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Abstract

Quantum Transport Strain Engineering in Graphene

Guoqing Wei

We measure ballistic charge conductivity in strained suspended graphene and observe

theoretically predicted [1] strain-induced scalar and vector potentials. To do so,

we built an experimental platform for quantum transport strain engineering in 2D

materials. This instrumentation permits low temperature (0.3 K- 70 K) transport

and a tunable uniaxial strain (up to 3 %) which is independent from the gate-tunable

charge density. We show slippage-free clamping of high aspect-ratio graphene crystals

where atomically ordered edges are unnecessary for quantitative straintronics. We

perform in-depth study of transport in a graphene channel with length 90 nm and

width 600 nm. We observe ballistic transport in both the naked graphene channel and

metal-film-coated graphene contacts. Through the strain-induced scalar potential, we

can down shift the low energy band structure of the graphene channel by 20 meV. We

also clearly observe the effect of a gauge vector potential, which reversibly suppresses

the conductance by up to 13.6 %.
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Chapter 1

Introduction to the straintronics of

Graphene

Studies on quantum nano electro mechanical systems (QNEMS) lead to many promising

properties and applications of 2D and 1D materials [2–5]. However, these contributions

are often impeded by mechanical/electro-mechanical disorder. Using mechanical strain

to optimize and manipulate the electronics of QNEMS is a sub-field of straintron-

ics. In the field of straintronics [6], 2D materials and devices are controlled with

mechanical constraints. This field overlaps with valleytronics, quantum computing,

strain transistors, topological insulator strain sensors and superconducting straintronic

devices [1, 7–12]. So far, our main contribution to this field has been the proposal

of a platform with in situ tunable strains at low temperatures to study the strain-

engineering of quantum transport in graphene [1]. Where my main contributions to

the project are: help to complete our applied theory such as parameters verification,

test the code of the model so it is vaild under all condition, code maintenance and

debug, extending our graphene applied model to SWCNT; Developing Fabrication

methods on silicon wafers with ultra-thin SiO2 layers for next generation suspended

graphene devices and performing data analysis for the experiment that we reporting.

In this thesis, we also report the detailed data analysis of an experiment with such a

platform and compare its results with our theoretical predictions.

We begin this chapter with a brief introduction to graphene QNEMS and how

uniaxial strain affects them. We review recent progress in related 2D materials

straintronics in the literature to provide a context for our work. We highlight the
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advantages of our platform for strain-engineering transport studies compared to other

approaches. We conclude with an outline of this thesis, which studies strain-tunable

suspended graphene field effect transistors (FETs) as shown in Fig. 1.1.

Gold Electrode

Graphene
Channel

SiO2 Doped Si Substrate
as gate

Push Screw
Apply Mechanical Strain

Source Drain

Figure 1.1: 3D schematic diagram of our quantum straintronics platform device. A
suspended graphene is clamped by gold cantilevers. A push screw bends the silicon
substrate and elongate the suspended graphene where a uniform uniaxial strain is
generated.

1.1 Graphene: Ideal QNEMS for Strain-Enginnering

Graphene is an ideal QNEMS due to its large elastic deformation range [13], long

mean free-path [14], and strong electromechanical coupling [15]. Monolayer graphene

is a single layer of carbon atoms assembled into a honeycomb lattice, as shown in

Fig. 1.2(a). Another material that has similar properties to monolayer graphene are

single-wall carbon nanotubes (SWCNTs), which are a rolled up monolayer graphene

sheets. The SWCNT structure is shown in Fig. 1.2(b). Single atom thickness crystal

like graphene and SWCNT are very sensitive to mechanical deformations. Graphene

lattice has a large elastic range of deformation because its sp2 bonds require lots of

energy to break. Theoretically, graphene can support up to 30% of strain [13] without

fracture. Similarly, carbon nanotubes are also mechanically robust and flexible, and

can hold up to 16% of strain [16].
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(a) (b)

(c) (d)
Metallic

Semi-
conducting

Graphene Carbon nanotubes

Figure 1.2: Lattice and band structure of monolayer graphene and SWCNTs. (a)
Graphene real-space crystal lattice. (b) SWCNT real-space structure. (c) Graphene
band structure. The low-energy dispersion (Dirac cone) is highlighted by the black box.
(d) The low-energy carbon nanotube band structure can be metallic or semiconducting.
This figure was reproduced from [17].
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Graphene has exceptional electronic properties in addition to its mechanical

properties. We show graphene’s band structure in Fig. 1.2(c). The valence bands

(blue) and conduction bands (red) touch at points, called Dirac points, see Fig. 1.2(c),

making graphene semimetallic. Graphene has electron mobilities measured up to

3, 000, 000 V−1 s−1 at 1.8 K, and with mean free paths up to ` ∼ 1 µm at room

temperature [18]. Which open to prospect of room temperature quantum (phase-

preserving) circuits. The low-energy dispersion of electrons is linear, leading to

relativistic like transport. This leads to novel “electron optics” devices, where the

charge carriers (electrons or holes) can be manipulated analogously to light, reflecting

or refracting at potential boundaries [19]. The strong and tunable coupling between its

robust mechanics and unique electronics makes graphene ideal for QNEMS research.

We show the carbon nanotube band structure in Fig.1.2(d). While graphene

is semimetallic, carbon nanotubes can be either semimetallic or semiconducting

depending on how they are rolled [20]. Semiconducting tubes make excellent transistors,

and recently a computer was made entirely from carbon nanotube transistors [21].

The electronic band structure of graphene is highly sensitive to strain, which leads

to strong electromechanical coupling [15]. Specifically, a strain induces scalar potential

∆µε, and vector potential A, modify quantum transport in graphene. In Fig. 1.3(a)–

(b), we show the effect of ∆µε on the low energy dispersion (Dirac cones) of graphene.

As we apply strain, the scalar potential changes the work function of graphene, and

shift its Fermi level. In Fig. 1.3(c)–(d), we show respectively full view and zoomed-in

views of graphene’s first Brillouin zone, Where the effects of A is visible. Indicated

by the blue arrows, the vector potentials act to displace Dirac points in momentum

space. For instance, moving the black Fermi circle K
′

to the red circle K
′
D as strain is

applied. The dashed lines show the unstrained (black) and strained (red) first Brillouin

zones. At the K and K ′ points, the vector potential points in opposite directions [15].

When strain deforms the lattice, the changes in atomic spacing and electron hopping

energy are represented by these gauge potentials A. Uniaxial-strain leads to uniform

A, which can suppress the transmission probability at strain interfaces (like at the

interface of two dielectrics in optics) [10,22]. Tri-axial strains can on the other hand,

generate a uniform pseudomagnetic field up to Bps = ∇×A ∼ 800 T [23,24], with

opposite values in the K, K ′ valleys. Controlling such phenomena would permit the

study of pseudomagnetic quantum Hall effects and Landau levels at room temperature,

4



(a) (b)

(c) (d)

Figure 1.3: Strain-induced scalar and vector potentials. (a)–(b) Unstrained and
strained Dirac cone of graphene. Strain induces a scalar potential (∆µε), which shifts
the Dirac cone. (c) The first Brillouin zone of graphene showing the Dirac points in
unstrained (K

′
, black circles) and strained (K

′
D, red circles). The dashed lines outline

the first Brillouin zones of the unstrained (black) and strained (red) lattice, and blue
arrows indicate the direction and magnitude of the vector potentials A. (d) Shows
a close-up view of the vector potential, representing the strain-induced shift of the
Dirac point. This figure was reproduced from [17].

5



and other effects such as valleytronics [24,25].

1.2 Recent Experiments on Strained Carbon Na-

noelectronic Devices

While there are many theoretical proposals in graphene straintronics, progress in

experimental strain-engineering of quantum transport has been very slow in literature.

This is due to the complexity of instrumentation and devices needed to strain QNEMS

at low temperature. In order to study straintronics in graphene and carbon nanotubes

QNEMS, we require a system able to apply tunable, stable in time, and spatially

uniform strains inside a low temperature electron transport cryostat. To our knowledge,

we are the only group to propose to meet all of the requirement with our nanofabricated

devices and custom built instruments [1]. Still, there are many other approaches being

pursued to study strained transport in graphene and carbon nanotubes. Here, we

review a few examples of experimental results in the literature, to provide the context

in which the contributions of the thesis are made.

Strain field can be induced by nanopatterning of the substrate topography [26,30,31].

Creating nanobubbles or wrinkles in a graphene sheet [32] were studied to observe

strain effects on thermal conductivity and the creation of pseudomagnetic fields in

graphene. An example of a substrate-induced strain fields (static fields), is shown in

Fig. 1.4(a) [26]. Boron nitride nanopillars were used to locally stretch a graphene

crystal, resulting in pseudo Landau levels, which could be observed by scanning

tunnelling spectroscopy (local measurement). This method is good to study the

consequent of strain on local band structure but not transport, moreover tunable

strains are not allowed by this set-up. In Fig. 1.4(b) [27], we show an experiment

where a local strain is induced in graphene by Gaussian bump induced by the tip

of a scanning tunnelling microscope. This can achieve large pseudomagnetic fields

∼ 1000 T. The plot shows the measurement of the local density of states modified by

the pseudomagnetic fields. Even though this method applies a tunable local strain

and result in large pseudomagnetic fields, it is not suitable for strained transport

experiment which require long-range control over strain. Such local strains would

be very hard to model for transport because disorder on short scale would dominate

transport. Other approaches include strain applied by pushing on graphene with

6
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Figure 1.4: Literature review of Experimental methods for straining graphene. (a)
Inset: patterned substrate to strain graphene. Depositing a graphene sheet on boron
nitride pillars imparts a strain field. Main panel: differential conductance STM data
as a function of bias voltage, showing pseudo-Landau levels (index N) [26]. (b) Locally
strained graphene using a STM electrostatic pull. Extreme pseudomagnetic fields
(Bps ∼ 1000 T) were achieved STM images taken at tip current 1 nA and 50 nA (right),
show the Bps-modified local density of states. [27]. (c) Tunable strain using flexible
substrates. Top left inset: bendable graphene device on PDMS (Polydimethylsiloxane).
Top right insets: controllably straining graphene along two axes. Main panel: Classical
resistance change with up to 30% strain in graphene [28]. (d) Encapsulated graphene
channel strained with a pushing-wedge [29].
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atomic force microscope (AFM) tips [33], but this method is not easily compatible

with low temperature transport measurements, the strain applied by the AFM tip is

poorly controlled. Strains have also been induced by clamping graphene on stretchable

substrates [28, 34], or using microelectromechanical systems (MEMS) comb drive

actuators [35] while performing Raman spectroscopy and conductivity measurements.

An example of such a stretchable substrate graphene device is shown in Fig. 1.4(c) [28].

The insets show that the substrate is bendable. The main plot displays resistance

versus strain up to 30% along the x and y axes. Despite their large strain-tunability,

stretchable substrates are mostly limited to room temperature, and often cause local

mechanical disorder in the graphene sheet. Tunable strains have been applied to

suspended graphene sheets using electrostatic forces form a back gate [36,37]. These

strains were small ∼ 0.01–0.1%, and are not independent from the charge carrier

density changes in the graphene sheet. Fig. 1.4(d) shows a more advanced platform

with in situ tunable strain. However, once again this method is limited to small

strains, and difficult to use at low temperature.

(c)

14 nm

Nanotube

Source Drain

Gate

Gate

Source
Channel

Push
screw

Drain

Substrate

(b)(a)
Source Drain

Gate

G
ra

p
h
e
n

e

200 nm

Figure 1.5: Our strain instrumentation and devices for ultra-short carbon devices.
(a) Schematic diagram of our QTSE instrumentation. (bottom) A push screw bends
the sample substrate, imparting a strain on the suspended channel. (top) A more
detailed view of the strained device, showing the strained suspended channel, and
source/drain/gate electrodes used for electron transport measurements. (b)–(c) False
coloured scanning electron micrograph of suspended 100-nm long graphene and 14-nm
long carbon nanotube channels respectively. The inset in panel (c) shows the nanotube
channel in greater detail. Reproduced from [17].

Our set-up, shown in Fig. 1.5 and Fig. 1.1 has a geometry similar to The
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metal–oxide–semiconductor field-effect transistors (MOSFETs). Where the metal

is replaced by a doped silicon substrate. Our platform applies strains by bending

the substrate with a push screw drive by a digital-control motor. Where we can

apply continuous and tunable strain. The channel is suspended between the two long

gold cantilevers which stretch the channel when the substrate is bent. The strain is

completely decoupled from the charge density in the channel. This platform is compat-

ible with low temperature measurements thanks to our custom instrumentation [17]

integrated into a 0.3 K cryostat. Our platform allows graphene, carbon nanotubes, or

other 2D and 1D materials to be studied, as shown in Fig. 1.5(b)–(c).

1.3 Outline of this Thesis

In this thesis, we report a complete experiment on quantum transport in strained

graphene. Combine with our applied theory [1], we show deep understanding to our

data that displays changes of graphene work function, suppression of conductance

and quantum interference, which are evidences for strain-induced scalar and vector

potentials.

In Chapter 2, we summarize our applied theory [1]. We start by presenting

the Dirac Hamiltonian for strain graphene transistors. We show the mathematical

expression of the strain-induced gauge potentials A. We derive the transmission

followed by our theoretical predictions. And the extension toward SWCNT at the end.

In Chapter 3, we report our fabrication methods for low-disorder suspended

graphene FETs designed for strain-engineering experiments. Where the 3 main steps

are: Exfoliate highly-crystalline monolayer graphene samples onto silicon wafers with

prepared oxide thickness and coordinate grids. defined source and drain electrodes by

lithography. liberate the graphene sample by wet-etching.

In Chapter 4, we present our first experiment performed on our proposed platform.

We first show the geometry of the device. Then we demonstrate how to calculate and

extract parameters from the processed data. We compare experimental data with our

theoretical predictions after, where we find agreements.

In Chapter 5, we summarize the key results presented in this thesis, and discuss

the outlook for future experiments in strain-engineering transport experiment on 2D

and 1D materials.

9



Chapter 2

Applied Theoretical Model for

Graphene Quantum Strain

Transistors(GQSTs)

Inspired by the possibility that uniaxial strain can completely suppress conductivity in

graphene [10,22,38], We propose a new type of device called graphene quantum strain

transistors(GQSTs) [1]. These GQSTs’ conductivity could turn off because uniaxial

strain can tailor the energy, momentum, and quantum transmission of charge carriers

in graphene [14], even without any bandgap. However, even after a decade of the first

proposal [10], there is no a clear experimental approach to achieve GQSTs. Two of

the main challenges are: the lack of a suitable experimental platform allowing in situ

low-temperature tuning of strain in 2D Materials. The hypersensitivity of 2D Materials

to their environment. Thus, it is difficult to describe or predict experiment results

with idealized models. Therefore, we propose our own experimental platform, as

shown in Fig. 2.1 and applied theoretical model to achieve uniaxial strain engineering

of quantum transport in graphene or other 2D materials. The theoretical concepts

of the platform will be present in this chapter, while the construction and operation

of the instrumentation will be presented in the following Chapter. Based on this

realistic platform design, we have developed an applied theory to guide and analyse

experiments. This model includes all relevant experimental parameters and limitations

from our platform and devices.

Section. 2.1 summarizes the applied model, which is published as [1], where I am

10



the 2nd author of the paper. Section. 2.1.2 presents the extension of the applied model

to SWCNT strain transistors, where I integrate the SWCNT boundary condition to

the applied model. The full applied model for SWCNT is continued by Linxiang

Huang.

2.1 Summary of the Applied GQST Model

In this section, we will present our applied theory aimed at guiding our experiments

towards Graphene Quantum Strain Transistors (GQSTs). First, we present proposed

experimental platform. This platform will permit the study of uniaxial strain in 2D

materials. Secondly, we describe the theoretical model based on the platform. We

consider all sources of strain and strain effects on graphene’s band structure. We find

that a strain-induced scalar potential and vector potential play dominant role. Identify

their unique transport signatures, namely the strain-induced scalar potential shifts the

Dirac point of the graphene and the strain-induced vector potential suppress charge

conductivity. Combining these effects, we find that GQSTs are feasible. We determine

graphene orientations which allows total suppression of conductivity. Thirdly, we will

present our most recent extension to single-wall carbon nanotubes (SWCNTs).

2.1.1 Proposed Experimental Platform

The proposed platform is shown in Fig. 2.1. It could be used to study strain engineering

in 2D or 1D materials. Here we focus on suspended graphene devices where channel

dimensions are L = 100 nm and W = 1000 nm, which are a reasonable dimension

for nanofabrication. The gold films covering the graphene contacts, inject current

into and dope the source and drain contacts [39, 40]. We make the W/L � 1 to

greatly suppress the effect of edge disorder in the suspended graphene crystal. It then

becomes realistic to use an analytic ballistic transport model with a smooth boundary

condition [41].

The zoomed in part of Fig. 2.1(a) shows the graphene lattice and crystal orientation,

θ, defined as the angle between the x-axis of the device and the zig-zag direction of

the crystal. This angle could be measured prior to gold film deposition using polarized

Raman spectroscopy [42], or via STM imaging [43].

11
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Figure 2.1: Platform for uniaxial quantum transport strain-engineering (QTSE) in
graphene. (a) Top-down view of the proposed ballistic graphene transistor geometry.
Inset: the graphene lattice, showing the crystal orientation θ with respect to the x-axis
of the device. (b) Side view of the proposed graphene device and mechanical strain
instrumentation. The mechanical assembly bends the substrate, which strains the
suspended channel. The inset shows a close-up view of the suspended device geometry.
(c) The three sources of strain in the channel: the thermal contraction (blue) at ∼
1 Kelvin, the mechanical motion (red, top axis) of the push screw, and electrostatic
strain (black, bottom axis) from the gate voltage, VG. Insets: visualizing the strain
imparted by the gold and graphene thermal expansion (top left), and electrostatic
pulling (bottom right).
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Figure 2.1(b) shows the suspension of the channel, and how to apply mechanically-

tunable strains using a push screw. The suspended gold cantilevers have a thickness

of 100 nm. When the silicon substrate is bent, the gold cantilevers stretch the channel.

The expected mechanical strain εmech applied by this instrumentation can be estimated

by [44]:

εmech =
3ut

2D2

dz

L
(2.1)

Where L is the suspended channel length, t = 200 µm is the thickness of the

substrate, D = 8.2mm is the clamping distance, u = 1 µm is the total cantilevers

and channel suspension length, while dz is the vertical displacement of the push

screw. Based on previous experiments [44], the range of dz is up to 300 µm, giving a

maximum mechanical strain ≈ εmax
mech ≈ 2.8%. In our calculations, we will set maximum

mechanical strain εmax
mech = 2.5%.

We calculate the gate capacitance per unit area by treating the space between the

gate and the channel as two capacitors in series:

cG =
εvacεox

toxεvac + tvacεvac

(2.2)

Where tvac = 50 nm is the suspension height of the channel, tox = 150 nm is

the remaining thickness of the oxide. εvac is the vacuum permittivity, and εox is the

permittivity of SiO2. We find a gate capacitance per unit area of ≈ 3.7× 10−9 F/cm2.

Figure 2.1(c) shows the sources of strain we have consider in our model. The

mechanically-tunable strain, εmech is provided by the instrumentation and determined

by Equation 2.1, with a range of εmech ≤ 2.5%. The thermally induced strain εthermal

comes from cooling of devices to ultra low temperature, less than 1 Kevin, which

contracts the gold cantilevers [45], while the graphene slightly expands [46]. This

εthermal is by:

εthermal = −u− L
L

∫ T

300

αAu(t)dt−
∫ T

300

αg(t)dt, (2.3)

where αAu and αg are the coefficients of thermal expansion for gold and graphene

respectively. Using αAu from Ref. [45] and αg from Ref. [47], we calculate a net thermal

strain of εthermal = 2.5± 0.1% for T ≈ 1 K.

The last source of strain in Fig 2.1(c) is electrostatic, εG, and caused by the

electrostatic force stemming from a gate voltage. However, given the short length
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of the channel, and the sturdiness of the gold cantilevers, we calculate that εG is

negligibly small (≈ 0.01%). Therefore, εtotal = εthermal + εG + εmech = 2.6 – 5.1%. and

is independent from the gate voltage which will be used to control charge density in

the channel.

2.1.2 Theory of Uniaxial Strain-Engineering of Transport in

Ballistic Graphene

(a) (b)

Figure 2.2: Applied theory for uniaxial strain tuning of graphene’s band structure. (a)
Dirac cone and Fermi circle in the unstrained (left) source/drain graphene contacts,
and in the strained (right) graphene channel. (c) Unstrained (black) and uniaxially
strained (red) first Brillouin zone (FBZ) of graphene. The strain value in this figure
is exaggerated to εtotal = 20% to make its effects more clearly visible. Under strain,
the Dirac points shift can be used to define gauge vector potentials (blue arrows),
Ai = Alat,i +Ahop. The inset shows that the corner of the FBZ does not coincide
with the Dirac point when the device is under strain.

In the ballistic transport regime, we can write the uniaxially strained graphene

Hamiltonian as [1, 15]:

HKi
= h̄vF (Ī + (1− β)ε̄) · σ · (k̃ ±Ai) + ∆µG + ∆µε (2.4)

Where vF is the Fermi velocity in graphene, Ī is the identity matrix, β =

−∂ ln γ0/∂ ln γ′ ≈ 2.5 is the electronic Grüneisen parameter [15] Where γ0 = −2.7 eV is

the unstrained hopping energy [14], and the next nearest-neighbour hopping γ′ ≈ −0.3

eV [48]. ε̄ is the 2 × 2 strain tensor with elements εxx = εtotal, εyy = −νεtotal and

εxy = εyx = 0, where ν = 0.165 is the Poisson ratio [15], and σ = (σx, σy) is the Pauli

matrix vector in 2D and acts as a pseudospin operator. The gauge vector potentials

Ai are used to describe the movement of the Dirac points in first Brillouin zone (FBZ)

of strained graphene as shown in Fig 2.2(b), The electron’s generalized wavevector is
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then k −Ai, where the index i = 1, 2, 3 labels the three Ki. The plus-minus sign in

Eq. 2.4 corresponds to the K and K ′ valleys respectively.

Figure 2.2(a) shows the low energy band dispersion and Fermi circle around a Dirac

point in the source/drain graphene contacts (left) and the strained channel (right).

The Fermi level in the source/drain contacts ∆µcontact is determined by the contact

doping due to charge transfer from Au. The Fermi wavevector in the source/drain

contacts are kF = ∆µcontact/h̄vF . We set ∆µcontact = −0.12 eV, which is typical of

graphene under Au, and a number we obtained from a previous experiments [40]. Our

conclusions are not sensitive to this number. In the channel, the band structure is

shifted vertically in energy by uniaxial strain. This is modeled by a scalar potential

∆µε = gε(1 − ν)εtotal [49], where the coupling parameter gε ≈ 3.0 eV, [50] The

channel’s Fermi wavevector k̃F depends on both the strain-induced energy shift ∆µε

and the gate-induced one ∆µG, k̃F = (∆µG +∆µε)/h̄vF , where ∆µG = h̄vF
√
πcGVG/e,

vF = 1.05× 106 m/s [51].

The total gauge potentials are shown in Fig 2.2(b), Ai = Alat,i +Ahop, where [1]:

Ahop =
βε(1 + ν)

2a

(
cos 3θ

sin 3θ

)
(2.5a)

Alat,1 =
4πε

3
√

3a

(
− cos θ

ν sin θ

)
(2.5b)

Alat,2 =
2πε

3a

(
1√
3

cos θ + sin θ

− 1√
3
ν sin θ + ν cos θ

)
(2.5c)

Alat,3 =
2πε

3a

(
1√
3

cos θ − sin θ

− 1√
3
ν sin θ − ν cos θ

)
(2.5d)

Strain-induced vector potential Ai distorts graphene lattice changing the shape of

FBZ, and it moves Dirac points to new locations, change nearest-neighbor hopping

energy. we also notice the curl of Alat,i is always zero [52], this may result in an

Aharonov-Bohm like effect.

The strain-induced scalar and vector potentials affect transport. shown in Fig 2.3.

The momentum wavevectors in the source and channel kF = ±|kx̂ + qnŷ|, and

k̃F = ±|k̃x̂ + q̃nŷ| respectively. The transverse (y-direction) boundary condition
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Figure 2.3: Transport in ballistic strained graphene. Charge carrier wavevectors in
the source, channel, and drain of the uniaxially strained graphene transistor. The
transmission modes are labelled with their y-component wave number qn. The addition
of Ai,y in the channel modifies the propagation angle, and thus the transmission
probability of the carriers.

conserves the y-momentum as carriers move between the contacts and the channel [10],

thus we have q̃n = qn −Ai,y. Therefore, as shown in Fig!2.3, when a carrier enters the

strained channel, its propagation angle will be modified by Ai,y. The transmission

probability depends on this angle and can be reduced to zero.

Using Eq. 2.4 and matching the carrier’s wavefunction at the potential steps along

x direction [41], and using a smooth y-direction boundary condition, we solve for the

transmission probability Tξ,i,n of conduction mode n and valley ξ = ±1, i = 1, 2, 3. We

find:

Tξ,i,n =
(vxkk̃)2

(vxkk̃)2 cos2[k̃L] + (kF k̃F − vyqn(qn − ξAi,y))2 sin2[k̃L]
, (2.6)

where qn = π
W

(n+ 1
2
) is the quantized transversal momentum for the mode n, k =

(k2
F − q2

n)1/2, k̃ = v−1
x [v2

F k̃
2
F − v2

y(qn − ξAi,y)2]1/2, vx = vF,xx/vF = (1 + (1 − β)εtotal),

and vy = vF,yy/vF = (1− (1− β)νεtotal).

We can obtain the conductivity by summing all transmission modes:

σ =
L

W

2e2

h

1

3

∑
ξ

3∑
i

N∑
n

Tξ,i,n, (2.7)

where N = Int(kFW/π + 1
2
) is the number of allowed modes set by the contact’s

Fermi level, and the factor 1
3

takes care of the three-fold K and K ′ point degeneracy
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in unstrained graphene.

For the parameters discussed above: εthermal = 2.6 %, ∆µcontact = −0.12 eV,

L = 100 nm and W = 1000 nm. We explore theoretically the experimentally relevant

regime where kBT ∼ 0.1 meV < eVB < 1 meV � ∆µcontact = 0.12 eV, and h̄vFAi,y

reaches up to 0.34 eV at maximum=εtotal = 5.1% when θcrystal = 30◦. We calculate

the conductivity for different strains, crystal orientation and gate voltages. In Fig. 2.4,

we show plots of σ − εmech − VG at three θcrystal = 0◦, 15◦, 30◦. We predict two clear

experimental transport signatures: a gate-shift of the conductivity minimum, which

indicates a shift of Dirac points, due to ∆µε, and a suppression in conductivity at all

gate voltages, stemming from A− i’s.
In Fig. 2.4(a), θcrystal = 0◦, and at this crystal orientation the vectors Ai,y are

small as given by equation 2.5. The scalar potential dominates. Dirac point’s gate

voltage position is described by:

VD = − e

CG

g2
ε

π(h̄vF )2
(1− ν)2ε2

total (2.8)

In Fig. 2.4(b), we can see how the vector potentials affect the transport. The

conductivity decrease as strain increases. This effect is maximized When θ = 30◦ in

Fig. 2.4(c), where we find a region where the conductivity is completely suppressed,

starting at εmech=0.5%. Thus, a graphene quantum strain transistor is predicted under

these realistic conditions.

In Fig. 2.5, we show σ − VG at εmech = 2.5% and θcrystal = 30◦. We observe that

a high on/off ratios (σon/off > 104) can be reach for a wide range of gate voltages.

Figure. 2.5 is a colour map of the σon/off ratio extracted from data similar to Fig. 2.5(a)

within VG = ±10 V. We map this on/off ratio as a function of the contact doping

∆µcontact and the lattice orientation θcrystal. We find that to reach σon/off > 104, when

εtotal = 5.1% and |∆µcontact| ≤ 0.12 eV, θcrystal ≥ 16◦ is required. This requirement

defines a broad region of parameter space, shown in red and whose boundary is drawn

with a solid black line. This broad range of possible parameters makes it likely to

observe a high on/off ratio GQST effect in realistic experimental devices.
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(a) (b) (c)

Figure 2.4: Conductivity signatures of uniaxial QTSE in graphene.(a) σ − VG − εmech

data at θ = 0◦. The strain-induced ∆µtextmech shifts the minimum σ towards negative
VG. The inset shows the gate-shift of the Dirac point, VD, as a function of εmech up
to 1.5%. (b) σ − VG − εmech = at θ = 15◦. There is a rapid decrease in σ with strain.
Fabry-Pérot resonances are clearly visible, and their spacing ∆VFP is strain dependent.
(c) σ − VG − εmech = data at θ = 30◦ show a complete suppression of σ at higher
strains.

(a) (b)

Figure 2.5: Graphene quantum strain transistors (GQSTs). (a) σ − VG for εtotal = 0%
(black) εtotal = 5.1% (red) and θ = 30◦. The 50 nm gate spacing gives rise to a
dramatic GQST effect with σon/off � 104. (b) σon/off − ∆µcontact − θ colour maps
for respectively V max

G = ± 10 V. The solid and dashed lines show the σon/off > 104

boundaries for total strain values of εtotal = 2.6%, and 5.1% respectively.

18



2.2 Extension of the Applied Model to SWCNT

Strain Transistors

It is well known that single-wall carbon nanotubes (SWCNTs) are equivalent to rolled-

up monolayer graphene sheets. Unlike graphene sheets, single-wall carbon nanotubes

(SWCNTs) can be semiconducting or metallic depending on its chirality (Angle along

which they are rolled-up). Since single-wall carbon nanotubes are fundamentally

fascinating 1D system, and they can be explored with our QTSE platform, we expand

our theoretical model to SWCNTs.

(a) (b)

Figure 2.6: Wrapping graphene into a nanotube.(a) Definitions of vectors used to
describe SWCNTs. (b) SWCNT Reciprocal lattice. Each black line represents one
SWCNT transmission mode. Figure reproduced from [53].

Compared to graphene devices, one major difference is that SWCNTs have a

periodic the boundary condition. Here, we present the steps to obtain, and incorporate

the boundary condition into the model for SWCNTs.

First, as shown in Fig. 2.6(a), we define vectors on the graphene lattice, where ~Ch

is the chirality (relate to the circumference of SWCNT) vector, ~T is the translational

vector. The graphene sheet roll up in the direction of ~Ch, and the charge carriers

move along the direction of ~T . ~Ch can be express as:

~Ch = n~a1 +m~a2 (2.9)

Where n and m are two integers and define carbon nanotube indices, While ~a1

and ~a2 are unit vectors of the graphene lattice.
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Figure 2.7: SWCNT band structure. (a)The 1D band structure of a SWCNT is given
by one-dimensional cuts of the 2D graphene dispersion. (b)For a metallic SWCNT
and (c)for a semiconducting SWCNT. Figure reproduced from [53]

The translational vector ~T can be express as:

~T =
2m+ n

dR
~a1 −

2n+m

dR
~a2 (2.10)

Where dR is the greatest common divisor(GCD) of (2m+ n) and (m+ 2n).

Figure. 2.6(b) shows the reciprocal lattice of graphene. The directions ~k⊥ and

~k‖ are the reciprocal axes related to ~Ch and ~T . The black lines parallel to the ~k‖

represent the quantized transmission modes. If these allowed momentum lines pass

through K points, it will lead to a metallic SWCNT without a bandgap, as shown in

Fig. 2.7 (b). If these transimission modes do not match a K point, there will be a

bandgap. Corresponding to a semiconducting tube, as shown in Fig. 2.7(c).

Now we are ready to define the boundary condition for SWCNTs. While in the ~k‖

direction, we match the wavefunction at each potential step, in the ~k⊥ direction we

have:

~Ch · ~k⊥ = 2πN (2.11a)

~T · ~k⊥ = 0 (2.11b)

Since our model for graphene was written in the x, y basis, we must write Eq. 2.11

in the x, y basis as well:
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(
n

[
1
2
a

√
3

2
a

]
+m

[
−1

2
a

√
3

2
a

])
·

[
k⊥,x

k⊥,y

]
= 2πN (2.12a)(

2m+n
dR

[
1
2
a

√
3

2
a

]
− m+2n

dR

[
−1

2
a

√
3

2
a

])
·

[
k⊥,x

k⊥,y

]
= 0 (2.12b)

Solving the above equations for k⊥,x 6= 0 and k⊥,y 6= 0, we obtain the boundary

condition. We note that each combination of [n,m] will result in a unique boundary

condition for ~k⊥, Where ~k⊥ is given by:

|~k⊥| =
√
k⊥,x

2 + k⊥,y
2 (2.13)

In Fig. 2.2, we plot two calculated σ − VtextG in respectively a [5, 5] armchair

SWCNT and a [18, 0] Zigzag SWCNT, under various strains. Both of the tube are

metallic, therefore they dont have bandgap at 0% strain, where their conductance is
4e2

h
due to their 2 spin and 2 valley degeneracies. When strain is applied, a bandgap

is opened for the Zigzag tube, but no for the armchair tube. These predictions for

the sizes of bandgaps( 0.2eV at 3% strain), and the value of σ agree with previous

experimental and theoretical studies [54,55]. Therefore, we have successfully integrated

the SWCNT boundary condition into our applied QTSE model. Many technical details

and explorations remain to be done, to fully explore SWCNT calculations, and this is

pursued by Linxiang Huang.
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(a) (b)

Figure 2.8: GTSE calculations in SWCNTs. σ − VtextG data plotted for 2 type of
SWCNT, at different strain, black curve for 0%, red curve for 1%, blue for 2%,
and yellow for 3%.(a) In a [5, 5] armchair SWCNT. No bandgap open when strain
applied.(b) [18, 0] Zigzag SWCNT, bandgap is opened when strain applied, which is
about 0.2eV at 3% strain.

22



Chapter 3

Device Fabrication for Graphene

Quantum Strain Transistors

(GQSTs)

This chapter describes the methods we used to fabricate suspended monolayer graphene

transistors suited for GQST. As mentioned in Chapter 2, whether the current in a

GQST device can be turn off or not depends on the crystal orientation of the channel,

which is difficult verify at the microfabrication stage. However, even in devices where

a full suppression of conductivity is not possible, we could study the effects of strain

on quantum transport. The Fabrication methods we used are based on previous

methods [17] for graphene/carbon nanotube NEMS. For the next stages of this GQST

project, we decided to reduced the distance between the suspended channel and the

gate (substrate) to increase gating efficiency (tunability of Fermi level). In order to do

so, I made several original optimizations to enable this fabrication. After fabrication,

our devices will be loaded into a complex instrument for transport measurements. The

instrumentation was build by A.C. McRae, thus, we will only give a brief review of the

instrumentation in a following section, for more detail please refer to his thesis [17].

3.1 Wafer Preparation

Like many others who study 2DMs and transistors, we fabricate our devices on

silicon wafers. As discussed in Chapter 2, to achieve graphene quantum strain
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transistors(GQSTs), we proposed a platform which applies a mechanically-tunable

strain by bending the silicon substrate. Therefore, to avoid shattering of the chips, we

use thin wafers which are more flexible. The wafers we chose are 4”, 〈1 0 0〉, heavily

doped Si− wafers with a thickness t = 200 µm and covered with a layer of SiO2 on

both side. We use doped silicon because it will be used as the gate electrode of the

transistor, so it must remain conductive even at low temperature. We only need a SiO2

layer on one side of the wafer, but it is grown on both sides via a thermal process. The

thickness of oxide tox is 300 nm or 150 nm as purchased from the manufacturer. 150

nm oxide layer will provide a smaller channel gate spacing for better gating efficiency.

When graphene deposited on 150 nm silicon dioxide is not visible under an optical

microscope. Thus we have to etch the SiO2 to 90 nm [56]. For our 160 nm-SiO2

wafers, we don’t have to etch the SiO2 on their backside, as the gate electrode can

be deposited on the front side. For 300 nm-SiO2 wafers, we have to remove the SiO2

completely from their backside to connect to the gate. To do so, we use reactive-ion

etching (RIE).

Before
RIE

After
RIE

Figure 3.1: Backside wafer etching for gate contacting. The SiO2 film is removed from
the wafer’s backside using a CHF3 plasma RIE.

RIE is a dry etching method in which we use radio frequency (RF) power to

generate a plasma. The ionized gases is accelerated to strike the material on the

surface of samples. Depending on the chemical composition of the gases used and the

material, it results in directional (anisotropic) etching of thin films. In our case, we

use this method to etch SiO2 using the following recipe. After loading a wafer in the

chamber, we flow 4.5 standard cubic centimetres per minute (SCCM) of CHF3 and
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0.5 SCCM of O2 at a chamber pressure of 125 mTorr. We then apply 300 W of RF

power for 15 minutes. After etching, we measure the SiO2 thickness by ellipsometry

or reflectometry. The SiO2 etching can be observed visually, as shown in Fig. 3.1.

We then use deep reactive-ion etching (DRIE) to etch the front side of the wafer.

This is simply because among the etching instruments we can access, the DRIE

instrument is the most modern tool and gives the most precise control. The oxide

thickness we leave on the front side of the wafer will determine the gate-channel

spacing in our transistors. The DRIE recipe is as follows: First, we flow 100 SCCM

of O2 for 3 minutes to flush the chamber. Then we set the temperature to 20◦, and

flow 6 SCCM of SF6 at a chamber pressure of 25 mTorr, and apply a RF power of

50 W for 1 minute. This etches the SiO2 from 160 nm to ≈ 87 nm, as measured by

reflectometry.

In the final step of the initial wafer preparation, we transfer gold coordinate grids

on the wafers using photolithography, as shown in Fig. 3.2. We use the same recipe as

previously done in the our research group, the details can be found Ref. [17].

(a) (b)

Figure 3.2: Transfer of alignment grids using photolithography and metal evaporation
on the wafers. (a) Optical image of the developed grid pattern. (b) Optical microscope
image of a section of the alignment grid pattern after metal deposition and lift-off
procedure.
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3.2 Microfabrication of Suspended Graphene Field-

effect Transistors

Our suspended grapehene devices require 3 steps of fabrication [17]: First, we exfoliate

monolayer graphene crystals on SiO2/Si wafers with gold coordinate grids (see Fig. 3.2).

Secondly, we transfer source and drain electrodes by electron-beam lithography and

metal deposition. Thirdly, we suspended the graphene crystal via wet-etching the

SiO2 film and critical point drying.

Graphene Layers

Graphite
1

2
3

<3

(a) (b)

(c)

Figure 3.3: Graphene crystal exfoliation and Raman spectroscopy. (a) Contrast visible
light of graphene on SiO2 versus wavelength and SiO2 thickness. To maximize contrast,
we etch the SiO2 layer to 90 nm. panel (a) was reproduced from a paper by P.Blake
et al. [56]. (b) Optical image of exfoliated graphene/graphite of various thickness. (c)
Normalized and vertically offset Raman spectra for many thickness of graphene taken
from the locations shown in panel (b), showing the evolution of the G and 2D peaks
with the number of layers. panel (c) reproduced from [17].

In step 1, we use a mechanical exfoliation (also called ”Scotch Tape Method”),

where Highly-ordered pyrolitic graphite is exfoliated (cleaving atomic planes along

26



the c-axis of graphite) using an adhesive tape repeatedly, and then pressed on the

substrate. The detailed procedure can be found in [57]. After exfoliation, we locate

and identify tye large and isolated monolayer graphene crystals via optical microscopy

and Raman spectroscopy. Light reflection (contrast) is proportional to the numbers of

graphene layers and also dependeds on the SiO2 thickness (see Fig. 3.3(a)). We can

roughly determine the number of layers by optical microscope, and record the exact

location of the crystal on the substrate. Then, we use Raman spectroscopy [58] to

decisely determine the number of layers as shown in Fig. 3.3(c).

Alignment Windows

To be exposed

Graphene flake

(a) (b)

(c) (d)

Figure 3.4: Four key stages of the microfabrication of GQST devices. (a) CAD design
of gold-on-graphene junctions. The square windows at the corners are used to align
the CAD design to the crystal during patterning. (b) Exposed resolution-test dot
near the designed pattern. A circular dot with a diameter of 20 nm indicates correct
focus settings of the EBL. (c) Optical image of a GGJ device after EBL exposure
and development. (d) Optical image of the final state of a GGJ device, after metal
evaporation, liftoff and suspension.

In step 2, we use d-beam lithography (EBL) to define electrodes. We begin the

EBL process by spin coating the chips with PMMA (Poly methyl methacrylate) resist.
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We spin the chip with 3000 RPM for 1 minute, which results in a uniform layer with

a thickness of 200 nm. Then we bake the chip on a hot plate at 170◦ C for 15 minutes.

Using a computer-aided design (CAD) software, we create a map of the positions of

the crystals on the chip and design electrodes contacting the crystals. As shown in

Fig. 3.4(a), we distinguish areas needing exposure or not and assign different electron

charge doses to different areas. The doses are determine by a dose (exposure) test

normally run before the actual exposure. We choose the doses which give sharp

lithographic edges but which allow for modest variations without compromising the

integrity of the lithography. Once the CAD file is ready, we load our sample in the

EBL system. To achieve a precise and reproducible exposure, we adjust carefully the

focus and stigmation of the electron beam and verify that a ”test” dot exposed near

the desired region has a diameter as small as 20 nm, as shown in Fig. 3.4(b). The

symmetry of the dot is determined by the a stigmation accuracy, while the sharpness

is determined by the focus precision. We expose our CAD pattern using a 10 µm

aperture, 20 kV acceleration voltage and a 10 mm working distance. We use 666

magnification so that the entire exposure region is within one write field of the EBL.

After the exposure, we use MIBK (methyl isobutyl ketone) to develop the exposed

resist. Specifically, we mix a solution of 1:3 MIBK:IPA (isopropyl acetate) in which

we develop our chips for 30 seconds, and we rinse the sample in IPA. In Fig. 3.4(c),

we show an optical image of a sample after development, where we see the exposed

pattern. After development, we deposit 60 nm of gold using thermal evaporation [17].

Than we perform a liftoff of the unexposed PMMA resist in warm acetone, which

removes the metal everywhere excepts in exposed area, as shown in Fig. 3.4(d).

The two types of devices we designed for GTSE experiments are graphene-under-

gold break-junctions (GAuBJs), shown in Fig. 3.5(a)(b), and graphene gap-junctions

(GGJs), shown in Fig. 3.5(c)(d). The GAuBJs can also be modified for CNTs, 2DMs,

or even just pure gold. They are aimed channels with narrow dimension, such as

quantum dots. GGJs are designed for GQSTs. Fig. 3.5(b)(d) are top-down views of

SEM images of a GAuBJ and a GGJ respectively, which I have fabricated.

In step 3, we use a buffered oxide etch (BOE) to remove SiO2 under the graphene

channel and suspend it. We use a 49% HF, and mix it 1:7 with a buffer solution of

NH4F. We measured a etch rate of 70 nm/min by reflectometry measurement. After

calibration of the etch rate, we etch the desired SiO2 thickness. We then rinse our
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sample in DI water to stop the etch, and then transfer the sample in IPA. Since a

liquid’s surface tension can cause thin suspended devices to collapse as they dry, we

dry the sample using a critical point dryer. Fig. 3.4(d) shows a GGJ device after

microfabrication. Because the SiO2 was etched, we see a different substrate color than

in Fig. 3.4(c).

~40 nm

~60nm

(a) (b)

(c) (d)

Figure 3.5: Designed device geometery and their SEM images after fabracation. (a) A
diagram of AuBJ.(b) A SEM image of AuBJ, where we achieve a channel width of
40nm. (c) A doagra, pf AuGJ.(d) A SEM iamge of AuGJ, where we achieve a channel
length of 60nm.

After microfabrication, we wire-bond our sample to a chip holder, as shown in

Fig. 3.6. Then we load the sample holder in our system build for QTSE experiments.

The detail of this system and how our instrumentation functions can be found in [17].

Briefly, as shown in Fig. 3.7, it is a platform where we use a high precision computer-

controlled screw assembly to bend the Si substrate. The bottom part of the probe,

where our sample is located, will be inserted into a low-temperature cryostat that

allow us to do quantum transport measurements.

29



Figure 3.6: Wire Bonding. We wire up contact pads on the wafer to the sample holder,
which allow us to do transport measurement.

Figure 3.7: QTSE instrumentation. Left, the photo of measurement probe. Middle,
the diagram of measurement probe. Right, the diagram of the chip holder and device.
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3.3 Different Type of Devices Fabricated for Other

Projects

Besides the devices I have fabricated for the GQST project, I have also fabricated

devices for other projects. Shown in Fig. 3.8(a) is a suspended bilayer graphene device,

designed for the study of bilayer graphene electromechanical resonators. It was made

for my colleague Wyatt Wright, and has not been studied yet. Figure. 3.8(b) is a

graphene transistor on SiO2/Si substrate. The large dimensions of the channel was

designed for photocurrent measurements. This device has been studied and reported

in Gareth Melin’s thesis [59]. These devices were fabricated differently with EBL

using a 60 µm aperture, 10 kV acceleration voltage, and 10 mm working distance.

The fabrication details can be found elsewhere [59].

(a) (b)

Figure 3.8: Different type of devices fabricated for other projects. (a) Optical image
of doubly clamped bilayer graphene resonators, this type of device is used for AC
measurement to study electromechanical resonances in bilayer Graphene. (b) Optical
image of a graphene transistor with a large channel dimension for the study of
photocurrent generation.
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Chapter 4

Experimental Graphene Transport

Strain Engineering (GTSE)

This chapter reports a graphene transport strain engineering (GTSE) experiment

performed with the platform described in the previous chapters. In this experiment,

we study the effects of strain-induced scalar potentials, ∆µε, and vector potentials,

A, on transport respectively. We observed these effects by measuring the charge

conductance through a suspended graphene channel at different strains and gate

voltages, while holding bias voltage at 0.5 mV and temperature at 0.3 K. This device

was fabricated and measured by my colleague Andrew McRae; the detailed fabrication

procedure and characterization of this device can be found in his thesis [17]. My main

contribution to this experiment is the detailed and extensive data analysis, where I

have extracted physical quantities and compared the results to previous theory [10],

and our model [1]. The analysis showed in this chapter represents a publication that

is currently in preparation, and where I will be the co-first author.

In this Chapter, we first describe the device we measured and the measurement

method. Then, we present the data analysis of the experimental data shown in Fig. 4.1.

We begin by calculating experimental parameters for this device, such as the applied

mechanical strain. In some cases, we derive equations to fit our data in order to

extract microscopic information about the device, e.g. its crystal orientation. We

experimentally observe the strain-induced scalar and vector potentials, which were

predicted in our theoretical model. We show that by inserting all of the extracted

parameters into our model, we can accurately reproduce the experimental data without
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Figure 4.1: Main experimental data set, I − VG − εmech data taken at VB = 0.5 mV
T = 0.3 K. (a) and (b) show the forward and reverse motion of the mechanical sweep.

any free parameter. We demonstrate that we can tailor the energy level, electron

transport and quantum interferences of graphene QNEMS.

4.1 Device Characterization and Measurement Method

As shown in Fig. 4.2, We studied a field-effect transistor (FET) device with a suspended

graphene channel of L = 90 ± 10 nm, W = 600 ± 20 nm and cantilever arm with

suspension length of u = 700 ± 50 nm. The suspension height and oxide thickness

are tvac = 211 nm and tox = 106 nm, respectively, as measured by reflectometry and

ellipsometry. This device was fabricated using the procedure reported in Chapter 3,

and the exact fabrication details can be found in [17].

Before the charge transport measurements, we clean this device in high vacuum

inside the measurement cryostat via Joule heating (annealing). This is an important

step because fabrication leaves residues on the graphene, which introduce charge

impurities that affect transport. When current annealing, we heat the suspended

channel to remove residues and water [60, 61]. To anneal our samples, we used the

circuit shown in Fig. 4.3, and applied a power of 1.3 mW for 10 minutes. Afterwards,

we performed DC transport measurements using the circuit shown in Fig. 4.4. We used

a computer-controlled data acquisition card (DAQ) to apply a bias voltage through

a voltage divider. We used a Keithley 2400 voltage supply to apply voltages to our
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(a) (b) (c)
Graphite

Source Drain

Gate

Graphene1 μm L = 90 nm

W = 600 nm

82° tilt

u = 700 nm

Figure 4.2: False colour SEM images of the measured suspended graphene FET. (a)
SEM image of the device, showing the Au films (yellow) covering the graphene source
and drain electrodes, the back gate which is under the oxide (blue), and the graphene
channel (pink). (b) Close-up view of the channel. (c) Tilted-SEM image of the device,
taken at 82◦ tilt, clearly showing the suspension and undercut length. This figure was
reproduced from [17].

Figure 4.3: Current annealing circuit. A feedback system controls the voltage applied
to the device by constantly measuring the resistance of the device. This figure was
reproduced from [17].

34



Figure 4.4: DC charge transport measurement circuit optimized for low-noise measure-
ments of current as a function of bias and gate voltages. This figure was reproduced
from [17].

sample’s gate electrode through a low-pass filter, which prevents voltage spikes. We

measured the current at the drain electrode via an Ithaco 1211 current preamp and

sent the output to the DAQ.

For charge transport data acquisition, we measured current flow in our samples

versus VG from -12V to +12V, and at 52 different motor positions, where the maximum

displacement of the screw was 160 µm. The bias voltage was set to 0.5mV, the

temperature to 0.3K. We stopped the annealing when we saw a clear current minimum

in the I − VG curve, reflecting a clearly defined Dirac point in graphene. In Fig. 4.5,

we show examples of these measurements taken for different anneal steps. We used

the data taken after Anneal #15 as our final raw data set for the data analysis. We

present both the forward and reverse mechanical sweeps data in Fig. 4.1 to show the

reproducibility of our measurement method and sample.

During measurements, we noticed that the first time we stretched the channel

some minor but permanent changes to the microscopic mechanical configuration of

the suspended crystal took place. Therefore, the first mechanical sweep data following

a new annealing was not analyzed in detail since it is less reproducible than the

following mechanical sweeps. Data where the current was less than 0.01 pA were not

analyzed due to their low signal-to noise ratio. Transport measurements taken at

intermediate (not final) annealing stages were not analyzed since the device was still

highly disordered.
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(a) (b)

(c) (d)

Figure 4.5: I − VG − ε data from the suspended graphene FET measured at various
annealing stages. (a) Data taken after Anneal #10. (b) Data taken after Anneal #12.
(c) Forward-strain sweep data after Anneal #15. (d) Reverse-strain sweep data after
Anneal #15.
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4.2 Calibration of the Applied Mechanical Strain

Finding the exact relationship between the displacement of the push screw instrumen-

tation (dz) and the microscopic channel stretching (dx) is crucial for our experiment.

Ideally, it would follow [40]:

dx =
3ut

D2
dz (4.1)

Where D is the distance of the chip clamps, t is the chip thickness, and u is the

total undercut length; these quantities were labelled in Fig. 2.1 and Fig. 4.2. A much

more reliable estimate can be done by fitting the data from gold tunnel junctions on

the same chip measured with our instrumentation.

(a) (b)

Figure 4.6: Calibration via gold tunnel junctions. (a) Tilted-SEM image of a gold
tunnel junction. A gap with few nanometer length in the middle of the channel
is opened by electromigration. (b) Three measurements showing log plot of the
resistance of the gold tunnel junctions vs. strain. The red and blue curve are forward-
strain measurement. The yellow is reverse-strain measurement. The inset shows the
measurement of resistance vs. time.

Electromigration of the gold break junction, as shown in Fig. 4.6(a), creates a gap

tunnel junction in the gold wire whose width is of a few nanometers. When the gap is
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stretched precisely the tunnel junction resistance is:

R ∝ e2κx, κ =

√
2meφAu
h̄

≈ 1.18× 1010m−1 (4.2)

Where me = 511 keV/c2 is the electron mass, and φAu ≈ 5.3 eV is the work

function of gold. By fitting R/R0 vs dz in the linear regime of the data shown in

Fig. 4.6(b), we obtained:

dx/dz

AuBJ1 (6.1± 0.3)× 10−6

AuBJ2 (5.7± 0.3)× 10−6

AuBJ3 (7.7± 0.3)× 10−6

AuBJ4 (4.6± 0.3)× 10−6

Table 1: dx/dz value measured from four gold tunnel junction experiments.

In table. 1, we show the dx/dz calibration from four gold tunnel junctions. We

use the average dx/dz value in the rest of our data analysis. Moreover, we are able to

verify the accuracy of this calibration in situ, inside our graphene device, as explained

below.

All our device were fabricated on the same batch of wafers and measured using

the same instrumentation, which means that the suspended graphene FET shown in

Fig. 4.2 and the four gold tunnel junctions we studied have the same substrate thickness

and chip clamping distance. Therefore, according to Eq. 4.1, the only parameter

causing dx/dz to differ from device to device is the gold cantilever suspension length,

u. Thus:

dxAuBJ/dzAuBJ
dxdevice/dzdevice

=
uAuBJ
udevice

(4.3)

According to Fig. 4.2, our device has a suspension length u = 700± 100 nm and a

channel length L = 90±10 nm. For a range of screw displacement of dzmax = 160±10

µm, we find dxmax = 7.5± 1.5 Å. Thus, our maximum mechanical strain applied is

εmech = 0.8± 0.2%.

Our motor drives the push screw via a long and complex mechanical assembly.

It should not be surprise that there is a delay between the screw motion and motor

rotation, as the transmission rod can slightly twist before driving the screw. Mechan-

ical hysteresis occurs when we switch from forward motion to reverse motion. We
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Figure 4.7: Determination of the instrumentation’s mechanical hysteresis. (a)-(b)
Align the forward and reverse resistance data for a gold tunnel junction. (c)-(d) Align
the positions and symmetry of conductance resonance.
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measured this mechanical hysteresis by comparing the R− dx data between a rigid

and reproducible shift of forward and reverse data sweeps. We found the mechanical

hysteresis to be dz = 14 ± 1 µm, dx = 0.9 ± 0.1 Å. This mechanical hysteresis is

shown in Fig. 4.7. In Fig. 4.7(a), we show forward (black and red) and reverse (blue)

sweep data for a gold tunnel junction. In Fig. 4.7(b), we show that when we apply a

dz = 14± 1 µm shift, the forward data and the reverse data lay accurately on top of

each other. In Fig. 4.7(c), we show dI/dVG − VG − dx data for a graphene quantum

dot (QD) device measured in this instrumentation reported in [17], where the forward

data is at the top and the reverse mechanical sweep is at the bottom. In Fig. 4.7(d),

we show after we apply dz = 14 ± 1 µm shift, the conductance resonance peaks

(from eigenstates on the QD) align precisely. Fig. 4.7(d) have better top and down

symmetry than Fig. 4.7(c). Also, by comparing the forward-strain and reverse-strain

fully reproducible data in Fig. 4.7 (c)–(d), we can conclude there is no slippage for

our devices under our instrumentation. The graphene is well-clamped with the gold

cantilever and hence all εmech is applied to the channel.

4.3 Measurement of the Strain-Induced Scalar Po-

tential

In the main dataset shown in Fig. 4.1, we see a clear shift of the Dirac point VD, which

is caused by the strain-induced scalar potential. This VD shift is predicted by Eq. 2.8.

Since we performed our measurements at a constant temperature of 0.3 K, the only

component changing the strain is εmech, and we can rewrite the equation as:

∆VD = − e

cG

g2
ε

π(h̄vF )2
(1− ν)2[(εmech + εthermal)

2 − εthermal
2] (4.4)

Where ν = 0.165 is the Poisson ratio, gε is the scalar potential prefactor, CG =

3.7 × 10−9F/cm2 is the capacitance per unit area, given by Eq. 2.2. The thermal

strain, εthermal, in the suspended graphene channels is given by Eq. 2.3, which leads to

εthermal = 1.6± 0.2% at T = 0.3 K.

Using Eq. 4.4, we fit the ∆VD − εmech data in Fig. 4.9, as shown by the solid black

lines, which gives gε = 3.05 ± 0.06 eV. This is in good agreement with literature

[50,62,63]. The maximum scalar potential induced by εmech is ∆µε = gε(1− ν)εmech =
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(a) (b)

Figure 4.8: Experimental evidence of the scalar mechanical potential. (a) G − VG
data at five different εmech = 0, 0.2, 0.4, 0.6, 0.8 % in the reverse mechanical sweep.(b)
Experimental Dirac point shift data (dots) and theoretical predictions (lines) for three
different maximum ∆µε.

Figure 4.9: Fitting of the Dirac point data with Eq. 4.4.
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20.4 ± 1.5 meV. Thus, we are able to smoothly, mechanically tune ẼF and the

workfunction of graphene by over 20 meV.

4.3.1 Estimate of the Charge Impurity Density

We use this measurement of gε to estimate the impurity density in the graphene channel,

which remains even after annealing. The Dirac point lies at VD = 1.2± 0.2 V in the

device shown in Fig. 4.2, as measured in Fig. 4.1, when εmech = 0 %. Based on the

thermal strain, εthermal = 1.6%, and Eq. 4.4 we calculate VD = −4.8± 0.5 V at εmech =

0%. This discrepancy of 6V between the experimental and theoretical Dirac point

value corresponds to an impurity density of nimp = CGVG/e ≈ −(1.4±0.1)×1011 cm−2,

where the minus sign indicates that the channel impurities are p-type.

4.4 Measurement of the Strain-Induced Vector Po-

tential

In this section, we demonstrate our method to extract strain-induced vector potential

by analyzing its transport signature, which is the suppression of the conductance. We

first derive a fitting equation for this suppression and then we use this equation to fit

the aligned data.

4.4.1 Derivation of the Conductance Fit Function

In Chapter 2, we found that the strain-induced change in the nearest-neighbour

hopping energy can be incorporated in the Hamiltonian as gauge vector potentials

Ai [1]. The total gauge potential in each valley Ki is Ai = Alat,i +Ahop. Where each

term is given by Eq. 2.5.

The trajectory of a charge carrier across the FET is described by the momentum

wavevector in the contacts, kF = ±|kx̂ + qnŷ|, and in the channel, k̃F = k̃x̂ + q̃nŷ,

where ± refers to electron or hole transport, respectively. The transverse boundary

condition conserves the y-momentum throughout the device, such that q̃n = qn −Ai,y.

The Ai,y shift in y-momentum alters the propagation angle of the charge carriers, and

the Klein transmission probability at the strained/unstrained interfaces (where this

is also a step in charge density). We solve for the transmission probability Tξ,i,n of
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conduction mode n in valley ξ = ±1, i = 1, 2, 3. We used Eq. 2.6 and qn = π
W

(n+ 1
2
)

as the quantized transversal momentum for mode n. We calculate G across the FET

by summing the transmissions from all modes:

G =
2e2

h

1

3

∑
ξ

3∑
i

N∑
n

Tξ,i,n (4.5)

where N = Int(kFW/π + 1
2
) is the number of energetically allowed modes set by

the contact’s Fermi energy, and the factor 1
3

accounts for the lifting of the three-fold

K and K ′ valley degeneracy in strained graphene.

In our device, while the Fermi level in the channel is tunable through ∆µG and

∆µε (see Eq. 2.4), the Fermi level in the contacts is constant. Therefore we can

experimentally set these two energies equal to each other at some specific ∆µG and

∆µε, i.e. kF ≈ k̃F . The strained Fermi velocity is given by vx = (1 + (1−β)εtotal)vF =

0.96VF ≈ vF and vy = (1− (1− β)νεtotal)VF = 0.99vF ≈ vF . The Fermi wavevectors

are k̃ = v−1
x [k̃2

F − v2
y(qn − ξAi,y)

2]1/2, and k = (k2
F − q2

n)1/2. Finally, the transmission

of a single mode is:

Tξ,i,n =
1

cos2[k̃L] +
(k2F−qn(qn−ξAi,y))2

kk̃
sin2[k̃L]

=
1

cos2[k̃L] +
(k2F−qnq̃n)2

kk̃
sin2[k̃L]

=
1

cos2[k̃L] +
(k2F−qnq̃n)2

(k2F−q2n)(k2F−q̃2n)
sin2[k̃L]

=
1

cos2[k̃L] +
(k2F−q2n)(k2F−q̃2n)+k2F (qn−q̃2n)2

(k2F−q2n)(k2F−q̃2n)
sin2[k̃L]

=
1

cos2[k̃L] + (1 +
k2F (ξAi,y)2

k2k̃2
) sin2[k̃L]

=
1

1 +
k2F (ξAi,y)2

k2k̃2
sin2[k̃L]

(4.6)
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And the total conductance is found by introducing Eq. 4.6 to Eq. 4.5,

G =
2e2

h

1

3

∑
ξ

3∑
i

N∑
n

Tξ,i,n

=
2e2

h

1

3

N∑
n

(T1,1,n + T1,2,n + T1,3,n + T−1,1,n + T−1,2,n + T−1,3,n)

=
2e2

h

1

3
(
N∑
n

T1,1,n[qn] +
N∑
n

T1,2,n[qn] +
N∑
n

T1,3,n[qn]

+
N∑
n

T−1,1,n[qn] +
N∑
n

T−1,2,n[qn] +
N∑
n

T−1,3,n[qn])

(4.7)

When the number of channels N is large:

Gξ,i =
e2

h

1

3

N∑
n

2kFW

Nπ
Tξ,i,n[

2kFn

N
− kF ]

≈ e2

h

1

3
W

∫ kF

−kF

d(qn)

π
T [qn]

(4.8)

For kF >> Ay, kFL >> 1, this reduces to [10],

Gξ,i =
e2

h

1

6
W

(
4

π
kF − |ξAi,y|

)
(4.9)

Summing both valleys to obtain the total conductance:

G =
2e2

h

1

6

∑
ξ

3∑
i

(
4

π
kF − |ξAi,y|

)
W (4.10)

Eq. 4.10 can be used to fit the experimental G data and extract Ai,y.

4.4.2 Determination of Crystal Orientation and chemical po-

tential in the Lead ∆µcontact

Two important experimental parameters are hidden in Eq. 4.10, and must be extracted

from the experimental data to quantitatively compare to the model. The first one

is θcrystal, which is a key quantity to determine Ai,y, as per Eq. 2.5. The second is

∆µcontact which determines kF .
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Figure 4.10: G vs nG data for (a) forward and (b) reserse mechanical sweeps. The
dashed vertical line show the location of G8V,ε used to analyse G vs εmech in detail.
G0 refers to the εmech = 0 sweep, and the horizontal arrows show the ẼF range over
which the G8V,ε data was averaged for analysis.

To determine θcrystal and δµcontact, we analyse the suppression of the experimental

G vs. strain. First, we align the Dirac point of each data curve, as shown in Fig. 4.10,

such that the data have the same charge density at the same VG − VD point. Then

we select a data region at large VG − VD (so N is large), and where there is no

conductance resonance (Fabry–Pérot), which will be discussed later. We average the G

data around VG−VD = +8 V, covering a range ẼF = 46− 59 meV in the channel. We

remark that this large ẼF exceeds significantly the estimated impurity charge density,

ensuring that G is dominated by contributions from ∆µG and ∆µε. Our conclusions

are not depended on the exact VG − VD position we use, as long as we avoid localized

resonances and low charge density regions. We labelled this conductance G8V,ε and

its initial value at εmech = 0 is G8V,0.

In Fig. 4.11, we plot 1
Gtext8V ,0−G8V,ε

vs. δAymech and fit this data using Eq. 4.10. We

remark that by taking the difference 1
G8V,0−G8V,ε

, we focus on the change in resistance

of the device and do not need to worry about the experimental contact resistance

which is in series with 1/G.

Now we use all parameters we obtained so far into our applied model, where

θcrystal = 2.0◦ ± 0.4◦, nimp = −(1.4± 0.1)× 1011 cm−2, gε = 3.05± 0.06 eV, εmech =

0.8± 0.2%, εthermal = 1.6± 0.2%... we run a massive calculation for different chemical
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(a) (b)

Figure 4.11: Curve fitting for crystal orientation. (a)Aymech − εmech data.
(b) 1

G8V,0−G8V,ε
− Aymech data (dots) fit with Eq. 4.10 for different θcrystal.

(a) (b) (c)

Figure 4.12: Calculated ∆R vs VG − VD data (dash) and experimental data (solid+).
(a) Calculated data with ∆µcontact = 50 meV. (b)Calculated data with ∆µcontact = 55
meV. (c) Calculated data with ∆µcontact = 60 meV.
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potential in the Lead ∆µcontact. An example is given in Fig. 4.12, we calculated many

value for ∆µcontact and for all curves, with emphasis on curves with lower strain (the

reason will be explained later). We found ∆µcontact = 55 meV best describes the

reverse data and ∆µcontact = 50 meV best describes the forward data.

In order to simulate our data accurately, we make an improvement to our model.

Since the scalar potential changes the work function of graphene by ∆µε = gε(1 −
ν)εtotal, it can also cause the creation and annihilation of the allowed modes in the

device. Alternatively, we could introduce a new term ∆µ = ∆µcontact + ∆µε, which is

equivalent to a dynamic chemical potential in the lead. Therefore, when we fit for

chemical potential, we aim for small strain, where ∆µε is small. We include ∆µε in our

model, and plot in Fig. 4.12 (b), where the red curve is ∆µ = 50meV + gε(1− ν)εtotal

and the blue curve is ∆µ = 55meV + gε(1 − ν)εtotal. They are in good agreement

with the forward data (solid dots), and the reverse data (transparent dots). The

yellow curve is a calculated curve with a constant ∆µ = 45 meV; the purple curve is

a calculated curve with a constant ∆µ = 65 meV. We see the majority of the data

points fall in this chemical potential range, thus it agrees with the Fermi level of the

data points in Fig. 4.12 (a). It follows that the assumption for getting the fitting

equation Eq. 4.10, where the energy level is roughly the same in the lead and the

channel, is valid.

4.5 Combine Applied Model with Experimental

Data and Beyond

In this section, we combine and compare the applied mode with experimental data.

First, we calculated the last unknown parameter which is the contact resistance of the

device. Then we did a full map of the applied mode to our experiment, where we found

decent agreement, and we have mechanical control over the quantum interferences of

our graphene transistor.
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4.5.1 Determination of additional resistance

We defined:

Ri = R0 +R
thermal

+Rcontact (4.11)

Rf = R0 +R
thermal

+R
mech

+Rcontact (4.12)

Where R0 is the resistance of the device channel, R
thermal

is the resistances arise

by the thermal strain-induced vector potential, R
mech

is the resistances arise by the

mechanical strain-induced vector potential, Rcontact is the additional resistances in the

circuit, mostly contact resistances. Rcontact is a constant for all the curves. Since all

measurements were preformed at 0.3 K, R
thermal

is also a constant.

Figure 4.13: ∆R is constant. (a) we extract data at different nG location and show
(b) ∆R is the same for different nG.

We plot ∆R vs. ∆ε in Fig.4.13 (b); this ∆R can be expressed by:

∆R = Rmech =
h

e2

[
1(

4
π
kF − Ay,f

)
W
− 1(

4
π
kF − Ay,i

)
W

]
(4.13)

Where Ay,i is the vector potential at the start of the measurement, induced by a

strain εi = ε
thermal

and Ay,f is the vector potential at the end of the measurement,

induced by a strain εf = ε
thermal

+ ε
mech

. We calculate ∆R = 105± 10Ω, which agrees

with Fig.4.13 (b).
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Similarly, R
thermal

can be expressed by:

Rthermal =
h

e2

[
1(

4
π
kF − Ay,i

)
W
− 1(

4
π
kF − 0

)
W

]
(4.14)

And the additional resistance can be expressed by:

Rcontact = Ri −
h

e2

[
1(

4
π
kF − Ay,i

)
W
− 1(

4
π
kF − 0

)
W

]
− h

e2

[
1(

4
π
kF − 0

)
W

]
(4.15)

We calculated Rcontact = 1100± 200Ω.

4.5.2 Mechanical Control of Quantum Interference

In this final stage of the data analysis, we have obtained every single parameter to do

the full simulation of our experiment. We plot our simulation and experimental data

together in Fig. 4.14 (a), where we can see a good agreement in general.

(a) (b)

Figure 4.14: Comparison between the simulation and experimental data, and the
relative conductance G/Gth, where we divide the experimental data with simulation
data to enhance features which are not obvious in the original data set. (a) Selected
curves of simulation and experimental data; the dashed curves are the simulations and
the solid curves are experimental data. We found good agreement especially around
the Dirac points. (b) Relative conductance versus gate voltage at different strain,
where we observe the Fabry–Pérot oscillation and phase changes with increasing strain.

The Fabry–Pérot oscillation period in gate voltage, ∆VFP = 9± 1 V, is extracted

from the relative conductance G/Gtheoretical data in Fig. 4.14 (b). According to [?, 64],
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the oscillation period should follow:

∆VFP =
e

cG

2a

1 + aL
√

e
πcGVFP

(4.16)

Where L = 90 nm is the device channel length, CG is the gate capacitance per

unit area. The barrier parameter is calculated to be a = 0.009756 nm−2. And a can

also be expressed with:

a =

√
πV0

ζFd
(4.17)

Where ζF =
√
πh̄VF/e is the Fermi electric flux and eV0 is the difference of the

Fermi energies of the suspended graphene channel and the graphene under the contact.

In our case eV0 = ∆µcontact −∆µG, thus:

d =
∆µcontact −∆µG

h̄VFa
(4.18)

We calculate d = 8± 1 nm for VG = 0 V. In our simulation, we assume a sharp

potential step (straight barrier) for a 90 nm cavity, shown as blue lines in Fig. 4.15.

However, in reality, our device has a triangular barrier, shown as yellow lines in

Fig. 4.15, where the transition of energy level occur in range with length d. This is the

primary cause for difference between our simulation and experimental data. Moreover,

it is obvious that d is smaller in the positive gate voltage side and d is larger in the

negative gate voltage side when ∆µG become negative. This also explains why the

simulation and the experiment data agree more on one side than the other.

eV0

Source/Drain Channel

L=90 nm

d

Figure 4.15: Schematic view of the energy levels in the Device for a special case where
the energy in the source is the same as the energy in the channel.
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We also observe phase changes with increasing strain in Fig. 4.14 (b). The curves

change from local maximum to local minimum at VG = ±10 V and VG = 0 V. It is

possible that this phase shift is cause by an Aharonov–Bohm-like effect. Given our

vector potential describe in Eq. 2.5, Our Ay,i has zero curl. More experiments needed

to confirm this discovery.
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Chapter 5

Conclusions and Prospects

We have demonstrated that by combining an applied theory for transport in graphene

quantum strain transistors reported in Chapter 2 and our experimental data in nearly

identical devices reported in Chapter 4, we were able to understand the dominant

effects of uniaxial strain in graphene FET’s. By straining graphene mechanically with

two gold cantilever mechanical clamps and measuring the channel’s conductance, we

investigated the predicted strain-induced scalar and vector potentials. Comparison of

experimental data and theory showed quantitative agreements, even with zero free

parameter in the model. We also demonstrated mechanical control over quantum

interferences in a graphene transistor. In this conclusion, we begin with a brief review

of our main results as described in Chapters 2, 3 and 4, as well as their implications

for the design of the next round of graphene quantum strain transistors. Finally, we

end with a discussion of the next steps for this project to improve both experimental

and theoretical results, and discuss what is possible in future experiments.

5.1 Main Results: Rigorous Data Analysis to Con-

nect GQST Theory and Experiment

We presented in Chap 2 an applied GQST theoretical framework, including previously

neglected device parameters changing the expected transport [1] dramatically, to

understand the physics explored throughout this thesis. We began with a description

of how uniaxial strain modifies graphene’s lattices and its band structure. We observed

that the strain-induced scalar potential changes the graphene’s work function and
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shifts the channel’s Fermi energy. We also clearly demonstrated that strain-induced

vector potential arise from both lattice distortion and shifts in hopping energies. We

then calculated conductance in graphene and SWCNT quantum strain transistor. We

show the conductance decreases and the conductance minimum shifts toward the

negative gate voltage with increasing strain. We use these concepts as a basis to

quantitatively understand and interpret our data in Chapter 4.

We presented in Chap 3 our fabrication methods and devices, our custom instrument

capable of in situ strain control, low temperatures transport measurements with sub

pico-Ampere precision. Our fabrication process produces high quality graphene devices

with low structural disorder. For graphene break-junction, the channel length can

down to ≈10 nm, while for graphene gap-junction, the channel length can down

to ≈100 nm. We also fabricate devices up to several microns to allow optical and

electromechanical resonances measurements [57,59].

In Chapter 4, we presented the main results of this thesis, where we carefully

presented original data analysis of a detailed experiment on a GQST device. Exploring

the transport data and developing data analysis methods based on our theoretical

understanding, we showed that we applied a mechanical strain up to 0.8 % in a

channel whose θcrystal = 2◦ , nimp ≈ −1.4 × 1011 cm−2, Rcontact = 1100Ω, and δµε

was mechanically tunable from 45 meV to 65 meV. We found clear evidence for

quantitatively accurate strain-induced scalar and vector potentials. By analyzing the

shift of the conductance minimum in G − VG data sets and the suppression of the

conductance, we observed strain-induced vector potentials up to 24 ×106 m−1. By

comparing theoretical predictions with the experiment, we argue that their modest

discrepancies in same parameter ranges arise from different Fabry–Pérot cavity lengths.

In our model, we used a fixed cavity length of 90 nm. In our experiment, we found

that the cavity length is dependent on the Fermi level in the channel and electrostatic

barrier shape. We demonstrated unprecedented mechanical control of transmissions

and quantum interferences in our graphene transistor.

5.2 Prospects for Strain-Engineered QNEMS

In the short term, we will continue our ongoing project to use uniaxial strain in

suspended graphene aiming to completely turn on/off its charge conductivity. We
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predicted high on/off ratio GQSTs in Chapter 2 and Ref. [1], but have not yet realized

them. However, given by the experiment reported in Chapter 4, which validates our

applied model, we are confident to achieve this goal with optimized device fabrication.

We can improve our fabrication by combining polarized Raman characterization [42]

and dry stamping techniques [65] to identify the crystal orientation of the graphene

flakes ahead of contact deposition. The crystal orientation plays significant role in

maximizing the strain effects. Moreover, our new generation of transistor will have

a much higher gating efficiency due to a SiO2 layer maximizing CG. We also plan

expand our experiments to apply tunable strains to quantum SWCNT transistors. We

aim to mechanically tailor the band gaps, QD charging energies and QD electron hole

asymmetry in SWCNTs. We are very likely to achieve single electron strain transistors

through such experiment.

(a) (b) (c)

Figure 5.1: Ideas for future experiments. (a) Top: Unperturbed (left) and strained
(right) bilayer graphene lattice. The top and bottom graphene layers are shown in
yellow and blue, respectively. Bottom: Electronic band structure of strained bilayer
graphene in the vicinity of the Brillouin zone corners K and K’. Figure adapted
from Ref. [66].(b) Valley polarization (ζ) as a function of Fermi energy in graphene
with equal magnetic (B) and pseudomagnetic (Bps) fields. Inset: The magnetic and
pseudomagnetic fields add for one valley and cancel out for the other, creating a
valley filter. Figure adapted from Ref. [25]. (c) Color plot of T − n − R showing
unconventional superconductivity in twisted bilayer graphene. Figure adapted from
Ref. [67].

In the longer term, we will experimentally explore uniaxial strain effects on

transport in bilayer graphene. Recent study predicted that strain trigger a Lifshitz

transition in bilayer graphene [68]. It is a transition of the Dirac cone topology where

each K valley acquires 3 cones near the charge neutrality point [69], as shown in
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Fig. 5.1(a). An uniaxial strain of 1% is expected to induce observable strain effects [66],

which is within the capability of our measurement platform.

Unconventional superconductivity was found in a twisted bilayer graphene where

two monolayer graphene are stamped onto one another with a θ ≈ 1.05◦ rotation. The

reported R−T −n phase diagram is shown in Fig. 5.1(c). We could apply mechanical

stain to accurately tune the rotation angle θ in situ and control the superconducting

phase transitions. It would offer a unique opportunity to engineer and explore the

graphene superconducting phase diagram.

We can also modify our sample holder and nanofabrication to apply triaxial strains.

This will result in a large and tunable pseudomagnetic fields, leading to quantum

Hall effects and Landau level physics at room temperature [23, 70]. By combining

real and pseudomagnetic fields, it is theoretically possible to create a valley filter in

graphene, where only electrons of a given valley could pass through the device [25].

This theoretical prospect is shown in Fig. 5.1 (b), adapted from Ref. [25], where the

valley polarization (ζ) is plotted as a function of carrier energy for equal magnitudes

of magnetic (B = B0) and pseudomagnetic (Bps = B0) fields. Polarization is nearly

unity for a wide range of energies, indicating a robust valley filtering effect. The inset

shows the mechanism of this valley filter. Since the pseudomagnetic field has opposite

sign in the two valleys, the sum of the magnetic and pseudomagnetic fields is 2B0 for

one valley and 0 for the other. This introduces Landau gaps in the spectrum of one

valley and not the other, allowing pure valley filtering.

In conclusion, we have taken a first step in exploring the quantum ”mechanics” of

2D transport, and this field remains widely unexplored.
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