
VIRTUAL MACHINE MIGRATION:

GREEDY HEURISTICS AND MATHEMATICAL MODELS

Charles Boudreau

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

December 2020

c© Charles Boudreau, 2021



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Charles Boudreau

Entitled: Virtual Machine Migration:

Greedy Heuristics and Mathematical Models

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Dhrubajyoti Goswami

Examiner

Dr. Dhrubajyoti Goswami

Examiner

Dr. Olga Ormandjieva

Supervisor

Dr. Brigitte Jaumard

Approved
Dr. Lata Narayanan, Chair of Department

20

Mourad Debbabi, Acting Dean

Gina Cody School of Engineering and Computer Science



Abstract

Virtual Machine Migration:

Greedy Heuristics and Mathematical Models

Charles Boudreau

Live Migration of virtual machines between different physical hosts is an important

process for datacenter management, essential for safeguarding hardware integrity and

controlling power consumption, among other functions, with no perceptible interrup-

tions for the user of the virtual machine. As the migration operation has a cost in

terms of power and service quality degradation, it is of interest to examine how to

best conduct multiple live migrations such that the total time needed to complete

all planned migrations is minimized. Scheduling of multiple VM migrations may

also take into account the risk of bringing the system to a state where all planned

migrations cannot be resolved due to deadlocks caused by resource dependencies.

In this work, we propose a set of solutions based on greedy heuristics for the VM

migration problem. We have selected four possible criteria to base scheduling deci-

sions on, and we evaluate the total migration time degree of completion of the planned

migrations next to a baseline algorithm. Additionally, we propose two decomposed

linear programming models intended for column generation solution: a time-based

formulation, followed by a precedence-based formulation. We suppose that these de-

composed formulations will lead to faster solution times over conventional, “compact”

formulations due to their structure permitting the elimination of a large number of

variables from explicit consideration when the continuous relaxation is solved with

column generation techniques.

iii



Acknowledgments

I would like to express my sincerest gratitude to my supervisor, Professor Brigitte

Jaumard, for her continued support during the course of my graduate studies. I

would also like to thank my parents for their support and encouragement.

iv



Contents

List of Figures viii

List of Tables ix

List of Acronyms x

1 Introduction 1

1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Datacenters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Migration Motivation . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Migration: pre-copy/postcopy . . . . . . . . . . . . . . . . . . 7

2.2 Different Problem Statements . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Problem Statement: Generalities . . . . . . . . . . . . . . . . 8

2.2.2 Initial & final states . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Initial state but no final state . . . . . . . . . . . . . . . . . . 9

3 Literature Review 10

3.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Intra-site Migration . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Cross-site Migration . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 Possible Solution: Decomposition Modelling . . . . . . . . . . 14

v



3.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Exact Modelling with a Precedence Graph . . . . . . . . . . . . . . . 20

3.4 Deadlocks in Generated Instances . . . . . . . . . . . . . . . . . . . . 22

4 Greedy Heuristics 23

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Onoue et al. (2017) . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Khodayar’s Algorithm (2019) . . . . . . . . . . . . . . . . . . 25

4.3 Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 General Greedy Framework . . . . . . . . . . . . . . . . . . . 26

4.3.2 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Impact of Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Numerical Results 32

5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Performance Criteria & Testing Environment . . . . . . . . . . . . . . 35

5.3 Comparison of Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Intra-Greedy Heuristic Comparison . . . . . . . . . . . . . . . 36

5.3.2 Best Greedy vs. Dependency-graph Heuristics . . . . . . . . . 39

5.3.3 Computational Times . . . . . . . . . . . . . . . . . . . . . . 40

5.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 ILP Models 43

6.1 Classical ILPs and their limitations . . . . . . . . . . . . . . . . . . . 43

6.2 Proposed Decomposition Models . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 List of Common Parameters and Variables of the two Models . 44

6.2.2 First Decomposition Model: A time-index model . . . . . . . . 45

6.2.3 An event-based model . . . . . . . . . . . . . . . . . . . . . . 49

6.2.4 Solution process . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusions and Future Work 56

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



List of Figures

1 Simple Example of a Deadlock . . . . . . . . . . . . . . . . . . . . . . 3

2 Attempt to Model OR Dependencies Using an AND-OR Graph . . . 21

3 Example of Issue with d=Dependency Assignment . . . . . . . . . . . 21

4 Onoue dependency graph creation, taken from [23] . . . . . . . . . . . 25

5 Percentage of total migrations treated through pre-processing . . . . 30

6 Comparison of Heuristics on 30 Server Dataset . . . . . . . . . . . . . 37

7 Heuristic Comparison for 200 Server Dataset . . . . . . . . . . . . . . 38

8 Comparing Best Heuristic with Baseline for 30 Server Dataset . . . . 39

9 Comparison of Best Heuristic with Baseline for 200 Server Dataset . . 39

10 Computational Times Comparison for Heuristics on 200 Server Dataset 40

11 Average Algorithm Time over All Datasets . . . . . . . . . . . . . . . 41

12 Spatio-Temporal Graph for VM . . . . . . . . . . . . . . . . . . . . . 46

13 Visualisation of Event-based Resource Constraint Tracking, Adapted

from [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

14 Solution Process for Column Generation and Branch and Bound . . . 54

viii



List of Tables

1 Possible Resource Values for Servers and VMs . . . . . . . . . . . . . 33

2 Range for Number of VMs in Each Dataset . . . . . . . . . . . . . . . 35

3 Migration Average Completion Rate for Each Heuristic . . . . . . . . 36

ix



List of Acronyms

ILP integer linear programming. 4, 10

MDG migration dependency graph. 25

MILP mixed integer linear programming. 13

QoS quality of service. 17

SLA service level agreement. 1

VM virtual machine. 1

x



Chapter 1

Introduction

1.1 General Background

Virtualization technology enables the partition of computing resources into separate

environments in order to allow multiple users to make use of the same shared physical

computing resources [32]. These separate environments, or Virtual Machines (VM),

grant each user an operating system and applications housed on the same machine

without mutually affecting each other. A development of the time-sharing approach,

virtualization would not come into wide usage until improvements in network band-

width would allow for the advent of Cloud Computing, in which vendors lease their

spare computing resources for customers to access through an Internet connection,

thus allowing users to make use of high-end hardware at a fraction of the price it

would take for them to purchase said physical computing resources.

A large concentration of virtual machines on one or over several datacenters ne-

cessitates methods for their management. Virtual Machine migration allows the re-

deployment of Virtual Machines from one physical machine to another, in most cases

without users being aware. Possible use cases include rebalancing VM load over the

servers in order to preserve hardware integrity and Service Level Agreements (SLA),

clearing a server on the verge of failing or scheduled to go down for maintenance, or

optimizing power and network utilization.

VM migration can be live or non-live. In non-live migration, the VM is either

suspended or shut down, and then migrated to its destination in its entirety. The

migrating VM is thus unavailable to the user during the process. Live migration,

1



by contrast, allows the virtual machine to stay active and available during the al-

most totality of the migration process, being shut down for a small period of time,

imperceptible to users in most cases, thus allowing users to continue to make use

of it. Several different methods of achieving live migration exists, which have their

advantages and faults concerning migration time and service interruption.

The performance of a migration operation is evaluated along several criteria, chief

of which is the total migration time, or makespan, of the migration [32]. Beyond this,

migrations incur other side-effects that a good migration should seek to minimize.

Among these are Downtime, or the amount of time during which the virtual machine

is out of service, Total Network Traffic, or the bandwidth usage over the network, as

bandwidth used for the purpose of migration cannot be used for services which may

require it, and Service Degradation, or how migrations affect other running services.

1.2 Project

This study concerns the elaboration of migration scheduling schemes in order to fulfill

certain objectives. Said objectives may vary from obtaining a desired final placement

of virtual machines from a given initial placement in the shortest time possible, or

to dynamically find a new placement for the VMs in the given network that would

fulfill certain conditions such as minimizing power consumption or improving service

quality. This process assumes that the migrations are online and providing services to

end users, and as such the migrations must be performed with minimal interruption

to ongoing services. This requirement for live migration thus complicates the task by

adding requirements to maintain a certain level of service quality for the duration of

the move.

One issue to look out for during the migration process is the possibility of dead-

locks. A ”deadlock” occurs when a group of VMs are unable to move to their assigned

destination due to a lack of available resources causing a cyclical dependence. Such

cases, if present, essentially render the problem of devising a migration schedule

impossible without organizing a temporary migration, where one of the deadlocked

machines is temporarily moved to a server with spare resources in order to undo the

deadlock and allow the planned migrations to complete.

Figure 1 show a very simple case of a deadlock. Here, both VM1 and VM2 are

2



Figure 1: Simple Example of a Deadlock

unable to reach their destination due to a lack of available resources for both servers.

The only way to remedy this state would be to either move VM3, or move VM1 or

VM2 to another server in the network, long enough for the other to complete its

migration and free up the necessary space.

Deadlocks can be classified into two types, ”direct” or ”indirect”, based on how

they arise [28]. A direct deadlock is present in the migration problem from the start,

whereas an indirect deadlock comes to be as a result of poor choices made during the

migration process. While there is no way to prevent the former, which can only be

resolved through a temporary migration, the latter can be avoided provided a proper

migration order is selected. The ability to avoid indirect deadlocks must therefore be

considered when designing heuristics in order to ensure all possible migrations can be

scheduled.

Where heuristics are concerned, there is also the possibility that a deadlock may

occur as a result of a poor choice regarding migration order. While determining the

3



migration order, heuristics would need to find some way to avoid these ”indirect”

deadlocks, so as to avoid having to fix them down the line.

Another issue to address is the scalability of the solutions presented. As covered

in the literature review, the majority of the solutions presented for the VM migration

problem utilise either mathematical models or metaheuristics. We are interested in

solutions that can be implemented in order to solve the problem in real time, so we

need a solution whose execution time is short and scales well as the size of the problem

increases. Mathematical Programming models are too slow to provide solution on-

line, and while metaheuristics are faster than the latter, they are still not quite fast

enough for this purpose. For this reason, we look into the use of greedy heuristics to

solve the VM migration problem as their simplicity allows them to provide solutions

relatively quickly even as the problem size increases.

Beyond the elaboration of greedy heuristic solutions, this study also concerns the

creation of new mathematical programming models for the VM migration problem.

While Integer Linear Programming (ILP) models cannot be used for on-line problem

resolution, as previously stated, they nevertheless have value in that the solutions

they provide can be used as a benchmark to evaluate the quality of other solutions.

As the ILP models surveyed in this work are all conventional, ”compact” models, we

look into ”decomposed” ILP models, who are structured in a manner that allows a

technique knows as ”column generation” to obtain a solution from the model faster

than could be obtained by solving a more traditional formulation.

1.3 Contributions

We propose a set of greedy heuristics that aim to complete all scheduled migrations

and avoid creating deadlock situations in the process, while keeping total migration

time as low as possible. We use the result of the ILP model of Jaumard et al. [17]

on a set of test problems to evaluate the performance of our heuristics. Experimental

results show inconsistent performance compared to benchmarks and failure to avoid

indirect deadlocks in some problems.

We also present two new large scale optimization models for the VM migration

problem. The first one is a discretized, time-based model, and the second one, a

model based on precedence relations between planned migrations. These decomposed

4



models are created for use with column generation, which can exploit the structure

of a decomposed model in order to solve it faster than a conventional, ”compact”

model. As the time to solve these models can be quite long, improvements in the

solution time are still valuable, even if these models will still not be fast enough for

on-line solution generation.

1.4 Plan of the Thesis

The thesis is organized as follows. Chapter 2 covers the technical background for the

problem of Virtual Machine migration. Chapter 3 collects the literature covering the

research problem of the thesis. Chapter 4 details the heuristics used to attempt to

solve the migration problems. Chapter 5 shows the results of the heuristics on a set of

test problems. Chapter 6 presents a set of alternate modelings of the VM migration

problem. Chapter 7 presents the conclusions and future research directions.

5



Chapter 2

Background

2.1 Datacenters

2.1.1 Migration Motivation

Virtual machine migration can be used to reduce power consumption in a datacenter

by more efficiently distributing VMs in the system. One of the most significant sources

of waste in such datacenters is the continued operation of lightly-loaded servers [12].

Redistributing VMs within the network would reduce power consumption by allowing

more servers to be unloaded and powered off. Reduction of power consumption would

also consequently lead to lowered carbon emissions. Such consolidation may also

increase service quality, in the case of multiple VMs needing to communicate with

each other, by reducing the distance between them.

Similarly, virtual machine migration allows for the continued use of a VM located

on a server on the verge of failing or scheduled to go down for maintenance. By moving

VMs to other servers through live migration, it is possible to perform maintenance

on a physical machine without adversely affecting user experience. Thus, over time,

maintenance operations can be performed on an entire datacenter in such a manner

that is imperceptible to users.

VM migration is also used for load balancing within a system. Load balancing

seeks to redistribute VMs within a network in order to promote access to resources

as well as performance [6]. The aim is to minimize the number of both underloaded

and overloaded servers, as the former are an inefficient allocation of power while the

latter may potentially compromise service quality and hardware lifespan [32].

6



In cases where VMs can travel across multiple datacenters, moving VMs from one

site to another can further improve performance [32]. For example, moving a VM to a

datacenter closer to its user can improve performance by minimizing latency. The VM

may also need to move again if the user is in motion, shifting to the closest machine

as the user moves. Alternately, it may be advantageous to move VMs to locations

where it is night time or the weather is cooler, in order to take advantage of the colder

weather of these locations to regulate equipment temperature, thus saving power by

relying less on powered means of heat control such as fans or air conditioning.

2.1.2 Migration: pre-copy/postcopy

The migration of a virtual machine from one host to another with no or very little

interruption perceptible by the user can be handled in several ways, chief of which

are the following.

The pre-copy approach migrates the VM’s contents while the VM is still in opera-

tion. In the event that a transferred item has been modified on the original VM (the

”page” has been ”dirtied”), the modified content is also sent during the course of the

migration operation. This process continues until either it reaches a previously deter-

mined iteration limit or the remaining content to be transferred is determined to be

small enough. Then, the VM is halted and its processor state as well as the remaining

unsent data is copied over to the migration’s destination before being restarted [16].

The post-copy approach essentially reverses the steps in the pre-copy scheme.

Here, the machine’s CPU state is halted, transferred and restarted first, and memory

transfer follows. This way, each memory page would be transferred at most once,

contrary to pre-copy, where a page may be moved multiple times if it is faulted

during the migration process. However, post-copy carries the risk that an as-of-yet

untransferred page could be faulted, thus needing to go through the network to update

it, see, e.g., [16].

Finally, Hybrid Copy acts as a compromise between the two previously-mentioned

approaches. Hybrid Copy first begins by copying memory pages over to the destina-

tion server in much the same way pre-copy does, but only copies the most frequently-

used pages. Once this is done, the VM state is transferred and the rest of the migration

process resembles the post-copy method. Hybrid copy thus attempts to minimize the

drawbacks of both previous methods by transferring a smaller amount of memory in

7



the ”pre-copy” phase, and minimizing potential page faults in the ”post-copy” phase

by having transferred the most often-consulted pages beforehand.

2.2 Different Problem Statements

2.2.1 Problem Statement: Generalities

In this thesis, we investigate the VM migration problem stated as follows. Consider

a could infrastructure, i.e., a data center with a given set of servers (S), indexed by

sv. Each server hosts a given number of VMs. Let V denote the set of VMs, indexed

by vm.

Our objective is to find an order of migrations that allows us to take a given ”cur-

rent” placement (PLc) and bring it to a desired ”target” placement (PLn), where

”placement” refers to an assignment of VMs to servers in the network (i.e., datacen-

ter). At the end of the migration process, all VMs must be in their designated server

as detailed by the final placement, and this state must be reached in the shortest time

possible. Each VM requires the use of a certain number of processors (reqcpu
vm ) and

units of RAM (reqram
vm ) in order to fulfill its duties. Servers are limited in how many

VMs they can accommodate following their own resources, for both thier number

of processors (Ccpu
sv ) and their RAM (Cram

sv ). Here, VM resource requirements are

considered static and do not vary with workload.

This work concerns the intra-DC case specifically, which means all servers are

part of the same datacenter. In addition, no special constraints apply to the links

connecting the servers together, so the migration time of an individual VM is primar-

ily a function of it’s RAM requirements, and migrations are assumed to have their

own dedicated bandwidth, so no other function of the datacenter can interfere with

migration or otherwise alter migration time.

2.2.2 Initial & final states

In this case, both an initial state and final state are given, and the model or heuristic

is tasked with moving VMs until the VMs are hosted in their assigned servers as

designated by the Final state. The model or heuristic moves towards this final state

while trying to minimize makespan as well as any other constraints imposed upon it

8



(Network Usage, Power Consumption, etc.).

2.2.3 Initial state but no final state

In this case, there is a given initial state but no final state, and the algorithm is

tasked with performing migrations until the system state fulfills a given goal. VMs

could be moved around to fulfill goals such as reducing power consumption through

consolidation onto as small a set of active Servers as possible. In such a case, the

total migration time could be controlled by adding a cost or penalty to moving VMs

around, thus discouraging frivolous moves. Other goals such as load balancing could

be fulfilled by moving VMs until the number of Over and Under-utilized Servers has

been minimized.

9



Chapter 3

Literature Review

We present a review of studies covering solutions to the virtual machine migration

problem. Section 3.1 covers solutions that employ mathematical models such as ILP

models to derive solutions. Section 3.2 covers a variety of heuristic solutions, both

classical and meta-heuristic ones, as well as other techniques such as reinforcement

learning. In the last section of this chapter, we explain why representing precedence

relations faithfully using a graph is difficult, and why many methods that make use

of such a graph choose to simplify the precedence relations that bind the VMs.

3.1 Exact Methods

Methods using different types of mathematical models, which we refer to as ”exact

methods”, are of interest first and foremost as a means of evaluating the performance

of other types of solution methods such as heuristics. They are not viable for solving

problems in a practical context due to poor scaling with problem size. We next

distinguish the studies focusing on intra-site vs. cross-site, although models are not

very different.

3.1.1 Intra-site Migration

Ghribi et al. [13] propose a mathematical model that combines new VM allocation

and VM consolidation, seeking to allocate VMs while also minimizing the number of

migrations and power consumption. Power consumption is indirectly minimized by

attempting to maximize the number of ”idle” servers, or servers that are not currently

10



hosting a VM. The authors compare the performance of their model with an energy

consumption-conscious variant of the Best Fit algorithm. Results show that the

exact algorithm uses anywhere from 10-50% less servers than the Best-Fit algorithm,

depending on dataset characteristics. When comparing the combination of allocation

and migration algorithm with allocation alone, the former allows the switching off of

10-20% more servers. Moreover, both exact algorithms show consistent improvement

in energy savings over best fit. Unfortunately, the convergence time of the exact

methods grows exponentially with the number of servers, growing past acceptable

standards for practical applicability when trying to consolidate in a network of 20

nodes hosting 80 VMs, which limits their practicality

Onoue et al. [23] propose an ILP model for migration scheduling in addition to a

heuristic algorithm. The model seeks to minimize both overall migration time (i.e.,

makespan) and number of migrations, while respecting constraints pertaining to the

completion of all underway migrations, respecting resource capacities on the servers

and the network itself, and ensuring each VM is only deployed on 1 server at any

given time. Results show that, on a two eight-core 2.90 GHz processors and 64 GB

RAM, the ILP was often unable to determine a solution in a reasonable amount of

time. In some cases, the ILP could not resolve at all before reaching its time limit,

which was set at 1 hour.

Nasim et al. [21] present a mathematical model for VM migration that also takes

into account uncertainties in regards to machine resource requirements and power

consumption. The authors note that most other models assume input is known

exactly, when this may not be the case in practice. Power consumption models,

VM resource demand and migration overhead among others may vary and render

an ”optimal” solution that assumes input to be known and fixed as unfeasible. The

model, based on Robust Optimization, assumes inputs are not exactly known, but

fall within a given set of bounds. Results compare the performance of the model for

various data instances where uncertainty may lie in one of the aforementioned inputs

and determine the tradeoff between power consumption and probability of violating

the constraints. By adjusting the model’s level of protection against uncertainty, it

is possible to reduce the probability of an SLA violation from 50% at 0 protection to

less than 1 %. This reduction of SLA chance comes at a power cost that is variable

according to the degree of uncertainty in the inputs .

11



Xu et al. [31] propose an optimization model for VM migration that pays special

attention to the costs incurred by deciding to migrate. The authors note that many

other power-aware VM migration schemes seek to save energy by minimizing the

number of migrations overall, without taking into account migration costs which can

vary based on individual machines and circumstances. The authors also take into

account VM requirements that can change from one instance of time to another, and

thus need to address sudden violations of server capacity. To this end, they propose

a model whose objective is to minimize the number of active servers operating at any

instance of time, subject to constraints pertaining to server capacity, SLA violations

and controlling whether or not to migrate a VM based on its remaining execution

time.

Saber et al. [26] examine the use of optimization solvers such as CPLEX applied

to VM Migration problems, with special attention given to multi-objective optimiza-

tion problems. The authors note that the so-called ”best” placement for the VMs in

a datacenter may depend on what objective is being pursued, as choosing to optimize

either power consumption or reliability of services may lead to different outcomes.

Their model, in addition to having the usual constraints in place to make sure in-

dividual VMs can only exist in one place at any instance of time, can only change

location under specific conditions and must respect the resource capacities of the

server they are currently hosted on, also feature constraints relating to the services

provided by a VM. VMs of the same service should be spread out for replication

purposes, and some VMs of different services may need to be within vicinity of each

other due to some dependence. The model has three different objectives to consider:

power, migration and reliability cost. Results show that even for single objective

problems, the solver struggles to deliver solutions in an acceptable timeframe once

larger instances are reached. In order to solve single and multi-objective problems in

a timely manner, the problem needs to be relaxed by increasing the optimality gap

or limiting the directions in the search space to explore.

Jaumard et al. [17] propose a sequence-based model for VM migration and com-

pare its performance to a time-indexed formulation. The advantage of this sequence-

based formulation over its time-based peer lies in the overall lower number of variables

required in order to express the problem, due mainly to not having to explicitly model

the state of the system at each possible time index, where the number of relevant

12



time indices can be quite large, depending on the problem. Results confirm that the

sequence-based model achieves superior performance to the time-index model, finding

the optimal makespan for all problems in the test dataset while maintaining a lower

computation time in all cases. The model also allows for intermediate migrations

to be conducted, but results on the data show that it rarely improves the optimal

solution, although the impact of allowing these migrations on total computation time

is minimal.

3.1.2 Cross-site Migration

Liu et al. [20] present an ILP model for the VM Migration problem, focusing on

cross-site VM migration rather than the usual intra-site migration. The authors pay

special attention to the possibility that a substandard migration sequence has the

chance to cause congestion along the links between sites. The model seeks to max-

imize the number of planned migrations to be completed while taking into account

the available capacity of the inter-network links, as well as considering any inter-

VM communication that could further reduce the resources available for migration.

The model does not allow for more than one migration per step, however, and the

authors acknowledge that the execution time for the Mixed Integer Linear Program-

ming (MILP) problem is too slow for on-line problem resolution (taking 94.92 seconds

to solve a problem with 4 sites and 7 migration requests). Consequently, the authors

also propose a heuristic based on the MILP that performs almost as well while keeping

complexity and computational times down.

Gupta et. al. [15] investigate the effects of VM migration in a cross-site situation,

where each site is subject to different rates concerning power consumption, varying

on an hourly basis. The authors create a model for VM migration that attempts

to exploit these spatial and temporal differences in energy prices through plotting

migrations over a period of several hours, while also taking into account the costs

incurred by performing these migration operations. The model for the total power

consumption of the network takes into account the power consumption of the servers,

racks and migrations. The power consumption of the servers scales with their VM

load, that of the racks scales with the number of non-idle servers, and for migrations,

power consumption scales with the total amount of data transferred. Results show

that the migration scheme offers savings from 10 to 25 % over a 4-hour exercise. But

13



the model unfortunately does not scale up to determine performance over a 24-hour

period.

3.1.3 Concluding Remarks

Among the models surveyed, we observe that all models have constraints relating

to assignment of VMs (a VM may only be assigned to one server at any time) and

respecting server or datacenter resource capacity constraints. While the end goal is

generally stated to reduce energy consumption, some objective functions simply try

to minimize active servers while others attach a power cost to states and actions in

the model. Among models that implement the latter approach, the majority agree

on the power cost of a server scaling in some way with the number of VMs housed on

it. Models generally differ in constraints in order to fulfill specific subgoals, such as

considering power limits for individual servers, inter-VM communication or service

spread over a network.

The proposed ILP models reviewed are all ”compact” , where the model was

created to represent the problem with as few variables as necessary. Typically, this

is desirable, as the lower number of variables leads to a less complex model that

is easier to optimize. Conversely, a decomposed model has more variables than an

equivalent compact formulation, but, paradoxically, it’s structure may allow us to

ignore many of these extra variables and lead to faster solution times than the compact

formulation. None of the surveyed references consider decomposition models for use

in, e.g., a column generation solution scheme. Decomposition models are interesting

in that they may result in more scalable models that their ”compact” counterparts.

In Chapter 6, we propose two types of decomposition models.

3.1.4 Possible Solution: Decomposition Modelling

We look into decomposition modeling in hopes that, by elaborating such a model

for the VM migration problem, we can generate solutions faster than what would

be possible with the previously established compact formulations. A decomposed

model is an ILP model that takes a form similar to Dantzig-Wolfe decomposition,

whether it was originally conceived this way or was created through a transformation

of a compact ILP. The decomposed model is split into a Master Problem and one or

14



several subproblems, also known as pricing problems. The appeal of this formulation

over the compact model is that it allows us to cut down the number of considered

variables to a smaller, more meaningful subset [10]. Columns are added to the basis

in a manner reminiscent of the Simplex method, but these columns are obtained

through the optimization of the pricing problems. Once none of the subproblems can

be further optimized, the algorithm halts.

3.2 Heuristics

Onoue et al. [23] introduce, in addition to the optimisation model stated above, a

heuristic algorithm for virtual machine migration based on a graph seeking to model

dependencies between the VMs in the system. The modeling of the full dependency

graph begins with the creation of small dependency graphs for each VM to be mi-

grated, an edge from that VM to the set of VMs currently residing on its destination

is added if it is determined that the VM considered cannot migrate before at least

part of the set. All these smaller dependency graphs are then assembled into a larger

one representing the problem in whole. The authors use this dependency graph to

calculate each VM’s migration weight, or priority based on number and size of mi-

grations that depend on it. The proposed algorithm greedily selects eligible VMs

based on their migration weights in descending order. The dependency graph is up-

dated following every finished migration. Results show that, when compared to a

simple greedy heuristic that selects migrations based on time to complete and the

Optimization model mentioned in the previous section, the dependency graph-based

heuristic solves every problem in the given set, almost always outperforming the sim-

ple heuristic, and is able to find a solution for problems on which the optimization

model had timed out, taking a few seconds at most. The dependency graph used in

this solution does not exactly model the dependency relations between the VMs, only

modeling AND-type relations and treating OR-type dependencies and AND-types.

This is further discussed in section 3.3.

Jeiroodi [18] proposes several improvements to the algorithm proposed by Onoue

et al. [23]. One of these improvements involves the selection of servers to act as

temporary hosts in the event of an intermediate migration. The proposed algorithm

uses a formula based on the available resources of the server in both the initial and

15



final configuration in order to select servers for intermediate migrations while mini-

mizing the chance that the migration will be delayed or blocked before being engaged.

Another proposed improvement is in enabling the adjustment of the timing of inter-

mediate migrations according to network load, in order to allow users to choose to

optimize either makespan or service quality by adjusting the maximum threshold for

network load under which intermediate migrations may go forward. Results show that

the proposed improved algorithm can significantly reduce the number of intermediate

migrations conducted in order to solve the migration problems, and thus make the

migration more power efficient, while remaining competitive with Onoue et al. [23]’s

algorithm in terms of makespan.

Gilesh et al. [14] propose a heuristic algorithm for the purpose of consolidat-

ing VMs in such a way as to admit all incoming VMs into the system, based on a

Simulated Annealing (SA) meta-heuristic. As such, the exact final assignments are

not given beforehand but determined at runtime, so long as they fulfill a given goal

(in this case, allow all entering VMs to be hosted somewhere in the system. The

algorithm works by performing perturbations on the current assignments, or mov-

ing VMs around if said move is deemed desire able enough, and either accepting

the resulting assignments if they improve the objective value, or possibly accepting

the assignments based on probability if they do not. The current ”temperature”

is then updated based on a given cooling rate value, and this process repeats un-

til a given temperature threshold is reached. The authors compare the Simulated

Annealing-based parallel migration scheme to a sequential migration model and a

parallel migration model elaborated by Song et al. [27], and find that their SA-based

algorithm outperforms the sequential algorithm by a factor of up to 7 and the parallel

one by a factor of 3 when considering a high number of migrations.

Qi et al. [24] present a model for energy consumption of VMs as well as a heuris-

tic method to apply the principles of the model in a reasonable time. The model

breaks down performance of the datacenter into three key areas: Energy consump-

tion (including VMs, physical machines and switches), downtime, or access time while

migration is in progress, and resource utilization, then tries to optimize these three

areas. The heuristic based on the model is a genetic algorithm based on the Non-

dominating Sorting Genetic Algorithm III (NSGA-III) proposed by Deb et al. [8] The

algorithm sets the ”scheduling strategies”, or final VM placements, as ”genes”, and

16



fitness is evaluated through a weighted sum of the three components of the optimiza-

tion model’s objective function. The algorithm then performs crossover and mutation

operations for a given number of iterations, and finally a best solution is selected, ac-

cording to a weighted value based on the three previously-mentioned criteria. Results

show that, compared to a scheduling method based on shortest paths and another

Energy-aware Scheduling Method (ESM), the author’s heuristic performs better in

all areas, significantly so when compared to the benchmark.

Nazir et al. [22] propose a heuristic for VM migration heuristic with emphasis on

maintaining Quality of Service (QoS) as to fulfill previously-agreed to SLAs . The

authors present a scheme for both VM placement and migration, handled through

a broker which receives user requests and assigns VMs to Servers accordingly. For

placement, VMs are greedily assigned to hosts based on estimated power consumption,

provided they do not put the host into a critical state. For migration, VMs in any

host considered overloaded are offloaded into preferably underutilized hosts, then

the algorithm searches for pairs of underutilized hosts to move VMs from one host

to the other in an attempt to shut down as many PMs as possible. VMs are not

moved if they are expected to finish their tasks within a certain delay. Performance

evaluation is done along five main criteria: power consumption, number of migrations,

Millions of Instruction per Second, or MIPS, which determines length of execution for

a task, SLA violations, measured in terms of provided vs. requested MIPS, and Task

Execution time. When measured against the NPA and DVFS policies, the proposed

QoS-MMP algorithm offers less energy consumption, migrations and SLA violations.

Kanniga Devi et al. [11] present an algorithm for load balancing with particular

attention to network constraints, in addition to a load monitoring algorithm that

minimizes the query time through leveraging dominating sets. The authors note that

many VM migration algorithms do not focus on network level resources and aim to

resolve this by proposing an algorithm for load balancing that models the network of

physical machines using a graph. The ST-LVM-LB algorithm handles load balancing

by categorizing PMs into overloaded and underloaded sets, finding neighboring pairs

that come from different sets and splitting the load difference by moving VMs from

a server in the overloaded set to one in the underloaded set. In the event that

there remains some servers in different categories that are not adjacent, paths are

calculated between these remaining PMs and migrations executed. The proposed

17



algorithm, called ST-LMV-LB, outperformed the other two benchmark algorithms

(DMA and Sandpiper) [19] [30] in total migration time, migration cost and network

overhead.

Rahmani et al. [25] have devised an algorithm for VM migration that takes into

account sudden fluctuations in workload that may affect the performance of the sys-

tem. As these sudden bursts of activity can be short-lived, it becomes important to

distinguish whether a change of state warrants a migration or not. The authors pro-

pose an algorithm to determine both the opportune time to migrate and the manner

in which it is conducted. They do this by looking beyond the average load of a Server

in the present time, but also looking at a weighted sum of both a current Server’s cur-

rent load and it’s average load in the past. This value is used to determine if a Server

is over or under-loaded, and these states are then used to determine how migrations

are carried out, with the assumption that the algorithm would be less reactionary

and thus make moves only when necessary. Results show that the Burst-conscious

algorithm, when compared to algorithms that are sensitive to workload explosions,

performs less migrations and suffer less Service violations, while maintaining compa-

rable power consumption, showing that it is more efficient.

Basu et al. [4] propose an algorithm for VM migration based on reinforcement

learning. The authors argue that the myopic nature of greedy heuristics makes them

ill-suited to dealing with dynamic workloads, and that a reinforcement learning-based

solution would be more adaptable. The solution proposed, contrary to other proposed

solutions using reinforcement learning, is both scalable in real time and does not need

extensive training. The algorithm proposed, known as MEGH, chooses how to con-

duct migrations by attempting to minimize a cost function predicting the cumulative

cost of the move into the future. Estimations of future cost are rough at the start,

but are further revised with each new iteration. Results show that MEGH outper-

forms competing Reinforcement Learning solutions in terms of cost and number of

migrations on different sets of planned workloads.

Tian et al. [28] propose a heuristic algorithm that combines a method to avoid

unnecessary deadlocks by looking ahead with a nature-inspired metaheuristic called

Chicken Swarm Optimization, for the purpose of determining placements that would

provide savings in power consumption. In CSO, the solutions, in this case, place-

ments, have their fitness evaluated and are classified as roosters, hens and chicks,

18



which determines where they can search for new solutions. New generations of solu-

tions are thus generated and evaluated until the algorithm terminates. The authors

also attempt to prevent potential deadlocks through the addition of an algorithm

that checks whether a placement would result in a deadlock if they tried to move to it

from the initial placement, and alter target Servers for VMs that cannot reached their

original target. Results show that the Chicken Swarm Algorithm obtains faster con-

vergence on both synthetic and real-world datasets, over similar deadlock-avoidance

algorithms.

3.2.1 Concluding Remarks

In the works involving heuristics reviewed above, we note that the problem state-

ment for the VM migration problem varies greatly. One example of this variation

lies whether or not the resource demands of the VM are static or dynamic. Some

of the works [25] [4] consider the resource requirements of the VMs to vary along

with their workload over the course of the exercise while other formulations have re-

source requirements fixed. Performance evaluation also varies greatly, as the works all

have different valuations for execution time, power consumption and SLA violation

management. Some works evaluate solutions based on how quickly a desired state

is reached, whereas others have a fixed period of time during which the algorithm

must make moves to minimize the power consumption, as determined by the authors’

power model, over the period of the experiment. These differences in problem state-

ment definition make it difficult to compare the different algorithms amongst each

other.

Many of the works use a generated dataset, with the dataset that was used in

the experiments not available for consultation, while the algorithms used for the

generation are more often provided, though not always. There also seems to not be

a set standard for the parameters of the VMs and servers of the dataset, although

Amazon EC2 is referenced somewhat frequently when referring to VM parameters.

Conversely, many of the works that do provide links to their data have a problem

statement on our own, usually concerning the performance evaluation over a set period

of time given a trace of workloads, rather than trying to bring the system a desired

state in a minimal amount of time, as is our case. In these cases, Cloudsim is often

mentioned as the simulation environment, with the traces provided by Planetlab.

19



3.3 Exact Modelling with a Precedence Graph

At the start of this project, we originally attempted to present a dependency graph-

based algorithm similar to the one in Onoue et al. [23], with the idea that we would

modify the graph to more accurately reflect the dependency relations between the

VMs by using an AND-OR graph similar to [1], but we had to abandon this approach

due to difficulties with designing and implementing such a graph. We detail below

why creating an exact modeling of precedence relations is not a trivial task.

The two main reasons it is difficult to obtain an exact modelling of the dependen-

cies of the VMs using an AND/OR graph is the potentially large size of the generated

graph and the potential appearance of unforeseen dependencies in the future, after

the initial generation of the dependency graph.

First, We had thought to model VM dependencies using a graph similar to [1],

where OR nodes would represent VMs and AND nodes act as ”aggregator” nodes

used to represent dependency on a set of VMs. The issue with this modelling is

that the total number of nodes in such a graph is potentially exponential. While the

number of OR-nodes is the same as the number of VMs in the system, the number

of AND-nodes depends on the number of potential choices to be made. For example,

say a VM4 needs two of VM1,VM2 or VM3 to have moved in order to finish it’s

migration, as shown in Figure 2. On the dependency graph, this would need to be

represented by adding three AND nodes: one for possibility {VM1, VM2}, one for

{VM2, VM3} and one for {VM2, VM3}
Second, our problem differs from the one portrayed in [1] in that there are depen-

dencies that may arise in the future that need to be accounted for. For example, see

Figure 3. Server 1 containing an outgoing VM1 and has two incoming VMs: VM2

and VM3. There is enough space for one of VM2 and VM3 but not both, so long as

VM1 has not moved.

If we were to construct the dependency graph at the beginning of the problem,

before any move has been made, we would not indicate that VMs 2 and 3 have any

dependencies, as they are both able to be scheduled at this point in time. If we were

to choose one to execute, such as VM2, then the dependency graph would then have

to be modified, as VM3 now depends on the exit of VM1 to be able to be scheduled.

As such, the utility of a given graph modelling would cease to be accurate after each

”round” of migrations. In order to remedy this, we could generate a new dependency

20



Figure 2: Attempt to Model OR Dependencies Using an AND-OR Graph

Figure 3: Example of Issue with d=Dependency Assignment

21



graph for each new move, adding to the algorithm’s complexity, or adopt a more

conservative approach by indicating a dependency on VM1 for both VMs 2 and 3.

This approach is used by Onoue et al. [23], and compromises on the accuracy of the

represented precedence relations in favor of producing a relatively simple model that

is much easier to implement. We could also address the case brought up by Figure

3 by choosing either at random or through some other selection process which VMs

have dependencies and which do not. This simplifies graph building, but carries the

risk of creating a graph that could lead to a deadlock, where an alternate choice would

lead to a deadlock-free graph.

3.4 Deadlocks in Generated Instances

The migration problems used for testing the performance of the heuristics presented

in this work, as well as the methods presented in [18] and [17], are synthetic problems

created via the generator we elaborated in [5]. The generated dataset is detailed

further in Chapter 5. We designed the generator such that, for most of the available

scenarios used to generate the problems’ final state, this final state is generated with

the initial state as a base by moving VMs around one-by-one while ensuring that

the capacity constraints of the servers are respected at all times in order to ensure

that the final state generated is reachable under the constraints of the problem. As

such, ”direct” deadlocks will not be present in most of the generated problems, and

so intermediate migrations should not be necessary to solve these. One of the scenar-

ios used in the dataset was designed to move the VMs without respecting capacity

constraints in between the initial and final state in order to generate problems with

”direct” deadlocks, however results from Jaumard et al. [17] show that doing so is

difficult, short of creating problems in which the servers are so heavily loaded there

is no spare space to conduct any migratios.

22



Chapter 4

Greedy Heuristics

4.1 Motivation

As discussed in the literature, solutions based on meta-heuristics are often chosen

to solve the VM migration problem, often preferred over classical, greedy heuristics.

Despite this, we have elected to elaborate solutions based around greedy heuristics

due to concerns about how computation time scales with problem size, having in

mind the need of real-time scalable algorithms. As we are interested in solutions

that can be applied on-line, it is crucial for us that the solution method scales well

as the problem size increases. While meta-heuristics scale better than ILP models,

their computation time is still too long for them to be useful in a practical, on-line

scenario. We have therefore chosen to prioritize simpler solutions as we need them to

be as fast as possible.

The two dependency graph-based solutions presented in 4.2 make use of a sub-

algorithm to break up any deadlocks encountered during the migration process by

organizing intermediate migrations to break resource dependency cycles. In practice,

concerning the generated migration problems also used in this work, Jaumard et al.

[17] shows that, for an ILP solution, allowing the use of intermediate migrations

has little effect on the solve time for the vast majority of problems, indicating that

deadlocks encountered by heuristics are overwhelmingly of the self-inflicted, ”indirect”

variety, arising from poor choices in migration ordering. In light of this, we have

decided to forgo the use of a deadlock circumvention component for out algorithms,

as it should not be necessary to solve the problems in our dataset, provided our

23



heuristic solutions are sufficiently proficient at avoiding indirect deadlocks.

4.2 Benchmarking

In this section, we present two heuristic algorithms addressing the VM migration

problem using a dependency graph to determine precedence relations between the

migrating VMs, which are then used to decide migration order. These two algorithms

will serve as benchmarking tools to evaluate the performance of our own heuristics,

in addition to the ILP results. We find it relevant to compare our results with these

in order to see how our results compare to a competing heuristic method, rather

than to only consult the ideal results generated by the ILP. Subsection 4.2.1 details

the algorithm presented in Onoue et al. [23], and subsection 4.2.2 presents a refined

version of the Onoue algorithm, correcting some of its faults.

4.2.1 Onoue et al. (2017)

Onoue et al [23]’s proposed VM Migration algorithm uses a dependency graph-based

approach to prioritize which VMs are moved first in accordance with their precedence

relation with other VMs in the network. The algorithm necessitates the generation of

a migration dependency graph for all of the VMs in the network in order to establish

these precedence relations. As shown by figure 4, in order to create the complete

graph, they begin by taking each VM from the network, denoted as v and creating

an individual dependency graph for it by first checking if v can be scheduled for

migration and, if not, adding an arc indicating a dependency between v and any

VM on v’s destination server that is not part of the final placement for that server,

indicating that v cannot move until one or all of these VMs move. Once an individual

graph has been generated for all VMs, all graphs are then combined into a single,

possibly disjoint graph.

The creation of the dependency graph is needed to determine the migration weight

of VMs, the value used to determine which VMs migrate first. The migration weight

of a VM is defines as its migration plus the migration weight of all other VMs that

depend on it to move. Within the dependency graph, there may be cases of circu-

lar dependencies where some subgraphs form loops resulting in no VM being free

of dependencies. The authors address this through the scheduling of a temporary

24



Figure 4: Onoue dependency graph creation, taken from [23]

migration of one of the VMs in order to break the cycle.

The Migration Dependency Graph (MDG)-based algorithm proper works by first

generating the dependency graph for the network. VMs to be migrated are then sorted

by their migration weight as determined by the graph. VMs with no dependencies

that are able to be migrated are thus identified and scheduled. In the event that

no such VM can be found, temporary migrations are engaged in order to break any

dependency cycles. Once scheduled migrations have finished, the migration graph is

updated and the process repeats until all VMs reach their destination.

4.2.2 Khodayar’s Algorithm (2019)

Khodayar et al. [18] propose an improved version of the algorithm proposed by

Onoue, addressing some issues found in the latter. This new algorithm improves on

Onoue’s by attempting to reduce the number of temporary migrations that would

occur during the solution process. It does so through two means: waiting until there

are less concurrent migrations before attempting to break deadlocks, and by selecting

temporary servers in order to minimize any potential conflicts with current or future

migrations.

25



First, Onoue’s algorithm plans temporary migrations almost as soon as a cycle

is found, but does not schedule them until they are chosen to be scheduled, in the

same way regular migrations are prioritized. This means that a planned, temporary

migration could be made invalid due to other migrations moving a VM onto the des-

ignated temporary server and thus preventing the migration. Khodayar et al. address

this by waiting until the number of pending migrations drops under a pre-determined

threshold. While the safest way to resolve this issue is to not plan temporary mi-

grations until there are no more pending migrations, this does lead to an increase in

total migration time. The use of a threshold thus allows management of the risk of

having a temporary migration blocked vs the increase in total migration time.

Second, Onoue et al. do not detail how the selection of a temporary server is

conducted. As the choice of temporary server can affect likelihood that a temporary

migration may be interfered with, Khodayar et al. propose a score function to evaluate

the servers in the network and determine which one should be used as a temporary

server. Servers are scored according to a formula considering their current and final

capacities in order to minimize the chance of temporary migrations being interfered

with.

4.3 Greedy Heuristics

In this section, we first explain our approach to heuristic designing in subsection 4.3.1.

In subsection 4.3.2, we propose a set of decision criteria for greedy heuristics based

on our reflections.

4.3.1 General Greedy Framework

The proposed greedy heuristics fall under two different types of approaches.

In the first approach, the idea for the heuristic would be to make move increase

the number of options at the next time step, or at least to limit options as little as

possible. The logic behind this being that, the more options for moves we have, the

less likely we are to run into a situation where no more moves are possible yet the

final state was not reached, likely due to a deadlock.

We attempt to estimate how a given migration influences the number of options in

the future by looking at the servers it involves (the migration’s origin and destination

26



servers). We choose migrations where the origin server of said migration is heavily

requested as a destination by other migrations in the system and where the server

designated as the migration’s destination is not heavily requested as a destination.

By prioritizing migrations as such, we free up space on some servers that would be

heavily requested and possibly rendering more pending migrations possible, while

having the migrated VM consume resources on a Server that would impede as few

other migrations as possible.

There are several different ways we can implement the above approach. The

first and most simple one is to look at each migration, then look at the number of

incoming migrations on both the origin and destination servers of said migration,

and prioritize migrations with the highest difference between incoming migrations on

origin and destination. This approach can be further refined by looking ahead by one

move to see the difference in possible moves before and after the migration has been

made. Of course all migrations are not homogeneous, and some migrations may be

more demanding in terms of resources than others. In order to take this into account,

we can also make decisions based on the amount of resources requested rather than

raw number of incoming migrations.

The second Approach revolves around looking at how many migrations a server is

involved in, be it as origin or destination, and attempt to prioritize migrations where

one of the servers involved has the least possible number of transactions pending.

This means that, ideally, we select migrations that happen to be the last one the

source or destination (or both) server is involved in, thus removing it from the set of

servers involved in future migrations.

4.3.2 Criteria

We now refine the criteria defined in the previous section. It leads to the following

heuristics.

INC-DIFF: Organize migrations by the difference in number of incoming migrations

on the origin server (IN(SRCvm)) vs. the number of incoming migrations on the

destination server (IN(DSTvm)).

max
vm∈V

{IN(SRCvm)− IN(DSTvm)}

27



We sort migrations in descending order according to this value, which should result

in prioritizing migrations where there is heavy demand (in terms of the number of

migrations) on the origin server and little demand on the destination. Executing

these moves first should likely render other migrations, that could not be scheduled

previously due to lack of available resources on their target server (in this case, the

origin server of migrations just scheduled), available while also seeking to impede

as few other planned migrations as possible by prioritizing migrations whose target

server is not heavily requested as a destination.

PER-FULL: A more detailed take on the previous heuristic. It takes a given migra-

tion, looks at the involved servers, (source and destination) and counts the number

of migrations that can be scheduled at this point in time having these two servers as

a destination. It then looks at the assumed state of these two servers if the migration

currently being evaluated were to be completed (that is, moved from its source to its

destination, with resource usage updated to match) and counts the number of pos-

sible migrations on the two servers of interest. We then take the difference between

the number possible after and before the migration and sort migrations to prioritize

the highest of this value.

max
vm∈V

{Avm − Bvm}

Avm = ASRCvm
vm + ADSTvm

vm ; Bvm = BSRCvm
vm +BDSTvm

vm

where Avm represents the number of migrations possible after executing the migration

in question, and Bvm represents the number of migrations possible before then. The

difference of the two shows the increase or decrease in potential moves if we were to

schedule this migration.

RES-DM : Functions similarly to the above-detailed heuristics, but instead of looking

at the number of incoming migrations, it takes into account the number of resources

requested.It can be written as follows:

min
vm∈V

{
RSRCvm −RDSTvm

}
RSV = min

�∈{cpu,ram}

RA�SV −RI�SV
C�sv

,

28



where:

RA�sv = amount of resource � available in sv

RI�sv = amount of resource � requested by incoming VMs on sv

C�sv = maximum capacity for server sv for resource �.

We choose the minimum value in order to determine which of the different re-

sources is the bottleneck. Difference between available and requested resources is

normalized over the server’s total capacity in order to account for different range of

values between the different resources.

We propose this alternative to the above heuristics relying on the number of

migrations in order to account for the heterogeneous resource demands of VMs in

the network. These demands result in the amount of space free on one server and

consumed on another as a result of migration varying depending of the VM being

moved, and thus in some cases it might be advantageous to engage a migration that

would allow the future scheduling for migration of one large VM, rather than one

that would allow multiple smaller VMs to move as a result.

For example, assume we have the choice between conducting a migration that

would, upon completion, allow 3 more migrations that require 2 resources apiece vs.

another migration that would allow upon completion 1 other migration requiring 9

resources. It may be advantageous to choose the latter, as the one migration would

free 9 units all on it’s origin server, leading to the high likelihood that an incoming

migration on that server that was previously blocked would now be possible, whereas

allowing the first migration would permit the three smaller migrations, which would

free a total of 6 units that may be spread among up to 3 servers. We suppose that

freeing a large amount of space on one server may lead to unblocking more migrations

than freeing a small amount of space on multiple servers.

REM-MV: For a given migration, we look at its source and destination server and

check the number of other migrations they are involved in, as either source or des-

tination, and assign to the migration the minimum value of the two. We then sort

migrations by this value and select them in ascending order, updating the values

at each time step. Through this method, we seek to reduce as quickly as possible

the number of servers that are involved in the migration process, either as source or

destination node. Criterion can be mathematically written as follows:

min
vm∈V

{
min

{
RMSRCvm , RMDSTvm

}}
where RM sv = IN(sv) +OUT (sv).

29



4.4 Impact of Preprocessing

In order to reduce the search space for the greedy heuristics, we add a preprocessing

procedure to run ahead of the heuristic at each decision step. This preprocessing

algorithm functions by scheduling migrations which are determined to be ”trivial”,

meaning that scheduling them would have no impact on any other migration in the

system, and whose scheduling would not impact any other migration. As such, they

can be scheduled for migration immediately without fear of causing an indirect dead-

lock.

We identify these ”trivial” migrations by finding, for each server, the list of mi-

grating VMs that have said server as their intended destination. We then verify if

the server has the spare resources to accommodate all incoming migrations and, if

so, we schedule all incoming migrations. Doing so would eliminate these migrations

from consideration by the heuristic without changing the final migration order, as it

is given that these migrations would be scheduled anyway by the heuristic.

Figure 5: Percentage of total migrations treated through pre-processing

Figure 5 shows, for the 30 Server dataset, the percentage of migrations that were

scheduled through preprocessing for each problem of one of the datasets. Results show

that the number of migrations treated through preprocessing scales with the apparent

difficulty of the problem, as estimated through the percentage of total migrations

30



that need to be moved. Trivial problems can be resolved completely through the

preprocessing method, and as the difficulty of the problem increases, the number of

migrations treated through preprocessing decreases. The majority of problems fall

within a 20 to 40 % range for number of migrations treated through preprocessing.

The amount of migrations treated this way for a given problem also varies slightly

based on the heuristic used, as different heuristics lead to different problem states

which can have more or fewer ”trivial” migrations.

4.4.1 General Algorithm

Algorithm 1 General Heuristic Algorithm

for all M do
Add M to origin(M)’s list of outgoing migrations
Add M to destination(M)’s list of incoming migrations

end for
while There are scheduled migrations left to complete do

while There are planned migrations that can be scheduled do
sort planned migrations by chosen criteria
schedule first available migration
update lists on concerned servers

end while
find scheduled migration with earliest end time
advance time and mark all migrations completing at this time as complete
update lists on concerned servers

end while

Algorithm 4.4.1 shows the general algorithm used for all the criteria previously

listed, with the sorting of planned migrations changing depending on the criteria used.

At the beginning, we first loop through all the migrations in order to set up, for all

servers, lists for migrations incoming and outgoing on that server. These lists are used

to quickly refer to values (incoming migrations, resources) used in the calculation of

priority regarding scheduling, through the selected criteria.

Once this is done, the main loop consists of scheduling as many migrations as

possible at a given time step, and then advancing time by finishing a scheduled

migration. The algorithm terminates when there are no more scheduled migrations

to complete.

31



Chapter 5

Numerical Results

In this chapter, we present the results and analysis of the performance of our heuris-

tics. Section 5.1 describes how the generator used to create our problem datasets func-

tions, and gives details on the generated dataset used in our experimentation.Section

5.2 describes our method for evaluating the performance of our solutions. Section

5.3 contains the results and analysis of the performance of our heuristics, compared

both amongst themselves and to the benchmarking algorithms listed at the start of

the section.

5.1 Data Sets

The dataset for this work was made using an in-house migration problem generator

[5]. The generator outputs an initial and final state for a network based on input

values given by the user. The user can determine problem parameters such as the

total number of servers and VMs, servers’ possible resource capacities and VMs’

resource demands, and the manner in which the final state is decided.

The number of servers in the network is given as an integer, while the total number

of VMs in the network can be determined either with a given number or through

assigning ”classes” to the servers. A server’s ”class” determines how many VMs it

can hold by filling it with newly-generated VMs until it reaches the class’ accepted

range for server load. For example, a newly-generated, empty server is assigned a

class ”40-60” will have newly-generated VMs until its load rises to between 40 and

60%.

32



The CPU and memory resource capacities for servers and requirements for VMs

are given by the user. The user supplies a list of possible values for server CPU

cap, server memory cap, VM CPU requirement, VM memory requirement. Newly-

generated Servers and VMs have their caps and requirements determined by randomly

pulling from these user-given pools of values.

For this particular work, we have supplied resource requirement values for the

VMs based on the Amazon EC2 instances [2], and the supplied values for the server

capacities are based on the parameters of the Dell servers found at [9]. Table 1

displays the possible values for resource requirements or capacity, whichever applies.

These values are displayed as (CPU, RAM).

Servers VMs
(28,128) (2,4)
(56,256) (2,8)
(78,512) (4,8)
(112,768) (4,16)

- (4,122)
- (8,16)
- (8,32)
- (8,244)
- (16,64)
- (16,122)
- (16,488)
- (36,72)
- (48,192)
- (64,256)

Table 1: Possible Resource Values for Servers and VMs

The final placement in a generated problem is determined by migrating VMs from

the initial placement in accordance with a user-determined ”scenario”. Such scenarios

usually aim to produce a final placement that would reflect the purpose of migration

in a practical situation.

Scenarios include:

• FAIL: Fail scenario. In this scenario, a number of servers has been designated

to shut down and all VMs must be migrated off to other servers. The percentage

of failing servers is a user-determined parameter.

• CONS: Consolidation scenario. In this scenario, VMs are moved around until

33



all servers are either empty, or their load falls within a pre-determined interval.

The interval of the accepted range for the load of the servers is a user-determined

parameter. (ex: CONS-90-100 means that all servers where both CPU and

RAM load does not fall within the 90 to 100% range must be emptied or have

VMs added or removed until their load % complies.

• LBAL: Load balancing scenario. Attempt to minimize the variance in Load

for all Servers. No user parameters.

• DSHF: Deadlock shuffle scenario. Random redistribution of VMs with no

underlying justification. An attempt at generating difficult to solve problems,

even if they do not really reflect a real-world scenario.

All scenarios except DSHF move VMs one-by-one while taking resource constraints

into account in order to ensure the final placement has a solution. DSHF removes all

VMs, places them in a global container, and redistributes them randomly to Servers,

which may then result in the problem having no solution.

Additionally, the user may also determine the percentage of VM that will be

shuffled around randomly prior to the start of the scenario proper. This aims to

make the problem generation less deterministic.

For this work, we have generated several sets of migration problems, each set,

denoted by the number of servers in the problem (30,50,100,200,300 and 500 servers).

For each set, we have 36 generated problems covering every combination of the fol-

lowing parameters: All available problem scenarios (FAIL,CONS,LBAL,DSHF) with

the amount of failing servers in FAIL set to either 1/3 or 2/3 of the total servers,

and the acceptable load range for CONS is set to either 90-100 % or 100-100%. The

percentage of VMs shuffled prior to that start of the algorithm is set to 0, 50 or 100%

and the load for the Servers in the initial state is set to 60-80 % or 80-100 %. As

stated previously, the number of VMs in a given problem is determined dynamically

when generating using class loads, although it still scales with the number of servers.

Table 2 provides a range for the number of VMs in the problems for each of the

generated datasets.

34



Dataset (by number of servers) range for number of VMs
30 SV 100-150
50 SV 150-250
100 SV 350-500
200 SV 750-950
300 SV 1200-1400
500 SV 2000-2200

Table 2: Range for Number of VMs in Each Dataset

5.2 Performance Criteria & Testing Environment

The performance of a given heuristic is determined by two main criteria : the total

migration time, or makespan, and the percentage of planned migrations that were

successfully completed. We are looking to minimize both of these values, although

we assign higher value to solutions that complete all required migrations over those

that do not, regardless of achieved makespan. This means that a solution with a

relatively high makespan but that completes all assigned migrations will be consid-

ered more valuable that one which reports a low makespan but has some scheduled

migrations left incomplete. Additionally, as we are concerned with application in an

on-line scenario, the claculation time for the algorithms is also considered as part of

performance evaluation.

The hardware used for the testing of the heuristics and ILP solution consists of a

cluster composed of 40 Intel Xeon CPU E5-2660 v3 @ 2.60 GHz with 2 threads per

processor, and 125 GBs of system memory.

5.3 Comparison of Heuristics

We evaluate the performance of the heuristics detailed in Chapter 4 by using the

following other methods as baselines:

LMT: Longest Migration Time. This greedy heuristic orders migrations in descend-

ing order of the time needed to complete, and serves as a baseline for comparing the

other criteria.

ONOUE: We outline it in Chapter 4, and details can be foudn in [23]. It contains a

deadlock resolution component using temporary migrations.

35



KHODAYAR: Improved version of the above ONOUE, as detailed in [18]. Improve-

ments include optimized selection of temporary servers for deadlock resolution.

ILP: Linear Programming model for the Virtual Machine Migration problem, as

detailed in [17]. Maximum time allowed to search for a solution is limited to 2000

seconds or 33 and 1/3 minutes.

5.3.1 Intra-Greedy Heuristic Comparison

In this subsection, we compare the performance of the 4 greedy heuristics detailed in

the previous chapter in order to determine which of the four would be most promising

going forward. We add the results of the ILP to provide an ideal to attempt to reach,

and the results of LMT to show a minimum standard for our heuristics to surpass.

We’ve ran the heuristics over all datasets and provide detailed results for the 30 and

200 server datasets in figures 6 and 7. Each point on the horizontal axis indicates

a problem, and the numbers show the percentage of total VMs that are intended to

move. We treat this value as an indicator of problem difficulty. The lines represent

the makespan of the solution and the bars show, if any, the percentage of planned

migrations left incomplete by the solutions.

Heuristic Name Completion %
LMT 0.6231 %

INC-DIFF 0.6811 %
RES-DM 0.7198 %
REM-MV 0.5266 %

PER-FULL 0.6715 %

Table 3: Migration Average Completion Rate for Each Heuristic

Table 3 displays the percentage of solvable problems in the dataset where the

heuristics were able to migrate all planned migrations. Here, ”solvable problems” is

defined as all problems where the ILP is able to find a solution, across all datasets

(30,50,100,200,300,500 servers), which amounts to a total of 207 problems. The table

shows that 3 of the 4 proposed heuristics show improvement over LMT, with RES-

DM reaching a near 10 % improvement, but we are still a long way off from finding a

heuristic that completely eliminates the possibility of indirect deadlocks. REM-MV

is shown to perform worse than LMT in this metric.

36



Figure 6: Comparison of Heuristics on 30 Server Dataset

On both Figures 6 and 7, we can observe that the two most efficient heuristics

are RES-DM and PER-FULL, as they have the highest rate of problem completion

while remaining competitive in terms of makespan. However, no heuristic appears to

have a clear advantage and performance varies on a case-to-case basis. By contrast,

REM-MV shows the poorest results, being outperformed by the basic LMT.

37



Figure 7: Heuristic Comparison for 200 Server Dataset

38



5.3.2 Best Greedy vs. Dependency-graph Heuristics

In this subsection, we select one of the heuristics from subsection 5.3.1 we consider to

have the best performance, and test it against the precedence-based solutions outlines

in Chapter 4. Results in subsection 5.3.1 lead us to select RES-DM for this exercise.

We compare its results to that of ONOUE and KHODAYAR on all the datasets and

present detailed results for the 30 and 200 server sets in Figures 8 and 9.

Figure 8: Comparing Best Heuristic with Baseline for 30 Server Dataset

Figure 9: Comparison of Best Heuristic with Baseline for 200 Server Dataset

In figures 8 and 9, we observe that, on problems where our heuristic is able to

complete all planned migrations, the makespan of our greedy solution shows no clear

39



pattern performance-wise, sometimes being outclassed by both ONOUE and KHO-

DAYAR, while at other time beating one or both. The greedy heuristic is unfortu-

nately unable of completely solving all problems that are solvable without the use

of temporary migrations, as indicated by ILP results. This means we were unable

to find a heuristic solution that can completely avoid indirect deadlocks and thus is

reliant on some sort of deadlock resolution sub-algorithm, as are the aforementioned

precedence-based algorithms.

5.3.3 Computational Times

Figure 10: Computational Times Comparison for Heuristics on 200 Server Dataset

Figure 10 shows the algorithm computational time in milliseconds for the 200

server dataset for the proposed heuristics, as well as LMT and the ILP for compar-

ison. We observe that three of the heuristics have computational time significantly

higher than LMT, to the point where they are outrun by even the ILP on ”easier”

problems, if we were to take the number of incomplete migrations by the heuristics

on a given problem as an indicator of problem difficulty. PER-FULL seems more

efficient, outpacing the ILP on every problem in terms of time, however it is ques-

tionable whether the marginally improved performance of LMT, as discussed in 5.3.1,

is worth the notable increase in computational time.

Figure 11 shows the average algorithm time by datacenter size for the heuristics

and the ILP, counting solved problems, incomplete solutions and timeouts. Results

confirm that PER-FULL’s faster execution speed over the other proposed heuristics

holds for all sizes of datacenter tested. We also note that the added layer of complexity

40



Figure 11: Average Algorithm Time over All Datasets

in heuristic design over LMT leads to a noticeable penalty in computational time

and scaling with problem size, casting doubts on whether the meager performance

increase previously mentioned is worth this trade-off. We note here that the ILP

curve seems to level off, which is due to the time limit of 200 seconds put in place

to solve a given problem. The migration dependency graph-based solutions, ONOUE

and KHODAYAR, have no such limit set in place which explains why they register a

greater average computational time than the ILP for the larger datasets.

5.3.4 Conclusions

To summarize, while our greedy heuristics are able to somewhat compete with the

precedence-based heuristics on certain cases, they still fail entirely to solve some

instances which should be theoretically solvable (i.e., could migrate all VMs), as in-

dicated by the ILP results. In many cases, our heuristics run into deadlocks and

terminates without solving while the ILP finds a migration plan, implying the migra-

tion of all VMs necessary for solving the problem is possible without needing to use

temporary migrations.

41



We were unable to propose a greedy heuristic that significantly improves avoidance

of indirect deadlocks compared to the longest migration time-based solution used as

one of our benchmarks, and the results on problems where it does find a complete

solution do not show the achieved makespan to be consistently superior to the chosen

benchmark algorithms. In addition, when taking computational time into account,

the slight improvements with respect to both makespan and number of completed

migrations that our heuristics may achieve over a simpler solution such as LMT are

difficult to justify when contrasted with the noticeable increase in computational time

that our heuristics require compared to these simpler heuristics.

We think that it would have been interesting to design selection criteria in the

greedy heuristic that would give more consideration to the characteristics of the given

problem, such as the scenario type or the size and load of the datacenter. As explained

in Section 5.1, data sets were generated using different parameters, and it would have

been of interest to analyze the results in light of their characteristics, such that we

could potentialy find which problems are more likely to produce deadlocks based

on these, so that we may reserve deadlock avoidance strategies such as an n-step

look-ahead to deal only with the most difficult problems.

42



Chapter 6

ILP Models

In this chapter, we discuss large scale ILP formulations and propose two decompo-

sition models of our own for the VM migration problem. Section 6.1 reviews the

classical, ”compact” formulations and why we find them limited. In section 6.2, we

propose two decomposition models: the first model is a time-indexed formulation that

we anticipate will not lead to a significant improvement of the scalability of the model

compared to existing ”compact” models, while the second model we propose is an

event-based decomposition which would seem more promising regarding scalability.

6.1 Classical ILPs and their limitations

As discussed in Chapter 2, different compact ILP models (i.e., usually with a polyno-

mial number of variables and constraints) have been proposed, but they lack scalabil-

ity, i.e., cannot solve large or difficult data instances with more than a few hundred

VMs or tens of servers in a reasonable amount of time, where ”reasonable” implies

a viable time frame for on-line problem resolution. ILP models may not be a viable

solution for solving problems as they appear, but the solutions they produce are still

valuable within the context of heuristic solution evaluation. While the time con-

straints for finding a solution in such a context are not nearly as strict as for on-line

problem resolution, it remains relevant to find ways to reduce the time needed to

produce a solution, especially as the problem size increases. We thus propose two

decomposition models formulated to be solved with column generation techniques in

mind.

43



Column generation formulations offer some advantages over traditional, compact

problem formulations. According to [3], ”compact” formulations may have a ”weak”

LP relaxation, meaning that the distance between the relaxation’s and the integer’s

optimal value is significant. Reformulating the compact problem into a column gen-

eration one can strengthen the relaxation. Second, the compact formulation may

be structured in a way that negatively impacts branch-and-bound methods, i.e., the

derivation of an integer solution. Branch-and-bound performs poorly on problems

whose structure is too ”symmetric” (i.e., such that a permutation of the variables

leads to the same solution) because branching makes little change in the problem.

This can be addressed by reformulation of the problem. Surprisingly, even if it usually

means greatly increasing the number of variables, it leads to more efficient solution

schemes, as the latter one only implicitly enumerate all the variables.

6.2 Proposed Decomposition Models

We propose two decomposition models for the VM migration problem: a discretized,

time-based model and an event-based model, based on the models introduced in [17].

6.2.1 List of Common Parameters and Variables of the two

Models

The following list details parameters and variables that are common to both models.

Variables specific to a given model are detailed in their respective sections.

Parameters

vm ∈ V : A Virtual Machine in the network

sv ∈ S : A server in the network

Ccpu
sv : Maximum number of processors for server sv

Cram
sv : Maximum amount of memory for server sv

reqcpu
vm : Number of processors required by vm to be housed on a server sv

reqram
vm : Amount of memory required by vm to be housed on server sv

44



migrsv,sv′

vm : Amount of time needed to migrate vm from sv to sv′, where sv, sv′ ∈ S

� : Set of Resources, � = {cpu,ram}.

Variables

Cmax : Total Makespan

6.2.2 First Decomposition Model: A time-index model

This first decomposition model relies on the concept of path configuration, which we

define in this section. We then describe the specific set of parameters and variables

and then the master and pricing problems.

Path Configuration

The key set of variables of the first decomposition model relies on the concept of

path configuration. Before we define it, we first need to introduce a spatio-temporal

graph to express the options each VM has for scheduling the time of its migration.

Such a graph details the possible options a VM has for moving from it’s source Server

to it’s intended destination. The graph Gvm = (V vm, Lvm) is defined by (i) its set of

nodes V , where each node of the graph has two coordinates (x, y): the x coordinate

is an instance of time (t index) and the y coordinate is a server (in this case either the

VMs source src or destination dst), and (ii) its set of links, ` ∈ L where ` represents

the possible actions a VM can take at some point in time t, be it to either remain on

it’s current Server until the next time step or move from a src Server to dst.

A path configuration p ∈ Pvm defines a possible decision concerning the time of

the migration. Indeed, in G, p represents a possible path for vm. Figure 12 shows

a simplified example of such a graph, with p1 and p2 representing two possible path

configurations, or migration scheduling decisions for the VM this graph concerns. The

horizontal axis represents time while the vertical axis represents the possible locations

the VM can be in, in this case the source and destination nodes. A VM choosing to

move at t = 1 would be selecting p1, whereas a VM moving at t = 4 would select p2.

Such a graph will typically have much more than two paths.

A path configuration is characterized by the following parameters:

at,pvm,sv = 1 if vm is using sv at time t while path p is chosen, 0 otherwise.

45



Time

SV

SRC

DST

0 1 2 3 4 5 6 7 8

p1

p2

l = (SRC^1, DST^3)
l = (SRC^4, DST^6)

l = (SRC^0, SRC^1)

Figure 12: Spatio-Temporal Graph for VM

svt = {srctvm,dsttvm} : Set of nodes in the graph, which represent the VM in

question’s source or destination server at some point in time t.

Denote by ωin
vm(svt) the set of incoming arcs for node svt, and by ωout

vm (svt) the

set of outgoing arcs for node svt. They are further detailed as:

ωin
vm(srctvm) = {(srct−1

vm , srctvm)} (1)

ωout
vm (srctvm) = {(srctvm, srct+1

vm ), (srctvm,dstt+migrsrc,dst
vm

vm )} (2)

ωin
vm(dstt(vm)) =

{
(dstt−1

vm ,dsttvm), (srct−migrsrc,dst
vm

vm ,dsttvm)
}

(3)

ωout
vm (dsttvm) =

{
(srctvm, srct+1

vm )
}
. (4)

Parameters of the Master Problem

the other parameters used by the decomposition model are as follows:

p ∈ Pvm : Path for vm

at,pvm,sv: = 1 if vm is using sv at time t while path p is chosen, 0 otherwise.

Variables of the Master Problem
xvm = 1 if VM has been moved, 0 otherwise

zp = 1 if path p selected for vm, 0 otherwise

Tvm = end time for migration of vm

Cmax ≥ 0 defines the makespan.

46



Master Problem

Minimize:

Cmax − penal
∑

vm∈V

xvm (5)

subject to:∑
p∈Pvm

zp = xvm vm ∈ V (6)

∑
p∈Pvm

endpzp = Tvm vm ∈ V (7)

Tvm ≤ Cmax vm ∈ V (8)∑
vm∈V

∑
p∈Pvm

req�vma
t,p
vm,svzp ≤ C�sv t ∈ T, sv ∈ S,� ∈ {cpu,ram}. (9)

xvm ∈ {0, 1} vm ∈ V (10)

zp ∈ {0, 1} p ∈ P vm,vm ∈ V (11)

Tvm ≥ 0 vm ∈ V, (12)

Cmax ≥ 0. (13)

The objective function (5) minimizes the makespan of the solution while also pe-

nalizing planned migrations that were not completed. Constraints (6) indicate that

if a VM migrates, then it must make use of a path. Constraints (7) and (8) indi-

cate that the makespan is bounded by the end time of the latest migration to finish.

Constraints (9) define the resource capacity constraints for each server.

Variables of the pricing problem

ϕ` = 1 if path uses link `, 0 otherwise.

atvm,sv = 1 if vm is using sv at time t while path p is chosen, 0

otherwise.

Pricing Problem

We have one pricing problem for each vm, i.e., we need to consider two particular

servers, the source and the destination server of vm. As we do not consider any

intermediate server in the migration, we have that: Output of the pricing problem ≡
input of master (coefficients of the zp variables)

at,pvm,sv = 0 if sv 6∈ {dstvm, srcvm}.
(pricing variable) ϕt`  at,pvm,sv (coefficient of zp)

47



Minimize:

0− u(6)
vm −

∑
�∈{cpu,ram}

∑
t∈T

∑
sv∈S

u
(9)
sv,t,�req�vma

t
vm,sv. (14)

subject to:∑
`∈ωout

vm (src0
vm)

ϕ` =
∑

`∈ωin(dst
|T |
vm )

ϕ` = 1 (15)

∑
`∈ωout(svt

vm)

ϕ` =
∑

`∈ωin(svt
vm)

ϕ` svvm ∈ {srctvm,dsttvm} ∈ S, t ∈ T (16)

atvm,svsrc
≥ ϕ` ` = (svt−1

src , sv
t
src) ∈ L, t ∈ T (17)

aτvm,svsrc
≥ ϕ` ` = (svt−migrsv,sv′

vm
src , svtdst) ∈ L,

0 ≤ t−migrsv,sv′

vm < τ ≤ t, t ∈ T (18)

aτvm,svdst
≥ ϕ` ` = (svt−migrsv,sv′

vm
src , svtdst) ∈ L,

0 ≤ t−migrsv,sv′

vm < τ ≤ t, t ∈ T (19)

atvm,svdst
≥ ϕ` ` = (svt−1

dst , sv
t
dst) ∈ L,

t ∈ T : t ≥ migrsv,sv′

vm . (20)

ϕ` ∈ {0, 1} ` ∈ L (21)

atvm,sv ∈ {0, 1} vm ∈ V, sv ∈ {srcvm,dstvm}. (22)

Equation (14) shows the objective function of the pricing problem, calculating the

reduced cost for each VM and fixing the resource utilization variables. Constraint (15)

sets the initial and final placement of the VM at the start and end of the migration.

Constraint (16) ensures the continuity of the path between the start and end time.

Constraints (17), (18), (19) and (20) establish the resource utilization rules for VMs

based on their current location and whether they are in transit. Constraints (17) and

(20) cover resource usage for all consecutive instances of time where the VM stays on

a server, whether it is the origin or destination, and Constraints (18) and (19) cover

the span of time during which the VM moves from its origin server to its destination.

During this span, resources are consumed on both servers.

48



6.2.3 An event-based model

We now present a decomposition model for an event-based formulation proposed in

[17]. Unlike the previous model, this formulation does not track system state at each

time index and focuses how many VMs are consuming resources in a given server in

the worst case. For a given server, VMs that have some relation to that server are

tracked through a or b: a tracks whether two VMs with the same destination server

have both started moving towards it, and thus both consume resources on that server,

and b controls whether two VMs, one with the server in question as it’s destination

and the other with the server as its source, are both consuming resources at the same

time, due to the leaving VM having not finished its outgoing migration before the

incoming VM starts its own. More concisely, the model relies on the concept of a

server configuration:

γ ∈ Γsv denotes a generic configuration for server sv. It corresponds to a set of

precedence relations between the VMs associated with S (either moving to or from

it). These determine whether one VM arrives before another, or whether one VM has

left the Server before another one begins moving towards it. Each configuration γ is

characterized by the following two sets of parameters:

aγji, i 6= j: sv ∈ dstvmi
∩ dstvmj

,

= 1 if vmj starts its migration towards sv before or at the same time as vmi

starts its migration towards sv,

= 0 otherwise.

bγji, i 6= j: sv ∈ dstvmi
∩ srcvmj

= 1 if vmj completes its migration out of sv after vmi starts its migration

towards sv,

= 0 otherwise.

Figure 13 illustrates why we have chosen to track resource constraints in this

manner. Here, vmi and vmj are two VMs with the same intended destination , which

is the source server for vmk. The value of aij is set to 1, as vmi has moved to the

destination server before vmj, and the value of bkj is set to 1, as vmk has yet to

complete its migration out of the server before vmj started its own migration towards

49



Figure 13: Visualisation of Event-based Resource Constraint Tracking, Adapted from
[17]

it. Tracking events in this manner allows us to validate that the capacity constraints

of the server have not been violated at any point during the migration process without

having to get a snapshot of the server at each instance of time. These variables allow

us to determine the existence of the point in time where the server has a maximum of

resources consumed, that is to say when vmj is migrating to it while vmi is already

there and vmk has still not left. If, at this point, resource capacity constraints are

respected, then we need not concern ourselves with the state of the server at any

other time during the migration process

Variables of the Master Problem

zγ =

1 if configuration zγ was chosen for server sv

0 otherwise

xmigr
vm =

1 if vm has been migrated from its source to its destination server

0 otherwise

xsv
vm = time at which vm starts its migration towards sv

50



αsv′
sv =

1 if sv and sv′ represent the same server

0 otherwise

Master Problem

min Cmax + penal
∑

vm∈V

xmigr
vm (23)

subject to:

xdst
vm + migrsrc,dst

vm ≤ Cmax vm ∈ V (24)∑
γ∈Γsv

zγ = 1 sv ∈ S. (25)

req�vmi
+

∑
γ∈Γsv

 ∑
vmj∈V :dsti=dstj

req�vmj
aγji +

∑
vmj∈V :dsti=srcj

req�vmj
bγji

 zγ

≤ C�dsti
� ∈ {ram,cpu},vmi ∈ V. (26)

M
∑
γ∈Γsv

aγjizγ ≥ (xsv
vmi − xsv

vmj) vmi,vmj ∈ V, sv ∈ dstvmj
∩ dstvmi

(27)

M(
∑
γ∈Γsv

aγjizγ − 1) ≤ (xsv
vmi − xsv

vmj)vmi,vmj ∈ V, sv ∈ dstvmj
∩ dstvmi

(28)

−M
∑
γ∈Γsv

bγjizγ ≤ xsv
vmi − xsv

vmj −migrsv,sv′

vmj

vmi,vmj ∈ V, sv ∈ srcvmj
∩ dstvmi

(29)

−M

(∑
γ∈Γsv

bγjizγ − 1

)
≥ xsv

vmi − xsv
vmj −migrsv,sv′

vmj

vmi,vmj ∈ V, sv ∈ srcvmj
∩ dstvmi

(30)

zγ ∈ {0, 1} γ ∈ Γsv, sv ∈ S (31)

xmigr
vm ∈ {0, 1} vm ∈ V (32)

xsv
vm ≥ 0 sv ∈ S,vm ∈ V (33)

αsv′

sv ∈ {0, 1} sv, sv′ ∈ S. (34)

The objective function (23) of the master problem seeks to minimize the total makespan

of the solution while also keeping the total number of migrations down via a penalty

term. Constraint (24) established the lower bound on the makespan as the latest

51



migration. Constraint (25) limits the number of precedence configurations selected

per server to 1. Constraint (26) ensures the resource capacities of the server are re-

spected at all times by checking that, for each selected configuration and for each

VM, the requirements of that VM, any other VM also entering the server, and any

VM that has not yet left the server respect the server’s max capacity for all resource

types. Constraints (27) and (28) represent precedence relation constraints, ensuring

that asv
ji = 1 only holds if the migration of vmj towards the server does not succeed

that of vmi. Constraints (29) and (30) cover another aspect of precedence relation

constraints, ensuring that bsvji = 1 only holds if vmj finishes migrating out of the

server after vmi starts it’s own migration towards the server.

Pricing Problem

Each pricing problem is associated with a server. Therefore, we only consider a subset

of the VM set V containing VMs which are either the ”incoming” or the ”outgoing”

on the Server in question. Let us denote by Vsv the set of such VMs for server sv.

Variables of the pricing problem

aji, i 6= j: sv ∈ dstvmi
∩ dstvmj

,

= 1 if vmj starts its migration towards sv before or at the same time as vmi

starts its migration towards sv,

= 0 otherwise.

bji, i 6= j: sv ∈ dstvmi
∩ srcvmj

= 1 if vmj completes its migration out of sv after vmi starts its migration

towards sv,

= 0 otherwise.

We write below the pricing problem associated with server sv.

Objective: Reduced cost of variable zγ with γ ∈ Γsv

52



min−u(25)

−
∑

vmi∈Vsv

 ∑
vmj∈V :dsti=dstj

 ∑
�∈{ram,cpu}

req�vmj
u

(26)
�,i + u

(27)
i + u

(28)
i

 aji

+
∑

vmj∈V :dsti=srcj

 ∑
�∈{ram,cpu}

req�vmj
u

(26)
�,i + u

(29)
i + u

(30)
i

 bji

 (35)

subject to:

aij + aji ≤ 1 vmi,vmj ∈ Vsv,dsti = dstj. (36)

aji ∈ {0, 1} i 6= j, sv ∈ dstvmi
∩ dstvmj

,vmi,vmj ∈ V (37)

bji ∈ {0, 1} i 6= j, sv ∈ dstvmi
∩ srcvmj

,vmi,vmj ∈ V (38)

The objective function (35) sets the reduced cost of variable zγ with γ ∈ Γsv.

Constraint (36) serves as a tiebreaker.

6.2.4 Solution process

Solving the linear relaxation of the master problem: column generation.

The decomposed models presented above are solved through Column Generation, also

called delayed linear programming, following the process in [7]. Figure 14 depicts a

flowchart representing the solution process for Column Generation as well as Branch

and Bound. For Column Generation, we first convert the Master Problem into a

Restricted Master Problem (RMP), which is a formulation of the Master Problem

that only keeps a subset of variables that are deemed ”sufficiently meaningful” [10],

as the Master Problem may contain too many variables to solve in a timely manner.

After the Primal Bound and Dual Bound are set, the Restricted Master Problem,

relaxed into a linear problem, is solved and the Primal Bound is updated [29]. Next,

the pricing problems are solved in order to generate columns with negative reduced

cost, i.e., columns such that their addition in the Restricted Master Problem will lead

to an improvement of the objective of its linear relaxation. A subset of these columns

is then chosen to be added to the basis of the RMP and the Dual Bound is updated.

In the event that there are multiple pricing problems, as in our project, the new dual

53



Figure 14: Solution Process for Column Generation and Branch and Bound

bound is calculated through a formula involving all pricing problems. The RMP is

then solved again and the process repeats until the pricing problems can no longer

generate columns with negative reduced cost or the Primal Bound is equal to the

Dual Bound.

Deriving an ILP solution

There are two options:

Option 1: Deriving a heuristic ILP solution. In such a case, we get the optimal ILP

solution of the last restricted master problem: this is not necessarily the optimal ILP

of the master problem, but usually provides a good ILP solution whose accuracy can

be evaluated as follows:

ε =
z̃ilp − z?lp

z?lp

,

where

z?lp denotes the optimal solution of the linear relaxation of the master problem

z̃ilp denotes the ”heuristic” ILP solution

z?ilp denotes the optimal ILP solution.

54



We then have:

z?ilp ≤ z̃ilp.

Option 2: Deriving an optimal ILP solution. It requires a Branch-and-Price algo-

rithm, which essentially implements column generation within a branch-and-bound

framework. The branching is typically done on the variables of the original, compact

formulation (the x variables in this case) rather than on the variables introduced by

the decomposition (zp here) [29].

Branch-and-Price typically goes as follows: first, if the optimal solution returned

by the relaxed RMP is integer, we stop, as this solution is the optimal solution. If not,

we need to select one of the variables x∗ that do not have integer values and split them

into two subproblems with feasible ranges X ∩{x : x ≤ bx∗c} and X ∩{x : x ≥ dx∗e}
[29]. From there, there are two ways we can proceed: the branching constraint is

enforced either in the master problem, or in the pricing problems. Which of the two

options is the better choice is debatable: typically, the second option may lead to

better bounds at the cost of higher complexity [29].

An alternate branching scheme involves branching on the decomposition variables

(often denoted by λ in a typical Dantzig-Wolfe decomposition, z in our case). The

branching constraints are:

∑
k:yr,k=1,ys,k=1

λk = 1 and
∑

k:yr,k=1,ys,k=1

λk = 0

where r, s are rows, k indicates a column in a 0-1 matrix Y , The solution to the master

problem must be integer in the event that we cannot come up with a branching pair

[3]. As row pairs are finite, so are the number of branches to explore, and each branch

cuts a large number of variables from consideration. The idea behind this particular

branching scheme is that branching eventually leads the coefficient matrix to become

totally balanced, meaning the LP relaxation only has integral extreme points.

55



Chapter 7

Conclusions and Future Work

7.1 Conclusions

We proposed a set of greedy heuristics using different selection criteria that would

seek to complete the generated migration problems in reasonable time without the

use of temporary migrations to resolve indirect deadlocks. Results show minimal im-

provement over a basic greedy heuristic sorting by longest migration time, concerning

both makespan and ensuring all migrations in a given problem complete. Designing

greedy heuristics capable of avoiding ”indirect” deadlocks is particularly difficult. We

have, as of yet, been unable to devise some criteria on which to base scheduling deci-

sions that would completely eliminate the chance to inadvertently bring the network

into an unsolvable state. The case may be that indirect deadlock avoidance cannot be

realized using only information available in the present time, and may need some sort

of means of looking several steps ahead in order to ensure deadlock avoidance, and

not have to rely on a means of repairing deadlocks in order to complete all scheduled

migrations.

We also propose two decomposition ILP models assuming the use of column gen-

eration algorithms for solving the VM migration problem. The first proposed model

is a time-based model that tracks the position of the VMs in the network at each

discrete instance of time. While this type of modelling is relatively simple to elabo-

rate, we suspect that it does not scale up well due to the large number of variables

necessary for modelling the entire network state at every instance of time. The second

model proposed, conversely, is an event-based model where we establish precedence

56



relations between the migrations, leading to a lower number of total variables com-

pared to the previous, time-based model, which hopefully leads to better scaling with

problem size, especially when compared to the compact formulations. We note that

in practice, even if the number of variables is large, the column generation approach

obtains solutions without having to explicitly consider all of them.

7.2 Future Work

Future work may involve further improvement of greedy heuristics. One possible

direction could be to take advantage of parallel processing in order to have several

greedy heuristics with different selection criteria running simultaneously. If the best

criteria varies on a case-by-case basis, then we can have access to multiple solutions

and select the best one for the current problem, without increasing computation time

by running multiple heuristics sequentially. Next, we can revise the modelling of

the problem to be more true to life. For example, during migration, the current

scheme has a migrating VM reserve the totality of its resource requirements on both

the source and destination servers. It would be more realistic to model the problem

such that a transiting VM’s requirements on the source change gradually as the

migration progresses (as the data is transferred from source to destination, the VM

could gradually free space on the source to match, and possibly permitting another

migration to begin earlier than it would otherwise.) Finally, the proposed decomposed

LP models can be implemented and tested in order to verify assertions that these

models can achieve superior computation times compared to compact formulations.

57



Bibliography

[1] G.M. Adelson-Velsky and E. Levner. Project scheduling in and–or graphs: A

generalization of Dijkstra’s algorithm. Mathematics of Operations Research,

27(3):504–517, 2002.

[2] Amazon EC2 instance types. https://aws.amazon.com/ec2/instance-types/ On-

line; Accessed on : Dec. 23, 2020.

[3] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H.

Vance. Branch-and-price: Column generation for solving huge integer programs.

Operations Research, 46(3):316–329, 1998.

[4] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan. Learn-as-you-go with

Megh: Efficient live migration of virtual machines. IEEE Transactions on Par-

allel and Distributed Systems, 30(8):1786–1801, 2019.

[5] C. Boudreau. Algorithms for optimized virtual machine migration scheduling.

Technical report, Concordia university, 2018. Undergraduate research report.

[6] Z.C. Chaczko, V. Mahadevan, S. Aslanzadeh, and C. Mcdermid. Availability and

load balancing in cloud computing. In International Conference on Computer

and Software Modeling. IACSIT Press, Singapore, 2011.

[7] V. Chvatal. Linear Programming. Freeman, 1983.

[8] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm us-

ing reference-point-based nondominated sorting approach, part I: solving prob-

lems with box constraints. IEEE transactions on evolutionary computation,

18(4):577–601, 2013.

58



[9] Dell servers. https://www.dell.com/fr-fr/work/shop/serveurs-dell-

poweredge/sc/servers/poweredge-rack-servers Online; Accessed on : Dec.

23, 2020.

[10] J. Desrosiers and M. Lübbecke. A primer in column generation. In Column

generation, pages 1–32. Springer, 2005.

[11] R. Kanniga Devi, G. Murugaboopathi, and M. Muthukannan. Load monitoring

and system-traffic-aware live vm migration-based load balancing in cloud data

center using graph theoretic solutions. Cluster Computing, 21(3):1623–1638,

2018.

[12] F. Farahnakian, P. Liljeberg, and J. Plosila. Energy-efficient virtual machines

consolidation in cloud data centers using reinforcement learning. In 22nd Eu-

romicro International Conference on Parallel, Distributed, and Network-Based

Processing, pages 500–507, 2014.

[13] C. Ghribi, M. Hadji, and D. Zeghlache. Energy efficient vm scheduling for

cloud data centers: Exact allocation and migration algorithms. In 2013 13th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,

pages 671–678. IEEE, 2013.

[14] M.P. Gilesh, S. Satheesh, A. Chandran, S.D.M. Kumar, and L. Jacob. Parallel

schedule of live migrations for virtual machine placements. In 2018 IEEE 4th

International Conference on Collaboration and Internet Computing (CIC), pages

64–70. IEEE, 2018.

[15] A. Gupta, U. Mandal, P. Chowdhury, M. Tornatore, and B. Mukherjee. Cost-

efficient live vm migration based on varying electricity cost in optical cloud net-

works. Photonic Network Communications, 30(3):376–386, 2015.

[16] M.R. Hines, U. Deshpande, and K. Gopalan. Post-copy live migration of virtual

machines. ACM SIGOPS operating systems review, 43(3):14–26, 2009.

[17] B. Jaumard, O. Gluck, and D. Le. Effectiveness of heuristics for VM migration.

In submitted for publication, 2020.

59



[18] K. Jeirroodi. Efficient heuristics for virtual machine migration in data centers.

Master’s thesis, Concordia University, Montreal, Canada, 2019.

[19] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance manage-

ment in virtualized server environments. In 2006 IEEE/IFIP Network Operations

and Management Symposium NOMS 2006, pages 373–381. IEEE, 2006.

[20] J. Liu, Y. Li, D. Jin, L. Su, and L. Zeng. Traffic aware cross-site virtual machine

migration in future mobile cloud computing. Mobile Networks and Applications,

20(1):62–71, 2015.

[21] R. Nasim, E. Zola, and A.J. Kassler. Robust optimization for energy-efficient

virtual machine consolidation in modern datacenters. Cluster Computing,

21(3):1681–1709, 2018.

[22] B. Nazir et al. Qos-aware vm placement and migration for hybrid cloud infras-

tructure. The Journal of Supercomputing, 74(9):4623–4646, 2018.

[23] K. Onoue, S. Imai, and N. Matsuoka. Scheduling of parallel migration for mul-

tiple virtual machines. In IEEE 31st International Conference on Advanced

Information Networking and Applications (AINA), pages 827–834, 2017.

[24] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, and X. Xu. A qos-aware virtual ma-

chine scheduling method for energy conservation in cloud-based cyber-physical

systems. World Wide Web, pages 1–23, 2019.

[25] S. Rahmani and V. Khajehvand. Burst-aware virtual machine migration for

improving performance in the cloud. International Journal of Communication

Systems, 33(7):e4319, 2020.

[26] T. Saber, A. Ventresque, J. Marques-Silva, J. Thorburn, and L. Murphy. Milp for

the multi-objective vm reassignment problem. In 2015 IEEE 27th International

Conference on Tools with Artificial Intelligence (ICTAI), pages 41–48. IEEE,

2015.

[27] X. Song, J. Shi, R. Liu, J. Yang, and H. Chen. Parallelizing live migration of vir-

tual machines. In Proceedings of the 9th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pages 85–96, 2013.

60



[28] F. Tian, R. Zhang, J. Lewandowski, K.M. Chao, L. Li, and B. Dong. Deadlock-

free migration for virtual machine consolidation using chicken swarm optimiza-

tion algorithm. Journal of Intelligent & Fuzzy Systems, 32(2):1389–1400, 2017.

[29] F. Vanderbeck and L.A. Wolsey. Reformulation and decomposition of integer pro-

grams. In 50 Years of Integer Programming 1958-2008, pages 431–502. Springer,

2010.

[30] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sandpiper: Black-box

and gray-box resource management for virtual machines. Computer Networks,

53(17):2923–2938, 2009.

[31] H. Xu, Y. Liu, W. Wei, and Y. Xue. Migration cost and energy-aware virtual

machine consolidation under cloud environments considering remaining runtime.

International Journal of Parallel Programming, 47(3):481–501, 2019.

[32] F. Zhang, G. Liu, X. Fu, and R. Yahyapour. A survey on virtual machine migra-

tion: Challenges, techniques, and open issues. IEEE Communications Surveys

& Tutorials, 20(2):1206–1243, 2018.

61


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	General Background
	Project
	Contributions
	Plan of the Thesis

	Background
	Datacenters
	Migration Motivation
	Migration: pre-copy/postcopy

	Different Problem Statements
	Problem Statement: Generalities
	Initial & final states
	Initial state but no final state


	Literature Review
	Exact Methods
	Intra-site Migration
	Cross-site Migration
	Concluding Remarks
	Possible Solution: Decomposition Modelling

	Heuristics
	Concluding Remarks

	Exact Modelling with a Precedence Graph
	Deadlocks in Generated Instances

	Greedy Heuristics
	Motivation
	Benchmarking
	Onoue et al. (2017)
	Khodayar's Algorithm (2019)

	Greedy Heuristics
	General Greedy Framework
	Criteria

	Impact of Preprocessing
	General Algorithm


	Numerical Results
	Data Sets
	Performance Criteria & Testing Environment
	Comparison of Heuristics
	Intra-Greedy Heuristic Comparison
	Best Greedy vs. Dependency-graph Heuristics
	Computational Times
	Conclusions


	ILP Models
	Classical ILPs and their limitations
	Proposed Decomposition Models
	List of Common Parameters and Variables of the two Models
	First Decomposition Model: A time-index model
	An event-based model
	Solution process


	Conclusions and Future Work
	Conclusions
	Future Work


