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Abstract

Deep Learning Approaches to Multi-Modal Biomedical Image

Segmentation

Nelson Frank

Deep learning techniques have been shown to produce state-of-the-art performance in

segmenting biomedical images. These techniques, however, are highly dependent on

the quantity and quality of available training data, as well as their capacity to repre-

sent complex relationships, which is dependent on the size of the network and limited

by the computational resources of the machine(s) on which they are trained. In this

work, we performed two experiments. First, we explored multi-stream model config-

urations that can leverage available data from multiple unpaired biomedical imaging

modalities to learn a shared representation. Specifically, segmentation of cardiac CT

and MRI was done to see if this learns the shared anatomical features and thus per-

forms better than individual models trained on each modality. Second, we compared

our full deep learning segmentation pipeline as applied to paired multi-modal brain

images against other existing publicly available pipelines. From these experiments,

we found that (1) multi-stream architectures can achieve better results in unpaired

multi-modal segmentation compared to single-stream models, however, the specific

configuration with the best performance is in disagreement with previously published

results; and (2) careful adjustment of deep learning pipeline configurations to our

specific data set and hardware constraints yields improved segmentation accuracy

over publicly available state-of-the-art solutions in paired multi-modal image segmen-

tation.
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Chapter 1

Introduction

In the early 1970s, computed tomographic (CT) imaging was developed by God-

frey Hounsfield [1]. At the same time, Raymond Damadian determined that nuclear

magnetic resonance (MR) could be used to detect brain tumours [2]. Since their in-

troductions, both imaging modalities have become indispensable tools for anatomical

visualisation as they are completely non-invasive methods that can provide invaluable

clinical information. As such, their uses include, but are certainly not limited to, as-

sessing trauma and anatomical morphology and detecting and delineating pathology

such as tumours, infarctions, and aneurysms.

Many of these tasks are very time consuming and must be done by expert clini-

cians, whose time is particularly valuable. For diagnostic tasks, manual assessment

is subject to error with one meta-analysis concluding that about one in ten patients

with major vascular events, infections, or cancers are misdiagnosed, half of whom

suffer either permanent disability or death as a result [3]. That same study found

that less common diseases faced higher rates of misdiagnosis. For delineation tasks,

even when performed by highly skilled clinicians, there is a high degree of inter- and

intra- rater variability [4]. For these reasons there has been a push to make these

tasks more efficient and consistent using automated computer algorithms.

1.1 Medical Image Segmentation

In this thesis, we focus on the specific task of medical image segmentation, i.e. the

partitioning of an image into discrete semantic segments. This challenging task is
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one of the most essential medical imaging processes, as it aims to identify the pixels

that belong to specific organs or lesions (i.e. a region of interest or ROI). Segmenta-

tion can be used to perform anatomical delineation directly or to transform images

into a simpler form that is amenable to further algorithmic analysis. For exam-

ple, segmentation of the aortic root from CT angiography images enables automatic

vessel measurement for the pre-procedural planning of a trans-catheter aortic valve

implantation procedure [5]. Segmentation can also be used for determining tumour

boundaries for pre-procedural planning of a resection surgery [6]. An example of

biomedical image segmentation is show in Figure 1.

Figure 1: An example of biomedical image segmentation. CT images are on the left
and MR images are on the right. The bottom row shows the whole-heart images
segmented into seven cardiac substructures. Figure from the Multi-Modality Whole
Heart Segmentation challenge [7].

There exist a number of traditional techniques for biomedical image segmentation.

Thresholding algorithms assign image elements to a given class when their associated

intensities are within the bounds of some thresholds. These thresholds can be assigned

using a priori knowledge or determined procedurally using algorithms such as K-

Means. Thresholding algorithms work best when the target structure’s intensities are

relatively homogenous and contrastive, properties that are uncommon to structures

of interest in biomedical images [8].

Region growing is a type of segmentation algorithm that uses initial seed points

and adds neighbouring image elements if they fit some inclusion criteria. This process

is then repeated with the newly included image elements until no remaining image

elements fit the inclusion criteria. Region growing often performs better than thresh-

olding as it includes spatial information, however, it depends on the target structure
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being relatively homogenous and having high contrast [9]. Additionally, it requires

the selection of seed points that needs to be done either manually or by a separate

algorithm.

Multi-Atlas segmentation (MAS) is a technique that uses a number of pre-labeled

training images (atlases) to segment new images [10]. These atlases are registered

to the target image through iterative deformations that seek to maximize spatial

alignment while, at the same time, maximizing the plausibility of the deformations.

The atlas with the best fit is selected and its deformed labels are used for the new

segmentation.

Handcrafted custom algorithms can be designed using a priori knowledge specific

to the task at hand. For example, for segmentation of the aortic artery, one system

takes advantage of the fact that it appears as a series of circles in axial slices and

simply uses a Hough transform circle detector to localize it [11]. Such systems are

specific to the tasks for which they were designed and tend to not generalize to new

tasks.

While these techniques are still being used today, deep learning based techniques

have become prominent for biomedical image segmentation.

1.2 Deep Learning

Deep learning is a type of machine learning methodology that learns both the base

features present in data and the relationships between the features to develop high

level insights using artificial neural networks. Deep learning for image processing

came into prominence in 2012 when Alexnet, a convolutional neural network (CNN),

won ImageNet’s Large Scale Visual Recognition challenge (LSVR) tasks by enormous

margins [12]. Since then, every LSVR challenge winner has been a convolutional

neural network. There has been a similar trend for medical segmentation competitions

which feature almost exclusively deep learning techniques due to their overwhelming

performance [7, 13, 14].

While deep learning has been shown to have excellent performance on image

processing tasks, there are some specific issues constraining the performance of deep

learning approaches. The outcome of deep learning solutions is highly dependent on

the quantity and quality of training data which, especially for medical images, is not
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always easily available [15]. Further, the capacity for a neural network to fit complex

relationships is constrained by its width and depth. As the network grows, so too

does the amount of necessary processing and memory. In this thesis, we present

results from our experiments seeking to address these specific issues through network

configurations capable of learning from multiple modalities thereby expanding the

amount of usable data and through a holistic deep learning solution tuned precisely

to operate on the specific data and computation constraints at hand.

1.3 Contributions

In the course of this research, we performed two experiments in the domain of multi-

modal biomedical image segmentation. The first experiment sought to validate cur-

rent practices in multi-stream approaches to unpaired multi-modal segmentation in

the context of cardiac CT and MR images. In the second experiment we sought to

validate a developed full deep learning segmentation pipeline as applied to paired

multi-modal images against other existing publicly available pipelines. The results of

our two studies showed the following:

1. Multi-stream architectures can achieve better results in unpaired multi-modal

segmentation compared to single-stream models, however, the specific configu-

ration with the best performance is in disagreement with previously published

results.

2. Careful adjustment of deep learning pipeline configurations to our specific data

set and hardware constraints yields improved segmentation accuracy over pub-

licly available state-of-the-art solutions in paired multi-modal image segmenta-

tion.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. We begin in Chapter 2

with a background on deep learning using artificial neural networks and describe

many considerations and approaches in their design. We also describe the physical

properties captured by different biomedical imaging modalities and discuss aspects
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of deep learning specific to biomedical image segmentation. In Chapter 3, we present

our experiment in measuring the efficacy of different multi-stream architectures as

applied to unpaired multi-modal image segmentation. In Chapter 4, we present our

experiment validating the performance of our deep learning pipeline as applied to

paired multi-modal image segmentation. Chapter 5 concludes by summarizing the

results of the presented works and suggests opportunities for future works.
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Chapter 2

Background

2.1 Deep Learning for Image Processing

Traditional machine learning techniques use handcrafted features and determine rela-

tionships between them algorithmically. The defining characteristic of deep learning

techniques, in comparison to other machine learning methods, is that deep learning

does not rely on handcrafted features, rather features and the relationships between

the features are learned on their own. In this section, we discuss the core concepts

pertaining to deep learning in the specific domain of image processing.

2.1.1 Supervised and Unsupervised Learning

Machine learning algorithms can largely be divided into two classes: supervised learn-

ing and unsupervised learning. Their distinction lies in the presence or absence of

human-provided ground-truth labels.

In supervised learning, the models are trained on input, ground-truth tuples so

that the model can learn a general function mapping input to the expected ground

truth. In image processing, typical tasks for supervised learning include, but are not

limited to the following:

• Classification: Assigning semantic categorical labels to an image from a pre-

defined set of labels, (e.g. determining if a picture is of a cat or a dog).

• Detection: Identification of one or more objects in an image with positional

information (e.g. bounding boxes around pedestrians in street imagery).
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• Segmentation: Assignment of semantic categorical labels to each of the ele-

ments of a given image (e.g. determining what pixels or voxels are part of a

liver).

In unsupervised learning, models are trained without any provided ground-truth

labels. These models identify patterns in unstructured or weakly structured data.

Unsupervised learning can be used to pre-train supervised learning models using auto-

encoders [16] (a type of artificial neural network) or to train generative adversarial

networks (GANs) [17]. GANs are a pair of networks trained against each other’s

outputs. One network is tasked with generating new data with similar characteristics

to the training data, while the other network is tasked with distinguishing these

generated data from real examples in the training data.

2.1.2 Artificial Neural Networks

Artificial neural networks, often called neural networks (NN), are a type of machine

learning technique loosely inspired by the neuronal connections in the human brain.

In this subsection, we discuss the organization and mathematical basis that allows

NNs to learn.

Forward Pass

Neural networks are composed of many simple units called neurons (see Figure 2).

Each neuron is made up of three distinct parts: an input, a hidden layer, and an out-

put. The input can be represented as an arbitrarily sized vector of scalar values. This

size is often fixed, although not necessarily. In the hidden layer, for each scalar value

in the input, there is an associated scalar weight. The associated values and weights

are multiplied together and their products summed, creating a linear transformation.

The result is then transformed into the final output by an auxiliary function called

the activation function, which usually defines a non-linear transformation allowing the

neuron to represent non-linear patterns. Activation functions are further discussed

later in this section.

A neuron in a neural network is defined using a non-linear function f : Rn −→ R

7
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Figure 2: Diagram representing a simple example of a fully connected neuron. The
diagram was adapted from [18].

with weights ~w = [w1, w2, w3, · · · , wn]ᵀ, and activation function g.

h(~x) =



w1

w2

w3

...

wn


·



x1

x2

x3

...

xn


(1)

f(~x) = (g ◦ h)(~x) (2)

An example of this relationship is illustrated in Figure 2. A single neuron has only a

single scalar output. By combining m neurons in one layer, one can define a similar

non-linear function f : Rn −→ Rm given by:

h(~x) =


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n




x1

x2

...

xn

 (3)

f(~x) = (g© h)(~x) (4)

Where the © denotes the element-wise application of the function.

Layers of neurons can be composed together so that the output of one layer feeds

forward into the input of a subsequent layer. An example of such connections is shown

in Figure 3. Given n such individual layers denoted as:

ḟ (1)(~x), ḟ (2)(~x), ḟ (3)(~x) · · · ḟ (n)(~x), (5)
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I n p u t L a y e r ✁  ✂  ✄ Hi d d e n L a y e r ✁  ✂  Hi d d e n L a y e r ✁  ✂  Hi d d e n L a y e r ✁  ✂ ² O u t p u t L a y e r ✁  ✂ ¹

Fi g ur e 3: Di a gr a m r e pr es e nti n g a si m pl e e x a m pl e of a f ull y c o n n e ct e d n e ur al n et w or k
d esi g n. T h e di a gr a m w as cr e at e d usi n g t h e o nli n e t o ol N N- S V G [ 1 9].

o n e c a n r e c ursi v el y d e fi n e a l ar g er n et w or k as:

f ( 1 ) (x ) = ˙f ( 1 ) (x ) ( 6)

f ( i) (x ) = ( ˙f ( i) ◦ f ( i− 1 ) )(x ). ( 7)

W h er e ˙f ( i) (x ) d e n ot es t h e f u n cti o ns f or t h e i n di vi d u al l a y er i a n d f ( i) (x ) d e n ot es t h e

f u n cti o ns yi el di n g t h e c o n n e ct e d n et w or k’s i nt er m e di at e o ut p ut b y l a y er i.

B a c k P r o p a g a ti o n

T h e pr e vi o us s e cti o n d es cri b es h o w a n e ur al n et w or k p erf or ms i nf er e n c e gi v e n a s et

of w ei g hts. I n t his s e cti o n, w e d es cri b e h o w t h es e w ei g hts ar e it er ati v el y d et er mi n e d

b y a pr o c ess c all e d st o c h asti c gr a di e nt d es c e nt, p o w er e d b y b a c k pr o p a g ati o n.

Aft er a f or w ar d p ass t hr o u g h t h e n et w or k, t h e o ut p ut is f e d i nt o a l oss f u n cti o n

L (x ) w hi c h r et ur ns a s c al ar v al u e r e pr es e nti n g t h e a m o u nt of err or or c ost i n t h e

n et w or k’s o ut p ut. L oss f u n cti o ns ar e dis c uss e d f urt h er i n a f oll o wi n g s u bs e cti o n.

St o c h asti c gr a di e nt d es c e nt u p d at es e a c h of t h e w ei g hts of a n et w or k b y a n a m o u nt

pr o p orti o n al t o t h at w ei g ht’s c o ntri b uti o n t o t h e l oss f u n cti o n. T h e s e q u e nti al u p d at e

of t h e l a y er’s w ei g hts W t
i t o W t+ 1

i is gi v e n i n e q u ati o n 8, a d a pt e d fr o m [ 2 0], w h er e

η is t h e l e ar ni n g r at e, a h y p er- p ar a m et er c o ntr olli n g t h e r at e at w hi c h w ei g hts ar e

u p d at e d.

W t+ 1
i = W t

i − η
∂ L (x )

∂ W t
i

( 8)

T his c a n b e c al c ul at e d t h a n ks t o t h e c h ai n r ul e of c al c ul us w hi c h st at es t h at gi v e n
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functions y = f(u) and u = g(x)

dy

dx
=
dy

du

du

dx
. (9)

We redefine the layer functions in equations 6 and 7 such that the layer’s weights Wi

are a parameter to the function rather than a property of the function, e.g., ḟ (i)(~x)

becomes ḟ (i)(~x,Wi). Then using the chain rule, we can derive the following equations

adapted from [21]:

∂L(~x)

∂Wn−1

=
∂L(~x)

∂f (n)(~x,Wn)
· ∂f (n)(~x,Wn)

∂f (n−1)(~x,Wn−1)
(10)

and for arbitrary layers, we have:

∂L(~x)

∂Wi

=
∂L(~x)

∂f (n)(~x,Wn)
· ∂f (n)(~x,Wn)

∂f (n−1)(~x,Wn−1)
·∂f

(n−1)(~x,Wn−1)

∂f (n−2)(~x,Wn−2)
· · · ∂f (i)(~x,Wi)

∂f (i−1)(~x,Wi−1)
(11)

where f (0)(~x,W0) represents the initial input to the network.

One can see that for larger networks these gradients have many repeated terms.

The back propagation algorithm, introduced by Rumelhart et al. [20], takes advantage

of this by first calculating the gradients of the layers closest to the final output,

memoizing the result, and continuing backwards through the network.

Loss Functions

In our discussion of the back propagation algorithm, we introduce loss, a function

L : Rn −→ R quantifying the amount of error or cost associated with the model’s

output. Some common loss functions include Mean Squared Error (MSE), Mean

Absolute Error (MAE), and Cross Entropy (CE), defined by the equations 12, 13,

and 14 respectively where P is the predicted value and T is the expected value.

MSE =
1

n

n∑
i=1

(Pi − Ti)2 (12)

MAE =
1

n

n∑
i=1

|(Pi − Ti)| (13)

CE = −
n∑
i=1

Ti log(Pi) (14)
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The most appropriate loss function depends on the goal of the network. MAE and

MSE are suited to regression tasks whereas CE is more suited to classification tasks.

In practice, loss functions are often custom made for the task at hand. The main

constraint on the design of loss functions is that they be able to produce non-zero

gradients, as the gradient descent algorithm depends on non-zero gradients to update

weights.

Activation Functions

Activation functions control how a signal flows through a network’s layers. Their

primary purpose is to introduce a non-linear transformation. A network composed of

only linear transformations cannot learn non-linear relationships because a series of

successive linear transformations is equivalent to some single linear transformation.

The activation functions used in a neural network can vary layer by layer. Certain

activation functions are used more commonly in the hidden layers with others being

more commonly used in final output layers. Here we present some of the commonly

used activation functions.

The sigmoid function σ(x) returns a value between 0 and 1. This function quickly

approaches its limits making it well suited for binary classification. The main dis-

advantages to this function are its high computational cost and small gradients for

input values far from zero.

σ(x) =
1

1 + e−x
(15)

The Rectified Linear Unit (ReLU), popularized by Nair et al. [22] and Glorot

et al. [23], is currently the most widely used activation function [24]. Its main

advantages are its sparse activations, low computational cost, and a non-vanishing

gradient for positive inputs. Its main disadvantage is that for input values less than

zero, the gradient will always equal zero which prevents a network’s weights from

being updated resulting in so called “dead neurons” [25].

ReLU(x) =

0 if x < 0

x if x ≥ 0
(16)

Multiple variations on the ReLU activation function have been proposed to address

the dying neurons issue. Two such variations include the Exponential Linear Unit
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(ELU) [26] and the Leaky Rectified Linear Unit (LReLU) [27]. Each of these vari-

ations change the function for values less than zero so that they have a non zero

gradient. In each of these functions, α is a hyper-parameter (a non learned parameter

governing the training procedure), controlling the degree to which these adjustments

are applied.

ELU(x) =

α(ex − 1) if x < 0

x if x ≥ 0
(17)

LReLU(x) =

αx if x < 0

x if x ≥ 0
(18)

The softmax activation function is used for multi-class classification tasks in the

final output layer. It is an approximation of the argmax function designed to have

non-zero gradients. Softmax calculates a probability value between 0 and 1 for n

classes such that they all sum to 1.

Softmax(~x)i =
exi∑n
j=1 e

xj
(19)

Convolutional Neural Network

In our explanation of a neural network’s forward pass, we presented a fully connected

network architecture in which every input value has a single associated weight pa-

rameter. In practice, this kind of architecture performs poorly in image processing

tasks because the number of required parameters is Θ(n), where n is the number

of image elements, incurring high computational complexity, and because the neu-

ron connections do not take into account image elements’ relative locations to each

other. Convolutional neural networks (CNNs), introduced by Waibel et al.[28], use a

different type of layer to address these issues.

For the purposes of explanation, we describe convolutional layers according to the

2D case, however, convolution can be applied in an arbitrary number of dimensions.

Input to a 2D convolutional layer is a 2D image. The layer consists of a predefined

number of kernels, (also known as filters), which are a type of small weight matrix

that is discretely convolved over the input image to produce a transformed image.

The number of transformed images produced by a convolutional layer is equal to the

number of kernels in the layer.
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Figure 4: Diagram representing a simple example of a convolutional neural network
design. Figure made using the online tool NN-SVG [19].

Figure 5: An illustration of a 2D convolution over a small image. Figure from [30].

Intuitively, one can think of discrete convolution as overlapping the kernel onto

the input image, multiplying the weights in the kernel by the input image pixel values

they overlap, and summing the result to yield a new transformed pixel. This process

can be repeated for every possible way the kernel can overlap the input image to yield

a fully transformed image. This process is illustrated in Figure 5.

Adapting the formulation of Damelin et al. [29], the 2D discrete convolution of

kernel k over image x is given by:

conv(x, k)[i, j] =
∞∑

n=−∞

∞∑
m=−∞

x[i, j] · k[i− n, j −m] (20)

For values of i and j where x[i, j] or k[i, j] are not defined, they are considered to be

zero.

To save memory and computation time, convolutional NNs usually perform down-

sampling between convolutional layers. Traditionally, max-pooling, which is a down-

sampling operation yielding the maximum value of patches in the feature maps, has

been used. However, more recently, strided convolutions have been used for down-

sampling in CNNs with better results [31].
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The type of layers composing a network need not be uniform. Many CNN’s

final layers are fully connected layers. Alternatively, the fully connected layers can be

replaced by convolutional layers to form a fully convolutional neural network (FCNN)

[32]. An FCNN’s main advantage is that the convolution operation can be applied to

inputs of arbitrary size. FCNNs are commonly used for semantic image segmentation.

Batching

In the subsection on back propagation and stochastic gradient descent, we discussed

how, given a single sample input, a neural network estimates the loss gradient and

updates the model’s parameters. Each update to the model’s weights is called a step.

A step can be performed for the gradients calculated for each training datum, or for

aggregated gradients from batches of data at a time. During training, a forward and

back propagation pass through all of the training examples is called an epoch.

The batch size used during training is an important hyper-parameter because it

controls the stochasticity of the training and influences training time. Larger batch

sizes will estimate the gradient surface more consistently and train faster, but have

been found to generalize less well due to their tendency to converge to sharp min-

ima [33]. Furthermore, batch sizes are constrained by the amount of available GPU

memory.

2.1.3 Overfitting and Solutions

In machine learning, there is a phenomenon where a model will perform better on the

data on which it was trained rather than on new data. This difference in performance

is called overfitting and is a result of the model relying on correlations present in the

training data that do not generalize to the real data distribution.

In order to measure the real performance of a given model, a portion of the

available data must be held out from the training set to be used for testing. In

practice, data is usually split into three groups: training, validation, and testing. The

training data is used to update the model parameters (i.e. weights), the validation

data is used to determine the training hyper-parameters, and the testing data is used

only for final evaluation.

Cross validation is a technique used to estimate how well a given model will

perform in practice. It produces multiple different partitions of the data set into
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train/test splits. Training and testing are performed separately on each split and

the results are aggregated for the final evaluation. A commonly used type of cross

validation is k-fold. In this method, the data is split evenly into k partitions. In one

iteration, k−1 partitions are used for training and the remaining partition is used for

testing. In total, k iterations are run, with a different partition held out for testing

each iteration.

In the remainder of this subsection, we present commonly used techniques for

mitigating the effect of overfitting.

Network Capacity and Early Stopping

In deep learning, network capacity is a network’s ability to approximate the target

function. This is related to the number of layers and parameters comprising the

model. When a network’s capacity is too great, it tends to memorize spurious cor-

relations specific to the training data rather than generalizing and thus the effect

of overfitting increases. Network capacity should be limited to be only as great as

needed. There is no known way to determine this theoretically, thus it is typically

determined empirically [34].

At a certain point in training, the observed validation loss score reaches a mini-

mum. Meanwhile, the network continues to fit to the training data, the amount of

overfitting increases, and the performance of the model diminishes. A solution to

this is early stopping. Rather than training for a fixed number of epochs, in early

stopping, a stopping condition is defined and training continues until this condition is

reached. A common condition is when the tracked validation score has not increased

significantly in the past set number of epochs.

Regularization

Regularization is an adjustment to the training protocol placing additional constraints

on the model’s weights and activations.

L1 and L2 regularization are two similar techniques that penalize the magnitude

of a model’s activations. In this way, the network is disincentivised from having large

weights. Each L1 and L2 add an additional term to the loss function to impose this

cost. These terms are given by equations 21 and 22 where λ is an additional hyper-

parameter controlling the proportional contribution to the loss score, m is the batch
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size, and βi is the ith value in an activation.

L1 =
λ

m

n∑
i=0

‖βi‖ (21)

L2 =
λ

m

n∑
i=0

‖βi‖2 (22)

Another technique regulating the weights of a model is dropout [35]. With

dropout, during training time, individual units are temporarily randomly disabled

with probability p. Since units are not always enabled, the model cannot depend on

any single unit to function and must generalize.

Batch normalization is a technique that makes data normalization a part of the

model architecture [36]. It addresses changes in the distribution of the layers’ inputs

during training. Batch normalization normalizes each scalar feature in the input

individually across the batch. In doing so, it reduces ‘internal covariate shift’ and

allows for higher learning rates [36].

The normalization functions are given by equations 23, 24, 25 where xi denotes

the ith value of x over a batch B of size m. γ and β are learned parameters to scale

and shift the final transformed value (yi) and ε is a small constant added to prevent

division by zero errors.

µB =
1

m

m∑
i=1

xi (23)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (24)

yi = γ(
xi − µB√
σ2
B + ε

) + β (25)

Data Augmentation

The performance of deep learning models is highly dependent on the amount and

quality of available data [37]. The more data available, the more the model can

generalize to the domain rather than to a few examples. Data augmentation is a

technique of artificially increasing the amount of available data by supplementing the

existing data with transformations of itself. Common types of data augmentation for
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Figure 6: A histogram showing the distribution of normalized intensity values in each
a CT image and an MR image from the Multi-Modality Whole Heart Segmentation
challenge [7]. For each image, background voxels were excluded from the shown
distribution and intensity values were linearly rescaled such that the 0.5 and 99.5
percentile values are transformed to 0 and 1 respectively.

images are translation, rotation, reflection, scale shifts, intensity shifts, and addition

of noise (e.g. Gaussian noise). Each of these augmentations serves to make the model

invariant to analogous differences in new data.

2.2 Biomedical Images

A computed tomography (CT) or magnetic resonance (MR) scan results in a 3D image

composed of discrete volumetric elements called voxels. Each voxel is associated with

a scalar value which depends on the modality of image acquisition. The purpose of

this section is to describe the physical properties represented by these scalar values

in CT and MR images and to highlight that they are inherently different. Structures

appearing in one modality may not appear or may appear differently in another

modality. This difference in distribution is illustrated in Figure 6.
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2.2.1 Computed Tomography

Computed Tomography (CT) images are acquired using X-ray radiation. As these

rays are projected through the subject’s body, their intensities are attenuated by

interactions with matter including absorption and scattering. The probability of

these interactions is directly proportional to the electron density of the tissues along

the rays’ paths. Thus electron density is the fundamental property represented by the

resulting images. By taking these projective radiographic measurements from many

angles around the subject, the signals can be combined to produce a single cross-

sectional (slice) image. Combining multiple such slices acquired at different positions

produces a volume where each voxel represents the measured local attenuation. This

property is typically reported using Hounsfield units (HU), a linear transformation

of the attenuation measurement such that the attenuation of distilled water is 0 and

the attenuation of air is 1000.

HU = 1000
µ− µwater
µwater − µair

(26)

2.2.2 Magnetic Resonance

Magnetic Resonance (MR) images are acquired using nuclear magnetic resonance

(NMR). Nuclei with either an odd atomic number or odd mass number have spin and

are NMR-active. In practice, when imaging human anatomy, this is overwhelmingly

hydrogen nuclei due to the high proportion of water present. When placed in a strong

magnetic field, the magnetic moments of these nuclei become aligned with the field.

A second magnetic field is applied perpendicularly to this field in pulses at radio

frequency (RF). These pulses cause the magnetic moments to precess around the

first field. This precession causes a change in magnetic field which induces a voltage

in detection coils at the frequency of precession with an amplitude proportional to

the proton density. This is the signal detected by MR imaging, but not necessarily

the property measured. The precession of these magnetic moments can be viewed

as having two components, a transverse component and a longitudinal component.

After the RF pulses end, the precession decays over time. The time to decay in each

component is tissue dependant. A T1 MR image measures the time for longitudinal

decay. A T2 MR image measures the time for transverse decay. These acquisition

modes strongly affect the distribution of values in the resulting images. Figure 7
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(a) T1 MR Image (b) T2 MR Image

Figure 7: Two registered MR images from one subject captured with different ac-
quisition modes. Encircled is a glioma and oedema. Made using data from the 2020
Brain Tumor Segmentation (BraTS) challenge [13].

shows an example of the difference between T1 and T2 acquisition modes.

2.2.3 Common Complications

In addition to measuring different physical properties, there are a number of other

potential factors influencing the images’ appearances. Both MR and CT imaging

capture images in slices and construct a volume by stacking these slices together.

Usually the resolution of each slice is isotropic, but the spacing between slices is

chosen independently and typically results in anisotropic resolution in one direction.

Images may be captured with or without contrast agents which further increases the

variability of image appearance. Both modalities are subject to standard imaging

complications such as variable resolution, level of quality, signal-to-noise ratio, and

contrast-to-noise ratio.

All of these factors must be taken into consideration when designing a robust

image processing model.

2.3 Biomedical Image Segmentation

Segmentation in biomedical images is an important step in many clinical applications

as it transforms the images into a less complex form more tractable to standard
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computer algorithms. In this section, we discuss aspects of deep learning specific to

biomedical image segmentation.

2.3.1 Specific Difficulties

Image segmentation in the biomedical domain has some specific difficulties to address

in addition to the common segmentation challenges.

Data is sparsely available. Both CT and MR imaging require large, expensive

machinery to acquire. The images acquired are a patient’s confidential medical in-

formation and access is thus restricted by law and ethics. Of the images available,

annotation for supervised learning can only be done manually by highly skilled med-

ical professionals. Such annotation is very time-consuming with the organizers of

one data set (for the Multi-Modality Whole Heart Segmentation challenge) reporting

annotation times of six to ten hours per subject [38].

Due to inter-rater variability, the ground-truth labels used for training have limited

consistency. One study analysing the inter-rater variability in delineating lesions in

MRI found that there was a large amount of variation in volumes recorded by the

raters, raters tended to under predict volume in one modality compared to another,

and, while raters agreed on lesion centres, they had ‘considerable disagreement’ for

the lesion borders [4].

The volumetric images captured contain more spatial information than their 2-

dimensional counterparts, but this comes at the cost of highly increased computa-

tional and memory requirements in their processing. In practice, the complexity of

models and the size of the images that they can analyse is highly constrained by the

amount of available GPU memory. There have been numerous approaches addressing

this difficulty including, but not limited to, 2.5D networks [39], running inferences on

patches [40, 41, 42], and combining high resolution detail with low resolution detail

in different paths [15, 43].

2.3.2 U-Net

In 2015, to yield precise segmentations with relatively few training images, Ron-

neberger et al. presented a neural network architecture for biomedical image segmen-

tation called U-Net [15]. Since then, it has become highly prevalent in the domain,
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Figure 8: U-Net architecture. Blue boxes represent feature maps. The number of
channels is given by the numbers above the boxes. The feature map sizes are given
by the numbers to the left of the boxes. Operations are denoted by the coloured
arrows as specified in the legend. Figure from the original paper by Ronneberger et
al. [15].

inspiring many variants. The U-Net architecture, shown in Figure 8, is a type of

fully convolutional architecture featuring a contracting (encoding) path in which the

feature maps are successively reduced in size, followed by an expanding (decoding)

path in which the feature maps are successively increased in size. The two paths are

roughly symmetrical in nature and features from the contracting path are concate-

nated with corresponding feature maps in the expanding path. The main ‘U’ path

allows the network to save memory and computation time by learning low resolution

representations of features, while the concatenation paths allow it to retain the fine

detail from the early stages.

2.3.3 Evaluation

Choosing an appropriate metric is critical to properly evaluate the performance of

a model against a testing data set. For example, in the BraTS 2020 challenge data

set [13], the 369 segmentation masks are on average 98.9% background class. In this

extremely unbalanced example, when using categorical accuracy as a metric, a model

could trivially achieve 98.9% by predicting only the background class.
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The two most commonly used metrics in biomedical segmentation competitions

are the Dice Similarity Coefficient and Hausdorff Distance [44].

The Dice Similarity Coefficient (DSC or Dice score), given by equation 27, mea-

sures the amount of overlap between two binary samples. In this context, it is used

to compare the voxels from the ground truth, T , to the voxels in the prediction, P .

It can be easily extended for use with multiple classes by calculating the mean of

per-class Dice score.

DSC =
2|T ∩ P |
|T |+ |P |

(27)

Hausdorff distance, given by equations 28 and 29, as presented by [45], measures

the greatest smallest distance between two binary samples. That is, for each voxel, t,

in the ground truth, T , there is a minimum distance to some voxel, p, in the prediction,

P and likewise with voxels from P to T . Hausdorff distance is the maximum of these

distances.

There exists variants of Hausdorff distance that, instead of using the maximum of

the distances, use a high percentile (such as 95th) of the minimum distances. These

variants make the metric less sensitive to outliers.

DHausdorff(T, P ) = max(h(T, P ), h(P, T )) (28)

h(T, P ) = max
t∈T

min
p∈P
‖t− p‖ (29)

In this chapter, we gave the background necessary to understand the application

of deep learning to image segmentation in biomedical imagery. In the next chap-

ter, we explore the use of different multi-stream neural network structures to learn

segmentation from unpaired CT and MR images.
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Chapter 3

Multistream Models for Unpaired

Learning

3.1 Introduction

Deep learning is increasingly being applied in the medical domain for classification, de-

tection and segmentation. Semantic segmentation of medical images is an important

early step in developing clinical applications such as automatic landmark detection

for pre-procedural planning of trans-catheter aortic valve implantation [46]. Manual

annotation of medical images is an extremely tedious and time consuming process,

for example, the manual whole heart segmentation in CT and MRI takes between 6

to 10 hours per subject [38]. Furthermore, even when manual segmentation is done

by highly skilled medical professionals, it suffers from both inter-rater and intra-rater

variability [4]. Automated segmentation methods have thus been an active area of re-

search, however, large variability in patient anatomy makes automated segmentation

methods challenging. In recent years, deep learning has become increasingly popular

as it has shown to be an effective technique to perform medical semantic segmentation

[7].

The performance of deep learning models is highly dependant on the availability

of training data. A recent paper by Valindria et al. [47] explored the possibility of

learning a shared representation for the segmentation of major organs in unpaired

CT and MRI abdominal images using four different multi-stream fully convolutional

network architectures. Their results showed that a certain X-shaped dual-stream

23



model achieved top results over all classes in their data when compared to their

single-stream baseline and three other dual-stream candidate architectures. Given

that the reproducibility of deep learning techniques can be affected by small changes

in environment and hyper-parameters [48], in this paper, we aimed to determine if

the performance gains achieved by the representation sharing scheme proposed by

Valindria et al.[47] could be achieved under similar conditions.

3.2 Related Works

In addition to the work by Valindria et al., there are a number of different approaches

to unpaired multi-modal learning in the medical imaging literature. In this section,

we describe some of these approaches.

Moeskops et al. show that a single network trained on three separate modalities

can achieve performance equivalent to three separately trained networks [49]. Zhang

et al. show performance gains using GAN synthesized images for unsupervised learn-

ing with different modalities, artificially translating images from one modality to

another [50]. Dou et al. use a largely single-stream architecture with an additional

loss term inspired by knowledge distillation [51] that minimizes the divergence of

prediction distributions between modalities [52]. They reported overall mean Dice

scores slightly higher than other multi-modal learning schemes. Finally, Li et al. use

a combination of both a GAN image translation module and an additional knowledge

distillation based loss term in a single network [53]. They reported top Dice scores in

every class compared to other multi-modal learning schemes including the work by

Zhang et al. mentioned earlier.

Interested readers can look to a review of deep learning for cardiac image segmen-

tation by Chen et al. [54] and of deep learning solutions to imperfect data sets in

medical segmentation by Tajbakhsh et al. [55].

3.2.1 Data Set

The MM-WHS data set [7] consists of 60 cardiac CT and 60 cardiac MRI 3D images.

The CT and MRI images are unpaired, i.e. they are not acquired from the same

patients. All images come from real clinical environments and have varying image

quality, resolution, and slice thickness. Each image is paired with a ground truth,
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(a) CT Image (b) CT Ground Truth (c) MR Image

Figure 9: Example slices from pre-processed images in the MM-WHS data set.

a manual segmentation into seven cardiac substructures: the left and right ventricle

blood cavity (LVC & RVC), the left and right atrium blood cavity (LAC & RAC),

the left ventricle myocardium (LVM), the ascending aorta (Asc. A), the pulmonary

aorta (Pulm. A), and the background (BG).

This data set was released for a 2017 biomedical image segmentation challenge

seeking to find and validate the current state-of-the-art algorithms. For this challenge,

there were twelve participating teams, nine of which provided results for both CT and

MR images. The top performing algorithms (by the Dice Similarity Coefficient) were

different for each CT and MR images.

The top performing solution for CT images was a two-stage CNN-based architec-

ture where the first stage operates on a low resolution of the image to localize the

region of interest and the second stage operates on the full resolution version of the

image cropped around the region of interest to produce the final segmentation [56].

The top performing solution for MR images was from a team from the University

of Bern, Switzerland. A description of the method is given by the MMWHS challenge

organizers [7]. It features a fully convolutional DenseNet encoder-decoder network.

Multi-scale contextual information is included in the encoding path to enhance feature

learning.

3.2.2 Valindria’s Work

The work by Valindria et al. [47] is based on work by Kuga et al. which proposed

multi-modal encoder-decoder networks with shared skip connections to more fully

exploit inter-modal commonalities for multiple related scene recognition tasks [57].
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Valindria et al. applied this technique to the problem of unpaired CT and MR image

segmentation. They sought to determine which parts of dual stream networks are

best merged or split. To do so, they used a single-stream FCNN-based architecture

for their baseline model and designed four different dual stream model configurations

from this with different parts of the streams being merged for each configuration.

For data, they used two different data sets of 3D abdominal images, one of CT

images and one of T2-weighted MR images. This data was pre-processed to have

isometric 2mm voxel spacing, CT voxel intensities were normalized, and images were

cropped to have similar field of view, covering only the regions to be segmented.

During training, they apply Gaussian noise and intensity shifts for data augmentation

and use weighted class sampling to compensate for class imbalance.

Training was performed on mini-batches of 16 643-sized patches for 10,000 steps

using Dice loss. For multi-modal training, mini-batches were selected from the sepa-

rate modalities in an alternating manner.

Their findings were that one particular dual-stream configuration, where the

streams were briefly merged between the encoding and decoding stages, had the best

overall segmentation performance on every class when compared to both the baseline

model and the other dual-stream configurations.

Their code for their experiment is publicly available online at:

https://github.com/vanya2v/Multi-modal-learning

3.3 Methodology

We evaluated the four dual-stream configurations proposed by Valindria et al. [47]

on the semantic segmentation of MRI and CT cardiac images from the MICCAI 2017

Multi-Modality Whole Heart Segmentation Challenge (MM-WHS) [7]. Although we

borrow methodological approaches from Valindria’s work, in particular the four dual-

stream configuration schemes, we differ in many choices including using a different

baseline architecture (U-Net vs. FCNN), a different overall training setup with our

own hyper-parameters and data augmentations, and we train and evaluate using a

different data set. In this way, we aim to determine if the practice of dual-stream

learning is sufficiently robust to perform well generally rather than only in one specific

case. Our implementation is available at:
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Figure 10: Architecture for Single-Stream U-Net Model

https://github.com/AppliedPerceptionLab/Multi-ModalitySegmentation

3.3.1 Data Set Pre-Processing

Prior to training, the images and ground truths were subject to a number of pre-

processing steps. Firstly, all images were re-sampled to isometric 1 mm resolution

(images were re-sampled using linear interpolation and ground truths using nearest-

neighbours). All images and labels were rotated such that the XY axes represented

the axial plane. Some labels were truncated in scope to match the data organizers’

definitions. Specifically, labels for the pulmonary artery were made to include only

the volume between the pulmonary valve and the bifurcation point and labels for the

ascending aorta were made to include only the volume between the aortic valve to the

superior level of the atria. Lastly, each image’s intensities were Min Max normalized

into the range [-1,1].

3.3.2 Model Architectures

The architecture for the single-stream (SS) model (Fig. 10) is a fully convolutional

network based on U-Net [15] and its 3D counterpart V-Net [58]. It consists of four

down-sampling stages followed by four up-sampling stages and one final softmax stage

yielding the final output, a vector of class probabilities for each voxel. Each down

stage consists of two 3D convolutional layers followed by a down-sampling layer.

Down-sampling is performed by 2-strided convolutional layers, which perform well

compared to pooling layers [31]. Each up-stage begins by concatenating the output

from the previous stage with the pre-down-sampled output from the down-stage of

equivalent size. This is followed by two convolutional layers and an up-sampling layer

performed by 2-strided transposed convolution.

The number of convolutional kernels in each layer begins at 16 and doubles with
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each down-stage, up to 256, then halves with each up-stage. The final output layer

uses 8 kernels, one for each output class. Every layer uses 5x5x5 sized convolution

kernels and the ELU activation function [26], except for the final layer which uses

1x1x1 sized convolution kernels and softmax activation.

The hyper-parameter selection for the single-stream baseline model is the result

of a series of empirical tests validating its performance on the same data set. The

presented selection demonstrated the highest validation performance of all of the

tested permutations.

Each of the four dual-stream models are pairs of models exactly identical to the

single-stream model, but with a subset of their layers shared. The different configu-

rations of layer sharing follow the proposed configurations by Valindria, et al. [47] as

described below.

Dual-Stream Model Version 1 (DV1): This architecture features separate input

and down-sampling layers for each CT and MRI, but a shared up-sampling and final

output (Fig.11).

CT

MR

CT

Figure 11: Architecture for Dual-Stream U-Net Model Version 1

Dual-Stream Model Version 2 (DV2): This architecture features separate input

and one down-sampling stage for each CT and MRI, but the rest of the architecture

is shared (Fig.12).

Dual-Stream Model Version 3 (DV3): This architecture features a shared input

and down-sampling path, but separated up-sampling and outputs (Fig.13).

Dual-Stream Model Version 4 (DV4): This architecture features a single shared

stage at the end of the down-sampling phase, but has otherwise individual input and

output streams (Fig.14).
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CT

MR

Figure 12: Architecture for Dual-Stream U-Net Model Version 2

MR

CT

Figure 13: Architecture for Dual-Stream U-Net Model Version 3

3.3.3 Loss and Optimization

For training, we use a modified version of the weighted multi-class Dice loss score

used in [59]. We chose to use Dice loss because the Dice Similarity Coefficient is the

primary evaluation metric used in biomedical image segmentation and, in this way, we

optimize for it as directly as possible. Weighting was used to mitigate the deleterious

effects of high class imbalance. For each class, a Dice coefficient is calculated by:

Coefc =

2(
N∑
i=1

tcipci) + ε

N∑
i=1

tci +
N∑
i=1

pci + ε

(30)

Where pci ∈ [0, 1] represents the predicted probability of class c at voxel i, tci ∈ {0, 1}
represents the truth of class c at voxel i, N represents the number of voxels in the

ground-truth image, and ε = 10−7 is used to correct for division by zero.

The final Loss score is then calculated as:

Loss =
1∑

wc∈W
wc

∑
c∈C

(wc(1− Coefc)) (31)
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CT

MR

MR

CT

Figure 14: Architecture for Dual-Stream U-Net Model Version 4

Where the weights W are pre-calculated across the entire training data set as:

Wc = 1− Lc
N

(32)

Where N represents the total number of voxels and Lc represents the total number

of voxels for label c.

The models are trained using the Adam optimizer [60] with a learning rate of

10−4, β1 = 0.9, and β2 = 0.999.

3.3.4 Data Augmentation

During training, we randomly apply a number of data augmentations to improve the

generalizability of the resulting model including: (1) addition of Gaussian noise with

µ = 0.0 and σ = 0.2 (p=0.3); (2) random shift in image intensity between -20%

to 20% (p=0.5); (3) image quality adjustment with Gaussian smoothing (p=0.3);

(4) volume rotation between -15◦ to 15◦ around the vertical axis (p=0.5); and (5)

horizontal flipping of the volume’s transverse plane (p=0.5). The data augmentations

were chosen for being the most commonly used augmentations for similar tasks and

their specific parameters were determined ad hoc.

3.3.5 Hardware and Software Configuration

All networks were implemented in Keras [61] with TensorFlow 2.0.0 [62] backend.

Models were trained and run on a NVIDIA GeForce RTX 2080 TI GPU with 11 GB

VRAM.
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3.3.6 Training Procedure

The fully convolutional structure of the models allow for variable input image sizes,

however, due to memory constraints, there is a practical limit on overall input size.

To overcome this limitation, during training, the input images are split into 643 sized

volumetric patches and training is performed with batches of 20 patches. Patches

where the ground truth contains only background class labels are filtered out.

The data set was split volume-wise into training, validation, and testing sets with

an 80%:10%:10% ratio.

Two instances of the single-stream model were trained, one for each the CT and

MR modalities. Each instance was trained for 125 epochs where each epoch was a

complete run through the training data, about 60 batches. Each dual-stream model

was trained with alternating batches of CT and MRI data. Each dual-stream in-

stance’s epochs were a combined 120 batches in length.

At the end of each epoch, the model was evaluated against the validation data

using the mean of each class’ Dice similarity coefficient calculated using equation

33. For each model architecture, the epoch with the highest mean validation Dice

similarity was selected as the candidate for testing.

Coefc =
2|Tc ∩ Pc|+ ε

|Tc|+ |Pc|+ ε
(33)

Testing was performed by calculating the Dice coefficients for each class over the

entirety of each image in the testing set. For the CT images, inference was done

on each whole image volume. MR images in the data set were larger on average so

inference was performed on 256x256x128 sized grid-based patches. Patch predictions

were then recombined into whole image predictions before evaluation.

3.4 Results and Discussion

The mean Dice scores calculated from testing each model architecture are presented

in Table 1 and Table 2 and qualitative examples of their testing segmentations are

shown in Figures 15 and 16. We found no model performed best universally. The

model with the best performance on CT images was the Dual-Stream Model Version

3 (DV3) with a mean Dice score of 0.881 which was an increase of 0.052 over the

single-stream baseline on CT images (SSCT) and had the second best performance
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(a) Truth (b) SSCT (c) DV1 (d) DV2 (e) DV3 (f) DV4

Figure 15: An example of segmentation results on a CT image from the testing set
by each architecture. The predicted labels for class are labeled as red (LVC), green
(RVC), blue (LAC), yellow (RAC), fuchsia (LVM), cyan (Asc. A), and purple (Pulm.
A).

on MR images. The model with the best performance on MR images was the Dual-

Stream Model Version 4 (DV4) with a mean Dice score of 0.793, which was an increase

of 0.132 over the single-stream baseline on MR images (SSMR), however, DV4 also

performed poorly on CT images, under-performing the baseline.

Table 1: CT class and mean Dice scores for each model architecture. Bolded numbers
identify the best results. Mean is computed over non-background classes.

Name BG LVC RVC LAC RAC LVM Asc. A Pulm. A Mean
SSCT 0.993 0.901 0.871 0.914 0.874 0.828 0.607 0.807 0.829
DV1 0.994 0.858 0.875 0.921 0.881 0.779 0.923 0.811 0.864
DV2 0.989 0.803 0.768 0.825 0.735 0.733 0.772 0.753 0.770
DV3 0.995 0.905 0.887 0.911 0.872 0.849 0.929 0.818 0.881
DV4 0.991 0.867 0.813 0.826 0.755 0.729 0.789 0.649 0.776

Neither of the single-stream baseline models ever achieved the top performance

for any class. For MR, both DV3 and DV4 achieved better than baseline performance

over every class, but for CT there was no model that universally outperformed the

baseline model.

Segmentation performance for MR images was, for the most part, worse than for

CT images, which is consistent with findings by Zhuang et al. [7], however the gains in

MR segmentation performance were much larger than the gains in CT segmentation

performance. All dual-stream models achieved greater than baseline performance on
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(a) Truth (b) SSMR (c) DV1 (d) DV2 (e) DV3 (f) DV4

(g) Truth (h) SSMR (i) DV1 (j) DV2 (k) DV3 (l) DV4

Figure 16: An example of segmentation results on an MR image from the testing set
by each architecture. The predicted labels for class are labeled as red (LVC), green
(RVC), blue (LAC), yellow (RAC), fuchsia (LVM), cyan (Asc. A), and purple (Pulm.
A).

MR images. Only DV1 and DV3 achieved higher than baseline performance on CT

images.

In Table 3, we present the difference between the per class Dice scores from the

single-stream model and the average of all of the dual-stream models for each modal-

ity. For CT, the dual-stream models performed worse on most classes compared to

the single-stream model with the exception of one class that performed significantly

better, and the background class which performed marginally better. For MR, the

dual-stream models performed better on most classes with only one exception that

preformed marginally worse.

For CT segmentation, the organizers of the MMWHS data set reported that, out

of the ten evaluated algorithms, the highest Dice score achieved was 0.908 and the

average Dice score achieved was 0.859. For MR segmentation, the highest Dice score

achieved was 0.874 and the average Dice score achieved was 0.844. Taking these

numbers at face value would indicate that our best models were comparable to the
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Table 2: MR class and mean Dice scores for each model architecture. Bolded numbers
identify the best results. Mean is computed over non-background classes.

Name BG LVC RVC LAC RAC LVM Asc. A Pulm. A Mean
SSMR 0.982 0.833 0.801 0.738 0.454 0.600 0.717 0.486 0.661
DV1 0.994 0.890 0.767 0.786 0.818 0.721 0.715 0.537 0.748
DV2 0.993 0.915 0.779 0.778 0.772 0.692 0.680 0.490 0.729
DV3 0.991 0.867 0.810 0.827 0.756 0.726 0.736 0.647 0.767
DV4 0.993 0.873 0.814 0.841 0.806 0.750 0.792 0.676 0.793

Table 3: Average change in per-class Dice scores across all dual-stream models. Mean
is computed over non-background classes. All values are rounded to two significant
figures. Positive values are in bold.

Modality BG LVC RVC LAC RAC LVM Asc. A Pulm. A Mean
CT 0.00075 -0.043 -0.035 -0.043 -0.063 -0.060 0.25 -0.049 -0.0062
MR 0.011 0.053 -0.0085 0.070 0.33 0.12 0.014 0.10 0.098

top algorithms for CT segmentation and below average for MR segmentation. That

being said, this experiment was designed to evaluate multi-stream models against an

analogous single stream model rather than to compare against the state-of-the-art.

In doing so, we employed different pre-processing to the image data and a different

train/test image split. For this reason, these numbers are not directly comparable.

Qualitative inspections of the error produced by any of the networks show that,

for the most part, erroneous voxel classifications do not have arbitrary spatial distri-

bution. The networks almost always correctly determine the general locations of the

cardiac structures and disagree on the precise structure boundaries by a few voxels.

This pattern is illustrated in Figure 17.

In a follow-up analysis of the different network architectures, we captured the

intermediate activations from each of the 32 layers for each network architecture for

each modality. For the dual-stream architectures, the separate modality streams were

treated as separate networks that happened to share certain layers. For each layer

we counted the number of dead activations, activations where every voxel intensity

was -1, i.e. the minimum possible value of the ELU activation function. The number

of dead activations in each layer for each architecture and modality are presented

in Figure 18. From this we make two main observations: (1) The number of dead

activations tended to be highest at the bottom of the networks, i.e closest to the most

down-sampled activations and the layers with the most kernels; and (2) For each
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(a) CT Truth (b) CT Error (c) MR Truth (d) MR Error

Figure 17: An example of typical spatial distributions of erroneous voxel classifications
by the top performing multi-stream architectures on each CT and MR modalities. On
the left are the ground-truth segmentation masks and on the right are the locations
of misclassified voxels for the same image. For CT, inference was performed by
architecture DV3 and for MR, inference was performed by architecture DV4.

CT and MR, the architecture with the best testing performance, i.e. DV3 and DV4

respectively, was the architecture with the fewest overall number of dead activations.

3.5 Conclusion

In the work by Valindria et al. [47], their X-shaped architecture (equivalent to DV4)

had universally better performance compared to all other tested models on all classes.

Our results showed no top performing model, however, two models showed a strong

improvement over baseline for CT images and all dual-stream models showed even

stronger improvement over baseline for MRI images. On average, dual-stream models

performed worse for CT images and better for MRI images. This suggests that repre-

sentation sharing schemes like these dual-stream architectures may be more beneficial

for some modalities than others. For CT, specific dual-stream architectures may im-

prove performance compared to traditional architectures. Since the publishing of the

Valindria et al. paper, numerous others have cited it assuming that the X-shaped

architecture performs best. Here we show that this may not always be the case. This

may be due to different data sets with different acquisition properties, parameters,

or stochastic effects, but emphasizes the importance of testing various architectures

and realizing no one solution might be better universally.
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(a) CT Dead Activations

(b) MR Dead Activations

Figure 18: Number of dead activations in each layer for each multi-modal architecture
on each modality. Layers not shown in chart had no dead activations.
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Chapter 4

Deep Learning Solutions for Brain

Tumour Segmentation

Segmentation of biomedical images is an important step in many clinical applications.

It is a transformation of complex signals into discrete semantic structures making au-

tomated tasks for visualisation and quantification more tractable. Brain tumour seg-

mentation, specifically, is used for surgical planning to accurately determine tumour

borders. A better segmentation for this task may enable maximal tumour resection

while preserving maximal healthy brain tissue. Studies have shown that complete

removal of a brain tumour, i.e. gross total resection, results in longer overall survival

and longer progression-free survival for patients in the short term [63, 64, 65].

Manual image segmentation is a painstaking and time-consuming process that

must be performed by clinical experts. Additionally, studies have found there to be

both high inter- and intra-rater variability in expert manual segmentation [4]. For this

reason, automated segmentation methods have been a highly active area of research.

In the following chapter, we describe a custom deep learning solution to brain tu-

mour segmentation and evaluate it against existing publicly available state-of-the-art

solutions. Our aim is to achieve better performance through more careful customiza-

tion around the constraints of data and computing resources than can be achieved

through pre-made solutions.
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4.1 Pre-made Solutions

Two state-of-the-art deep learning methods were used for comparison to our work:

Deep Medic and No New Net. These were chosen as benchmark networks because they

have been previously validated on publicly available data sets with strong reported

results and have easy-to-use, publicly available code.

4.1.1 Deep Medic

Deep Medic, which was proposed by Kamnitsas et al., is a multi-scale 3D convolutional

neural network for segmentation of 3D biomedical images [43]. It achieved top ranking

performance on both the ISLES 2015 challenge and the BraTS 2015 challenge [66].

Deep Medic seeks to overcome the computational complexity of large 3D images by

using a dual pathway architecture where one pathway operates on low resolution

patches and the other operates on a high resolution subset of the given patch. Thus

one pathway learns fine detail features while the other learns the lower resolution

context. In this way, it is able to operate on arbitrarily large images. The Deep

Medic architecture is shown in Figure 19.

Figure 19: Deep Medic’s model architecture. Figure from [66]

4.1.2 No New Net

No New Net (nnU-Net), which was developed by Isensee et al., is a full deep learning

pipeline for 3D biomedical image segmentation [67, 68]. No New Net’s stated goal is to

provide a standardized baseline against which to compare other algorithms, provide an

‘out-of-the-box’ segmentation method usable by non-experts, and provide a modular
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framework in which new architectures and methods can be easily integrated and

evaluated. Rather than relying on manual intervention for hyper-parameter selection

and configuration, nnU-Net features a pre-planning script that analyses the provided

data and uses heuristics to infer model and procedure hyper-parameters including, but

not limited to batch size, patch size, data augmentation, and network topology. After

training, nnU-Net tests different post-processing and ensembling strategies to further

improve segmentation performance. No New Net was tested against 19 different

biomedical segmentation data sets and reports state-of-the-art or near state-of-the-

art results on each. A comparison of nnU-Net’s procedure compared to the current

practice of manual intervention is shown in Figure 20.

Figure 20: A comparison between nnU-Net’s framework and the current practice.
Figure from [67].
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4.2 Methodology

The Brain Tumour Segmentation (BraTS) data set [13] is used for an annual challenge

seeking to identify and evaluate the current state-of-the-art methods in segmenting

brain MR images. The primary task of the challenge is to segment a specific type

of brain tumour known as a glioma. The 2020 publicly available version of the data

set consists of 369 sets of images. Each set consists of four MR images from a single

subject with different acquisition modes and one ground-truth segmentation mask.

The MR images are T1 weighted, T2 weighted, post-contrast T1 weighted (T1CE),

and T2 Fluid Attenuated Inversion Recovery (FLAIR). All images are pre-processed

to be co-registered, interpolated to isometric 1mm3 resolution, and skull stripped.

The ground truths were created by one to four raters and approved by expert

neuro-radiologists. The ground-truth masks are segmented into four distinct cate-

gorical labels, namely: background, oedema, enhancing tumour, and non-enhancing

tumour core.

Each image’s resolution is 240x240x155. The brain is centred in each image and

the XY axes always represent the axial plane. An example of a set of images from

one subject is shown in Figure 21.

4.2.1 Model Architecture

We used a fully convolutional architecture based on U-Net by Ronneberger et al.

[15]. Input to the model is a 3D volume of arbitrary size with four channels, one

for each MR acquisition mode. The model consists of four down-sampling blocks

followed by four up-sampling blocks, and finally one softmax output block. Each

block begins with a batched normalization layer followed by three 3D convolutional

layers, followed by a re-sampling layer. For the down-sampling blocks, re-sampling is

performed by 2-strided convolutional layers. For the up-sampling blocks, re-sampling

is performed by a 2-strided transposed convolution. Prior to batched normalization

in the up-sampling blocks, the output from the previous layer is concatenated with

the output of the pre-sampling layer of the down-sampling block of the same size. All

convolutional layers use the ELU activation function [26] and use padding to maintain

consistent image output shapes. The final output block is identical to the sampling

blocks except that the re-sampling layer is replaced by a convolutional layer with a
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(a) T1 (b) T2 (c) T1 Contrast Enhanced

(d) FLAIR (e) Segmentation Mask

Figure 21: Example slices for each modality and the ground truth from one set of
images in the BraTS 2020 data set [13]

.

softmax activation function yielding the predicted probability for each class for each

voxel.

The number of convolutional kernels in each layer begins at 16 and doubles with

each down-sampling block up to 256 at the bottom block. It then halves with each

up-sampling block. The final layer has four kernels, one for each output class. There

are three sizes of convolution kernels used: 3x3x3 (small), 5x5x5 (medium), and 7x7x7

(large). Larger kernels are used on blocks operating on higher resolution activations

and smaller kernels are used on blocks operating on lower resolution activations.

In this way, we allow for more detailed relationships on high resolution activations,

while preserving resources on low resolution activations. The use of smaller kernels

operating on small activations also mitigates the redundant effect of padding. The

first two and last two blocks use large kernels, the third and third-to-last use medium
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kernels, and the middle three blocks use small kernels. This model architecture is

illustrated in Figure 22.

Batched Normalization

Convolution

2-Strided Convolution

Transposed Convolution

Input

Softmax Output

Figure 22: Architecture for U-Net model used for brain image segmentation

4.2.2 Loss and Optimization

As in Chapter 3, for training, we use a modified version of the weighted multi-class

Dice loss score used in [59]. This metric was chosen because the Dice Similarity

Coefficient is the primary evaluation metric used for BraTS competition and, in this

way, we optimize for it as directly as possible. Weighting was used to mitigate the

deleterious effects of high class imbalance. The loss score was calculated according to

equations 30, 31, and 32.

The models are trained using the Adam optimizer [60] with a learning rate of

10−4, β1 = 0.9, and β2 = 0.999.

4.2.3 Data Augmentation

During training, we randomly apply data augmentations on both the intensities and

spatial distributions of the image voxels. Prior to intensity augmentations, the in-

tensity values per channel are each linearly re-scaled such that the 99.5th percentile

and the 0.5th percentile are 1.0 and 0.0 respectively. The following intensity aug-

mentations are applied identically to each channel with probability p: (1) addition of

Gaussian noise with µ = 0.0 and σ = 0.2 (p = 0.5); (2) random shift in image inten-

sity between -0.2 and 0.2 (p = 0.5); and (3) Gaussian smoothing with σ ∈ [0.5, 0.9]
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(p = 0.3). After intensity augmentations are applied, each channel’s intensity values

are normalized to have a zero mean and unit variance.

The following spatial augmentations are applied identically to each channel: (1)

volume rotation between -5◦ to 5◦ around the x-axis (p = 0.5); (2) volume rotation

between -2.5◦ to 2.5◦ around the y-axis (p = 0.5); (3) volume rotation between -2.5◦

to 2.5◦ around the z-axis (p = 0.5); (4) selection of eight random patches of size

128x128x128 (p = 1); and (5) horizontal flipping of the XY-plane (p = 0.5).

4.2.4 Hardware and Software Configuration

All networks were implemented in Keras [61] with TensorFlow 2.1.0 [62] as backend.

Models were trained and run on a NVIDIA Titan Xp GPU with 12 GB VRAM with

data augmentations performed on an Intel Xeon v4 CPU.

4.2.5 Training Procedure

The network was trained with a 5-fold cross validation scheme where, for each fold,

80% of the data was used for training and the remaining 20% was withheld for vali-

dation. For this data, we used the BraTS 2018 data set, a subset of the BraTS 2020

data set. We used this subset because, at the time, the official BraTS 2020 validation

and testing data were not available to us so we reserved the difference between these

two sets for the final evaluation.

In addition to the data augmentations applied to the data online, all produced

patches were filtered so that the network would not train on any images for which the

ground truth contained exclusively background labels. The network was trained for

300 epochs on batches of four patches. Each epoch consisted of a full pass through

all of the training data. The models were trained using the Adam optimizer [60] with

a learning rate of 10−4, β1 = 0.9, and β2 = 0.999. Training took roughly three days

to complete.

At the end of each epoch, the model was evaluated against the validation data

using the same loss function, categorical accuracy, and the mean of each class’ ap-

proximated hard Dice similarity coefficient calculated using

Coefc =
2|Tc ∩ Pc|+ ε

|Tc|+ |Pc|+ ε
, (34)
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where Pc and Tc represent the prediction and ground-truth masks for class c, and ε

is a very small number used to correct for division by zero errors. These validation

metrics were used to determine appropriate hyper-parameters such as learning rate

and network depth.

4.2.6 Inference Procedure

The model architecture allows it to perform inference on 3D volumes of nearly arbi-

trary size. There are two limitations on the inference size:

1. The amount of available VRAM. The sizes of the expanded convolution tensors

and resulting activations are proportional to the input size. Attempting to

perform inference on too large of an image will result in an out-of-memory

error and crash. One solution is to perform inference on patches of the input

image and then later fuse the patch predictions into a single segmented image.

Doing so can reduce overall performance since the individual patches lose the

global context present in the whole image. Because the size of the images in

the BraTS data set is constant, the complexity of the model architecture was

specifically engineered to be able to perform inference on a single full image

using the available system GPU without any additional steps.

2. The number of down-sampling blocks. For each down-sampling block, the res-

olution is cut in half along each axis to be later doubled by the up-sampling

blocks. If the input size to any down-sampling block is not divisible by two

along some axis then the output size is truncated and later up-sampling will

not reproduce the original input size which is incompatible with the concate-

nation step. Because of this, any such model with n down-sampling blocks

requires input sizes to be divisible by 2n along each axis. Given that our model

has four down-sampling blocks, each axis must be divisible by 24 = 16. To

resolve this issue, images not divisible by 16 along some axes are symmetrically

zero-padded along those axes to the nearest multiple of 16. After prediction,

this extra padding is removed from the result. Given that all the BraTS images

are 240x240x155 in size, this effectively means that they are each augmented

with five empty slices to the z-axis.

Before input to the model for inference, images are normalized in the same way
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as during training, i.e., their intensities are re-scaled such that they have a zero mean

and unit variance. Running the normalized images through the network yields the

predicted probabilities for each class for each voxel. The argmax function is applied

voxel-wise to produce the final predicted segmentation. Alternatively, instead of

applying the argmax function immediately, we use the resulting models from each

of the five folds to individually predict class probabilities, sum each of the class

probabilities voxel-wise, and then apply the argmax function. In this way, we create

an ensemble network using all of the network folds.

4.2.7 Running Benchmark Networks

In the following section, we describe the models and parameters used for running the

two benchmark datasets.

No New Net

No New Net has multiple pre-made configurations including a 2D U-Net, a 3D full res-

olution U-Net, and a 3D U-Net cascade featuring a 3D low resolution U-Net followed

by a 3D full resolution U-Net. For the purpose of this experiment, we trained and

tested using the 3D full resolution U-Net. Running nnU-Net requires minimal effort.

Input filenames must adhere to a specific format and the ground-truth segmentation

mask labels must be sequential starting with zero for background. Following this, we

run the provided pre-processing script and then start training with another provided

script.

No New Net was trained using all default parameters, using five folds and its

own data partitioning scheme. Each fold failed to trigger the built-in early stopping

condition and trained until the preset maximum 1000 epochs (of 250 batches each),

about five days each. We trained and evaluated only one pre-made configuration due

to the high time cost.

Deep Medic

Similar to nnU-Net, Deep Medic comes with multiple pre-made configurations. For

the purpose of this experiment, we trained and tested using the provided configuration

named ‘modelConfig wide1’. Before running the training procedure, Deep Medic
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requires explicit specification of all the input files and partitioning, names of output

files, number of input channels, and number of output classes. Additionally, input

images must be pre-processed to have zero mean and unit variance and segmentation

mask labels must be sequential starting with zero for background.

Deep Medic was then trained according to its default parameters.

4.2.8 Testing

For all networks, for training, we used the BraTS 2018 data set. For testing, we used

all of the 84 samples from the available BraTS 2020 data set that were not present in

the 2018 data set. For each fold of our own network, the ensemble of our network, the

Deep Medic network, and the highest performing fold of nnU-Net, we ran inference on

each of the 84 images and computed the per-class hard Dice score using equation 34.

4.3 Results and Discussion

The distributions of Dice scores achieved on the testing set by each fold and ensemble

of our network is presented in Figure 23 and the distributions achieved by the bench-

mark solution and our ensemble are presented in Figure 24. Tables 4 and 5 present

mean and standard deviation summary statistics of the same data.

The enhancing tumour class had notably poor performance compared to the other

classes on each fold and model. In the BraTS data set, this is the only label that is not

present in every image. We conjecture that this resulted in diminished performance

for two reasons: (1) The models were less exposed to this class during training and

thus less able to learn patterns associated with it; and (2) The design of the Dice

similarity coefficient is such that if there are no instances of a given class in a ground-

truth segmentation mask then even just a single false positive prediction of this class

will result in an overall Dice score of nearly zero ( ε
1+ε

). This would also explain why

this is the only class to ever achieve a 1.0 Dice score in any model.

For our network, the ensemble of all folds achieved the highest mean Dice scores

for each class compared to any of the individual folds. For most of the individual

folds, the increase in Dice scores was significant, however, Fold 3 achieved mean

scores very close to the ensemble with similar distribution. When comparing the

standard deviations of each fold and the ensemble, there was no single consistent top
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Figure 23: Distribution of per-class Dice scores for each model fold and ensemble as
evaluated on the testing data.

Table 4: Summary of testing statistics for benchmark architectures for each model
fold and ensemble. Numbers in bold indicate the column maximum for means and
column minimum for standard deviations. Class label abbreviations: Oed is Oedema,
Enh is Enhancing Tumour, N-Enh is Non-Enhancing Tumour

Model Mean Standard Deviation
Class Oed Enh N-Enh Mean Oed Enh N-Enh Mean
Fold 0 0.781 0.664 0.841 0.762 0.133 0.268 0.114 0.116
Fold 1 0.730 0.589 0.838 0.719 0.145 0.291 0.110 0.129
Fold 2 0.794 0.683 0.818 0.766 0.148 0.272 0.135 0.132
Fold 3 0.814 0.708 0.848 0.790 0.124 0.248 0.119 0.115
Fold 4 0.692 0.576 0.733 0.667 0.154 0.274 0.162 0.146

Ensemble 0.819 0.718 0.860 0.799 0.121 0.264 0.117 0.118
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performer.

Figure 24: Distribution of per-class Dice scores for each benchmark architecture and
our ensemble as evaluated on the testing data.

Table 5: Summary of testing statistics for benchmark architectures and our ensemble.
Numbers in bold indicate the column maximum for means and column minimum for
standard deviations. Class label abbreviations: Oed is Oedema, Enh is Enhancing
Tumour, N-Enh is Non-Enhancing Tumour

Model Mean Standard Deviation
Class Oed Enh N-Enh Mean Oed Enh N-Enh Mean

Deep Medic 0.745 0.633 0.815 0.731 0.193 0.304 0.176 0.179
nnU-Net 0.798 0.695 0.812 0.768 0.096 0.239 0.105 0.114
Ensemble 0.819 0.718 0.860 0.799 0.121 0.264 0.117 0.118

In the comparison of each solution, i.e. our ensemble, Deep Medic and nnU-Net,

Deep Medic showed the poorest performance almost universally in both mean Dice

scores and standard deviations with the exception of the Non-Enhancing Tumour class

where it marginally outperformed nnU-Net in mean score. Our ensemble showed the

highest performance in mean Dice scores for every class, but nnU-Net had the smallest

standard deviations for every class. This shows that while our solution had the best

overall performance, nnU-Net provides the most consistent predictions.
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4.4 Conclusion

In this work, our results confirm that we achieved our goal of building a deep learning

solution to brain tumour segmentation that outperforms existing high quality pub-

licly available solutions based on mean Dice score. This shows that through careful

adjustment of hyper-parameters and model architecture design around the specific

constraints of our data set and available computational hardware resources, we can

achieve better segmentation accuracy than with pre-made one-size-fits-all models.

Because each solution operates completely differently with different choices in model

architecture, training procedure, training data partitioning, hyper-parameters, data

pre-processing, etc., it is difficult to ascribe our success to any single engineering de-

cision. Future works to improve our solution further should make individual changes

in isolation to better estimate their influence on the overall network performance.

Furthermore, each Deep Medic and nnU-Net are capable of multiple different con-

figurations, but only one of each was tested. More thorough testing of the different

possible configurations would be needed to fully determine their capacity.
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Chapter 5

Conclusion

In this dissertation, we presented two experiments in the domain of multi-modal

biomedical image segmentation. Our first experiment in Chapter 3 sought to validate

current practices in multi-stream approaches to unpaired multi-modal segmentation.

Our results supported the idea of multi-stream approaches in general, but contra-

dicted the specific belief present in the literature as to which configuration performs

best. Our second experiment in Chapter 4 sought to validate a developed full deep

learning segmentation pipeline as applied to paired multi-modal images against other

existing publicly available pipelines. Our results found that our pipeline had the best

performance in mean Dice scores for each class and showed that a pipeline carefully

tuned to the specific computational constraints present can perform better than pre-

made solutions. The success of both experiments using our deep learning pipeline

with slightly different configurations on different tasks (one for unpaired learning of

cardiac images and one for paired learning of brain tumour images) demonstrates an

overall robustness in our methods.

5.1 Future Work

There are a number of possible avenues of future work based on our findings, specif-

ically improving the interpretability of our models and addressing the shortcomings

of our loss and evaluation function.
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5.1.1 Model Interpretability

In Chapter 3, our experimental results showed that certain multi-stream architectures

were able to produce better segmentations than others on unpaired multi-modal im-

ages, however, this provides us with no indication as to how or why they do. In a

follow-up experiment, we showed that the models with the best test-time performance

also had the fewest dead intermediate activations on one input image. We suggest

that this experiment be repeated on a larger scale so that it carries greater statis-

tical weight. Further, we propose that a new experiment be run that compares the

similarities between the resulting network kernels to determine if there is significant

deviation between the kernels produced by the different multi-stream networks and

the kernels produced by the single-stream networks. As the number of architecture

hyper-parameters grows, the process of statistically determining the optimal config-

uration becomes more and more intractable. For this reason, it is important that we

determine why certain configurations had better performance than others and also

why this was not the same for both CT and MR images.

5.1.2 Building on the Dice Similarity Coefficient

In our experiments, we chose the Dice Similarity Coefficient (DSC or Dice score) as

the primary evaluation metric due to its prevalence in biomedical image segmentation

challenges and the literature. We used a modified version of the Dice score for our

loss functions to optimize our networks to our chosen evaluation metric as closely

as possible. The design of the Dice score is such that it encodes both precision and

recall, i.e. it rewards prediction of as much of a class as possible while penalizing

over-prediction. In our experiments, we encountered two specific weaknesses in the

DSC:

(1) The DSC is calculated based on the number of correct, incorrect, and true voxel

classifications, but in no way encodes the spatial distribution of these classifications.

In practice, the structures that we seek to segment in biomedical images tend to not

be arbitrarily distributed in images, rather they are discrete volumes. In Figure 17 in

Chapter 3, we showed that the mis-predicted voxels were largely distributed around

the surfaces of these volumes and were only a few voxels thick. This shows that it is

easy to locate the general region of interest and the difficulty in segmentation lies in

determining the precise structure boundary. Volumes and surfaces grow at different
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rates. As a simple example, a sphere’s volume grows with its radius (r) in the order

of r3 while its surface area grows only in the order of r2. As r increases, the ratio of

surface area to volume decreases. For segmentation evaluation this means the ratio

of erroneous predictions to correct predictions decreases. In this way, the DSC is

correlated with this ratio and encodes bias in favour of larger, simpler volumes. In

our experiments, we mitigated this effect in our loss score formulations by weighting

each class inversely proportionally to its total number of voxels in the training data

set. In doing so, we avoided the tendency for the networks to converge on exclusively

predicting the background class, however, final test performances still favoured classes

with the largest ground-truth volumes. Further work is needed to find modifications

or alternatives to the DSC that place more emphasis on the volume surface voxels, for

example, weighting voxel contributions to the loss function inversely proportionally

to that voxel’s distance from the ground-truth class surface.

(2) For cases where a given class is entirely absent from an image, the DSC is

overly binary. In this case, correctly predicting zero voxels of this class yields a Dice

score of 1.0 while a single mis-predicted voxel yields a near zero Dice score. We saw

this effect in the results from Chapter 4 where there was exactly one class that was

occasionally absent from the ground-truth segmentations. As a result, that class had

by far the worst overall performance at test time. Further work is needed to find

modifications or alternatives to the DSC that mitigate the impact of relatively small

errors in such cases. For example, such work could look at the impacts of different

sizes of ε. Given that, per our formulation, the loss resulting from the situation we

just described would be ε
1+ε

, larger values of ε would serve to reduce the spread of

the distributions and may mitigate the impact of these small errors.

Overall, deep learning has proven to be an incredible tool for image processing.

While it has high requirements to achieve maximal performance, this work has taken

steps towards more fully taking advantage of what limited resources are available.

With practically innumerable possible applications in medical imaging alone, we ex-

pect deep learning to be increasingly prominent going forward.
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