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Abstract

UAV-based Forest Fire Detection and Localization Using Visual and Thermal
Cameras

Mohsen Sadi

In this research, a UAV (unmanned aerial vehicle) system for detecting and locating forest

fires is developed. This system uses the information from two cameras: one visual camera and

one thermal camera for fire detection and navigation. Two images from these cameras are aligned

before they can be used. An alignment process is created and a homography matrix is computed

so that it is assured that the two images are aligned and every pixel is the same in both images.

By combining data extracted from these cameras, it can verify whether there is no fire or a real

fire is happened or a fake fire. A two-degree-of-freedom (2DOF) frame is implemented for testing

the tracking and locating capabilities of the UAV. Both cameras are mounted in this frame. This

system is based on the concept of image based thermo-visual servoing (IBTVS). That is, it extracts

thermal and visual information of a scene and then it computes the position of a desired object

(fire) and commands the servos to move to the desired position. This frame can simulate 2DOF

movement of a UAV and can be used to test the developed fire detection algorithms. Finally, a

co-simulation system is presented to verify the application of fire detection in a simulated UAV.

The experimental tests demonstrate that the developed algorithms can guide the UAV to fly on a

predefined path and look for any possible fire. As soon as a fire is detected, the system will alarm

and calculate the location of fire and fly the UAV over the fire for further investigations.
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Chapter 1

Introduction

1.1 Motivation

The importance of forests is inevitable. Their existence is necessary for our survival. Forests purify

the air we breathe, make the wood we need, purify the water we drink, moderate the climate, and

stabilize the soil etc. They cover almost one-third of our planet’s surface and are home to two-third

of its species. They can be a source of wealth for a country. Personally, I feel calm and relaxed

anytime I go to the woods.

Unfortunately, every year, millions of hectares of forests are destroyed by fires. These fires can

have natural causes or can be human made. The main natural causes of forest fires are lightning, dry

climate and volcanic activities. Human-caused fires are mainly because of small fires, discarded

cigarettes, power-line sparks etc. Each year, millions of dollars are spent to extinguish forest fires

and many lives are taken as a result of these fires [1–4]. These fires are constantly threatening

the infrastructures, ecological systems and public safety [5]. They have the potential of doubling

the temperature of lower atmosphere of Earth [6]. Unwanted fires can spread rapidly to places

that threaten the human life as well as the ecological system of the forests. Hence, it is crucial to

prevent these fires in the early stage [7].
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Figure 1.1: Annual area burned in the forests of Canada [8].

Traditionally, the approaches to detect forest fires are: human patrol, smoke and thermal de-

tectors, ground-based equipment, manned aircraft and satellite imagery [9], [10]. Each of these

methods has its own drawback. For example, smoke and thermal sensors require proximity to the

fire and cannot provide information on the size or location of the fire [11]. Ground-based equip-

ment may have limited surveillance ranges. Human patrol is not practical in large and remote

forests. Satellite images are not vivid enough to detect early stage fires and they lack the ability of

continuously monitoring forests because they have less flexibility in their path planning [9], [12].

Manned aircraft operations are expensive and require skilled pilots. Moreover, this can potentially

threaten the crews’ lives because of hazardous environments and operators fatigue [13]. Over the

last 20 years, At least 80 pilots have died during firefighting operations only in the USA [14].
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Unmanned Aerial Vehicles (UAV) are nowadays widely used in many different military and

civilian operations. They can carry different payloads with different usages. With a camera as

payload, one UAV can perform numerous different surveillance operations. For example, it can do

geographic mapping of inaccessible locations and terrain or it can be used for pipeline or power-

line monitoring. Nowadays they are even used in movie industries to create unique view of the

scene. Furthermore, if we use a thermal camera instead of a visual camera, even more data can

be revealed from the scene. With the new developments in UAV technology, cheaper commercial

UAVs are available for numerous research projects. UAVs can access high-risk zones, provide

over-the-hill view, perform night time mission with no risk of human lives [15]. They can provide

these benefits:

(1) Wide area coverage;

(2) Work at any time of the day and long duration;

(3) Cheap operation cost and easily recoverable;

(4) Minimum disturbance to wildlife;

(5) Various sensors can be mounted and therefore different missions can be done;

(6) Minimum need of operator’s involvement [16].

In recent years, a huge amount of researches have been carried out in the field of forest fire moni-

toring and detection by UAVs. In forest fire detection operations, UAVs can play many roles. The

initial usage of UAVs was to send them to forests and record a video and by watching the video

later, an operator can define if a fire has happened. In this method, finding the exact location of

a fire can be challenging. Moreover, further investigations require additional operations. Later,

UAVs are used to send real-time visual data to their bases so that an operator can check whether

a fire exists or not in real-time. A reliable communication method is necessary in this method. If
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the received video quality is not acceptable, the method can lead to false results. Moreover, with

intelligent devices onboard, UAVs can detect fires in early stages and signal to its operator the pos-

sibility of a fire. Also, they can be used to diagnose the detected fire in term of location and size

of the fire. This can be done with the help of UAV’s inertial measurement unit (IMU) and global

positioning system (GPS) sensors. They can predict the fire behavior and aid firefighters in making

decisions for rapid suppression and contamination. Various sensors and mathematical methods are

used to perform these missions. Gas sensor, charged coupled device (CCD) camera, infrared (IR)

and thermal cameras and smoke sensor are a few of the instruments used. Median filtering, color

space conversion, the Otsu threshold segmentation, neural networks, and many other mathematical

techniques are used to detect and localize forest fires. Fig. 1.2 shows two examples of UAVs used

in the process of forest fire detection.

1.2 Thesis objective

The aim of this study is to develop an onboard system that uses both visual and thermal cameras for

finding forest fire. This system can be installed on any UAV and it will do all of the computations

on its powerful onboard mini computer. A predefined path is loaded to the autopilot of UAV and

it will follow that path. Once a valid fire is detected, it will signal the base the existence of the fire

and move towards it until it reaches over the fire (in a safe altitude). Meanwhile it can locate the

exact position of the fire and the area exposed to it. The whole process should be done while the

fire is in its early stages. As a result, it opens the possibility to detect forest fires in the early stages

using a low-cost UAV with high precision and low error.

Thesis goals:

(1) Design a fire detection algorithm that uses thermal and visual cameras’ data to detect, track

and locate the true forest fire;
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(2) Develop a fire localization algorithm to guide the UAV to fly over the detected fire;

(3) Co-simulation testing of the system.

1.3 Thesis organization

This thesis is organized in six chapters.

• The first chapter mainly talks about the importance of the problem and motivation and ob-

jectives behind doing this research.

• The second chapter reviews the previous works done by others in this field. This includes

different sensors and techniques used by other researchers in this field.

• The third chapter introduces the system model and the hardware and software used in this

research including the model of 2DOF frame.

• The fourth chapter presents the developed fire detection and localization algorithms and

the techniques of fusing the data from visual and thermal cameras. It also discusses the

implementation of IBTVS system on the 2DOF frame.

• In the fifth chapter, experimental tests on two different test platforms are carried out to val-

idate the developed algorithms. The first one is the 2DOF frame in which the cameras are

mounted. This is used to test the fire detection and tracking capabilities of the system. Then

the second test platform is a co-simulation system which is used to test if the system can

look for a possible fire, and if a fire is found, the simulated UAV will locate the fire location

and move over it autonomously.

• Finally, in chapter six, the concluding remarks are presented and recommended future works

are described. In the end, the appendix including all of the codes written and used in this

research is presented.
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Figure 1.2: Usage of UAVs in forest fire monitoring
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Chapter 2

Literature Review

In order to develop a state-of-the-art fire detection and localization system, it is necessary to study

and understand the methodologies of the past and current systems that are conducted in this field.

The literature review aims at determining the drawbacks and advantages of the existing systems

and decide in which way they can be improved.

2.1 General methodology and architecture of UAV-based forest

fire detection systems

UAVs are classified as fixed-wing or rotary-wing [9]. The benefits of using fixed-wing UAVs over

rotary-wing ones is that they are cheaper, less complex and have longer endurance and can carry

larger and heavier payloads. Rotary-wing UAVs, on the other hand, can hover in a stationary spot

in the air and do not need a runway to take-off and land. Choosing the type of UAV depends on

the defined mission. There are experiments that have used rotary-wing or fixed-wing UAVs or a

combination of both. Generally, if the area of surveillance and the fire itself are small enough for

a rotary-wing UAV to fly over and check, a rotary-wing UAV is a better option. Otherwise, in a

large forest or for a vast fire, a fixed-wing UAV will be a better choice.

7



A UAV that performs the mission of forest fire detection consists of multiple parts which are

mainly in these categories [16]:

(1) The frame of UAV and its payload (which includes all of the sensors and devices used for

fire detection and also communication to the base);

(2) Image processing methods for fire detection and possibly tracking and localization;

(3) Autopilot system for control and navigation;

(4) Ground station for ground processes.

The payload of a UAV can be from wide range of sensors and electrical devices. They may

have a temperature, gas or smoke sensor, a GPS, an IMU, visual, infrared and/or thermal camera

and communication devices for transmitting data to their base. In forest fire detection operations,

the main focus is on using different cameras (rather than temperature or gas or smoke sensors).

Although these sensors are made specially for fire detection in small environments, they are not

suitable for fire detection in an open environment like a forest.

Fig. 2.1 is a typical UAV and its components used in forest fire detection. The mission of forest

fire monitoring can be defined in three steps: fire detection, fire diagnosis and fire prognosis [17].

In the fire detection step, a single UAV or a fleet of them [18], [19] look for a fire in the surveillance

region. Once the existence of a fire is confirmed, it will trigger an alarm to notify firefighting team.

In the case of multiple UAVs, other UAVs are sent to the location to verify the existence of fire.

Once a fire is verified, the stage of diagnosis starts. Now, the UAV will determine the fire’s location

and its boundaries. Finally, in prognosis it predicts the fire’s future evolution based on wind and

other conditions. Not all of the UAV-based systems have all these three stages. They can have one

or more of these.
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Figure 2.1: UAV-based forest fire detection components [17]

2.2 Benefits of using UAVs in forest fire detection missions

In the case of forest fire, a huge layer of smoke can cover the affected area. This may cause

problems for the firefighters in terms of impaired vision and hazardous conditions [20]. This

situation can be harmful for manned aircraft and firefighters to approach the fire. In this case, a

UAV can be launched quickly to the fire region and it can monitor the fire from the desired position.

Another benefit is it can look from above to give the firefighters better understanding of the extent

of fire. Furthermore, firefighters can send it to hazardous positions without any danger to their

own lives [21]. Moreover, the fact that using UAVs is the cheaper, safer and more flexible way of

forest fire detection operation [22], [23]. UAVs can also perform long-time missions that are over a
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person’s capabilities. However, there are some drawbacks for using UAVs. Unclear images due to

vibrations and turbulences, lack of the power of decision making and unstable communication in

deep valley regions. The benefits of using a UAV in forest fire monitoring operations lead to more

research in this field over the last two decades. In recent years, a great progress has been done in

this field to a point that nowadays they are used for even firefighting.

2.3 Use of visual, infrared and thermal cameras in forest fire

monitoring systems

In the recent years, researchers have put massive efforts on image processing and computer vision

methods for forest fire monitoring systems. The reason is that these methods have numerous merits

namely, ability to monitor wide range object, intuitive and real-time imagery and also ability to

record videos. A camera can be categorized into visual/CCD, IR or thermal based on the spectrum

of light that it captures. Respectively, fire monitoring systems are classified into visual, infrared or

thermal categories [11]. A system can either detect flame or smoke of a fire. To detect a fire (flame

or smoke), one needs to extract the features of it which are mainly color, motion, and geometry

[24]. Color and motion features of fire are used more than the geometry feature. Table 2.1 provides

a summary of current UAV-based forest fire detection systems [17].

2.3.1 Visual-based systems

A camera-based fire detection system can be either offline or online. Chen et al. [34] use both

chromatic and dynamic features of an offline video to detect fire. They make use of Red, Green

and Blue (RGB) channels as features of each frame to detect flame. They also extract the features

of smoke from the sequence of frames. Töreyin et al. [35] use color, motion information and fire

flicker analysis to detect flame. In order to detect flicker process, they used hidden Markov model.
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Table 2.1: UAV-based forest fire detection systems [17]

Test Types UAV Class Onboard Cameras
(Resolution

Engine
Power

Payload
Capacity References

Near Operational 1 fixed-wing 1 thermal (720 ×640) Fuel 340kg [25]
Operational 1 fixed-wing 4 mid-IR (720 ×640) Fuel >1088kg [26]

Near Operational
2 rotary-wing;
1 airship

1 visual(320 ×240);
1 IR (160 ×120)

Fuel;
Electric

3.5kg [27]

Operational
1 fixed-wing;
1 rotary-wing

1 visual; 1 IR Fuel - [28]

Near Operational 1 fixed-wing 1 visual; 1 IR Fuel <34kg [29]

Near Operational 2 fixed-wing
1 visual; 1 IR;
1 visual (1920 ×1080) Fuel

25kg;
250kg

[7]

Near Operational 2 fixed-wing
1 thermal (160 ×120);
1 NIR (752 ×582);
1 VNIR (128 ×128)

Electric <2.6kg [30]

Near Operational 1 fixed-wing 1 visual (720 ×480) Gas 0.68kg [21],[31]

Near Operational 1 rotary-wing
2 visual (4000 ×2656;
2048 ×1536);
1 thermal (320 ×240)

Fuel 907kg [20]

Near Operational 1 fixed-wing 1 visual Electric - [32]
Near Operational 1 fixed-wing 1 visual (656 ×492) Electric 5.5kg [33]

Note: (-) not mentioned; IR: Infrared; NIR: Near IR; VNIR: Visible-NIR.

Their method can be used online or offline. In [36], Töreyin et al. added temporal and spatial

wavelet analysis and they were able to reduce the false alarms considerably. Then they used the

same method to detect smoke in the early stage of fire in order to use it as an early signal of fire

[37]. In [24], foreground information is extracted from background with an adaptive subtraction

method in real-time. They also use a statistical color model for checking fire existence. They

continue their work and in [38] they develop a generic color model for flame pixel classification.

They use YCbCr color space instead of RGB. YCbCr color space make it possible to separate

the chrominance from the luminance. Therefore, the algorithm can easily distinguish between fire

pixels and fire-like ones. They achieve a high rate of fire detection. Phillips et al. [39] create a

lookup table for colors. They then trained the table with massive images. They use both color

and temporal variations to distinguish fire from non-fire objects. Yuan et al. [16] introduce a fire

detection method that uses Lab color model. It extracts fire-pixels in the channel A of the color
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model by using Otsu method. They improve the performance of their work in [40] and develop

an algorithm that uses both color and motion features. Color-based decision rules and optical flow

method are the main feature of their work.

Many studies that use visual camera look for flame features in the image. However, some

others look for smoke or a combination of both. Smoke feature can be used to the early and

precise detection of fire. Chen et al. in [41] combine two decision rules to extract smoke pixels.

Those rules are color-based static rule and diffusion-based dynamic rule. Their results show a

robust solution for smoke classification. In [42], they use a texture analysis to detect smoke in real-

time. This is done by using a back-propagation neural network. Experimental results validate that

the algorithm is able to differentiate smoke and non-smoke images with high rate of true alarms.

Yuan et al. [43] use the color feature for the candidate area. They also utilize optical flow method

to calculate the motion vector.

In recent years, with the flourishing of intelligent methods, many works are done to improve

the fire detection systems. The algorithms used in [24], [44], [45], [46] are fuzzy logic, artificial

neural networks (ANNs) and fuzzy neural networks. Although these methods show effectiveness

in experimental validations, most of them have not been used in real practical forest fire scenarios.

2.3.2 Infrared-based systems

Numerous works are done to develop more effective image processing techniques for fire detection.

In visual images, the motion and color features are widely used to detect fire. However, utilizing

CCD cameras in vision-based fire detection methods is not considered as a robust and reliable

method for every outdoor application. In sophisticated, non-structured environments of forests

there are many situations in which false fire alarms can be high. For example, smoke blocking fire

flames or in situations that there are objects so analogous to fire features such as reddish leaves

that sway in the wind or reflections of lights. IR cameras can capture images in weak or no light

12



Table 2.2: Fire detection methodologies using visual and infrared cameras [17]

Detection
method

Spectral
bands

OV IV OLV CF MF GF FD SD PP GL References

Training
method

Visual
Mid-IR

é Ë é Ë é é Ë é Ë Ë [47]

Training
method

Visual
Mid-IR

Ë é é Ë é é Ë é Ë Ë [1]

Image
matching

Visual
IR

Ë é é Ë é é Ë é Ë Ë [48],[49]

Data
fusion

Visual
IR

é Ë é Ë - - Ë Ë é é [50]

Neural
networks

IR é Ë é Ë Ë é Ë é é é [51]

Dynamic
data-driven

Multi-
spectral IR

é é Ë Ë é Ë Ë é Ë é [52]

Note: (OV) Outdoor validation; (IV) Indoor validation; (OLV) Offline validation; (CF) Color feature; (MF)
Motion feature; (GF) Geometry feature; (FD) Flame detection; (SD) Smoke detection; (GL) Geolocation;

(PP) Propagation prediction; (Ë) considered; (é) not considered; (-) not mentioned;

situations. Moreover, in some of IR cameras, smoke is transparent and it makes it possible to

capture fire flames hiding behind smokes. Also, they can be utilized in both day and night time.

Therefore, by using an IR camera it is possible to reduce false fire alarm rate and make use of

forest fire detection systems in various environments. Table 2.2 summarizes researches done using

IR cameras in their fire detection algorithms.

Infrared spectrum is divided into three regions; the near-, mid- and far-infrared, named for

their relation to the visible spectrum. So-called IR cameras use a short wavelength infrared light to

illuminate the environment and capture the reflected light to generate an image. Thermal cameras,

on the other hand, are in the mid- or far-infrared regions. They only realize temperature difference

and can create a temperature map and convert it into an image. One drawback of the IR cameras

is that they can capture light from any light source such as headlight. But thermal cameras are not

sensitive to those and they only capture temperature difference.

Infrared cameras do not rely on the environmental visual light and some of them (thermal) can

13



work in smoky areas. Therefore, using them would be beneficial in daytime and especially night-

time conditions. Refs. [53] and [27] utilize the threshold selection method introduced in [54] to

generate binary images from IR images. They report that the false alarms are reduced remarkably.

That is because of the significance of fire pixels in IR images. In [55], they fuse IR camera and

visual camera images to detect the fire by generating some decision fusion rules. Pastor et al. [56]

compute the propagation of forest fire in IR images by using linear transformations. Moreover, a

threshold-value-searching criterion is applied to locate flame front position. In [57], they utilize

some image processing tools and also a concept called dynamic data-driven application system

(DDDAS). A multi-spectral IR image processing algorithm is used. This algorithm can evaluate

active fire line, forest fire perimeter and fire propagation tendency. Huseynov et al. [58] propose a

multiple artificial neural networks for detecting fire flame in IR images. The result shows that the

training time can be reduced and fire detection is more successful. Yuan et al. [59] improve forest

fire detection by using both motion and brightness features of a fire. They extracted fire pixels from

background and non-fire hot objects by taking advantage of optical flow analysis and histogram-

based segmentation. Their experiments in IR video sequences show improved performance in the

fire detection.

One issue associated with small IR cameras and their images is that they still have low sen-

sitivity [27]. In order to overcome this issue, the exposure period should be increased to have

higher-quality images. This requires a stationary base because vibration can have destructive ef-

fect on images with high exposure period. As a result, high frequency of vibrations in many UAVs

can cause blurring in the images and this still remains a challenge in using IR cameras in forest fire

detection.
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2.3.3 Fusion of visual and IR images

One way of improving fire detection algorithms in terms of accuracy, robustness and reliability,

is by fusing visual and IR images together. These improvements can be done by the use of fuzzy

logic, probabilistic, statistical and intelligent methods (As illustrated in Table 2.2).

Arrue et al. [49] develop an algorithm in which IR image processing, fuzzy logic and artificial

neural networks are used to improve fire detection operations. They use matching the information

of visual and infrared images to confirm forest fires. In [47], authors integrate the information from

both visual and infrared cameras for fire front parameter calculation by taking advantage of image

processing techniques in both visual and IR images. They did not conduct any experiment out of

laboratory. They continue in [1] by introducing a forest fire perception system. By using computer

vision techniques, visual and IR images are fused to extract a 3D fire perception. Then the fire

propagation can be visualized by remote computer systems.

2.4 Summary and contribution of this thesis work

Although many works have been done in the field of forest fire detection, not many projects pay at-

tention to the fusion of thermal and visual camera information let alone using the fused information

for guiding the UAV to fly over the fire. This work aims to solve the problem of image alignment

which is necessary before fusion of cameras’ information. Furthermore, an image-based thermo-

visual servoing system is developed to track the location of fire and control the UAV, respectively.

This can mimic the movement of a UAV over a moving fire.
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Chapter 3

System Components and Model

The purpose of this research is to develop an on-board real-time forest fire monitoring system that

can detect any possible fire and locate it. For doing so, we have used a combination of a visual

camera along with a thermal camera. Both cameras are connected to a mini processor (Raspberry

Pi 4) and all of the computations are done within the on-board Raspberry Pi. Therefore, there is

no need of using a high speed wireless data transfer and a powerful base computer. The system

is capable of combining two images (RGB and thermal) and accurately defining whether a fire

has been detected or not. A two-degree-of-freedom frame is made in order to simulate the fire

detection and tracking capabilities of the system. Due to the limitations imposed by the appearance

of COVID-19 pandemic, testing on a UAV was replaced by a co-simulation. This is beneficial

because it can reduce the costs of real tests and possible failures. Many tests and scenarios are

done and the systems is able to find and locate the fire.

First, the hardware used in this system is introduced in Section 3.1 and then the software part is

discussed in Section 3.2. Finally, the model of the two-degree-of-freedom is discussed in Section

3.3.
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3.1 System hardware

Selecting a proper set of hardware is an important part of a research. At first, for the core processor,

an Arduino Due was chosen. Its performance was not good enough for image processing of both

cameras. Therefore, after testing different devices a set of hardware is selected based on the budget

and functionality.

3.1.1 Raspberry Pi

Raspberry Pi is a low-cost computer with size of a credit card. It can plug into a monitor or a TV

and it can use mouse and keyboard. There are over ten different Raspberry Pi models. Appendix A

compares four common Raspberry Pi models. Raspberry Pi 4 has a quad core Cortex-A72 (ARM

v8) 64-bit processor with 4GB of DDR4 RAM. It also has wireless and Bluetooth communications.

Furthermore, various sensors can be connected to it since it has 40 general-purpose input/output

(GPIO) pins. It can be connected to most of the off-the-shelf autopilot boards and command them

based on the data it collects from its sensors. In our research, all of the sensors and actuators are

connected to the Raspberry Pi. Real-time fire searching is done in the Raspberry Pi by processing

the images of two cameras (visual and thermal). This requires innumerable calculations. With

the high-power processor and high-speed 4GB RAM of Raspberry Pi 4, it is capable of doing this

task in real-time. Previously, a Raspberry Pi zero was used and it was not able to conduct this

task in real-time. Because it has low power usage and it is light weight, it can easily be integrated

in an unmanned aerial vehicle in forest fire monitoring operations. Finally, with 64 GB memory

card on-board, it can save numerous images as well as videos of the fire scene for the further

considerations. Fig. 3.1 shows an image of Raspberry Pi 4.
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Figure 3.1: Raspberry Pi 4 mini processor

3.1.2 Visual camera

The next primary component is visual camera. It is used for detecting fire in the visual spectrum.

It can use different fire features to detect fire. For example, a red threshold can be applied to the

image to remove unwanted pixels and areas or the dynamics of the flame is used for the goal. Also,

with the characteristics of smoke, a fire can be detected as well. The visual camera should be light

weight, yet it should have high resolution and compatible with the Raspberry Pi. The 5 megapixels

camera (OV5647 sensor) has 1080p video resolution at 30 FPS. Its field of view (FOV) is 54◦×41◦.

Since its field of view is different than that of the thermal sensor, it is needed to align the images

from two cameras. The alignment process will be discussed in the next chapter. Raspberry Pi will

capture images from the video of this camera anytime it needs one. Fig. 3.2 shows an image of the

visual camera used in this research.
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Figure 3.2: 5MP 1080p visual camera

3.1.3 Thermal camera

A thermal camera (sensor) is a device that creates an image from infrared radiation. It is similar

to a visual camera that creates an image by visible light. A thermal image consists of many pixels

each of which represents temperature of that point. A spectrum of colors can be assigned to the

different temperatures. Therefore, a visual image is created from the thermal image. Fig. 3.3

shows a thermal image with the respected color spectrum and temperature. The camera is widely

used in many applications such as

• High precision non-contact temperature measurements;

• Movement;

• Person localization;

• Temperature control of moving objects;

• IR thermometers.
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Figure 3.3: A thermal image and its color-temperature spectrum [60]

Choosing the proper thermal camera is crucial because thermal camera is a key point in this

system. In many cases like fires covered by smokes or fires under ashes, visual cameras cannot

easily detect the existence of a fire and it is the duty of thermal camera to do so. In [61], Wardihani

et al have used a 2 by 2-pixel temperature sensor with a FOV of five degrees. Usage of this sensor

has two limitations:

1. It cannot calculate the area covered by the fire since it has limited pixels data;

2. It cannot search a wide area because of its limited field of view.

We have used a MLX90640 thermal sensor (shown in Fig. 3.4) which has a resolution of 32

by 24 pixels and a FOV of 55◦×35◦. This is beneficial as it has a FOV close to the visual camera’s

FOV. In this way, it is possible to align both cameras for further usages. This camera can capture

images up to 64 FPS and can detect a wide range of temperatures with high precision (-40 to 300◦C

with approximately 1◦C accuracy [62]). The extracted raw data from the thermal camera needs a

computationally expensive process in order to become available as an image. Fig. 3.5 shows an

image of a fire taken by the visual camera and Fig. 3.6 shows the same view from the thermal

camera. This image is made after the heavy computations are done.
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The communication between Raspberry Pi and the thermal sensor is with I2C. I2C is a multi-

master, multi-slave serial communication bus. It is widely used in lower-speed ICs and microcon-

trollers in short-distance. In I2C communication two wires are used to connect up to 128 devices.

One wire is the generated clock signal by master (SCL) and the other wire is for data transfer

(SDA). The frequency of communication can be up to 1MHz. The MLX90640 thermal sensor can

have a refresh rate from 0.5Hz to 64Hz. The noises in the image is proportional to the refresh rate.

Hence, choosing the proper refresh rate is necessary.

Figure 3.4: MLX90640, 32*24 pixels thermal camera
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Figure 3.5: Visual image of a fire

Figure 3.6: Thermal image of a fire
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3.2 System software

3.2.1 Operating system

An operating system is software that manages all of the hardware resources associated with com-

puter hardware. To put it simple, the operating system manages the communication between your

software and your hardware. Without the operating system (OS), the software would not function.

Like other computers, in order to run, Raspberry Pi needs to have an operating system. It runs in

Linux. Just like Windows, iOS, and Mac OS, Linux is an operating system. In fact, one of the

most popular platforms on the planet, Android, is powered by the Linux operating system. Linux

is open-source, free, secure, lightweight, stable and suitable for programmers. Many different dis-

tributions are released for Linux. In this research, Rasbian is installed on the Raspberry Pi because

it has the most compatibility with the Raspberry Pi’s hardware.

3.2.2 Programming language

In order to program any microprocessor, a programming language should be selected. At first, for

programming Arduino to connect and capture data from the thermal sensor, C++ language was

chosen. Since the Arduino was not capable of heavy image processing of both cameras, a more

powerful processor was needed. After considering multiple options, Raspberry Pi was chosen

because of its high processing power and low cost. Later, when the Arduino was replaced by

Raspberry Pi, a change of language was almost necessary. Despite the fact that C++ is a low-

level language with better runtime performance, it is much harder to use available computer vision

libraries in it. Python, on the other hand, has numerous libraries and functions that can be used

easily. In this manner, more time is put over the methods of implementation rather than dealing

with the hardships of the programming language. As a result, the final code is written totally in

Python. Also, the whole driver of the thermal sensor is converted from C++ to Python.
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3.3 Two-degree-of-freedom (2DOF) frame - components and

model

3.3.1 The components of 2DOF frame

A two-degree-of-freedom frame is used in this research to test the tracking ability of the system.

This frame is made from stick wood. Four servo motors and a servo motor driver are used to rotate

the whole system including Raspberry Pi and cameras in two directions. The servo driver is being

commanded by an Arduino nano. The communication between the servo driver and Arduino is

through I2C. Two servos are used to rotate the board in one axis and two other servos are used for

the other axis. Arduino receives the relative fire angles in two directions from the Raspberry Pi

and rotates towards the fire. This frame is analogous to a UAV. It means, if a UAV (in a constant

altitude) can move in two directions (pitch and yaw), this can rotate in two directions. In a UAV, if

the system finds a fire, its location is expressed in terms of distance, but in this frame the location

is expressed in terms of degrees.

In order to communicate properly with the driver, its related library should be used. The driver

is called “Adafruit PCA9685 PWM Servo Driver” and the proper library can be found at [63]. This

driver can run up to sixteen servo motors simultaneously. A simple Arduino code for running four

servos can be written as below:

1 #include <Adafruit_PWMServoDriver.h>

2 Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

3 void setup() {

4 pwm.begin();

5 pwm.setPWMFreq(50);}

6 void loop() {

7 pwm.writeMicroseconds(0, 1000); // Servo 0 and 4 are for roll

8 pwm.writeMicroseconds(4, 1000);
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9 pwm.writeMicroseconds(8, 1700); // Servo 8 and 12 are for yaw

10 pwm.writeMicroseconds(12, 1700);}

Fig. 3.7 shows the diagram of Arduino and the driver, and the wiring and communication

between them. The complete Arduino program for reading from Raspberry Pi and running the

servos of the frame is available in Appendix B.3.

Figure 3.7: Communication of Arduino and Adafruit PCA9685 PWM servo driver

3.3.2 The model of 2DOF frame

Every mechanical and electrical system can be presented with its model. This frame is used in

Chapter 4 for the purpose of testing the ability of fire detection and tracking. Therefore, it is

required to understand the model of this frame before we can design a control system for it. Fig.

3.9 illustrates the model of the 2DOF frame with all of its components. The developed control

system is demonstrated in Chapter 4.
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(a) The 2DOF frame without Raspberry Pi and cameras (b) The 2DOF frame with Raspberry Pi and cameras

Figure 3.8: The two-degree-of-freedom-frame

Note: αxd : desired angle around x-axis, αyd : desired angle around y-axis, αx: angle around x-axis, αy : angle around y-axis,

ωx: rate of rotation around x-axis, ωy : rate of rotation around y-axis.

Figure 3.9: The model of 2DOF frame

3.3.3 Deriving Jacobian matrix for 2DOF frame

Any object in an image has a position and a velocity. These parameters can be related to the

motion of camera. To find this relation, the Jacobian matrix has to be formed. By calculating the

Jacobian matrix, the control rule can be built and the system can follow the desired posture. Fig.
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3.10 illustrates the camera coordinate system and an point and its projection in the image. A point

Figure 3.10: Camera projection model

P = [Xw, Yw, Zw]T is defined in the camera coordinate system. Its projected point in the image

frame is f = [u, v]T where u and v denote pixel indices.

The position of camera is denoted as following:

r = [xcam ycam zcam αx αy αz]
T (3.1)

where in 2DOF frame, xcam = ycam = zcam = αz = 0, because the frame and the installed camera

cannot move in any direction and can only rotate around x and y axes. αx and αx, are the inputs of

the system. In other words, the system can rotate to any commanded (αx, αy) position.

By differentiating Eq. (3.1), the velocity of camera is:

ṙ = [vx vy vz ωx ωy ωz]
T (3.2)

where vx = vy = vz = ωz = 0, because it can only rotate around x and y axes. The velocity of the
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projected point is defined as:

ḟ =

u̇
v̇

 (3.3)

The velocity of point P is:


Ẋw = Zwωy − Ywωz + vx = Zwωy (ωz = vx = 0)

Ẏw = Xwωz − Zwωx + vy = Zwωx (ωz = vy = 0)

Żw = Ywωx −Xwωy + vz = Ywωx −Xwωy (vz = 0)

(3.4)

As can be seen in Fig. 3.10, the relationship between P and f is given by:

u
v

 =
λ

Zw

Xw

Yw

 (3.5)

where λ is the focal length of camera (λ = 3.6mm). By taking derivative from both sides of Eq.

(3.5), we have: 
u̇ = λZwẊw−XwŻw

Z2
w

v̇ = λZw
˙Yw−YwŻw

Z2
w

(3.6)

Since u and v are image indices that start from top-left side of image, they need to change to image

coordinates. In image coordinates, the origin is the center point. Therefore, we have:

x
y

 =

−1 0 x0

0 −1 y0



u

v

1

 (3.7)

where (x, y)T is the coordinates of the point f in the image coordinates. (x0, y0)T is the pixel-index
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of center point. By putting Eq. (3.5) into Eq. (3.4) the velocity components of P are given by:


Ẋw = Zwωy

Ẏw = Zwωy

Żw = Zw

λ
(vωx − uωy)

(3.8)

Combining Eqs. (3.6), (3.7) and (3.8) will result as following:

ẋ
ẏ

 =

 xy
λ

−λ2+x2

λ

λ2+y2

λ
−xy

λ


ωx
ωy

 (3.9)

Equation (3.9) shows a relation between the velocity of a point in image coordinates and the rota-

tions of camera. This relation is called the Jacobian matrix and is denoted by Jimage:

ḟ = Jimageṙ (3.10)

The inverse of Jacobian matrix is calculated as:

J−1
image =

 λxy
D

λ(λ2+x2)
D

λ(λ2+x2)
D

−λxy
D

 (3.11)

where

D = λ4 + 2λ2x2 + x4 + x2y2

By combining Eqs. (3.11) and (3.9), we find ωx and ωy in terms of speed of the point in image:

ωx
ωy

 = J−1
image

ẋ
ẏ

 (3.12)
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Equation (3.12) is used in Chapter 4 to form the visual servoing feedback controller.

3.4 Summary

This chapter discussed the hardware and software that are used in this research. Raspberry Pi,

visual camera, and thermal camera are the main hardware of this work. The operating system

installed on Raspberry Pi is Linux and the main programs are written in Python. Then, the model

of the 2DOF frame is depicted and the Jacobian matrix is derived for the purpose of forming the

control law in the next chapter.
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Chapter 4

Fire Detection and Localization Algorithms

In this chapter, all of the methods on fire detection and localization are presented. We take a deep

look at different parts of the program that will run the whole system of fire detection. But, before

discussing about methods used in this research, it is beneficial to review some of the preliminary

knowledge that are used in this chapter.

4.1 Preliminary knowledge

In vision-based fire detection systems, the main purpose is to extract the possible fire features from

the image. This process is called image segmentation technique. This is done by differentiating

fire pixels from background pixels. There are many techniques based on the feature that needs to

be extracted. e.g. flame, smoke etc.

Flame is the main feature of fire. In an image of flame, its color is the easiest and most popular

feature that can be extracted. Therefore, it is mainly used in developing fire detection techniques

[11]. A color can be expressed in different ways with different properties. These different expres-

sions are called color space. A detection technique may utilize one of these color spaces. Thus,

it is worth looking at different color spaces and figure out the benefits of each of them. There are
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four predominant models used in digital image processing field:

(1) RGB: red, green and blue color space;

(2) HSI: hue, saturation and intensity color space;

(3) HSV: hue, saturation and value color space;

(4) Lab color space.

4.1.1 RGB color space

The RGB color space has three components: Red, Green, Blue. These primary colors can be mixed

in various amounts to reform all of the possible colors. This color space is mainly used to display

images in electronic displays such as monitors, televisions and cell phones.

Figure 4.1: RGB color space [64]
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As can be seen in Fig. 4.1, RGB color space uses a Cartesian coordinate system to express

color. Each axis is representing one on the red, green and blue colors. The values R, G and B can

vary within the range of [ 0,1] . A white color can be expressed with a location in the Cartesian

system. Location of each color and the origin can be two corners of an imaginary cube. Therefore,

three primary colors are this cube’s three corners on the axes. Red [1,0,0], Green [0,1,0], Blue

[0,0,1], and other three corners are secondary primary colors (or primary colors of pigment which

are Yellow [1,1,0], Magenta [1,0,1] and Cyan [0,1,1]). The origin corresponds to Black [0,0,0] and

White is the farthest corner from the origin [1,1,1]. A line that connects black to white constitutes

the gray-scale spectrum in which the color is represented as [c,c,c] where c ∈[ 0,1] .

Figure 4.2: A RGB image and its components

4.1.2 HSI color space

The HSI color space is similar to human perception of color. In a human’s eyes, a color is described

with three elements: hue, saturation and brightness. Same thing virtually happens in the HSI color

space; this model considers each color with three components: hue, saturation and intensity. The

importance of this color space is that it works exceptionally well in image processing algorithms

as the color definitions are natural, intuitive and ideal to human eyes. Fig. 4.3 illustrates this color

space.

The hue element (H) corresponds to an angle on a circle which represents the chrominance of

a color (H ∈ [ 0◦,360◦] ). Red, green and blue as the primary numbers have 120◦ distance and

the primary colors of pigment (cyan, magenta and yellow) are exactly in the middle of primary
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colors. That is, 0◦, 120◦, 240◦ represent red, green and blue, respectively. Moreover, 60◦, 180◦ and

300◦ represent cyan, magenta and yellow. The next component is saturation. Saturation indicates

the amount of white mixed in the color and it can vary within the range of [ 0, 1] . Intensity is

the last component in this color space and similar to saturation with the range of [ 0, 1] where 0

means black and 1 means white. As the Fig. 4.3 shows, hue is more meaningful when saturation

approaches 1 and less meaningful when saturation approaches 0 or when intensity approaches 0 or

1. Intensity also limits the saturation values.

Any digital image taken from a digital camera or a scanner is originally represented in RGB

color space. Therefore, in order to represent the image in any other color space, a conversion

formula is needed. The following equations are used to derive HSI color space from RGB [64]:

H =

{
Θ, if(B ≤ G)

360−Θ, if(B > G)

where Θ = cos−1

(
1
2
((R−G) + (R−B))

[(R−G)2 + (R−B)(G−B)]
1
2

)

I =
R +G+B

3

S = 1− 3

R +G+B
min(R,G,B)

(4.1)

where R, G and B in this formula are the values of red, green and blue in the RGB color space.

4.1.3 HSV color space

HSV color space is a cylindrical coordinate system. Its components are hue, saturation and value.

This color space converts the RGB Cartesian color space to a cylindrical color space and as a result,

the color representation becomes more intuitive and perceptional for human eyes. Therefore, color

space can be used in image processing algorithms.

As can be seen in Fig. 4.5, hue is the angle of arc around the vertical central axis. Saturation
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Figure 4.3: HSI color space [64]

can be defined as the horizontal distance from this axis and finally, value is the vertical distance

from the base. Red, green and blue colors’ locations are similar to HSI color system. That is,

0◦, 120◦, 240◦ represent red, green and blue, respectively. The vertical central axis makes the gray

spectrum from black to white (bottom = 0, top = 1).

As mentioned in Section 4.1.2, digital images are generally represented in RGB color space

model. Hence, it is needed to formulate HSV-RGB conversion as bellow:

Figure 4.4: HSV components of an image
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V = max(R,G,B)

S =


0, if(max(R,G,B) = 0)

max(R,G,B)−min(R,G,B)
max(R,G,B)

, otherwise

H =



undefined, if(S = 0)

60× G−B
max(R,G,B)−min(R,G,B)

, if(max(R,G,B) = R)&(G ≥ B)

60× G−B
max(R,G,B)−min(R,G,B)

+ 360, if(max(R,G,B) = R)&(G < B)

60× B−R
max(R,G,B)−min(R,G,B)

+ 120, if(max(R,G,B) = G)

60× R−G
max(R,G,B)−min(R,G,B)

+ 240, if(max(R,G,B) = B)

(4.2)

Figure 4.5: HSV color space

4.1.4 Lab color space

The Lab color space (or L*a*b*) is created to mimic the colors in a way that human eyes do.

Therefore, its way of expression and its usages outweigh all of other color spaces. This color space
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does not depend on the device that generates it. A a result, the Lab color space can express colors

accurately regardless of the way the images are generated or displayed. As can be seen in Fig. 4.6,

the Lab color space is composed of three components: luminance (L), and two chrominance (a and

b). Luminance represents the brightness of color, which can range from 0 to 100. Chrominance a

indicates the color changes from red to green ranging from -128 to +127. Chrominance b denotes

that the color varies from yellow to blue ranging from -128 to +127. Similar to other color spaces,

there is a conversion formula that can be used to calculate Lab variables:

L = 116× (0.299R + 0.587G+ 0.114B)
1
3 − 16

a = 500× [1.006× (0.607R + 0.174G+ 0.201B)
1
3 − (0.299R + 0.587G+ 0.114B)

1
3 ]

b = 200× [(0.299R + 0.587G+ 0.114B)
1
3 − 0.846× (0.066G+ 1.117B)

1
3 ]

(4.3)

Figure 4.6: Lab color space

Figure 4.7: Lab components of an image
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4.2 Architecture of the thermal sensor and its usage

Based on its datasheet, the thermal sensor needs to run through multiple steps. The first step

is properly wiring the sensor to Raspberry Pi. SDA and SCL pins should be connected to the

respective pins on the Raspberry Pi. Power supply pins also need to be connected in order to

power up the sensor. Fig. 4.8 shows the diagram for connecting the thermal sensor to Raspberry

Pi. After hardware connection, it is time to consider the software communication. Using I2C, one

can either read from or write to the sensor. As indicated in the sensor’s datasheet [62], in order to

read and write, it is needed to generate signals like Fig. 4.9 and Fig. 4.10. It is mainly needed to

read from the sensor, but there are sometimes that one should write to the sensor. For example, to

configure the sensor’s parameters such as refresh rate and resolution of the sensor.

As can be seen in Fig. 4.9 and Fig. 4.10, in order to communicate with the sensor, after calling

the device by its 7-bit address (0X33 by default), it is needed to write a 2-Byte internal address.

This is required in both reading and writing processes. Every single data stored in the sensor has

its unique 2-Byte address and can be accessed only by using its address. Therefore, it is crucial to

know how to properly address the data. Fig. 4.11 shows the address map for MLX90640 sensor.

ROM is used for internal calculations. RAM is where the data of each pixel is saved. EEPROM

holds the constant parameters that are needed for calculating and creating the temperature image.

It also contains the individual pixel calibration information. Registers are used for configuring the

device. Only some of the registers are writable and other memory locations are read-only.

4.2.1 Writing to the sensor

Based on Fig. 4.10, writing to the sensor is easily done in three steps:

(1) Writing the device address;

(2) Writing the 2-Byte address of the location in which the data should be put;
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Figure 4.8: Wiring between the thermal sensor and Raspberry Pi

Figure 4.9: I2C read command format

Figure 4.10: I2C write command format
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Figure 4.11: MLX90640 memory map [62]

(3) Writing the 2-Byte data.

There are a few internal registers that are customer accessible through which the device perfor-

mance can be customized. Two of them need to be set properly. They are status register (0x8000)

and control register (0x800D)

4.2.1.1 Control register

The control register is used for multiple purposes. First, it is needed to get familiar with the way

the sensor captures data. It has a 32×24 pixel IR array sensor and each time only half of the data

can be read. Therefore, there are two methods of reading: one is called TV mode and in each

reading, it reads either the odd or the even rows (Fig. 4.12). The other method is called the chess

reading and each time it reads pixels that are in a hypothetical chess board and have same color

(Fig. 4.13). In this research, chess mode is chosen.

40



Figure 4.12: TV mode reading pattern [62]

Figure 4.13: Chess reading pattern [62]

In a 2-Byte data, bits can be names as B15 to B0. B15 is the bit with the highest value and B0 is

the bit with the lowest value. In the control register, B15 to B13 are reserved. B12 is used to choose

the reading pattern. 1 is for TV mode and 0 is for chess mode. B11 and B10 are used for setting

the resolution of ADC reading which can vary from 16-bit to 19-bit. B9 to B7 are for refresh rate

which is an important factor. The refresh rate can be from 0.5Hz to 64Hz. As it increases, noises in

the measurement will rise. Therefore, choosing the proper refresh rate is necessary. The effect of

refresh rate on noise level is discussed in Section 4.2.3. B6 to B4 shows which subpage is selected.

B3 determines if it will toggle between subpages or not. B2 in used to decide whether to move

data automatically to RAM or by setting a register to 1. B1 is reserved and finally B0 is used to

see if subpage mode is activated or not.
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Figure 4.14: Control register bit meaning [62]

4.2.1.2 Status register

The status register is used for three purposes: B15 to B5 registers are reserved. B4 is used to enable

or disable overwrite process. B3 is for checking whether a new data is available in RAM or not. If

it is equal to 1 it means a new data is available and then it should be reset to zero for further usage.

B2 to B1 are to check which subpage is measured.

4.2.2 Reading from the sensor

Unlike writing to the sensor, reading is not as easy as writing. In one reading, either one 2-Byte

data or a consecutive set of data can be read from the sensor. The process consists of more steps:
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Figure 4.15: Status register bit meaning [62]

(1) Writing the device address;

(2) Writing the address of the first data to be read;

(3) Writing the device address (again) - here is the starting of the reading process;

(4) Reading 2-Byte data of the first data;

(5) (Optional) if more data needs to be read, a not acknowledge bit (NoACK) is sent to the SDA

line by holding it to HIGH;

(6) Reading the next data;

(7) Repeat from Step (5) until the whole data is read.

4.2.3 Effect of refresh rate on noise level

A test is conducted on the effect of refresh rate on noise level. Generally, as the refresh rate

increases, so does the noise level. Therefore, it is important to choose the proper refresh rate based

on the allowed noise level. Fig. 4.16 demonstrates 50 consecutive measurements of a point with
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different refresh rates. Table 4.1 shows the statistical data of this test and it shows that the range

and standard deviation increases as the frequency of device rises, but the average measurement will

stay unchanged. Therefore, an effective measurement strategy can be averaging between multiple

measurements.

Figure 4.16: Effect of refresh rate on noise in temperature measurement

4.2.4 Temperature calculation

After reading data from a subpage, multiple steps should be done to create the final thermal image.

First, the resolution of the sensor should be restored. Then the supply voltage value is calculated.

This value is common for all pixels. Next, the ambient temperature is calculated. After this, a

series of calculations are done for every pixel in order to find out its temperature data. Fig. 4.17

shows all of the steps to generate final thermal image.
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Table 4.1: Effect of refresh rate on the noise level

Refresh rate Minimum Average Maximum Range Standard deviation

0.5 Hz 24.93 25.15 25.41 0.48 0.10
1 Hz 24.76 25.13 25.49 0.73 0.16
2 Hz 24.73 25.20 25.64 0.91 0.17
4 Hz 24.43 25.20 25.84 1.40 0.30
8 Hz 24.36 25.07 25.80 1.43 0.39
16 Hz 24.34 25.07 26.48 2.14 0.51
32 Hz 23.22 25.16 26.52 3.30 0.80
64 Hz 22.34 25.19 28.32 5.98 1.26

Figure 4.17: Temperature calculation flow

The output of these calculations is an array of temperatures. Table 4.2 shows an example of

the temperature image. This image is then converted to either a grayscale image or a spectrum-

temperature image. In this case, any color represents a temperature and low temperature pixels

tend to be bluer while high temperature ones are more red.
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Table 4.2: Temperature data from thermal camera (half-sized)

24 22 22 23 23 23 22 22 23 22 23 22 22 23 22 22
23 22 22 22 22 22 22 22 22 22 23 23 23 23 24 25
23 22 22 22 22 22 23 23 25 31 32 26 25 28 30 30
23 22 22 22 22 22 22 23 38 59 60 39 30 30 30 29
22 22 21 22 22 22 22 23 40 65 65 46 31 29 28 26
22 22 22 22 22 22 22 22 35 59 59 42 28 26 24 23
21 22 22 22 22 22 23 23 25 35 34 26 23 23 22 23
22 22 21 21 22 22 23 23 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 22
22 21 21 22 22 22 22 23 23 22 22 23 23 23 23 23
21 22 22 22 22 22 22 22 22 22 22 23 23 23 22 22
21 22 22 22 22 22 23 22 22 22 22 23 22 22 22 22

Figure 4.18: Thermal picture of Table 4.2

As can be seen in the Fig. 4.27 and Table 4.2, this is an image of a glass of hot water. At its

hottest point, it has a temperature of 65°C and the temperature of environment is around 22°C.
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4.3 Fire detection algorithms

In this section, fire detection algorithms used in this research are introduced. First, only visual

camera is used to detect the fire. Then, the methods for using only thermal camera are presented.

Finally, the fire detection methods by combining both cameras are described. Using the images

from both cameras improves the algorithm by reducing the false fire signals. For example, a picture

of a fire can be falsely detected as a fire by the visual camera. On the other hand, a hot surface can

be detected as fire by the thermal camera. And if properly tuned, the multiple cameras system, can

improve the fire detection performance by validating the fire signal in two different ways.

4.3.1 Algorithm used in the visual camera

There are numerous different algorithms used with a visual camera to detect forest fires. Algo-

rithms that use color threshold, or flame characteristics, or smoke features. From another point of

view, these algorithms can be categorized into color-based and motion-based algorithms. A color-

based fire detection algorithm uses the color features of flame, smoke or other fire characteristics to

decide whether a fire is detected or not. On the other hand, motion-based fire detection algorithms

rely on the motion feature of flame or smoke in their decision-making process. Even recently with

the help of more intelligent methods such as machine learning and neural networks, more effective

algorithms are implemented. These methods need high power computers and a long process of

learning. Therefore, they need either a long time for setup and pre-operation activities or they need

more time to process the images to deliver a result. This means that they cannot work in real-time.

Using two cameras will make it possible to combine two simple detection methods to get a fairly

effective fire detection system. Therefore, there is no need of learning and pre-operation activities

and also it can work in real-time. Fig. 4.19 illustrates the flowchart of color-based fire detection

algorithm.

As mentioned above, one of the problems of using visual camera is that it cannot distinguish
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Figure 4.19: Flowchart of color-based fire detection algorithm

between a real fire and an image of a fire. Despite this fact, in many cases, a simple visual camera

can be a significant help to firefighters. As discussed in Section 4.1, some of the color spaces that

can be used in fire detection algorithms are RGB, HSV, HSI and Lab color spaces. In this section,

some of the possible fire detection algorithms are presented. As the HSV color space has many

similarities with the HSI color space, only one of them is investigated in this section.

Figure 4.20: Three components of color spaces for two forest fire images [16]

4.3.1.1 Fire detection using RGB color space

An image consists of three color components: red, green and blue, known as RGB. Any color in

an image can be presented by its base colors. R, G and B range from 0 to 255. For example, a pixel

with RGB factors of (0,0,0) represents black and (255,255,255) is white. A simple fire detection

algorithm that can be implemented easily by using a threshold on the red part of an image. For

example, if R>200 then fire happens. An example of this is shown in Fig. 4.21. As can be seen

48



in these figures, this method can generate false fire alarms; because a white pixel has R>200. To

improve this method, another condition for R>G>B can be added. This condition is always true

for a fire flame because its blue is at the lowest while its red is at its maximum. Using these two

conditions can fairly detect most of the visible fires. Fig. 4.22 shows that by having these two

conditions, a fire flame can be detected. Although, these methods are not completely reliable, but

if combined with a thermal sensor, they can produce acceptable results.

(a) Sample image 1 (b) Sample image 1 (R>200)

(c) Sample image 2 (d) Sample image 2 (R>200)

Figure 4.21: Simple thresholding
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(a) Sample image 3 (b) Sample image 3 (R>200 and R>G>B)

(c) Sample image 2 (d) Sample image 2 (R>200 and R>G>B)

Figure 4.22: Effect of adding R>G>B rule

4.3.1.2 Fire detection using HSV color space

A fire pixel tends to have the color of orange to red. In the HSV color space, unlike the RGB color

space, since the lighting is separated from the color, and it is easier to filter pixels based on their

color. This can be represented as below:
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Condition 1: 0◦ ≤ H ≤ 60◦;

Condition 2: Brighter images: 150 ≤ S ≤ 255,

Darker images: 0 ≤ S ≤ 255;

Condition 3: Brighter images: 120 ≤ V ≤ 255,

Darker images: 170 ≤ V ≤ 255;

(4.4)

Fig. 4.23 shows two images with bright and dark backgrounds. With some tuning, fire flame

can be detected in this color space, but still it is not considered as a perfect method to do so. The

reason is that it relies on tuning for each light and also it might produce false alarms.

(a) A darker image (b) A darker image with conditions in Eq. (4.4)

(c) A brighter image (d) A brighter image with conditions in Eq. (4.4)

Figure 4.23: HSV thresholding
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4.3.1.3 Fire detection using Lab color space

Lab color space provides better information regarding flame. The reason is it separates the lighting

(Luminance) from colors. Therefore, the issue with the HSV color space is not of any concern here

(i.e. having two different conditions for different lighting). Refs. [16] and [43] reported reliable

and accurate fire detection by using this color space.

As can be seen in Fig. 4.20, there are two forest fire images with different lighting. The only

color space in which both fires have same features, is Lab color space. And the reason is- as

mentioned above- the ability to separate light from color in image. It can be seen in Fig. 4.20

and Fig. 4.7, the higher values of a and b components can represent yellow and red and it can be

said that a fire pixel usually has this feature. Also, a fire pixel owns a high value of luminance (L

component). As a result, a decision-making rule in Lab color space can be initiated as follows.

In each component (L, a or b), the average value ĀI of all pixels can be computed as below

[43]:

ĀI =
1

N

∑
(x,y)∈I

PΦ(x, y), (4.5)

where PΦ(x, y) is the value of a pixel at (x, y) position in a component of Lab color space. I is

one of the components (L, a or b) and N is the total number of pixels. The decision-making rule

(PF ) for fire pixel is formulated as below:


Condition 1: ĀL + (MAXL − ĀL)× 0.1 ≤ L ≤ 255;

Condition 2: Āa + (MAXa − Āa)× 0.2 ≤ a ≤ 255;

Condition 3: Āb + (MAXb − Āb)× 0.2 ≤ b ≤ 255;

(4.6)

where ĀI is the average value of all pixels in the I th component and MAXI is the maximum

amount of a pixel value in I . This decision-making rule show acceptable result with different

lighting images. Furthermore, since the final goal is to fuse visual image and thermal image,
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acceptable result in this step leads to a significant result in the next step.

Fig. 4.24 and Fig. 4.26 show two fire images that use Lab fire detection algorithm. They are

different in many aspects. First, they have different lighting values. Second, in the first image,

there is a white smoke that can be misinterpreted as fire. Third, in the second image, although it

seems that fire is obvious, but this image suffers from reddish background. But this method is able

to detect fire pixels with a set of rules that are fixed for any condition.

(a) Image 1 (b) Final result with conditions in Eq. (4.6)

(c) Condition 1 in Eq. (4.6) (d) Conditions 2 in Eq. (4.6) (e) Conditions 3 in Eq. (4.6)

Figure 4.24: Lab decision-making results
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(a) Image 2 (b) Final result with conditions in Eq. (4.6)

(c) Condition 1 in Eq. (4.6) (d) Conditions 2 in Eq. (4.6) (e) Conditions 3 in Eq. (4.6)

Figure 4.25: Lab decision-making results

4.3.1.4 Morphological operations

The final result of aforementioned procedures can have some small unconcerned areas and pixels.

These, pixels can be removed. On the contrary, there are some areas and pixels that need to be

added to the fire contour. For example, in Fig. 4.24b and 4.26b the mentioned pixels exist. One

way to perform these tasks is by using morphological operations. Morphological operations have

a good performance in eliminating uninterested areas and pixels in the thresholding images. Some

of the operations are dilation, erosion, opening and closing. In this research, erosion and dilation

operations are used. First, by using erosion operation, unwanted small pixels in the boundaries are

removed. Next, the dilation operation is used to add wanted pixels that were missed before.
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(a) Lab thresholding output (b) Erosion operation (c) Dilation operation

(d) Lab thresholding output (e) Erosion operation (f) Dilation operation

Figure 4.26: Morphological operation’s results

4.3.2 Algorithm used in the thermal camera

Unlike a visual camera, fire features in a thermal camera can be easily detected. Therefore, there

is no need of expensive computations in the thermal camera. A threshold in the thermal image

is applied to filter out low temperature pixels. Also, if there are more than one fire, it can detect

them faster. Knowing the maximum temperature of a fire can help us in deciding better how to

extinguish it. Finally, it is possible to know the exact area covered by fire even if there are ashes

above the fire.

The important point about working with the thermal sensor is to correctly compute the thermal

image. i.e. it is needed to write the required code in Python. The written code is in Appendix

B.1. A comprehensive program that can detect fire, locate its location with respect to the camera,

compute the area covered by the fire, and show the fire in both thermal and visual cameras is
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presented in Appendix B.2. Although the images from visual camera are presented, but there is no

other use of this camera at this point. In the next section, a method for combining data from both

cameras is introduced and then its implementation is discussed.

(a) Visual image of a flame and light in the
background

(b) Thermal image of (a)

(c) Calculated fire area and its center

Figure 4.27: Thermal fire detection method

4.3.3 Fusing visual and thermal images

One of the main goals of this research is to make use of two cameras to find forest fire with

minimum false alarms. In order to do so, there should be a method to fuse the information from

both cameras and check the result. Two cameras have different field of views and they may point to
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different angle. Therefore, an alignment process is needed to make sure an area in an image points

to the same area in another image. Fig. 3.10 demonstrates the camera projection model. The

projective transformation of a world point with (XW , YW , ZW ) coordinates into the image plane

with (U, V ) coordinates is shown. The mathematical formula is as follows:

Table 4.3: Notations used in the projective transformation

Notation Meaning
XW , YW , ZW World coordinates
Xc, Yc, Zc Camera coordinate system
R3×3 3×3 rotation matrix converting world to camera coordinates
T3×1 3×1 translation matrix moving world to camera coordinates
x0, y0 The intersection point of optic axis and the image plane
a Aspect ratio
s Skew of the image plane
λ Focal length of camera
u, v Projection of XW , YW , ZW image plane

The projection from a world point (XW , YW , ZW ) to a pixel point (u, v) is computed by using

the following equation:


u

v

w

 =


λ s x0

0 aλ y0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


R3×3 t3×1

01×3 1




XW

YW

ZW

1


(4.7)

This is a “projective transformation”. The second matrix to right is the “extrinsic parameter matrix”

that transforms (XW , YW , ZW ) world coordinates into (XC , YC , ZC) camera coordinates by using

a rotation matrix R3×3 and a translation matrix t3×1. Then, camera coordinates (XC , YC , ZC)

are transformed to pixel coordinates by the leftmost matrix which is called “intrinsic parameters

matrix”. This matrix includes aspect ratio a, focal length λ, skew of the image plane s. In (x0, y0),

the optical axis OZC goes through the plane of image. The following equation is the result of
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multiplication of intrinsic and extrinsic parameters matrices:


u

v

w

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34





XW

YW

ZW

1


(4.8)

or in other words,

X
′

1 = PX1 (4.9)

where X ′
1 = [u, v, w] is the projected coordinates in the homogeneous coordinate system. P is

the projective matrix and X is the point being projected to this coordinate system. The image

plane can be non-homogeneous in reality. The non-homogeneous image pixels can be calculated

by division of the first two elements in the homogeneous matrix to the third one.

In this research, two cameras are used, a visual and a thermal camera to make the fire detection

robust. The thermal camera is a 24 × 32 array. Hence, the fusion requires a projective transfor-

mation between the planes of two images. In an image plane, points have two dimensions and the

ZW = 0. Therefore, the third column of matrix P is multiplied by zero and it can be removed.

This transformation is called “homography” and has the following equation:


x

′

y
′

w

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1

 (4.10)

or in other words,

X
′

2 = HX2 (4.11)
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where X ′
2 is the point that is projected in homogeneous coordinates. H is the “homography ma-

trix”. The projected image coordinates are computed as u = x
′
/w and v = y

′
/w.

4.3.3.1 Estimating the homography matrix

To calculate the non-homogeneous image points, Eq. (4.10) can be expanded to the following

equations:

u =
x

′

w
=
h11x+ h12y + h13

h31x+ h32y + h33

(4.12)

v =
y

′

w
=
h21x+ h22y + h23

h31x+ h32y + h33

(4.13)

The corresponding pixels [x, y] and [u, v] are found between two images either through manual

selection of points or automated feature matching. Hence, two equations can be formed for each

point. In order to calculate 8 unknown parameters in homography matrix, at least 4 correspon-

dences are needed to estimate this matrix. By rearranging Eq. (4.12) and Eq. (4.13), it is formu-

lated as following:



−x1 −y1 1 0 0 0 x1u1 y1u1 u1

0 0 0 −x1 −y1 1 x1v1 y1v1 v1

−x2 −y2 1 0 0 0 x2u2 y2u2 u2

0 0 0 −x2 −y2 1 x2v2 y2v2 v2

...





h11

h12

h13

h21

h22

h23

h31

h32

h33



= 0 (4.14)
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or in other words,

Ah = 0 (4.15)

This equation can be solved either by calculating the singular value decomposition (SVD) of A

or by the eigenvalues of ATA matrix. In the SVD method, the last column of V matrix is the

estimated value of h vector. If the eigenvalue method is used, the h vector is the eigenvector of

the lowest eigenvalues.

Figure 4.28: Aligning corresponding pixels

In this research, the SVD technique is used for estimating the homography matrix. Correspond-

ing points between visual and thermal images are selected manually. The process is illustrated in

Fig. 4.28. Finding the exact correspondent point is challenging because of the different nature

between the visual and thermal images. To find the corresponding points, hot red tea in a cup

was used because of its visibility in both images with a regular shape. It appears rectangular in

both images and the four corners could be somewhat identified. 22 of such images are taken from

different distances and angles. These images are used with 4 correspondence points from each pair

of images to form the A matrix. Two thresholds were imposed onto the visual and thermal images,

resulting in a binary image containing potential fire information. Using the computed homography

matrix, the thresholded thermal image was aligned and superimposed onto the thresholded visual
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image. If the suspected fire region from both images were overlapped, it could be concluded that

there is a fire in the image. Fig. 4.29 shows the results of two separate experiments. The method

is able to detect fire from the information of thermal and visual cameras.

(a) Fire detected in both images (b) Fire not detected in both images

Figure 4.29: Fire detection using both camera images

4.4 Image-based thermo-visual servoing by 2DOF frame

The extensive development of visual servo algorithms in the last decade is remarkable. They are

applied to unmanned aerial vehicle such as quadrotors, helicopters, airships and airplanes. Visual

servoing algorithms make use of visual information to control a system. There are two major

branches: position-based visual servoing (PBVS) and image-based visual servoing (IBVS). In

PBVS, visual information is used to reconstruct the target’s pose in a Cartesian space while in

IBVS some image features are extracted and used to control the system. In this research, image-

based thermo-visual servoing (IBTVS) is used to find the position of a fire and to move the cameras

toward the fire. Image information are extracted from both thermal and visual cameras and then

these data are fused to decide whether a fire has happened or not. If a fire is detected, the system

calculates the relational position of fire in image coordinate system. This position is sent to the
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controller and it will rotate cameras toward the fire. This 2DOF frame is made to search and track

fire or any hot object. In general, it can follow any object that has different temperature than the

background. This system can be applied to many cases. For example, it can be used to track an

animal in a dark environment or it can be used to dynamically measure the body temperature of a

person.

To create an IBTVS feedback controller for the system that is illustrated in Fig. 3.9, the first

step is to create the error function.

ex
ey

 =

xd − x
yd − y

 (4.16)

where ex and ey are the errors in x and y directions, and xd and yd are the desired positions in x

and y directions.

The goal is to track the fire location, in other words, to put the fire in the center of the image of

camera. i.e. xd = yd = 0. Therefore, Eq. (4.16) becomes as following:

ex
ey

 =

0− x

0− y

 =

−x
−y

 (4.17)

By imposing the control law of ė = Ke to Eq. (3.12), a proportional (P) controller is designed as

below: ωx
ωy

 =

k1 0

0 k2

× J−1
image

ex
ey

 = K × J−1
image

ex
ey

 (4.18)

K is the proportional gain matrix which tunes the convergence rate of [x y]T towards [0 0]T . In

experimental tests, this means that the UAV will be navigated towards the fire location. Fig. 4.30

illustrates the diagram of the IBTVS feedback controller.
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Figure 4.30: Diagram of the IBTVS feedback controller

4.5 Summary

In this chapter, multiple color spaces are introduced. Each of these color spaces can be used in the

fire detection algorithm with visual camera. Next, the architecture of thermal camera is discussed

including how to read/write data from/to camera and how to calculate the temperature image. Then,

the fire detection algorithms that are used in visual and thermal cameras are shown and a method

for fusing the images of visual and thermal cameras is implemented. Finally, the IBTVS system

which can track and follow the fire is presented.

63



Chapter 5

Test Platforms

In order to test the system and the concept behind it, two test platforms are made and used. The

first platform is a two-degree-of-freedom (2DOF) hardware frame as shown at Fig. 3.8. Such a

frame can rotate in two different axes: yaw and pitch. The goal of using this frame is to check the

searching and tracking ability of the system as well as its ability to locate the position of fire.

Originally, it was planned to mount this system on a UAV and test the effectiveness of the

developed hardware and software system for the fire detection mission. This means, if there would

be a real fire and the system would look for the fire and as soon as it finds the fire, it would signal

the base and calculate the fire’s location and fly over it. But due to the COVID-19 pandemic, the

university was closed for a long time and this kind of testing was not possible. Therefore, it was

decided to substitute this with a simulation. This is even better in terms of reducing the possibilities

of real failures that would cost a lot for the team. Also, even more tests and scenarios are done

in the simulation that could not be done easily in the real world. Co-simulation of a UAV means

that a virtual UAV with the help of autopilot is flown. In the simulation environment, a location in

the map is set as fire location and then a pre-planned mission is loaded into the autopilot of UAV.

The goal of this experiment is to check if the developed co-simulation system can find the fire and

locates it and flies over it. The combination of these two tests can assure that this system can be
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installed on a real UAV and then it can be used to search for a fire in a forest and locate the fire.

5.1 Testing of the co-simulation system

The initial decision was to mount the system on a UAV to test it in practice. But due to the

pandemic COVID-19 this was not possible. Therefore, the practical test is replaced by a software

test. The previous test showed that by using two cameras (visual and thermal) it is possible to find

out fire. The next step is to check if it is possible to communicate with the autopilot of a UAV and

command it to move over the fire. This is the goal of current test. In order to run the test, some

programs and software are needed to be installed. First, we take a look at DroneKit.

5.1.1 DroneKit API

Every UAV/drone has an autopilot. The autopilot is initially used to stabilize the UAV. Later, it

is used to navigate the UAV; i.e. moving the UAV from a point to another. They are capable of

operating missions nowadays. This means that some geographical points are uploaded in autopilot

and they follow a path from one point to another. But this is not enough for our goal, which is

searching for fire and locating it and moving the UAV above it. In order to do so, an intermediary

system has to be there to communicate between Raspberry Pi and autopilot. Fortunately, there are

some available Kits. One of them is called DroneKit. DroneKit helps us create powerful apps for

UAVs. It allows developers to create apps that run on an onboard computer and communicate with

the autopilot. Onboard apps can significantly enhance the autopilot, adding greater intelligence

to vehicle behavior, and performing tasks that are computationally intensive or time-sensitive (for

example, computer vision, path planning, or 3D modelling). Here are some of the main features of

DroneKit.
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DroneKit features:

• Connect to a vehicle (or multiple vehicles) from a script;

• Get and set vehicle state/telemetry and parameter information;

• Receive asynchronous notification of state changes;

• Guide a UAV to specified position (GUIDED mode);

• Send arbitrary custom messages to control UAV movement and other hardware (GUIDED

mode);

• Create and manage waypoint missions (AUTO mode);

• Override RC channel settings.

In this research, DroneKit-Python is used because of the available libraries for Python and its

capability of developing applications promptly. DroneKit-Python is made available under the per-

missive open source Apache 2.0 License [65].

5.1.2 DroneKit SITL

DroneKit can be directly connected to autopilot. But, since we are not using any physical autopilot,

there should be a program that simulates the autopilot actions. Fortunately, a program that is

compatible with DroneKit is available. This program is called “DroneKit SITL”. SITL stands for

“software-in-the-loop”. This basically simulates the combination of a UAV and its autopilot. It

means that it allows us to create and test DroneKit-Python apps without a real vehicle (and from

the comfort of our own developer desktop). SITL can run natively on Linux (x86 architecture

only), Mac and Windows, or within a virtual machine. It can be installed on the same computer

as DroneKit, or on another computer on the same network. In our case, a Linux OS on a virtual
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machine is installed and everything is installed on the Linux. After installing the program on

Linux, in order to run it, this line of code should be run from the command prompt:

1 dronekit-sitl copter --home=37.6135,-122.357,0,180

5.1.3 Mission Planner

In order to create a mission and start the autopilot and also visualize the path of UAV, another ap-

plication is needed. Mission Planner is a ground control station that can be used as a configuration

utility or as a dynamic control supplement for an autonomous vehicle, which can setup, configure,

and tune the vehicle for optimum performance.

Figure 5.1: Mission Planner interface

5.1.4 FlightGear

FlightGear is an open-source flight simulator. In this research, FlightGear is used to visualize the

flight of the UAV. The difference between FightGear and Mission Planner is that mission planner

cannot show the current attitude of the UAV. It can only show its position. Furthermore, its refresh
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rate is low. FlightGear, on the other hand, can show UAV’s attitude in real-time. This is good to

check UAV’s condition and its attitude and its position with respect to the fire.

In order to communicate with FlightGear, a local User Datagram Protocol (UDP) connection

is made with the help of “socket” library in Python. Six parameters are sent to FlightGear with a

frequency of 50Hz. The following function is used to automatically send data to FlightGear.

1 def send_to_FG():

2 p = vehicle.attitude.pitch*180/3.14

3 h = vehicle.attitude.yaw*180/3.14

4 alt = 50 + vehicle.location.global_relative_frame.alt

5 lat = vehicle.location.global_relative_frame.lat

6 lon = vehicle.location.global_relative_frame.lon

7 r = vehicle.attitude.roll*180/3.14

8 my_message = "%.2f,%.2f,%i,%f,%f,%i\n" %(r,p,h,lat,lon,alt)

9 byte_message = bytes(my_message,"utf-8")

10 opened_socket.sendto(byte_message, ("192.168.2.12", 5006))

11 threading.Timer(0.02,send_to_FG).start()

Figure 5.2: A view of FlightGear
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5.1.5 How it works

In order to run the simulation, it is needed to write a script that simulates the action of cameras.

First, a mission is uploaded to the SITL from Mission Planner application. Then, the script starts

by taking off and following the mission. An imaginary fire location is put into the script. There are

some functions in the script that simulate fire searching process. If at any location the fire point is

within the field of view, the program will signal that a fire is detected and it calculates and sends

the location of fire.

“CameraVeiw” function

The first step in simulating the camera is to find out the area that it is looking at. The location of

UAV is available from its GPS, and it is assumed that the vehicle’s roll and pitch are negligible.

The FOV of thermal camera is 55◦×35◦. In the cameraVeiw function, the area that the UAV is

looking at is defined by four points (P1 to P4 in Fig. 5.3) that are at the edge of the area. Next, in

order to check if the fire location is within this area, it will check if the fire location is on which

side of the lines of the area. If, it is on the right side of all of them or on the left side of all of

them, this means that the fire location is inside the area. In other words, it is detected. The function

“leftOrRight” will check this.

Figure 5.3: Top view with P1 to P4 points
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Figure 5.4: Field of view and points on earth

“fireAngle” and “findFireLoc” functions

After checking if the fire is inside the field of view, it is needed to find the location of fire. In

order to do so, first, the αx and αy angles of fire should be calculated and then the location of fire

can be easily found. If the real cameras were used, the function would find these angles based on

the location of fire in the image. But here, it should be simulated from the location of fire. It is

assumed that the horizontal distance between fire and camera is known as “dist”. Also the vertical

distance is equal to the relative altitude of the UAV “a”. The GPS of UAV will provide a for the

simulation.

Figure 5.5: Fire and related distances
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distX = dist× sin(α)

distY = dist× cos(α)

αx = tan−1(
distX

a
)

αy = tan−1(
distY

a
)

(5.1)

After finding the αx and αy angles, the simulation of camera is finished and it is time to cal-

culate the location of fire. This is done in “findFireLoc” function which does the reverse steps of

“fireAngle” function. This function can also be used in real flight. That is, in the real flight, fire

angles are calculated based on the real image of fire and then αx and αy angles are fed in this func-

tion to find out the exact location of fire. Fig. 5.6 shows the algorithm of co-simulation system and

Fig. 5.7 demonstrates the flowchart of this system. To verify the performance of the co-simulation

system, two scenarios are made. One is a mission without any fire and the other one is a mission

in which it detects the fire. When a fire is detected, the UAV alarms the base and cancels the rest

of the mission and flies over the fire. Fig. 5.8 shows the 3-D graph of both missions.

Figure 5.6: Algorithm used in the co-simulation system
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Figure 5.7: Flowchart of the co-simulation system

Figure 5.8: Fire detection system
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Figure 5.9: A view of Mission Planner in the fire detection operation

Figure 5.10: A view of FlightGear in the fire detection operation
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5.2 Test results of the 2DOF frame

Here, the results of a tracking test, which is done with the 2DOF frame, is presented. In this test, a

candle which is representing a fire is used. Lab color space is used to detect the fire in the visual

images and a temperature threshold is applied to the thermal images. The system is able to track

the flame of candle and locate its location in terms of angles.

Fig. 5.11 illustrates the angles of camera and the fire. Fig. 5.12 shows the errors of fire in

terms of pixels. The reason that Fig. 5.11 is represented in terms of angle (deg) and Fig. 5.12 is

represented in terms of pixel is because that the location of fire should be expressed in the global

coordinate system, since it should be reported to an external observer. But the error should be

represented in the camera coordinate system because it is used to generate the control signal in that

coordinate system.

Limitations of the system

There are some limitations for using this system in the real world. The thermal camera has a

resolution of 32◦ × 24◦. If this camera is mounted on a UAV and it is assumed that a fire has an

area of at least 1 square-meter, and this fire should occupy at least 1 pixel of the image, then the

maximum distance can be calculated as:

d× π

180
× 55

32
= 1(m) =⇒ d = 33.4(m) (5.2)

Therefore, the maximum distance of the camera to the fire is 33.4 meters. This value can be

increased either by using a camera with higher resolution or by assuming that the fire has bigger

area.
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Figure 5.11: IBTVS tracking test

Figure 5.12: IBTVS tracking errors
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5.3 Summary

In this chapter the co-simulation system is presented. The main goal of it is to simulate the behavior

of the developed fire detection system. All of the programs that are used in this simulation are

described. Finally the test results of the simulation as well as 2DOF test are demonstrated. All of

the videos related to this thesis are uploaded to this link.
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Chapter 6

Conclusion and Future Work

In this chapter, the results of this research are discussed and then the suggested future works are

presented. I hope that enthusiasts will follow this path to the point that this system is practically

used in UAV to detect the forest fires.

6.1 Results and conclusion

In this section, the results of this research are presented. At first, some methods for using visual

camera are implemented. But, it shows that in many cases a single visual camera cannot correctly

detect fire. For example, if it sees an image of a fire or if it sees an object which has similar colors

to a fire, it may give a false fire alarm. Hence, it is decided to add a thermal camera to this system.

A single thermal camera is enough to detect forest fires in many cases. Also, since it has only one

feature per pixel (i.e. temperature), the total data that needs to be evaluated is less than that in the

visual camera. If a threshold for temperature is set, it can detect whether a fire is in the image or

not. Finally, by combining the information from both cameras, this system can have higher rate of

success in detecting fire.

In order to use both cameras, a fusion method has to be proposed to make sure any pixel is
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the same in both images. Therefore, an alignment method is used to make sure both cameras are

looking at the same pixel. The alignment method used in this research is able to align the images

from both cameras. Once the images are aligned, a homography matrix is extracted to be used in

further fire detection operations. After finding the fire, it is needed to locate it. In order to do so,

two sets of parameters are required: the position of UAV including its latitude, longitude, altitude

and heading and also the pitch and yaw angles of fires in the image. These angles can be found by

knowing the field-of-view (FOV) of cameras and the location of fire in the image.

The next step in this research is planned originally to check the performance of the fire detection

system on a UAV. Initially it was decided to mount the whole system in a UAV and fly it over real

fire. But, due to the COVID-19 pandemic and university lockdown, it was not possible. As a

result, a co-simulation is conducted with realistic three-dimensional (3D) visualization by using

FlightGear and Mission Planner software environments. In this simulation, it is assumed that a

fire occurs in one spot on the predefined path and the UAV should follow a predefined path to

look for fire. Once it detects the fire, the UAV will signal the base for existence of the fire. It

also will calculate the location of fire and flies over it. To do so, these applications are needed

to be run in two computers: DroneKit, DroneKit SITL, mavproxy on a Linux virtual machine,

Mission Planner on a windows OS, and FlightGear on another windows OS. The results show that

the system is capable of finding the fire and estimating its location. The developed IBTVS can

guide the UAV to fly over the detected fire for further investigations.

6.2 Future work

The following directions can be a future research path based on the works done in the current

research in this thesis:

• Forest fires smokes are visible from far away distances while this is not always true for

flames. This means, in order to have a system that can find forest fire in its early stages, it
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is necessary to look for smoke as well. Thus, it is worth investigating the combination of

different fire features such as smoke and flame. The work done in [66] is a great resource for

this purpose.

• An important parameter in consideration of forest fire is their propagation path and line of

fire. The development of a method to do so can be a magnificent help to the firefighters who

want to suppress the forest fires.

• Utilizing an IR camera as another source of image can be challenging if the fusion of three

images is done. But, on the other hand, it can be a remarkable improvement in the fire

detection process.

• In order to become operational, a system needs to pass many field tests. As indicated before,

the main goal of this research was to mount the system on a UAV and test the system in more

practical application scenarios but, due to the imposed conditions it did not happen. Hence,

one recommended path can be conducting many field tests on a UAV. The challenging point

might be the high frequency vibration of UAVs that can cause images to become blurry.
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Appendix A

Hardware

A.1 Comparison of different Raspberry Pi models

There are more than ten different Raspberry Pi models. Here, a comparison table is presented for

the four commonly used Raspberry Pi models.
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Table A.1: Comparison between some of Raspberry Pi models

Model Raspberry Pi 4 B Raspberry Pi 3 B+ Raspberry Pi Zero Raspberry Pi A+
Release date 2019 Jun 24 2018 Mar 14 2018 Jan 12 2014 Nov 10
Core Type Cortex-A72 64-bit Cortex-A53 64-bit ARM1176JZF-S ARM1176JZF-S
No. Of Cores 4 4 1 1
CPU Clock 1.5 GHz 1.4 GHz 1 GHz 700 MHz
RAM 1, 2, 4 GB DDR4 1 GB DDR2 512 MB 256 MB
USB 2x USB3+2x USB2 Yes 4x USB2.0 micro & OTG Yes 1
HDMI port 2x micro HDMI Yes Yes mini Yes
SPI Yes Yes Yes Yes
I²C Yes Yes Yes Yes
GPIO Yes Yes 40-pins Yes Yes 40-pins
Camera Yes Yes Yes Yes
SD/MMC Yes microSD Yes microSD Yes microSD Yes microSD
Wi-Fi 2.4GHz and 5GHz 2.4GHz and 5GHz 2.4GHz No
Bluetooth® Yes 5.0 Yes 4.2, BLE Yes 4.1 No
Height 3.37 in (85.6 mm) 3.37 in (85.6 mm) 1.18 in (30 mm) 2.55 in (65 mm)
Width 2.22 in (56.5 mm) 2.22 in (56.5 mm) 2.55 in (65 mm) 2.22 in (56.5 mm)
Depth 0.433 in (11 mm) 0.669 in (17 mm) 0.511 in (13 mm) 0.393 in (10 mm)
Weight 1.62 oz (46 g) 1.58 oz (45 g) 0.42328 oz (12 g) 0.81130 oz (23 g)
Power ratings 1.25 A @5V 1.13 A @5V 180 mA 200 mA

81



Appendix B

Codes

B.1 MLX90640 driver code

1 from smbus2 import SMBus , i2c_msg

2 import time

3 import math

4 bus = SMBus(1)

5

6 def MLX90640_setFreq(freq):

7 freq_bit = 0

8 if freq in [64,32,16,8,4,2,1,0,5]:

9 freq_bit = int(math.log2(freq)+1)

10 MLX90640_I2CWrite(0x33,0x800D,(freq_bit<<7)|0x1801)

11

12 def I2C_read(addr,num):

13 write = i2c_msg.write(0x33,[addr>>8,addr&0xFF])

14 read = i2c_msg.read(0x33,num*2)

15 bus.i2c_rdwr(write,read)

16 data = list(read)

17 i2c= []
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18 for value in range(len(data)):

19 if value%2==0:

20 b=data[value]<<8

21 else:

22 b=b|data[value]

23 i2c=i2c+[b]

24 return i2c

25

26 def MLX90640_I2CWrite(addr,reg,data):

27 bus.write_i2c_block_data(addr,reg>>8,[reg&0xFF,data>>8,data&0xFF])

28 #DEVICE_ADDRESS = OX33

29

30 def MLX90640_I2CRead(_deviceAddress,addr,num):

31 write = i2c_msg.write(_deviceAddress,[addr>>8,addr&0xFF])

32 read = i2c_msg.read(0x33,num*2)

33 bus.i2c_rdwr(write,read)

34 data = list(read)

35 #print(data)

36 i2c= []

37 for value in range(len(data)):

38 if value%2==0:

39 b=data[value]<<8

40 else:

41 b=b|data[value]

42 i2c=i2c+[b]

43 return i2c

44

45 def MLX90640_DumpEE(slaveAddr):

46 return MLX90640_I2CRead(slaveAddr, 0x2400, 832);

47

48 def MLX90640_GetFrameData(slaveAddr,oldStatus):

83



49 dataReady=0

50 while dataReady==0 :

51 statusRegister = MLX90640_I2CRead(slaveAddr,0x8000,1)

52 dataReady = (statusRegister[0]) & 0x0008

53 dataReady = 1 # should remove this but increase freq.

54 status = (statusRegister[0]) & 0x0001

55 # print("hi")

56 #print("%7.3f" %(time.time()),end=’\n’)

57 MLX90640_I2CWrite(slaveAddr,0x8000,0x30)

58

59 frameData = MLX90640_I2CRead(slaveAddr,0x400,832)

60

61 controlRegister1=MLX90640_I2CRead(slaveAddr,0x800D,1)

62 frameData += [controlRegister1[0]];

63 frameData += [status]

64 return frameData

65

66 def ExtractVDDParameters(eeData):

67 kVdd=(eeData[51] & 0xFF00) >> 8

68 if kVdd>127:

69 kVdd -= 256

70 kVdd *= 32

71 vdd25 = eeData[51] & 0x00FF

72 vdd25 = ((vdd25-256)<<5)-8192

73 return kVdd,vdd25

74

75 def ExtractPTATParameters(eeData):

76 KvPTAT = (eeData[50] & 0xFC00) >> 10;

77 if(KvPTAT > 31):

78 KvPTAT = KvPTAT - 64;

79
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80 KvPTAT = KvPTAT/4096;

81

82 KtPTAT = eeData[50] & 0x03FF;

83 if(KtPTAT > 511):

84 KtPTAT = KtPTAT - 1024;

85

86 KtPTAT = KtPTAT/8;

87

88 vPTAT25 = eeData[49];

89

90 alphaPTAT = (eeData[16] & 0xF000) / pow(2, 14) + 8.0

91

92 return KvPTAT,KtPTAT,vPTAT25,alphaPTAT

93

94 def ExtractGainParameters(eeData):

95 gainEE = eeData[48];

96 if(gainEE > 32767):

97 gainEE = gainEE -65536;

98

99 return gainEE;

100

101 def ExtractTgcParameters(eeData):

102

103 tgc = eeData[60] & 0x00FF;

104 if(tgc > 127):

105 tgc = tgc - 256;

106

107 tgc = tgc / 32.0;

108

109 return tgc;

110
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111 def ExtractResolutionParameters(eeData):

112 resolutionEE = (eeData[56] & 0x3000) >> 12;

113

114 return resolutionEE;

115

116 def ExtractKsTaParameters(eeData):

117 KsTa = (eeData[60] & 0xFF00) >> 8;

118 if(KsTa > 127):

119 KsTa = KsTa -256;

120

121 KsTa = KsTa / 8192.0;

122

123 return KsTa;

124

125 def ExtractKsToParameters(eeData):

126 step = ((eeData[63] & 0x3000) >> 12) * 10;

127 ct=list(range(4))

128 ksTo=ct

129 ct[0] = -40;

130 ct[1] = 0;

131 ct[2] = (eeData[63] & 0x00F0) >> 4;

132 ct[3] = (eeData[63] & 0x0F00) >> 8;

133

134 ct[2] = ct[2]*step;

135 ct[3] = ct[2] + ct[3]*step;

136

137 KsToScale = (eeData[63] & 0x000F) + 8;

138 KsToScale = 1 << KsToScale;

139

140 ksTo[0] = eeData[61] & 0x00FF;

141 ksTo[1] = (eeData[61] & 0xFF00) >> 8;
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142 ksTo[2] = eeData[62] & 0x00FF;

143 ksTo[3] = (eeData[62] & 0xFF00) >> 8;

144

145 for i in range(4):

146 if(ksTo[i] > 127):

147 ksTo[i] = ksTo[i] -256;

148 ksTo[i] = ksTo[i] / KsToScale;

149

150 return ct,ksTo

151

152 def ExtractAlphaParameters(eeData):

153 accRow = [0] * 24

154 accColumn = [0] * 32

155 p = 0;

156 accRemScale = eeData[32] & 0x000F;

157 accColumnScale = (eeData[32] & 0x00F0) >> 4;

158 accRowScale = (eeData[32] & 0x0F00) >> 8;

159 alphaScale = ((eeData[32] & 0xF000) >> 12) + 30;

160 alphaRef = eeData[33];

161

162 for i in range(6):

163 p = i * 4;

164 accRow[p + 0] = (eeData[34 + i] & 0x000F);

165 accRow[p + 1] = (eeData[34 + i] & 0x00F0) >> 4;

166 accRow[p + 2] = (eeData[34 + i] & 0x0F00) >> 8;

167 accRow[p + 3] = (eeData[34 + i] & 0xF000) >> 12;

168

169

170 for i in range(24):

171 if (accRow[i] > 7):

172 accRow[i] = accRow[i] - 16;
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173

174 for i in range(8):

175 p = i * 4;

176 accColumn[p + 0] = (eeData[40 + i] & 0x000F);

177 accColumn[p + 1] = (eeData[40 + i] & 0x00F0) >> 4;

178 accColumn[p + 2] = (eeData[40 + i] & 0x0F00) >> 8;

179 accColumn[p + 3] = (eeData[40 + i] & 0xF000) >> 12;

180

181 for i in range(32):

182 if (accColumn[i] > 7):

183 accColumn[i] = accColumn[i] - 16;

184

185 alpha = [0]*768

186 for i in range(24):

187 for j in range(32):

188 p = 32 * i +j;

189 alpha[p] = (eeData[64 + p] & 0x03F0) >> 4;

190 if alpha[p] > 31:

191 alpha[p] = alpha[p] - 64;

192

193 alpha[p] = alpha[p]*(1 << accRemScale);

194 alpha[p] = (alphaRef + (accRow[i] << accRowScale) + (accColumn[j]

<< accColumnScale) + alpha[p]);

195 alpha[p] = alpha[p] / pow(2,alphaScale);

196 return alpha

197

198 def ExtractOffsetParameters(eeData):

199 occRow = [0]*24

200 occColumn = [0]*32

201 p = 0;

202 occRemScale = (eeData[16] & 0x000F);
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203 occColumnScale = (eeData[16] & 0x00F0) >> 4;

204 occRowScale = (eeData[16] & 0x0F00) >> 8;

205 offsetRef = eeData[17];

206 if (offsetRef > 32767):

207 offsetRef = offsetRef - 65536;

208 for i in range(6):

209 p = i * 4;

210 occRow[p + 0] = (eeData[18 + i] & 0x000F);

211 occRow[p + 1] = (eeData[18 + i] & 0x00F0) >> 4;

212 occRow[p + 2] = (eeData[18 + i] & 0x0F00) >> 8;

213 occRow[p + 3] = (eeData[18 + i] & 0xF000) >> 12;

214

215 for i in range(24):

216 if (occRow[i] > 7):

217 occRow[i] = occRow[i] - 16;

218

219 for i in range(8):

220 p = i * 4;

221 occColumn[p + 0] = (eeData[24 + i] & 0x000F);

222 occColumn[p + 1] = (eeData[24 + i] & 0x00F0) >> 4;

223 occColumn[p + 2] = (eeData[24 + i] & 0x0F00) >> 8;

224 occColumn[p + 3] = (eeData[24 + i] & 0xF000) >> 12;

225

226 for i in range(32):

227 if (occColumn[i] > 7):

228 occColumn[i] = occColumn[i] - 16;

229

230 offset = [0]*768

231 for i in range(24):

232 for j in range(32):

233 p = 32 * i +j;
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234 offset[p] = (eeData[64 + p] & 0xFC00) >> 10;

235 if (offset[p] > 31):

236 offset[p] = offset[p] - 64;

237

238 offset[p] = offset[p]*(1 << occRemScale);

239 offset[p] = (offsetRef + (occRow[i] << occRowScale) + (occColumn[j

] << occColumnScale) + offset[p]);

240

241 return offset

242

243 def ExtractKtaPixelParameters(eeData):

244 p = 0;

245 KtaRC = [0] * 4;

246 KtaRoCo = (eeData[54] & 0xFF00) >> 8;

247 if (KtaRoCo > 127):

248 KtaRoCo = KtaRoCo - 256;

249

250 KtaRC[0] = KtaRoCo;

251

252 KtaReCo = (eeData[54] & 0x00FF);

253 if (KtaReCo > 127):

254 KtaReCo = KtaReCo - 256;

255

256 KtaRC[2] = KtaReCo;

257

258 KtaRoCe = (eeData[55] & 0xFF00) >> 8;

259 if (KtaRoCe > 127):

260 KtaRoCe = KtaRoCe - 256;

261

262 KtaRC[1] = KtaRoCe;

263
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264 KtaReCe = (eeData[55] & 0x00FF);

265 if (KtaReCe > 127):

266 KtaReCe = KtaReCe - 256;

267

268 KtaRC[3] = KtaReCe;

269

270 ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8;

271 ktaScale2 = (eeData[56] & 0x000F);

272

273 kta = [0] * 768

274 for i in range(24):

275 for j in range(32):

276 p = 32 * i +j;

277 split = int(2*(p/32 - (p/64)*2) + p%2)

278 kta[p] = (eeData[64 + p] & 0x000E) >> 1;

279 if (kta[p] > 3):

280 kta[p] = kta[p] - 8;

281

282 kta[p] = kta[p] * (1 << ktaScale2);

283 kta[p] = KtaRC[split] + kta[p];

284 kta[p] = kta[p] / pow(2,ktaScale1);

285

286 return kta

287

288 def ExtractKvPixelParameters(eeData):

289 p = 0;

290 KvT = [0] * 4

291 KvRoCo = (eeData[52] & 0xF000) >> 12;

292 if (KvRoCo > 7):

293 KvRoCo = KvRoCo - 16;

294
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295 KvT[0] = KvRoCo;

296

297 KvReCo = (eeData[52] & 0x0F00) >> 8;

298 if (KvReCo > 7):

299 KvReCo = KvReCo - 16;

300

301 KvT[2] = KvReCo;

302

303 KvRoCe = (eeData[52] & 0x00F0) >> 4;

304 if (KvRoCe > 7):

305 KvRoCe = KvRoCe - 16;

306

307 KvT[1] = KvRoCe;

308

309 KvReCe = (eeData[52] & 0x000F);

310 if (KvReCe > 7):

311 KvReCe = KvReCe - 16;

312

313 KvT[3] = KvReCe;

314

315 kvScale = (eeData[56] & 0x0F00) >> 8;

316

317 kv = [0] * 768

318 for i in range(24):

319 for j in range(32):

320 p = 32 * i +j;

321 split = int(2*(p/32 - (p/64)*2) + p%2)

322 kv[p] = KvT[split];

323 kv[p] = kv[p] / pow(2,kvScale);

324 return kv;

325
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326 def ExtractCPParameters(eeData):

327 alphaSP = [0] * 2 ;

328 offsetSP = [0] * 2;

329 cpAlpha = [0] * 2

330 cpOffset = [0] * 2

331 alphaScale = ((eeData[32] & 0xF000) >> 12) + 27;

332

333 offsetSP[0] = (eeData[58] & 0x03FF);

334 if (offsetSP[0] > 511):

335 offsetSP[0] = offsetSP[0] - 1024;

336

337

338 offsetSP[1] = (eeData[58] & 0xFC00) >> 10;

339 if (offsetSP[1] > 31):

340 offsetSP[1] = offsetSP[1] - 64;

341

342 offsetSP[1] = offsetSP[1] + offsetSP[0];

343

344 alphaSP[0] = (eeData[57] & 0x03FF);

345 if (alphaSP[0] > 511):

346 alphaSP[0] = alphaSP[0] - 1024;

347

348 alphaSP[0] = alphaSP[0] / pow(2,alphaScale);

349

350 alphaSP[1] = (eeData[57] & 0xFC00) >> 10;

351 if (alphaSP[1] > 31):

352 alphaSP[1] = alphaSP[1] - 64;

353

354 alphaSP[1] = (1 + alphaSP[1]/128) * alphaSP[0];

355

356 cpKta = (eeData[59] & 0x00FF);
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357 if (cpKta > 127):

358 cpKta = cpKta - 256;

359

360 ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8;

361 cpKta = cpKta / pow(2,ktaScale1);

362

363 cpKv = (eeData[59] & 0xFF00) >> 8;

364 if (cpKv > 127):

365 cpKv = cpKv - 256;

366

367 kvScale = (eeData[56] & 0x0F00) >> 8;

368 cpKv = cpKv / pow(2,kvScale);

369

370 cpAlpha[0] = alphaSP[0];

371 cpAlpha[1] = alphaSP[1];

372 cpOffset[0] = offsetSP[0];

373 cpOffset[1] = offsetSP[1];

374

375 return cpKta,cpKv,cpAlpha,cpOffset

376

377 def ExtractCILCParameters(eeData):

378 ilChessC = [0] * 3

379 calibrationModeEE = (eeData[10] & 0x0800) >> 4;

380 calibrationModeEE = calibrationModeEE ˆ 0x80;

381

382 ilChessC[0] = (eeData[53] & 0x003F);

383 if (ilChessC[0] > 31):

384 ilChessC[0] = ilChessC[0] - 64;

385

386 ilChessC[0] = ilChessC[0] / 16.0

387
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388 ilChessC[1] = (eeData[53] & 0x07C0) >> 6;

389 if (ilChessC[1] > 15):

390 ilChessC[1] = ilChessC[1] - 32;

391

392 ilChessC[1] = ilChessC[1] / 2.0

393

394 ilChessC[2] = (eeData[53] & 0xF800) >> 11;

395 if (ilChessC[2] > 15):

396 ilChessC[2] = ilChessC[2] - 32;

397

398 ilChessC[2] = ilChessC[2] / 8.0

399

400 return calibrationModeEE, ilChessC

401

402 def ExtractDeviatingPixels(eeData):

403 pixCnt = 0;

404 brokenPixCnt = 0;

405 outlierPixCnt = 0;

406 warn = 0;

407 brokenPixels = [0] * 5

408 outlierPixels = [0] * 5

409 for pixCnt in range(5):

410 brokenPixels[pixCnt] = 0xFFFF;

411 outlierPixels[pixCnt] = 0xFFFF;

412

413

414 pixCnt = 0;

415 while (pixCnt < 768 & brokenPixCnt < 5 & outlierPixCnt < 5):

416 if(eeData[pixCnt+64] == 0):

417 brokenPixels[brokenPixCnt] = pixCnt;

418 brokenPixCnt = brokenPixCnt + 1;
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419

420 elif((eeData[pixCnt+64] & 0x0001) != 0):

421 outlierPixels[outlierPixCnt] = pixCnt;

422 outlierPixCnt = outlierPixCnt + 1;

423 pixCnt = pixCnt + 1;

424

425 if(brokenPixCnt > 4):

426 warn = -3;

427

428 elif(outlierPixCnt > 4) :

429 warn = -4;

430

431 elif((brokenPixCnt + outlierPixCnt) > 4):

432 warn = -5;

433

434 else:

435 for pixCnt in range(brokenPixCnt):

436 for i in range(brokenPixCnt):

437 warn = CheckAdjacentPixels(brokenPixels[pixCnt],brokenPixels[i

]);

438 if(warn != 0):

439 return warn;

440

441 for pixCnt in range(outlierPixCnt):

442 for i in range(outlierPixCnt):

443 warn = CheckAdjacentPixels(outlierPixels[pixCnt],outlierPixels

[i]);

444 if(warn != 0):

445 return warn;

446

447 for pixCnt in range(brokenPixCnt):
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448 for i in range(outlierPixCnt):

449 warn = CheckAdjacentPixels(brokenPixels[pixCnt],outlierPixels[

i]);

450 if(warn != 0):

451 return warn;

452

453 return warn,brokenPixels,outlierPixels;

454

455 def CheckEEPROMValid(eeData):

456 deviceSelect = eeData[10] & 0x0040;

457 if(deviceSelect == 0):

458 return 0;

459

460 return -7;

461

462 def MLX90640_ExtractParameters(eeData):

463 error = CheckEEPROMValid(eeData);

464

465 if(error == 0):

466 kVdd,vdd25 = ExtractVDDParameters(eeData);

467 KvPTAT,KtPTAT,vPTAT25,alphaPTAT = ExtractPTATParameters(eeData );

468 gainEE = ExtractGainParameters(eeData );

469 tgc = ExtractTgcParameters(eeData );

470 resolutionEE = ExtractResolutionParameters(eeData);

471 KsTa = ExtractKsTaParameters(eeData );

472 ct,ksTo = ExtractKsToParameters(eeData);

473 alpha = ExtractAlphaParameters(eeData );

474 offset = ExtractOffsetParameters(eeData );

475 kta = ExtractKtaPixelParameters(eeData );

476 kv = ExtractKvPixelParameters(eeData );

477 cpKta,cpKv,cpAlpha,cpOffset = ExtractCPParameters(eeData );
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478 calibrationModeEE, ilChessC = ExtractCILCParameters(eeData );

479 error,brokenPixels,outlierPixels = ExtractDeviatingPixels(eeData );

480 mlx90640={}

481 mlx90640[’kVdd’]=kVdd

482 mlx90640[’vdd25’]=vdd25

483 mlx90640[’KvPTAT’]=KvPTAT

484 mlx90640[’KtPTAT’]=KtPTAT

485 mlx90640[’vPTAT25’]=vPTAT25

486 mlx90640[’alphaPTAT’]=alphaPTAT

487 mlx90640[’gainEE’]=gainEE

488 mlx90640[’tgc’]=tgc

489 mlx90640[’resolutionEE’]=resolutionEE

490 mlx90640[’KsTa’]=KsTa

491 mlx90640[’ct’]=ct

492 mlx90640[’ksTo’]=ksTo

493 mlx90640[’alpha’]=alpha

494 mlx90640[’offset’]=offset

495 mlx90640[’kta’]=kta

496 mlx90640[’kv’]=kv

497 mlx90640[’cpKta’]=cpKta

498 mlx90640[’cpKv’]=cpKv

499 mlx90640[’cpAlpha’]=cpAlpha

500 mlx90640[’cpOffset’]=cpOffset

501 mlx90640[’calibrationModeEE’]=calibrationModeEE

502 mlx90640[’ilChessC’]=ilChessC

503 mlx90640[’brokenPixels’]=brokenPixels

504 mlx90640[’outlierPixels’]=outlierPixels

505

506 return error, mlx90640

507

508 def MLX90640_GetVdd(frameData, params):
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509 vdd = frameData[810];

510 if(vdd > 32767):

511 vdd = vdd - 65536;

512

513 resolutionRAM = (frameData[832] & 0x0C00) >> 10;

514 resolutionCorrection = pow(2, params[’resolutionEE’]) / pow(2,

resolutionRAM);

515 vdd = (resolutionCorrection * vdd - params[’vdd25’]) / params[’kVdd’] +

3.3;

516

517 return vdd;

518

519 def MLX90640_GetTa(frameData,params):

520 vdd = MLX90640_GetVdd(frameData, params);

521

522 ptat = frameData[800];

523 if(ptat > 32767):

524 ptat = ptat - 65536;

525

526 ptatArt = frameData[768];

527 if(ptatArt > 32767):

528 ptatArt = ptatArt - 65536;

529

530 ptatArt = (ptat / (ptat * params[’alphaPTAT’] + ptatArt)) * pow(2, 18);

531

532 ta = (ptatArt / (1 + params[’KvPTAT’] * (vdd - 3.3)) - params[’vPTAT25’]);

533 ta = ta / params[’KtPTAT’] + 25;

534

535 return ta;

536

537 def MLX90640_CalculateTo(frameData, params, emissivity, tr,result):

99



538 irDataCP = [0] * 2;

539 alphaCorrR = [0] * 4;

540 #result = [0]*768

541 subPage = frameData[833];

542 vdd = MLX90640_GetVdd(frameData, params);

543 ta = MLX90640_GetTa(frameData, params);

544 ta4 = pow((ta + 273.15), 4);

545 tr4 = pow((tr + 273.15), 4);

546 taTr = tr4 - (tr4-ta4)/emissivity;

547

548 alphaCorrR[0] = 1 / (1 + params[’ksTo’][0] * 40);

549 alphaCorrR[1] = 1 ;

550 alphaCorrR[2] = (1 + params[’ksTo’][2] * params[’ct’][2]);

551 alphaCorrR[3] = alphaCorrR[2] * (1 + params[’ksTo’][3] * (params[’ct’][3]

- params[’ct’][2]));

552

553 #------------------------- Gain calculation

-----------------------------------

554 gain = frameData[778];

555 if(gain > 32767):

556 gain = gain - 65536;

557

558

559 gain = params[’gainEE’] / gain;

560

561 #------------------------- To calculation

-------------------------------------

562 mode = (frameData[832] & 0x1000) >> 5;

563

564 irDataCP[0] = frameData[776];

565 irDataCP[1] = frameData[808];
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566 for i in [0,1]:

567 if(irDataCP[i] > 32767):

568 irDataCP[i] = irDataCP[i] - 65536;

569

570 irDataCP[i] = irDataCP[i] * gain;

571

572 irDataCP[0] = irDataCP[0] - params[’cpOffset’][0] * (1 + params[’cpKta’] *

(ta - 25)) * (1 + params[’cpKv’] * (vdd - 3.3));

573 if( mode == params[’calibrationModeEE’]):

574 irDataCP[1] = irDataCP[1] - params[’cpOffset’][1] * (1 + params[’cpKta

’] * (ta - 25)) * (1 + params[’cpKv’] * (vdd - 3.3));

575

576 else:

577 irDataCP[1] = irDataCP[1] - (params[’cpOffset’][1] + params[’ilChessC’

][0]) * (1 + params[’cpKta’] * (ta - 25)) * (1 + params[’cpKv’] * (vdd -

3.3));

578

579

580 for pixelNumber in range(768):

581 ilPattern = int(pixelNumber / 32) - int(pixelNumber / 64) * 2;

582 chessPattern = int(ilPattern) ˆ int(pixelNumber - int(pixelNumber/2)

*2);

583

584 conversionPattern = (int((pixelNumber + 2) / 4) - int((pixelNumber +

3) / 4) + int((pixelNumber + 1) / 4) - int(pixelNumber / 4)) * (1 - 2 *

ilPattern);

585

586 if(mode == 0):

587 pattern = ilPattern;

588

589 else :
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590 pattern = chessPattern;

591

592

593 if(pattern == frameData[833]):

594

595 irData = frameData[pixelNumber];

596

597 if(irData > 32767):

598 irData = irData - 65536;

599

600 irData = irData * gain;

601

602 irData = irData - params[’offset’][pixelNumber]*(1 + params[’kta’

][pixelNumber]*(ta - 25))*(1 + params[’kv’][pixelNumber]*(vdd - 3.3));

603 if(mode != params[’calibrationModeEE’]):

604 irData = irData + params[’ilChessC’][2] * (2 * ilPattern - 1)

- params[’ilChessC’][1] * conversionPattern;

605

606

607 irData = irData / emissivity;

608

609 irData = irData - params[’tgc’] * irDataCP[subPage];

610

611 alphaCompensated = (params[’alpha’][pixelNumber] - params[’tgc’] *

params[’cpAlpha’][subPage])*(1 + params[’KsTa’] * (ta - 25));

612

613 Sx = pow(alphaCompensated, 3) * (irData + alphaCompensated * taTr)

;

614 Sx = math.sqrt(math.sqrt(abs(Sx))) * params[’ksTo’][1];

615

102



616 To = math.sqrt(math.sqrt(irData/(alphaCompensated * (1 - params[’

ksTo’][1] * 273.15) + Sx) + taTr)) - 273.15;

617

618 if(To < params[’ct’][1]):

619 range1 = 0;

620

621 elif(To < params[’ct’][2]):

622 range1 = 1;

623

624 elif(To < params[’ct’][3]):

625 range1 = 2;

626

627 else:

628 range1 = 3;

629

630

631 To = math.sqrt(math.sqrt(irData / (alphaCompensated * alphaCorrR[

range1] * (1 + params[’ksTo’][range1] * (To - params[’ct’][range1]))) +

taTr)) - 273.15;

632 #print(To)

633 result[pixelNumber] = To;

B.2 Thermal camera fire detection code

1 from MLX90640_I2C_Driver import *

2 from colorsys import *

3 import tkinter as tk

4 import time,threading

5 #import sched

6 from random import *

7 from math import *

103



8 import numpy as np

9 from PIL import Image, ImageTk

10 import cv2

11 import serial

12 from matplotlib import pyplot as plt

13 serIs = False #Is serial connected?

14 #from skimage.transform import resize

15 if serIs == True:

16 ser = serial.Serial(’/dev/ttyS0’,baudrate = 38400)

17 if ser.is_open==False:

18 ser.open()

19 window = tk.Tk()

20 canvas = tk.Canvas(window, bg="white", width= 800, height = 600)

21 canvas.pack()

22 mlx90640To = [0]*768

23 x=0

24 status=0

25 oldStatus=1

26 ii=1

27 eeData = MLX90640_DumpEE(0x33)

28 error,mlx90640 = MLX90640_ExtractParameters(eeData)

29 #s = sched.scheduler(time.time,time.sleep)

30 ang1 = 0

31 ang2 = 0

32 def sendSerial():

33 if serIs == True:

34 if abs(ang1) > 2 or abs(ang2) > 2:

35 ser.write((str(int(ang1))+" "+str(int(ang2))+’\n’).encode(’utf-8’)

)

36 else:

37 ser.write(b’0\n’)
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38 threading.Timer(0.1,sendSerial).start()

39

40 def create_spectrum():

41 f=open("thermal_graph.txt")

42 a=f.read()

43 f.close()

44 d=a.splitlines()

45 l= []

46 for x in range(len(d)):

47 temp=d[len(d)-1-x].split()

48 l+=[[int(temp[0]),int(temp[1]),int(temp[2])]]

49 return l

50

51 def frame():

52 color = np.zeros((24,32,3),dtype=np.uint8)

53 return color

54

55 def interpolate_color(temp,min1,max1,l):

56 temp = map(temp,min1,max1,0,len(l)-1)

57 if type(temp)==int:

58 f=l[temp]

59 color=f’#{int(f[0]):02x}{int(f[1]):02x}{int(f[2]):02x}’

60 return color

61 elif type(temp)==list:

62 color=[0]*len(temp)

63

64 for i in range(len(temp)):

65 f=l[temp[i]]

66 color[i]=f’#{int(f[0]):02x}{int(f[1]):02x}{int(f[2]):02x}’

67

68 return color
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69

70 def interpolate_color2(temp,min1,max1,l):

71 #if type(temp)==np.ndarray:

72 color= np.zeros((24,32,3),dtype=np.uint8)

73 temp = map(temp,min1,max1,0,len(l)-1)

74 if type(temp)==int:

75 f=l[temp]

76 color=f

77 return color

78 else: # type(temp)==np.ndarray:

79

80 for i in range(24):

81 for j in range(32):

82 f=l[temp[i*32+j]]

83 color[i][j]=f

84 #print(color)

85 return color

86

87 def draw_spectrum():

88 global l

89 width=20

90 height=120

91 size=2

92 min1=0

93 max1=height

94 color=[]

95 for i in range(height):

96 color+=[interpolate_color(i,min1,max1,l)]

97

98 for i in range(height):
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99 aa=canvas.create_rectangle(340,i*size,340+width,size*i+size,fill=color

[height-1-i],width = 0)

100 del aa

101 return color

102

103 def random_line(event):

104 x1=randint(0,300)

105 x2=randint(0,300)

106 y1=randint(0,300)

107 y2=randint(0,300)

108 canvas.create_rectangle(x1,x2,y1,y2,fill=f’#{randint(0,0xffffff):06x}’,

width=20)

109

110 def map(x, in_min, in_max, out_min, out_max):

111 if type(x)== int:

112 return int((x-in_min)*(out_max - out_min) / (in_max - in_min ) +

out_min)

113 elif type(x)==list:

114 y=[0]*len(x)

115 coef= (out_max - out_min) / (in_max - in_min )

116 for i in range(len(x)):

117 y[i]=int((x[i]-in_min)* coef + out_min)

118 return y

119

120 def thermal_color(x):

121 global l

122 j=interpolate_color2(x,int(min(x)),int(max(x)),l)

123 return j

124

125 def delete_lines(event):

126 canvas.delete(’all’)
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127 l=3,2,8,7

128 canvas.create_oval(l)

129

130 def draw_thermal(To):

131 global tt

132 #print("%7.3f" %(time.time()-tt),end=’ ’)

133 To=map(To,min(To),max(To),min(To),max(To))

134 #print("%7.3f" %(time.time()-tt),end=’ ’)

135 jj=thermal_color(To)

136 #print("%7.3f" %(time.time()-tt),end=’ ’)

137 jj_2 = cv2.resize(jj,(320,240))

138 return jj_2

139

140 def findCenter(contour):

141 i=0

142 cX = 160

143 cY = 120

144 max = 0

145 for c in contour:

146 area = cv2.contourArea(c)

147 if area < max:

148 continue

149 else:

150 max = area

151 M = cv2.moments(c)

152

153 cX = int(M["m10"] / M["m00"])

154 cY = int(M["m01"] / M["m00"])

155

156 return cX,cY

157
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158 def find_angle(x,y):

159 a=160/tan(55/360*3.1415)

160 b=120/tan(35/360*3.1415)

161 angle1 = -atan((160-x)/a)*180/3.1415

162 angle2 = atan((120-y)/b)*180/3.1415

163 #print("%5.1f %5.1f" %(angle1,angle2),end="\n")

164 return angle1,angle2

165

166 def calc_To():

167 global mlx90640To

168 global mlx90640

169 global x

170 global status

171 global oldStatus

172

173 mlx90640Frame = MLX90640_GetFrameData(0x33,oldStatus)

174 status=mlx90640Frame[833]

175 if status == oldStatus:

176 mlx90640Frame[833]=1-status

177 oldStatus=mlx90640Frame[833]

178 vdd = MLX90640_GetVdd(mlx90640Frame,mlx90640)

179 Ta = MLX90640_GetTa(mlx90640Frame,mlx90640)

180 TA_SHIFT=8

181 tr=Ta-TA_SHIFT

182 emissivity=0.95

183 MLX90640_CalculateTo(mlx90640Frame,mlx90640,emissivity,tr,mlx90640To)

184 return draw_thermal(mlx90640To)

185

186 l=create_spectrum()

187 draw_spectrum()

188 cap = cv2.VideoCapture(0)
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189 cap.set(3,320)

190 cap.set(4,240)

191 cap.set(cv2.CAP_PROP_BUFFERSIZE,1)

192 tt=time.time()

193 now1 = tt

194 im = 1

195 sum = 0

196 cntr = 0

197 MLX90640_setFreq(16)

198 sendSerial()

199 while cap.isOpened():

200 ret, frame = cap.read()

201 frame = cv2.rotate(frame,cv2.ROTATE_180)

202 frame = cv2.flip(frame,1)

203 now2 = time.time()-tt

204 #print("%7.3f" %(now1),end=’\t’)

205 try:

206 tem=calc_To()

207 except:

208 print("error")

209 cntr+=1

210 #exit(0)

211 #now2 = time.time()-tt

212 tem = cv2.cvtColor(tem, cv2.COLOR_RGB2BGR)

213 tem = cv2.rotate(tem,cv2.ROTATE_180)

214 sum = now2-now1

215 now1 = now2

216 if ret == True:

217

218 frame = cv2.vconcat((tem,frame))

219 cv2.imshow(’Live’, frame)
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220 kk1 = cv2.waitKey(1) & 0xFF

221 if kk1 == ord(’s’):

222 cv2.imwrite(’image’+str(im)+’.jpg’,frame)

223 cv2.imwrite(’temp_map’+str(im)+’.jpg’,color2)

224 cv2.imwrite(’thermal_pic’+str(im)+’.jpg’,tem)

225 im+=1

226 print(’saved’)

227

228 elif kk1 == ord(’q’):

229 break

230 else:

231 break

232 color = np.zeros((24,32,3),dtype=np.uint8)

233 for i in range(24):

234 for j in range(32):

235

236 if mlx90640To[i*32+j] > 128:

237 color[i][j] = [255,255,255]

238 else:

239 color[i][j] = [int(mlx90640To[i*32+j])*2]*3

240 color[i][j] = [int(mlx90640To[i*32+j])] #should be removed

241 #ze = frame()#(mlx90640To[0])

242 color2 = cv2.resize(color,(320,240))

243 color2 = cv2.rotate(color2,cv2.ROTATE_180)

244 color2 = cv2.cvtColor(color2,cv2.COLOR_BGR2GRAY)

245 _ ,th = cv2.threshold(color2,50,255,cv2.THRESH_BINARY)

246 th = cv2.dilate(th,None,iterations=5)

247 contour,_ = cv2.findContours(th,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

248 cX,cY = findCenter(contour)

249 #print(cX,cY)

250 ang1,ang2 = find_angle(cX,cY)
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251 print(int(ang1),end = ’ ’)

252 print(int(ang2))

253

254 cv2.drawContours(color2,contour,-1,(100,0,0),5)

255 cv2.circle(color2,(cX,cY),5,(255,0,0),-1)

256 cv2.imshow(’color’,color2)

257 #print(len(contour))

258 if serIs == True:

259 ser.close()

260 cap.release()

261 cv2.destroyAllWindows()

B.3 Arduino code for running the servos of frame

1 #include <Adafruit_PWMServoDriver.h>

2 #include <SoftwareSerial.h>// import the serial library

3 SoftwareSerial mySerial(9,10); // RX, TX

4 Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

5 long int meanX = 0, meanY = 0;

6 long t0;

7

8 void position(int commandX = 0, int commandY = 0) {

9 int x, y;

10

11 readAnlg(x, y);

12 static int roll = map(x, 0, 1023, 550, 2400);

13 static int pitch = map(y, 0, 1023, 550, 2120);

14 if (commandX == 0 && commandY == 0) {

15

16 if (abs(x - meanX) > 3)

17 roll -= (x - meanX) / 40;
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18 if (abs(y - meanY) > 3)

19 pitch += (y - meanY) / 40;

20 } else {

21 roll -= commandX;

22 pitch += commandY;

23 }

24 roll = constrain(roll, 550, 2400);

25 pitch = constrain(pitch, 550, 2120);

26 setXY(roll, pitch);

27 }

28

29 void setup() {

30 mySerial.begin(38400);

31 Serial.begin(38400);

32 pwm.begin();

33

34 pwm.setPWMFreq(50); // Analog servos run at ˜60 Hz updates

35

36 for (int i = 0; i < 100; i++) {

37 meanX += analogRead(A0);

38 meanY += analogRead(A1);

39 }

40 meanX /= 100;

41 meanY /= 100;

42

43 Serial.print(meanX);

44 Serial.print(" ");

45 Serial.println(meanY);

46 t0 = millis();

47 }

48
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49 void loop() {

50

51 char g;

52 int valX = 0, valY = 0;

53 while (mySerial.available()) {

54 g = mySerial.peek();

55 if ((g >= ’0’ && g <= ’9’) || (g == ’-’)) {

56 valX = mySerial.parseInt();

57 Serial.print(valX);

58 Serial.print(" ");

59 valY = mySerial.parseInt();

60 Serial.println(valY);

61

62 }

63 while (mySerial.available()) {

64 g = mySerial.read();

65 }

66 }

67 position(valX, valY);

68 setFrequency(50);

69 }

70

71 boolean setFrequency(int freq) {

72 static long lastT = t0;

73 int a = 0;

74 while ((millis() - lastT) < (1000 / freq)) {

75 a++ ;

76 }

77 lastT = millis();

78

79 }
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80

81 void setXY(int i, int j) {

82 i = constrain(i, 550, 2400);

83 int k = map(i, 550, 2400, 2400, 550);

84 pwm.writeMicroseconds(0, i);

85 pwm.writeMicroseconds(1, k);

86

87 j = constrain(j, 550, 2120);

88 int m = map(j, 550, 2120, 2120, 550);

89 pwm.writeMicroseconds(2, j);

90 pwm.writeMicroseconds(3, m);

91 }

92

93 void readAnlg(int& x, int& y) {

94

95 x = analogRead(A0);

96 y = analogRead(A1);

97 }

B.4 Co-simulation main code in Python

1 import time,threading,math

2 from dronekit import connect, VehicleMode, LocationGlobalRelative

3 import socket

4 opened_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

5 import geopy

6

7 # Set up option parsing to get connection string

8 import argparse

9 parser = argparse.ArgumentParser(description=’Commands’)

10 parser.add_argument(’--connect’)
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11 args = parser.parse_args()

12 import numpy as np

13 from geopy.distance import VincentyDistance

14 from geopy.distance import geodesic

15 import math

16

17 connection_string = args.connect

18 home = (37.6135,-122.357)

19 FOV = (55,35)

20 fireLoc = geopy.Point(37.61458,-122.35539)

21 print(’Connecting to vehicle on: %s’ % connection_string)

22 vehicle = connect(connection_string, wait_ready=True)

23

24 def fireAngle():

25 h = math.degrees(vehicle.attitude.yaw)

26 alt = vehicle.location.global_relative_frame.alt

27 lat = vehicle.location.global_relative_frame.lat

28 lon = vehicle.location.global_relative_frame.lon

29 origin = geopy.Point(lat, lon)

30 b = bearing(lat,lon,fireLoc.latitude,fireLoc.longitude)

31 bNew = -b+90

32 if(bNew < 0): bNew += 360

33 diff = abs(h-bNew)

34

35 if diff > 270: final = 360 - diff;

36 elif diff > 180: final = diff - 180

37 elif diff > 90: final = 180 - diff

38 else: final = diff

39

40 print("heading = %d, fireBearing = %2.2f, relative fire heading = %2.2f"

%(h,bNew,final))

116



41 dist =(geodesic((lat,lon),(fireLoc.latitude,fireLoc.longitude)).m)

42 distY = dist * math.cos(math.radians(final))

43 distX = dist * math.sin(math.radians(final))

44 xAngle = math.atan2(alt,distX)*180/3.14

45 yAngle = math.atan2(alt,distY)*180/3.14

46 print("distance to fire=%3.2f, distX=%3.2f, distY=%3.2f" %(dist,distX,

distY))

47 diff2 = bNew - h

48 x,y = findCameraSide(diff2)

49 xAngle = math.atan2(distX,alt)*180/3.14*x

50 yAngle = math.atan2(distY,alt)*180/3.14*y

51 print("xAngle =%3.2f, yAngle=%3.2f" %(xAngle,yAngle))

52 return xAngle,yAngle

53

54 def findFireLoc(xAngle,yAngle):

55 h = math.degrees(vehicle.attitude.yaw)

56 alt = vehicle.location.global_relative_frame.alt

57 lat = vehicle.location.global_relative_frame.lat

58 lon = vehicle.location.global_relative_frame.lon

59 origin = geopy.Point(lat, lon)

60

61 fireBearing = math.atan2(xAngle, yAngle) * 180 / 3.14 + h

62

63 #fireBearing += 90;

64

65 if fireBearing > 360: fireBearing -=360

66

67 distX = math.tan(math.radians(xAngle))*alt

68 distY = math.tan(math.radians(yAngle))*alt

69 print("calculated distX and distY= %3.2f %3.2f" %(distX,distY))

70 fireDist = math.sqrt(distX**2+distY**2)
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71 #fireBearing = math.atan2(distY, distX) * 180 / 3.14 + h

72 if fireBearing < 0: fireBearing += 360

73 elif fireBearing > 360: fireBearing -= 360

74 fireLocFound = VincentyDistance(meters=fireDist).destination(origin,

fireBearing)

75 print("Calculated fire bearing = %2.2f, calculated fireDist = %2.2f" %(

fireBearing,fireDist))

76 print("FireLoc = %1.3f %1.3f" %(fireLocFound.latitude,fireLocFound.

longitude))

77 return

78

79 def cameraView():

80

81 h = math.degrees(vehicle.attitude.yaw)

82 alt = vehicle.location.global_relative_frame.alt

83 fov_frwd = math.tan(math.radians(35/2)) * alt

84 fov_side = math.tan(math.radians(55/2)) * alt

85 lat = vehicle.location.global_relative_frame.lat

86 lon = vehicle.location.global_relative_frame.lon

87 origin = geopy.Point(lat, lon)

88 pf = VincentyDistance(meters=fov_frwd).destination(origin, h)

89 pb = VincentyDistance(meters=fov_frwd).destination(origin, h+180)

90 p1 = VincentyDistance(meters=fov_side).destination(pf, h-90)

91 p2 = VincentyDistance(meters=fov_side).destination(pf, h+90)

92 p3 = VincentyDistance(meters=fov_side).destination(pb, h+90)

93 p4 = VincentyDistance(meters=fov_side).destination(pb, h-90)

94 p = [p1,p2,p3,p4,p1]

95 side = []

96 for i in range(4):

97 side += [leftOrRight(p[i],p[i+1])]

98 #print("%1.6f %1.6f" %(p[i].latitude,p[i].longitude))

118



99 #print(side)

100 if max(side) == min(side):

101 print("fire detected")

102 else: print("No fire detected")

103

104 def leftOrRight(lineP1,lineP2):

105 #this function finds whether the point is on the left side of the

106 #line or on the right side by calculating the bearing of p1 to p2

107 # and p1 to point

108 b1 = bearing(lineP1.latitude,lineP1.longitude, lineP2.latitude, lineP2.

longitude)

109 b2 = bearing(lineP1.latitude,lineP1.longitude, fireLoc.latitude, fireLoc.

longitude)

110 if b1 - b2 > 180:

111 return "LEFT"

112 elif b1 -b2 > 0:

113 return "RIGHT"

114 elif b1 - b2 < -180:

115 return "RIGHT"

116 else:

117 return "LEFT"

118

119 def bearing(lat1,lon1,lat2,lon2):

120 lat1 = math.radians(lat1)

121 lon1 = math.radians(lon1)

122 lat2 = math.radians(lat2)

123 lon2 = math.radians(lon2)

124 dLon = lon2 - lon1;

125 y = math.sin(dLon) * math.cos(lat2);

126 x = math.cos(lat1)*math.sin(lat2) - math.sin(lat1)*math.cos(lat2)*math.cos

(dLon);
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127 brng = np.rad2deg(math.atan2(x, y));

128 return brng

129

130 def findCameraSide(diff2):

131 if diff2 < 0:

132 diff2 += 360

133 if diff2 < 180:

134 x = +1

135 else:

136 x = -1

137 if diff2 > 90 and diff2 < 270:

138 y = -1

139 else:

140 y = 1

141 return x,y

142

143 def get_distance_metres(aLocation1, aLocation2):

144

145 dlat = aLocation2.lat - aLocation1.lat

146 dlong = aLocation2.lon - aLocation1.lon

147 return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5

148 def oneHz():

149 cameraView()

150 threading.Timer(1,oneHz).start()

151

152 def send_to_FG():

153

154 #print("%.3f" %time.time())

155 p = vehicle.attitude.pitch*180/3.14

156 h = vehicle.attitude.yaw*180/3.14

157 alt = 50 + vehicle.location.global_relative_frame.alt
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158 lat = vehicle.location.global_relative_frame.lat

159 lon = vehicle.location.global_relative_frame.lon

160 # print("%.8f %.8f" %(lat,lon))

161 r = vehicle.attitude.roll*180/3.14

162 my_message = "%.2f,%.2f,%i,%f,%f,%i\n" %(r,p,h,lat,lon,alt)

163 byte_message = bytes(my_message,"utf-8")

164 #print(my_message+" %2.4f" %time.time())

165 opened_socket.sendto(byte_message, ("192.168.2.12", 5006))

166 threading.Timer(0.02,send_to_FG).start()

167

168 def arm_and_takeoff(aTargetAltitude):

169 """

170 Arms vehicle and fly to aTargetAltitude.

171 """

172

173 print("Basic pre-arm checks")

174 # Don’t try to arm until autopilot is ready

175 while not vehicle.is_armable:

176 print(" Waiting for vehicle to initialise...")

177 time.sleep(1)

178

179 print("Arming motors")

180 # Copter should arm in GUIDED mode

181 vehicle.mode = VehicleMode("GUIDED")

182 vehicle.armed = True

183

184 # Confirm vehicle armed before attempting to take offs

185 while not vehicle.armed:

186 print(" Waiting for arming...")

187 time.sleep(1)

188
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189 print("Taking off!")

190 vehicle.simple_takeoff(aTargetAltitude) # Take off to target altitude

191

192 # Wait until the vehicle reaches a safe height before processing the goto

193 # (otherwise the command after Vehicle.simple_takeoff will execute

194 # immediately).

195 while True:

196 #

197 print(" Altitude: ", vehicle.location.global_relative_frame.alt)

198 # Break and return from function just below target altitude.

199 if vehicle.location.global_relative_frame.alt >= aTargetAltitude *

0.95:

200 print("Reached target altitude")

201 break

202 time.sleep(1)

203

204 send_to_FG()

205 oneHz()

206 arm_and_takeoff(20)
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