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Abstract

Low Fatigue Designs and Deep Learning-based Classification for Motion Visual Evoked
Potentials

Raika Karimi

Recent advancements in Electroencephalography (EEG) sensor technologies, Signal Process-

ing (SP), and Machine Learning (ML) algorithms have paved the way for further evolution of Brain

Computer Interfaces (BCI) in several practical applications ranging from rehabilitation systems to

smart consumer technologies. In particular, this thesis research is motivated by potentials of BCI

platforms to provide comfortable means for individuals with communication disabilities to interact

with the outer world. When it comes to SP/ML models for BCI systems, there has been a surge

of interest on Visual Evoked Potentials (VEPs). Recently, Steady-state visual evoked potential

(SSVEP) has become popular due to their fast and reliable performance, and strong provocation of

visual brain signals. Despite the popularity of SSVEPs, their utilization for practical applications

especially for assistive technologies is challenging due to eye fatigue and risk of induced epileptic

seizure. In this regard, the key issue of conventional light-flashing techniques has been addressed

by development of flicker-free Steady-State motion Visual Evoked Potential (SSmVEP). Such ben-

efits, however, come with the price of having less accuracy and less Information Transfer Rate

(ITR). In this regard, the thesis focuses on improving the following three main components: (i)

Stimulation paradigm; (ii) Frequency modulation, and; (iii) Target classification in SSmVEP-based

BCIs. With regard to the first component, novel SSmVEP paradigms with low luminance contrast

and oscillating expansion and contraction motions are designed, and integrated within a BCI sys-

tem. Through experimental evaluations, high detection accuracies are achieved for our proposed

paradigms leading to less visual tiredness in comparison to conventional SSVEPs. Concerning the

second component, an efficient modulation mechanism is proposed without using resources such

iii



as trial time, phase, and/or number of targets to enhance the ITR. The proposed design is based on

the intuitively pleasing idea of integrating more than one motion within a single SSmVEP target

stimuli, simultaneously. To elicit SSmVEP, we designed a novel and innovative dual frequency ag-

gregated modulation paradigm, referred to as the Dual Frequency Aggregated steady-state motion

Visual Evoked Potential (DF-SSmVEP). The proposed DF-SSmVEP is evaluated based on a real

EEG dataset and the results corroborate its superiority. With respect to the third component, it is

expected that incorporation of human brain’s nonlinear dynamics and characteristics of the designed

videos within our EEG signal classifier lead to a comprehensive model resulting in better noise re-

moval. To this end, a deep learning-based classification model is proposed, referred to as the Deep

Video Canonical Correlation Analysis (DvCCA), that extracts features of the SSmVEPs directly

from the videos of stimuli. The proposed DvCCA is evaluated based on a real EEG dataset and the

results corroborate its superiority against recently proposed state-of-the-art Convolutional Neural

Network-based models.
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Chapter 1

Thesis Introduction

1.1 Brain-Computer Interface System

Throughout history, scientists and engineers have envisioned that interactions between our brain

and the outer world can be established without the intervention of human’s voluntary nervous sys-

tem. Dedicated determination towards achieving this goal has resulted in the emergence of Brain-

computer-interface (BCI) systems controlling external devices directly using brain signals indepen-

dently of peripheral nerve pathways [31, 49, 50]. BCI systems have rapidly found their path in

clinical studies sparked the development of rehabilitation and assistive BCI technologies [51, 52]

as well as diagnosis/prognosis of neurological disorders [32, 33]. Providing comfortable, conve-

nient, cost-effective, and user-friendly BCI platforms are critically challenging for rehabilitation

systems [53]. To this end, nowadays, one of the main tendencies of neurotechnology companies is

to incorporate Augmented Reality (AR) within BCI technologies [10], which further necessitates

the development of advanced signal processing/learning models for BCI systems. The thesis’s focus

is on incorporation of BCI within an Augmented Reality (AR) [16,17] platform to provide a means

for individuals with communication disabilities to interact with the outer world, e.g., to select an

object of interest within the AR environment. The communication can be personalized according to

the user’s current context and the AR system can be adopted based on changing environments.
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Brain-Computer Interface Structure: Generally speaking, BCI systems are communication plat-

forms used to directly translate brain signals to the computer’s language so that the system can exe-

cute some control commands in the outer world. To put it another way, the system translates brain

signals (inputs) to the actions (outputs) without using the whole nervous system. Fig. 1.1 shows an

illustrative BCI and AR integrated platform, which consists of four main components. The first part

includes showing stimuli on display. These stimuli can be different types of paradigms designed

for specific applications. The second part corresponds to the signal acquisition block collecting the

brain signals, i.e., EEG signals. The third component is the signal processing module aiming to

translate the noisy signals collected in a real-time fashion. Lastly, the computer performs control-

commands derived from translated brain signals, which are understandable to the computer. These

commands are utilized to control an external devices. The described BCI systems has a wide range

of applications such as:

• Neuroprosthesis is a device to overcome neuro-disabilities caused by injuries. In other

words, these devices are meant to replace cognitive motor or sensory abilities of an organism.

• P300 Speller is a system developed so that users can input texts to a computer through brain

signals and without using their limbs.

• Neurogaming is a type of gaming that deploys BCI systems in such a way that users interact

with the gaming platform without the intervention of traditional sensory controllers.

• Neuro-marketing and Advertising is a new field of marketing deploying different neu-

roimaging modalities to better understand the customer’s reaction to marketing stimuli.

1.1.1 Visual Evoked Potentials (VEPs)

The key reason for the recent surge of interest in VEPs [57] is their easy system configuration,

which currently provides the fastest and the most reliable communication paradigm for implement-

ing a non-invasive BCI. In this context, BCI technologies developed via EEG-based steady-state

visually evoked potential (SSVEP) [19, 20] have been the main research target in recent years due

to their high achievable Information Transfer Rate (ITR), the minimal requirement for user training,
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Figure 1.1: Illustrative BCI and AR integrated platform [77, 78].

and excellent interactive potential, such as high tolerance to artifacts and robust performance across

users. In a typical SSVEP-based BCI system, the virtual object flickers with a specific frequency

while the processing module extracts the effect of the flickering frequency on the EEG signals.

Continuous utilization of SSVEPs causes eye fatigue and puts an excessive mental load on

subjects [56] rendering its practical utilization challenging. To address this issue, Motion-Onset

Visual Evoked Potentials (mVEPs) [41, 57, 58], which elicit P1, N2, and P2 components in the

EEG signals are introduced as attractive alternatives.

1.1.2 Motion Visual Evoked Potential

Recently, there has been a surge of interest on Steady-State motion Visual Evoked Potentials

(SSmVEPs) [59] benefiting from advantages of both mVEPs and SSVEPs. The SSmVEPs com-

prise of reversal periodic movements such as Contraction-Expansion, Rotation, Swing, and Radial-

Zoom [28, 44], which are used instead of conventional flickering-based stimuli.
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1.2 Feature Extraction Methods for VEP

One of the main challenges of the use of raw EEG recording is to detect a reliable pattern

of neural activity with a source of cognitive mechanisms [79]. In other words, robust features

related to cognitive tasks need to be extracted from EEG signals. In that way, various features have

been recognized in the cocktail-party type and noisy EEG signals when it comes to VEPs. Event-

Related Potential (ERP) represented in Fig. 1.2 is a group of time-related components evoked in the

EEG signal in response to visual stimulations. Viewing any sudden movements, pictures, or words

displayed on the screen elicits ERPs after relatively fixed delays in time. Hence, instead of tracking

the whole signal to find the features, we can focus on specific time stamps after displaying visual

stimuli. ERPs appear in the visual cortex, especially in the occipital lobe. Basically, ERPs consist

of four main components:

• P1 or P100, which is the first positive peak linked with low-level perception. It automatically

appears around 100 ms after the onset of any target.

• N1 or N100 is a negative peak linked with low-level perception. It automatically peaks be-

tween 80 and 120 after the onset of any target.

• P2 or P200 is a post-synaptic waveform component distributed around the centro-frontal and

the parieto-occipital areas of the scalp. It positively peaks around 200 ms after the onset of

stimuli.

• N400 is a brain response to conscious cognitive processing such as semantically anomalous

materials. As a result, a large negative peak is elicited in the signal around 400 ms after the

display of targets.

1.3 Contributions

The main goal of the thesis research work is to address the following key question: “What does

the incorporation of Visually Evoked Potentials (VEP) extracted from Electrophysiological (EEG)

signals mean for BCI-based Assistive Technologies?”. The abundance of the EEG signals collected
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Figure 1.2: Representation of ERP components. [79]

through a BCI system compels complex signal and information processing to isolate desired features

from EEG signals that represent the user’s intention to communicate or drive a particular command.

Nowadays, conventional SSmVEP paradigms, including Newton Rings and motions with high-

contrast colors, are used in BCIs designed for assistive technology. Permanent use of these devices

may cause some side-effects for the patients. One of this project’s main motivations was to help the

industry to replace typical motions with graphical motions, which are more user-friendly in terms

of colors and complexity. This way, we can enhance both the performance as well as the practicality

of these technologies.

The most important contributions of the thesis are summarized as follows:

(1) Study on Novel Designs with Reduced Fatigue for Steady-State Motion Visual Evoked

Potentials [61]: Two Novel flicker-free SSmVEP paradigms derived from an ongoing exper-

iment are proposed. The proposed paradigms are selected from the many paradigms tested

on real subjects and chosen for application of real BCI within AR context. Moreover, the

visual fatigue level is optimized during the test for the selected designs. One of the proposed

paradigms even outperformed a typical SSVEP, which is a benchmark in terms of accuracy.

To the best of our knowledge, this is the first time that robust SSmVEP paradigms with the
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least visual fatigue can get better performance than SSVEPs.

(2) DF-SSmVEP: Dual Frequency Aggregated Steady-State Motion Visual Evoked Poten-

tial Design with Bifold Canonical Correlation Analysis [63]: A new form of SSmVEPs is

proposed based on integrating individual SSmVEPs. To this end, we generate a novel idea

of design by modulating two frequencies within a single target. A combination of different

motion modes, more than one modulated frequencies within a single paradigm can lead to a

robust and quick system. The constituent SSmVEP paradigms were not individually applica-

ble to the BCI system; however, the integrated paradigm, referred to as the DF-SSMVEP, be-

comes robust enough to be utilized in BCI systems. Secondly, a new spatial filtering approach,

BCCA, is proposed for classifying DFSSmVEPs. The new BCCA outperforms regular CCA

because it is highly compatible with the design of emerging DFSSmVEP.

(3) Deep Video Canonical Correlation Analysis for Steady-State motion Visual Evoked Po-

tential Feature Extraction [62]: These days, most of the existing algorithms are black boxes

without any intuition in the emerging field of deep learning. According to the literature, one

of the best frequency classifier used within the SSmVEP-based BCIs are CNNs. A new deep

learning-based algorithm is proposed that outperforms the CNN-based benchmark for classifi-

cation. The proposed model’s architecture provides a higher interpretation providing insights

on the reasons behind achieved superior results. As another contribution, it is the first time

that a model can directly discover the connection between videos and EEG signals in visual

BCIs. This can be the first step to reversely solve the problem and understand the connection

between VEP’s intensity and the stimuli’ shape.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides an overview of the literature on various VEP paradigms as well as different

classifiers used in this context. Additionally, in this chapter, we present the background and

relevant EEG signal processing pipelines required to follow the thesis’s advancements.
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• Chapter 3 proposes novel flicker-free SSmVEP paradigms that address the key issue of con-

ventional light-flashing SSVEP. In this chapter, the proposed paradigms incorporated within

an experimental BCI system are compared to SSVEPs in terms of visual fatigue, accuracy,

and ITR.

• Chapter 4 consists of two parts aiming to enhance the accuracy and speed of SSmVEP

paradigms. First, different motion modes within SSmVEPs are designed and concurrently

integrated into a single target to create a new type of visual stimulus called Dual Frequency

Aggregated steady-state motion Visual Evoked Potential (DF-SSmVEP). Secondly, an inno-

vative way of target frequency modulation is introduced in DF-SSmVEPs.

• Chapter 5 targets EEG signal processing step of SSmVEP-based BCI system. To that end, a

supervised frequency detection module deploying videos of stimulation directly is introduced.

The proposed Neural Network-based model considerably competes against recently proposed

state-of-the-art Convolutional Neural Network-based models.

• Chapter 6 wraps up the thesis and illustrates some directions for future works.
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Chapter 2

Literature Review and Background

Despite recent advances in Signal Processing (SP), Artificial Intelligence (AI), and computa-

tional technologies, our brain is considered as the most intriguing signal processing unit in exis-

tence. Plasticity property of the brain, i.e., the ability of neurons to modify their behavior (form

and function) in response to environmental changes, has very recently [1, 2] allowed researchers

to give three paralyzed patients the astonishing chance of walking again (even taking a few steps).

Essentially, the plasticity property of our brain has motivated development of Brain-Computer In-

terface (BCI) systems [7–11] to provide an alternative form of a communication channel between

human brain signals and the outer world. The ultimate goal of a BCI system is to establish a ro-

bust communication channel with high throughput and accuracy between the brain and the outer

world. The BCI systems have several therapeutic applications of significant importance including

but not limited to rehabilitation/assistive systems [6, 7], rehabilitation robotic [12, 13], and neuro-

prosthesis control [14]. Despite recent advancements in BCIs, such systems are still far from being

incorporated reliably within Human-Machine Inference Networks [15].

Various techniques, ranging from tuning stimulations to developing complicated spatial filtering

methods, have been proposed recently to enhance the performance of BCI systems. In this chap-

ter, we will elaborate on the existing approaches utilized to improve VEP-based BCI systems. A

qualitative comparison between different techniques is provided in this chapter as well. Moreover,

details on the experimental pipeline followed during our tests are provided. Finally, an important

formulation and crucial processing modules are illustrated in this chapter.
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2.1 Brain-Computer Interface Paradigms: Literature Review

2.1.1 Visual Evoked Potential

Recent technology trends show that leading technology companies are racing to develop ad-

vanced BCI systems coupled with Augmented Reality (AR) visors. It is widely expected that AR

coupled with BCI would be the next era of computing. Electroencephalogram (EEG)-based BCI

systems developed based of Steady-State Visual Evoked Potential (SSVEP) are considered as the

main technology for potential integration with AR due to their outstanding characteristics such as

high accuracy and Information Transfer Rate (ITR) [17, 54, 55]. Despite the popularity of SSVEPs,

their utilization for practical application especially for assistive technologies is complicated and

challenging, which can be attributed to the following key issues:

(i) Eye fatigue when low-frequency flickering lights are used;

(ii) Higher risk of induced epileptic seizure when medium-frequency flickering lights are used,

and;

(iii) Low signal amplitude when high-frequency flickering lights are used.

2.1.2 Steady-State Motion Visual Evoked Potential (SSmVEP)

To address key the above-mentioned issues associated with SSVEPs, there has been a surge

of interest on Steady-State motion-Visual Evoked Potentials (SSmVEP), where motion stimulation

is utilized instead of conventional light-flashing/flickering technique. While SSmVEPs are posed

to pave the way for the advancement of AR-based BCI systems, there are still in their infancy.

Although the BCI systems developed based on SSmVEPs induce less eye fatigue, their frequency

detection accuracy, and ITR are not comparable to that of the SSVEPs, yet. In other words, Power

Spectral Density (PSD) of the EEG signals when SSVEPs are used spike more intense modulated

frequencies in comparison to the case where SSmVEPs are used under similar conditions [61].

In [60], features of the brain response to different flickering images are recognized by modeling

visual pathways based on artificial neural networks. SSmVEPs, however, can evoke other harmonic

frequencies/features of EEG signals depending on the type of designed motion paradigm due to
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their complex nature. The luminance of utilized colors [27], brightness contrast ratio [64], and the

existence of sharp edges in the design of SSmVEPs [28, 61] are examples of the complexities that

can be taken into account for the design of SSmVEPs. These effects can lead to phase shift of

evoked potentials, appearance of frequency peaks in the PSD, and other extra informative event-

related potential components.

2.1.3 Frequency Modulation and Coding Algorithms for SSVEPs

One issue that is shared by both SSVEP and SSmVEP categories is the challenge of coding more

targets under available resources. Within the context of SSVEPs, the following research works have

been conducted to address this issue: Reference [38] introduced simultaneous phase and frequency

modulations. Reference [39] used modulation in time, i.e., lengthening of the trial duration. Two

different flickering-frequencies are shown consecutively for each target. Following a similar path,

References [35,36] focused on using more than one frequency in a single target (but not at the same

time) via Frequency-Shift Keying (FSK) modulation, also referred to as code modulation, i.e., trial

time is again used for modulation purposes. Similarly, Reference [37] used code modulation with a

single frequency for each target but with different phase shifts over one trial to enhance the system.

Such code-VEPs [35–37,40] and phase modulation [37,38] techniques are, however, very sensitive

to synchronization, and as trial time is used for modulation purposes, ITR will be compromised.

When it comes to SSmVEPs, the issue of coding more targets with enhanced ITR has not yet been

considered, the thesis addresses this gap.

2.1.4 Feature Extraction Methods for SSmVEPs

Target identification is a crucial component of a SSmVEP-based BCI system where, conven-

tionally, Canonical Correlation Analysis (CCA) is utilized [65]. The CCA tries to correlate a linear

relationship between two multi-dimension variables, i.e., recorded EEG signals and template sig-

nals, which are functions of the SSmVEP frequencies. As regular CCA’s performance can highly

be affected by the interference of spontaneous EEG signals, its extensions, for instance, via spatial

filtering are widely considered [34, 66]. The Task Related Component Analysis (TRCA) enhanc-

ing reproducibility of SSVEPs across multiple trials is another attempt to remove the unrelated
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background EEG activities [67]. In certain cases, CCA becomes weak in exploiting useful rep-

resentatives of the underlying EEG data due to its nonlinearity. Kernel-based CCA is a solution

to nonlinearly project data to an embedding space, in which the linear CCA can be applied [68].

Furthermore, nonlinearity map of data can be generated from the template signals in a supervised

fashion, and it was the first intuition to use the Recurrent Neural Networks (RNN) before applying

CCA in SSmVEPs [71] or SSVEPs [69, 70]. Recent studies have shown that Convolutional Neural

Networks (CNNs) can boost performance of BCI classifiers [72, 73]. In Reference [74], for in-

stance, a new CNN method is applied to the complex Fast Fourier Transform (FFT) of EEG signals

exploiting magnitude and phase information and outperforming CCA-based solutions. Using deep

networks to find similarities between test and template signals, however, can lead to the overfitting

issue due to small size of training datasets, typically, available for SSmVEPs-based training.

2.2 Experimental Pipeline

In this section, the principal steps used in our data collection sessions are explained. More-

over, we elaborate on the cycle of testing and updating BCI paradigms designed by our team of

designers from the art department. To investigate the impact of deploying a new theory or a par-

ticular paradigm design on BCI systems’ performance, it is important to simulate the BCI system

applied to real subjects. To that end, we collect largely real EEG signals under special circum-

stances. Because of the existence of artifacts including biological signal interference, eye blinks,

eye movement, cardiac activity, muscle activity, and environmental noise, EEG signals are subject

to significant distortions. Additionally, some of the BCI tests are relatively complex, so the par-

ticipants need to be trained beforehand. Low level of concentration and environmental distractions

modeled in the background noise are other factors that inevitably occur in data collection.

The comparison between different SSmVEP paradigms or different frequency identification al-

gorithms should not be biased towards the aforementioned artifacts. To draw a fair comparison, the

number of collected EEG signals should be large enough. In other words, several subjects usually

participate in each experiment and the tests are repeated several times for each individual to make

sure that the results are significant. However, for analysis of prototype paradigms, we test our VEP
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paradigms on a small group of subjects (one or two). Then, those paradigms, which get the highest

scores during initial tests will be used in the large-scale experiment.

The datasets used in different experiments of the thesis are collected using different setups.

Hence, in what follows, we provide general protocols pursued during our data acquisition tests. The

detailed setup of each test is explained in its corresponding chapter.

It is worth mentioning that each experiment consists of a set of trials in which a target is pointed

out. There is a break or resting time between every pair of consecutive trials. . Stimulus onset

asynchrony (SOA) is a measure denoting the amount of time between the onset of two consecutive

stimuli. A short SOA result in interference in the neural processing of different stimuli. Conversely,

a very large SOA may make a trial independent from the next trial and decrease the ITR of the BCI

system. To compromise between the ITR of the BCI system and neural processing interference,

3-5 seconds break between trials are set in different experiments. Temporal-order judgment (TOJ)

tasks from literature are utilized to investigate the estimated processing time within the brain after

displaying visual stimuli. In our experiments, early components of the visual cortex are mainly taken

into account without using high-level perceptual organization related to creativity. Therefore, the

aforementioned resting range is big enough to avoid interference in the brain’s reactions to different

stimuli.

2.2.1 SSmVEP Paradigm Test

The novel SSmVEP paradigms designed through this thesis research are the output of a closed-

loop system. In this system, the inputs are stimulation videos, and the output is a final score given

to the stimulation. Additionally, designers using these scores decide to alter the characteristics of

the paradigms based on known tips from literature. These tips include the effect of different types

of SSmVEPs on the evoked harmonics of the EEG signal. As another tip, decreasing the luminance

contrast of shapes results in a low fatigue score; however, it comes with the price of having less

accuracy and less Information Transfer Rate (ITR).

Fig. 2.1 demonstrates the block diagram of our experimental pipeline to create exceptional SS-

mVEP paradigms leading to high performance, as well as least visual fatigue. The diagram consists
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Figure 2.1: Closed loop system used to assess the SSmVEP paradigms and consecutively update
them.

of two main blocks, including EEG Signal Processing and Designing block. The first block, in-

cluding EEG signal acquisition, preprocessing, and frequency detection, is fed with recorded EEG

signals, which provides a score in return. The score is based on three main criteria: fatigue score,

power of signal within target frequencies, and accuracy of the frequency detection module. More-

over, the fatigue score covers both a score asked of each subject directly as well as the drop in

accuracy during the consecutive trials. A designer block is a group of designers who change the

paradigms based on the previous block’s feedback so that the next total score increases. In other

words, the term ”designer” denotes a team of researchers who manually manipulate the character-

istics of paradigms. The update applied to the paradigms is taken place experimentally. There are

three ways to alter the paradigms: (i) Changing the colors used in the paradigm or background; (ii)

Tweaking the brightness of the videos and Luminance Contrast of the colors; (iii) Replacing the
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Figure 2.2: The figure shows the headset used in data collection step.

motion modes (i.e., contraction-expansion, and rotation). Next, we will elaborate on the modules of

the EEG signal processing block.

2.2.2 EEG Data Collection

A portable and wireless biosignal acquisition system, g.Nautilus from g.tech Medical Engineer-

ing [48], was used to collect EEG signals. The g.tech system shown in Fig. 2.2 consists of a cap

with 32 bipolar active wet electrodes with 24 Bit resolution, and a sampling rate of 500Hz. The

ground electrode was placed at the earlobe during all experiments. In the g.Nautilus headset, there

is a bio-potential amplifier with prefixed electrode stands labeled with a number and a letter. In

these labels, letters represent the initials of the brain’s lobe where the corresponding electrode are

placed. The number in the electrodes’ labels correspond to the positions defined by the international

10-20 system [80].
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2.2.3 EEG Signal Preprocessing

EEG signals are the common neuroimaging modalities used in BCI systems. However, EEG

waveforms are usually contaminated by artifacts, and drift-noise, so it is hard to distinguish between

the noise and the provoked potentials caused by the BCI system. Hence, the preprocessing step

should affect raw EEG signals fed to machine learning algorithms to ease the signal classification

task [81]. First of all, power line noise (60 Hz) is removed with a notch filter during the data

collection, followed by the Chebyshev-II filter of order 10 to select a frequency-band within 0.5 to

100 Hz.

Generally speaking, the eyes and visual system are behave like a low-pass filter, so we cannot

realize high-frequency alteration happening in the environment. The frequency-band signatures

of visual responses targeted in this thesis are confided to 60 Hz. Hence, another band-pass filter

(usually within 0.5 to 50 Hz) is applied to the signals during the offline preprocessing. It is worth

mentioning that a lower bound for the filter is set so that the drift-noise is filtered. After time-domain

filtering of the signal, we send it to the “Spatial Filtering” module, which is described next.

2.3 Frequency Detection: Formulation

2.3.1 Spatial Filtering

EEG signals, recorded from the surface of the scalp, are exposed to signal interference. Thus,

the output is the superposition of multiple signals from different sources including the SSVEP sig-

nals. The SSVEP signal is concentrated generally in the occipital lobe (especially Oz electrode).

However, there are informative data in other electrodes, which can be used to remove unrelated

waveforms in the frequency-band of targets. A reasonable approach to use the information of other

electrodes is to form a weighted average on the recording channels and construct a single composite

signal. The method of linearly integrating multi-channel into single-channel is referred to spatial

filtering in the context of SSVEPs.
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2.3.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a statistical method utilized to study the linear rela-

tionship between two groups of multi-dimensional variables. For two sets of signals arranged in

matrices denoted by X and Y , the goal is to find two linear projection vectors wx and wy, such

that the linear combination of the two groups of signals wT
xX and wT

y Y has the largest correlation

coefficient, i.e.,

ρ = max
E(wT

xXY Twy)√
E(wT

xXY Twx)E(wT
y XY Twy)

. (2.1)

Conventionally, the reference signals are constructed at the stimulation frequency fi as (in contrary,

the proposed DvCCA uses a deep architecture to construct reference signals)

yi = [cos 2πfit, sin 2πfit, . . . , cos 2πNhfit, sin 2πNhfit]
T ,

where t = 1
fs
, . . . , mfs , the fs is the sampling rate, m is sample points, and Nh is the number of

harmonics, which is dependent on the paradigm, and is obtained experimentally from the Welch

Power Spectrum of signals.
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Chapter 3

Study on Novel Designs with Reduced

Fatigue for Steady-State Motion Visual

Evoked Potentials

3.1 Introduction

The chapter focuses on incorporation of Brain-Computer Interfacing (BCI) within an Aug-

mented Reality (AR) platform to provide means for individuals with communication disabilities

to interact with the outer world. As stated previously, there has been a recent surge of interest on

Steady-State Visual Evoked Potentials (SSVEP). In a typical SSVEP-based BCI system, the virtual

object within the AR environment flickers with a specific frequency while the signal processing

module extracts the effects of the flickering frequency on the Electrophysiological (EEG) signals.

Despite the popularity of SSVEPs, their utilization for practical application especially for assistive

technologies is complicated and challenging due to eye fatigue and risk of induced epileptic seizure.

In this regard, the key issue being targeted in this chapter is addressing fatigue of the flicker (or

brightness modulation) by development of flicker-free Steady-State motion Visual Evoked Potential

(SSMVEP). Two novel SSMVEP paradigms, i.e., Square-based and Circle-based paradigms, with
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low luminance contrast and oscillating expansion and contraction motions are designed, and inte-

grated within a BCI system. Through experimental evaluations, high detection accuracy of 95.31%

is achieved for the square-based SSMVEP.

The rest of the chapter is organized as follows: Section 3.2 introduces the proposed SSMVEP

paradigms. Section 3.3 presents the experimental results. Finally, Section 3.4 concludes the chapter.

3.2 Motion Visual Evoked Potential Paradigms

To address the issues with SSVEP, mentioned in Sub-section 2.1.1, and in particular uncon-

formability of flicker (or brightness modulation), the chapter focuses on development of motion

Visual Evoked Potential (mVEP) [21, 44]. What is unknown is the various responses of the brain,

to differing visual images, geometric patterns, colour variation, and image motion under normal

environmental conditions. In this regard, the chapter develops/implements two novel and innova-

tive motion stimuli together with processing and learning algorithms for inducing discriminative

mVEPs and associating the EEG signals to target class. More specifically, to understand the nature

of mVEPs, two innovative motion stimuli with oscillating expansion and contraction motions, as

alternative solutions to the recently proposed mVEP, are designed, investigated, and their effective-

ness to provide a high-refresh-rate display for visual stimuli is evaluated. To further understand the

behavior of designed motion patterns, initial set of real-data collection and analysis are performed

and EEG responses are captured/analyzed under different frame rates and various scenarios using a

32 channel EEG headset. Based on real-world collected set of test data, pre-processing and feature

extraction on the collected EEG signals in response to the motion stimuli are performed to uniquely

identify the intention of the subject.

More specifically, two contraction-expansion paradigms as shown in Figs. 3.1 and 3.2 are

designed, referred to as Circle-based SSMVEP paradigm (Fig. 3.1), and Square-based SSMVEP

paradigm (Fig. 3.2). The motion stimuli design is based on contraction-expansion with two shapes

(a circle and a square) modulated at four frequencies (6.75, 7.75, 8.75, and 9.75 Hz). Each paradigm

consists of two parts. The first part is a contraction-expansion ring, and the second part is a shape

located in the center of the stimulus resizing with a constant frequency. In the contraction-expansion
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(a)

(b)

Figure 3.1: (a) Circle-based SSMVEP paradigm. (b) Luminance contrast ratio of the colors used
in the designed Circle-based SSMVEP paradigm.

segment, the frequency of motion direction change is defined as motion inversion frequency [27].

Moreover, the second segment of the paradigm resizes with motion inversion frequency. Motion in-

version frequency is adopted as the fundamental frequency of the SSmVEP in the EEG signal. How-

ever, the frequency of shape-size modulation is equal to the half-frequency of the SSMVEP [28].

In other words, we created the paradigms in which one piece evokes first frequency harmonic of

SSmVEP, and another piece evokes half frequency harmonic of the SSmVEP. The key focus of
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(a)

(b)

Figure 3.2: (a) Square-based SSmVEP paradigm. (b) Luminance contrast ratio of the colors used
in the designed Square-based SSMVEP paradigm.

these designs is that the luminance contrast of the colors used in these paradigms (between back-

ground and image, rings, and shapes) is relatively low (maximum color contrasts are 7.26:1 and

7:01:1 where the contrast levels of the black and white patterns with high brightness are approx-

imately 13.9:1). The Luminance contrast are defined according to ISO-9241-3 and ANSI-HFES-

100-1988 [29].

The two square-based and circle-based paradigms are used as SSmVEPs for EEG data collec-

tion and analysis. To remove the unwanted signal components, first zero-phase Chebyshev Type I
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band-pass filter (2-40 Hz) is applied to EEG signals to smooth the data and remove high-frequency

artifacts. The next step is spatial filtering, which is described in the next sub-section.

3.2.1 Spatial Filtering

In this thesis, Maximum Contrast Fusion (MCF) technique is used for spatial filtering. More

specifically, for a visual stimulus with frequency fo, the SSmVEP signal recorded by the ith elec-

trode can be expressed as

yi(t) =

Nh∑
j=1

ai,j sin(2jπfot+ φi,j) + vi(t), (3.1)

where NH is the number of harmonics, and terms ai,j and φi represent the amplitude and phase of

the jth harmonic component, respectively. The model in Eq. (3.1) decomposes the signal into sum

of the SSmVEP induced by the visual stimulus and additive noise vi(t) to represent uncertainties of

the model. Eq. (3.1) can be expressed in vectorized format as follows

yi = si + vi (3.2)

where si =
[
aT
i X

]T
, with X = [x1, . . . ,xNh

], (3.3)

where superscript T represents transpose operator; Vector xi, for (1 ≤ i ≤ N ), consists of

sin(2nπfot) and cos(2nπfot) components; N represents the number of harmonics, and; vector ai

represents the amplitude of SSMVEP at its stimulus frequency and harmonics. The recorded signals

from Nch channels are combined in matrix Y = [y1, . . . ,yNch
], where each column corresponds

to signals collected from one of the Nch electrodes channel. The observation matrix Y can be pro-

jected to the SSMVEP space through a projection matrix [26] defined as Q = X(XTX)−1XT .

Thus, the noise signal can be expressed as Y
′
= Y −QY . Assuming that the weighting coefficient

for each channel is w, then the SSmVEP signal energy can be approximated as

||Y w||2 = wTY TY w. (3.4)
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The maximum contrast fusion obtains the spatial filter coefficients w by maximizing the SSmVEP

energy and minimizing the noise energy, i.e.,

E = max
wTY TY w

wTY ′TY ′w
, (3.5)

which can be solved by the generalized eigenvalue decomposition of Y TY and Y
′T
Y

′
. The eigen-

vector corresponding to the largest eigenvalue is the required spatial filter coefficient.

3.2.2 Frequency Recognition Algorithm

In this work, the Welch Power Spectral Density (PSD) is used to estimate random signals by

dividing data with a length of N into M segments of length L. Its window averaged period formula

is given by

P (w) =
1

M

M∑
i=1

[
1

LP0
|

L∑
n=1

w(n)xi(n)e
−jwn|2)], (3.6)

where p0 refers to the power of window w(n) given by

P0 =
1

L

L∑
n=1

|w(n)|2. (3.7)

Canonical Correlation Analysis

Canonical correlation analysis is a statistical method to study the linear relationship between

two groups of multidimensional variables, which extends the simple correlation analysis to two

groups of variables. For the two sets of signals X and Y , the goal is to find two linear projection

vectors wx and wy, such that the linear combination of two groups of signals wT
xX and wT

y Y has

the largest correlation coefficient computed as follows

ρ = max
E(wT

xXY Twy)√
E(wT

xXY Twx)E(wT
y XY Twy)

. (3.8)

The reference signals were constructed at the stimulation frequency fi as follows

yi = [cos 2πfit, sin 2πfit, . . . , cos 2πNhfit, sin 2πNhfit]
T , (3.9)
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where t = 1
fs
, . . . , mfs , and Nh is the number of harmonics, which is dependent on the utilized

paradigms. The fs is the sampling rate, and m is sample points. Number of harmonics were

obtained experimentally from Welch Power Spectrum of signals.

3.2.3 Performance Evaluation

Classification accuracy and ITR evaluate the performance of the paradigms. Information Trans-

fer Rate is a valid criterion to assess the speed of BCI systems. The ITR is computed as follows

ITR =
60

T

[
log2K + σ log2 σ + (1− σ) log2(

1− σ
K − 1

)

]
, (3.10)

where T is the sum of time of each trial and the resting state time between two trials, K is the

number of stimuli, and σ is the recognition accuracy. Additionally, the accuracy-difference between

trials of two consecutive sessions can be used as an effective assessment tool to measure the fatigue

associated with a designed paradigm.

3.3 Experimental Results

In this section, first, we present the dataset collected and utilized to assess the efficiency of the

two proposed paradigms. The collected dataset consists of 16 trials for each target-frequency per

subject. Two novel motion-SSVEP with low luminance contrast between colors and one checker-

board flickering (normal SSVEP) are shown to subjects.

Experimental Environment: In the initial experiments, two individuals, one male and one female

(20-27 years old) were recruited with no record/evidence of visual or color-recognition disabilities.

The data were collected with the policy certification of Ethical acceptability for research involving

human subjects and approved by Concordia University with the certification number 3007997. The

procedures used in this protocol are all well established and known to be safe. The EEG signals

were collected by electrodes Pz, Po7, Po3, Po4, Po8, and Oz from parietal and occipital lobes of

the brain. The experiments consisted of four targets displayed simultaneously on a 21.5-inch LED

screen with a green background. The resolution of the screen was 1920×1080 at 60Hz refresh rate.
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Figure 3.3: (a) The PSD plot based on Circle-based SSMVEP with 6.75 Hz target frequency. (b)
Similar to (a) but with 8.75 Hz target frequency. (c) The PSD plot based on Square-based SSMVEP
with 6.75 Hz target frequency. (d) Similar to (c) but with 7.75 Hz target frequency.

All the subjects are asked to stare at the stimuli based on the same protocol.

Subjects participated in the test for two rounds with a 10 minutes break between the rounds.

Each round included two consecutive sessions. In each session, targets of four frequencies were

displayed in four trials. Each trial lasted for 4 seconds with a 3 second break between trials. Fig. 4.4

illustrates the Welch Power Spectral Density (PSD) of the EEG signals collected from different

stimulation frequencies for Subject 1. Target frequencies of the stimuli are 6.75, 7.75, 8.75, and

9.75 Hz. It is observed that the proposed paradigms have the ability to evoke expected potentials

with the highest PSD amplitudes occurring at the half target frequencies in the SSmVEP paradigms

(i.e., 3.4, 3.9, 4.3, and 4.9Hz).
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Figure 3.4: Accuracy comparison results based.
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Figure 3.5: ITR comparison results.

3.3.1 Results and Discussions on Different Paradigms

In this sub-section, we present different results and compare the results obtained from the two

proposed SSmVEP designs against the conventional flicker-based SSVEP approach. In particular,

comparisons are performed over the following three aspects: (i) Classification accuracy; (ii) Infor-

mation transfer rate of different paradigms, and; (iii) Accuracy drop between first and last sessions
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to evaluate visual comfort of different paradigms.

Classification Accuracy Comparisons: As each trial length is 4 seconds, different window lengths

from 0.5 to 4 seconds with an interval of 500 millisecond are used to perform classification and

identify each trial’s label. Fig. 4.3 shows the average accuracy of three stimulations simultaneously.

The best accuracy (95.31%) for this experiment belongs to the square based SSmVEP when the

trial time length is 4 seconds. Nevertheless, in other time windows, Flickering paradigm has the best

performance among the stimuli. Square-based paradigm shows better accuracy than the circle-based

paradigm over different time lengths. It is worth mentioning that it is expected at first that a normal

SSVEP provides better accuracy and ITR due to its obviousness. Although in our experiments

the flickering pattern provides better performance in smaller window lengths in terms of SSVEP-

frequency detection and ITR, a significant reduction of accuracy between the first and last trials is

observed indicating the mentioned drawbacks such as causing seizures and eye tiredness.

Information Transfer Rate of Different Paradigms: Fig. 3.5 illustrates the computed ITRs associ-

ated with three paradigms over various time windows. The highest rate of our BCI system is 39.12

bits/min, which belongs to the flickering stimulus. Square-based SSMVEP has a higher ITR than

the Circle-based paradigm in all the time windows. Although flickering paradigm provides higher

ITR during smaller time windows, the one (24.79 bits/minute) associated with the Square-based

SSMVEP is higher when the complete trial is used (4 seconds). The relatively high achieved ITRs

for the initial SSmVEP designs are encouraging to further improve the designs, which is the focus

of our on-going research work.

Accuracy Drop Between First and Last Sessions: Each test round consists of two consecutive ses-

sions and each session has four trials for each target frequency. To evaluate visual comfort of differ-

ent paradigms, the summation of the second and fourth session is subtracted from the summation of

the first and the third sessions. Fig. 3.6 shows the average accuracy difference between consecutive

sessions. Furthermore, the range of time lengths for trials is from 0.5 to 2 seconds. Based on this

comparison and according to their visual fatigue, Square-based SSMVEP, Circle-based SSMVEP,

and flickering SSVEP are ranked first, second, and third, respectively. The result of this experiment

illustrates potential benefits of the proposed SSMVEP paradigms in providing less visual fatigue.
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Figure 3.6: Accuracy reduction between first and last sessions.

3.4 Summary

Despite the popularity of SSVEPs, their utilization for practical applications especially for as-

sistive technologies is complicated and challenging, which can be attributed to the following key

issues: (i) Eye fatigue with low-frequency flickering, and; (ii) Higher risk of induced epileptic

seizure with medium-frequency flickering. The chapter proposed two novel Steady-State Motion

Visual Evoked Potentials (SSMVEP) paradigms with low luminance contrast. The key issue being

targeted is fatigue of flicker (or brightness modulation) via development of two different patterns

with oscillating expansion and contraction motions.
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Chapter 4

DF-SSmVEP: Dual Frequency

Aggregated Steady-State Motion Visual

Evoked Potential Design with Bifold

Canonical Correlation Analysis

Recent advancements in Electroencephalography (EEG) sensor technologies and signal pro-

cessing algorithms have paved the way for further evolution of Brain Computer Interfaces (BCI) in

several practical applications ranging from rehabilitation systems to smart consumer technologies.

When it comes to Signal Processing (SP) for BCI, there has been a surge of interest on Steady-State

motion-Visual Evoked Potentials (SSmVEP), where motion stimulation is utilized to address key

issues associated with conventional light-flashing/flickering. Such benefits, however, come with the

price of having less accuracy and less Information Transfer Rate (ITR). In this regard, the chapter

focuses on the design of a novel SSmVEP paradigm without using resources such as trial time,

phase, and/or number of targets to enhance the ITR. The proposed design is based on the intuitively

pleasing idea of integrating more than one motion within a single SSmVEP target stimuli, simulta-

neously. To elicit SSmVEP, we designed a novel and innovative dual frequency aggregated modu-

lation paradigm, referred to as the Dual Frequency Aggregated steady-state motion Visual Evoked

28



Potential (DF-SSmVEP), by concurrently integrating “Radial Zoom” and “Rotation” motions in a

single target without increasing the trial length. Compared to conventional SSmVEPs, the proposed

DF-SSmVEP framework consists of two motion modes integrated and shown simultaneously each

modulated by a specific target frequency. The chapter also develops a specific unsupervised clas-

sification model, referred to as the Bifold Canonical Correlation Analysis (BCCA), based on two

motion frequencies per target. The corresponding covariance coefficients are utilized as extra fea-

tures improving the classification accuracy. The proposed DF-SSmVEP is evaluated based on a real

EEG dataset and the results corroborate its superiority. The proposed DF-SSmVEP outperforms

its counterparts and achieved an average ITR of 30.7±1.97 and an average accuracy of 92.5±2.04,

while the Radial Zoom and Rotation result in average ITRs of 18.35 ± 1 and 20.52 ±2.5, and

average accuracies of 68.12 ± 3.5 and 77.5±3.5 respectively.

4.1 Introduction

Generally speaking, there are two main visual BCI Paradigms, (1) Steady-State Visually Evoked

Potential (SSVEP) [34–40], where light-flashing (flickering) visual stimulus is used to induce evoked

potentials in the EEG signals, and; (2) Steady-State motion-Visual Evoked Potentials (SSmVEP) [28,

41, 42, 59], where instead of using flickering, some form of graphical motion is used to evoke po-

tentials. The former category (SSVEP) has been the main research theme due to its high achievable

Information Transfer Rate (ITR), minimal requirement for user training, and excellent interactive

potentials, such as high tolerance to artifacts and robust performance across users. However, flicker-

ing light, causes extensive mental stress. Continuous use of SSVEPs (looking at flickering patterns

for a long period of time), therefore, may cause seizure or eye fatigue. The second category (SS-

mVEP) is introduced to address these issues while keeping all the aforementioned benefits of the

SSVEPs.

Contributions: To address the problems mentioned in Sub-section 2.1.3, we focus on designing a

novel SSmVEP paradigm without using additional resources such as trial time, phase, and/or num-

ber of targets to enhance the ITR. The proposed design is based on the intuitively pleasing idea of

using more than one simultaneous motion within a single SSmVEP target stimuli. More specifically,
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Figure 4.1: Proposed DF-SSmVEP paradigm developed by concurrent inclusion of two types of
the motion (rotation and resizing).

as shown in Fig. 4.1, to elicit SSmVEP we designed a novel and innovative dual frequency aggre-

gated modulation paradigm, referred to as the DF-SSmVEP, by concurrently integrating “Radial

Zoom” and “Rotation” motions in a single target without increasing the trial length.

Fig. 4.2(i) visually compares four different paradigms: Conventional SSVEP frequency modula-

tion is shown in Sub-figure (a), where 2 target frequencies, “F1” and “F2”, are evoked in 2 different

trials via flickering. Sub-figure (b) is similar to Sub-figure (a) where now 2 target frequencies are

used together, one after another by increasing the trial time. Sub-figure (c) in Fig. 4.2(i) illustrates

2 SSmVEP modulations similar to Sub-figure (a), but target frequencies are evoked now via motion

of the circle. Sub-figure (d) shows the proposed DF-SSmVEP design where now 2 target frequen-

cies are used together simultaneously eliminating the need to increase (sacrifice) the trial length

for achieving higher accuracy as is the case in code/frequency modulated SSVEPs [35–37]. It is
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worth mentioning that the proposed idea has not been considered previously as the main focus of

the literature was on SSVEPs using flickering frequencies, where it is impossible to implement our

intuitive idea of having two target motion frequencies embedded in a single target, simultaneously.

The chapter also develops a specific unsupervised classification model adopted to the proposed

innovative DF-SSmVEP paradigm. More specifically, in contrary to the existing works, we pro-

pose an unsupervised SSmVEP detection technique, referred to as the Bifold Canonical Correlation

Analysis (BCCA) utilizing unique characteristics of the proposed dual aggregated frequency design.

The BCCA exploits availability of two motion frequencies for each target and separately considers

each single frequency of the targets as a reference. The corresponding covariance coefficients are

then used as extra features advancing the classification accuracy. The proposed DF-SSmVEP is

evaluated based on a real EEG dataset.

4.2 The Proposed DF-SSmVEP

The designed DF-SSmVEP stimulation paradigm includes a green and black circle with two

motion modes. The first motion is the “Radial Zoom” in which the size of the circle changes pe-

riodically. The second mode is the “Reciprocal Rotation” of the circle between −45◦ and 75◦.

Radial zoom motion and rotation motion are selected as candidates for integration following previ-

ous evaluations [28, 44]. The frequency of motion direction change inside the reciprocal motion is

defined as motion inversion frequency. Furthermore, the motion inversion frequency corresponds to

the frequency of stimulation, which is equal to the fundamental SSmVEP frequency. To elaborate

on the motion choices utilized to design the proposed DF-SSmVEP paradigm, first we note that as

mentioned in [44], any paradigms with periodic motion can be used as stimuli of SSmVEPs.

The two designs are integrated such that the focal point of one paradigm is overlaid with that

of the second one. In the proposed DF-SSmVEP paradigm, the focal point will be the center of

the black-green circle, i.e., the center of oscillation for the two segments of the design (resizing and

oscillation of circle). To make the proposed design as efficient as possible and to reduce fatigue [45],

the proposed DF-SSmVEP design does not include high contrast colors improving the practical

applicability of the SSmVEP stimuli. As shown in Fig. 4.2(b), the Luminance Contrast Ratio (LCR)
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(i)

(ii)

Figure 4.2: (i) Comparison between existing SSVEP frequency modulation schemes ((a) and (b))
with SSmVEP (c), and the proposed DF-SSmVEP (d). (ii) Luminance contrast ratio of the colors
used in the designed DF-SSmVEP.

associated with our green-black paradigm is lower than that of the conventional black-white design.

The refresh rate of the monitor showing the SSmVEP stimuli is a limiting factor restricting the

frequencies that can be designed when an equal number of frames used during consecutive cycles

(one motion direction change). To implement flexible target frequencies, we need to have designs

with variable number of frames per cycle [45] to implement our design. Given the refresh rate of

the monitor, which is 60 Hz in our setting, the first task is to design binary stimulus sequences

(i.e., the number of frames per each half-cycle, typically, asymmetric) with the goal of allocating
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frames based on the specified target frequencies. The number of frames per half-cycle [45] of

the DF-SSmVEP is constructed as S(f (T), i) = square
[
2πf (T)(

i

Rr
)
]
, where i indicates the frame

index; f denotes the target frequency; Rr represents the monitor’s refresh rate, and; S(f, i) denotes

the stimulus sequences associated with target frequency f . Note that, each half-cycle corresponds to

one contraction or expansion or half of the reciprocal motion. Consequently, a motion oscillation at

a target SSmVEP frequency up to f ≤ Rr/k can be generated as a stimulus. In other words, for one

cycle of an SSmVEP paradigm to be understandable, k minimum number of frames per half-cycle

is required to realize the motion cycle comfortably.

Coding Algorithm: Assume that the maximum number of targets (objects shown on the screen

simultaneously) is denoted by N (T). In other words, N (T) number of target frequencies are selected

within the limited frequency spectrum of [fmin, fmax] available for constructing the stimuli. Term

fi, for (1 ≤ i ≤ N (T)), represents the target frequency for the ith target/object assumed to be

sorted in an ascending order, i.e., (fmin ≤ f1 < f2 < . . . < fN(T) ≤ fmax). These N (T) target

frequencies need to be derived in an intelligent fashion such that the best performance among all

the susceptible frequencies is achieved (i.e., achieve accuracy improvements without reducing the

ITR). In the proposed dual aggregated design, each target includes two motions with two distinct

frequencies. These frequencies are assigned to targets in which no two pairs of targets have more

than one adjacent frequencies. More specifically, the objective of the coding algorithm is to find

these two underlying target frequencies in such a way that each pair of objects at most have one

adjacent target frequency. For each consecutive frequencies fi and fi+1, gi is defined as

gi =


fi + fi+1

2
, ∀i ∈ [1, N − 1]

fi +M, i = N

(4.1)

where M = min[
fi+1 − fi

2
] ∀i ∈ [1, N − 1]. Each gi is adjacent to fi and fi+1. More specifically,

consider P = {(ai, bi)}, for (1 ≤ i ≤ N ), representing the set of N ≥ 5 target pairs where ai and

bi are the new SSmVEP frequencies used for the ith object. Terms ai and bi in P are defined as
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follows

ai=


f1, i = 1

fi+1, ∀i ∈ [2, N − 1]

f2, i = N

bi=


gN−1, i = 1

gi−1, ∀i ∈ [2, N − 1]

gN , i = N

. (4.2)

Pre-processing: The proposed SSmVEP paradigm is implemented via a BCI system for real EEG

data collection. In this regard, the first step is pre-processing of EEG signals associated with the

proposed SSmVEP paradigm, as collected EEG signals are exposed to artifacts and high/low fre-

quency noises. To extract the SSmVEP signal from the EEG signals, applying spatial and time

domain filters are, therefore, critical. In time domain filtering, first, zero-phase Chebyshev Type I

band-pass filter (2-40 Hz) is applied to smooth the data and remove high-frequency artifacts.

4.2.1 Proposed BCCA Paradigm

Canonical Correlation Analysis (CCA) is a statistical method to study the linear relationship

between two groups of multi-dimensional variables. For two sets of signals arranged in matrices

denoted by X and Y , the goal is to find two linear projection vectors wx and wy, such that the

linear combination of two groups of signals wT
xX and wT

y Y has the largest correlation coefficient,

i.e.,

ρ = max
E(wT

xXY Twy)√
E(wT

xXY Twx)E(wT
y XY Twy)

. (4.3)

Reference signals are constructed at the stimulation frequency fi as

yi = [cos 2πfit, sin 2πfit, . . . , cos 2πNhfit, sin 2πNhfit]
T , (4.4)

where t = 1
fs
, . . . , mfs , the fs is the sampling rate, m is sample point, and Nh is the number of

harmonics, which is dependent on the paradigm and is obtained experimentally from Welch Power

Spectrum of signals. Consider X as the matrix of the EEG signals collected from K different

channels. The CCA finds linear combination of coefficients with the largest correlation between

X and Y . In the BCCA fusion, there is a feature vector for each sample concerning each target

frequency. Contemplating the Power Spectral Density (PSD) of the EEG signal, collected during the
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aggregated paradigm, gives insight that only one of the peaks is significant for some trials, i.e., one

of the two modulated frequencies has more impact on the visual pathways of the brain. To capitalize

this unique property and enhance the DF-SSmVEP, the following three references are incorporated

to create the feature vector

y1 = [cos(2πfi,1t), sin(2πfi,1t), . . . , cos(2πNhfi,1t), sin(2πNhfi,1t)]
T (4.5)

y2 = [cos(2πfi,2t), sin(2πfi,2t), . . . , cos(2πNhfi,2t), sin(2πNhfi,2t)]
T (4.6)

yc = C(y1,y2, [cos(2π(fi,1 + fi,2)t), sin(2π(fi,1 + fi,2)t)]
T , 2) (4.7)

where fi,j represents the jth stimulation frequency of ith target, and the operator C(a, b, c, 2) con-

catenates three matrices a, b , and c vertically. The projection of each vector is separately calculated

leading to three different weight vectors between test signal X and: (i) (wy1 , wX1) sine/cosine

reference of first frequencies; (ii) (wy2 , wX2) reference of second frequency of targets, and; (iii)

(wyc , wXc) sine/cosine reference of both frequencies of targets. The feature vector v is

v =
[
ρ1, ρ2, ρc

]T
, and ρa =

ρ1 + ρ2 + ρc
3

, (4.8)

where ρa is used as the final value to represent the correlation between the unknown sample and the

frequencies of a target. It is worth mentioning that the proposed BCCA is an unsupervised technique

as such there is no need for a separate training step. Consequently, all the available trials of sessions

are used in the testing stage.

4.2.2 Experimental Setup

A real dataset consisting of 10 individuals, 5 women and 5 men between age of 20 to 27 is

utilized to evaluate the proposed DF-SSmVEP framework. Participants have no evidence of visual

or color-recognition ailments. Five subjects had experience of BCI experiments. We would like to

mention that, for data collection, we have followed the common, standard, and accepted approach in

the BCI domain (e.g., [44]) where, typically 9-11 subjects are used, and the trial length ranges from
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Figure 4.3: Mean and standard deviation across all subjects for each time window: (a) Accuracy
comparisons. (b) ITR comparisons.

2 seconds to 6 seconds. The EEG signals were collected using a portable and wireless bio-signal

acquisition system (32 bipolar active wet electrodes with sampling rate 500Hz), g.Nautilus from

g.tech Medical Engineering. The reference and the ground electrodes of the headset were placed

at the earlobe and frontal position (Fpz), respectively. The electrodes Pz , Po7, Po3, Po4, Po8, and

Oz from the parietal-occipital region were chosen to collect EEG signals. Stimuli with a white
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Figure 4.4: (a) The PSD plot based on aggregated SSmVEP with 6-9.5Hz target frequencies. (b)
Similar to (a) but with 8-6.5Hz target frequencies.

XXXXXXXXXXXFilters
Paradigms Radial Zoom Rotation DF-SSmVEP

ACC ITR ACC ITR ACC ITR
MCF + CCA 68.12 18.35 77.5 20.52 81.88 21.89

T-F Image Fusion + CCA 59.3 13.39 68.75 13.73 63.25 13.93
CCA Fusion 63.5 17.24 76.17 18.05 84.38 23.73
BCCA Fusion - - - - 92.5 30.7

Table 4.1: Mean accuracy (%) and mean ITR (bits/min) comparison between four methods of
spatial filtering across the three motions. The best ITR among different time-windows are reported
for each filter. Maximum Contrast Fusion (MCF) [44] and T-F Image Fusion [42] are two types of
spatial filtering.

background were displayed on a 21.5-inch LED screen at 60Hz refresh rate. The resolution of the

screen was 1920 × 1080, and the viewing distance was 70cm. The data were collected with the

policy certification number 3007997 of Ethical acceptability for research involving human subjects

approved by Concordia University.

Three paradigms, i.e., (i) Rotation; (ii) Radial zoom, and; (iii) DF-SSmVEP, are tested in sep-

arated runs (videos are available publicly at [47]). Each video consists of five targets oscillating

with different frequencies. For individual videos, target frequencies were 5, 6, 7, 8, and 9Hz. For

aggregated videos, target frequencies of the radial zoom pattern were 5, 6, 7, 8, and 9Hz, and target

frequencies of the rotation pattern were 5.5, 6.5, 7.5, 8.5, and 9.5Hz. Each run of a video included
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Table 4.2: Comparison between mean and standard deviation values associated with performance
indices (precision, sensitivity, specificity, and accuracy across) all runs for 3 paradigms, i.e., Rota-
tion (R), Radial Zoom (RZ), and the proposed DF-SSmVEP (denoted by DF).

PPPPPPPPPClasses
PI Specificity Sensitivity

R RZ DF R RZ DF
9 Hz or 0.912 0.934 0.993 0.900 0.600 0.875

(9Hz, 7.5Hz) ± 0.052 ± 0.037 ± 0.013 ± 0.098 ± 0.226 ± 0.083
6 Hz or 0.940 0.893 0.984 0.725 0.875 0.962

(6Hz, 9.5Hz) ± 0.023 ± 0.062 ± 0.027 ± 0.098 ± 0 ± 0.060
5 Hz or 0.946 0.875 0.940 0.625 0.937 0.975

(5Hz, 8.5Hz) ± 0.025 ±0.044 ±0.033 ±0.220 ± 0.106 ±0.053
7 Hz or 0.981 0.993 0.993 0.787 0.312 1

(7Hz, 5.5Hz) ± 0.030 ± 0.013 ± 0.013 ± 0.177 ± 0.135 ±0
8 Hz or 0.940 0.906 0.987 0.850 0.687 0.812

(8Hz, 6.5Hz) ±0.047 ± 0.062 ±0.016 ± 0.098 ± 0.244 ±0.135

PPPPPPPPPClasses
PI Precision Accuracy

R RZ DF R RZ DF
9 Hz or 0.735 0.710 0.977 0.910 0.867 0.970

(9Hz, 7.5Hz) ±0.137 ± 0.061 ± 0.047 ± 0.054 ± 0.020 ± 0.01
6 Hz or 0.757 0.702 0.947 0.897 0.890 0.980

(6Hz, 9.5Hz) ±0.091 ± 0.167 ± 0.870 ± 0.027 ± 0.050 ± 0.023
5 Hz or 0.737 0.663 0.829 0.882 0.8875 0.952

(5Hz, 8.5Hz) ±0.118 ± 0.068 ±0.100 ± 0.054 ± 0.017 ±0.029
7 Hz or 0.937 0.933 0.977 0.942 0.857 0.995

(7Hz, 5.5Hz) ±0.100 ± 0.140 ±0.047 ± 0.026 ± 0.031 ±0.011
8 Hz or 0.809 0.649 0.939 0.922 0.862 0.952

(8Hz, 6.5Hz) ±0.131 ± 0.221 ±0.079 ± 0.027 ± 0.095 ±0.036

two consecutive sessions, where subjects were required to stare at a target using a pointer. In each

session, each existing target was pointed in four trials. Each trial lasted 3.5 seconds with a 2.5

seconds break between consecutive trials. In particular, ITR is used for evaluations, which assesses

the speed of a BCI systems as

ITR =
60

T

[
log2K + σ log2 σ + (1− σ) log2(

1− σ
K − 1

)

]
, (4.9)
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where T is the sum of time of each trial and the resting state time between two trials; K is the

number of stimuli, and; σ is the recognition accuracy. Evaluation via the One-way Analysis Of

Variance (ANOVA) [46] with Tukey post hoc analysis is also used to confirm that responses to the

proposed DF-SSmVEP-stimuli is statistically meaningful (p < 0.05).

4.3 Result

As shown in Fig. 4.3, accuracy and ITR are measured for different time windows for each trial

ranging from 0.5 to 4 seconds with an interval of 500 millisecond. The highest rate of transmission

(ITR) belongs to aggregated motion (30.7 ± 1.97), which also achieved the best accuracy (92.5 ±

2.04). We utilized the ANOVA test following the existing literature [44, 59] that used ANOVA test

for significance comparison between accuracies and/or ITRs of different paradigms. It is worth

noting that based on the Central Limit Theorem, we can safely assume that the samples have a

normal distribution. The one-way ANOVA on accuracies of DF-SSmVEP paradigm reveals that

there is no significant effect of frequencies (classes) on accuracies (F = 2.78, p = 0.065 ), so all target

frequencies of DF-SSmVEP are feasible in BCI systems. The Tukey post-hoc test on the accuracy

and the ITR shows significant differences between the performance of DF-SSmVEP with BCCA

and other paradigms with corresponding classifiers for which the highest accuracies are acquired,

i.e., (Accuracy: pDF−R = 0.042, pDF−RZ = 0.002, pR−RZ = 0.218; ITR: pDF−R = 0.011,

pDF−RZ = 0.001, pR−RZ = 0.264). The second best motion in terms of accuracy is the rotation

motion 77.5± 6.12, and the last one is radial zoom (68.12± 10.87).

Fig. 4.4 illustrates Welch PSD of two targets of aggregated motion after spatial filtering for

Subject 1. Two significant peaks of SSmVEP frequency around the two frequencies of each target

is observable. Table 4.2.2 shows the overall recognition accuracies and ITRs. It can be observed

that aggregating two SSmVEP paradigms using the proposed DF-SSmVEP results in compelling

performance improvement. The results also show superiority of the BCCA as the best unsupervised

target detector among its counterparts. Means and standard deviations based on four different Per-

formance Indices (PI), i.e., precision, sensitivity, specificity, and accuracy across all runs for each
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class, are also shown in Table 4.2. The time window is set to 3.5 second. Each row of Table 4.2 cor-

responds to the dual frequency of the proposed DF-SSmVEP paradigm in each class. To investigate

robustness of the proposed methodology, we display paradigms repeatedly to different subjects (in

contrary to using EEG signals of one trial several times) and average the performance across Runs

and Subjects. In the experiments, we have 10 subjects each performing (repeating) one run for 8

times (resulting in 80 trials per class).

4.4 Summary

To address lower accuracy and ITR of SSmVEP designs, the chapter proposed an intuitively

pleasing, novel, and innovative dual frequency aggregated modulation paradigm. Referred to as

the DF-SSmVEP, the novel design is constructed by concurrently integrating “Radial Zoom” and

“Rotation” motions in a single target without increasing the trial length. The chapter also develops

a specific unsupervised classification model, referred to as the BCCA, which utilizes availability of

two motion frequencies per each target. The proposed DF-SSmVEP is evaluated via a real EEG

dataset achieving average ITR of 30.07±1.97 and average accuracy of 92.5±2.04.
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Chapter 5

Deep Video Canonical Correlation

Analysis for Steady State motion Visual

Evoked Potential Feature Extraction

5.1 Introduction

As stated previously, there has been a surge of interest in development of BCI systems based on

SSmVEP, where motion stimulation is utilized to address high brightness and uncomfortably issues

associated with conventional light-flashing/flickering. In this chapter, we propose a deep learning-

based classification model that extracts features of the SSmVEPs directly from the videos of stimuli.

More specifically, the proposed deep architecture, referred to as the Deep Video Canonical Correla-

tion Analysis (DvCCA), consists of a Video Feature Extractor (VFE) layer that uses characteristics

of videos utilized for SSmVEP stimulation to fit the template EEG signals of each individual, inde-

pendently. The proposed VFE layer extracts features that are more correlated with the stimulation

video signal as such eliminates problems, typically, associated with deep networks such as overfit-

ting and lack of availability of sufficient training data. The proposed DvCCA is evaluated based on a

real EEG dataset and the results corroborate its superiority against recently proposed state-of-the-art

deep models.
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The chapter is motivated by the desire for having a classification model that can extract all the

features of the SSmVEPs, mentioned in Sub-section 2.1.4, directly from the videos of stimuli. In

this regard, we propose an intuitively pleasing deep learning-based classification model, referred

to as the Deep Video Canonical Correlation Analysis (DvCCA), which consists of a Video Feature

Extractor (VFE) layer that uses characteristics of videos utilized for SSmVEP stimulation to fit the

template EEG signals of each individual, independently. The proposed VFE layer extracts features

that are more correlated with the stimulation video signal as such eliminates problems, typically,

associated with deep networks such as overfitting and lack of availability of sufficient training data.

Moreover, in comparison to other deep networks, the proposed DvCCA architecture uses the extra

information of videos, therefore, requiring less training data, which is critical for BCI systems

having available few template samples of the subjects.

5.2 Methods and Materials

5.2.1 Stimulation Design

To achieve the objectives outlined in Section 5.1, four novel SSmVEP based paradigms with

four motion modes shown in Fig. 5.1 are designed. The first mode (Fig. 5.1(a)) is the “Reciprocal

Rotation” of a green and black circle between −45◦ and 75◦. The second motion (Fig. 5.1(b))

is the “Radial Zoom” in which the size of a green and black circle changes periodically. The

third mode (Fig. 5.1(c)) is “Swing” centering around the middle of a black line. Finally, the last

motion (Fig. 5.1(d)) is the “Sway” of a green rectangular centering around the width. The frequency

of motion direction change inside the reciprocal motion is defined as motion inversion frequency.

The motion inversion frequency corresponds to the frequency of stimulation, which is equal to

fundamental SSmVEP frequency in the EEG signals.

To elaborate on the motion choices utilized in our designs, we note that as mentioned in Refer-

ence [44], any paradigm with periodic motion can be used as stimuli of SSmVEPs. Each designed

SSmVEP paradigm has a focal point where the paradigm oscillates/moves around this fixed center-

point. Other factors that play crucial roles in our designs are brightness and luminance-contrast of

the colors used in the paradigm. To make the proposed designs as efficient as possible, we capitalize
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(a) (b)

(c) (d)

Figure 5.1: The four designed SSmVEP paradigms: (a) Reciprocal-Rotation; (b) Radial-Zoom; (c)
Swing; (d) Sway.

on previous works [64] performed to investigate effects of different SSmVEP patterns with different

brightness on accuracy and fatigue.

The refresh rate of the monitor showing the SSmVEP stimuli is a limiting factor restricting

the frequencies that can be designed when an equal number of frames are used during consecutive

cycles (one motion direction change). To implement flexible target frequencies, we need to have

designs with variable number of frames per cycle; as such, we used the technique in Reference [45]

and verified in [76] to implement our designs. Given the refresh rate of the monitor, the first task

is to design binary stimulus sequences (i.e., the number of frames per each half-cycle, typically,

asymmetric) with the goal of allocating frames based on the specified target frequencies. Following

Reference [45], the number of frames per half-cycle of our paradigms are constructed as follows

S(f, i) = square
[
2πf(

i

Rr
)
]
, (5.1)
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Figure 5.2: Architecture of the proposed Deep Video Canonical Correlation Analysis (DvCCA).

where i indicates the frame index; f denotes the target frequency; Rr represents the monitor’s re-

fresh rate, and; S(f, i) denotes the stimulus sequences associated with target frequency f . Note

that, each half-cycle corresponds to one contraction or expansion or half of the reciprocal motion.

Consequently, a motion oscillation at a target SSmVEP frequency up to f ≤ Rr/k can be gener-

ated as a stimulus. In other words, for one cycle of an SSmVEP paradigm to be understandable,

k minimum number of frames per half-cycle is required for the subject to realize the motion cycle

comfortably. The proposed SSmVEP paradigms are displayed as stimulations for EEG data collec-

tion. The first step is pre-processing of the EEG signals as they are, typically, exposed to artifacts

and high/low frequency noises. To extract the SSmVEP from the EEG signals, applying spatial and

time domain filters are, therefore, necessary. In time domain filtering, first, zero-phase Chebyshev

Type I band-pass filter (2-40 Hz) is applied to smooth the data and remove high-frequency artifacts.

5.3 Deep Video Canonical Correlation Analysis (DvCCA)

5.3.1 Initial Weight Extraction from Videos

The proposed DvCCA model is developed based on the following facts: (1) Changing color of

each pixel in the stimulation video can evoke EEG signals; (ii) Harmonic frequencies of the signal

of each pixel across time can appear in the EEG data depending on the distance of the pixel from

the focal point of the target, and; (iii) The final visual evoked potential consists of the impact of
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the time signal of all the pixels. Therefore, the visual field incorporating the distance between the

subject and the monitor and location of two pixels in the image is a suitable criterion to measure

the mentioned distance in this context. The visual field (in degree) between the focal point and

any arbitrary pixel is called eccentricity [57]. The more eccentricity of each pixel is from the focal

point, the more trivial the trace of the time signal of the corresponding pixel will be in the VEP.

Therefore, the first layer of the one side of our network tries to translate, via a dense layer, time

series of different pixels to come up with a new representation for SSmVEP signal. The eccentricity

of each pixel will be used for weight assignment in this layer.

5.3.2 The DvCCA Network Architecture

Architecture of the proposed DvCCA is shown in Fig. 5.2. The network has two segments

consisting of 3 layers of dense neural networks. The objective is to project two datasets X , and

Y to a new space where the linear CCA is compatible to the types of the two dataset. Matrix

X ∈ RK×m represents the EEG time samples fromK channels and is the input of the first segment.

Matrix Y ∈ R3f×m, where m denotes number of time sample, and 3f denotes the output size of

the Video Feature Extractor (VFE) layer, is the input of the second segment and output of the VEP

layer. The propagation rule of each segment with input X ∈ Rn is defined as follows

H(i+1) = σ(WXH(i) + bX), (5.2)

where WX ∈ Rni×ni+1 is a matrix of weights, bX ∈ Rni+1 , is a bias vector,Hi is the representation

of data, and ni is the number of nodes at ith layer, and σ is Rectified Linear Unit (ReLU). The

ultimate loss function is the linear CCA between output layers of the two segments. Adam optimizer

is utilized for performing the optimization task.

Video Feature Extractor (VFE) Layer, is a dense layer in which the input is the video of stimulus

with frame size a × b after applying sinc interpolation in time domain, and the output is time

features associated with the video for each of the three RGB color channels. The time signals

corresponding to pixels with identical distance to the focal point are averaged to generate a new

tensor Z ∈ Rc×m×3, where c is the number of groups of pixels. Each of the three RGB color
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channels, is provided separately to a different dense network and the outputs are concatenated. The

input of the network is Zi ∈ Rc at the ith time sample, and output of each dense network is

output = σ
(
WZZi + bZ

)
, (5.3)

where WZ ∈ Rc×f is a matrix of weights, and bX ∈ Rf , is a bias vector. The learnable variables

of the network are measured via back propagation of CCA loss function.

User Specific Training Procedure: For each subject, the method is fitted individually and the net-

work is validated on the template data of the same participant. Moreover, we perform 8-Fold cross-

validation to test the proposed DvCCA classifier. Each trial is divided into 8 equal segments and the

algorithm is performed for different window lengths obtained from these segments.

Performance Evaluation: Classification accuracy and ITR evaluate the performance of the paradigms.

The ITR is a valid criterion to assess the speed of BCI systems and is computed as

ITR =
60

T

[
log2K + σ log2 σ + (1− σ) log2(

1− σ
K − 1

)

]
, (5.4)

where T is the sum of time of each trial and the resting state time between two trials, K is the

number of stimuli, and σ is the recognition accuracy. Additionally, the accuracy-difference between

trials of two consecutive sessions can be used as an effective assessment to measure the fatigue as-

sociated with a designed paradigm. Evaluation of SSmVEP performance via the one-way analysis

of variance (ANOVA) is a renowned metric, therefore, ANOVA is run to guarantee that the sub-

ject’s response to the SSmVEP-stimuli are statistically meaningful. The statistical significance was

defined as p < 0.05.

5.4 Experimental Results

5.4.1 Experimental Setup

In this section, we evaluate the proposed DvCCA based on a real dataset consisting of 10 in-

dividuals, 5 women and 5 men between age of 20 to 27. Participants have no evidence of visual
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or color-recognition ailments. Five subjects had experience of BCI experiments. The EEG signals

were collected using a portable and wireless bio-signal acquisition system (32 bipolar active wet

electrodes with sampling rate 500Hz), g.Nautilus from g.tech Medical Engineering. The reference

and the ground electrodes of the headset were placed at the earlobe and frontal position (Fpz), re-

spectively. The electrodes Pz , Po7, Po3, Po4, Po8, and Oz from the parietal-occipital region were

chosen to collect EEG signals. Stimuli with a white background were displayed on a 21.5-inch

LED screen at 60Hz refresh rate. The resolution of the screen was 1920 × 1080, and the viewing

distance was 70cm. The data were collected with the policy certification number 3007997 of Ethical

acceptability for research involving human subjects approved by Concordia University.

The size of the VFE layer is set to 10 in our experiments. The Learning Rate, Epoch Number,

and Mini batch size are set to 10−3, 50, and 100, respectively. The regularization parameter is set

to 10−5 to avoid gradient exploding.

5.4.2 Experimental Protocol

Four paradigms, i.e., (i) Rotation; (ii) Radial zoom, and; (iii) Swing; (v) Sway, are experimented

in separate runs. The target frequencies were 5, 6, 7, 8, and 9Hz and subjects are asked to focus on

the focal point. Each run of a video included two consecutive sessions. Subjects were required to

stare at a target using a pointer. In each session, each existing target is pointed in four trials. Each

trial lasted 3.5 seconds with a 2.5 seconds break between consecutive trials and 10 minutes break

between two runs.

5.4.3 Result

The proposed DvCCA is applied to the data of each subject separately. A recently proposed

technique, the UD-C-CNN with the configuration introduced in Reference [74], is applied to our

dataset for comparison purposes. More specifically, comparisons are performed between UD-C-

CNN method, regular CCA, and the proposed DvCCA method. The target detection is done for

eight time windows and the best results among time windows are represented in the diagrams.
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(a)

(b)

Figure 5.3: Comparison of accuracy and Information Transfer Rate (ITR) across four different SS-
mVEP paradigms: (a) Mean and standard deviation of SSmVEP recognition accuracy comparisons.
(b) ITR of different target identification methods across the 10 subjects.

Accuracy Comparisons

Fig. 5.3(a) evaluates performance in terms of the mean and standard accuracy across subjects.

It can be observed that the proposed DvCCA outperforms its counterparts across all the tested

paradigms. The DvCCA results in the accuracy of 80.1±7.5, 85.8±4.7, 96.8±1.7, and 90.1±7.1%

for the Radial-Zoom, Reciprocal Rotation, Swing, and Sway paradigms, respectively. The swing
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paradigm has the best accuracy with one-way ANOVA showing statistical significance (F = 5.72,

p = 0.015).

ITR Comparisons

Fig. 5.3(b) represents mean and standard deviation of the ITRs associated with different SS-

mVEP detectors across the 10 subjects. The DvCCA outperforms baselines in terms of speed of

detection resulting in ITR of 21.5±6.7, 24.8±5.5, 35.2±2.7, and 33.3±6.2 for the Radial-Zoom,

Reciprocal Rotation, Swing and Sway paradigms, respectively. The Swing paradigm with DvCCA

classifier has the best ITR performance. Through our comparisons, the proposed DvCCA shows

superiority for classifying SSmVEP paradigms.

5.5 Summary

Given recent surge of interest on SSmVEP-based BCI systems, the chapter proposes a new deep

learning based classifier, referred to as the Deep Video Canonical Correlation Analysis (DvCCA).

The proposed DvCCA model consists of a Video Feature Extractor (VFE) layer that uses character-

istics of videos to fit to the template EEG signals of each individual independently, which results in

the extracted features to be more correlated with the stimulation video signal. Th proposed VFE uses

characteristics of videos eliminating problems associated with more complicated networks such as

overfitting and/or lack of enough training data. The proposed DvCCA is evaluated based on a real

EEG dataset outperforming its state-of-the-art counterpart and achieving accuracy of 80.1 ± 7.5,

85.8± 4.7, 96.8± 1.7, 90.1± 7.1 over the four SSmVEPs.
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Chapter 6

Summary and Future Research

Directions

This chapter concludes the thesis by providing a list of important contributions made throughout

this dissertation. Furthermore, potential directions for future research are presented.

6.1 Summary of Thesis Contributions

Recent advancements in biomedical health technologies and the evolution of Artificial Intelli-

gence (AI) coupled with advanced Electroencephalography (EEG) sensor technologies have paved

the way for the further evolution of Brain-Computer Interface (BCI) systems. BCI systems have

found several practical applications of significance ranging from rehabilitation/assistive systems to

smart consumer technologies. Based on recent technology trends, it seems that leading technology

companies are focused to couple BCI systems with Augmented Reality (AR) visors. In this regard,

the thesis focused on development of advanced Machine Learning (ML) and Biological Signal Pro-

cessing (BSP) methodologies for potential incorporation in AR-based BCI systems. In this context,

Steady-State Visual Evoked Potentials (SSVEPs) targeting visual nerve pathways are considered as

the main BCI technology for potential integration with AR due to their superior characteristics such

as high accuracy and Information Transfer Rate (ITR). However, continuous utilization of SSVEPs

causes eye fatigue and puts an excessive mental load on subjects. This mental load can be attributed
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to the following key issues: (i) Eye fatigue with low-frequency flickering, and; (ii) Higher risk of

induced epileptic seizure with medium-frequency flickering. To address these issues, Steady-State

motion Visual Evoked Potentials (SSmVEPs) comprising of reversal periodic movements of differ-

ent shapes are introduced as an attractive alternative. Although the SSmVEP-based BCIs induce less

eye fatigue, their frequency detection accuracy and ITR are not comparable to that of the SSVEPs

yet. To construct a robust and reliable SSmVEP-based BCI system, the thesis made the following

three main contributions:

(1) Study on Novel Designs with Reduced Fatigue for Steady-State Motion Visual Evoked

Potentials [61]: The thesis proposed two novel Steady-State motion Visual Evoked Potential

(SSmVEP) paradigms with low luminance contrast. The key issue targeted is the fatigue of

flicker (or brightness modulation) via development of different patterns with oscillating ex-

pansion and contraction motions. The proposed flicker-free SSmVEP paradigms are designed

and selected through an extensive set of experiments. The visual fatigue level is optimized

during the testing experiments for the selected designs. As a result, one of the proposed

paradigms even outperformed its SSVEP-based counterparts, which is a significant achieve-

ment. To the best of our knowledge, this is the first time that robust SSmVEP paradigms with

reduced visual fatigue can provide better performance compared to SSVEPs. Furthermore,

comparisons between complex SSmVEP paradigms are performed in terms of accuracy, ITR,

and visual fatigue level.

(2) DF-SSmVEP: Dual Frequency Aggregated Steady-State Motion Visual Evoked Poten-

tial Design with Bifold Canonical Correlation Analysis [63]: To address lower accuracy

and ITR of SSmVEP designs, the thesis proposed an intuitively pleasing, novel, and innova-

tive dual-frequency aggregated modulation paradigm. Referred to as the DF-SSmVEP, the

proposed design is constructed by concurrently integrating “Radial Zoom” and “Rotation”

motions in a single target without increasing the trial length. Additionally, the general theo-

retical framework is derived for development of such novel integrated SSmVEP paradigms.

To this end, we generate the novel idea of coding to modulate two frequencies within a single
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target. The proposed mechanism of integration can lead to a robust and quick SSmVEP-

based system. Using the proposed integration technique, basic SSmVEP paradigms that are

not individually applicable can become robust enough to be utilized in BCI systems after

integration. Finally, a new spatial filtering approach, BCCA is developed. This specific un-

supervised classification model outperforms regular CCA because of its high compatibility

with the design of the DF-SSmVEP. The proposed DF-SSmVEP is evaluated via a real EEG

dataset achieving the average ITR of 30.07±1.97 and the average accuracy of 92.5±2.04.

(3) Deep Video Canonical Correlation Analysis for Steady-State motion Visual Evoked Po-

tential Feature Extraction [62]: The thesis proposed a new deep learning-based classifier,

referred to as the Deep Video Canonical Correlation Analysis (DvCCA). This supervised

model aims to address the vagueness issue of the deep learning approaches within the BCI

context. The proposed DvCCA model consists of a Video Feature Extractor (VFE) layer that

uses characteristics of videos to fit into the template EEG signals of each individual, inde-

pendently. This results in the extracted features to be more correlated with the stimulation

video signal. The proposed VFE uses features of videos eliminating problems associated

with more complicated networks such as overfitting and/or lack of enough training data. Ac-

cording to the literature, one of the best frequency classifier used in SSmVEP-based BCIs

are CNNs. The proposed DvCCA is evaluated based on a real EEG dataset outperforming its

state-of-the-art CNN-based counterparts and achieving the accuracy of 80.1±7.5, 85.8±4.7,

96.8± 1.7, 90.1± 7.1 over the four novel SSmVEP paradigms designed for this experiment.

As another contribution, this is the first time that a model can directly discover connections

between stimulation videos and EEG signals in visual BCIs. This can be the first step to

solve the problem reversely and understand the connection between VEP’s intensity and the

stimuli’ shape.
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6.2 Future Research

(1) Analysis of Visual Fatigue: In this thesis, the fatigue level for each paradigm is measured

using the reduction in accuracy of consecutive sessions. Some features of EEG signals col-

lected from the prefrontal cortex can be integrated into the main EEG samples to provide a

further numerical comparison between paradigms in terms of fatigue level and mental load.

(2) Deploying Deep Reinforcement Learning to design VEP Paradigms: Providing comfort-

able, convenient, user-friendly, and user-specific BCI platforms are crucial for incorporation

of BCIs within AR systems. As stated in the thesis, alteration of each pixel’s color across

time can evoke the brain signals in the occipital part of the brain. The evoked signals of the

stimulus’s pixels superpose to develop SSmVEP within the brain signals. It is, however, im-

practical to test all possible pixel-colors since several trials are required to make sure that the

extracted feedbacks are uncorrelated with the cocktail-party type noise of the brain signals.

Moreover, choosing arbitrary colors for pixels does not necessarily generate motion of mean-

ingful shapes. A fruitful direction for future research is to use a bank of SSmVEP paradigms

to generate new, subject-specific, and meaningful shapes. Generated paradigms can be de-

signed to be highly compatible with the neuro characteristics of a given subject to achieve

the highest possible ITR and accuracy. Subject-specific and discriminative shapes can be

designed using Generative Adversarial Networks (GAN) coupled with Convolutional Neural

Network (CNN) based classifiers. Furthermore, we planned to replace the human designers,

with reinforcement learning in our closed-loop system. To this end, we can leverage deep

Reinforcement Learning (RL) to construct motion videos evoking SSmVEPs, via optimal

alteration of the primary paradigms based on the reward given by EEG signals. More specif-

ically, the gradient of the video modifier is chosen in such a way that the reward function

(accuracy of the CNN classification) gets maximized to enhance the Signal to Noise Ratio

(SNR), i.e., the envisioned deep model learns the important pixels with regards to achievable

SNR via an RL approach. The envisioned model, accordingly, changes the pixels, which

have a high impact on the SNR in such a way that the modified shapes are still recognizable.

This envisioned future research project is believed to be significant for future adoption of
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Figure 6.1: A sample of the designed MVEP paradigm.

AI, and AR within BCI technologies to provide an alternative communication medium for

development and advancement in this domain.

(3) Understanding the Relationship between Video pixels and EEG Signals: The deep learning-

based algorithm reported in this thesis is supervised, and it is fed with the videos of the

paradigm directly. This model is designed based on averaging signals derived from the

paradigm’s video. The weights are intensified as we get farther from the center of attention

where the subject is asked to stare. Although a linear combination of pixels’ signals based on

eccentricity does not work properly, one susceptible direction is to understand the complex

relationship between the harmonics of EEG evoked by the videos and the importance of the

pixels. An unsupervised model can then be designed for the frequency detection task so that

the dynamics of the visual pathways are modeled completely in this model. Additionally, one

of the major problems that affect the performance of SSVEPs is signal interference. In other

words, the impact of other targets can distort the main target signal. Using a general model,

we can estimate other targets’ signal interference to filter the superposed signal so that better

performance is achieved.

(4) Developing an Unsupervised Classifier for a General Form of Motion-onset Visual Evoked

Potentials (MVEPs): As mentioned in the thesis, Motion-Onset Visual Evoked Potentials
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Figure 6.2: A sample of the designed paradigm where logos of specific companies are inserted
oscillating with the same frequency.

(mVEPs) [41, 57, 58], which elicit P1, N2, and P2 components in EEG signal, are intro-

duced as attractive alternatives to SSVEPs. However, the shortage of low accuracy and ITR

applies to these paradigms as well. Moreover, targets within an MVEP do not necessarily

possess orthogonal base-frequencies, therefore, it is impossible to demodulate EEG signals

to identify the target. To classify targets, a supervised algorithm using an ERP component

is utilized. These techniques segment the EEG signals into time windows with a length of

300 to 400 milliseconds. The segments, which are short time series, represent the features of

MVEPs. Most of the existing approaches use the correlation between segments of test and

train samples without extracting any extra features from the frequency spectrum of the signals.

We have also designed some MVEP paradigms, including a single-stimulus and multitarget

around it as shown in Fig. 6.1. Our main goal was to draw a fixed pattern in the frequency

spectrum of the signals based on the corresponding target’s location. Hence, as we guess the

reference signal of the MVEP, we can feed the EEG signal into CCA-based classifiers. How-

ever, due to the high volume of noise, there was no record of significant results in our initial

experiment. This is a fruitful direction for further research.

(5) Using the Same Frequency for Different Shapes in BCI: Another SSmVEP-based paradigm

that is worth investigating is the one that has the same frequency, however different shapes,
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in its targets. For instance, as shown in Fig. 6.2, two logos of specific companies are inserted

oscillating with the same frequency in our stimulation videos. Then, the subject stares at

logos separately in different trials. The main goal is to realize which logo is focused on in

each trial by only processing EEG signals. The amplitudes of the harmonics of the modulated

frequency varied across two classes. The targets were then classified using the ratio of the

harmonics However, the accuracy of the system was not enough to be utilized in real BCIs.

Moreover, existing unsupervised classifiers such as CCA, are weak to classify targets based

on the ratio of the harmonics in the signal’s spectrum. In that sense, there is a potential to

introduce an inductive unsupervised model.
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