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Abstract

Resource Allocation for Multiple Workflows in Cloud-Fog Computing
Systems

Jean Lucas de Souza Toniolli

Constant innovations in the Internet of Things (IoT) in latest years have generated large

amounts of data, putting pressure on the infrastructure of cloud computing. Fog computing

has recently become a popular computing paradigm that can provide computing resources

close to the end users and solve multiple issues with the current cloud-only systems. Fog

computing helps to reduce transmission latency and monetary cost for cloud resources,

while cloud computing helps to fulfill the increasing demands of large-scale compute-

intensive offloading applications. Since its introduction, there has been a great number

of studies on fog computing, in which devices that are free-of-charge and closer to the user

can provide low-latency services to end devices. However, how to schedule workflow ap-

plications in the cloud-fog environment to seek the tradeoff between makespan and price

is facing enormous challenges. To address such a problem, we present an adaptation of

the Path-Clustering Heuristic to the cloud-fog environment for multiple workflows. Firstly,

we define the models for workflow execution time and resource cost in fog computing.

Afterwards, we describe the algorithms implemented. We validate our proposal by exten-

sive simulation. Experimental results show that our scheduling adaptation achieves better

performance while keeping similar costs compared to others.

Keywords: Fog computing; cloud computing; workflow scheduling; monetary cost;

schedule length; heterogeneous systems; directed acyclic graph.
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Chapter 1

Introduction

During the last decade, we have witnessed an explosion in popularity of smart devices.

This increasing number of devices connected to the Internet significantly impacts the global

volume of generated traffic and ushering in a world of interconnected smart devices, thus

driving the rise of the Internet of Things (IoT) [6]. The number of objects connected to

the Internet already surpassed the world human population in 2010 [2] and is expected to

reach 30 billion by 2020 [21]. Such devices may not only exchange data but may also

store and process data, use sensors to collect data from the surrounding environment, and

actively intervene on the environment via actuators. The growing and spreading number of

IoT devices will unavoidably produce a huge amount of data, which has to be processed,

stored and properly accessed by end users and/or client applications. The IoT devices are

in the center of the action but lack the computing and storage to perform analytics.

Meanwhile, gaining more and more popularity in recent years, cloud computing [38,

41], widely known as the next generation’s computing infrastructure with virtual unlim-

ited resource and service provisioning, provides many features to complement IoT devices

(e.g., huge processing power and great storage provision) by expanding their power and ex-

tending the capability of computing. It is considered as an extension of computing systems

such as parallel, distributed and grid computing. With the help of the Internet, it provides
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fast and safe data storage as well as computing power. Hence, cloud computing offers a

significant complement to IoT. The inherent limitations of IoT devices can be helped by

offloading compute-intensive, resource-consuming tasks up to a set of powerful processors

in the cloud, leaving only simple tasks to the capacity bounded smart devices.

However, when IoT meets cloud, many challenges arise. The centralized nature of

cloud computing can lead to a considerable topological distance between the cloud re-

sources and the end users devices. Moreover, the costs associated with cloud storage and

bandwidth usage are significant and as a result, there is a growing industry trying to ad-

dress this need. High-speed data processing, analytics and shorter response times are also

becoming more necessary than ever. Addressing these issues is difficult given the current

centralized, cloud-based model that powers most IoT connected systems. Although the

cloud servers have the ability to process the data, they do not correspond to the optimal

solution, due to either cost or time inefficiencies.

Fog Computing [10] is a promising solution to alleviate these obstacles. The idea of

fog computing is to extend the cloud to be closer to the things that produce and act on IoT

data, based on a more distributed framework [5]. The fog computing layer can serve as

the perfect middle ground where there is enough computing power to provide analytics,

enough computing power to ingest and process the data from the IoT devices, and being

close enough to the user, thus compensating both the shortage of cloud computing and its

latency [20].

Fog computing was proposed in 2012 by Cisco to overcome limitations of integration

between cloud data centres and the IoT. Any local device that has enough computing, stor-

age and networking capabilities to run advanced services can be part of the fog environment

such as switches, routers, etc. This fog environment offers much lower latency than cloud

computing, located far from the end users, by keeping the data and computations close to

end users, thus reducing the communication delay over the Internet and minimizing the
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bandwidth burden, deciding wisely what data needs to be sent to the cloud. Nevertheless,

the flexibility and scalability of cloud computing can help fog computing to cope with

the growing demands for large-scale computation-intensive business applications when the

processing capacity of fog computing is insufficient. Therefore, fog computing is not aimed

to replace cloud computing, but to add to it in a new computing paradigm, cloud–fog com-

puting [23].

Often, IoT data corresponds to real-time jobs, made up of a set of interdependent tasks,

linked with precedence constraints. These jobs are called workflow applications, each can

be represented by a Directed Acyclic Graph (DAG) [14] where each DAG has many tasks

with communication constraints or time dependencies [39]. All distributed processing

nodes (cloud or fog) are managed by a resource broker, which is a resource management

component and scheduler for the workflows submitted from fog-side users. In fog comput-

ing, as in cloud computing, task scheduling is a systematic approach to allocate available

resources for incoming requests from clients to process applications [1]. Therefore, there

is an important decision-making process to be managed, which refers to appropriately dis-

tributing the IoT data to resources in both the fog and cloud layers, taking into account

the computational and communication aspects of each application [23]. Additionally, the

problem of scheduling DAG-based workflow applications to obtain optimal results is a

non-deterministic NP-Complete problem [37].

1.1 Background

The task scheduling problem is the process of scheduling a set of tasks on distributed nodes

from devices with low computational capacity and power, such as IoT devices, in order to

satisfy one or more objectives [8]. Thus, fog computing technology moves computations

to the edge of the network near the IoT devices. In this thesis, the term “task” is used to

indicate a request which is an atomic unit of processing. These tasks can be independent
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Requirements/Features Cloud Computing Fog Computing

Latency High Low

Network Access Type Mostly WAN LAN (WLAN)

Server Location Anywhere within the network At the edge

Mobility Support Low High

Distribution Centralized Distributed

User Device Computers, mobile devices (limited) Mobile-smart-wearable devices

Management Service Provider Local Business

Number of Servers High Low

Table 1: Differences Between Cloud and Fog Computing (extracted from Baktir et al. [7])

(bag of tasks) or dependent (workflow) on each other [22]. When requests are workflows,

the inputs of many tasks depend on the outputs of other tasks, and the tasks cannot start

until all of the predecessor tasks are completed. Considering this precedence constraint,

we must take into account inter-task data dependencies when scheduling tasks on system

resources Two tasks vi and vj are dependent if execution of task tj should be started after

completion of task vi. On the other hand, if they do not have a dependency relationship with

each other, tasks are considered independent and can be offloaded separately to resources

in the network to be executed simultaneously and in parallel. In this kind of problem, tasks

have parameters which include resource requirements, size of the task and its precedents.

Each task is gonna have the following two attributes: the ready time and the earliest start

time. The ready time refers to when all necessary input data to process a task have arrived

at the target processing node, thus making it ready to be executed. The earliest finish time

denotes the earlier time that a processing node can execute a task. It could be as soon as

the task is ready or on the next gap time of the processor.
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There are many forms to evaluate task scheduling approaches to estimate their effec-

tiveness. In this regard, some metrics that can be considered in scheduling approaches in

distributed systems such as cloud and fog environment, are as follows

• Execution time: time that a task is running on a processing node and utilizes its

resources.

• Makespan: total time take to process a set of tasks for its complete execution.

• Efficiency: proportion of execution time to total makespan.

• Cost: total payment for usage of resources

• Trade-off: a trade off between cost and makespan

1.2 Contributions

Most of the initial scheduling algorithms were designed for scheduling a single workflow

only and focused on reducing application time of executing without taking into account the

monetary costs of using the cloud [33]. However, a task schedule, which can minimize the

completion time of the workflow, but corresponds to a large amount of monetary cost, is not

a well optimized solution for fog providers. Thus, in this thesis, we present an adaptation

to schedule multiple workflows on the cloud-fog environment that can achieve a good trade

off between the workflow execution times and the usage cost of cloud resources by adapting

the Path Clustering Algorithm (PCH) [9] to the cloud-fog environment. The main objective

of our heuristic is to reduce the communication bottleneck on the schedule by clustering

tasks to the same processor. In order to evaluate our proposal we also implemented a data

set generator that can output multiple graph topology. We compared our proposal to other

methods and the performed simulations demonstrates that our adaptation outperforms the
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adapted benchmarks and provides the best overall performance for the users. The results

of this thesis have been published [13].

1.3 Outline

The rest of the thesis is organized as follows. The next chapter provides an overview of the

related literature. Chapter 3 presents the cloud-fog system model and formulates the task

scheduling problem. In Chapter 4, we describe the adaptation of the PCH algorithm and

the benchmarks for multiple workflows, while Chapter 5 gives a description of the exper-

imental setup, performance metrics and analyzes the simulation results. The last Chapter

summarizes and concludes the thesis.
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Chapter 2

Related Work

A lot of research has been done [32, 36, 12, 4] regarding the task or workflow scheduling

in distributed environments, especially task scheduling under cloud computing platform.

The primary goal of task scheduling is to schedule tasks on processors and minimize the

makespan of a schedule, which has been shown to be a NP-complete problem [37].

Sih and Lee [32] introduce Dynamic Level Scheduling Algorithm (DLS). At each step,

the algorithm selects the task-processor pair that maximizes the value of the difference be-

tween the static level of a task and its earliest start time on a processor, characterized as the

dynamic level (DL). The computation cost of a task is the median value of the computation

cost of the task on the processors. In this algorithm, upward rank calculation does not con-

sider the communication costs. The scheduling algorithm Longest Dynamic Critical Path

(LDCP) was proposed by Daoud et al. [12], to support scheduling in heterogeneous com-

puting systems. The LDCP is a list-based scheduling algorithm, which effectively selects

the tasks for scheduling in heterogeneous computing systems. This algorithm builds for

each processor a DAG, called DAGP, which consists of the initial DAG with the computa-

tion costs of the processors. The accurate and better selection of tasks enables the LDCP

to provide a high quality result when scheduling heterogeneous systems. However, it is

shown that due to its greed nature the algorithm does not scale very well.
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One of the most popular list based heuristic to schedule workflow applications is Het-

erogeneous Earliest Finish Time (HEFT) [36]. It orders the workflow tasks decreasingly

based on their DAG upward rank, which can be seen as a reversal depth in the reversal

DAG. After computing the priorities of all tasks based on the upward rank value, each task

is iteratively assigned to a suitable resource that minimizes its earliest finish time. The Pre-

dict Earliest Finish Time (PEFT) [4] algorithm takes advantages of lookahead features by

introducing an Optimistic Cost Table (OCT), in which each element of the OCT specifies

the maximum value of the shortest path of successors of the current task to the exit task

while taking into account the selected processor for the current task. The OCT value is used

to decide the rank of each task. PEFT does not allocate the current task on the processor

which reduces the earliest finish time, it will allocate the task to the processor that mini-

mizes the Optimistic EFT value which is the earliest finish time value of that tasks plus its

OCT value. This way it expects that in next steps it will reach a smaller finish time for the

tasks. Yet, these algorithms for heterogeneous systems only consider the minimization of

the workflow schedule length and do not discuss the monetary aspect of using computing

resources, i.e., the cost of offloading large scale applications to a cloud environment.

The extensive study of the cost and performance-aware large-scale workflow scheduling

models has been driven by the emergence of cloud computing [26, 15, 40, 19, 11, 30, 3, 17].

Van den Bossche et al. [15] introduce a cost-efficient approach in a hybrid cloud model,

which is built from a private cloud and multiple public clouds. The approach determines

the most appropriate infrastructure to execute the workflow. Selection also depends on the

possibility of meeting the deadline of each workflow as well as the cost savings. Li et

al. [19] presented the Cost-Conscious Scheduling Heuristic (CCSH), an extension of the

HEFT algorithm, which schedules workflows considering both cost and schedule length.
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The cloud cost is represented as the cost-conscious factor and is used as a weight to calcu-

late the earliest finish time of each task. Chopra and Singh [11] presented a level and cost-

based scheduling algorithm in order to schedule workflow applications on hybrid clouds,

in which a deadline is assigned to each task in the workflow application and migrates the

tasks to public cloud when their deadline is not met in the private cloud. A new scheduling

algorithm based on a fitness adaptive algorithm-job spanning time adaptive genetic algo-

rithm has been developed by Omara and Arafa in [26]. The algorithm enhances the overall

performance of the cloud environment while considering monetary costs. However, it has

a high complexity cost making it difficulty to apply to large scale workflows.

The budget conscious scheduling algorithm ScaleStar was proposed by Zeng et al. in

[40]. ScaleStar is based on an objective function called Comparative Advantage (CA) that

tries to satisfy the strict budget constraint. Their algorithm achieve good balance between

cost savings and schedule length, however, the high complexity of CA prevents the al-

gorithm from being applicable to large scale workflows. Amoon et al. [3] presented a

three phase algorithm to schedule workflows on a cloud computing system in which they

consider a trade off between the monetary and time costs. The three-phase process suc-

cessfully assigns the cloud server for each task. In [17], a scheduling algorithm is proposed

that depends on duplicating and grouping tasks. The scheduling is accomplished by first

converting the input DAG into in-tree and then grouping the tasks. Afterwards, it merges

the groups of tasks and the groups are allocated for execution in the cloud. However, these

works are mainly processed in the cloud, which is different from our framework where

each individual task of the workflow can be offloaded to both cloud and fog nodes.

Fog computing is a popular research topic, and many studies have focused on its im-

portance nowadays. It was presented by Bonomi et al. [10], where they emphasize that

fog computing is a highly virtualized platform which usually, but not only, provides com-

putation, storage, and network services between end devices and cloud computing. This
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highlights the importance of the cloud-fog interplay and the role of fog computing in the

context of IoT. However, fog computing resource management and task scheduling are still

at the initial phase in this paradigm although more and more attention has been paid to it

recently [34].

The authors in [18] initially design a region architecture based on fog to provide neigh-

boring computing resources. They explore efficient scheduling algorithms to assign tasks

between regions and remote clouds. The trade off between power consumption and trans-

mission delay in different phases of iteration in a cloud-fog environment has been investi-

gated by Deng et al. [16]. Based on these two factors, their strategy tries to determine the

optimal allocation of workload between fog and cloud layers. Through simulation experi-

ments and analytical solutions, this work demonstrates that the fog can significantly com-

plement the cloud with considerably less communication latency. However, the proposed

approach can not be implemented to workflow application as there is no consideration of

workflow constraints between workload assignments.

In [25], Nan et al. propose an online algorithm, called Unit-slot Optimization, for

scheduling applications in a three-tiered system. It is an adaptive decision-making al-

gorithm for distributing the incoming data to the corresponding tiers, which can provide

cost-effective processing while ensuring average response time. The proposed approach

dynamically adjusts the trade off between response time and average monetary cost, based

on the technique of Lyapunov optimization. Still, inter-task dependencies are not con-

sidered making it not suitable for scheduling workflow applications. Pham et al. [28]

proposed a Cost-Makespan aware Workflow (CMaS) scheduling for achieving the balance

between performance of application execution and monetary cost for using cloud resources

in a cloud-fog environment. Even though this approach is both fog and cloud-aware and is

suitable for workflow applications, however, it only considers a single workflow at a time

for scheduling.
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To the best of our understanding, in the context of cloud–fog, multiple workflows

scheduling have not been studied extensively so far. The fog and cloud-aware approach

in this paper is suitable for scheduling multiple workflows to achieve a good trade off be-

tween time and the cost for the use of cloud and resources utilizing possible schedule gaps.

Table 2 summarizes task scheduling references.

Reference Environment Application Type Min. makespan Min. cost Trade-off

Topcuoglu et al. [35] Heterogeneous Workflow Yes No No

Arabnejad and Barbosa [4] Heterogeneous Workflow Yes No No

Van den Bossche et al. [15] Cloud Bag of Tasks Yes Yes No

Li et al. [19] Cloud Workflow Yes Yes Yes

Chopra and Singh [11] Cloud Workflow Yes Yes No

Hoang and Dang [18] Fog and Cloud Bag of Tasks Yes Yes No

Den et al. [16] Fog and Cloud Bag of Tasks Yes Yes Yes

Nan et al. [25] Fog and Cloud Bag of Tasks Yes Yes Yes

Pham et al. [29] Fog and Cloud Workflow Yes Yes Yes

Table 2: Existing task scheduling approaches

11



Chapter 3

System Model and Problem Formulation

Workflow applications scheduling in cloud-fog environment is formulated as the problem

of assigning heterogeneous computing resources to the tasks of workflow application in

order to minimize the makespan and cost of workflow applications scheduling. We assume

here that each workflow is represented by a DAG. In DAGs, nodes act as tasks to be exe-

cuted and edges act as precedence constraints between tasks or the communication edges

between tasks [24]. Independent or unrelated tasks can be assigned to different processors

to be executed simultaneously. Note, however, that if dependent tasks are assigned to the

same processor, this saves the communication time between them.

We consider a three-layered cloud-fog computing system model as shown in Figure 1.

Such an environment is a distributed computing platform based on collaboration between

cloud and fog computing for executing large-scale offloaded workflow applications. The

system model consists of three parts, i.e., the IoT layer, Fog layer and Cloud layer. The

applications are uploaded from the user devices to a thick client, also known as a broker,

in the fog functioning as a centralized management node which results in a cost effective

service with a shorter response time. The broker acts as a task scheduler and resource

management component. The functions of the broker are to receive all applications from

users via Wi-Fi, manage the resources available on the cloud and fog nodes and create
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accordingly the most appropriate program for a concurrent arrival of multiple applications,

and decide which component of each application should be completed on which resource.

Figure 1: System model

Let X be a set of devices in the IoT layer, connected to the fog broker. We assume that

each fog node is deployed at a fog network near the user devices and the computing power

of a fog node is much stronger than any user device. The user devices are connected to

an access point (AP) via a shared radio communication channel, e.g., a wireless network.

The AP is connected to the broker via a high speed link to which the user devices submit

their requests and the transmission delay between AP and broker can be neglected. We

assume that fog nodes and cloud nodes have enough CPU resources so that each task can

be executed independently by a dedicated CPU. Additionally, we enforce the realistic du-

plex single-port communication model, where at any point in time, each processor can, in
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parallel, execute a task, send one data, and receive another data.

The input of the multiple application task scheduling involves a list of DAG-based

applications, i.e., tasks graphs and, a heterogeneous processor graph with fog and cloud

nodes. The output is a schedule representing the assignment of a processor to each task. A

schedule consists of each task in each application being assigned with start and finish time

to a node in the processor graph. In the next subsections, we formulate the application’s

model.

3.1 Task Graph

A workflow is represented by a DAG ant is denoted as G = (V,E), where V is the set

of data processing components, i.e., the tasks, and E is the set of directed edges between

the tasks standing for the data dependencies. Each node in V = {v1, v2, ..., vn} represents

a task and each edge eij = (vi, vj) ∈ E represents the precedence relationship between

tasks vi and vj , which means task vj cannot start until the precedent task vi completes.

Each task vi ∈ V can be defined as a 4-tuple vi = (vID
i , wi, STOi,MEMi) where vID

i denotes

its identification in the application by numerical values, wi represents a positive workload

denoting its computation resource amount (e.g., CPU cycles) when it is executed, STOi

is the task storage requirement, and MEMi is the amout of memory required by the task.

Besides, it also contains a set of all preceding sub-tasks PRED(vi) and a set of all successive

sub-tasks SUCC(vi). Each edge eij ∈ E has a non-negative weight Cij which denotes the

amount of data migration between two tasks with precedence relationships. We assume

that a task vi without any predecessor, PRED(vi) = 0 , is an entry task vENTRY, and a task

that does not have any successors, SUCC(vi) = 0, is an end task vEXIT.

14



Figure 2: A task graph example of an workflow application

3.2 Processor Graph

The computing resources can be represented with a processor graph, PG = (N,D), which

denotes the topology of the cloud-fog network. It consists of a set of fully connected

heterogeneous processors that can communicate with each other through LAN and WAN

[16]. Each node can be either a cloud server or a fog node, and each edge dij ∈ D denotes

a link between processor Pi and Pj . Any resource in the processor . Each processor Pi has

a processing rate pi and a bandwidth bwi on the link connecting it to other processors. Nfog

and Ncloud denote the set of fog nodes and cloud servers respectively. In the next section,

we describe our proposed approaches.

3.3 Time Model

The workflow execution time contains two parts: the computation cost and the commu-

nication time. The average execution cost of a task vi and average communication time

between two tasks vi and vj , respectively, are defined as

w(vi) =
wi

(
∑

Pn∈N
pn)/n

(1)
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C(eij) =
cij

(
∑

Pn∈N
bwn)/n

(2)

where n is the number of processors in the cloud-fog environment.

A task can only be executed by a processor when all of its preceding tasks are com-

pleted. DTT(vi) is defined as the time when all its immediate predecessor tasks have fin-

ished, i.e., the finish time of the last preceding task of vi, which means, it is the time when

all input data of vi is ready to be transferred to the target processor. Thus, it is called data

transfer time of task vi and defined by

DTT(vi) = max
vj∈PRED(vi),Pm∈N

[
tf (vj, Pm)

]
(3)

where tf (vj, Pm) is defined as the finish time of task vj on processor Pm. As we can

see, the entry task will have a value of 0 for DTT.

The communication cost of transferring data from preceding tasks of vi processed at

processor Pn to processor Pm to execute vi assuming task vi would be processed at proces-

sor Pm is defined as

C(emn
i ) =


(

∑
vj∈EXEC(Pm)

∪
PRED(vi)

Cji)×
(

1

bwm

+
1

bwn

)
if n 6= m

0 if n = m

(4)

where the set of executed tasks at node Pm is EXEC(Pm).

We define the ready time of task vi on processor Pm as tdr(vi, Pm) and all necessary

input data of vi have arrived at the target processing node Pm is defined by

tdr(vi, Pn) = DTT(vi) + max
Pm∈N

C(emn
i ). (5)
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In order to schedule a task on a processor, we need to be able to accommodate tasks on

Idle Time Slots (ITS) as shown in Figure 3.

Figure 3: An example of an idle time slot

For that purpose, we define the EST and EFT attributes. EST(vi, Pn) and EFT(vi, Pn)

denote the earliest execution start time and the earliest execution finish time of task vi on

processor Pn respectively. By searching the earliest ITS on a processor Pn which is able to

execute task vi, we can define the EST attribute. Also, in order to compute the EFT of a

task vi, all immediate predecessors tasks of vi must have been scheduled. For an idle time

slot [tA, tB] on Pn to host task vi, there must be no task being executed within this time slot

on Pn. A free task vi can be scheduled on Pn within [tA, tB] if

max{tA, tdr(vi, Pn)}+ w(vi, Pn) ≤ tB (6)

For the found interval [tA, tB], the EST(vi, Pm) and EFT(vi, Pm) are computed as fol-

lows

EST(vi, Pn) = max {TIME(Pn), tdr(vi, Pn)} (7)

EFT(vi, Pn) = EST(vi, Pn) + w(vi, Pn), (8)

where w(vi, Pn) is the execution time for task vi on processor Pn and TIME(Pn) is the

earliest ITS on processor Pn capable of allocating task vi. After a task vi is scheduled on a

processor Pn, the earliest finish time of vi will be the EFT(vi, Pn) value. After all tasks in

a graph are scheduled, the schedule length or makespan will be the actual finish time of the
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exit task, defined as

makespan = AFT(vEXIT). (9)

The objective function of this task scheduling problem is to determine the assignment

of tasks of a given application to processors such that the metric of the algorithm is either

maximized or minimized.

3.4 Cost model

The monetary cost for executing a task vi on processor Pn is denoted by COST(vi, Pn).

The only cost involved for fog processors is when they need to receive data from cloud

processors. In contrast, the monetary cost for cloud processors includes processing cost,

storage cost, memory cost and communication cost for outgoing data from other cloud

processors to the target processor Pn to execute task vi. Each cost is calculated as follows.

Cost of processing a task on a cloud node is expressed as

C
(vi,Pn)
PROC = COST1 ∗ w(vi, Pn), (10)

where COST1 is the processing cost per time unit of workflow execution on processor Pn.

Suppose that the amount of money per time unit for transferring outgoing data from pro-

cessor Pn is COST2, then the communication cost is calculated as follows:

C
(vi,Pn)
COM = COST2 ×

vj∈PRED(vi)∑
vj∈EXEC(Pn)

Cji. (11)

Let COST3 be the storage cost per data unit and let sti be the storage size of task vi on

processor Pn. Then the storage cost of task vi on processor Pn is calculated as

C
(vi,Pn)
st = COST3 × sti. (12)
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Further, we compute the cost of using the memory of processor Pn for task Vi as fol-

lows:

C
(vi,Pn)
MEM = COST4 × sMEM (13)

where COST4 is the memory cost per data unit and sMEM is the size of the memory used.

Therefore, the total cost for executing task vi on a specific node Pn is defined by:

COST(vi, Pn) =


C

(vi,Pn)
PROC +

∑
Pm∈NCLOUD

C
(vi,Pn)
COM + C

(vi,Pn)
st + C

(vi,Pn)
MEM if Pn ∈ NCLOUD∑

Pm∈NCLOUD

C
(vi,Pn)
COM if Pn ∈ NFOG.

(14)
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Chapter 4

Multiple Workflows Scheduling

Algorithms

The starting point in the scheduling of multiple workflows is to decide if the DAGs will be

scheduled sequentially, if they will be combined in a single DAG and scheduled after that

or if they will be scheduled independently in turns. To schedule more than one DAG we

can adopt three strategies, in general:

• Schedule the DAGs independently, one after another.

• Schedule the DAGs independently in turns, interleaving parts of each DAG being

scheduled.

• Merge the DAGs into a single one, and schedule this resulting DAG.

To schedule multiple workflows we assume that, at a given time, we have tasks of T

workflows to be scheduled. The strategy used for the algorithms is a list-based interleaved

approach. This approach was used given better overall results compared to the other meth-

ods. In the interleaved approach the algorithm schedules pieces of each DAG in turns,
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interleaving their tasks in the schedule of the available resources. The algorithms priori-

tizes and selects the tasks to be scheduled, and also selects the resources where these tasks

will run. With this approach all workflows have similar makespans, it is scalable, maintains

the good schedules and fairness with variations in the number of results. In this work, we

used an adapted version of the Path Clustering Heuristic [9], which is explained in Section

4.2.4. An example of scheduling is shown in Figure 4.

Figure 4: Example of multiple applications task scheduling

Given a list TG with T applications summing t tasks in total where every application

is a task graph G = (V,E) and a processor graph with network topology PG = (N,D),

the algorithms will choose the most appropriate schedule to execute the tasks. Their major

objective is to either minimize the schedule length, the cost for the use of cloud resources

or to achieve a good trade off between both. The list-based approach, which is a priority
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based technique consisting in two phases is used for the algorithms. The first phase is done

the same way for all algorithms where each node of the task graphs receives a priority level

and is ordered into a list. The second phase is different for each algorithm, thus it will be

explained separately for each algorithm.

4.1 Task prioritizing phase

Before scheduling, the tasks of each application are labeled with scheduling priorities and

are ordered afterwards in a list based on upward ranking [36]. The scheduling priorities

are calculated for each application separately. Basically, this priority is the length of the

critical path from task vi to the exit task. The scheduling priority is defined by the following

recursively function

PRIO(vi) =


w(vi) + max

vj∈SUCC(vi)

[
c(eij) + PRIO(vj)

]
if vi 6= vEXIT

w(vi) if vi = vEXIT

(15)

Lastly, the t tasks are sorted by a non-increasing order of their priority level. The

topological order of each application and its precedence constraints are preserved by this.

4.2 Processor selection phase

After the tasks are sorted in a non-increasing order the algorithm will iteratively assign

processor nodes in the cloud-fog network to execute them. All the algorithms in this work

use the same way to get the scheduling list which is described in Algorithm 1. In the next

sections, we will briefly describe how each algorithm selects the processor for each task.
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Algorithm 1 Get Scheduling List
Input: List TG of Task Graphs
Output: Scheduling list L

1: procedure GETSCHEDULINGLIST

2: for all Gi ∈ TG do
3: Compute the priority level PRIO(vi) of each task vi ∈ Gi.V by traversing the

graph upward, starting from vexit

4: L← Sort all tasks into list L by non-increasing order of priority levels
5: return L

4.2.1 Cost-Makespan aware Scheduling

In CMaS, the scheduling list L is iterated and each task will be scheduled following the

maximization of the utility function. The utility function U(vi, Pn) computes the tradeoff

between the cost and EFT and is defined as follows

U(vi, Pn) =
min
Pk∈N

[
COST(vi, Pk)

]
COST(vi, Pn)

×
min
Pk∈N

[
EFT(vi, Pk)

]
EFT(vi, Pn)

(16)

Task vi is scheduled to processor Pn if it provides the maximal value of the tradeoff

U(vi, Pn). This method is shown in Algorithm 2.

Algorithm 2 Cost-Makespan aware Scheduling
Input: List TG of Task Graphs and Processor Graph
Output: Task Schedule

1: procedure MULTI-CMAS
2: L← getSchedulingList(TG)
3: for all vi ∈ L do
4: for all Pn ∈ N do
5: Compute EST (vi, Pn), EFT (vi, Pn) and cost(vi, Pn)
6: Compute the utility function U(vi, Pn)

7: Schedule task vi to processor Pn that maximizes the U of task vi
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4.2.2 Heterogeneous Earliest Finish Time

The HEFT algorithm is considered as a well-known list scheduling algorithm that can pro-

duce very low schedule length in comparison to other scheduling algorithms. The processor

selection phase is done by the minimization of the completion time of each task. The al-

gorithm iterates over the scheduling list and schedules each task vi to a processor Pn if it

minimizes the EFT value EFT (vi, Pn). This method is shown in Algorithm 3

Algorithm 3 Heterogeneous Earliest Finish Time
Input: List TG of Task Graphs and Processor Graph
Output: Task Schedule

1: procedure MULTI-HEFT
2: L← getSchedulingList(TG)
3: for all vi ∈ L do
4: for all Pn ∈ N do
5: Compute EST (vi, Pn) and EFT (vi, Pn)

6: Schedule task vi to processor Pn that minimizes the EFT of task vi

4.2.3 Cost-Conscious Scheduling Heuristic

In this method, the effect of the monetary cost for the use of cloud services is represented

by the input cost-conscious factor which is used as a weight to calculate the earliest finish

time (EFT) of each task. The algorithm assigns a processor Pn to a task vi if it minimizes

the Cost-EFT (CEFT) value which is defined as follows

CEFT(vi, Pn) = EST(vi, Pn) + w(vi, Pn) + δin × w(vi, Pn), (17)

δin ∈ [0,
COST(vi, Pn)

max
Pm∈N

[
COST(vi, Pm)

] ], (18)

where δin is the input cost-conscious factor. CCSH is shown in Algorithm 4
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Algorithm 4 Cost-Conscious Scheduling Heuristic
Input: List TG of Task Graphs and Processor Graph
Output: Task Schedule

1: procedure MULTI-CCSH
2: L← getSchedulingList(TG)
3: for all vi ∈ L do
4: for all Pn ∈ N do
5: Compute EST(vi, Pn), COST(vi, Pn) and CEFT(vi, Pn)

6: Schedule task vi to processor Pn that minimizes the CEFT of task vi

4.2.4 Adapted Path-Clustering Heuristic

The Path Clustering Heuristic is a DAG scheduling heuristic that utilizes the clustering

technique to create task clusters and the list planning technique to select processors to

accommodate the tasks. The PCH groups paths of the DAG, creating clusters of tasks that

reduces the communication between them. Before each processor selection phase, PCH

performs a clustering phase which is described as follows.

After the task prioritizing phase, the tasks are added to a queue clslist. The algorithm

uses the priority of each task to select the first task to be added to the first cluster. The first

task vi selected to compose a cluster clsk is the unscheduled node with the highest priority.

it is added to clsk, then the algorithm starts a depth-first search (DFS) on the DAG starting

with vi which is the unscheduled task with the highest priority, selecting vs ∈ succ(vi)

with the highest pri(vs) and adding it to clsk. The DFS stops when it reaches a task vs

which has a non scheduled predecessor. With this, clusters always have only tasks with

all predecessors already scheduled or to be scheduled along with them. Figure 5 shows an

example of clusters created by PCH and the resulting schedule.

Figure 5: Example of clustering workflows using the adapted PCH
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For each cluster created, the algorithm selects a resource to schedule it. The processor

selection step is performed after each clustering step. The PCH looks for the processor

which minimizes the EFT of the last task from the cluster. The criterion for selecting

the processor for a cluster is therefore to minimize the makespan of the clusters, which is

described as

Uclsk = min
Pn∈N

max
vi∈clsk

EFT(vi, Pn) (19)

The algorithm repeats the clustering and processor selection steps until all nodes in

cls are scheduled. In the original version the nodes selected in the DFS are based on the

priority and EST of that task, but given intensive testing we decided to only use the priority

of the tasks given the better results. This method is presented in Algorithm 5.

Algorithm 5 Adapted Path-Clustering Heuristic
Input: List TG of Task Graphs and Processor Graph
Output: Task Schedule

1: procedure MULTI-PCH
2: L← getSchedulingList(TG)
3: while there are unscheduled tasks in L do
4: cluster ← cluster to be scheduled
5: for all vi ∈ cluster do
6: for all Pn ∈ N do
7: Compute EST(vi, Pm) and EFT(vi, Pm)

8: BEST_PROCESSOR← Compute the processor which minimizes the maximum
EFT of tasks in the cluster

9: for all vi ∈ CLUSTER do
10: Schedule the task vi to BEST_PROCESSOR
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Chapter 5

Evaluation

In this section, we present experiments via numerical simulations to evaluate the adapted

PCH and validate the trade-off between cost and makespan length for the scheduling of

multiple workflow applications simultaneously in a cloud-fog computing environment.

First we provide details of our simulation studies, then we investigate the performance

of our proposed approach by evaluating cost, schedule length and trade-off between them

under different settings with the other algorithms described in Chapter 4.

5.1 Experimental Settings

All of the scheduling methods were implemented by us using Java with JDK 1.8 based on

the running environment of Intel Xeon E3-1271 v3, quad-core 3.6 GHz CPU, 32GB RAM

and Fedora 29 OS.

Next, some details about experimental settings are described as shown in Table 3. We

specify the performance parameters regarding cloud servers and fog servers where various

servers have different processing capabilities. In our simulation, we use MIPS (Million in-

structions per second) to represent the processing capacity of processors. In the simulation,

we consider a scenario with 14 fog nodes and 24 cloud servers in the fog environment.
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For tasks in workflow, the computation workload of each task ranges from 100 to 15,000

MI (Million instructions) and the I/O data of a task has a size from 100 to 1,000 MB. The

experiment contains several simultaneous workflows and each workflow has from 10 to 80

tasks. The pricing for fog and cloud resources is show in Table 4, which is the same using

in [29].

Table 3: Characteristics of the cloud-fog environment

Number of
servers

Processing rate
(MIPS)

Bandwidth
(Mbps)

Cloud
servers

12 250 {10; 100; 512; 1,024}

12 1,500 {10; 100; 512; 1,024}

Fog
servers

7 100 1,024

7 500 1,024

5.2 Generation of Task Graphs

A random task graph generator was implemented to generate constructed workflows to

represent application’s DAGs with various configurations which depend on input parame-

ters given below. We first execute the random task graph generator to create the application

DAGs, then we follow by executing the scheduling algorithm to produce the task schedules,

and, finally, we evaluate and validate our algorithm based on the generated task schedules.

The generator algorithm is based upon a layered approach first proposed by Tobita and

Kasahara [35]. They designed it specifically for validating scheduling heuristics and is

based in the concept they call layers, i.e., the dependencies between tasks are one way

meaning that tasks cannot impose further dependencies on their antecedents. Other authors

as [35, 31, 27] have proposed algorithms for the synthetic generation of task graphs as well.

Based on all of the above, we developed a random graph generator with characteristics as
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explained next. The parameters that define the DAG generation are as follows

• n: number of computation nodes in the DAG (i.e., workflow tasks);

• Shape parameter of the graph α: we assume that the height (depth) of the DAG

is randomly generate from a uniform distribution with a mean value equal to
√
n

α
.

Whereas, number of tasks of each layer (width of each layer) is generated randomly

from a uniform distribution whose mean value equal to
√
n × α. A dense graph (a

shorter graph with high parallelism) can be generated with α >> 1.0, whereas a

smaller value induces a thinner DAG with low task parallelism α << 1.0

• Communication-to-computation ratio CCR: ratio of the sum of the edge weights

to the sum of the node weights in a DAG. It represents the relation between the

average communication cost between tasks in the graph over the average computation

cost of all tasks. An application can be considered as computation-intesive if the

value of CCRs is low, whereas a high value of CCR indicates that the application is

communication-intensive

To evaluate further the performance of our approach, for each experiment, we generate

a data set of task graphs where values of the parameters are given below.

• Number of Workflows = {10, 20, 30, 40, 50}

• Number of Tasks = {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}

• α = {0.5, 1.0, 2.0, 1.5, 2.0}

• CCR = {0.1, 0.5, 1, 2, 5}
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5.3 Performance Metrics

The aim of scheduling algorithms in a cloud-fog environment is to maximize the tradeoff

between the makespan and the cost of task execution. The makespan represents the total

time elapsed between the start time of the first executed task to the completion time of the

last executed task. We considered the start time of entry tasks as zero and makespan can be

calculated as the finish time of the last exit task. The performance metric used to evaluate

the adapted PCH in comparison to the other algorithms is described below.

Table 4: Resource pricing

Parameter Value

Processing cost per time unit [0.1, 0.5]
Communication cost per data unit [0.3, 0.34, 0.5, 0.7]

Unit cost of memory used [0.01, 0.1]
Unit cost of storage used [0.05, 0.2]

5.3.1 Cost Makespan Tradeoff

The comparison criteria called Cost-makespan Tradeoff (CMT) [28] was proposed to eval-

uate which algorithm can achieve better tradeoff between the makespan and the cost of task

execution at each configuration of the simulations. The method is defined as follows:

CMT(ai) =
min
ak∈AL

[
COST(ak)

]
COST(ai)

×
min
ak∈AL

[
makespan(ak)

]
makespan(ai)

. (20)

5.4 Numerical Results and Analysis

Here, we compare the four scheduling strategies. To test the influence of different number

of tasks on experimental results, each workflow is randomly generated by DAG generator,
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where the number of tasks in a DAG varies from 10 to 80. The combinations of the DAG

generator can produce 20 different random graphs for each workflow size. For each DAG,

10 different random graphs were generated with the same structure but with different edge

and node weights. For example, when the number of tasks of a workflow is 50, the ordi-

nate value is the average makespan of 200 different experiments with 10, 20, 30, and 50

workflows, respectively.

Figure 6: Comparison of the execution time

The simulation results reveal that our adaptation of PCH outperforms the other algo-

rithms both in schedule length and cost. Figure 6 shows that in terms of schedule length,

CMaS gets the worst case, the adapted PCH algorithm obtains the best result overall while

CCSH and HEFT are in the middle. The adapted PCH is overall 28.28% better than HEFT,
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Figure 7: Comparison of the execution cost

29.56% better than CCSH and 43.60% better than CMaS. However, regarding the mon-

etary cost for cloud resources, the adapted PCH keeps only a minimal margin below the

other algorithms but still costs less overall as we can see in Figure 7. This means that the

adapted PCH has a slight economic advantage while still having a much larger advantage

over effectiveness.

In order to demonstrate more clearly that the adapted PCH can achieve a better tradeoff

between the makespan and the cost of task execution than other methods, we will use

the CMT comparison criteria described in Section 5.3. The maximum CMT value of an

algorithm is 1, which is reachable if the schedule length and the monetary cost of that

algorithm are the best (i.e., smallest) compared with the others.

Otherwise, the level of CMT an algorithm can achieve will demonstrate how good it is
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Figure 8: Cost-makespan tradeoff comparison

in terms of tradeoff level on monetary cost and schedule length. Figure 8 shows the com-

parison between the algorithms on the CMT metric. We can see that the adapted PCH is

stable and achieve the highest CMT value compared with the others in most of the cases.

The average CMT value of the adapted PCH on all task graph sizes and number of task

graphs is better than HEFT by 28.86%, CCSH by 29.80%, and CMaS by 44.86%. As

the number of tasks increases, we can observe that the performance of the adapted PCH in-

creases in comparison to the other algorithms. The reason behind these results is as follows.

The main objective of the adapted PCH is to minimize communication time by scheduling

a cluster to the same processor. Even though it only takes into account the makespan of

application execution to schedule the tasks, it ends up reducing communication costs by

scheduling the cluster to the same processor and in so it achieves a better tradeoff than the
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other algorithms.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

Workflow scheduling in fog computing is an important yet open issue. An increasing num-

ber of smart devices are emerging and joining the Internet, thus giving rise to a huge amount

of data. The combined fog-cloud architecture is a promising model that if well exploited

can provide efficient data processing of various applications or services, especially those

which are compute-intensive. Those data have to be processed in either Fog or Cloud

tier as fast as possible with a reasonable cost. In this thesis, we studied the problem of

scheduling multiple application in the cloud-fog environment. We adapted the PCH al-

gorithm for the cloud-fog environment aiming to maintain the tradeoff between cost and

schedule length. We also implemented three other algorithms in this context of multiple

applications scheduling. Simulation results demonstrated that the proposed adaptation can

achieve the best overall performance in cost and time compared with the other strategies in

the cloud-fog environment.
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6.2 Future Work

In the future, we will further consider additional constraints such as fog provider’s budget

and deadline constraint of a workflow execution. We will also explore other popular multi-

workflow scheduling optimization algorithms in the context of cloud and fog computing.

We also aim to take into account other constraints such as RAM and energy consumption

because these are factors that impact how the resources would be allocated or where tasks

would be offloaded. Last but not least, we are interested in we evaluate the performance of

the algorithms with respect to real-world applications.
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