3.6. Let  2 L1(Rn) be a real-valued, function satisfying conditions 2 and 5 in

Definition 3.3.4. For f 2 L2(Rn), we can write

f(x) =

Z 1

0

( t ⇤  t ⇤ f)(x)dt
t
.

The equality above is to be interpreted in the sense that the right hand side converges to the

left hand side in the L2 norm as the lower bound of the integral goes to 0 and the upper

bound goes to infinity.

For the convergence of the Calderón Reproducing Formula in Lp, 1 < p < 1, see [24].

Some more results involving the Calderón reproducing formula are given below. Namely, the

Calderón reproducing formula for L1(R) functions.

Theorem 3.3.7. Let  2 L1(Rn) be a real-valued function with integral zero satisfying

conditions 2 and 5 in Definition 3.3.4. For f 2 L1(Rn) with f̂ 2 L1(Rn), we can write

lim
✏!0,�!1

f✏,�(x) = lim
✏!0,�!1

Z �

✏

(�t ⇤ �t ⇤ f)(x)dt
t
= f(x)
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for all x 2 Rn provided f is the continuous representative of the equivalence class determined

by f in L1(Rn).

The proofs of Theorem 3.3.7 uses Fubini’s theorem and Young’s inequality to show that

f✏,� 2 L1(Rn) by finding a bound for its L1 norm and can be found in [9]. We will now derive

a known distributional version of the Calderón reproducing formula, which is needed for the

space B , as it is a subset of the tempered distributions. However, some preliminary notions

as first required.

Definition 3.3.8. For � 2 S (Rn) and u 2 S 0(Rn), we define the refection �̃ and the

translation ⌧xu as

�̃(y) = �(�y), y 2 Rn,

(⌧xu)(y) = u(y � x), y 2 Rn.

Hence, from [20], we can say that the convolution of a distribution u with a Schwartz

function � is given by

(u ⇤ �)(x) = u(⌧x�̃).

This also illustrates the fact that the convolution between a distribution and a Schwartz

function is a function, as stated when studying the real Hardy spaces on the line in section

3.1.3.

Now, we must define the convolution of a distribution with an L1 function. From [21],

we know that if f is a bounded distribution and h 2 L1(Rn), then the convolution f ⇤ h is a

distribution acting on a Schwartz function � 2 S as follows:

f ⇤ h(�) =
Z

Rn

(f ⇤ �̃)(x)h̃(x)dx. (3.3.2)

Moreover, from [20], we again have many properties for such a convolution. Namely, for

� 2 Sn and u a tempered distribution,

a) u ⇤ � 2 C1(Rn)

b) u ⇤ � has polynomial growth, hence is a tempered distribution

c) \(u ⇤ �) = �̂û
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d) (u ⇤ �) ⇤  = u ⇤ (� ⇤  ), for every  2 Sn

e) û ⇤ �̂ = d(�u).

Now we establish the Calderón reproducing formula in the sense of distributions. Let

f 2 S 0(Rn) and � 2 S (Rn). Moreover, let  be as in Definition 3.3.4, that is, it is smooth

with compact support. For t > 0 we have that f ⇤( t⇤ t) is the convolution of an L1 function

(since  t is smooth with compact support, meaning it is in L1 and so is its reflection, and so

is its convolution with itself) with a tempered distribution (f 2 S 0). Hence, using (3.3.2)

we write

f ⇤ ( t ⇤  t)(�) =

Z

Rn

(f ⇤ �̃)(x) ̂t ⇤  t(x)dx. (3.3.3)

The term f ⇤ �̃ is the convolution between a tempered distribution and a Schwartz

function, which is well defined as a function, as mentioned before. Moreover, the integrand

on right hand side of (3.3.3) is in fact a smooth function of compact support.

We therefore have established that (3.3.3) is the integral of a product of a smooth function

with a function of compact support, and is therefore convergent, so we can use the properties

of distributions and the Fourier transforms to write, in the formal sense,

Z

Rn

(f ⇤ �̃)(x) ̂t ⇤  t(x)dx =

Z

Rn

\(f ⇤ �̃)(⇠)\ t ⇤  t(⇠)d⇠

=

Z

Rn

f̂(⇠) ˆ̃�(⇠)( ̂t(⇠))
2d⇠

=

Z

Rn

f̂(⇠) ˆ̃�(⇠)( ̂(t⇠))2d⇠.

Hence,

f ⇤ ( t ⇤  t)(�) =

Z

Rn

f̂(⇠) ˆ̃�(⇠)( ̂(t⇠))2d⇠.

Using the expression obtained above, we take the integral over R+ in order to obtain the
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desired Calderón formula for distributions. Namely,
Z 1

0

f ⇤ ( t ⇤  t)(�)
dt

t
=

Z 1

0

Z

Rn

f̂(⇠) ˆ̃�(⇠)( ̂(t⇠))2d⇠
dt

t

=

Z

Rn

f̂(⇠) ˆ̃�(⇠)

✓

Z 1

0

( ̂(t⇠))2
dt

t

◆

d⇠

=

Z

Rn

f̂(⇠) ˆ̃�(⇠)d⇠

=

Z

Rn

f(x)�̃(x)dx

= f(�).

To summarize, we have shown that the following equation holds in the sense of distribu-

tions
Z 1

0

f ⇤ ( t ⇤  t)
dt

t
= f.

As it turns out, the space B is a function space only consisting of L1 functions. To show

this, we must show that the distributions contained in the space are also L1 functions.

Proposition 3.3.9. For any f 2 B , f 2 L1.

Proof. For a fixed and suitable  , let f 2 B . By the definition of this space, we know that

f must be a tempered distribution (it belongs to S
0
0) and that

kfkB
 

=

Z 1

0

k t ⇤ fk1
dt

t
< 1.(†)

Now consider
( t ⇤  t ⇤ f)(x)

t
.

Since  2 S , by the first property of convolutions, it follows that the expression above is

a smooth function, call it g(x, t). We now show that this function is in L1, then use the

Calderón reproducing formula in order to conclude that f is an L1 function. To that end,

fix a t > 0,
Z

R
|g(x, t)| dx =

1

t

Z

R
| t ⇤  t ⇤ f(x)| dx

=
1

t
k t ⇤  t ⇤ fkL1

 1

t
k tkL1 k t ⇤ fkL1

=
C 
t

k t ⇤ fkL1 .
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Recalling the fact that f 2 B , and by †, we can take integrals on both sides and get

Z

R

Z

R
|g(x, t)| dxdt 

Z

R

C 
t

k t ⇤ fkL1 dt

= C kfkB
 

< 1.

Therefore, we conclude that g 2 L1(dx ⇥ dt). Moreover, by Fubini’s theorem, we can

also conclude that for almost every x 2 R,
R

R g(x, t)dx 2 L1(dt) along with for almost every

t 2 R,
R

R g(x, t)dt 2 L1(dx). So, this gives us that

Z

R
 t ⇤  t ⇤ f(x)dt

t
2 L1(dx).

By the Calderón reproducing formula for distributions which we established, this L1

function acts as a distribution identically to f . From this, it follows that f 2 L1(dx). To

summarize, we have shown that, for f 2 B there exists a positive constant C such that

kfkL1  C kfkB
 

.

In [9], it is stated that for any  , the space B is a Banach space which is continuously

imbedded in S
0
0(Rn), whose norm is translation and dilation invariant and that S0(Rn) is

contained inside it. These claims were checked, but are omitted in this exposition. The

important thing to notice from this is that for any suitable  , the space B is the solution

to problem P0. This therefore suggests that the space in Definition 3.3.5 is independent of

the choice of  . Indeed, for this reason, the authors of [9] call the solution to problem P0

the Besov space Ḃ0,1
1 (Rn).

When p = 1, a special atom as defined in Definition 3.3.1 is an H1 atom, as in Definition

3.1.6. From the atomic decomposition (3.1.1) and since we saw above that the convergence in

B gives convergence in L1, the inclusion Ḃ0,1
1 (R) ⇢ H1(R) follows. The work of Wilson and

Uchiyama in [25] gives an example as to why this inclusion is strict. Namely, the example

they give in this paper turns out to be an H1 atom that is not in the space B . They

construct this example by building a function b in H1 and an appropriate  so that the large
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frequencies of this  match up with those of b when convolved with each other. The function

they construct is

b(x) = �
1
X

k=1

k�1+✏2sin(2k⇡x)�[�2,�1](x).

There exist other, more common, definitions of the Besov space in terms of the Fourier

transform or interpolation, but we do not include them here and instead given an equivalent

definition below. When n = 1, there is a very convenient decomposition of the Besov space

Ḃ0,1
1 (R) via our familiar special atoms. Here, the special atoms are the same as those used

by DeSouza (refer to Definition 3.3.1), with p = 1.

Theorem 3.3.10. The special atoms space B1 coincides with Ḃ0,1
1 (R) and there exist con-

stants M,N such that for any f 2 Ḃ0,1
1 (R),

N kfkB1  M kfkḂ0,1
1

 M kfkB1 .

The proof of Theorem 3.3.10 can be found in [9]. This theorem therefore allows us to

consider the norm on the Besov space (i.e. B , for any suitable  ) as a norm on the special

atoms space. However, this norm is again not readily adaptable in the computability setting

without an explicit formula for a suitable  . Moreover, in order to discuss computability, it

is simpler to work on a bounded domain.

3.4 Besov Spaces on the Circle

Following DeSouza’s result in [7], we instead turned to the Besov-Bergman-Lipschitz spaces

and their relationship with the special atoms space, stated below. Note that we have now

returned to the setting of functions on the circle.

Definition 3.4.1. For 0 < ↵ < 1, 1  r, s  1, we define the Besov-Bergman-Lipschitz

spaces ⇤(↵, r, s) as

⇤(↵, r, s) =
n

f : T ! R; kfk⇤(↵,r,s) < 1
o

,

where

kfk⇤(↵,r,s) = kfkLr(dx) +

 

Z

T

(kf(x+ t)� f(x)kLr(dx))
sdt

|t|1+↵s
!

1
s

.
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When s = 1, we’ll have a norm on this space. However, for other values of s, we’ll only

have a quasi norm (because the triangle inequality will only be satisfied with a constant).

Moreover, this space is non homogeneous because of the presence of the Lr norm of f in the

beginning.

The main result from [7] is what will allow us to have a suitable norm on the special

atoms space. In this paper, the author begins by showing the following intermediate result.

Theorem 3.4.2. For 1 < p < 1, if f 2 Bp, 1 < p < 1, then f 2 ⇤(1�1/p, 1, 1). Moreover,

kfk⇤(1�1/p,1,1)  Cp kfkBp

,

where Cp is an absolute constant depending only on p.

This was proved by finding an upper bound for the norm of an atom. A similar compu-

tation will be repeated in Chapter 4. This result then leads to the main result of [7].

Theorem 3.4.3. For 1 < p < 1, we have that f 2 Bp if and only if f 2 ⇤(1 � 1/p, 1, 1).

Moreover, there are absolute constants M and N such that

N kfkBp

 kfk⇤(1�1/p,1,1)  M kfkBp

.

Theorem 3.4.3 will allow us to have a suitable norm on the special atoms space. In order

to be able to tie together all of the spaces for which a decomposition in terms of special atoms

exists, that is relate Ḃ0,1
1 (R) to Bp and to ⇤(↵, r, s), we must let p = 1 in Bp. By Theorem

3.4.3, the equivalent Besov-Bergman-Lipschitz space would then be ⇤(0, 1, 1). However, this

result is inconclusive in the literature in the case p = 1. Therefore, the best function space

setting for computability notions to be explored is in the special atoms space Bp with p > 1

and with norm k·k⇤(1�1/p,1,1). Thankfully, as stated previously, this is a true norm, so it

induces a metric.
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Chapter 4

Computability of the Besov Space

The goal of this chapter is to try to relate concepts from computability in the context of the

Besov space.

4.1 Exploration

Definition 4.1.1. We consider distances on the circle modulo 2⇡. That is, for x, y 2 T,

their distance on the circle is denoted as |x� y|.

This distance takes into account the periodicity which comes from identifying the endpoints

of the circle with each other.

Definition 4.1.2. We define the distance between two subintervals I and J of the circle as

d(I, J) = |sI � sJ |+ |wI � wJ |,

where sI , sJ are the left endpoints of I and J respectively, and similarly wI , wJ are the right

endpoints.

Definition 4.1.3. If p > 1 is a computable real number, we define a computable special

atom to be either a special atom aI : T ! R, aI(x) = 1
`(I)1/p

�L(x)� 1
`(I)1/p

�R(x), where I ✓ T

has computable endpoints, or the function b : T ! R, b(x) = 1/2⇡.

For any given interval I with rational endpoints, the special atom aI is a computable

special atom, since rational numbers are computable. Moreover, the constant function b =

1/2⇡ is also a computable special atom since ⇡ is a computable number.
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Definition 4.1.4. We define a rational special atom as a special atom whose support is an

interval with rational endpoints.

Let p > 1 and aI1 and aI2 be two special atoms supported in I1 = (s1, w1), I2 = (s2, w2),

respectively and let mi =
s
i

+w
i

2 , i = 1, 2 be the midpoints of each interval. We note that one

of (or both) the special atoms may be of the exceptional form b(x) = 1
2⇡ . However, in what

follows we will disregard this case since it actually makes the calculations much simpler and

is therefore not so insightful. So, we have

aI1(x) = �c1�R(x) + c1�L(x)

aI2(x) = �c2�R(x) + c2�L(x),

where c1 = 1
`(I1)1/p

and c2 = 1
`(I2)1/p

. We have 5 possible cases for the configuration of the

intervals:

1. I1 \ I2 = I2 or I1 \ I2 = I1

2. I1 \ I2 = (s2, w1) or I1 \ I2 = (s1, w2)

3. I1 \ I2 = ;

Since this is is just an exploration we will only consider the case 1, with an added assumption

on their midpoints. This is illustrated below:

�⇡ ⇡s1 s2 m2 m1 w2 w1

So, the special atoms look like:
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�⇡ ⇡s1 s2 m2 m1 w2 w1

c1

�c1

c2

�c2

Let now

d(x) = aI1(x)� aI2(x),

and let:

A1 = (�⇡, s1), A2 = (s1, s2), A3 = (s2,m2),

A4 = (m2,m1), A5 = (m1, w2), A6 = (w2, w1), A7 = (w1, ⇡).

Then,

d(x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if x 2 A1

c1 if x 2 A2

c1 � c2 if x 2 A3

c1 + c2 if x 2 A4

�c1 + c2 if x 2 A5

�c1 if x 2 A6

0 if x 2 A7

In order to simplify calculations to come, we let, for i 2 {1, . . . , 7}

Ai = (li, ri), Bi = |d(x)| for x 2 Ai
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and for x 2 Ai and y 2 Aj

Ci,j = |d(x)� d(y)|.

Now, by DeSouza’s result and a change of variables, we have that

kaI1 � aI2kBp

= kdk⇤(1�1/p,1,1)

= kdkL1 +

Z

T

Z

T

|d(x+ t)� d(x)|
|t|2�1/p

dxdt

= kdkL1 +

Z

T

Z

T

|d(x)� d(y)|
|x� y|2�1/p

dxdy.

We begin by calculating the L1 norm. Recalling that c1  c2 and that both are positive

constants, we may perform the following computations

kdkL1 =
X

2i6

Z

A
i

Bidx

=
X

2i6

Bi`(Ai)

=c1`(A2) + (c2 � c1)`(A3) + (c1 + c2)`(A4) + (c2 � c1)`(A5) + c1`(A6)

=c1(s2 � s1) + (c1 � c2)(m2 � s2) + (c1 + c2)(m1 �m2) + (c2 � c1)(w2 �m1) + c1(w1 � w2).

Now for the second part of the Besov norm:
Z

T

Z

T

|d(x)� d(y)|
|x� y|2�1/p

dxdy.

In order to evaluate this integral, we look at di↵erent values of x and y in the domain of

integration and see that the calculation of the double integral can be generalized as below.

If (x, y) 2 Ai ⇥Aj, without loss of generality we can assume that j < i (since the integrand

is symmetric in x and y and moreover, if i = j then Ci,j = 0). Let us also assume that

li � rj  ⇡ so that |x� y| = x� y. Setting ↵ = 2� 1/p, we have
R

A
j

R

A
i

|d(x)�d(y)|
|x�y|2�1/p dxdy =

= Ci,j

Z r
j

l
j

Z r
i

l
i

1

(x� y)↵
dxdy

=
Ci,j

1� ↵

Z r
j

l
j

(ri � y)1�↵ � (li � y)1�↵dy

=
Ci,j

(1� ↵)(2� ↵)

�

(ri � lj)
2�↵ � (ri � rj)

2�↵ + (li � rj)
2�↵ � (li � lj)

2�↵�
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=
Ci,j

(1� 1/p)(1/p)

�

(ri � rj)
1/p � (ri � lj)

1/p � (li � rj)
1/p + (li � lj)

1/p
�

.

Note that because of our simplifying assumption, we do not have to deal with the periodicity.

In a more general case, the expression above would be similar and will involve the endpoints

of the intervals along with ⇡.

Finally, putting this together with the first part of the Besov norm, we get that:

kaI1 � aI2kBp

=
X

2i6

Bi`(Ai) +
1

(1� 1/p)(1/p)

X

1i,j7

Ci,jDi,j.

Recall that this expression for the Besov norm of the di↵erence of any two special atoms

aI1 and aI2 was obtained under the assumption that the intervals I1 and I2 are configured

as in Case 1. The other two cases remain to be covered, however we can easily adapt the

explicit formula for the norm to the other configurations of the intervals. In any case, we’ll

get an expression which is similar to the one above (by similar, we mean that the terms

depending on i, j will still be linear combinations of endpoints of the partition and of ⇡, so

it changes nothing as far as computability is concerned). This analysis will be particularly

useful when proving the computability of the norm in Section 4.3.

In fact, this exploration allows us conclude something more general regarding the form

of the Besov norm of step functions.

Lemma 4.1.5. Suppose f : T ! R is a step function of the form

f(x) =
n
X

i=1

ci�I
i

(x),

where {Ii} is a partition of the interval T. Then

kfkBp

=
n
X

i=1

|ci|`(Ii) + 1

(1� 1/p)(1/p)

X

1i,jn

|ci � cj|Di,j,

where Di,j will be some linear combination of ⇡ and terms depending on the endpoints of the

intervals Ii and Ij, with each element of the combination being raised to the power 1/p (see

Di,j above for an example).

56



We continue the analysis of Case 1 by looking at how the norm of the di↵erence of two

special atoms behaves when both special atoms are very close.

Let I = (s, w) and Ik = (sk, wk) be such that Ik ! I as k ! 1, and assume that they are

configured as in case 1 (from above). By the convergence of the intervals, we have that

|s� sk| ! 0, |w � wk| ! 0. (1).

If we consider the midpoints of the intervals, call them m and mk, it also follows immediately

that

|m�mk| ! 0. (2).

Moreover, letting c = 1
`(I)1/p

and ck =
1

`(I
k

)1/p
, we can see that

|Ik| ! |I| =) ck ! c =) |c� ck| ! 0 (3).

Now, we must show that both parts of the Besov norm converge to 0. To this end, let us

first consider the L1 norm:

kaI � aI
k

kL1 = c(sk�s)+(c�ck)(mk�sk)+(c+ck)(m�mk)+(ck�c)(wk�m)+c(w�wk).

The elements of the addition above each go to zero, by facts (1), (2) and (3). Hence, this

shows that kaI � aI
k

kL1 ! 0. It remains to show that the second part of the Besov norm

converges to zero. To that end, we will analyze
Z

A
j

Z

A
i

Ci,j

|x� y|2�1/p
dxdy,

which is an equivalent expression for the second part of the Besov norm, for di↵erent com-

binations of i and j. We will see that the convergence of the second part of the Besov norm

to zero will be due to one of two reasons: either the measure of the domain of integration

will go to zero, or the integrand goes to zero. In fact, this will require a separate analysis of

the three following cases:

1. i = j (trivial case)

2. one of (or both) i and j is even

3. both i and j are odd.
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Before studying all three cases, we first note that the function

f(x, y) :=
Ci,j

|x� y|2�1/p
2 L1(T2),

for any pair of i and j, f will vanish on squares Ai ⇥ Ai covering the diagonal (see case i

below). So, the absolute continuity of the integral gives us that
ZZ

S

f ! 0 as |S| ! 0.

Now, in:

(Case i): i = j.

In this case, since x 2 Ai and y 2 Aj, we’ll have that b(x) = b(y). So, Ci,j = 0, meaning

that the integrand is zero on Ai ⇥ Ai so
Z

A
j

Z

A
i

f(x, y)dxdy = 0.

(Case ii): one of (or both) i and j is even

This is in fact that case where the convergence is due to the measure of the domain of

integration going to zero. By observing the Ai’s above, we can see that the even indexed

subintervals are those whose lengths go to zero as Ik ! I. Hence, whenever one of (or both)

i and j is even, we’ll have that

|Ai ⇥ Aj| = `(Ai)`(Aj) ! 0.

It therefore follows immediately from the absolute continuity of the integral mentioned above

that
Z

A
j

Z

A
i

f(x, y) dxdy ! 0.

(case iii): both i and j are odd.

In this case, it can be seen that Ci,j = |c � ck|, |ck � c|, 2|c � ck| or 2|ck � c|. However, all

four values will go to zero as k ! 1. Hence, once again, it follows that
Z

A
j

Z

A
i

Ci,j

|x� y|2�1/p
dxdy ! 0.

We have therefore illustrated that, in case (i), as the supports of two special atoms get

very close, the Besov norm of the di↵erence of both functions will consist of the sum of
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the elements which are themselves going to zero. In fact, the following proposition shows

that this result holds in general (i.e. without any assumptions as to how the intervals are

configured).

Proposition 4.1.6. For a fixed p > 1, if I is a subinterval of T and {Ik}1k=0 is a sequence

of subintervals of T converging to I, then kaI � aI
k

kBp

! 0.

Proof. We prove the proposition without any assumption on the configuration of the intervals

I and any given Ik. Let I = (s, w) and Ik = (sk, wk) (with midpoints m and mk) such that

Ik ! I. That is, we have that

d(I, Ik) ! 0 as k ! 1.

Claim 1.

|s� sk| ! 0, |w � wk| ! 0, and |m�mk| ! 0 as j ! 1.

Proof of claim: Since d(I, Ik) = |s� sk|+ |w � wk|, it follows immediately that

|s� sk| ! 0, |w � wk| ! 0.

Now, since the midpoints are given by

m =
s+ w

2
,mk =

sk + wk

2
,

we get

|m�mk| =
�

�

�

�

s+ w � sk � wk

2

�

�

�

�


�

�

�

�

s� sk
2

�

�

�

�

+

�

�

�

�

w � wk

2

�

�

�

�

,

from which the convergence is clear.

Consider c := `(I)�1/p and ck := `(Ik)�1/p.

Claim 2. ck ! c as k ! 1.

The proof of this claim is omitted, as it is very similar to that of the previous claim.

Claim 3. aI
k

! a pointwise for a.e. x 2 T as k ! 1.
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Proof of claim:

This claim follows immediately by applying the result from the previous claim. Namely, and

assuming ck ! c, we’ll have for a.e. x 2 T

ck�(s
k

,m
k

)(x) ! c�(s,m),

and

�ck�(m
k

,w
k

)(x) ! �c�(m,w).

So, this gives

ak(x) = ck�(s
k

,m
k

)(x)� ck�(m
k

,w
k

)(x) ! c�(s,m) � c�(m,w) = a(x).

Note that this convergence in fact cannot be uniform, and this is in fact observed in our

explicit from before.

Now, we let

dk(x) = ak(x)� a(x), fk(x, y) =
|dk(x)� dk(y)|
|x� y|2�1/p

.

By DeSouza’s result, we have that

kaI
k

� aIkBp

= kdkkL1 +

Z

T

Z

T
fk(x, y) dxdy.

Claim 4. kdkkL1 ! 0 as k ! 1.

Proof of claim:

The convergence to zero of the first part of the norm follows from the Generalized Lebesgue

Dominated Convergence Theorem, combined with Claim 2. Firstly, the sequence {dk} is a

sequence of L1(T) functions and |dk| ! 0 pointwise a.e. by Claim 3. Now can dominate

each |dk| as
|dk(x)| = |(aI

k

� aI)(x)|  ck + c pw a.e..

Letting g(x) = ck + c, then g 2 L1(T) and ck + c ! 4c by Claim 2. Moreover,
Z

T
ck + c !

Z

T
2c = 4⇡c < 1.

Hence, by the Generalized Lebesgue Dominated Convergence Theorem, it follows that
Z

T
|aI

k

� aI | ! 0, as k ! 0.
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In other words

kdkkL1 ! 0.

Claim 5.
R

T
R

T fk(x, y)dxdy ! 0 as k ! 1.

Proof of claim:

For a fixed k, in order to explicitly calculate this double integral, we must see how Ik and

I are positioned with respect to each other. Depending on this, we partition the circle

accordingly, say into Nk di↵erent subintervals where Nk is a finite number. So, [N
k

i=1Ai = T,

where Ai = (li, ri) and if i < j then ri < lj. Then,

Z

T

Z

T
fk(x, y) dxdy =

X

1i,jN
k

Z

A
i

Z

A
j

fk(x, y) dxdy.

In fact, since aI
k

and aI each define three points (left, right and midpoint), this means that

the circle will be divided into 7 intervals. So we can claim that the number of intervals is

bounded above by N = 10. Namely,

X

1i,jN
k

Z

A
i

Z

A
j

fk(x, y) dxdy 
X

1i,jN

Z

A
i

Z

A
j

fk(x, y) dxdy.

On each rectangle Aj ⇥Aj, fk is a constant, call it Cij divided by either (x� y)↵ or (y�x)↵,

where ↵ = 2� 1/p. In fact, we can divide the integral as

X

i=j

Z

A
i

Z

A
j

fk(x, y) dxdy +
X

i<j

Z

A
i

Z

A
j

fk(x, y) dxdy +
X

i>j

Z

A
i

Z

A
j

fk(x, y) dxdy.

For the first summand: since i = j, we have that Cij = 0 so fk = 0 and the integral goes to

zero.

For the other two summands: fk =
C

ij

(y�x)↵ or fk =
C

ij

(x�y)↵ . A direct calculation of the integral

will give an expression which goes to zero because of one of two reasons. First, for some

combinations of i and j, we’ll have that `(Ai) or `(Aj) will go to zero which results in the

integral going to zero. The second reason is because, if the length of the rectangle Ai ⇥ Aj

does not go to zero, then we’ll have that Cij goes to zero. In this scenario, the integral

will still go to zero as it can be written as Cij times some expression which is bounded

independently of k. One can refer to the exploration above in order to see how these two
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reasons come about. Hence,
R

T
R

T fk(x, y)dxdy can be written as the sum of three terms, all

of which go to zero as k ! 1.

Finally, our main result follows by Claims 4 and 5.

This proposition is powerful in that it allows us to conclude that any special atom, with

the exception of b(x) = 1/2⇡, can be approximated by a sequence of special atoms living

in rational intervals in the Besov norm. Namely, that the space consisting of finite linear

combinations of special atoms with support in rational intervals and the function b(x) = 1/2⇡

is dense in Bp, p > 1.

4.2 Establishing Computability Notions on the Besov

Space

For p > 1, consider the set

D =

(

n
X

j=0

�jgj : �j 2 Q, gj is a rational special atom or gj = b, n 2 N
)

.

From before, we know that D is dense in Bp. Now we can consider a fixed enumeration of

all rational intervals (we know this exists by Proposition 2.5.5), call it {Ik}k2N, we let

ak =

8

>

<

>

:

aI
k�1

if k � 1

1
2⇡ if k = 0.

This notation illustrates the fact the enumeration of rational intervals allows us also to

enumerate the set of rational special atoms, since to each rational interval Ik�1, k � 1, we

may identify uniquely the rational special atom ak. A natural progression would therefore

be to enumerate the set D, in a manner similar to that found in Propositions 2.5.2 to 2.5.5.

Theorem 4.2.1. Let D be defined as above. There exists a sequence ↵ : N ! D such that

↵ is the composition of computable functions and

E = {↵(i) : i 2 N} = D.
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Proof. Recall that from Proposition 2.5.4, we know there exists an enumeration of all finite

sequences of rational numbers. Namely,

{�r(�(i, 0)), . . . , r(�(i, ⌘(i)))� : i 2 N},

where r : N ! Q is a computable surjection and

�(i, k) = (i)k
.� 1, ⌘(i) =

8

>

<

>

:

max{k : pk divides i} if i � 2

0 otherwise
.

In order to simplify notation, we denote r(n) = rn. In other words, the i� th finite sequence

of rational numbers will be given by

�

r�(i,0), . . . , r�(i,⌘(i))
�

.

Setting ↵ : N ! D as

↵(i) =
⌘(i)
X

j=0

r�(i,j)aj

We must show that the inclusion between both sets holds in both directions. That is, we

show the following claims.

Claim 1. E ✓ D.

Proof of claim: Fix an i 2 N and consider

↵(i) =
⌘(i)
X

j=0

r�(i,j)aj 2 E.

Clearly ↵(i) is a finite linear combination of the functions ak,with rational coe�cients, since

the function r maps onto Q. Hence, ↵(i) 2 D and since i was arbitrary, this proves the

claim.

Claim 2. D ✓ E.

Proof of claim: Consider a function f 2 D.

f =
n
X

j=0

�jgj,
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for some n 2 N and where for each j, �j 2 Q and gj is a rational special atom or the special

atom b(x) = 1/2⇡.

We must first identify each gj by an am
j

where we recall that the definition of ak above.

To that end, we must re-order the gj by letting

gj = am
j

,mj 2 N, 0  j  n.

So, letting N = max{m0, . . . ,mn}, we now have

f =
N
X

j=0

�jaj,

For some rational numbers �0, . . . , �N . Now, since the sequence (�0, . . . , �N) is a finite

sequence of rational numbers, by Proposition 2.5.4, we know there exists an i 2 N such that

(�0, . . . , �N) = (r�(i,0), . . . , r�(i,⌘(i))).

Thus, we can finally conclude that for some i 2 N, f can be written as

↵(i) =
N
X

j=0

r�(i,j)aj = f.

Hence, f 2 E

This proposition shows that ↵ : N ! Bp is a dense sequence in Bp. We continue our

exploration of computability within the context of the special atoms space by looking at

computability structures. In particular, we have the following result.

Theorem 4.2.2. Let D be defined as above. For a fixed computable number p > 1, there

exists a dense computability structure, S, on the special atoms space Bp such that D = S0.

Proof. Fix a computable real number p > 1. For i, j 2 N, we know that the two elements

from the set D will look like

↵i(x) =
n
i

X

k=1

�i
k

ak(x), ↵j(x) =

n
j

X

k=1

�j
k

ak(x),

where �i
k

,�j
k

2 Q (so they are computable), ni, nj 2 N (so they are computable) and ak is

a computable special atom.
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So, ↵i � ↵j will clearly be a step function. Letting ck = �i
k

� �j
k

and N = max{ni, nj},
by Lemma 4.1.5, we therefore know that there exists some partition of T, call it {Ik} such

that

k↵i � ↵jkBp

=
N
X

k=1

|�i
k

� �jk|`(Ik) + p2

p+ 1

X

1k,mN

|�i
k

� �j
k

� (�i
m

� �j
m

)|Dk,m.

Under the assumption that all constants involved are rational numbers, for a fixed (i, j),

k↵i � ↵jkBp

will indeed be a computable number, since the explicit formula we give for it

consists of finite sums of computable numbers. Hence, for the metric space (Bp, d), with d

being the metric induced by the norm, we have that d(f, g) is a computable number for all

f, g 2 D. Our result now follows immediately from Proposition 2.6.14. In other words, this

shows that there exists a dense computability structure on Bp.
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Chapter 5

Open Questions

Since the bridge between computability and function spaces is still being built, there are

many questions that remain open. In particular, we showed that for any two finite rational

linear combinations of computable special atoms the number kaI1 � aI2kBp

is computable.

However, is it true that the norm of the di↵erence of two finite linear combinations of atoms

is computable uniformly as a function of i, j? Namely, is it true that

(i, j) 7! k↵i � ↵jkBp

is a computable as a function N2 ! R? If one succeeds in showing this, it would then be

true that the for computable p > 1 the Besov space (Bp, d) with metric induced by the

Besov-Bergamn-Lipschitz norm (with ↵ = 1�1/p, s = r = 1), is a computable metric space.

One can also address this question for other values of p.

One can also try to look at establishing other computability structures on the Besov

space. For example, since we showed that there exists a dense computability structure on

Bp for p > 1, a natural question would be to ask if there exists a separable computability

structure on this space. This question is equivalent to saying that there exists ↵ such that

(Bp, d,↵) is a computable metric space.
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