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Abstract

Exploring Temporal Cycles and Grids

Shadi Taghian Alamouti

A temporal graph is a graph in which the edge set can change from time to time. The

temporal graph exploration problem, TEXP, is the problem of computing a foremost

exploration schedule for a temporal graph, i.e., a temporal walk that starts at a given

start node, visits all nodes of the graph, and has the smallest arrival time.

In this work, we consider undirected temporal graphs that are connected at each

time step. We present an overview of some known results regarding exploration of

temporal cycles and grids, as well as new contributions to the theory of TEXP of cycles

and grids. Our results can be grouped into two sets. The first set of results concerns

TEXP of cycles. In particular, we positively resolve the conjecture of Erlebach et al.

stating that temporal cycles of size n with constantly many chords can be explored

in O(n) time steps. Moreover, we design a polynomial time dynamic programming

algorithm for computing an optimal temporal walk for TEXP on cycles from any start

node. We implemented this algorithm and performed a limited empirical evaluation,

results of which are also reported in this thesis. Our second set of results extends the

algorithm of Erlebach et al. for the exploration of 2 ⇥ n temporal grids to modified

temporal grids that allow some neighboring edges to cross each other.
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Chapter 1

Introduction and Preliminaries

The conception and development of graph theory are among the most important

achievements in combinatorics and mathematics at large. Applications of graph the-

ory are numerous and extend to many related (and not so related) fields, including

computer science, chemistry, biology, etc. One would be hard pressed to name an area

of science, mathematics, and engineering that has not benefited from the development

of graph theory.

A graph is used to mathematically model objects (also called vertices or nodes)

and pairwise relations between the objects (also called edges, links, or arcs). A graph

can be used to model transportation networks, electrical grids, social networks, to

name a few real-life scenarios. As such, the question of exploration of graphs is of

paramount interest. One can formalize the exploration question in several ways. In

one formalization, the goal is to visit every edge exactly once. This problem is known

as the Eulerian path/cycle problem. A particular instance of this problem, which

is of historical importance, is known as the seven bridges of Königsberg problem.

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides

of the Pregel River and included two large islands — Kneiphof and Lomse — which

were connected to each other, and to the two mainland portions of the city, by seven

bridges. The problem was to devise a walk through the city that would cross each

of those bridges once and only once. In 1736, Leonhard Euler [10] proved that the

problem has no solution. The di�culty he faced was the development of a suitable

technique of analysis and of subsequent tests that established this assertion with

mathematical rigor. This laid the foundations of graph theory and prefigured the
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idea of topology [26]. The general version of this problem was named after Euler in

his honour. This problem has e�cient algorithmic solutions.

Another way to formalize the graph exploration problem is to request a path (if

it exists) that visits every vertex (instead of each edge) exactly once. This is known

as the Hamiltonian path problem. If a Hamiltonian path exists whose endpoints are

adjacent, then the resulting graph cycle is called a Hamiltonian cycle. Hamiltonian

paths and cycles are named after William Rowan Hamilton, who in 1857 invented the

icosian game, now also known as Hamilton’s puzzle, which involves finding a Hamil-

tonian cycle in the edge graph of the dodecahedron. In geometry, a dodecahedron is

any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular

dodecahedron with regular pentagons as faces, which is a Platonic solid. There are

also three regular star dodecahedra, which are constructed as stellations of the convex

form. Hamilton solved this problem using the icosian calculus, an algebraic structure

based on roots of unity with many similarities to the quaternions (also invented by

Hamilton). This solution does not generalize to arbitrary graphs. Unlike Eulerian

path problem, Hamiltonian path problem is NP-hard and thus does not admit ef-

ficient algorithms unless P = NP. The weighted version of the Hamiltonian cycle

problem is known as the travelling salesman problem.

This thesis is concerned with a graph exploration problem most closely related to

the Hamiltonian path problem, but in a temporal setting and allowing for multiple

visits to the same vertex. The motivation for studying the temporal setting is that

many networks are not static and change over time. For example, in a transportation

network, the connections might function only at certain times. Moreover, connections

in social networks keep changing as di↵erent subnetworks are created and removed.

Links in wired or wireless networks may change dynamically. As another example,

consider the following problem, which is a modified version of the traveling salesman

problem. A tourist travels to a country and wants to visit all k touristic cities using

trains in a given period of time. Each train has a traveling schedule of its own. The

tourist must choose the best schedule in order to visit all cities since the trains are

not available at all times. This problem is an example of exploration in a temporal

graph. Such dynamically changing networks have been modelled in various ways and

studied in the context of faulty networks, scheduled networks, time-varying networks,

distributed algorithms, etc. See [9] and references therein. While di↵erent models
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tend to have slightly di↵erent emphasis (for example, online algorithms tend to be

concerned with irrevocable decisions, dynamic algorithms tend to be concerned with

data structures, streaming algorithms tend to be concerned with memory require-

ments), we focus on the model called “temporal graphs”, where the schedule of how

the graph changes with time is known in advance and one is interested in designing

e�cient o✏ine algorithms for various combinatorial problems.

More specifically, in this work, we discuss the temporal graph exploration problem

TEXP. The temporal graph exploration problem, TEXP, is the problem of computing

a foremost exploration schedule for a temporal graph, i.e., a temporal walk that starts

at a given start node, visits all nodes of the graph (repetition is allowed), and has the

smallest arrival time. Such a walk needs to be consistent with the schedule of graph

changes, i.e., it can use an edge at a particular time only if that edge is present at

that time. We often visualize such a walk as being carried out by a single agent. As

a sub-routine or a proof-technique, we also sometimes consider a multi-agent variant

k-TEXP of TEXP in which there are k agents initially located at the start vertex. In

this thesis, k-TEXP is used only because it is easier to design exploration schedules

with multiple agents and we can use various tricks to convert such schedules into a

schedule for a single agent. We focus on the TEXP of temporal cycles and temporal

grids. The following is the list of our contributions presented in this thesis:

• Erlebach et al. [9] proved that a connected temporal cycle (even with one chord)

can be explored by a single agent in O(n) time steps. They conjectured that the

same bound should hold for connected temporal cycles with constantly many

chords. We prove this conjecture. This is one of the more technical of our

contributions.

• While Erlebach et al. gave careful proofs of tight bounds on the exploration time

of connected temporal cycles, they only sketched how to compute an optimal

exploration time for a given start node. We give a di↵erent polynomial time al-

gorithm based on dynamic programming that computes an optimal exploration

time for connected temporal cycles.

• We implemented and performed a limited empirical evaluation of our dynamic

programming algorithm from the previous point.
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• We give alternative proofs to similar bounds as those of Erlebach et al. on the

worst-case exploration time of temporal cycles.

• We adapt the algorithm of Erlebach et al. for the exploration of 2 ⇥ n tem-

poral grids to other related topologies, such as modified grids that allow some

neighboring edges to cross each other.

Organization. The rest of this thesis is organized as follows. In the remainder

of this chapter, we present definitions and preliminaries: main properties, lemmas,

and theorems that are needed to formally state the main problems of this work and

to present our contributions. In Chapter 2, we review the previous literature on the

topic of temporal graph exploration. Review of some more technical results concerning

temporal cycles and grids is postponed to a later chapter, so that it appears closer

to our related results. In Chapter 2, we also introduce and discuss the important

dichotomy of temporal graph problems, namely, the algorithmic problems and the

design problems. Our contributions appear in Chapter 3 grouped into two sets of

results: those concerning TEXP of temporal cycles and those concerning TEXP of

temporal grids. Lastly, we finish with conclusions in Chapter 4.

1.1 Preliminaries

1.1.1 Classical/Static Graphs

A graph G = (V,E) consists of a set of vertices V and a set of edges E. In case of

undirected simple graphs, an edge e 2 E is a set of two vertices, i.e., e = {u, v} where

u, v 2 V with u 6= v. A set {u, v} is used to indicate that an edge has no orientation

or direction. The set of all subsets of V of size 2 is denoted by
�
V
2

�
by analogy with

binomial coe�cients. Thus, for undirected simple graphs we have E ✓
�
V
2

�
. In case

of directed simple graphs (or simply digraphs), we have E ✓ V ⇥V \{(u, u) : u 2 V },
i.e., each edge is a pair (u, v) with u 6= v; the interpretation being that the edge is

oriented from u to v. More generally, multi-graphs and multi-digraphs allow several

parallel edges defined between a pair of vertices, as well as self-loops. In this thesis,

we consider only simple graphs which allow only a single edge to be present between

any two vertices and disallow self-loops. Thus, when we write “graph” we mean a

simple undirected graph.
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Additional information may be encoded with weights (i.e., labels) that are placed

on edges and/or vertices. For example, in a graph modelling a road network of a

country, the weight of the edge (C1, C2) can be used to represent the average time it

takes to drive from city C1 to C2. Formally, an edge-weighted graph G comes with

the weight function w : E ! R for real weights, but more generally the range of w

could be any set. Similarly, a vertex-weighted graph with real weights comes with

the weight function of the form w : V ! R. When we say “weighted graph” without

prefix “edge-” or “vertex-” we mean “edge-weighted graph”. For a more detailed

introduction to classical graph theory, an interested reader is referred to [28] and [7].

1.1.2 Three Equivalent Models of Temporal Graphs

Temporal graphs (also known as dynamic1, evolving [11], or time-varying [12], [4]

graphs) can be informally described as graphs that change with time. In this thesis, we

focus on temporal graphs that change in discrete time steps (as opposed to continuous

time setting). There are several equivalent ways of formally modelling temporal

graphs. The first way is to represent a temporal graph by a sequence of graphs – one

graph per time step. More formally, we have:

Definition 1.1.1. A temporal graph G with vertex set V and lifetime (or age) L

is given by a sequence of graphs (Gi), 0  i  L with Gi = (V,Ei). We refer to

i, 0  i  L, as time i or step i. The graph G = (V,E) with E =
S

0iL Ei is called

the underlying graph of G.

If the underlying graph is X, then we call the temporal graph a temporal X or a

temporal realization of X. For example, a temporal cycle is a temporal graph whose

underlying graph is a cycle. We use the term “static” to refer to classical graphs.

This is plausible as the opposite of “dynamic” that is sometimes used for temporal

graphs as mentioned above.

Another way to model temporal graphs is by using weighted/labelled graphs,

where the label of the edge is the set of times when the edge is present. More

formally, we have:

1
One should be careful with the term “dynamic graph” and infer the meaning from the context,

as it is also used to refer to the area of dynamic algorithms for graphs, where the objective is to

design data structures with e�cient update operations. This usage of the term is di↵erent from

“temporal graphs.” As such we shall try to avoid using the term “dynamic graphs” as much as

possible in the remainder of the thesis.
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Figure 1: A temporal star: The labels on each edge shows the time step in which the edge

is present.

Definition 1.1.2. Consider an underlying static graph G = (V,E) together with a

labeling � : E ! 2N of G assigning to every edge of G a (possibly empty) set of natural

numbers, called labels. Then the temporal graph of G with respect to � is denoted by

�(G).

This second model of temporal graphs is particularly well suited for illustrations.

An example is given in Figure 1. This notation is also useful when we want to study

the properties of the labels of the temporal graphs. For example, the multiset of

all labels of �(G) can be denoted by �(E), their cardinality is defined as |�(E)| =
P

e2E |�(e)|, and the maximum and minimum labels assigned to the whole temporal

graph as �max = max�(E) and �min = min�(E), respectively. Observe that in this

model the age (or the lifetime) of a temporal graph �(G) as ↵(�) = �max � �min + 1

(or simply ↵ when G is clear from the context). Note that in the case �min = 1 then

we have ↵(�) = �max, and the definition of the age (or the lifetime) matches that of

the first model above.

Yet another, often convenient, formalization of a temporal graph G is as follows:

Definition 1.1.3. A temporal graph G is an ordered pair of disjoint sets (V,A) such

that A ✓
�
V
2

�
⇥ N in case of a simple undirected graph and with

�
V
2

�
replaced by
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V 2\{(u, u) : u 2 V } in case of a simple digraph.

The set A in the previous definition is called the set of time-edges. A can also

be used to refer to the structure of the temporal graph at a particular time. In

particular, A(t) = {e : (e, t) 2 A} is the (possibly empty) set of all edges that

appear in the temporal graph at time t. In turn, A(t) can be used to define a

snapshot of the temporal graph G at time t, which is usually called the tth instance

of G, and is the static graph G(t) = (V,A(t)). So, it becomes evident that this

formalization is equivalent to the first formalization in terms of a sequence of static

graphs (G1, G2, . . . , G�max).

Finally, it is typically very useful to expand in time the whole temporal graph

and obtain an equivalent static graph without losing any information. The reason for

doing this is mainly because static graphs are much better understood, and there is

a rich set of well-established tools and techniques for them. So, a common approach

to make initial progress on a problem concerning temporal graphs is to first express

the given temporal graph as a static graph and then try to apply or adjust one of the

existing tools that work on static graphs.

Formally, the static expansion of a temporal graph G = (V,A) is a directed acyclic

graph (DAG) H = (S,E) defined as follows.

Definition 1.1.4. [22] If V = {u1, u2, . . . , un} then S = {uij : �min � 1  i 
�max, 1  j  n} and E = {(u(i�1)j, uij0) : �min  i  �max and j = j0 or (uj, uj0) 2
A(i)}.

In words, for every discrete moment we create a copy of V representing the instance

of the nodes at that time (called time-nodes). We may imagine the moments as

levels or rows from top to bottom, every level containing a copy of V . Then we add

outgoing edges from time-nodes of one level only to time-nodes of the level below it.

In particular, we connect a time-node u(i�1)j to its own subsequent copy uij and to

every time-node uij0 s.t. (uj, uj0) is an edge of the temporal graph at time i. Observe

that the above construction includes all possible vertical edges from a node to its

own subsequent instance. These edges express the fact that nodes are usually not

oblivious and can preserve themselves on history in time (modeled like propagating

information to themselves). Nevertheless, depending on the application, these edges

may sometimes be omitted [22].
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We shall use all these notations interchangeably depending on which notation is

more suitable for the given circumstances.

1.1.3 Temporal Graph Problems

In spite of strong connections between temporal graphs and static graphs explained

in Section 1.1.2, the time aspects of temporal graph/networks give rise to a whole

new set of problems and challenges. In particular, it is not yet fully understood how

the complexity of combinatorial optimization problems is a↵ected by introducing to

them a notion of time. In the past few years intensive research e↵orts have been

dedicated to numerous areas of dynamic networks and temporal graphs [22, 1, 19, 9].

This has resulted in obtaining a lot of insights regarding the new set of problems.

These studies and research have mainly been in:

(a) the study of communication in highly dynamic networks, e.g., broadcasting and

routing in delay-tolerant networks.

(b) the exploitation of passive mobility, e.g., the opportunistic use of transportation

networks.

(c) the analysis of complex real-world networks ranging from neuroscience or biology

to transportation systems or social studies, e.g., the characterization of the

interaction patterns emerging in a social network.

An interesting fact about these problems is that these concepts are highly related.

As a matter of fact, in several cases, di↵erently named concepts identified by di↵erent

researchers are actually one and the same concept [5]. For example, the concept of

temporal distance, formalized in [30], is the same as reachability time [14], information

latency [17], and temporal proximity [18]; similarly, the concept of journey [30] has

been coined schedule-conforming path [3], time-respecting path [14, 16], and temporal

path [6, 27]. Hence, the concepts discovered in these investigations can be viewed as

parts of the same conceptual universe; and the formalisms proposed so far to express

them as fragments of a larger formal description of this universe.

Among the other few things that we know is that the max-flow min-cut theorem

holds with unit capacities for time-respecting paths [3]. Additionally, Kempe et al.

[16] proved that, in temporal graphs, the classical formulation of Menger’s theorem

8



is violated, and the computation of the number of node-disjoint s� z paths becomes

NP-complete.

Another important problem is that of designing an e�cient temporal graph that

satisfies the given requirements given. This problem has been studied in [21], where

several interesting cost minimization parameters for optimal temporal network design

has been introduced. One of the parameters is the temporality of a graph G, in which

the goal is to create a temporal version of G minimizing the maximum number of

labels of an edge, and the other is the temporal cost of G, in which the goal is

to minimize the total number of labels used. Optimization of these parameters is

performed subject to some connectivity constraints.

Several upper bounds and lower bounds for temporality of some basic graph fam-

ilies have been provided, For instance, the bounds for rings, directed acyclic graphs,

and trees have been calculated. In [21], the authors have also provided a trade-o↵

between the temporality and the maximum labels of rings. Furthermore, they gave a

method for computing a lower bound of the temporality of an arbitrary graph with

respect to (abbreviated w.r.t.) the constraint of preserving a time-respecting ana-

logue of every simple path of G. Finally, they showed that computing the temporal

cost w.r.t. the constraint of preserving at least one time-respecting path from u to v

whenever v is reachable from u in G, is APX-hard [22].

Next we discuss shortest path problems in a temporal setting. Shortest path is

a fundamental graph problem with numerous applications. However, the concept of

classic shortest path is insu�cient or even flawed in a temporal graph, as the temporal

information determines the order of activities along any path. A temporal path is

defined as follows:

Definition 1.1.5. A temporal path P in a temporal graph G is a sequence of vertices

P = hv1, v2, . . . , vk, vk+1i, where 81  i  k the edge (vi, vi+1) 2 Ei.

Four types of “shortest” paths in a temporal graph have been defined. Collectively

we call them minimum temporal paths, as they give the minimum value for di↵erent

measures. By introducing time into a graph, the term “shortest” must be defined

specifically. What do we mean by “shortest”? Is it the smallest number of edges

between two nodes? Or the shortest duration of the path between two nodes? We

give the formal definitions as follows:

9



1. earliest-arrival/foremost path: A path that gives the earliest arrival time

starting from a source node s to a target node t.

2. latest-departure path: A path that gives the latest departure time starting

from a source node s in order to reach a target node t by a given time.

3. fastest path: A path by which one goes from x to y with the minimum elapsed

time.

4. shortest path: A path that is shortest from x to y in terms of overall traversal

time needed on the edges.

It’s important to note that a shortest path might not necessarily be a fastest

path. For example, consider a tra�c network. In such a network the shortest path

from x to y may have a lot of tra�c lights, whereas a highway is longer but is the

fastest way to travel from x to y. Also, a fastest path might not be an earliest-arrival

path either. Consider the same tra�c network. Traveling from starting point x to

the destination y may take 1 hour at noon due to less tra�c. However, one may

leave at 9 a.m., take 2 hours to travel and arrive before noon. Due to the additional

temporal information, computing temporal paths and their “time-distance” poses

new challenges. For example, the greedy strategy used to compute shortest paths in

a static graph (e.g., by Dijkstra’s algorithm) is based on the property that a subpath

of a shortest path is also shortest, which is not necessarily true when computing any

of the four minimum temporal paths [29].

A temporal path that visits every node of the underlying graph at least once

provides an exploration of a temporal graph:

Definition 1.1.6. Graph traversal (also known as graph exploration) refers to the

process of visiting (checking and/or updating) each vertex in a graph. Such traversals

are classified by the order in which the vertices are visited.

In TEXP the goal is to find the foremost exploration path of a given temporal

graph. In this work we study TEXP for various classes of graphs, such as cycles,

cycles with chords, and (modified) grids. A temporal cycle is a temporal graph whose

underlying graph is a cycle. A chord in a given cycle C is an edge between two

nodes v and u, where v, u 2 V (C) and the edge (v, u) /2 E(C). See Figure 2 for

examples of temporal graphs of various classes. Another feature that helps a lot
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Figure 2: From left to right: a temporal grid (can also be considered a temporal cycle

with 1 chord), a temporal cycle, a temporal tree.

with many temporal graph problems, specifically with temporal graph exploration,

is connectivity. The concept of connectivity plays a major role when it comes to

exploration. In this thesis, we only consider the temporal graphs which are connected

in every time steps.
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Chapter 2

Literature Review

This chapter studies and discusses the di↵erent problems on temporal graphs. Here we

present both algorithmic and design problems and discuss their algorithm. Moreover,

we present a few exploration problems on some families of graphs which are closely

related to our main contribution. In Section 2.1, we discuss graph exploration in

detail and present the very first problems regarding this matter. We continue by dis-

cussing problems on dissemination and gathering of information in temporal graphs.

We introduce gossiping problem, telephone problem, as well as minimum broadcast

time problem. In Section 2.3 of this chapter, we introduce random temporal graphs

followed by some basic problems.

2.1 Temporal Graph Exploration

When it comes to graph exploration, the very first concepts that need to be investi-

gated thoroughly are paths and walks.

2.1.1 Temporal Path Exploration

As is the case in static graphs, the notion of a path is one of the most central notions

of a temporal graph; however, it has to be redefined to take time into account.

A journey (or temporal/time-respecting path) J is a temporal walk with pairwise

distinct nodes. In words, a journey of G is a path of the underlying static graph of

G that uses strictly increasing edge-labels. A u� v journey J is called foremost from

time t 2 N if it departs after time t and its arrival time is minimized. As previously

12



defined in Chapter 1, we can give the formal definition for a temporal walk as follows.

Definition 2.1.1. [22] A temporal (or time-respecting) walk W in a temporal graph

G = (V,E) is an alternating sequence of nodes and times (u1, t1, u2, t2, . . . , uk�1, tk�1, uk)

where (uiui+1, ti) 2 E, for all 1  i  k � 1, and ti < ti+1, for all 1  i  k � 2.

We call tk�1� t1+1 the duration (or temporal length) of the walk W , t1 its departure

time and tk�1 its arrival time.

Definition 2.1.2. [22] The temporal distance from a node u 2 V (G) at time t to a

node v 2 V (G) is defined as the duration of a foremost journey/path from u to v from

time t.

Definition 2.1.3. [22] We say that a temporal graph G = (V,E) has temporal (or

dynamic) diameter d, if d is the minimum integer for which it holds that the temporal

distance from every time-node (u, t) 2 V ⇥ {0, 1, . . . ,↵ � d} to every node v 2 V is

at most d.

A nice property of foremost journeys is that they can be computed e�ciently. In

particular there is an algorithm that, given a source node s 2 V and a time tstart,

computes for all w 2 V {s} a foremost s � w journey from time tstart [21]. The

running time of the algorithm is O(n↵3(�) + |�|), where n here and throughout this

work denotes the number of nodes of the temporal graph. And the notations � and

↵ are as defined in Chapter 1. It is worth mentioning that this algorithm takes as

input the whole temporal graph D. Such algorithms are known as o✏ine algorithms

in contrast to online algorithms to which the temporal graph is revealed on the fly.

The algorithm is essentially a temporal translation of the breadth-first search

(BFS) algorithm (see, e.g., [7] page 531) with path length replaced by path arrival

time. For every time t, the algorithm picks one after the other all nodes that have

been already reached (initially only the source node s) and inspects all edges that are

incident to that node at time t. If a time-edge (e, t) leads to a node w that has not yet

been reached, then (e, t) is picked as an edge of a foremost journey from the source

to w. This greedy algorithm is correct for the same reason that the BFS algorithm is

correct. An immediate way to see this is by considering the static expansion of the

temporal graph. The algorithm begins from the upper copy (i.e., at level 0) of the

source in the static expansion and essentially executes the following slight variation

of BFS: at step i+1, given the set R of already reached nodes at level i, the algorithm

13



first follows all vertical edges leaving R in order to reach in one step the (i + 1)-th

copy of each node in R, and then inspects all diagonal edges leaving R to discover

new reachabilities.

The algorithm outputs as a foremost journey to a node u, the directed path of

time-edges by which it first reached the column of u (vertical edges are interpreted as

waiting on the corresponding node). The above algorithm computes a shortest path

to each column of the static expansion. Correctness follows from the fact that shortest

paths to columns are equivalent to foremost journeys to the nodes corresponding to

the columns [22].

2.1.2 Temporal Star Exploration

An interesting family of graphs to discuss is the star family. Since there is one central

node in a star that is connected to every other nodes, it can help with the exploration.

Akrida et al. introduced an interesting set of problems in [1]. They mainly focused

on temporal graphs where the underlying graph is a star graph, and they consider the

problem of exploring such a temporal graph starting and finishing at the center of the

star. The motivation behind this is inspired by the well known Traveling Salesman

Problem (TSP).

However, what happens when the traveling salesman has particular temporal con-

straints that need to be satisfied, e.g. (s)he can only go from city A to city B on

Mondays or Tuesdays, or when (s)he needs to take the train and, hence, schedule

his/her visit based on the train timetables?

In particular, consider a traveling salesman who, starting from his/her home town,

has to visit n � 1 other towns via train, always returning to their own home town

after visiting each city. There are trains between each town and the home town only

on specific times/days, possibly di↵erent for di↵erent towns, and the salesman knows

those times in advance. Can the salesman decide whether (s)he can visit all towns

and return to the own home town by a certain day [1]?

Definition 2.1.4. [1] (Temporal Star). A temporal star is a temporal graph (Gs, L)

on a star graph Gs = (V,E). Henceforth, we denote by c the center of Gs, i.e. the

vertex of degree n� 1.

Definition 2.1.5. [1] (Time edge). Let e = (u, v) be an edge of the underlying graph
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of a temporal graph and consider a label l 2 �(e). The ordered triplet (u, v, l) is called

a time edge.

Definition 2.1.6. [1] (Journey). A temporal path or journey j from a vertex u to

a vertex v ((u, v) � journey) is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . . ,

(uk�1, v, lk), such that li < li+1, for each 1  i  k � 1. We call the last time label,

lk, arrival time of the journey.

Akrida et al. identifies two problems in [1]. First they mention StarExp(k). This

problem answers the following question: is a temporal star (Gs, L) such that every

edge has at most k labels, explorable?. The second problem that they discuss is

MaxStarExp(k). Given a temporal star (Gs, L) such that every edge has at most k

labels, can we find a (partial) exploration of (Gs, L) of maximum size?

Theorem 2.1.1. [1] MaxStarExp(2) can be solved in O(n log n) time.

Theorem 2.1.2. [1] StarExp(3) can be solved in O(n log n) time on instances with

distinct labels.

Corollary 2.1.1. [1] StarExp(3) can be solved in O(n log n) time on arbitrary in-

stances.

In order to show the hardness of these problems, Akrida et al.[1] used the problem

3SAT (3). This is a special case of 3SAT . The input to this problem is a boolean

formula in CNF with variables x1, x2, . . . , xp and clauses c1, c2, . . . , cq, such that each

clause has at most 3 literals, and each variable appears in at most 3 clauses. And the

output to this problem is the decision on whether the formula is satisfiable.

Theorem 2.1.3. [1] StarExp(k) is NP-complete for every k � 6.

Theorem 2.1.4. [1] MaxStarExp(k) is APX-hard, for k � 6.

Theorem 2.1.5. [1] Let ✏0 > 0 be the constant such that, unless P = NP , there

exists no polynomial-time constant-factor approximation algorithm for Max3SAT (3)

with approximation ratio greater than (1� ✏0). Then, unless P = NP, there exists no

polynomial-time constant-factor approximation algorithm for MaxStarExp(k) with

approximation ratio greater than (1� ✏0
19).
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Finally, they present some open problems. They pose a question regarding the

complexity of the maximization problem MaxStarExp(3), which remains an open

problem, as well as the complexity of StarExp(k) and MaxStarExp(k), for k 2 {4, 5}.
An interesting variation of StarExp(k) and MaxStarExp(k) is the case where the

consecutive labels of every edge are � time steps apart, for some � 2 N. What is the

complexity and/or best approximation factor one may hope for in this case?

2.2 Dissemination and Gathering of Information

A natural application domain of temporal graphs is that of gossiping and in general

of information dissemination, mainly by a distributed set of entities (e.g., a group of

people or a set of distributed processes). Two early such examples were the telephone

problem [2] and the minimum broadcast time problem [25]. In both, the goal is to

transmit some information to every participant of the system, while minimizing some

measure of communication or time. A more modern setting, but in the same spirit,

comes from the very young area of distributed computing in highly dynamic networks

[24], [19], [20], [5], [23], [21].

There are n nodes. In this context, nodes represent distributed processes. Note,

however, that most of the results that we will discuss, concern centralized algorithms

(and in case of lower bounds, these immediately hold for distributed algorithms as

well). The nodes communicate with other nodes in discrete rounds by interchanging

messages. In every round, an adversary scheduler selects a set of edges between the

nodes, and every node may communicate with its current neighbors, as selected by

the adversary, usually by broadcasting a single message to be delivered to all its

neighbors. So, the dynamic topology behaves as a discrete temporal graph where the

i� th instance of the graph is the topology selected by the adversary in round i. The

main di↵erence, compared to the setting of the previous sections, is that now (in all

results that we will discuss in this section, apart from the last one) the topology is

revealed to the algorithms in an online and totally unpredictable way. An interesting

special case of temporal graphs consists of those temporal graphs that have connected

instances.

Definition 2.2.1. [24, 19] A temporal graph D is called continuously connected (also

known as 1-interval connected) if D(t) is connected for all times t � 1.
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Such temporal graphs have some very useful properties concerning information

propagation in a distributed setting, like, for example, that if all nodes broadcast

in every round all information that they have heard so far, then in every round at

least one more node learns something new, which implies that a piece of information

can in principle be disseminated in at most n� 1 rounds. Naturally, the problem of

information dissemination becomes much more interesting and challenging if we do

not allow nodes to transmit an unlimited amount of information in every round, that

is, if we restrict the size of the messages that they can transmit [22].

Erlebach et al. have established some very useful lemmas and theorems in [9] that

helps us in our results. The following lemma allows us to bound the time steps of a

temporal walk from one vertex to another vertex in a temporal graph.

Lemma 2.2.1. [9] (reachability) Let G be a temporal graph with vertex set V .

Assume that an agent is at vertex u. Let v be another vertex and H a subset of the

vertices that includes u and v and has size k. If there exists a set of k� 1 subsequent

steps such that the subgraph induced by H contains a path from u to v (which can be

a di↵erent path in each step), then the agent can move from u to v in these k � 1

steps.

The next lemma shows that a solution to k-TEXP also yields a solution to TEXP.

Lemma 2.2.2. [9] (multi-agent to single-agent) Let G be a graph with n vertices.

If any temporal realization of G can be explored in t steps with k agents, then any

temporal realization of G can be explored in O((t+ n)k log n) steps with one agent.

The next two lemmas show that taking subgraphs and edge contractions do not

increase the arrival time of exploration in the worst case.

Lemma 2.2.3. [9] (subgraphs) Let G = (V,E) be a graph such that any temporal

realization of G can be explored in t steps. Let G0 = (V 0, E 0) be a connected subgraph

of G. Then any temporal realization of G0 can also be explored in t steps.

Lemma 2.2.4. [9] (edge contraction) Let G be a graph such that any temporal

realization of G can be explored in t steps. Let G0 be a graph that is obtained from

G by contracting edges. Then any temporal realization of G0 can also be explored in t

steps.

Based on Lemmas 2.2.3 and 2.2.4, we can derive the following results:
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Corollary 2.2.1. [9] (minor) Let G = (V,E) be a graph such that any temporal

realization of G can be explored in t steps. Let G0 = (V 0, E 0) be a connected minor of

G. Then any temporal realization of G0 can also be explored in t steps.

Corollary 2.2.2. [9] Let c < 1 be a positive constant and t(n) a function that is

monotone increasing and satisfies t(kn) = O(t(n)) for any constant k > 0, e.g., a

polynomial. Let C be a class of graphs such that any temporal realization of a graph

G in the class can be explored in t(n) steps, where n is the number of nodes of G. Let

D be the class of graphs that contains all graphs that can be obtained from a graph G

in C with n vertices by at most cn edge contractions. Then any temporal realization

of a graph in D with n0 vertices can be explored in O(t(n0)) steps.

Now we consider how exploration schedules for the biconnected components of

a graph can be combined into an exploration schedule for the whole graph. Recall

that the block-cut tree (often also called the block graph) of a connected graph is a

tree with a vertex for every block (biconnected component or bridge) and for every

cut vertex of the graph, with an edge between a block and a cut vertex if the block

contains that cut vertex [8]. If the vertices representing blocks in the block-cut tree

of the graph have bounded degree, the next lemma shows that the total exploration

time is on the order of the sum of the exploration times of the blocks.

Lemma 2.2.5. [9] Assume that, for some function t(n) � n� 1, any temporal real-

ization of any n-vertex graph from a class C of biconnected graphs can be explored in

t(n) steps. Let G = (V,E) be a connected graph all of whose biconnected components

belong to C. Let Hi = (Vi, Ei), for 1  i  k, be the blocks of G. If all vertices rep-

resenting blocks in the block-cut tree of G have degree at most d, then any temporal

realization of G can be explored in O(d|V |+
Pk

i=1 t(|Vi|)) steps.

While static undirected connected graphs with n nodes can always be explored in

less than 2n steps, the following lemma shows that there are temporal graphs that

require ⌦(n2) steps.

Lemma 2.2.6. [9] There is an infinite family of temporal graphs that, for every

r � 1, contains a temporal graph G with n = 2r vertices that requires ⌦(n2) steps to

be explored.
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Corollary 2.2.3. [9] For any number k = o(n) of agents, there is an infinite family

of temporal graphs such that each n-vertex temporal graph in the family cannot be

explored in o(n2/k) steps.

The underlying graph of the temporal graph constructed in the proof of Lemma

2.2.6 has maximum degree |V |� 1. For graphs with maximum degree bounded by d,

we can show a lower bound of ⌦(dn) in the following lemma.

Lemma 2.2.7. [9] For every d � 1, there is an infinite family of temporal graphs

with underlying graphs of maximum degree d that require ⌦(dn) steps to be explored,

where n is the number of vertices of the graph.

For the proofs of the next three theorems, they use the fact that the Hamiltonian s-

t path problem isNP-complete even if the input graphs are planar and have maximum

degree 3 as shown by Garey, Johnson, and Tarjan [13].

Theorem 2.2.1. [9] TEXP on planar graphs of maximum degree 3 is NP-hard.

They remark that temporal graphs whose underlying graph has maximum degree 2

are temporal realizations of paths or cycles. The exploration of temporal realizations

of paths is trivial, as all edges of the path must exist in all steps of any temporal

realization since we assume that the graph is connected in each step.

Theorem 2.2.2. [9] Approximating TEXP with ratio O(n1�✏) is NP-hard for any

constant ✏ > 0.

Theorem 2.2.3. [9] For all ✏, � > 0, approximating TEXP with ratio O(�1�✏) is

NP-hard even if the underlying graphs have maximum degree at most � = ⌦((n⇤)�)

with n⇤ being the number of vertices of the temporal graph.

Furthermore, they show that even the restriction to underlying graphs that are

planar and have bounded degree is not su�cient to ensure the existence of an explo-

ration schedule with a linear number of steps.

Theorem 2.2.4. [9] Even if the underlying graph G = (V,E) of a temporal graph

G is planar with maximum degree 4 and the graph Gi in every step i � 0 is a simple

path, an optimal exploration can take ⌦(n log n) steps, where n = |V |.

Theorem 2.2.5. [9] Any temporal graph whose underlying graph has treewidth at

most k can be explored in O(n1.5k1.5 log n) steps.
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2.3 Design Problems

So far, we have mainly presented problems in which a temporal graph is provided

somehow (either in an o✏ine or an online way) and the goal is to solve a problem

on that graph. Another possibility is when one wants to design a desired temporal

graph. In most cases, such a temporal graph cannot be arbitrary, but it has to satisfy

some properties prescribed by the underlying application. This design problem was

introduced and studied in [21]. An abstract definition of the problem is that we are

given an underlying graph G and we are asked to assign labels to the edges of G so

that the resulting temporal graph G minimizes some parameter while satisfying some

connectivity property.

The parameters studied in [21] were the maximum number of labels of an edge,

called the temporality, and the total number of labels, called the temporal cost. The

connectivity properties of [21] had to do with the preservation of a subset of the

paths of G in time-respecting versions. For example, we might want to preserve all

reachabilities between nodes defined by G, in the sense that for every pair of nodes

u, v such that there is a path from u to v in G there must be a temporal path from u

to v in G. Another such property is to guarantee in G time-respecting versions of all

possible paths of G. All these can be thought of as trying to preserve a connectivity

property of a static graph in the temporal dimension while trying to minimize some

cost measure of the resulting temporal graph [22].

The provided graph G represents some given static specifications, for example the

available roads between a set of cities or the available routes of buses in the city center.

In scheduling problems it is very common to have such a static specification and to

want to organize a temporal schedule on it, for example to specify the precise time

at which a bus should pass from a particular bus stop while guaranteeing that every

possible pair of stops are connected by a route. Furthermore, it is very common

that any such solution should at the same time take into account some notion of

cost. Minimizing cost parameters may be crucial as, in most real networks, making

a connection available and maintaining its availability does not come for free. For

example, in wireless sensor networks the cost of making edges available is directly

related to the power consumption of keeping nodes awake, of broadcasting, of listening

to the wireless channel, and of resolving the resulting communication collisions. The

same holds for transportation networks where the goal is to achieve good connectivity
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properties with as few transportation units as possible [22].

For instance, imagine that we are given a directed ring u1, u2, . . . , un and we want

to assign labels to its edges so that the resulting temporal graph has a journey for

every simple path of the ring and at the same time minimizes the maximum number

of labels of an edge. In more technical terms, we want to determine or bound the

temporality of the ring subject to the all paths property.

It is worth mentioning that the temporality (and the temporal cost) is defined as

the minimum possible achievable value that satisfies the property, as, for example, is

also the case for the chromatic number of a graph, which is defined as the minimum

number of colors that can properly color a graph. Looking at Figure 3, it is immediate

to observe that an increasing sequence of labels on the edges of path P1 implies a

decreasing pair of labels on edges (un�1, un) and (u1, u2). On the other hand, path

P2 uses first (un�1, un) and then (u1, u2) thus it requires an increasing pair of labels

on these edges. It follows that in order to preserve both P1 and P2 we have to use

a second label on at least one of these two edges; thus, the temporality is at least 2.

Next, consider the labeling that assigns to each edge (ui, ui+1) the labels {i, n + i},
where 1  i  n and un+1 = u1. It is not hard to see that this labeling preserves all

simple paths of the ring. Since the maximum number of labels that it assigns to an

edge is 2, we conclude that the temporality is also at most 2. Taking both bounds

into account, we may conclude that the temporality of preserving all simple paths of

a directed ring is 2.

Moreover, it holds that the temporality of graph G is lower bounded by the maxi-

mum temporality of its subgraphs, because if a labeling preserves all paths of G then

it has to preserve all paths of any subgraph of G, paying every time the temporality of

the subgraph. So, for example, if the input graph G contains a directed ring then the

temporality of G must be at least 2 (and could be higher depending on the structure

of the rest of the graph) [22].

Rings have very small temporality w.r.t. the all paths property; however, there

is a large family of graphs with even smaller. This is the family of directed acyclic

graphs (DAGs).

Definition 2.3.1. A directed acyclic graph (DAG or dag) is a directed graph with no

directed cycles. That is, it consists of vertices and edges, with each edge directed from

one vertex to another, such that there is no way to start at any vertex v and follow a
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Figure 3: The temporal ring

consistently-directed sequence of edges that eventually loops back to v again.

DAGs have a very convenient property that they can be topologically sorted. In

fact, DAGs are the only digraphs that satisfy this property [22].

In the examples above (Figure 3), all paths could be preserved by using very

few labels per edge. One may immediately wonder whether converting all paths to

journeys can always be achieved with few labels per edge, e.g., a constant number

of labels. However, a more careful look at the previous examples may provide a

first indication that this is not the case. In particular, the ring example suggests

that cycles can cause an increase of temporality, compared to graphs without cycles,

like DAGs. Of course, a single ring only provides a very elementary exposition of

this phenomenon; however, as proved in [21], this core observation can be extended

to give a quite general method for lower bounding the temporality. The idea is to

identify a subset of the edges of G such that, for every possible permutation of these

edges, G has a path following the direction of the permutation. Such subsets of edges,

with many interleaved cycles, are called edge-kernels and it can be proved that the

preservation of all paths of an edge-kernel on k edges yields a temporality of at least
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k. To see this, consider an edge-kernel K = {e1, e2, . . . , ek} and order increasingly the

labels of each edge. Now take an edge with a maximum first label, move from it to an

edge of maximum second label between the remaining edges, then move from this to

an edge of maximum third label between the remaining edges, and so on. All these

moves can be performed because K is an edge-kernel; thus, there is a path no matter

which permutation of the edges we choose. As in step i we are on the edge e with

maximum i � th label, we cannot use the 1st, 2nd, . . . , i-th labels of the next edge

to continue the journey because none of these can be greater than the i-th label of e.

So, we must necessarily use the (i+ 1)-th label of the next edge, which by induction

shows that in order to go through the k-th edge in this particular permutation we

need to use a k-th label on that edge [22].

2.4 Random Temporal Graphs

Another model of temporal graphs with succinct representation, is the model of

random temporal graphs. Consider the case in which each edge (of an underlying

clique) just picks independently and uniformly at random a single time-label from

[r] = {1, 2, . . . , r}. So it gets label t 2 [r] with probability p = r�1

2.4.1 Temporal Path

We first calculate the probability that given a specific path (u1, u2, . . . , uk+1) of length

k a journey appears on this path. We begin with the directed case. First, let us

obtain a weak but elegant upper bound. Partition [r] into R1 = {1, . . . , br/2c} and

R2 = {br/2c + 1, . . . , r}. Clearly, P (journey)  P (no R2R1 occurs) as any journey

assignment cannot have two consecutive selections s.t. the first one is from R2 and

the second from R1. So, it su�ces to calculate P (no R2R1 occurs). Notice that the

assignments in which no R2R1 occurs are of the form (R1)i(R2)j for i + j = k, e.g.

R1R1R2R2R2 and there are k+1 of them. In contrast, all possible assignments are 2k

corresponding to all possible ways to choose k times with repetition from {R1, R2}.
So, P (no R2R1 occurs) = k/2k (as all assignments are equiprobable, with probability

2� k) and we conclude that P (journey)  k/2k, which, interestingly, is independent

of r; e.g. for k = 6 we get a probability of at most 0.09375 for a journey of length 6

to appear.
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For any specific assignment of labels t1, t2, . . . , tk of this path, where ti 2 [r]([r] =

{1, 2, . . . , r}), the probability that this specific assignment occurs in simply pk. So all

possible assignments have equal probability and we get

P (journey) =
# strictly increasing assignments

# all possible assignments
=

�
r
k

�

rk

Where
�
r
k

�
follows from the fact that any strictly increasing assignment is just a

unique selection of k labels from the r available and any such selection corresponds

to a unique strictly increasing assignment. So, for example, for k = 2 and r = 10

we get a probability of 9/20 which is a little smaller than 1/2 as expected, due to

the fact that there is an equal number of strictly increasing and strictly decreasing

assignments but we also lose all remaining assignments which in this case are only

the ties (that is, those for which t1 = t2).

Now it is easy to compute the expected number of journeys of length k. Let

S be the set of all directed paths of length k and let Yp be an indicator random

variable which is 1 if a journey appears on a specific p 2 S and 0 otherwise. Let

also Xk be a random variable giving the number of journeys of length k. Clearly,

E(Xk) = E(
P

p2S Yp) =
P

p2S E(Yp) = |S|. P(a journey appears on a specific path of

length k) = n(n�1) . . . (n�k)
�
r
k

�
r�k � (n�k)k

�
r
k

�
r�k. Now,if we set n � r/

�
r
k

�1/k
+k,

we get E(X) � 1. A simpler, but weaker, formula can be obtained by requiring

n � r + k. In this case, we get E(X) �
�
r
k

�
. So, for example, a long journey of size

k = n/2 that uses all available labels is expected to appear provided that n � 2r (to

see this, simply set k = r) [22].

2.4.2 Temporal Star Exploration

We now study the problem of star exploration in a temporal star graph on an under-

lying star graph Gs of n vertices, where the labels are assigned to the edges of Gs at

random. In particular, each edge of Gs receives k labels independently of other edges,

and each label is chosen uniformly at random and independently of others from the

set of integers {1, 2, . . . ,↵}, for some ↵ 2 N. We call this a uniform random tempo-

ral star and denote it by Gs(↵, k). In this section, we investigate the probability of

exploring all edges in a uniform random temporal star based on di↵erent values of ↵

and k, thus partially characterizing uniform random temporal stars that can be fully

explored or not, asymptotically almost surely.
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Figure 4: Splitting the time from 1 to ↵ into 2n boxes to show the existence of at least

one label per box, for every edge, asymptotically almost surely [1].

Theorem 2.4.1. [1] If ↵ � 2n and k � 6n lnn, then the probability that we can

explore all edges of Gs(↵, k) tends to 1 as n tends to infinity.

Proof. [1] We consider the time-line from 1 to ↵ and we split it into 2n consecutive

equal-sized time-windows of size ↵
2n as shown in Figure 4. Let us henceforth refer to

those as boxes and denote the i-th such box by Bi. The first box contains the labels

1, 2, . . . , ↵
2n , the second box contains the labels ↵

2n + 1, ↵
2n + 2, . . . , ↵n , and so on. See

Figure 4.

We will show that for every edge of Gs, there will be asymptotically almost surely

at least one of its labels that falls in the first box, one of its labels that falls in the

second box, etc. But first, let us note the following:

Observation 2.4.1. [1] If for every edge e 2 E and for every box Bi there is at least

one label of e that lies within Bi, then there exists an exploration of Gs(↵, k).

Proof. Assume that for every edge e 2 E and for every box Bi there is at least one

label of e that lies within Bi. Fix an arbitrary order e1, e2, . . . , en�1 of the edges of

Gs. Explore e1 using its label that lies within B1 to enter and its label that lies within

B2 to exit, explore e2 using its label that lies within B3 to enter and its label that

lies within B4 to exit, and so on and so forth.

Note now that for a particular edge e 2 E and a particular box Bi of e, the

probability that Bi contains none of the labels of e is:

Pr[Bi is empty] = (1�
↵
2n

↵
)k  (1�

↵
2n

↵
)6n lnn  1

n3
,

So the probability that there is an empty box of e is:
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Pr[there is an empty Bi of e]  2n.
1

n3
=

2

n2
,

and so the probability that there exists an edge with an empty box is:

Pr[there is an edge with an empty box]  #edges.
2

n2
 2

n

Finally, the probability that we can explore all edges of Gs(↵, k) is:

Pr[exploration] � 1� 2

n
! 1, as n ! +1

The latter completes the proof of the theorem.

Theorem 2.4.2. [1] If ↵ � 4 and k = 2, then the probability that we can explore all

edges of Gs(↵, k) tends to zero as n tends to infinity.
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Chapter 3

Contributions

In Section 3.1.1, we present known results from Erlebach et al. [9] regarding tight

bounds on the exploration time of temporal cycles by a single agent from a worst-case

start node. We also present our alternative proofs of similar (or same in the case of

a lower bound) results with interesting new features. In Section 3.1.2 we present our

new dynamic programming algorithm that for a given temporal cycle computes in

polynomial time the optimal exploration time of a single agent starting at any node.

In Section 3.1.3 we discuss implementation and empirical evaluation of the dynamic

programming algorithm. Section 3.1 culminates with our proof of a conjecture of

Erlebach et al. [9] that temporal cycles with constantly many chords can be explored

in O(n) time by a single agent from any start node. Along the way we introduce new

tools for the analysis, such as a cycle cover, which might be of independent interest.

In Section 3.2 we study the exploration of 2 ⇥ n temporal grids with various

modifications. The starting point for the study is the algorithm of Erlebach et al.

[9], which shows how to explore a standard 2⇥ n temporal grid in O(n log3 n) time.

The original algorithm is rather non-intuitive with non-trivial recursion. We start by

giving an overview of the Erlebach et al. algorithm, and we also present complete

pseudocode for it (not present in [9]) to clarify the exposition. Then we adapt the

algorithm to work in new settings of modified temporal grids.
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3.1 Temporal Cycles

3.1.1 Exploration of Temporal Cycles: Tight Bounds

Erlebach et al. [9] showed that a single agent starting at an arbitrary vertex of a

temporal cycle C of size n can explore it in at most 2n � 2 steps. Their proof is

constructive and provides an algorithm for finding a temporal walk realising that

exploration time. Moreover, they exhibited an instance of a temporal cycle C and a

start node u such that a single agent starting at u requires at least 2n � 3 steps to

explore C. Thus, they established tight bounds on the exploration time of temporal

cycles starting at a worst-case node. In this section, we present their results and

proofs. We also present our alternative proofs of similar results, which involve di↵erent

constructions and might be of independent interest. It is important to note that the

upper bound results in this section establish bounds on the worst-case exploration

time, and, in particular, they do not necessarily give an optimal exploration time

for each temporal cycle and each starting point. Erlebach et al. do mention how

to compute an optimal exploration time, but only at a high level. Our di↵erent

algorithm to compute the optimal exploration time for each temporal cycle and each

start node is based on dynamic programming and is presented and discussed in the

sections following this one. We begin with the upper bound of Erlebach et al.

Theorem 3.1.1 (Erlebach et al. [9]). Any temporal cycle C of length n can be explored

in at most 2n� 2 steps by a single agent starting at any node. A schedule using this

many steps can be computed in time linear in the total size of the graphs of the first

2n � 2 steps, i.e., in O(n2) time. If additionally an array A : {1, . . . , 2n � 2} ! E

is given that stores in A[t] the edge that is missing in time step t, if any, then the

running time can be improved to O(n). Moreover, an optimal schedule for exploring

a temporal cycle can be computed in polynomial time.

Proof. Let C be a temporal cycle with n vertices labelled v1, v2, . . . , vn clockwise.

Suppose, without loss of generality, that the agent a is initially located at v1.

For now, disregard agent a and consider the temporal cycle at time n� 1. Place

n virtual agents a1, . . . , an on the vertices v1, . . . , vn of the cycle, respectively, such

that there is exactly one agent on each vertex. In each subsequent time step every

virtual agent moves to its neighboring vertex clockwise, if possible. This means that

the agent on vi moves to vi+1 provided the edge (vi, vi+1) is present at that time. If
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the edge is not present and as a result the agent cannot move clockwise, the agent

will be eliminated and removed. As the temporal cycle C is connected at every step,

there can be at most one edge missing at each time step. This implies that at each

time step there can be at most one agent that cannot move to its neighboring vertex,

and therefore will be eliminated. After n�1 steps we might lose at most n�1 agents.

Thus there is one agent ai that has moved forward for all the n � 1 previous time

steps. This agent has visited all nodes and therefore, has explored the cycle. So this

virtual agent has explored the cycle by the time 2n� 2.

Now, we are ready to construct the exploration schedule of agent a. By Lemma

2.2.1, starting from vertex v1 2 v(C) at time 1 the agent a can move to vertex vi in

the first n� 1 time steps. If the agent arrives at vi in less than n� 1 steps, the agent

waits there until time n� 1, at which point the agent simulates ai by performing the

clockwise exploration during the following n�1 time steps. Thus, the agent a explores

the entire cycle by the time 2n� 2. We refer to the first part of this exploration (i.e.,

application of Lemma 2.2.1) as the first phase, and the second part as the second

phase.

This schedule can be computed e�ciently as follows. Consider the second phase

and maintain the set of agents that have not yet disappeared. For each step i =

n, . . . , 2n � 2, spend O(1) time to determine the agent that starts i � n + 1 vertices

counterclockwise to the missing edge, i.e., determine the agent that disappears, if any.

Finally, take one of the agents that remains in the set and compute a schedule for

agent a to reach this virtual start vertex during the first phase. If we spend O(n2)

time to iterate over the graphs of the first 2n steps and build the array A, then it is

easy to see that the remaining computation can be done in O(n) time.

An optimal exploration schedule can be computed in polynomial time as follows.

By shortcutting backward and forward moves of the agents such that no vertices are

skipped completely, any optimal schedule can be converted into one with the same

arrival time that falls into one of these types: move clockwise around the cycle; move

counter-clockwise around the cycle; move clockwise to some vertex v, then counter-

clockwise until the cycle is explored; move counter-clockwise to some vertex w, then

clockwise until the cycle is explored. The types can be enumerated in polynomial

time, and the optimal schedule for each type can be calculated in a greedy way. The

best of these schedules can then be output as the optimal exploration schedule for
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Figure 5: Meeting of two agents ar and a` at time T in our alternative proof of the first

part of Theorem 3.1.1.

the given temporal cycle.

Next, we present our alternative proof of a slightly weaker upper bound of 2.5n.

Although our upper bound is slightly worse, it has some additional interesting fea-

tures: we introduce only 4 virtual agents, and a good schedule is guaranteed to exist

among the schedules corresponding to those 4 virtual agents.

Theorem 3.1.2. Any connected temporal cycle C with n nodes can be explored in at

most 2.5n time steps by a single agent starting at any node.

Proof. As before, let C be a temporal cycle with n vertices labelled v1, . . . , vn clock-

wise. We construct (possibly partial) exploration schedules for four agents ar, a`, ar0 , a`0 ,

such that at least one of the agents is guaranteed to explore the entire cycle in at

most 2.5n time steps.

We start the exploration from node v1 using two agents ar and a`. The agent

ar moves clockwise and the agent a` moves counterclockwise on the cycle. As C is

connected, at each time step there can be at most one edge missing. We say two

agents have met if they are at the two endpoints of an edge. See Figure 5.
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Let T > 1 be the earliest time a` and ar meet. It is easy to see that due to

connectedness assumption prior to meeting at least one agent moves to a neighboring

vertex in each time step (the same property holds after the agents pass each other),

therefore T  n. Suppose at time T , ar is at u and a` is at v.

If the edge {u, v} is present at T + 1 then the agents continue exploring and

return to v1 within the next n steps. Thus, either agents’ schedule can be used for

the exploration of the entire cycle in at most 2n steps.

Otherwise (i.e., the edge {u, v} is absent at T + 1) spawn two new agents at time

T : ar0 on u and a`0 on v, and assume their walks were the same as those of ar and

a`, respectively, during the first T time steps. Then the behavior of agents diverges.

The agents ar0 and a`0 start moving in the opposite directions.

Suppose that {u, v} is missing for T 0 consecutive time steps starting at time T +1.

Observe that during these T 0 steps while ar and a` stay still (because of a missing

edge {u, v}), both agents ar0 and a`0 move. Consider two cases.

Case T 0 � n/2: in this case agents ar0 and a`0 will pass each other, and at least

one of them will finish the exploration after additional n time steps after the passing.

The overall time taken by that agent is then T + n/2 + n  n+ n/2 + n = 2.5n.

Case T 0 < n/2: in this case the original agents ar and a` will pass each other at

time T +T 0+1, and at least one agent will finish the exploration in extra n steps after

that. Thus, that agent’s exploration time will be T + T 0 + n  n+ n/2 + n = 2.5n.

Next we turn to the lower bound on the exploration time of a connected temporal

cycle by a single agent from a worst-case start node. First, we present the original

proof of Erlebach et al.

Theorem 3.1.3 (Erlebach et al. [9]). For any n � 3, there is a temporal cycle of

length n and a start node u, such that a single agent starting at u requires at least

2n� 3 steps to explore the cycle starting from u.

Proof. Assume that u, v, w are three subsequent vertices in this order of the cycle and

the agent is initially at u. Let the edge {u, v} be absent for the first n� 2 steps, and

let the edge {v, w} be absent in all steps after that. The agent cannot traverse the

edge {v, w} as it can reach neither v nor w before the edge disappears forever. So,

the only two candidates for an optimal exploration schedule are the following: We
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Figure 6: The underlying graph of a temporal cycle C in our alternative proof of Theo-

rem 3.1.3

can either wait at u until {u, v} is available (n�2 steps), move to v (1 step) and then

walk to w (n � 1 steps), giving a total of 2n � 2 steps, or walk to w in n � 2 steps

and then from w to v in n� 1 steps, giving a total of 2n� 3 steps.

Next, we present an alternative construction and an alternative proof of the same

lower bound for odd values of n.

Our alternative proof of Theorem 3.1.3. We define the temporal cycle C as follows.

Let the start node be S. There are k nodes labelled r1, r2, . . . , rk in the clockwise

order following S. There are k nodes labelled `1, `2, . . . , `k in the counterclockwise

order preceding S. See Figure 6.

In time step 1 the edge {S, `1} is removed. In the following time steps prior to

2k, at each time step 2i the edge {ri, ri+1} will be removed and at each time step

2i� 1 the edge {`i, `i+1} will be removed. After time 2k� 1 the edge {`k, rk} will be

removed for all eternity. Consider the first 2k � 1 time steps, then we claim that:

1. The earliest time the agent starting at S can arrive at rj is 2j � 1, and respec-

tively the earliest arrival time the agent can arrive at `j is 2j.
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2. Both `k and rk cannot be visited by 2k � 1.

This claim can be proved by induction on j. For j = 1 it is clear that the agent

can visit r1 by t = 1, while the earliest time the agent can arrive at `1 is t = 2 (since

the edge {S, `1} is missing in the first time step). Now let’s assume the claim holds

for j � 1. Suppose for contradiction that the agent managed to reach rj+1 at time

< 2(j + 1)� 1 = 2j + 1. The agent could not have reached rj+1 at time 2j, since the

edge from rj to rj+1 is missing at that time. Also, the agent could not have taken the

longer route around the circle (there is not enough time). Thus, the agent must have

arrived at rj+1 at time 2j � 1. Meaning that the agent must have managed to arrive

at rj on or before 2j � 2. This contradicts the inductive assumption. The case of `j

is handled similarly.

Thus, to explore the entire cycle starting from S the agent needs to visit either rk

or `k during the first 2k� 1 (or 2k) steps, but since node `k (respectively, rk) remains

unvisited and edge {`k, rk} is missing from that time onward, the agent must travel

around the entire cycle to explore it completely. This results in the overall exploration

time of 2k+2k� 1 = 4k� 1. Observe that n = 2k+1, therefore the exploration time

is at least 2n� 3.

3.1.2 Exploration of Temporal Cycles: Exact Dynamic Pro-

gramming Algorithm

In this section we design a new dynamic programming algorithm to compute the

optimal exploration time of a connected temporal cycle by a single agent starting

from any node. In fact, our algorithm computes exploration times for all starting

nodes simultaneously.

Before stating our algorithm, we need to extend the well known Breadth First

Search (BFS) algorithm from the static setting to the temporal setting. The classical

BFS algorithm in the static setting starts by visiting a node and then visits all its

neighbors, then it visits all unvisited neighbors of those neighbors and so on. It could

be visualized as sending out a wave out of the start node. The BFS produces shortest

unweighted paths in the static setting. The BFS in the temporal setting is more

involved and can be used to compute either foremost paths or shortest paths. We are
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Figure 7: By running the TBFS algorithm on this graph starting at node s at time 0 we

have: tbfs[s][u][0] = 4 and tbfs[s][v][0] = 6.

interested in the version of the temporal BFS that computes foremost paths starting

at a particular node. See Huang et al. [15] for a slightly more general version of the

TBFS that computes both foremost paths and shortest paths simultaneously. The

TBFS, which we present in this section su�ces for our purposes.

The goal of Temporal Breadth First Search (TBFS) algorithm is to populate the

table tbfs[u][v][t], where u and v are nodes of the given temporal graph G and t is

a particular time step. The table is maintained as a global variable and the entry

tbfs[u][v][t] has the following meaning:

tbfs[u][v][t] = the earliest arrival time at v by an agent starting

at node u at time t via a feasible temporal walk in G.

Algorithm 1 presents the pseudocode for the TBFS algorithm running from a start

node s and start time time. By running TBFS from multiple start nodes and start

times, one can pre-populate the entire tbfs table. A single execution of the TBFS al-

gorithm is akin to Dijkstra’s algorithm. During the runtime tbfs[s][v][time] maintains

a monotonically decreasing upper bound on the earliest arrival time at v by an agent

starting at s at time time. Initially, tbfs[s][s][time] = time and tbfs[s][v][time] = 1
for v 6= s gives us tightest possible upper bounds given that we haven’t processed

anything from the graph yet. The algorithm maintains a min-priority queue of nodes

with keys being tbfs[s][v][time]. When a node u is taken o↵ the queue, it means

that its entry tbfs[s][u][time] has been determined correctly. Processing all outgoing
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edges from u, we discover potentially new ways of reaching neighbors of u. Observe

that for each edge {u, v} it su�ces to consider the corresponding time-edge ({u, v}, t0)
with smallest t0 subject to t0 > tbfs[s][u][time], and update tbfs[s][v][time] if going

through u results in an earlier arrival at v than what we knew before. Correctness can

be shown by induction similar to the standard argument used for Dijkstra’s algorithm.

Algorithm 1: Temporal Breadth First Search

Function FillTBFS(G, s, time):

for v 2 V (G) do
tbfs[s][v][time]  1;

tbfs[s][s][time]  time;

Q  V (G) // a min-priority queue with the key of v being

tbfs[s][v][time];

while Q 6= ; do

u  Q.ExtractMin() ;

for v 2 adj[u] do

Eu,v  {(u, v, t0) 2 E(G) : t0 > tbfs[s][u][time]};
if Eu,v = ; then

continue;

firstT ime  min{t0 : (u, v, t0) 2 Eu,v} ;

if tbfs[s][v][time] > firstT ime then

tbfs[s][v][time]  firstT ime;

Q.DecreaseKey(v, tbfs[s][v][time]);

Now, we are ready to describe our dynamic programming algorithm to compute

optimal exploration time of connected temporal cycles. Let C be a given temporal

cycle of size n and assume, without loss of generality, that the nodes are {1, 2, . . . , n}
in clockwise order. For i, j 2 {1, . . . , n} we define a (half-open) interval from i to j,

denoted by [i, j), to consist of those nodes that are encountered in clockwise order

(with wrap-around) starting at node i and ending at a node prior to j. In other

words, if 1  i < j  n then [i, j) = {i, i + 1, . . . , j � 1} and if 1  j < i  n then

[i, j) = {i, i + 1, . . . , n, 1, 2, . . . , j � 1}. If i = j then we define [i, j) = {1, 2, . . . , n}.
The algorithm populates the dynamic programming table D[i][j][k][t], where 1  i 
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Figure 8: A temporal cycle in which the red nodes have been visited.

n, 1  j  n, k 2 {i, j � 1}, t  2n� 1, where the bound on t follows from the results

of Section 3.1.1. Thus, the table is of size O(n3). he table entry D[i][j][k][t] has the

following intended meaning (see Figure 8):

D[i][j][k][t] = the smallest time needed to finish the exploration of C

by the agent located at node k at time t assuming that

all the nodes in the interval [i, j) have already been explored.

The base cases are given by i = j 2 {1, 2, . . . , n}. According the definition of the

interval [i, j] for i = j and the above meaning of D[i][i][i][t], the agent has already

explored the entire cycle, therefore we set D[i][i][i][t] = 0 for all i and all t.

Assuming that the above table has been correctly computed, the smallest explo-

ration time of an agent starting at node i at time 0 is stored in D[i][i+ 1][i][0]. This

is how the dynamic programming table can be used to answer the original question

of exploration time starting from any node.

Next, we discuss how to compute the dynamic programming table. After pre-

populating the entries corresponding to the base cases, the main idea is as follows:

having visited all nodes in [i, j) the agent located at k 2 {i, j� 1} tries to extend the

visited interval to either [i, j + 1) or to [i � 1, j). This requires the agent travelling

from k to either j+1 or from k to i�1, respectively, and then finishing the exploration
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of the rest of the cycle, which can be looked up in the previously computed entries.

The time necessary for the agent to travel from k to either j + 1 or i � 1 can be

computed using the temporal BFS. To fill in the entry corresponding to [i, j) we just

choose the better of these two options. Due to the topology of the cycle there is no

other possibility of extending the explored region. More specifically, the table entries

are computed as follows:

D[i][j][j � 1][t] = min{tbfs[j � 1][j][t] +D[i][j + 1][j][tbfs[j � 1][j][t]],

tbfs[j � 1][i� 1][t] +D[i� 1][j][i� 1][tbfs[j � 1][i� 1][t]]},

where index arithmetic is done with a wrap-around. Similarly, we have

D[i][j][i][t] = min{tbfs[i][j][t] +D[i][j + 1][j][tbfs[i][j][t]],

tbfs[i][i� 1][t] +D[i� 1][j][i� 1][tbfs[i][i� 1][t]]}.

3.1.3 Exploration of Temporal Cycles: Empirical Results

Algorithm 2 shows the pseudocode for our dynamic programming algorithm comput-

ing optimal exploration time of a temporal cycle by a single agent from any start

node, which was presented in Section 3.1.2. Note that the Temporal BFS algorithm

must be run before the Explore algorithm in order to pre-populate the tbfs table.

We implemented this algorithm in Java programming language and ran it on

di↵erent temporal cycles inputs. Results are summarized in Tables 1 and 2. Observe

that in every connected temporal cycle C, there is always a node v 2 V (C), starting
from which a single agent can visit all nodes in n � 1 steps. This is easy to see and

follows from the second phase of the schedule constructed in in Theorem 3.1.1.
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Algorithm 2: Exploring a temporal cycle

tbfs is a 3 dimensional array ;

D is a 4 dimensional array ;

for v 2 V , u 2 V , and time t do

tbfs[u][v][t]  1 ;

D[u][v][u][t]  1 ;

D[u][v][v][t]  �1 ;

for s 2 V and time t do

FillTBFS(C, s, t);
for v 2 V do

Explore(v, v � 1, v, 0);

Function Explore(C, i, j, k, t):
if D[i][j][k][t] 6= �1 then

return D[i][j][k][t];

C =
2nS
i=1

Ct ;

8t, V (Ct) = {v1, . . . vn} ;

8t, Ct is connected ;

if i = j � 1 then

return tbfs[i][i][t]

if k = i then
return D[i][j][k][t]  
min{tbfs[i][j][t] + Explore(i, j, j, t+ tbfs[i][j][t]), tbfs[i][i� 1][t] +

Explore(i� 1, j � 1, i� 1, t+ tbfs[i][i� 1][t])} ;

else

return D[i][j][k][t]  
min{tbfs[j � 1][j][t] + Explore(i, j, j, t+ tbfs[j � 1][j][t]), tbfs[j �
1][i� 1][t] + Explore(i� 1, j � 1, i� 1, t+ tbfs[j � 1][i� 1][t])} ;

Table 1 shows the result of running the algorithm on a set of temporal cycles with

the number of vertices between 3 and 100 with a random missing edge in each time

step. Table 2 shows the results of running the algorithm on a set of temporal cycles

with a number of vertices between 3 and 100. In this set of temporal cycles, each

cycle remains the same in every time step with exactly one specific missing edge in
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all the steps. An obvious result of this algorithm can be generated by feeding static

cycles to this algorithm. If we run this algorithm on a static cycle (the cycle remains

unchanged during all time steps), the output will be n� 1 from the best start node.

Interestingly, by looking at Tables 1 and 2, we can see that in many cases the

exploration time for the worst starting vertex is about 3n
2 . Tables 3 and 4 show the

result of running the algorithm on a data set of size 10, where each set contains

10 di↵erent temporal cycles. Table 3 shows the results of running the exploration

algorithm on 10 sets of data. Each set has 10 di↵erent temporal cycles where each

cycle has one missing edge by random. Similarly Table 4 shows the results of running

the exploration algorithm on 10 sets of data. Each set has 10 di↵erent temporal cycles

where each cycle has one specific missing edge in all steps.

3.1.4 Exploration of Temporal Cycles with Chords

Erlebach et al. proved an O(n) upper bound on the exploration time of a temporal

cycle with one chord in [9]. They have calculated the exploration time for such cycles

by relying on the idea of Theorem 3.1.1.

Theorem 3.1.4 (Erlebach et al. [9]). A connected temporal cycle of length n with

one chord can be explored in O(n) time by a single agent from any start node.

Proof. Let the left and right cycle be the two cycles that contain the chord. Check

how often the chord is present in the first 7n steps. If the chord is present in at least

5n steps, use 2n of these to explore the (left or right) cycle in which the start node is

contained (which is possible by Theorem 3.1.1), n steps to move to the other cycle,

and 2n steps to explore that cycle. Otherwise, there are at least 2n steps in which

the chord is absent and the remaining graph is a cycle instance. The cycle can be

explored in these steps.

Erlebach et al. also conjectured that the same O(n) bound must hold even for

temporal cycles with constantly many chords.

Conjecture 3.1.1 (Erlebach et al. [9]). A temporal cycle of length n with constantly

many chords can be explored in O(n) time by a single agent from any start node.

In this section we prove this conjecture.
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node best start worst start

51 50 59

3 2 3

62 61 65

42 41 44

19 18 20

63 62 66

85 84 87

17 16 17

24 23 27

5 4 6

45 44 49

68 67 71

11 10 13

91 90 94

74 73 80

55 54 56

39 38 43

22 21 22

35 34 37

27 26 29

Table 1: The result of the algorithm

on the set of temporal cycles with a ran-

dom missing edge. The best start shows

the smallest time for the foremost path

starting form a node and the worst start

shows the biggest time for the foremost

path starting from a node.

node best start worst start

67 66 99

76 75 112

68 67 100

33 32 48

57 56 84

41 40 60

54 53 79

47 46 69

65 64 96

24 23 34

26 25 37

23 22 33

30 29 43

14 13 19

4 3 4

15 14 21

88 87 130

13 12 18

9 8 12

96 95 142

Table 2: The result of the algorithm on

the set of temporal cycles where cycles

remain unchanged throughout the time.

The best start shows the smallest time for

the foremost path starting form a node

and the worst start shows the biggest

time for the foremost path starting from

a node.
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avg of # nodes avg of time for best start avg of time for worst start

42.2 41.2 44.4

53.7 52.7 61.2

49.3 48.3 51.9

42 41 45.4

49.7 48.7 53.8

51.2 50.2 56.7

39.6 38.6 44.7

57.5 56.5 62.2

44.8 43.8 49.3

54.6 53.6 59.8

Table 3: The result of the algorithm on 10 di↵erent set of 10 temporal cycles with a

random missing edge.

avg # of nodes avg of time for best start avg of time for worst start

55 54 80.8

51.4 50.4 75.4

41.3 40.3 60.3

44.4 43.4 64.9

59.2 58.2 86.9

36.5 35.5 53.3

47.2 46.2 69.1

49.9 48.9 73.1

55.7 54.7 84.2

46.9 45.9 65.9

Table 4: The result of the algorithm on 10 di↵erent set of 10 temporal cycles with a specific

starting point.
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Figure 9: An arc in a cycle with chords on the left and a primary arc in a cycle with

chords on the right

Theorem 3.1.5. A connected temporal cycle C of length n with i chords can be

explored in O (((6i2)(i!)(2e)i)n) time by a single agent from any start node.

We begin with a few definitions.

Definition 3.1.1. An arc is a simple path on a cycle C between two nodes u, v 2 V (C)
that does not use any chords of C. We refer to u and v as endpoints of the arc.

Definition 3.1.2. A primary arc is an arc on which there is no vertex belonging to

a chord, except the endpoints of the arc.

An arc can be induced by a set of consecutive primary arcs. An example of an

arc and a primary arc is shown in Figure 9.

High level idea of the proof of Theorem 3.1.5. The existence of an exploration walk

in O ((6i2)(i!)(2e)i)n) time steps is established by induction on i. Erlebach et al.

have already handled the cases i = 0 (Theorem 3.1.1) and i = 1 (Theorem 3.1.4) for

us. Now consider i � 2. The high-level idea is as follows. If one of the i chords is

missing from su�ciently many time steps (to be specified later) then we can simply

invoke the exploration walk for temporal cycles with i � 1 chords. This algorithm

would be active during the time steps when the chord is missing and passive (not

doing anything) during the other time steps. If such a chord does not exist then we

must have a lot of time steps during which all i chords are present. Denote that set of

time steps by TG. Connectedness assumption and the existence of all i chords imply
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some useful structural properties of the graph during TG. Namely, every primary arc

can have at most one edge missing from it. If we can cover the underlying graph

by (potentially overlapping) cycles containing chords and arcs such that each cycle

is connected during TG, then we can explore these cycles one by one using the cycle-

exploration algorithm. We call this cover a desirable k-cycle-cover if it contains k

cycles. Thus, if a desireable k-cycle-cover exists with k depending only on i and

independent on n then we are able to explore C in O(n) (where the big-oh notation

is hiding constants depending on i). The proof is finished by proving the existence

of a desirable k-cycle-cover with k depending on i only. The rest of this section is

dedicated to filling in the details of this argument.

Let Ti denote a bound on the exploration time of temporal cycles of size n with

i chords by a single agent starting at a worst-case node. By Theorem 3.1.1 we have

T0  2n and by Theorem 3.1.4 we have T1  7n. We will show that the Ti for i � 2

satisfy the recurrence:

Ti 
✓

2i

i� 1

◆
⇥ (6in� n) + iTi�1.

First suppose that during the first Ti steps of a temporal cycle C with i chords, all

i chords are present during at least
�

2i
i�1

�
⇥ (6in�n) time steps. Let those time steps

be denote TG. Then we can explore the entire C during TG. To that end, we define a

new object that will guide the exploration – a desireable cycle cover. We begin with

a slightly more general definition.

Definition 3.1.3. A k-cycle-cover with respect to the temporal cycle C with i chords

is a set of simple cycles {c1, . . . ck} with the following properties:

1. Each ci is a simple cycle.

2. Each ci contains at least one arc.

3.
S

1ik ci covers all the edges of C.

It follows that every ci in a k-cycle cover has a structure of ⌧arc, chord, arc, chord�
or ⌧arc, chord� in the underlying graph of C. An example of a cycle cover is

demonstrated in Figure 10. We sometimes refer to the ci as sub-cycles.
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Figure 10: A 3-cycle-cover in a cycle with two chords.

Definition 3.1.4. A desirable k-cycle-cover D in a temporal cycle C with i chords

during time steps S is a k-cycle-cover for which every cycle ci 2 D has at most one

missing edge from the underlying graph of C during each time in S. This implies that

each cycle in D is connected.

Let A = {A1, . . . , A2i} be the set of all primary arcs on C that has been induced

by the i chords. Since C is connected at each time step and the underlying graph of

C has i chords, it follows that at each time step there are at most i+1 edges missing

from the graph. Also at most one edge can be missing from each primary arc without

violating the connectedness assumption. Therefore, during each time t 2 TG there

can be at most one edge missing from some selection of i+1 primary arcs out of all A
primary arcs. For simplicity, we assume that during each t 2 TG exactly i+1 primary

arcs are missing a single edge each. The set of such primary arcs at time t is called a

signature of time t, denoted by �(t) ✓ A. Observe that there there are
�

2i
i+1

�
=

�
2i
i�1

�

di↵erent possible signatures. Since |TG| �
�

2i
i�1

�
(6in�n), by the pigeonhole principle,

some signature must repeat at least 6in � n times during TG. Let �0 denote such a

signature and let T 0
G denote the set of times such that for t 2 T 0

G we have �(t) = �0.

The following lemma demonstrates that we can construct a desirable 2i-cycle-cover

in C during time steps T 0
G.

Lemma 3.1.1. There is a desirable 2i-cycle-cover in C during time steps T 0
G.

Proof. All the arguments below are performed with respect to time steps T 0
G.
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u0v0

u v

A

A0

Figure 11: The two arcs induced by two chords on a cycle

Consider an arbitrary primary arc A 2 A. Let the two endpoint vertices of A be u

and v and let the chords corresponding to them be eu = {u, u0} and ev = {v, v0}. For
simplicity, we assume that the chords do not share endpoints. The chords eu and ev

divide the cycle C into four arcs. The arc between u and v, the arc between v and u0,

the arc between u0 and v0, the arc between v0 and u. Let A0 be the arc between u0 and

v0. See Figure 11. Now there are two cases to consider. Whether there is a missing

edge on A0 or not. It’s important to note that there can be at most one missing edge

on each primary arc as the graph G is connected at each step.

Case 1 There is no missing edge on arc A0, i.e., primary arcs making up A0 do not

fall into the signature. In this case, the subcycle induced by two arcs A and A0

and two chords eu and ev is a connected subcycle.

Case 2 There are missing edges on arc A0. As the graph G is connected at each time

step, then there is a path (consisting of primary arcs and chords)from u0 to v0.

Let this path be P . Now the subcycle induced by the arc A, the path P and

the two chords eu and ev, is a connected subcycle.

Since there are 2i primary arcs and we define one cycle per primary arc, this process

gives a desirable 2i-cycle-cover.

We can use the desirable 2i-cycle-cover to guide the exploration of C as follows:

suppose the agent starts in some sub-cycle cj of the cycle-cover. Then the agent uses

at most 2n steps to explore cj. Then it uses at most n steps to move to the next
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unexplored sub-cycle in the cycle-cover and explores it in at most 2n more steps. This

process is repeated until all sub-cycles in the cycle cover are explored guaranteeing

that the entire C is explored. This takes at most 2i⇥2n+(2i�1)⇥n = 6in�n time

steps. Fortunately we have chosen |T 0
G| � 6in� n, which means this exploration can

be done during time steps T 0
G.

Next consider the case when during the first Ti time steps, all i chords are present

for fewer than
�

2i
i�1

�
(6in� n) time steps. It means that at least one chord is missing

from C for at least Ti�
�

2i
i�1

�
(6in�n) � iTi�1 time steps. By the pigeonhole principle

at least one fixed chord is missing for at least Ti�1 time steps, which means that we

can use the exploration procedure for cycles with i� 1 chords to explore C.
Next, we give a closed-form expression to bound Ti.

Ti 
✓

2i

i� 1

◆
⇥ (6in� n) + iTi�1

Ti�1 
✓
2(i� 1)

i� 2

◆
⇥ (6(i� 1)n� n) + (i� 1)Ti�2

...

T2 
✓
4

1

◆
⇥ 11n+ 2T1

T1  7n

Ti 
iX

k=2

✓
2k

k � 1

◆
(6kn� n) + 7n

Therefore we have:

Ti 
✓

2i

i� 1

◆
(6in� n) + i

✓
2(i� 1)

i� 2

◆
(6(i� 1)n� n) + · · ·+ i!

✓
4

1

◆
11n+ i!(7n)

 i!6in
iX

j=1

✓
2j

j � 1

◆


�
(6i2)(i!)(2e)i

�
n,

where in the last step we used the bound
�

2j
j�1

�


�
2i
i�1

�


�
2ie
i�1

�i�1  (2e)i.

Observe that ((6i2)(i!)(2e)i) is of O(1) as long as i is a constant. Therefore we can

conclude that exploration of a continuously connected temporal cycle with constantly

many chords can be done in O(n) time steps.
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Figure 12: A 2⇥ n grid which can be induced by the Cartesian product of P2 and Pn.

Lastly, note that by Lemma 2.2.1, we can reach any node u from any node v in

at most n� 1 steps in C. By repeated application of this observation we can explore

C in at most n2 steps. Thus, our bound provides an improvement over this trivial n2

bound even when the number of chords is a slowly growing function of n. Our bound

becomes meaningless (i.e., overtakes n2) at around O(log n/ log log n).

3.2 Temporal Grids

In this section we discuss the exploration of the temporal grid. A grid is the Cartesian

product of two paths. For example, the Cartesian product of P3 and P7 creates a 3⇥7

grid.

Erlebach et al. [9] have discussed temporal 2 ⇥ n grids and have presented an

algorithm to explore such grids. In this section we still assume that graphs are

continuously connected (which means that they are connected in every time step)

and are simple. Moreover, we present an algorithm for the exploration of modified

temporal grids.

3.2.1 Exploration of Temporal Grids

Definition 3.2.1. A 2⇥n grid G consists of vertex set V (G) = {v1, . . . , vn, u1, . . . , un},
where every two vertices vi, vi+1 or ui, ui+1 as well as vi, ui are adjacent. See Figure

12.

Definition 3.2.2. A modified grid G0 with a pair of cross chord, is a grid for which

there exist an i where E(G0) = E(G) \ {(vi, ui), (vi+1, ui+1)}
S
{(vi, ui+1), (vi+1, ui)}.

See Figure 13.

Theorem 3.2.1. [9] Any temporal 2⇥n grid can be explored in O(n log n) steps with

4 log n agents.
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Figure 13: A 2⇥ n modified grid.

Proof. This proof shows a more general statement. Given an underlying graph G0 of

2⇥ n gird and a subgrid G00 of size 2⇥ n00 of G0 such that each pair of vertices in G00

is connected in G0 in each step, then 4 lg n0 agents initially on some vertices of G00 can

explore G00 in T (n0) = O(n0 lg n0) time. The theorem follows by taking G0 = G00 = G.

Each grid is explored by having its right half grid and left half grid explored

separately. They start with exploring the left half H 0 of G00 . The idea is to move 4

agents to the corners of H 0, one to each corner, and all remaining 4(lg n0)�4 agents to

a suitable middle location of H 0 using the first 2n0 steps. For the next T (n0/2)+n0/2

time steps, in each time step where it is possible, they move the 2 agents l1 and l2 on

the left corners of H 0 in parallel to the right using only horizontal edges. Similarly,

they move the 2 agents r1 and r2 on the right corners to the left in parallel.

Let i and j be the number of moving steps of l1 and r1, respectively. The middle

location is any position between the final position of l1 and l2 on the left and the final

position of r1 and r2 on the right. If the agents on the left and on the right meet, they

stop moving and H 0 is explored. In the same T (n0/2)+n0/2 steps where the 4 agents

try to move, they explore recursively the subgrid H 00 of H 0 consisting of the columns

that are not visited by the 4 corner agents. In other words, at first the location of

all the agents is calculated and then the exploring begins. every pair of li and li+1

start exploring their subgrid. At each time step any pair of left agents that can move

forward will explore the next vertices. The same thing happens for the right agents.

More precisely, there are at least T (n0/2) + n0/2� i� j � T (n0/2) steps in which

neither the 2 agents l1 and l2 nor the 2 agents r1 and r2 move, and each pair of vertices

of H 00 is connected in H 0 in each of these steps. Therefore, the agents starting in the

middle location can explore H 00 in T (n0/2) of those steps. Consequently, after the

first 2n0 steps to place the agents, the next T (n0/2)+n0/2 steps are enough to explore

H. We subsequently explore the right half in the same way. The total time to explore

G00 is T (n0)  2(2n0 + T (n0/2) + n0/2) = O(n0 lg n0).

In other words, let G =
n2S
i=1

Gt be the temporal grid with the vertex set V (Gt) =
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Figure 14: The situation as described in the proof of Theorem 3.2.1 A grid G0
with a

subgrid G00
(indicated by the black vertices) and the initial position of the agents to explore

the left half of G.

{v1, . . . vn, u1, . . . un} and the set of agents S. The algorithm shows that, if it is given

an underlying graph G being a grid of size 2⇥ n and a subgrid G0 of size 2⇥ n0 of G

such that each pair of vertices in G0 is connected in G in each step, then 4 lg n agents

initially on some vertices of G0 can explore G0. Therefore the algorithm gets s and t

as the beginning and the ending of the subgrid which is going to be explored. The

explore procedure, examines whether there are any columns left to explore and then

divide the subgrid into half and runs the move procedure on each half.

Move procedure calculates the number of columns in the grid it’s going to explore,

n0 = t� s+1, and place four agents on corresponding nodes on column s and t. The

algorithm needs to separate the time steps in which the agents on vs, us, ut, vt can

move forward (good time steps) from those in which the four agents cannot move

forward (bad time steps). Let Tg be the set of all good time steps and Tb be the set of

bad time steps. The move procedures moves the four agents on vs, us, ut, vt forward

at 8t 2 Tg until they are at vs0 , us0 , ut0 , vt0 and relocate the remaining agents in some

suitable locations in columns M = {s0 + 1, . . . , t0 � 1}. Then it calls the Explore

function recursively on the grid between columns s0 and t0 over time steps t 2 Tb.

The algorithm continues until four agents meet and there are no more columns left

in the grid. Pseudocode 3 and 4 provide a high-level overview of the algorithm.

Corollary 3.2.1. [9] A temporal 2 ⇥ n grid can be explored in O(n log3 n) steps by

one agent.
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Algorithm 3: Exploring a 2⇥ n grid

G =
n2S
i=1

Gt , 8t,Gt is connected ;

8t, V (Gt) = {v1, . . . vn, u1, . . . un} ;

f  1 ;

e  n ;

A  {A1, . . . , A4 logn} ;

count  0 ;

time  0 ;

Function Explore(G, f, e, s, t, S, A):
S : set of agents, |S| = 4 log n ;

if s = t or s+ 1 = t then

return mid  d s+t
2 e ;

Move(G, f, e, s,mid, S, A) ;

Move(G, f, e,mid+ 1, t, S, A) ;

3.2.2 Exploration of Modified Temporal Grids

Based on the previous section, here we present an algorithm for the exploration of

modified grids. As stated before, a modified grid, is a grid in which two consequent

vertical edges have been replaced by two crossed edges. Here we claim that the

algorithm used in Theorem 3.2.1 can be used to explore such grids with some slight

modifications.

Claim 3.2.1. A temporal modified grid G 0 with a pair of chords is explorable in

O(n log n) steps with 4 log n agents.

Proof. Let the set of vertices in G 0 be {u1, . . . , un, v1, . . . , vn}. And let the crossed

edges be (ui, vi+1) and (ui+1, vi). According to the algorithm presented in the proof

of Theorem 3.2.1 we place 4 agents on the 4 corners of the left half of G 0. Let the

agents be l1, l2, r1, r2. Agents l1 and l2 move simultaneously, and agents r1 and r2

move simultaneously as well. They only move if and only if both horizontal edges are

present. When the 4 agents stop and can’t move anymore, we repeat the algorithm

recursively on the subgrid in between. The algorithm continues the same until either

agents lj, lj+1 reach vi, ui or agents rk, rk+1 reach vi+1, ui+1. Without loss of generality,
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Algorithm 4: Exploring a 2⇥ n grid

Function Move(G, f, e, s, t, S, A):
n0  t� s+ 1 ;

Relocate 4 agents to vs, vt, us, ut ;

f  s ;

e  t ;

time  time+ 4n0 ;

for T = time to Cn0 log n0 + time do

Tg  ; ;

if (vs, vs+1, T ) 2 G and (us, us+1, T ) 2 G then

Tg  Tg [ {T } ;

s  s+ 1 ;

Acount  Acount+1  T ;

if (vt�1, vt, T ) 2 G and (ut�1, ut, T ) 2 G then

Tg  Tg [ {T } ;

t  t� 1 ;

Acount+2  Acount+3  T ;

if s = t or s+ 1 = t then
return

count  count+ 4 ;

M  {s+ 1, . . . , t� 1} ;

Sr  S\{vs, vt, us, ut} ;

relocate Sr to some middle locations in M ;

Gr  ; ;

for t 2 Tb do

Gr  Gr [ Gt ;

Explore(Gr, f, e, s+ 1, t� 1, Sr, A) ;
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Figure 15: A temporal 2 ⇥ n modified grid, in which the chords are missing and the

horizontal edges of cross are present.

let us assume that agents lj and lj+1 have reached vertices ui and vi respectively, and

the size of the subgrid induced by the unvisited vertices is n0. Let ch1 = (ui, vi+1) ,

ch2 = (ui+1, vi) , e1 = (ui, ui+1) and e2 = (vi, vi+1). There can be 4 di↵erent cases.

Case 1 If all 4 edges ch1, ch2, e1 and e2 are present, then the agents can move forward

as they did.

Case 2 If 3 edges among {ch1, ch2, e1, e2} are present. In this case either one chord

is missing, or one of the horizontal edges is missing.

Case 2.1 If one of the chords is missing, then both horizontal edges are present.

In this case both agents can move forward and continue with the algorithm.

Case 2.2 If one of the horizontal edges is missing (either e1 or e2), then both

chords are present. In this case the agents can still move forward. Agent

lj goes over ch1 and agent lj+1 goes over the edge ch2. This means that

the agents would move diagonally instead of horizontally. For the rest of

the algorithm agent lj would explore the lower set of vertices and agent

lj+1 would explore the upper set of vertices.

Case 3 If only two edges among {ch1, ch2, e1, e2} are present, there can be four dif-

ferent situations.

Case 3.1 If e1 and e2 are present then agents can move forward as they did.

See Figure 15.

Case 3.2 If ch1 and ch2 are present then agents can move diagonally like Case

2.2 and move forward. See Figure 16.

Case 3.3 If one horizontal edge and one chord are present whose starting points

is the same; then we can argue as follows. Due to symmetry, let us assume

that e1 and ch1 are present. See Figure 17.

52



v1

u1

v2

u2

vi

ui

vi+1

ui+1

vn�1

un�1

vn

un

. . . . . .

. . . . . .

Figure 16: A temporal 2 ⇥ n modified grid, in which the horizontal edges of cross are

missing and the chords are present.
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Figure 17: A temporal 2⇥ n modified grid, in which one chord (ch1) and one horizontal

edge (e1) are present.

In this case, we consider the next n0

2 steps. If both e2 and ch2 are missing,

we can relocate 4 other agent and implement the algorithm recursively.

We put both left agents on vertex ui, and for the next step one agent goes

over e1 and one agent goes over ch1. This is allowed as the unexplored

vertices are connected in the outer subgrid.

Case 3.4 If one horizontal edge and one chord are present whose ending points

are the same; then we can argue as follow. Due to symmetry, let us assume

that e1 and ch2 are present. See Figure 18.

In this case the same reasoning as Case 3.3 works. If these two edges

are present for n0

2 steps, then we repeat the algorithm recursively on the

remaining vertices. The only di↵erence in this case, is the relocation of

the 4 new agents. We place the two left agents on vertices ui+1 and vi+1.

Then, the algorithm continues as it did.

Case 4 If only one edge is present then the algorithm follows the same procedure as

v1

u1

v2

u2

vi

ui

vi+1

ui+1

vn�1

un�1

vn

un

. . . . . .
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Figure 18: A temporal 2⇥ n modified grid, in which one chord (ch2) and one horizontal

edge (e1) are present.
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Figure 19: A 2⇥ n temporal crossed grid.

in Theorem 3.2.1. If in the next n0

2 steps, only one edge is present then we can

relocate the agents to the inner subgrid and repeat the algorithm.

Therefore, the same algorithm can be used for the temporal 2⇥ n modified grid.

Corollary 3.2.2. A temporal 2⇥n modified grid can be explored in O(n log3 n) steps

by one agent.

In the rest of this section we generalize Claim 3.2.1. In modified grids, there is

only one pair of vertical edges that have been replaced by crossed edges. This means

that our grid has only one pair of chords. We claim that a grid with more than one

pair of chords, can be explored in O(n log3 n) steps.

Definition 3.2.3. A crossed grid G00 with m pairs of cross chords where 1  m  n
2 ,

is a grid for which there is set {i1, . . . , im} where for every 1  k  m, the set

of edges is E(G0) = E(G) \ {(vik , uik), (vik+1, uik+1)}
S
{(vik , uik+1), (vik+1, uk)}. see

Figure 19.

Claim 3.2.2. A temporal crossed grid G 00 with m pairs of chords is explorable in

O(n log3 n) steps by 1 agents.

Proof. According to Claim 3.2.1, replacing two subsequent vertical edges with two

crossed chords, does not a↵ect the procedure of the algorithm. As in each step either

the left agents or right agents can hit at most one pair of chords, the presence of

other chords does not a↵ect the algorithm. Therefore, we can follow the steps of the

algorithm and explore the grid.

Corollary 3.2.3. A temporal 2⇥ n crossed grid can be explored in O(n log3 n) steps

by one agent.
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Chapter 4

Conclusion

The study of temporal graphs is relatively young (even in such dynamic field as theo-

retical computer science), and we do not yet have intuition and a range of techniques

comparable to what has been developed over many years for static graphs. Even

seemingly simple tasks such as constructing temporal graphs (possibly with an un-

derlying graph from a given family) that cannot be explored quickly is surprisingly

di�cult. Some of the methods that Erlebach et al. [9] presented and we used in this

work to prove results for temporal graphs, e.g., the general conversion of multi-agent

solutions to single-agent solutions, contribute to the formation of a growing toolbox

for dealing with temporal graphs.

In this work, the problem of exploring two of the graph families have been studied.

We presented an alternative dynamic programming algorithm regarding for the ex-

ploration of connected temporal cycles by a single agent from any start node, as well

as gave alternative proofs of bounds on worst-case exploration time in this setting.

Furthermore, we studied the exploration of temporal cycles with chords. Erlebach

et al. have presented an algorithm to explore the temporal cycles with one chord in

[9] and conjectured that it holds for temporal cycles with constant many chords. We

proved their conjecture. The question of finding tight bounds for the exploration of

temporal cycles with m := m(n) chords for moderately quickly growing functions m

remains unanswered and indicates an interesting future research direction.

Another family of graphs discussed in this thesis, is grids. We studied the explo-

ration of 2⇥n temporal grids with some changes. We showed that the same algorithm

used to explore a 2⇥ n temporal grid, can be used to explore 2⇥ n temporal crossed
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grids. Finally, we proved that a 2⇥n temporal crossed grid is explorable in O(n log3 n)

steps.

However, there are numerous problems that are still unanswered regarding the

exploration of temporal graphs. Our results directly suggest a number of questions

for future work. In particular, deriving tight bounds on the largest number of steps

required to explore a temporal graph whose underlying graph is an m ⇥ n grid, a

bounded degree graph, or a planar graph would be interesting. It would also be

interesting to study the approximability of TEXP for restricted underlying graphs,

and to identify further cases of underlying graphs where the temporal exploration

problem can be solved optimally in polynomial time. An interesting variation of

TEXP is to allow the agent to make two moves (instead of one) in every time step.
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