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Abstract

Privacy Preserved Model Based Approaches for Generating Open Travel Behavioural Data

Godwin Badu-Marfo, Ph.D.

Concordia University, 2021

Location-aware technologies and smart phones are fast growing in usage and adoption as a

medium of service request and delivery of daily activities. However, the increasing usage of these

technologies has birthed new challenges that needs to be addressed. Privacy protection and the need

for disaggregate mobility data for transportation modelling needs to be balanced for applications

and academic research. This dissertation focuses on developing modern privacy mechanisms that

seek to satisfy requirements on privacy and data utility for fine-grained travel behavioural modelling

applications using large-scale mobility data. To accomplish this, we review the challenges and op-

portunities that are needed to be solved in order to harness the full potential of “Big Transportation

Data”. Also, we perform a quantitative evaluation on the degree of privacy that are provided by

popular location anonymization techniques when undertaken on sensitive location data (i.e. homes,

offices) of a travel survey. As a step to solve the trade-off between privacy and utility, we develop

a differentially-private generative model for simultaneously synthesizing both socio-economic at-

tributes and sequences of activity diary. Adversarial attack models are proposed and tested to eval-

uate the effectiveness of the proposed system against privacy attacks. The results show that datasets

from the developed privacy enhancing system can be used for travel behavioural modelling with

satisfactory results while ensuring an acceptable level of privacy.

·
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Chapter 1

Introduction

Travel demand on transportation systems is dramatically increasing in urban cities due to the

growth in populations and the adoption of public transport as a means to reduce emissions towards

environmental sustainability. Contemporary economic activities are generally accompanied by a

significant increase in the mobility and accessibility of a population, hence travel demand models

are adopted by transportation planners to study the behavior of individuals in their choice of deci-

sions regarding the provision and use of transport. Travel demand models are highly dependent on

household survey data composed of household characteristics, personal information and trip details

of travellers. Previously, data collection was administered through dedicated, self-reported surveys

(e.g., household surveys, on-board surveys, etc.), and through technologies concentrated on vehicle

flow counts like loop detectors. The emergence of smart mobile sensing devices equipped with

GPS chips and used in combination with wireless technologies have dramatically increased the po-

tential sources and volume of data that is collected in transportation system applications, referred

to as ”Big Transportation Data” [2]. The Pew Research Center [3] has reported that one-third of

Americans live in a household with three or more smartphones while 84% of households contain

at least one smartphone. Earlier research by the same institution in 2013 [4] estimated that 74%

of the adult population aged beyond 18 years, use their phones to retrieve directions to points of

interest (POI) based on their current location through location-aware technologies. Location-aware

technologies (e.g. GPS, WiFi) are capable of determining their own location. These technologies

are used by smartphone applications (e.g. Google Maps, OkCupid, Facebook, and many others)
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to provide convenience to users by retrieving current user location and providing services close-by.

These sets of application services are referred to as Location-Based Services (LBS). The works of

[5, 6, 7] collected data on pedestrian counts using Wi-Fi logs, activity detection with location-aware

social media data [8], travel time forecasting with Bluetooth [9], measurement of vehicle speed with

CCTV [10] and dedicated smartphone applications [11].

While pervasive technologies provide high volumes of data, requirements on the capacity to

store, manage and process all the data in a timely manner at a large operational scale needs to be

met in order to extract relevant information for transportation decision making. We categorize these

requirements into two broad challenges namely technical and non-technical. The technical chal-

lenges are focused on emerging computing frameworks and system architecture implementations

that are suitable to handle the large quantity, diverse formats, and rapidly generated location data.

As an example, CCTV and road-side cameras generate high definition video frames at faster rates.

Generating large amounts of data at such high rates could come up against storage and process-

ing constraints of traditional computing systems. The non-technical challenge is the concern for

privacy, disclosure of information that could occur by integrating multiple data sources or when

data is “published” for the public in the push to make data “open.” This dissertation reviews large-

scale operational challenges for implementing passive data collection from multiple sources and

provides recommendations for overcoming the challenges to harness the full potential of big data in

transportation decision making.

Typically, service providers of LBS applications (e.g. Google[12], Waze[13], Itinerum[14],

Uber[15]) collect and store a user location over time (i.e. spatio-temporally). Transportation data

on users are used to analyze mobility patterns and study the travel behaviour of a population in the

private and public sectors. Though the potential of exploiting big transportation data is appealing

for research, the release of personal information raises concern on privacy violations that cannot

be overlooked. For instance, a service provider can be malicious by using data for unauthorized

intent, while an adversary could approximate a user’s precise home location to stalk them. An

incident occurred in California in 2007 [16] where records from automatic toll booths on bridges

were used in divorce proceedings to prove claims about suspicious movement of spouses. These

incidents on privacy violations have made the public increasingly aware and concerned about the
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risk of privacy on their personal information shared on smartphone applications and social media

networks, especially in the exposé of the Facebook and Cambridge Analytica scandal in 2018 [17].

Similarly, governments and public institutions have adopted “Open Data” initiatives, a protocol

allowing data to be published for free re-use, share and redistribution by the public without any

restrictions of use [18]. This public release of information could raise concerns about privacy leaks

when an adversary with enough background information can infer an individual participated in a

survey.

Badu-Marfo et al. [19] suggested that personal privacy in terms of transportation data is as much

a social challenge as it is a technical challenge, hence, the need for greater attention to technical,

legal, and regulatory frameworks. Technically, transportation data contains personally identifiable

information (PII) that requires protection through anonymization mechanisms. Similarly, the ability

to maintain data privacy is threatened by de-anonymization (i.e., re-identification) by an adversary

who has enough background knowledge of a user’s mobility traces and is able to infer the identity

of a user from published anonymized data. Thus arises the need to deploy effective protection

mechanisms that are robust to adversarial attacks with less, or enough background knowledge. A

common method to anonymize data, perturbation, adds a level of random noise to distort original

values [20, 21]. Another approach to anonymization, generalization, changes data values from

specific to more generalized information to achieve a level of indistinguishability for every data

record. With these anonymization techniques, there is a trade-off between the guarantee of privacy

the loss of utility [20]. In other words, when a high privacy level is achieved, the anonymized data

is not useful for precise or accurate predictions.

To solve this privacy-utility trade-off, population synthesis is used to reconstruct new mem-

bers of a population having similar features to the true population, but with no simulated members

having characteristics of members of the real population. This technique accepts two inputs: aggre-

gated census data, and sample microdata. The technique is capable of generating data surrogates

with properties that conform to the underlying distribution of the population. Notable population

synthesis approaches are re-weighting, matrix fitting and simulation-based methods. While these

techniques are usable for providing a level of privacy with acceptable utility, they suffer the draw-

back of scalability due to the “curse of dimensionality” and computational complexity [22, 23].
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A recent, novel approach, deep generative models address the concerns on scalability and bring

with them the promise of computational effectiveness than the traditional population synthesis ap-

proaches. Notable generative models are Generative Adversarial Networks (GANs) [24] and Varia-

tional Autoencoders (VAE) [25]. GANs have shown promising results in generating realistic images

which were hitherto intractable for large training sets and complex data types. The GANs framework

work by training two model networks simultaneously namely: a generative model and discriminator

model. The generative model is set against an adversary (i.e. the discriminator) that learns to dis-

tinguish fake samples produced by the generative model from real data samples. While GANs can

reproduce realistic representations of a population, information leaks could occur when generated

samples exhibit exact properties like real samples. The works of Abadi et al. [26] demonstrated

model training in a differentially private manner using the Differentially Private Stochastic Gradient

Descent (DP-SGD), such that the gradient of training data points are clipped and “noised” to limit

its impact on the learning gradient. Using this approach, model training controls the confidence

with which an adversary can infer further information about an individual.

In this dissertation, we explore privacy protection mechanisms for anonymizing sensitive at-

tributes in detailed travel behaviour data. We demonstrate the performance and efficiency of the

anonymized results for travel data analysis. We also experiment using the deep generative mod-

elling frameworks (i.e. GAN and VAE) to synthesize complete travel behaviour data composed

of a snapshot of socio-economic attributes and longitudinal location and activity sequences of a

large population sample. The generative model is capable of simultaneously generating tabular and

sequential location attributes in a differentially private manner as a means to protect sensitive in-

formation found in training data. The synthesized sets guarantee privacy protection for individual

data points used in the training of the network such that an adversary cannot identify with a high

confidence whether a member of the population participated in the training.

1.1 Contributions

In this dissertation, our key contributions are in the following aspects:

Big Transportation Data: We present a technical resource and positioning paper that highlights
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the opportunities and challenges to harness the full potential of big data in transportation. As part

of the discussion, we evaluate existing and emerging technology frameworks that could be adopted

for an implementation of big data architectures for behavioural modeling.

Location privacy protection: We experimented different privacy algorithms to test on privacy

protection for sensitive travel attributes for open data publication. We showed several techniques

for measuring the utility and privacy guarantee provided by popular algorithms on travel activity

diaries.

Population synthesis: We developed a novel deep learning framework to jointly synthesize so-

ciodemographic (e.g. age, gender, income, etc.) and sequential travel behaviour (e.g. trajectory,

activity schedule, etc.) data that ensures the representativity, privacy, and utility of the simulated

data.

1.2 Dissertation outline

The major contributions of the dissertation are broken into four articles, each focusing on different

aspects of travel data synthesis, big transportation data, location privacy, and generative modelling

into behaviour analysis. An overview of the dissertation is shown in Fig 1.1.

Chapter 2 presents a methodological background on travel behavioural modelling, privacy protec-

tion algorithms, population synthesis, deep learning, and Generative Adversarial Networks. The

chapter discusses relevant literature reviews and recent developments within the dissertation areas

and highlights the existing drawbacks with existing approaches.

Chapter 3 introduces the concept of Big Transportation Data for behavioural data management

and analysis. This chapter presents the system-level challenges, opportunities and future directions

for deploying large-scaled transportation applications. The chapter establishes detailed resource

information on diverse architectural designs, hardware components and scalable data infrastructure

design.

Chapter 4 focuses on privacy protection for geographic points of interests in trip data using the

most common population anonymization algorithms. Using a controllable random perturbation,

this chapter experiments with the privacy protection of sensitive home locations while maintaining
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the spatial fidelity of data to maximize the utility of anonymized data points. The chapter shows

fundamental evaluation techniques for measuring location privacy and utility.

Chapter 5 introduces generative modelling with Generative Adversarial Networks for complete

travel diaries. The chapter proposes a novel (CTGAN) approach for synthesizing travel popula-

tion data that is capable of synthesizing synthetic agents having tabular (sociodemgraphic) and

sequential mobility (location) data. A number of metrics are used to evaluate the performance and

similarity between the true and synthesized populations.

Chapter 6 proposes an improved composite travel generative adversarial network with a shared

layer that is capable of using a single model to synthesize multiple outputs in diverse formats and

which is trained in a differentially private manner. The chapter demonstrates the effect of different

privacy parameters and sampling on synthetic generation, which in effect decays the utility of the

synthesized results. Also, the chapter evaluates various metrics for privacy guarantee and similarity

of distributions.

Chapter 7 summarizes the findings from the dissertation articles in the afore-mentioned chapters

and discusses the limitations of the developed methodologies. The chapter recommends new re-

search interests for future work and possible improvements to build privacy-by-design generative

modelling frameworks for travel behaviour.
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Figure 1.1: Dissertation Overview
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Chapter 2

Background

This chapter reviews the literature and relevant contributions on the focus areas for this dissertation

including big transportation data, travel behaviour modelling, population synthesis, privacy protec-

tion and deep generative architectures. In the next sections, we discuss the details for each focus

topic.

2.1 Big transportation data

In a fast changing and complex urban environment, urban planners rely on data collected on mobility

and traffic to plan transport systems. This data is key to solving urban mobility problems (e.g.,

road congestion) and also allowing better travel patterns, origins and destinations, and observe,

operations and drawbacks in real time. Recently, the evolution of Internet of Things (IOT) sensors

and smartphones have dramatically increased the size and diversity of formats of data collected for

travel purposes referred to as “big transportation data.” This term characterizes the high-volume

of data collected, the large variety of data formats and the velocity at which data is generated and

processed for transportation decision making [27].

High volume: defines the growing size of transportation data that continues to increase exponen-

tially from zettabytes to yottabytes daily. With a recent estimate from McKinsey & Company[28],

cars connected to the internet create up to 25 gigabytes (GB) of data per hour, which equates to

dozens of movies stored in High Definition(HD) every 60 minutes.
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High velocity: defines the increasing rate of data that is generated from transportation systems and

devices. Emerging technologies like sensors, traffic cameras and autonomous vehicles produce data

at high speeds and this data must be processed for further action and decision making. According

to Forbes[29], there are 95 million photos and videos shared on instagram daily. Also, Google

processes 40,000 searches every second.

High variety: defines the heterogeneity of transportation data exhibited in its numerous formats

including structured and unstructured data. Traffic cameras generate high-definition videos and

images of traffic flow. Vehicle onboard sensor devices log on events that mostly exist in unstructured

data exchange formats like extensible markup language (XML) for third party devices to feed and

act on the data provided. GPS units and smartphones with guidance software generate enormous

volumes of locational data. All of these data sources are stored in different formats.

While these three characteristics underlie the primary composition of big transportation data, there

are other expanding characteristics that are also well discussed in literature of Kitchin [30] and Gan-

domi [31]. Though these three defining characteristics are not only characteristics of transportation

data, the distinguishing characteristic which is of much relevance to the field of transportation is

that of high variety, transportation systems mostly generate location-aware and location-ignorant

datasets in both structured and unstructured formats. Location ignorant datasets are gathered from

devices (e.g. Bluetooth, WiFi, GSM) that are not able to ascertain their own location but can collect

information and sense the presence of other devices. For instance, in the work of Poucin et al. [6],

data from WiFi networks has been used to study pedestrian travel behavior based on connection

histories to wireless routers. Bluetooth receivers have also been used to assess automobile route

choice and travel times on alternate routes [32].

Location-aware datasets, on the contrary, are generated from devices and technologies (e.g. smart-

phones, navigation GPS) that are capable of determine their own location. They derive coarse and

fine grained precision on location coordinates. Transportation planning, operations and research

depend heavily on these devices for precise spatio-temporal data in their decision-making and anal-

ysis. The remarkable growth in usage of smartphones in recent years has made it a great technology

for collecting location information from users who seek services through location-aware applica-

tions. For example, a user can search for the nearest restaurants in her proximity by providing her
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current location to location-based services (LBS) like Google Maps. Through LBS applications,

it is now easier to request a rideshare pickup by a user sharing his location information with car-

sharing service providers like Uber [15]. A lot of academic research work has been done in the

use of location-aware data from GPS and smartphones for transportation purposes. In a study of

the diversity of mobility patterns for children [33], GPS-tracking devices and mobile phones were

used to conduct a survey on child mobility and the geographic inter-dependency of child mobility.

In other work, Patterson et. al. [34] used a location-aware smartphone travel survey application

to collect mobility data on participants from Concordia University, Montreal in 2016, and the ex-

periment reduced the burden of responding to origin-destination surveys as compared to traditional

self-reported surveys.

In the next subsection, we discuss the application of open travel behavioural data for travel demand

modelling with relevant literature.

2.2 Travel behaviour modelling

Transportation planners and decision-makers have the responsibility of making informed choices

on the performance of transportation systems in an environment of rapid change in economic, de-

mographic, and land use of a population. Generally, travel demand models are used as a decision

making framework to provide quantitative information about travel demand and supply alterna-

tives that are optimal in providing an efficient transportation system for different input assumptions.

Travel demand refers to: the activities that people travel to (trip purpose), where the activities are

located (location), when the activities take place (time), by what mode of transport and route people

make these trips (mode and itinerary). Given these dimensions, travel models aim to predict the

behaviour, patterns, and preferences of commuters, and provide objective assessments of the bene-

fits and costs of transportation dependent variables such as policies, land use, capital investments,

socio-demographic assumptions and many others. The most popular travel modeling approaches

are trip-based, activity-based, and tour-based models [35, 36].

Trip-based models (i.e., the Four Step Model ) basically estimate the trips but trips are abstracted

from the individual that make them. These models are structured into four steps: trip generation,
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distribution, mode choice, and assignment (route choice). Trip generation estimates the number of

trips leaving and destined to each geographic or Traffic Analysis Zones (TAZs). Trip distribution

links trip origins and destinations from and to TAZ in the zone system. Mode choice determines the

mode of travel for trips between TAZs. Finally, assignment predicts route itineraries for each trips

between zones [37].

Unlike trip-based models, activity-based models (ABMs) estimate each person’s activity pattern

and travel choices across the entire day while reflecting the types of activities, the individual desires

to participate in and also sets the priorities for scheduling. Also, ABMs are generally based on

behavioural theories postulating how people decide on the activities based on the time, location and

mode of travelling and sociodemographic characteristics. Comparatively, activity-based models

focus on disaggregate person-level information rather than an aggregate zone-level information of

the trip-based models.

Most transportation research works have focused on estimating traveler origin, transfer and desti-

nation. For example, Zhang et al. [38] analyzed the distribution and transfer of passenger flow of

platform metro passenger at operational stages. Similarly, Shouhua et al. [39] proposed classifi-

cation models to classify urban rail, to demonstrate the characteristics of entering station, exiting

station, and transferring and waiting of metro passengers. Horowitz [40] presented a trip frequency,

destination and mode choice model that incorporates inter-trip dependence and is implemented in a

trip-based model. classification for urban rail transit passages based on passenger perceptions

Activity-based models incorporate significantly more detailed information and thereby produce

more detailed outputs than trip-based models. Also, ABMs present a more theoretically consis-

tent representation of trips made jointly by household members and also include explicit details of

time-of-day choices, such as the amount of time spent when participating in activities, arrival and

departure times [37].

Trip-based and activity-based models are generally dependent on household travel surveys. Typ-

ically, travel surveys collect detailed information about individuals with attributes containing per-

sonal sensitive information (e.g. identity). Disclosing the identity of households or individuals

could pose a potential threat hence there is a need for privacy protection on datasets collected for
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travel demand models. In this study, we develop privacy-by-design approaches to generate privacy-

guaranteed travel behaviour data that maintains utility for travel modelling. In the next section, we

discuss approaches for implementing privacy protection.

2.3 Privacy protection

The transit ridership report of the American Public Transportation Association (APTA) for the first

quarter of 2018 [41] recorded an approximate ridership of 96 million trips through the public trans-

portation rail system in Montreal, Canada. Smart card readers are deployed in metro stations and

buses that charge transit fares when passengers board using their smart cards. The metro system op-

erator maintains a database of all transactions, associated with the personal identities of passengers

especially when credit cards are used to recharge smart cards. While these systems are proprietary

and highly secured, in a hypothetical scenario where such personal identifiable transit information

is gained by an adversary or inappropriate access is achieved by an employee, the credit card details

could be linked to the income or financial information of an individual.

Additionally, it is known that public and private research organizations (i.e., travel authorities) usu-

ally collect large amounts of identifiable information during data collection. Often, much of this data

is not relevant to the purpose of study but is considered valuable to augment the possible dimensions

of research. Following the recent public outcry on privacy violations (e.g. the case of Facebook and

Cambridge Analytica [17]), data collectors are required to limit the amount of personal identifiable

data collected or implement mechanisms to privatize personal identifiable information. Transit au-

thorities could suffer losing money through legal suits and reputation if they violate the privacy of

their passengers. In order to implement privacy protection on travel data, anonymization models

are used. The most popular anonymization models are; k-Anonymity [42] and Differential privacy

[43].
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2.3.1 k-Anonymity

k-Anonymity is a widely used privacy model, first proposed by Samarati and Sweeney [42, 44]. The

notion assumes that for any record in the table with a quasi-identifier (QID) attribute value, there ex-

ist at least k-1 other records with the same QID. This means that the minimum group size is at least

k. As an objective, k-Anonymity, ensures that each record is made indistinguishable from at least k-

1 other records in the table. This removes uniqueness of each individual through generalization and

suppression, and prevents record linkages through quasi-identifiers (QI). An example is in the case

of the Governor of Massachusetts whose health records were identified by linking identifier fields

(i.e. age, sex, zipcode) from the voter registry to medical data[42]. Its implementation removes

explicit fields and modifies QI but maintains sensitive attributes. However, it has been shown that

anonymizing a table for k-Anonymity does not sufficiently provide privacy protection for individu-

als, successive works have built on the notion of k-Anonymity to address some of the weaknesses

unearthed in the original model. The emerging flavours of k-Anonymity which guarantee a better

privacy of individuals are discussed below.

The work of Machanavajjhala et al. [45] show that k-Anonymity cannot prevent an adversary from

uniquely identifying an individual without considering its sensitive attributes. This means that while

k-anonymity can protect identity disclosure by modifying the QI values, an adversary with back-

ground knowledge about a sensitive attribute of an individual, such as cash tips on taxi fares, will

be able to uniquely identify an individual. The authors introduced the model of l-diversity, which

considers both the QI attributes and sensitive attributes. In this improved model, an equivalence

class (i.e. a collection of records in a table that have same attribute value with respect to a quasi-

identifying attribute) is said to satisfy l-diversity if the probability that any record in the group is

associated with a sensitive value is at most 1/l.

As follow-up work on l-diversity, Li et al. [46] observed that in scenarios where the overall distri-

bution of a sensitive attribute is skewed, the l-diversity model cannot prevent linkage attack on the

attribute. For example, when travel data has 90% of records having a trip mode of train and 10%

with the mode of bus, after generalization and suppression on the QI attributes, it could be inferred

that a passenger travels on train with a high confidence. To overcome the problem of skewness in

13



sensitive attributes, the authors introduced t-closeness, as an improvement on the l-diversity model.

In this model, an equivalence class is said to satisfy t-closeness if the distribution of sensitive val-

ues within the group is nearly equal to the distribution of the sensitive attribute in the overall table.

Though t-closeness proves robust in normalizing the distribution of sensitive attributes, it has its

own limitations and weaknesses. As a weakness, it lacks the ease of defining varying protection

levels for different sensitive values. Also, it degrades data utility when it normalizes the distribution

of the sensitive values within the equivalence classes.

Most of the models previously discussed provide privacy protection with respect to categorical or

discrete-type sensitive attributes. To apply the same to numerical sensitive attributes such as tips

paid, the work of Zhang et. al [47] provides a privacy model named (k, e)-anonymity. The objective

of this model is to partition individual records into groups such that each group contains a minimum

k different sensitive values with a range of at least e.

(k, e)-Anonymity does not consider the proximity of sensitive values in any equivalence class, which

can violate individual privacy. For example, in travel data with many sensitive values (e.g., travel

budget, tips paid) are close to each other like a tip of $50 is close to a tip of $51. When these

sensitive values (e.g., tips) are grouped into equivalence classes, an adversary has high confidence

to infer that an individual in an equivalence class is associated to a close sensitive value.

Lastly, another privacy model that considers both QI and sensitive attributes is (α, k)-anonymity.

This model is developed by Wong et al. [48], and suggests that an equivalent class is said to satisfy

(α, k)-anonymity if the number of records in the equivalent class is at least k and the frequency of

each sensitive value in equivalent class is at most α.

As discussed in section 2.1, academic researchers and transport planners collect mobility data to un-

derstand travel characteristics, patterns, and choices of commuters. Travel demand models basically

consider trip sequences with socio-economic information (e.g. household size, income, automobile

ownership) generated for a sample population to reflect the travel behaviour of the general popula-

tion [49].
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2.3.2 Differential privacy

While the k-Anonymity technique protects a record by creating at least k-1 records with similar

attributes, Dwork et al. [43] created differential privacy as an anonymization technique that promises

protection for a participant whose addition or removal from a survey does not affect the computed

outcome of the survey. The outcome of statistical computation on the data will not have a significant

impact by the removal or addition of a single record. Imagine a survey on the routes used daily from

home to work collected on 100 workers. As part of survey, data on workers who made a stop at a

bar were also collected. The outcome of the survey gave 60 out of the 100 workers who use a route

without making a stop at a bar while the remaining 40 made stops at a bar. In studying the outcome

of the survey by a researcher, when the record of a participant, Joseph is excluded from the survey,

the statistics gave a count of 39 for workers who visits a bar. The researcher can confidently deduce

that Joseph visits a bar on his route to work.

The primary mechanism of differential privacy is to address this weakness of aggregation by adding

random noise to the computed outcome such that the addition or removal of a participant like Joseph

does not influence the statistical outcome. This implies that the probability for a query to return a

value v when applied to a database with the route record of Joseph, will be similar to the database

without his route record. The differing values in both databases should be within a bound of a

privacy budget or epsilon (ε).

Critical to the implementation of differential privacy is the addition of random noise. In relation

to the route example, if the reported outcome for workers who make a stop at a bar is given as 39

or 41 then the removal of a participant will not change the outcome. An inference by an adversary

will require strong background knowledge of the context. The amount of random noise added to

the statistical outcome must be robust to differentiated attack, defining the knowledge an adversary

might have to make deductions. The amount of random noise is selected from a Laplace or Gaus-

sian distributions to produce a result that masks the details of a given record. Differential privacy is

effective in cases where an aggregation of several records are to be published. This raises a weak-

ness and poor suitability for applications where a single record is involved. The addition of noise

reduces the precision of statistical outcomes thus in applications where noise is unacceptable such
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as safety and life-threatening observations, this technique cannot be used [50]. Lastly, the tech-

nique makes use of a global sensitivity function (e.g. sum, average, count) to summarize statistical

outputs. Though these query functions are appealing, in cases where functions like Max and Min

are used, the results can be misleading. As earlier mentioned, privacy protection is becoming a

primary requirement in analysing travel data. This requirement is driving research work towards the

design of efficient anonymization techniques that are adaptive and suitable for numerous scenarios

of data utility with a promise of privacy protection. Hitherto, transportation planners have relied on

traditional population synthesis approaches that allows for recreating members of population by in-

tegrating aggregate data from one source with disaggregate data from another source such as census

data [51]. This approach prevents information disclosure risk. In the next section, we introduce the

concept of population synthesis and existing methodologies of population synthesis.

2.4 Population synthesis

Planners study the interactions between the social behaviour of population agents (i.e., individuals

and households) and the environment and urban systems like transportation. Evolving travel alter-

natives such as car-sharing, park-and-ride cannot be simulated with traditional travel models rely

on aggregate population data, that is not capable of reproducing the sophisticated spatial behaviour

of agents and respond timely to growing urban travel demands. These drawbacks have recently

increased research interest in activity-based modelling using disaggregate agent-based information.

In activity-based models, researchers use detailed information on agents to understand human be-

havioural patterns, preferences, habits and perceptions usually at a neighbourhood-scale resolution

to understand transportation patterns, referred to as microsimulation.

Microsimulation models are built with micro data (i.e., individual or household level information)

that generally are difficult to acquire due to the high cost of data collection, legal restrictions in

most countries, and diverse data variety existing in multiple sources. These models have been used

in studies of transport behaviour, demographic and household dynamics [52, 53]. Miller et al. [54]

used the technique to develop an Integrated Land Use, Transport and Environment model at Cana-

dian universities under the leadership of the University of Toronto. Given its flexibility to model
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simulations and processes that cannot be modelled with aggregate data, microsimulation models

have been used for urban land use and transportation in North America including the California

Urban Futures (CUF) Model at the University of California at Berkeley [55, 56]. While micro-data

are difficult to gather, synthetic micro data are used as replacement for developing microsimulation

models.

Population Synthesis is an approach to generating synthetic representations of a population that

have similar statistical distributions to the original population. It was first developed by Beckman

et al. [51]. This procedure is the most widely used in integrated models that generate synthetic

populations. A variant of synthetic population simulation, known as Iterative Proportional Fitting

(IPF) was first introduced in the transportation literature by Duguay et al. [57] to synthesize data

based on household surveys. The IPF method transforms one-dimensional distributions that are

generally available as statistical input to multidimensional distributions required to generate a syn-

thetic population. As an example, given a statistical one-dimensional input data of populations by

age, or households by land-size, IPF could be used to generate multidimensional distributions of

this input such as persons by age, their gender, education, nationality and others. IPF transforms

the data elements of a matrix such that the aggregate sums of rows and columns are equal to its

one-dimensional input data with minimal deviation from the initial values of the matrix. IPF is also

applicable for two or multidimensional matrices.

While iterative proportional fitting is appealing for the generation of sets of microdata, it has limi-

tations in dealing with complex sets of micro data thus requires very high standards of reliability of

input data for the cells of data matrix. Typically, micro data like PUMS are not readily available as

input and there is a limitation on extracting features that are not contained in the initial micro data.

Another variant of population synthesis, referred to as Monte-Carlo sampling addresses these draw-

backs. Monte-Carlo allows the generation of an infinite set of features (multidimensional) from a

one-dimensional distribution of administrative registers [58]. Moeckel et al. [59] suggest that with

Monte-Carlo sampling, many features can be selected to run a microsimulation model and this can

only be limited by determining correlations between the selected features.

Both approaches use an aggregated population usually from the census or administrative registers

as input to extract detailed information at the agent level. These techniques do not learn from raw
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disaggregate data to generate the synthetic populations, a level of utility is lost by features that are

not covered in the published micro data. Microsimulation models are bound by the features available

in the underlying input data. However, population synthesis suffers drawbacks of scalability to high

dimensional features that under-perform because of computational challenges. Deep generative

models have advanced in recent times and have shown successes in reproducing new members of

population by estimating the underlying joint distributions, while scalable to high dimension data

with computational efficiency.

2.5 Deep generative modelling

Generative models are unsupervised learning tasks in machine learning, capable of learning the

full probability distributions (i.e. patterns and regularities) of disaggregate input data to predict

new samples that fit the learnt distribution of the original dataset. Typically, generative modelling

includes discriminative and generative components. The objective of the discriminative component

is to learn a function (f) to predict the label (y) of a given feature of an input data-point (x). In

this sense, the discriminator performs a task of supervised classification for input variables. The

generative component learns the joint probability distribution and generates new samples from the

distribution. Traditional machine learning models that are capable of generating new samples are

Naive Bayes [60], Latent Dirichlet Allocation [61] and the Gaussian Mixture Model [62].

Similarly, generated modelling implemented with deep neural networks is referred to as “deep gen-

erative modelling”. Examples of deep generative models include Restricted Boltzmann Machines

(RBM) [63], Deep Belief Network (DBN) [64], Variational AutoEncoders (VAE) [65] and Gener-

ative Adversarial Networks (GAN) [24]. The VAE and GAN are modern approaches which have

shown success in reproducing realistic samples of images, sound and video.

2.5.1 Variational Auto-Encoders

Kingma et al. [65] proposed the use of Variational Auto-Encoders (VAE) consisting of two neural

networks; an encoder and a decoder. The encoder compresses data into a latent space (z) while

the decoder reconstructs data from the latent representation. The input of the encoder is a set of
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features of a data point (an observation), its output is a hidden representation z, and has weights and

biases. Mathematically, the encoder approximates q(z|x) where input z conditioned on the data x.

New samples are drawn based on the posterior distribution p(x|z) of the latent representation, the

output from the encoder. The encoder and decoder networks are trained to maximize a lower bound

of the log-likelihood of the data.

2.5.2 Generative Adversarial Networks

The Generative Adversarial Network (GAN) is a deep generative model first introduced by Good-

fellow et al. [24]. It’s basic utility is to create samples after learning the distribution of underlying

data. GANs consist of two models that compete against each other in a zero-sum game framework

namely a discriminator, D and a generator G as shown in Figure 6.1. The task of the discrimina-

tor is to discriminate between real and fake input data while the generator is to generate fake data

after learning the distribution of the real data. The interaction between the generator and the dis-

criminator is illustrated by the generator acting as a counterfeiter trying to make fake money while

the discriminator acts like a police officer checking the legitimacy of money and detecting coun-

terfeit money. The zero-sum game between the two models helps to develop skills and improve

their performance of both the generator and discriminator. Recently, Ouyang et al.[66] proposed a

GAN-based approach to generate trajectories.

GANs is primarily used as a generative model to generate data samples through labeling the data

into fake and real [67]. The work of Mirza and Osindero [68] introduced conditional GANs, which

conditions GANS on class labels. This improvement allows for samples to be generated based on

classes rather than the vanilla categories of fake and real labels. In a similar improvement, Sprin-

genberg [69] developed a categorical GANs (CatGANs) in which the discriminator separates data

into K categories while assigning a label y to each example x. While the model output of a neural

network can be transformed into a multinomial distribution by applying the softmax layer, sampling

from the distribution is not a differentiable operation hence the back propagation is blocked during

the training of generative models for discrete samples. To solve this drawback, the Gumbel-Softmax

[70] and the Concrete-Distribution [71] were proposed in the domain of the VAE. Similarly, Kusner

et al. [72] adapted the approach and implemented a GAN for generation of sequences of discrete
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Figure 2.1: Generative Adversarial Networks.

elements. Sequence generation is essential in travel diary synthesis to simulate longitudinal repre-

sentation of travel activities.

Given these research backgrounds, this dissertation adopts and extends the enlisted approaches and

discussions to develop novel methodologies to provide privacy protection for travel data publication.

In the next section, we present the challenges and opportunities of managing big data in transporta-

tion.
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Chapter 3

A Perspective on the Challenges and

Opportunities for Privacy-Aware Big

Transportation Data

3.1 Preamble

This chapter presents a review on the concepts related to and the characteristics of Big Data and

its application to Transportation planning and decision making. We discuss the opportunities and

challenges for harnessing the potential of Big Transportation Data.

This research article was published in the Springer Journal of Big Data Analytics in Transportation:

Badu-Marfo, G., Farooq, B. Patterson, Z. A Perspective on the Challenges and Opportunities for

Privacy-Aware Big Transportation Data. J. Big Data Anal. Transp. 1, 1–23 (2019).

https://doi.org/10.1007/s42421-019-00001-z

It was also presented at the Transportation Research Board (TRB) 97th Annual Meeting in January

2018, at the Walter E. Washington Convention Center, in Washington, D.C.
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3.2 Abstract

In recent years, and especially since the development of the smartphone, enormous amounts of

data relevant for transportation have become available. These data hold out the potential to rede-

fine how transportation system (i.e., design, planning and operations) is done. While researchers in

both academia and industry are making advances in using this data to transportation system ends

(e.g., information inference from collected data), little attention has been paid to four larger scale

challenges that will need to be overcome if the potential for Big Transportation Data is to be har-

nessed for transportation decision-making purposes. This paper aims to provide awareness of these

large-scale challenges and provides insight into how we believe these challenges are likely to be

met.
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3.3 Introduction

Transportation system (i.e. design, planning and operations) has been a quantitative discipline

highly dependent upon data at least since the birth of modern travel demand modeling in the 1950s.

Until recently, data collection has been done through dedicated, often self-reported surveys (e.g.

household surveys, on-board surveys, etc.), and through various methodologies and technologies

concentrated on vehicle flow counts (e.g. loop detectors). Recently, a combination of devices and

technologies have dramatically increased the number of potential sources, as well as the amount of

data that can be collected with urban transportation system applications, what we refer to as Big

Transportation Data. Examples of this data include Bluetooth and CCTV traffic counts [9, 10],

pedestrian counts with WiFi [5, 7, 73], activity detection with social media location data [8], dedi-

cated travel survey smartphone applications [11] and smartphone data aggregators [74].

The potential for this data in transportation systems have not been overlooked, with many re-

searchers in academia and the public and private [75, 76, 77, 78] sectors investigating ways in

which to use it in their processes. Until now, the academic literature has been primarily preoccupied

with two aspects of big data in transportation. First there has been research on how to go about

collecting relevant data with these new technologies (e.g., [79],[80], [11]). Second, there has been

research focusing on methods (statistical, machine learning, etc.) using collected data and inferring

transportation relevant information from it (e.g. mode, trip purpose, etc.) [8, 81, 82].

While the successful collection of data, and inference of information relevant to transportation sys-

tem presents many challenges to the routine incorporation of Big Transportation Data in design,

planning and operations, little attention has been paid to the impending challenge of actually being

able to store, manage and process all the data on large and operational scale, not to mention the

challenge of protecting privacy of the people providing the data. We divide these large-scale im-

plementation challenges into four dimensions. The tautological fact that there is a large quantity of

Big Data presents challenges in storing it. Second, the need to compute algorithms on large scale

data presents a challenge in processing. Third, Big Data comes in many different formats, making

the ability to take advantage of data collected from different sources challenging. Fourth is the

challenge of protecting personal privacy.
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While the quantity of data and diversity of formats are primarily technical challenges, personal

privacy is a political as well as technical challenge. The political nature of the challenge was recently

evidenced by the controversy around Facebook and Cambridge Analytica [17] and public reaction to

it. The issue of privacy and Big Data is multifaceted. Most obviously, much Big Data is sufficiently

detailed (e.g. geographically and temporally precise GPS data) that it could reasonably be used

to identify individuals. A less obvious challenge to privacy is the ability to combine information

about individuals across data sources thereby making the identification of individuals possible with

individual “quasi-identifying“ information. Another less obviously personal challenge relates to

who can access private data, and how to control access in the most secure way.

All of these challenges will need to be met before the potential for Big Data in transportation can

be harnessed. As such, this paper aims to provide an in-depth awareness of the large-scale imple-

mentation challenges currently facing the use of Big Transportation Data in design, planning and

operations of transportation. It also provides insights into how we believe these challenges are likely

to be met.

The paper continues with a section describing the scope of this paper and moves on to define Big

Data, Big Transportation Data and from where they come. The next section describes the current

state of the transportation literature as it relates to Big Data. This is followed by a background

section on system architecture needed to understand the sections on the four main challenges to

the widespread use of Big Transportation Data in transportation planning. A concluding section

sketches our understanding of how the challenges of Big Transportation Data are likely to be over-

come in the future.

3.4 Scope of this Work

The four large-scale challenges to the widespread use of Big Transportation Data identified in this

paper have resulted from a thorough literature review. Since there is very little attention to this

question in the transportation literature, most of the literature reviewed has come from computer

science, computer engineering, and fields the most advanced in the use of Big Data, such as health

and agriculture. The primary Google Scholar search terms used were“big data implementation

25



challenges” and “big data technologies.“ Relevant papers from articles resulting from these searches

were then included in the literature, and this process was done iteratively. The more than one

hundred and fifty papers resulting from this process were placed into four categories of challenges:

storage, processing, integration, and data privacy. These challenges concentrate on those relating

directly and uniquely to Big Data. While other challenges such as data security, integrity and transfer

are relevant to Big Data, they are not unique to Big Data, and so we don’t concentrate on them here.

Interested readers can consult the vast literature on these topics elsewhere [83, 84, 85]. We continue

by defining both Big Data and Big Transportation Data, as well as from where they come.

3.5 Key Characteristics of Big (Transportation) Data

Big Data has been described, characterized and defined in both academic and non-academic (tra-

ditional media, trade press, etc.) sources. Across these sources, there is a great variety in how

Big Data has been defined and characterized [86, 87, 88, 89]. Often, Big Data are characterized

by words beginning with the letter “v.” One problem with such“v-words“ is that there is often

variation in how they are defined from one author to another. Also,“v-words” do not necessarily

define characteristics of only Big Data but of “non-Big-Data“ as well. Finally, there are some con-

cepts critical to understanding the challenges for the widespread use of Big Data that are not easily

described with“v-words.” Given the confusion around definitions and the fact that we are most in-

terested in the characteristics of Big Data as they relate to the challenges of using it, we discuss two

types of characteristics, not all of which are “v-words.“ As such, below we discuss “defining” and

“non-defining“ characteristics of Big Data.

3.5.1 Defining Characteristics of Big Data

Defining characteristics of Big Data are those that are unique to Big Data as opposed to data in

general. Those critical to understanding the challenges of widespread use of Big Data are those from

the most-cited definition of Big Data by the Information Technology (IT) advisory firm Gartner.

According to Gartner:

“Big data is high-volume, high-velocity and/or high-variety information...” [27].
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Volume refers to the size of individual datasets. Already in 2011, there were 2.5 quintillion bytes of

data created every day [90], and this number keeps increasing exponentially [91, 92] so that“Big“ datasets

currently typically range from zettabytes (1021 bytes) to yottabytes (1024 bytes) [93]. It is often said

that “Big” datasets are too large to be handled by an individual computer [94].

Velocity refers to the rate at which data are being generated. As with volume, the figures on rates

of data being produced and received can be staggering. It was reported in March 2018 that over

900 million photos were uploaded to Facebook [95]. In addition to being related to the rate with

which data are generated, velocity also encompasses a notion sometimes referred to in the literature

as variability [31]. Whereas velocity refers to the rate at which data are generated, variability refers

to variance over time in data flow rates.

Variety refers to the structural heterogeneity of data. That is, data provided in different formats,

some structured and others not. Structured data are mostly in the form of tabular schema-imitating

spreadsheet and relational database systems. Text, audio, images and videos are examples of un-

structured data, with Extensible Markup Language (XML), being an example of semi-structured

format [31]. Unstructured data is more difficult to process, store and integrate and is becoming

more common [96, 97, 98].

3.5.2 Non-defining Characteristic of Big Data

A non-defining characteristic of Big Data is simply one that applies to other types of data as well.

Such characteristic creates an important challenge for the widespread use of Big Data, as Big (and

non-big) Data is either by nature personal, or can be personal. By personal we mean that an individ-

ual’s identity is explicit, or can be revealed. That data can be personal we mean that different data

sources can be combined to identify an individual and other information about them. While this is

not a new problem (e.g., it has been a concern for a long time with traditional census data [99]), it

becomes compounded with Big Data. This is so because of the many potential different sources of

data available on people [98] and also because of the very personal nature of some Big Data (e.g.

precise location data, medical records, etc.) [100].

Recently, large data collection organizations (i.e. government, institutions and non-governmental

organizations) have begun adopting “open data“” initiatives that allow for data to be freely available,
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shared, redistributed and reused by the public without restrictions of use [18]. As such, open data

can serve as a resource for private, public and academic research. The availability of such data

means privacy has become of even greater concern.

Big Transportation Data

We characterize Big Transportation Data (BTD) simply as Big Data (as characterized above), but

with potential transportation system applications. That is, data that could be used in areas in the

traditional purview of transportation design, planning and operations, such as travel demand fore-

casting, infrastructure planning, transit network planning, operation optimization,etc.

3.6 Where Does Big Transportation Data Come from?

BTD comes from the combination of three types of technologies. We begin with two broad cate-

gories of devices that collect BTD; location-ignorant and location-aware devices. Location-ignorant

devices are able to sense the presence of other devices, although they are not explicitly aware of their

own locations. These include technologies such as Bluetooth[101], Wireless Fidelity (WiFi)[101],

Global System for Mobile (GSM)[101] and Closed-circuit Television (CCTV)[102].

Figure 3.1: Ecosystem of Big Transportation Data

The second are devices that can determine their own whereabouts, i.e. they are location-aware.
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These devices typically derive their locations based on the location of other devices such as WiFi

routers, GSM towers, or satellites part of various Navigation Satellite Systems, such as the Global

Positioning System (GPS). They include GPS units, GPS navigators and most importantly smart-

phones.

While devices that collect data are critical for being able to use BTD, its potential can only be

harnessed if the devices are connected to a communications network, such as the Internet[103],

private Local-Area Networks (LAN)[103] or Wide-Area Networks (WAN)[103]. These networks

allow the transfer of data from collecting devices to database storage systems from where they will

be accessed for processing and analysis by end-users. Figure 3.1 provides a schema of the BTD

Ecosystem.

3.7 The Current State of BTD in Transportation

The combination of location-ignorant, location-aware and communications networks has led to the

birth of Big Transportation Data. Academia as well as the public and private sectors have not

overlooked the potential for BTD in transportation.

3.7.1 Research with Data Collected with Location-ignorant Devices

In recent years, academic research has been conducted with the use of data from location-ignorant

devices in public transit planning and operations. Transit smartcard data has been at the forefront

of this to understand travel behavior [104, 105] and transit user loyalty [106], also state that Smart

cards can be used to ascertain the loyalty of transit users in a network.

WiFi network data has also been used to understand (primarily pedestrian) travel behavior based on

connection histories to wireless routers [6, 107]. Similarly, Bluetooth receivers have been used to

assess automobile route choice and travel times on alternate routes [32].

3.7.2 Research with Data Collected with Location-aware Devices

Location-aware technologies have been developed to determine their own location. Location sensors

derive precise locations through the use of GSM, WiFi and GPS [108, 109]. Transport operations,
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planning and research heavily rely on these devices for precise spatio-temporal data in analysis

and decision making. Location-aware technologies is discussed in two categories namely GPS and

Smartphones.

GPS

Navigation GPS devices have long been used for finding the location of Point Of Interest (POI).

Transportation fleet operations rely heavily on navigation GPS systems that provide mobility tra-

jectories of fleets. Much academic research has been done to cover the application of navigation

GPS devices in transportation. Davies et al.[110] evaluated the use of GPS devices for providing

location-aware visual and auditory prompts for people with intellectual disabilities to enable them in

navigating busroutes. Handheld GPS devices have been extensively used for travel mobility surveys

in research [111, 112, 113]. A study on children’s mobility using GPS-tracking device and mobile

phone survey was conducted in Copenhagen [33]. The research shown diversity of mobility patterns

for children and the geographic interdependency of child mobility. Surveying and data collection

with Navigation GPS devices are becoming phased out due to the emergence of location-aware

Smartphones, that assure precise location from satellites and can augment location from cell phone

towers in places with poor satellite signals.

Smartphones

Pervasive Smartphone devices have gained popularity recently for mobile and internet communi-

cation. Many mobile applications (e.g. social media, maps, dating apps, locations and others) are

used daily on smartphones by their users. Location-aware applications are common in smartphones,

they observe the location of the user and report to a location based service (LBS). Location Based

Services provide queries of point of interest within a defined proximity of the user as reported by the

smartphone. As an example, a Smartphone user can ask (query) for restaurants near-by or within a

distance of his/her current location to receive a list of matched restaurants. Smartphones have in-

built Assisted-GPS sensor for precise location tracking to satellites, in cases where cloud visibility

is achieved. At places with less cloud visibility, Smartphones can gain location by connecting to

nearest cellphone towers or WiFi access points. A large body of literature has contributed to the use
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of Smartphone in transportation studies.

Patterson et al. [34] conducted an experiment on participants from Concordia University, that used

a smartphone travel survey developed to collect passive data on human mobility whilst minimiz-

ing the respondent burden. Respondent burden is reduced in such surveys relative to traditional

self-reported surveys. An enormous amount of location-sensitive data is gathered on social media

platforms like Facebook, Twitter, Instagram and others.

Information Inference from BTD

Another research area receiving attention in the transportation literature is that related to the devel-

opment of methods allowing the inference of the main aspects of transportation demand required

for traditional trip-based transportation demand forecasting. As such, data inference methods have

been developed in the following areas. The inference of trip ends was one of the earliest questions

to be broached in the literature (e.g. [112]), but one which continues to have (primarily rule-based

methods) methods developed (e.g. [34, 114]). Mode detection has received the greatest amount of

attention in the literature with methods evolving from rule-based (e.g. [115]) to discrete choice (e.g.

[116]) and machine-learning approaches [117, 117, 118].

Purpose detection, has turned out to be the most difficult to infer. Initial rule-based (e.g. [119]

continue to be used (e.g. [120]) but are being replaced with machine learning algorithms(e.g. [121,

122]) increasingly using data collected from various BTD sources such as social media (e.g., [8]).

Finally, itinerary inference has evolved from simple map matching methods (see [123]) to more

sophisticated probabilistic approaches [116]. Itinerary inference have been applied primarily to

road networks and particularly to automobiles (e.g. [116]) and bicycles (e.g. [124]). Less common

are methods for inferring transit itineraries combining smartphone and GTFS data [125].

Future sources of BTD

In addition to current sources of BTD, we also have to include the coming addition of autonomous

vehicles as a data source. According to Intel[126], the evolution of Autonomous Vehicles (AV)

with their on-vehicle sensors and cameras will generate and require enormous amounts of data. AV

cameras alone will generate 20 to 40 Mbps per vehicle, while radars will generate between 10 and
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100Kbps with an estimated average of 40 terabytes of data for every eight (8) hours of driving [126].

Summary of Current BTD Research

As can be seen from the rest of this section, there is a great deal of research being done on BTD in

transportation. Collectively this work can be divided into three broad categories. The first category

relates to the use of various technologies in actual data collection [127, 128]. The second category

concentrates on challenges related to methods that process BTD and seek to infer information from

it that can be useful in transportation [8]. The third category focuses on the evolving technologies

that present opportunities for the successful implementation of BTD. While this work is clearly

necessary for BTD to be effectively used in transportation, there has been little emphasis on the

importance of system architectural components necessary for large-scale adoption of BTD.

3.8 System Architectural Components

Critical to understanding the challenges of BTD is an understanding of data system architecture

more generally. Data Management Architectures (DMAs) organize the flow of data from collecting

devices to the storage systems with which data is managed. DMAs can be split into three essential

elements. First is the physical infrastructure (i.e., hardware) needed to be able to store data. Second

are file systems with which files (and their underlying data) are organized on hard drives. Third are

database management systems.

3.8.1 Hardware

We begin with the hardware side of data management systems and with data retrieval. Data retrieval

typically, and traditionally, involves an in-between step; data must be read from long-term storage

on hard drives into active memory. The speed with which this happens is dependent upon three

elements: computer processor (CPU), disk characteristics, and disk connection to active memory.

The faster the processor, the faster data can be read into active memory [129, 130]. Disks themselves

vary in the speed with which data can be accessed from them. Traditional spinning Hard Disk

Drives (HDDs) have slower transfer speeds than Solid State Drives (SDDs), from which data can
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Figure 3.2: Disk Storage Drives

be accessed directly from its storage sector [131]. Finally, the connection between hard drives and

active memory plays a critical role in the speed with which data can be accessed, See Figure 3.2.

Transfer speeds are fastest from directly attached storage (DAS) (i.e. hard-drive on a single node,

such as a server or other standalone computer). Speeds decrease with a greater separation of where

the data is stored and active memory with network attached storage (NAS) (i.e. connected through a

local area network (LAN) having slower speeds than DAS, and storage area networks (SANs) (e.g.

storage on remote networks) potentially taking even longer than LANs [129, 132]. The writing of

data to storage involves the reverse process, i.e. from active memory to final storage.

3.8.2 File Systems

On hard drives, data is stored hierarchically. At the lowest level, data is stored in a binary format

as bytes with a location on a hard drive [129, 130]. Bytes are grouped together as “data” (e.g. the

content of a spreadsheet cell) and data are grouped together into files. There are different underlying

logical systems by which bytes can be organized into data, and data into files. These logical systems

are known as “file systems,“ that are a subsystem within the operating system (e.g. Linux, Windows,
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MacOS, etc.) [130, 133]. There are many file systems that exist, but the most common are NTFS,

VFAT, EXT3 and HPFS [133].

3.8.3 Database Management Systems

While file systems hierarchically organize data and files on hard drives, database management soft-

ware uses the file system to make data available for processing. This is done with database software.

The traditional and most popular database software products are based on Structured Query Lan-

guage (SQL). SQL resulted from the work of E.F. Codd who introduced the“Relational Model”

in the 1970s [134]. As a result, these products are also known as Relational Database Manage-

ment Systems (RDBMS) of which there are many examples (e.g., MySQL, PostgreSQL, Microsoft

SQL Server, Oracle DB). RDBMSs, now typically referred to as“legacy“ systems, have proven very

efficient for intensive amounts of data storage, retrieval and processing for many decades [135].

RDBMSs are organized into databases containing tables, with tables related to each other by com-

mon identifier constraints (i.e., keys). Database table schemas are strictly defined. That is, data

can only be read into them if it adheres to the structure defined in the schema (e.g. text data can-

not be read into a variable defined as an integer). The structure placed upon the data is a primary

factor making such systems so efficient at saving and accessing data. Also, RDMBSs are typi-

cally“centralized” meaning they are deployed on one node and cannot be easily scaled to multiple

nodes.

Finally, RDBMSs are “transactional“ [136, 137] which means they also demonstrate the following

properties. First, Atomicity guarantees that all transaction operations are executed “all-or-nothing”;

if one part of a query fails, the entire query fails and none of it is executed. Second, transactional

Consistency guarantees every transaction will bring the database from one valid state to another.

Third, Isolation ensures concurrent transactions (e.g. from multiple users) will be executed sequen-

tially. Fourth, Durability ensures that once a transaction has been committed, databases remain the

same in the event of a power loss, system error, crash, etc. Collectively these four characteristics

are known as “ACID“ properties of a transaction [137].
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3.9 Challenges and Opportunities in “Storing-It-All”

The first challenge identified in the literature is to actually being able to store and manage all the

BTD. This concerns the “v-word” “volume.” The volume of data that will need to be stored is a

challenge for using Big Data in general, but is clearly also a challenge in transportation in particular

with the many new sources of data (described in Section 3.6) available with transportation applica-

tions. As an example, it is now possible to record mobility traces collected by cell phone operators,

traffic information, transaction systems (integrated ticketing, road user charging, car park payment,

electronic fee collection), cameras, in-vehicle GPS, social media and smart phone geolocation tech-

nologies [93]. The rich data gathered from these sources will help to improve on transport modelling

and planning to deliver accessibility, efficiency and economic performance potential which hitherto

was not possible. Ultimately, this boils down to adding capacity; faster CPU, hard drives with

more storage capacity from which data can be accessed (and written) more quickly, and enabling

software. Such capacity can be added in two ways; vertically, or horizontally (see Figure 3.3).

3.9.1 Vertically Scaled Systems

The traditional approach to increasing data storage and management capacity is “vertical scaling”.

This involves improving the capacities of a single node (i.e., a standalone computer). Since tradi-

tional RDBMSs were designed for deployment on such systems, there are few software implications

and as a result, vertically-scaling concerns primarily hardware. As such, it entails the use of faster

CPUs, the increase of active memory (RAM) and the addition of larger and faster disk drives (e.g.

converting from HDD to SSD) as shown in Figure 3.3.

While hardware improvements lead to vertical scaling, there are limitations to just how “high“ such

systems can be scaled. While Moore’s law suggests increasing improvements in CPU speeds, we

are limited to the available chip technology at any given time [130, 138], even when considering

the possibility of multiple cores on the same node. Secondly, there is no guarantee that Moore’s

law will continue into the future [130, 139]. Similarly, capacities are limited by available active

and long-term storage technologies. Moreover, it may be possible to scale up to required capacity

with available technology in some circumstances, but component cost increases dramatically with
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improvements at the cutting-edge of performance. Finally, vertically scaling a single node amounts

to putting all of your eggs in one basket, the downside of which is that if there is a problem with

the vertically-scaled node (e.g., it crashes), data cannot be read or written. In other words vertical

integration increases the risk of greater downtime.

Figure 3.3: Scaled Systems (Systems sizes are for illustration purposes only)

3.9.2 Horizontally Scaled Systems

Instead of increasing the capacity of a given node, horizontal“scaling-out” involves the combina-

tion of different nodes into a “cluster.“ That is, a “distributed” storage system. As illustrated in

Figure 3.3, nodes with similar (homogeneous) or varying (heterogeneous) capacities are added to

the cluster to meet storage and computing needs. Distributed systems have the following advantages

compared to single-node systems. First, it is possible to add resources (CPU, active and long-term

memory) in a cost-effective manner since capacity can be increased almost limitlessly without the

skyrocketing costs associated with performance increases in a single-node.

Second, distributed systems typically store redundant copies of data across multiple nodes, which

decreases the risk of data not being available at any given time. The storage of multiple copies
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is done in the following ways. The same data can be stored on different nodes. This, referred to

as “redundancy,“ means that if one node goes offline, the data is still available on another node.

Additionally, data can be be “sharded.” This means that different parts of the same dataset can be

stored on different nodes. For example the columns (or rows) from the same database table can be

stored separately, thus increasing the speed at which data can be accessed and written.

As with vertically scaled systems, database software is required for the proper functioning of hor-

izontally scaled systems. At the same time, the limitations of traditional RDBMSs make them

inappropriate for horizontally scaled systems. A key characteristic of horizontally scaled systems,

is that data is synchronized across nodes within the system. Traditional RDBMSs were not initially

designed with this in mind, so they remain relatively inflexible in this respect making synchroniza-

tion with them inefficient and arduous [140, 141]. This inflexibility is ultimately due to the reliance

of RDBMSs on traditional, centralized file systems (see Section 3.8.2). Such file systems do not

easily allow the management of files across multiple nodes.

As a result, horizontal scaling requires both hardware in the form of nodes and networks, as well as

Distributed Database Management Systems (DDMS) that are designed to seamlessly synchronize

data across nodes. In order to do this, DDMSs themselves rely on non-centralized distributed file

systems. DDMSs and files systems make up the software component of horizontally-scaled systems

[141].

Distributed File Systems

The logical hierarchy of centralized file systems locates bytes on a single hard drive and groups the

bytes into data and files. Distributed file systems on the other hand use a slightly deeper hierarchy.

Bytes are stored on a hard drive, organized into data, data are organized into “chunks“ and chunks

into files [130]. Chunks themselves, however, do not have to be stored on the same hard drive. So,

in addition to a deeper logical hierarchy, the key feature of distributed file systems is that they can

also locate data across different hard drives. While several distributed file systems exist, the most

common are the the Google File System (GFS) and the Hadoop File System (HDFS).

GFS, developed by by Google Inc. [12] supports large-scale and data-intensive applications [142].

It can be deployed on any standard node thus making it desirable from a cost perspective when
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scaling-out a system. The distribution of chunks across hard drives with GFS is orchestrated by one

“master” node to the subnodes (“slaves“) of the system. This organization means that if the master

node goes offline, access to data on the master and slave drives becomes impossible. As such, GFS

is said to have a single point of failure.

The Hadoop File System (HDFS) [143], designed by Apache like GFS also runs on any standard

node and is suitable for data-intensive applications. It is also based on a “master-slave” architecture,

and as a result also has a single point of failure. Compared to GFS, HDFS has become much more

common in industry application, and has had a series of DDMSs built using the underlying HDFS

[143, 144, 145].

Distributed Database Management Systems

In addition to specialized file systems, and due to the limitations RDBMS, horizontally-scaling

also requires dedicated database management systems (DDMSs). A number of such systems exist

and fall into broad categories; structured and unstructured. Basically, such systems are distributed

versions of RDBMSs. That is, they allow for the distribution and synchronization of data across

multiple nodes, but they remain structured database management systems. The most common such

systems in use are Google Big Table [146] and Apache HBASE [147]. Another increasingly com-

mon DDMS is noSQL, which in addition to being designed for horizontally-scaling is also unstruc-

tured.

3.9.3 Characteristics of Horizontally-Scaled Systems

In order to be effective, horizontally-scaled systems need to be planned well. Key characteristics of

effective distributed systems have been summarized in Brewer’s CAP Theory [148, 149] (see Figure

3.4):

Consistency (C): While redundancy means having multiple copies of the same data in different

locations,“Consistency“ means that all copies of redundant data are identical [150]. This ensures

that the most up-to-date data is available even if there are server or network failures.

Availability (A): Distributed Systems operate on multiple nodes that run concurrently in the imple-

mentation of a task. As a result, individual nodes can stop operating (e.g., due to a crash failure).
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Figure 3.4: CAP Theorem

Such failures are common and inevitable in networked systems. Availability means there is a suffi-

cient number of nodes with redundant data that all data can be accessed at all times, even if one or

multiple nodes crash [150].

Partition Tolerance (P): Partition tolerance is similar to availability in that it describes systems where

redundant data can be accessed at all times. With Partition Tolerance, however, the concern is not

with nodes themselves, but with the network connectivity of the nodes [151]. This can be seen

as“network availability.”

While ideally, distributed systems would have all three of these characteristics, in practice they are

typically characterized by two at most, with system design amounting to trading-off between the

characteristics [152]. While systems that are not distributed over different networks exist, discussion

on distributed systems is typically limited to those that are. As a result, we describe only systems

demonstrating Partition Tolerance that is AP and CP systems.

AP systems are characterized by Availability and Partition Tolerance. Such systems are made up
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of multiple networks (P) with a node (or cluster of nodes) (A) on each network. Additionally each

node (or cluster) would be able to operate without communication to the others. If communications

between the nodes/clusters were interrupted, updates to data would be out of sync and as such, the

system is not always consistent (i.e., it does not demonstrate Strong Consistency). Once all networks

are functioning, data will become synchronized again but with delays (Eventual Consistency). Well

known “AP“ systems include CouchDB and Cassandra (see Section 3.10.1 “NoSQL and NewSQL”

below).

CP Systems are characterized by Consistency (C) and Partition Tolerance (P). Such systems are

made up of multiple networks (P), but with only single nodes on each network. CP Systems maintain

multiple copies of the same data and therefore are “Strongly Consistent.“ Unlike AP systems, if

there is a network failure, there is always sufficient network redundancy, that the data across all

nodes remains consistent. At the same time, since there is only one node per network if one of the

nodes fails, there is no node redundancy, and as a result, the system is not “Available.” Well known

“CP“ systems include MongoDB and Redis (see Section 3.10.1 “NoSQL and NewSQL” below)

As such, the volume of BTD presents a major challenge to the potential to use it effectively in

transportation in the future. At the same time, new approaches and technologies, namely the use

of scalable distributed systems appear to be the most probable solutions to meeting this challenge,

with the design of the systems requiring choices and trade-offs to be made between Consistency,

Availability and Partition Tolerance.

3.9.4 Data Storage Opportunities for Transport Systems

The recent advent of sensor-based technologies such as infrared detectors, video detectors, induction

coils at bayonet points, laser detectors and others, for real-time traffic monitoring and the passive

data collection of mobile user trip data for transport modelling (i.e. mode and activity inference)

contribute a rich dataset for real time analytics and decision making by transport stakeholders. In

this regard, Damaiyanti et al. [153] presented a novel system that collects traffic data and represents

speed values of all road segments of Busan. Their system stores traffic data and supports traffic

congestion queries in a distributed NoSQL document database system that is deployed on a MapRe-

duce framework. The rapid rate at which transport data is ingested in an ITS ecosystem, as earlier
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discussed, makes an adaptation of a distributed database system a requirement to achieve an effec-

tive and performing transport system. The United States Department of Transport [154] has stated

the data streams rate within 10 and 27 petabytes per second of connected vehicle Basic Safety Mes-

sages (BSM) will be generated, and thus that connected vehicle-to-vehicle (V2V) infrastructure is

being implemented in test tracks. These implementations require a large volume of distributed data

warehouse capacity. Amini et al. [155] proposed a comprehensive and flexible architecture based on

a distributed computing platform for real-time traffic control. Using a mapReduce framework, their

distributed architecture is based on systematic analysis of the requirements of an existing traffic

control systems and analytics engine that informs the control logic.

3.10 Challenges and Opportunities in Unstructured Data Storage

The second challenge identified in the literature is being able manage BTD of many different data

formats. This concerns the v-word, “variety.“ As with data volume, this is a challenge to using Big

Data more generally, as well as BTD.

In general, data can be formatted on a continuum between structured and completely unstructured

data. Structured data (described in Section 3.8.3) is highly organized and format schema are defined

before data is even collected (i.e., before it is stored in a database). In fact, if structured data is ex-

pected for a relational database but the data is not sent in the pre-determined format, it will typically

not be stored at all. On the other end of the spectrum is unstructured data. Unstructured data is

negatively defined as that not adhering to any predefined data schema. It comes in two main types;

text and non-text. Examples of unstructured text data are email messages, text documents, etc. Ex-

amples of non-text unstructured data are satellite images, CCTV videos, etc. In between structured

and unstructured data there also exists semi-structured data. Semi-structured data encapsulates un-

structured data within a meta-structure using semantic tags and marking. Common semi-structured

formats include mark-up languages (e.g. HTML, XML) and JSON (Java Script Object Notations).

Different formats present two major challenges. First, mechanisms are required to be able to save

and access the data in an efficient manner. Recall that structure in traditional RDBDMSs is what

allows them to efficiently manage large amounts of data. Second, taking advantage of BTD also
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means taking advantage of different sources of data, typically in different formats, so integration

of the different data sources is a challenge. Being able to use data of different formats ultimately

requires the use of software that can accommodate a variety of formats in a structured manner that

also allows efficient retrieval. The most common DDMSs rely on frameworks based on NoSQL

[140, 156] with NewSQL being a more recent and quickly evolving framework.

3.10.1 NoSQL and NewSQL

NoSQL databases (i.e., non formally structured relational databases) are becoming more popular

for big data storage. NoSQL databases are much more flexible allowing the following features that

are impossible in RDBMSs: the ability to add new variables and modify existing variables within

tables, without the need to drop and recreate tables; support for copying and pasting data into and

from tables; more flexible integration of different programming platforms through Application Pro-

gramming Interfaces (APIs); eventual consistency (see Section 3.9.3), and supports the management

of data across nodes and in quantities too large for one node. At the same time NoSQL systems are

not transactional, and as a result do not demonstrate ACID properties (see Section 3.8.3). NoSQL

databases are becoming the core technology for big data and can be characterized according to one

of four data models: key-value, column-oriented, document-oriented, and graph. We describe these

models below.

In Key-value databases each observation (row) is stored as a dictionary, with each key defining a

variable. Queries can be made directly according to keys. Such databases are characterized by high

expandability (easy to add or remove variables without having to create new tables) and shorter

query response time than those of relational databases. These databases have suitable storage struc-

ture for continuously growing, inconsistent values of big data for which faster response of queries

is required. Key-value databases provide support to large-volume data storage and concurrent query

operations. Popular examples of Key-value NoSQL DDMSs are MongoDB [157], Cassandra[158]

and DynamoDB[159].

Column-oriented databases store columns of data separately, unlike RDBMSs where data are stored

in the form of complete records. They are suitable for vertically partitioned, contiguously stored,

and compressed storage systems. Reading of data and retrieval of attributes in such systems is
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quite fast and less resource intensive than RDBMSs, as only the relevant column is accessed and

concurrent process execution is performed for each column [129]. Column-oriented databases are

highly scalable and Eventually Consistent. Examples of Column-oriented DDMSs are HBase [160]

and HyperTable [161].

Document-oriented database are similar to key-value DBs and store data in the form of key and

value as reference to a document (i.e., a file). However, document databases support more complex

queries and hierarchical relationships. This data model typically uses the JSON format and offers

very flexible schema [162]. Although the storage architecture is schema-less for structured data,

indexes are well defined in document-oriented databases. SimpleDB is the only database that does

not offer explicitly defined indexes [163, 164]. Document-oriented databases extract metadata to be

used for further optimization and store it as documents. CouchDB [165] and SimpleDB [166] are

two examples of Document-oriented DBs.

Graph databases are extensions of Key-value databases. As such, each observation (row) is stored

as a dictionary or a series of nested dictionaries (primarily in JSON format). The nested dictionaries

contain relational structure. Graph databases offer persistent storage of objects and relationships

and support simple and understandable queries with their own syntax [167]. This allows data to

be linked together directly, which can be accomplished with one operation making querying more

efficient. Modern enterprises are expected to implement graph databases for their complex business

processes and interconnected data, as this relational data structure offers easy data traversal [168].

The most common Graph DB is Neo4J [168].

Finally, NewSQL is an emerging DDMS technology that extends NoSQL approaches while building

upon attractive features of traditional RDBMSs. Whereas NoSQL does not provide ACID guaran-

tees for database transactions, NewSQL approaches do. As a result, NewSQL approaches combine

the best of traditional RDBMSs and NoSQL approaches. At the same time, NewSQL are rapidly

evolving and do not always have extensive support. As a result, we mention them as an avenue of

considerable potential, but which remain in development and an interest for research[78, 169, 170].

The most popular NewSQL frameworks are NuoDB [171], VoltDB [172], Google Spanner [173]

and CockroachDB [173].
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3.10.2 Opportunities for Unstructured Transport Data

Evolving transport systems ingest data in the formats of images, videos, audio and various other

unstructured data formats. As a result, ITS architectures need schema-free databases to store non-

related data provided by traffic surveillance and traffic sensor systems, which hitherto could not be

stored in traditional RDBMSs. Orru et al. [174], however, built an ITS application with a back-

end of a NoSQL database to create a public access of public transport information (of GTFS files)

all over the world and also search for geotagged photos. NoSQL systems allow for the storage of

such schema-less files, which would be difficult to implement in a traditional database. Typically,

travel mobility datasets are designed with varying questions (i.e. fields) based on the purpose of

the survey that can contain unstructured formats like audio and images. NoSQL databases allow

for the efficient storage of travel mobility data. Vela et al. [175] focused on the design and stor-

age of accessible transport routes, obtained by means of crowd-sourcing techniques, in a NoSQL

graph-oriented database. The authors adopt a graph NoSQL database to address the integration of

accessibility data from three sources, namely; existing open data, private data concerning actual

accessible routes obtained through crowd-sourcing, and data from existing traffic sensors. NoSQL

databases embrace the capability of a seamless integration of varying and non-related data, which

is common in transport systems.

3.11 Challenges and Opportunities in Processing

The third challenge identified in the literature is being able process all of the BTD. This concerns

the v-word, “velocity.” While processing is required in the management of data (i.e., storage), the

main processing challenge is making use of collected data. The methods used to process data are

a function of how quickly the processing is required, i.e. whether information is required in real-

time or not. There are in general, two approaches to processing BTD: Batch (ex post) Processing,

and Stream (real-time) Processing. These approaches require implementation using different Pro-

cessing Engines, or Frameworks. Below we describe the approaches as well as the most common

implementing Frameworks.
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3.11.1 Batch Processing

Batch processing is the processing of large, complete, static or historical data sets, and provides

information after the entire dataset has been collected [93, 140, 176]. In other words, results are

not provided in real-time. As an example is OD surveys are conducted until completion of data

collection before processing of data aggregation is done.

This approach is mostly adopted when processing finite (or bounded) datasets that are complete,

whose size can be estimated, and that are persistently stored on a hard drive. That is, the dataset

is unchanging when it is analyzed and includes information for a given period of time (e.g. data

from a regional OD survey). The data needs to be complete because the types of calculations done

on them require having all of the relevant data, such as when calculating totals and averages. In

such situations, datasets must be treated holistically instead of as a collection of individual records.

Also, the operations require that the dataset be unchanged for the duration of the calculations. Most

common framework for batch processing is Apache Hive [177].

3.11.2 Stream Processing

Whereas Batch Processing requires datasets to be complete and static, Stream Processing systems

operate on data immediately as it arrives [93, 178]. As such, the data being processed does not need

to be complete or static. Moreover, the size of the “entire“ dataset is unknown at any given time

until data is no longer collected, i.e. it is “infinite,” and its size is irrelevant for Stream Processing.

To understand Stream Processing, it is useful to understand Stream Processing workflow.

Typically in a Stream Processing environment, data is received continuously (although not neces-

sarily at a continuous rate), and the data contains information that is not required for the immediate

analysis for which results are sought. As such, a first stage of processing is to retain only data rele-

vant to the processing goal. None of the other data is kept or stored. Once data is filtered, processing

operations are done on individual observations “one at a time.“ Stream Processing is well-suited to

situations in which results are required in real-time.

An excellent example of situations requiring Stream Processing is Uber, the peer-to-peer ridesharing

company [15]. Uber needs to analyze the location of its riders and to match them with the nearest
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drivers. They also need to determine the most efficient itinerary for the driver to the rider’s origin

and destination once picked-up. Moreover, information on the location of the driver needs to be

provided to the waiting rider. Once a trip is completed, Uber needs to calculate the cost of the

trip and send this information to the rider. All of this requires processing to be done in real-time.

An emerging technology for which Stream Processing is already required, and for which it will be

required in greater amounts in the future is that of Autonomous Vehicles. While Uber needs to be

able to process streamed data quickly, Autonomous Vehicles need to process information (read in

data, react) instantaneously.

As with Batch Processing, specialized Processing Frameworks are required for Stream Processing.

Also, as with Batch Processing, many such frameworks exist, with the most common being Apache

Storm [179], Kafka [180] and S4 [181].

3.12 Challenges and Opportunities in Cyber-Security

The fourth challenge relates to the fact that BTD infrastructure needs to be secured from unautho-

rized access by an attacker. This challenge is related to ensuring transportation system components

are securely protected to avoid vulnerabilities exposed for an adversary to exploit and also pro-

tect data as it is transmitted on communication channels. We continue to discuss the context of

cyber-security in transportation and known vulnerabilities to be considered.

3.12.1 Cyber-Security of BTD

Recent dominance of high-resolution information gathering devices (i.e. Cameras, transponders,

wireless routers) and social systems are on a path of fully connectivity known as “Internet Of

Things”. A large body of research and standards have evolved on mining rich data ingested by

these interconnected devices. Intelligent transport systems, gain access to a wealth of information

from interconnected data from GPS location tracking to traffic logs, that aid in public safety, disas-

ter recovery and emergency response. As modern transport devices contain a network of networks

made up of embedded communication methods and scope, issues of cyber-security are raised.
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Whilst discussion on IT Security is a fundamental challenge to core IT implementation and not lim-

ited to Big Data implementation, a scope of Cyber-Security is worth considering as it can impact on

the veracity (truthfulness) of the data harnessed on large-scale integrations. Cyber-Security protects

against illegal or unauthorized access to information sources and their communication channels

which can disrupt service availability for interconnected devices. There is a need for devices and

generated data to be adequately secured against attacks, vulnerabilities and exploits. Potential vul-

nerabilities that could be exploited in transportation include unsecure vehicle-to-vehicle communi-

cation, unauthorized vehicle data interception, seizure of control systems like brakes or accelerators.

As an example, a group of civic hackers deciphered and exposed the bus location system of Balti-

more in 2015 [182]. In 2016, San Francisco transit was hacked to give unpaid access to commuters

for two days [183]. It is evident that uncontrolled attacks and vulnerabilities can defame the purpose

of intelligent transport systems and incur unforeseen losses that can destroy system implementation.

Key vulnerabilities that are of concern in Big Transportation Data implementation are discussed be-

low.

Vulnerabilities of Software Applications: Most common threat to security for Big Transportation

Data is exploits undertaken in software libraries and bugs. Software packages and Operating sys-

tem (or firmware) kernels usually expose vulnerabilities or system bugs that hackers can exploit to

gain unauthorized access to control the system. Software updates, patches or fixes are periodically

developed by software manufacturers to update known vulnerabilities mostly through automatic

system updates. As transportation information systems encompass a wide suite of software compo-

nents (i.e. web server, database, application framework), it is required system updates from trusted

manufacturers are allowed and enforced to ensure a robust secured platform for information share.

Vulnerabilities of Field Devices: BTD ingest high-volume data from dispersed sensor and pervasive

devices which are mostly located in remote areas and far from routine supervision. These remote

field devices such as traffic lights, cameras, road counter equipments are often in isolated public

places and remain susceptible to tampering. Isolated field devices are vulnerable to tampering thus

an adversary, who can alter the physical configuration of devices can compromise a system by

gaining illicit access to its information source. It is important a level of surveillance is provided for

field devices which are deployed in isolated environments.
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Vulnerabilities of Communication Networks: Communication devices create an enabling environ-

ment for data exchanges between interconnected devices. Network vulnerabilities are well known

within wired and wireless network service. Such vulnerabilities allow an attacker to eavesdrop

on data packets which are exchanged in the communication channel. Cellular networks, mostly

wireless services, are known to be vulnerable to signal intercepts and other threats. Wi-Fi network

vulnerabilities are very common in hacker communities, who gain access and exploit the network

including devices that are connected. A network map is a sensitive information to an adversary who

might be interested in exploiting a transportation system thus its detail should be treated with high

confidentiality. Data Encryption and cryptographic algorithms such as Data Encryption Standard

(DES) algorithm, Rivest-Shamir-Adleman(RSA) are applied to data packets to perturb the data con-

tent as they are transmitted over network channels. The underlying transport layer is made secured

by adopting secured communication protocols such as Transport Layer Security(TLS) and Secure

Sockets Layer(SSL) which provides privacy and data integrity between communication nodes.

3.13 Challenges and Opportunities in Privacy Protection

Until now we have focused on challenges related to defining characteristics of Big Transportation

Data, namely the three Vs. The fifth challenge relates to the fact that BTD often contains personal

data explicitly, or personal information that could be revealed by combining or analyzing data that

is not strictly-speaking personal, i.e., “Personally Identifiable Information“ (PII) [184, 185]. In

other words, the challenge is related to ensuring the protection of individual privacy with the use

of BTD. This is not a challenge uniquely for BTD, and the challenge of privacy protection in the

face of PII has been an issue for a long time (see e.g. Sweeney [42] who experiments identifying

personal information by linking voter registration data sets to medical records). As a result, we

do not concentrate on the general question of privacy protection with PII as it has received a great

deal of former attention (see e.g. [185, 186]). What is unique about BTD is the large amount of

temporally and geographically precise location data that can be collected on people. As such, this

discussion focuses on the protection of privacy in the context of what we refer to as “Personally

Identifiable Location Information” (PILI).
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An example is given by Anthony Tockar [187], a summer intern at Neustar, an information-analytics

who showed how to extract the exact location and time that celebrities used cabs in New York City

extracted from open New York City Taxi and Limousine Commission (TLC) data. By joining the

two data sets, Tockar found the cash tips paid by celebrities [187].

Transportation planning agencies have had access to both PII and PILI in the past through routine

data sources collected for planning purposes such as Origin-Destination surveys. As a result they

have used techniques to protect privacy both internally, as well as when such data is shared with

third parties such as consultants and academic partners.

With greater amounts of or more detailed information about people, these methods will need to

be adapted. Such adaptation is becoming increasingly important with open data policies (see e.g.,

[188]), which are becoming more common and which by their nature impose much less control

on who and the number of people who have access to potentially identifiable information. An

understanding of the techniques used for privacy protection in the context of PII, and available for

use with PILI, requires an understanding of underlying data Anonymization Operations. We begin

with these and then continue with a description of Anonymization Techniques as they have been

applied with PII and how they are applicable to PILI.

3.13.1 Data Privacy and the Need for Anonymization

Information collected for transportation planning and operations purposes can contain “micro-

data,“ i.e., detailed information on individuals and households (addresses, age, sex, etc.) [189, 190].

Data attributes (or variables) that identify individuals are referred to as “Explicit Identifiers.” At-

tributes that do not explicitly identify individuals or households can, in combination with other

attributes, potentially identify record owners uniquely [42]. Such attributes (e.g., zip code, sex, date

of birth, etc.) are referred to as “Quasi Identifiers.“ While being able to identify individuals is an

issue in itself, it becomes even more critical when “Sensitive Attributes” (e.g, disease, income, etc.)

[190] are available.

Another issue affecting privacy protection and concerns is to whom data is available. To best under-

stand the issues surrounding this, we define what we refer to as the Data Chain of Custody (DCC)

that describes how data passes from the individual on whom it is collected to the end user of the
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data. The Data Chain of Custody is an adaptation of Xu et al.’s [100] data “User Roles.”

The chain begins with the Data Owner (same term is as Xu et al.) who is the person on whom

data is being collected. The Owner’s information is recorded by the “Data Recorder“ typically a

device, such as a smartphone. The Data Collector arranges the collection, stores and curates the data

for the Data Analyst. It can be an individual researcher, a governmental institution (e.g. regional

planning authority) or a private company. Data Collectors can collect data for their own purposes,

or on behalf of others. Data Analysts process, analyze and integrate collected data for the End User.

Multiple roles can be played by the same individual or institution, so that for example the Data

Collector might also be the Data Analyst and End User. Sometimes the Data Owner (in the case of

Location Based Services) can also be the End User. We quickly provide three examples of BTD and

the DCC.

The first example relates to the smartphone travel survey platform, Itinerum [11]. This platform

allows researchers to develop and administer their own customized smartphone travel surveys (see

e.g. [191]). While the platform also allows some data processing, in this example, we assume

that the survey administrator only uses it to collect data and does analysis in-house. As such, this

example involves a municipality that undertakes a smartphone travel survey that it will use for

analysis of their local transportation system, as the City of Montreal did in 2016 [192]. In such

a circumstance, the Data Owner is the respondent with their smartphone being the Data Recorder.

The Data Collector is the Itinerum project that is collecting the data on behalf of the municipality.

The municipality peforms analysis on the data and therefore is the Data Analyst. Because the

municipality will use the analytical results from the collected data, it is also the End User.

The second example is a someone requesting a list of nearby restaurants through Google Maps on

their smartphone, also known as a Location Based Query. In this case, the Data Owner is the person

searching for restaurants and their phone the Data Recorder. Google is the Data Collector since it

developed the app and infrastructure and stores the owner’s location data. Google is also the Data

Analyst since it processes the request and returns a list of nearby to the User. As such, the Owner is

also the “End User”. See Figure 3.5.

Lopez and Farooq [193] propose a transportation blockchain system to protect the personal travel

information and improve the privacy of respondents to passively solicited data. The proposed system

50



Figure 3.5: Dataflow across data agents

protect users by making them the data owners and controllers of their personal information and is

secured by a private key which can be accessed through smart contracts. The blockchain performs

the role as a data collector by assigning keys, maintaining a transactional ledger and smart contracts

to the information which the data owner seeks to share. Data Analyst mostly third parties require a

smart contract to access travel information.

Data privacy risks are related to the DCC and in particular who, and under what circumstances,

has access to the data. A data privacy breach results when someone’s identity (possibly associated

with Sensitive Attributes) is revealed in a dataset when it is not supposed to be. This can happen

unintentionally and with no malicious intent. When it happens intentionally and with malicious

intent, it is referred to as “Adversarial.“ [194, 195]

As the number of people accessing data, and the number of people accessing data whose identities

are not known, increases, so does the risk of adversarial data privacy breaches. When data is avail-

able to few known individuals (e.g. to data analysts in a municipal planning agency), privacy risks

are limited. This is because the people with access are known and typically employees operating

under regulations. Also, fewer people accessing data implies lower probabilities of discovery of pri-

vate information that could be revealed when combining data sources, Quasi-identifiers, etc. This

situation is at one end of the privacy risk spectrum with open data being at the other.
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With Open Data there are unknown numbers of unknown people accessing data. So, the characteris-

tics of data and the degree to which data is available to known or unknown users determines the risk

of the revelation of private information. Privacy protection with PII is implemented with a number

of different anonymization operations, which are applied in different combinations in Anonymiza-

tion Techniques (or Anonymization Models). We first discuss Anonymization Operations and then

Anonymization Techniques.

3.13.2 Anonymization Operations

The most popular anonymization operations used in application are: generalization, suppression

and perturbation. Generalization performs anonymization on data by replacing some values of an

attribute with a taxonomy of its parent value [196, 197]. A set of attributed values are replaced

by a general categorical description value (e.g. replacing language spoken at home with English

or Other). Generalization operations are mostly applied to quasi-identifiers and sensitive attributes,

and reduce the probability of uniquely identifying a record owner. A numerical interval or range is

typically used to generalize numerical attributes. Specialization is achieved when generalization is

reversed by returning the detail of specific values.

Whereas Generalization works with taxonomies, Suppression also replaces values of an attribute

with a special key [197, 198], typically an asterisk (*). As data is suppressed, identifiable values

are replaced by special keys to make values non-identifiable. Suppression is generally applied to

explicit-identifiers and quasi-identifiers. Suppression ensures personal information is not disclosed.

On the other hand, Perturbation performs anonymization by distorting the original data with the

addition of noise, data swapping, value aggregation and generation of synthetic data. Statistical

approaches are used to perturb data values [198]. Perturbation generally replaces real data values

as well so that data does not correspond at all to the original value associated with the individual.

When statistical methods are used to perturb data, while attribute values are not those of the original

individual, the aggregate characteristics of the attributes are the same as for the entire dataset.
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3.13.3 General Anonymization Techniques

Anonymization Techniques use combinations of the Anonymization Operations described above to

anonymize PII. The most popular techniques used to limit disclosure of identifiable information are

are K-anonymity-based techniques and Differential Privacy. The anonymization techniques address

privacy protection under different circumstances of access to data.

K-anonymity-based Techniques

K-anonymity-based techniques are relevant in the following data access circumstances. The original

dataset is contained in one or multiple tables and all Explicit Identifiers have been removed. K-

anonymity requires that after removal of Explicit Identifiers, each record must be indistinguishable

from at least another k-1 records with respect to any given quasi-identifier [42, 198]. For example,

when k-anonymized, if a given record has a given value for an attribute, there will be at least k-1

other records with that same value. As such, k-anonymization removes the uniqueness of distinct

values for a quasi-identifier through generalization and suppression operations.

While k-anonymity protects against identity disclosure, it is insufficient to prevent attribute disclo-

sure (being able to associate a unique attribute value to a given record). L-diversity on the other

hand is a concerned not so much with identity disclosure, but with the ability to associate Sensitive

Attributes to a given record Machanavajjhala et al. [45]. An equivalence class (i.e., a set of records

that are indistinguishable from each other with respect to a given quasi-identifying attribute) is said

to have l-diversity if there are at least l “well-represented” values for the sensitive attribute. As such,

this is fundamentally k-anonymity but for the special case of Sensitive Attributes [45]. A table is

said to have l-diversity if every equivalence class of the table has l-diversity. As a result, and like

k-anonymization, l-diversity removes the uniqueness of distinct values but for a sensitive attribute

through generalization and suppression operations.

A common problem of both k-anonymity and l-diversity is that they cannot guarantee the protection

of private data if information about the global distribution of an attribute is known, e.g., if someone

had access to the entire table containing any given k-anonymized or l-diversified attribute. This

problem is particularly acute if the distribution of the attribute in question has few values and/or
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is highly skewed towards a few values, e.g. if 90% of the values of tips given to drivers (see

example in Section 3.13) in a given dataset were 0, it would be straightforward to infer that a given

individual did not leave tips. To address this problem, the t-closeness anonymization technique has

been developed.

T-closeness [46] itself is a measure of the degree to which a distribution is skewed towards a few

values. As t-closeness increases, a distribution becomes more skewed towards a few variables. The

t-closeness technique amounts to adjusting the distribution of sensitive attributes to assure that the

global distribution does not have few values and is not highly skewed towards any, or a few, of those

values. An equivalence class is said to have t-closeness if the distance between the distribution of a

sensitive attribute in this class and the distribution of the attribute in the whole table is no more than

a given threshold t. A table is said to have t-closeness if all equivalence classes have t-closeness.

T-closeness is ensured through generalization and suppression operations.

3.13.4 Differential Privacy

Strictly speaking, Differential Privacy is not a technique, but rather a property of the anonymization

process. The concept of Differential Privacy was originally introduced by Dwork et al. [43] and is

relevant in the following data access circumstances. There is an original database (D) with Explicit-

and/or Quasi-identifiers and Sensitive Attributes. There are also two agents accessing the data either

indirectly or directly. The data User wants to learn about the characteristics of the original dataset

by making queries to it, but does not have direct access to the original data. The Curator (a software

component between other software layers, or middlewear) has direct access to the original data, but

has the role of modifying it thus creating a new dataset (D′) to which the User has direct access.

Critical to understanding Differential Privacy is the notion of Privacy Degradation. Privacy Degra-

dation describes the fact that as queries are made to a database, the results of each additional query

provide information that can be compared with previous results. As such, it is possible, all else

equal, to learn about individual observations in a modified database by comparing results made

with different queries.

Ultimately, the Curator’s role is two fold. First, remove Explicit identifiers from the original

database and perform modifications (Perturbations) on the Quasi-identifiers and Sensitive Attributes.
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These perturbations are typically created by adding noise drawn from a Laplace distribution to

Quasi-identifiers and Sensitive Attributes. It is important to note that D′ itself is dynamic, so that

it might not be the same for subsequent queries from the User. The degree to which D′ is different

from D is referred to as epsilon (ε). With Differential Privacy ε is also dynamic and is a function of

the number of queries from the user.

3.13.5 Location Privacy

Anonymization methods discussed so far have been developed and applied primarily to PII [185,

186] data. The large amounts of temporally and spatially precise BTD can be thought of as Quasi-

identifying data, but the techniques mentioned above are not suitable to ensure privacy protection

with this PILI data. There are two broad categories of circumstances under which anonymization of

PILI can take place. The first relates to when data is transferred from the Data Recorder to the Data

Collector. The second is when data is transferred from the Data Collector to the Data Analyst. The

first category is referred to as Location Based Query (LBQ) anonymization [199, 200]. This might

happen for example if the true location of the Data Owner is anonymized or obscured by the Data

Recorder before being sent as part of an LBQ, such as a search for nearby restaurants. The second

category is when data is transferred from the Data Collector to the Data Analyst. While the first

type of anonymization is important, we believe it to be less of a challenge to the use of BTD than

the second. This is because with LBQs the Data Collector and Analyst will typically be known and

presumably trusted if the Data Owner is willing to share their information with them. Of greater

practical concern is what happens as data is transferred from the Collector to the Analyst, since the

identity of analysts may not be known, and there may be many, particularly in the case of Open

Data. As a result, in this paper we concentrate on techniques relevant for anonymization that takes

place between the Data Collector and the Data Analyst, i.e. to data “publishing.“

There are four main techniques available for location anonymization appropriate for PILI data when

it is published. The techniques differ along three dimensions: whether a Data Owner ID persists or

not; the approach used for obfuscating location; and whether or not the anonymization is done real

time.
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Spatial Cloaking

Spatial Cloaking [201, 202] is used when data is static (i.e. when it has already been recorded and

stored). When location data are spatially cloaked the Data Owner IDs persist across observations,

but locations reported to the Data User are adjusted. In particular, and instead of providing the

original location data (i.e., latitude and longitude), the data are spatially aggregated so that the

Data User is provided a spatial buffer known as the Anonymized Spatial Region (ASR) [203]. The

size of the buffer is dynamic and is a function of the number of other Data Owners on whom

data is reported. In particular, the ASR is large enough to encompass the data of at least k-other

Data Owners. As such, it can be seen as a spatial k-anonymization. Since ASRs are dynamic this

technique is also computationally intensive. This technique could be used with trip-end location

data or trajectory data.

Mixed Zones

Mixed Zone (MZ) [204] anonymization is used when data is static. With MZ-anonymization, it

is Data Owner (pseudonym) IDs that are obfuscated and not their locations. This is done first by

defining zones through which the Data Owner passes. As the Data Owner passes through zones,

their IDs are modified so that it is not possible follow an individual as they pass through the different

zones. Mixed Zones is a more general approach that encompasses the special case of the Vehicular

Mix Zone approach.

Dummy Trajectories

As with Spatial Cloaking and Mixed Zones, the Dummy Trajectories technique [205] is used to

anonymize static spatial data, particularly static trajectory data. As with Spatial Cloaking, Data

Owner (pseudonym) IDs persist throughout the data and unlike MZ does not involve the creation of

zones. This method amounts to perturbing location data over the course of a trajectory.
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Path Confusion

As with Spatial Cloaking and Dummy Trajectories with Path Confusion [206] Data Owner IDs

persist. Like the Dummy Trajectory approach, the location data is perturbed directly. Unlike these

other methods, the data in question is not static but is arriving in real time. The key concern with

this approach is to make it impossible to predict a future location based on the dynamic data. As

such, this is a more statistically involved approach that not only perturbs location data directly, but

also associated bearing and speed data. Due to the the statistical complexity and the need to treat

each data point in real time, it is computationally intensive.

3.14 Cross-Cutting Opportunities and Challenges

The previous sections have focused on the primary challenges facing the widespread use of BTD and

the opportunities to overcome these challenges. The opportunities in these sections have included

those that are applicable to one of the challenges at a time. In this section we discuss opportunities

(and challenges associated with their implementation) that will help in overcoming more than one

of the “3-V” challenges. In one way or another the approaches required to overcome the 3-V

challenges amount to being able to add computing resources, constrained ultimately by hardware.

Cloud computing [207] involves adding resources virtually. That is to say that instead of adding

physical resources (e.g. servers), it is possible to add resources through software that mimic the

behaviour of physical hardware. This can be done “privately“ on infrastructure managed directly

or “publicly” by going through Cloud computing providers such as Amazon Web Services (AWS),

Google Cloud, Microsoft Azure, Rackspace, etc. Cloud computing allows the possibility to quickly

add resources, and thereby scale systems in near real time and even automatically. Using Cloud

resources reduces the requirements for internal expertise and allows granular addition of resources

where the addition of physical infrastructure is “lumpier.“

The costs of using Cloud computing services need to be traded-off with the costs of managing

physical infrastructure, but is becoming increasingly competitive for almost all typical computing

requirements. It is likely to become even more competitive over time making the choice of us-

ing Cloud computing somewhat easier on a cost-only basis. Another issue with Cloud computing,
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however, is the loss of control over where data is physically stored (i.e., where physical servers

are located). This can be an issue for transportation authorities that have traditionally operated un-

der circumstances where all data is stored “internally.” Of course, Cloud computing can be done

“privately“ although this still requires a great deal of internal resources (more than managing infras-

tructure directly) and is likely only viable for large organizations.

Cloud resources [208] can be added through three service models: Infrastructure as a service

(IAAS), Software as a service (SAAS) and Platform as a service (PAAS). IAAS is the most di-

rect model for adding additional resources. It involves the addition of virtual infrastructure (e.g.

computers) that are managed by the service user. As such, software required by the user is installed

and maintained on the additional virtual resources. SAAS is the most limited model with users

subscribing to particular application software and databases. Microsoft Office online, SQL Server

web, ArcGIS online are all examples of this. PAAS is the most involved of the three models. PAAS

solutions are designed primarily for technology developers and as a result provide all necessary el-

ements of a development environment. That is PAAS comes with pre-packaged operating system,

web server, database and programming languages. PAAS examples include IBM Cloud, Microsoft

Azure, Blockchain [193], etc.

3.15 The Future of BTD in Transportation

The rapid emergence of different tools for data collection has led to an unprecedented potential

not only to collect, but to integrate data from many sources and potentially to revolutionize how

transportation planning and operations are done. This potential has not been lost to transportation

researchers, but current research has focused on techniques for collecting data or on inferring rel-

evant transportation information from this data. While critical to fulfilling the potential, we define

four existing, higher-level challenges and opportunities to the large-scale use and integration of

BTD for planning and decision making purposes. Three of the challenges (and opportunities) are

related directly to the 3-Vs of Big Data more generally. A fourth relates to all of the 3-V challenges

collectively, and a fifth concentrates on the challenge of privacy protection. This is particularly

relevant to BTD due to the large amount of temporally and spatially precise data collected. In our
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view, BTD will not be able to fulfill its promise if these challenges are not met. We consider the

challenges related to the 3-Vs (Volume, Variety and Velocity) first and continue with those related

to privacy.

3.15.1 Challenges Associated with the 3-Vs

The challenge associated with the sheer Volume of BTD that are, and that will continue to be, avail-

able in ever-larger quantities will continue to place pressure on traditional vertically-based Database

Management Systems. The ability to vertically scale these systems is already at its limits and as a

result the future will increasingly (and perhaps eventually entirely) require horizontally scaled sys-

tems deployed using distributed architectural approaches. While current approaches are dominated

by CA architecture, there is a gradual drift towards AP architecture ensuring high Availability, Fault

Tolerance and Delayed or Eventual Consistency. This pattern will continue into the future and AP

architectures are likely to become the dominant approach in the near, and for the foreseeable, future.

While large Volumes of data present their own challenge, being able to process data coming in at

different rates and increasingly in real time is the challenge of Velocity. Traditional Batch Process-

ing methods are ill-adapted to the onslaught of real-time data that also needs to be processed in

real time. As a result, in the future the need to increasingly devote resources to Stream Processing

methods will become more prominent. While Stream Processing will undoubtedly make up a larger

proportion of processing, Batch Processing, when appropriate will continue to play an important

role. Batch Processing will remain the mainstay of processing for static datasets and analysis re-

quiring access to a finite dataset. In the future, processing will not simply take place as Batch or

Stream processing, but is likely to involve techniques that take advantage of both approaches, such

as emerging “Lambda” architectures [209].

The Variety (different data and file formats from different sources) of BTD represents another key

challenge. Traditional structured Relational Database Management Systems that require defined

data schemas are incapable of handling and integrating data from different sources; something nec-

essary but also which provides one of the most important aspects of the potential of BTD. As such,

the move away from traditional RDBMSs and towards more flexible non-relational DB systems

will need to continue to cope with the many different formats. The most common production-ready
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flexible systems are NoSQL-based and such systems are set to become more commonplace and the

de facto standard in the near future. At the same time, new approaches are already evolving to over-

come the constraints of NoSQL systems and in particular new flexible systems that are also ACID

compliant with NewSQL-systems being the most likely to replace NoSQL.

Finally, Cloud computing will be key to meeting all of the 3V challenges. It will provide the pos-

sibility to granularly, quickly and automatically add computing resources necessary to cope with

increased Volumes, Velocity and Variety of data. The economic case for Cloud computing seems

undeniable, but its use will likely involve the necessity to give up the ability to store data internally

for most organizations. As such, in order for it to play its facilitating role in allowing BTD to revo-

lutionize planning, organizations will need to be convinced that collected data is stored sufficiently

safely. This will likely happen through a combination of attempts on the part of Cloud service

providers to convince organizations of the safety of data and an eventual institutional acceptance of

using these services.

3.15.2 Challenges Associated with Cyber-Security and Privacy

The last major challenge is that of security and privacy. The first three challenges are essentially

technical in nature and if not met, it will simply not be possible to take advantage of the potential

of BTD. Privacy on the other had is both a technical, as well as social/political challenge. The

social/political challenge is that of Data Owners (the public) being willing to share their data with

Data Collectors and subsequently to Data Users. Ensuring this willingness has three elements. The

first is that related to security, which is a challenge facing all IT. Network threats have not been

dominant in the transport industry as compared to other sectors. Notwithstanding, there is a rising

need to build robust and secured transportation infrastructure that is protected from wide range

of system vulnerabilities and exploits. As a step to improve security, network threats to existing

systems need to be assessed and reported. Network assessment tools (e.g. Wireshark[210]) have

become popular for network monitoring to gain better visibility of vulnerability to cyber threats.

Enterprise architectures deploy network security systems such as firewalls and proxy servers, which

monitors incoming and outgoing network traffic by adhering to strict security rules. A final step

to achieve secured computing is to improve communication between trusted cyber-security experts
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and operators at national and local transportation agencies. Such communication notifies on active

security threats and provide relevant information on managing such threats.

The second relates to the knowledge of Data Users with respect to the nature of their data that is

being shared as well as with whom. This has been prominent lately with the necessity for companies

to comply with European GPDR regulations. We believe an important challenge related to this is

also in the simple and clear explanation to the Data Owners of what data is being collected and

shared, something not easily accessible through typical Terms of Use and Consent Forms. The

third, is that related to privacy protection and more specifically privacy protection in the context of

“published“ data. That is, data that is shared with Data Users. Traditionally data was published

to relatively few people whose identities were known. The advent of Open Data has resulted (and

will increasingly result in the future) in many more people whose identities are not known having

access to published data. Moreover, with the anonymity of Data Users, the risk of the adversarial

use of such data, particularly with increasing “background” knowledge, and therefore the threat

of privacy breaches will only increase. As such, ensuring willingness on the part of Data Owners

will increasingly involve assurances around the protection of privacy from collected data. These

assurances will be based upon methods of anonymization. As a result, anonymization is critical to

ensure the trust of Data Users.

There are already many anonymization techniques that have been developed for the purposes of

privacy protection with both tabular as well as geographic data, and this is a lively area of academic

and private sector research. At the same time, this is an evolving field and one that will have to

continue to evolve as more data becomes open. The primary reason for this is the growth of Open

Data for two reasons. First, as more data become open, there will be more people able to access

it anonymously and as a result a greater threat of adversarial use of the data. Compounding is the

fact that as more data becomes open, more “background” knowledge will also become open further

expanding the threat of potential privacy breaches. As a result not only will it be necessary for

anonymization techniques to evolve, but caution related to the data that is made open will need to

be taken.
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Chapter 4

Perturbation Methods for Protection of

Sensitive Location Data: Smartphone

Travel Survey Case Study

4.1 Preamble

In this chapter, we implement privacy protection for sensitive home locations using most popular

location protection algorithms. We compared the level of privacy provided by both approaches and

measure the utility of the anonymized location sets for transportation planning and decision making.

This research article was published in Transportation Research Record: Journal of the Transporta-

tion Research Board:

Badu-Marfo, G., Farooq, B., Patterson, Z. (2019). Perturbation Methods for Protection of Sensitive

Location Data: Smartphone Travel Survey Case Study. Transportation Research Record, 2673(12),

244-255. https://doi.org/10.1177/0361198119855999

It was also presented at the Transportation Research Board (TRB) 98th Annual Meeting in January

2019, at the Walter E. Washington Convention Center, in Washington, D.C.
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4.2 Abstract

Smartphone based travel data collection has become an important tool for the analysis of transporta-

tion systems. Interest in sharing travel survey data has gained popularity in recent years as “Open

Data Initiatives” by governments seek to allow the public to use these data, and hopefully be able

to contribute their findings and analysis to the public sphere. The public release of such precise

information, particularly location data such as place of residence, opens the risk of privacy viola-

tion. At the same time, in order for such data to be useful, as much spatial resolution as possible is

desirable for utility in transportation applications and travel demand modeling. This paper evaluates

geographic random perturbation methods (i.e. Geo-indistinguishability and the Donut geomask) in

protecting the privacy of respondents whose residential location may be published. We measure the

performance of location privacy methods, preservation of utility and randomness in the distribution

of perturbation distances with varying parameters. It is found that both methods produce distri-

butions of spatial perturbations that conform closely to common probability distributions and as a

result, that the original locations can be inferred with little information and a high degree of pre-

cision. It is also found that while Achieved K-estimate anonymity increases linearly with desired

anonymity for the Donut geomask, Geo-Indistinguishability is highly dependent upon its privacy

budget factor (ε) and is not very effective at assuring desired Achieved K-estimate anonymity.

4.3 Introduction

Transportation demand modeling helps governments and researchers to better understand human

mobility in the delivery of an efficient, intelligent and secure transport system and is highly de-

pendent on quality travel demand data. Traditionally, travel demand surveys (Origin-Destination,

regional, household, etc.) actively engage respondents in the collection of travel and personal in-

formation. In such contexts, collected data is available to relatively few institutions and individuals

who are typically employed and under contract not to use the data for any purposes apart from those

strictly related to their responsibilities (e.g. transportation planning). These institutions have also

been responsible for ensuring the protection of privacy when any of the data is provided to other

institutions, or the public, i.e. when the data are “published.”
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Nowadays, there is a proliferation of pervasive devices and technologies (e.g. smartphones, tablets,

wearable devices, etc.), with location-sensing capabilities. Travel Surveys are now delivered on

these technologies that can collect personal and sensitive information (i.e. biographical data, credit

card information, location traces, etc.) passively even without respondents being aware. The mo-

bility of a respondent is typically recorded as trajectories and processed by location based services

(e.g. Google[12], Uber[15]), location-aware applications (e.g. Waze[13]) or dedicated travel survey

apps [11]). Whilst governments, public and private transport researchers exploit the potential of

passive large-scale transport data to understand mobility patterns and travel demand, the threat of

personal information disclosure cannot be overlooked.

As witnessed in recent years, numerous high-profile privacy breaches have taken place. There was,

for example, an enormous public outcry around the privacy controversy related to Facebook and

Cambridge Analytica in 2018 [17]. Another example was provided by Anthony Tockar [187], a

summer intern at Neustar (an information-analytics company) who showed how to extract the exact

location and time that celebrities used cabs in New York City based on publicly available New York

City Taxi and Limousine Commission (TLC) data. By joining the two data sets, Tockar was even

able to find the cash tips paid by celebrities [187] to their drivers. These examples have given rise

to an interest in data privacy violations and the need for “data agents“ [100] (data collectors and

analyst individuals or organizations) to protect personally identifiable information.

At the same time, governments have been eager to adopt “Open Data Initiatives” that make data

available for free reuse and republishing to everyone, without restrictions related to copyright or

patents [30, 211]. Open data agreements between governments, transport operators and travel ap-

plication developers have been witnessed in the sharing of information for improving transportation

service delivery. The City of Toronto in 2017 entered into an agreement with Waze [212] to share

and use its real-time traffic and road conditions data, to improve service delivery and navigation in

the city of Toronto. Uber also launched “Uber Movement“ [213] a platform that shares travel infor-

mation with cities and transport planners with the aim of helping them make informed decisions in

the design of transport infrastructure.

Since there are no controls on who can access Open Data, any sensitive data provided by people
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on whom data is collected i.e. “Data Owners” [100], such as respondent identity needs to be pro-

tected to prevent privacy breaches by untrusted users with malevolent intentions, or “adversaries.”

Geographic points of interest (POIs) can be extracted from trip data and inferences can be made on

characteristics (i.e. semantic data) such as religious affiliation, health conditions and political inter-

ests of respondents. In line with this, the disclosure of sensitive location information poses a risk

and could violate a respondent‘s confidentiality if known to an adversary or untrusted party. Thus

as governments adopt “Open Data“ policies, it is important for the location privacy (or geoprivacy)

of a subject to be protected to ensure the identity of an individual is not disclosed through location

information.

Location protection mechanisms [214] such as spatial cloaking, aggregation and random perturba-

tion are used to protect–what we refer to as–the Personally Identifiable Location Information (PILI)

of a subject [19]. Random perturbation techniques endeavor to deliver better privacy, while main-

taining spatial fidelity of data to maximize the utility of anonymized spatial data [215, 216], while

protecting privacy. Random perturbation methods are used to add noise that displaces/masks point

locations in a random distance and direction. A popular random perturbation method, geomasking,

is used for preserving location privacy by creating a circular buffer at a specified distance around

the location to be masked, from which the perturbed location is selected. Geomasking is the most

common method of perturbing an individual‘s location for privacy protection[216, 217]. However,

the quantity of displacement applied to a location for masking can at once reduce the utility of the

data and, if displacement is small, provide little privacy protection. Among the various random per-

turbation techniques, two have received the greatest amount of attention and are the most commonly

used in practice.

The first, the “Donut Geomask”, which is an implementation of a k-anonymity location privacy

protection mechanism (LPPM) [42] and achieves privacy protection by using the underlying neigh-

borhood population density of a point location to determine the obfuscation distance. This geomask

technique has been used extensively in the protection of patient health information [216, 217] and

crime data [215], both of which require high spatial resolution in order to anonymize data.

The second, Geo-indistinguishability (Geo-I) [218], is an implementation of differential privacy for
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location data. It guarantees a respondent‘s location is protected within a specified protection dis-

tance with a level of added noise that decreases with the distance, at a rate depending on the desired

level of privacy. In other words, the original location is highly indistinguishable from locations that

are close to it, and gradually becomes more distinguishable from locations that are farther away

[219]. This is intended to maintain anonymity, while at the same time maintaining the utility of the

underlying data.

In this paper, we have three main contributions. First, we apply the most common geographic

anonymization techniques to the case of residential location of respondents in a large-scale smart-

phone travel survey, MTL Trajet [220]. Second, we evaluate both techniques with respect to their

ability to provide location privacy while maintaining utility of the data. Third, we analyze the distri-

bution of the perturbation distances for their degree of randomness to evaluate the degree to which

it would be possible to infer original location by an adversary with prior knowledge of only the

distribution of disturbances.

4.4 Problem Statement

The objective of this paper is to protect respondent residential locations collected in a travel survey

before data are published. We compare and evaluate the two most commonly used random perturba-

tion techniques (the Donut Geomask and Geo-I) to measure and their efficiency of privacy protection

and their effectiveness of data utility. We aim at evaluating the degree of protection offered by both

techniques by studying the probability distribution of the achieved perturbation distances.

To achieve this objective, we consider respondents who took part in the MTL Trajet smartphone

survey of 2016. MTL Trajet respondents were asked to report their home location(latitude and

longitude) as part of the survey. We treat home locations as sensitive, independent points that need

to be protected to prevent violation by an adversary who has access to the published travel data.

(Note that the City of Montreal never published the residential location data).
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4.5 Literature Review

Extensive literature exists on the geographic perturbation of location addresses for privacy protec-

tion. This research has been undertaken by numerous disciplines (e.g. computer science, geogra-

phy, transportation, etc.) that are engaged in dealing with personal identifiable location information

(PILI). We discuss a few examples of this in the following section.

Zhang et al. [221] developed a geomasking technique referred to as location swapping. Their tech-

nique replaces an original location with a masked location that is selected from all possible locations

with similar geographic characteristics within a specified neighborhood. Their technique provided

greater anonymity than other random methods by achieving higher k values. (K is the population

around the sensitive location that could be associated with equal probability to the perturbed lo-

cation. If K, were for example 10, then the perturbed location could be equally attributable to 10

different households.)

Allhouse et. al. [216], used the Donut method to provide privacy for sensitive health data using

household data for Orange County, North Carolina. The authors determined the actual k-anonymity

(the number of households that could be associated with perturbed points) by revealing household

locations contained in the county database. They achieved an approximate privacy standard for the

households at 99.5% (i.e., 99.5% of perturbed points represented k-anonymities of above a desired

threshold).

Abul et al. [222], proposed a technique that creates cylinders within which users move such that at

every instant of time, there exists at least k users walking a given distance from others.

Ma et al., [223] implemented Geo-I in protecting the privacy on nearby friend-request location-

based services (LBS for short) from stalkers. The authors combined the location approximation

technique and the homomorphic cryptography to achieve formal privacy guarantees for LBS users,

and achieved a satisfactory quality of the reported location to be used by the LBS. That is, the

query results were relevant to the original location of the user, even though only perturbed data was

provided to the LBS.

Finally, Chatzikokolakis et al. [219], protected the privacy of LBS users using the principle of Geo-

I. Using the foundations of Differential-Privacy, their work protected exact user location, while
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providing sufficiently accurate location information to allow satisfactory results to be provided by

the LBS.

4.6 Definitions

In this section, we provide explicit definitions of technical concepts and key terms that will be used

in the analysis of the paper.

Sensitive location refers to any residential point locations represented in its Cartesian coordinates

as latitudes and longitudes that needs to be protected to prevent the identification of a user.

k-anonymity refers to the population within a buffer region of the outer radius around the original

point prior to displacement, from which a de-identified cluster case cannot be reversely identified.

K is the population around a sensitive location that could be associated with equal probability to

a perturbed location. If K, were for example 10, then the perturbed location could be equally

attributable to 10 different households.

Protection Radius refers to a circular region around a sensitive location within which other location

points existing should be made indistinguishable from the sensitive point.

Location-privacy protection mechanism. These are mechanisms that modify datasets to offer

privacy guarantees by adding a level of noise to displace the sensitive location to distances away

from their true location. Protected datasets are also referred to as geomasked datasets.

Adversary. This is an agent seeking to re-identify true residential location of the user by inferring

from sanitized dataset.

4.7 Background on Anonymization Techniques Considered

As described above, the two most widely used classes of anonymization techniques are k-Anonymity

and Differential-Privacy. This section describes them in greater detail.

4.7.1 K-Anonymity

K-Anonymity is the most widely used class of privacy protection technique for location-based sys-

tems existing in literature. The notion of k-anonymity was introduced by Sweeney in 2002 [42].
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Many implementations of k-anonymity aim at protecting a subject‘s identity, requiring that an ad-

versary cannot identify an individual record, among a set of k indistinguishable subjects (i.e. any

query result in no less than k observations). k-Anonymity has been used in protecting location

(l-diversity), that requires that a set of k-points are spatially indistinguishable. This technique of

achieving location privacy using k-anonymity can be implemented through the use of dummy lo-

cations [224, 225], where k-1 dummy points are generated and returned as a location-based query

result [225]. Another implementation to achieve k-anonymity in location privacy is through the use

of spatial cloaking [201]. This approach creates a cloaking region around the real location point

with k other points. The cloaking region is then returned as the result of a location-based query and

protects the original location by making it indistinguishable among a set of k points in its cloaked

region [201]. The first technique we compare examines the random perturbation of sensitive loca-

tions using a new adaptive geomasking technique, referred to as the Donut method which has the

property of k-anonymity.

Donut Geomask

The Donut method is a geomask technique that protects the privacy of locations by transposing real

locations to random displacements within an inner circle radius (i.e. a minimum limit of perturba-

tion) and an outer circle radius that is the maximum limit of the perturbation distance. As illustrated

in Figure 4.1b, R1 is the inner circle representing the minimum displacement from the original lo-

cation. This method prevents negligible displacements that are close to the original location. On

the other hand, R2 is the outer circle which sets the maximum distance to of random displacement

[216]. Random displacements of perturbed points are inversely proportional to the underlying pop-

ulation density, and this guarantees privacy protection of point locations while minimizing spatial

error [216, 221]. As an example, while point locations in urban high-density communities will only

need to be perturbed small distances, locations in low-density (e.g. rural) areas will need to be per-

turbed larger distances to achieve the desired level of privacy. The method provides a robust privacy

guarantee as maximum and minimum thresholds of displacements are used to prevent negligible or

outlier perturbation distances.
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(a) Estimated k-Anonymity
(b) Donut geomask

(c) Varying protection distance, r

Figure 4.1: Examples of: (a) Calculating the estimated k-anonymity of a location. (b) Generating
protection distance by the Donut approach, and (c) Varying protection distances with Max K.

4.7.2 Differential Privacy

Differential privacy [43] has gained popularity as a new privacy model for protecting an individual

without disclosing the data of a subject when the subject participates in a database, and similar

disclosure occurs with same probability when the subject does not participate in the database. This

ensures that the removal or addition of any record about an individual in a database does not modify

the results of a query. Intuitively, the concept of differential privacy requires that the distribution of

the characteristics of two datasets (i.e. the original dataset, D and adjacent dataset, D‘) differing by
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only one observation should not be noticeable. This is explained by the notion that an addition or

removal of a single record in an adjacent dataset does not significantly affect the outcome of a query

to the two datasets.

It can be illustrated by a scenario where the probability of a query returning a value v when applied

to a database D is similar when compared to the probability of reporting the same value to an

adjacent database D‘, differing by only one observation. The amount of difference between D

and D‘ is parameterized as epsilon (ε), or the “privacy budget.” In order to achieve differential

privacy, a controlled random noise is drawn from a Laplace distribution and added to a query output.

Differential privacy has been applied in the context of location privacy, as observed in [226]. There

a differentially private region quadtree is used for both de-noising the spatial domain and identifying

the likely geographic regions containing the sensitive locations. The quadtree spatial decomposition

enables one to obtain a localized, reduced sensitivity to achieve the differential privacy goal and

accurate outputs. The most recent form of this technique is Geo-indistinguishability [218] and is

the second technique we include in our comparison.

Geo-indistinguishability

Geo-indistinguishability (Geo-I) is a property similar to that of differential privacy [43]. This pri-

vacy model is an implementation of differential privacy to address location privacy protection. Geo-I

works with the notion that within a radius r > 0, a respondent is protected within r such that the

level of privacy is proportional to the radius. This is illustrated by a basic scenario where a real

location, li is obfuscated by using some random noise to an approximate location that lies in radius

r1 as shown in Figure 4.1c. At radius r1, a high level of privacy is achieved, making the real loca-

tion indistinguishable among the nearest point locations (there are 3). At radius r2 and r3, the level

of noise added to obfuscate li decreases at a rate that is dependent on the desired level of privacy,

“epsilon.“ As an example, an adversary may be able to make a confident guess of the area where

a respondent is located, but would not be able to predict the exact location of a respondent within

the area [219]. The random noise of perturbation for Geo-I can be implemented from a Laplacian

distribution with respect to perturbation distance from original location. This approach is intended

to ensure robustness with respect to the composition of attacks, as the level of privacy decreases in
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a controlled way (linearly) [219]. We implement an experimental simulation that achieves Geo-I by

perturbing home locations of respondents in the MTL Trajet survey.

4.8 Methodology

We assume a sensitive residential location, Lr of a respondent that needs to be protected by adding a

random noise to displace the original location to a new location. We refer to the “noised” location as

the ”Perturbed Location“ of the respondent. The distance and direction to which a sensitive location

is displaced to guarantee protection is implemented by a location-privacy protection mechanism

(LPPM). In this paper, we employ two LPPMs namely GeoI and Donut.

A protection radius, r, is a required parameter for perturbation by both mechanisms and this sets the

minimum distance to which a sensitive location will remain indistinguishable among a set of other

locations nearby. As illustrated in Figure 4.1b, the Donut geomask method defines its protection

radius as R1, which is the minimum distance a sensitive location is displaced to ensure indistin-

guishability among a set of k points, referred to as ”k-Anonymity“. For the GeoI, the protection

radius is the defined circular region around a sensitive location to which other locations within the

radius are made indistinguishable by adding a level of noise. We employ a numerical set including

100, 200, 300, 400, 500 as the protection radius (or Max K) for both mechanisms. E.g. 100 is the

radius required (the Max K) to ensure indistinguishability with 99 other locations, 200 is the radius

required for 199 other locations, etc.

For the Donut geomask, an outer radius R2 is also defined to be the maximum distance that a sen-

sitive location can be displaced. This limits the extent of perturbation for the Donut method. We

experiment by varying predefined k-anonymity levels in calculating sets of outer radii for each point

as shown in Figure 4.1c. This allows us to experiment with how different perturbation radius sizes

affect the output of desired anonymity results (i.e. the Achieved K-estimate). We undertake the

Donut perturbation method of selecting random distance and angles within R1 and R2 using a ran-

dom number generator built into the perturbation algorithm 4.10. The distortion of the perturbation

is guided by the region boundary such that a new geomask point does not fall outside the region of

the original location. Using the desired k-anonymity level and population density, the outer radius
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R2 is calculated and inner radius, R1, is estimated as 10% of R2 in this paper. The outer radius, R2

varies from point to point since it depends on population density. As an example, for low density

regions points are displaced at farther distances than in high density areas.

For the Geo-I technique, we maintain the sets of outer radii R2 for the varying k-anonymity levels

as the protection distance within which perturbation should occur. We undertake this approach to

examine how a changing width of the perturbation region will affect the results of the geomasked

points. To determine the sensitivity of the privacy budget epsilon, we employ varying privacy budget

values (0.10, 0.20, 0.30, 0.40, 0.50) that are repeated for each protection distance. This range is

typical of what is used in the literature.

We compare the protection levels achieved from both techniques using the Achieved K and Av-

erage error distance metrics. We then calculate the Euclidean distances between the original and

geomasked points and summarize them in histograms to which we fit the following probability dis-

tributions (normal, lognormal, gamma, exponential, Weibull). Since there is a trade-off between

privacy protection and the utility (or usefulness) of the perturbed data, we also evaluate the utility

of the perturbed points. To do this, we use average spatial error (defined below).

4.9 Evaluation Metrics

In this section, we present a set of metrics that we use in evaluating the effectiveness of the per-

turbation techniques used to protect true respondent residential location. We discuss the evaluation

metrics under three main indicators: distribution of perturbation, location privacy and data utility.

We discuss each of the metrics, the steps involved in its execution and the desired output of measure

below.

4.9.1 Location Perturbation Distribution

To understand the effectiveness of the perturbation techniques used in this paper, we study the ran-

domness in displacement for each perturbed point by calculating the euclidean distances between

the original points and the obfuscated points for each technique. We refer to this as “perturbed dis-

tance.” The perturbed distances are tested for randomness of distribution by fitting five continuous
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distributions (Normal, Lognormal, Gamma, Weibull and Exponential), to assess if they follow a

known distribution pattern. We consider perturbed distances that follow particular distributions as

lacking randomness and showing weak privacy since, as shown by Farooq et al. [22] an adversary

could reversely identity a subject‘s residential location knowing only the parameters of the distribu-

tion. Distances which do not fit any distribution are considered to be strong against re-identification

by an adversary. The fitted log likelihood values of the different distributions are presented to com-

pare which distributions have the best fit.

4.9.2 Location privacy

In order to ensure a reliable guarantee of protection of a respondent‘s location, we measure the

success of privacy achieved in obfuscating such locations using two approaches: the achieved K-

estimate and geographic distance. The first metric, Achieved K-estimate is a commonly used mea-

sure of privacy protection performance [217]. It is inspired from k-Anonymity [42] and evaluates

the accuracy of location privacy by measuring the number of households among whom a specific

de-identified subject cannot be reversely identified [216, 227]. This is illustrated by the population

of households that can be counted within a circular region with its radius defined by the euclidean

distance from original location to its obfuscated location as shown in Figure 4.1a.

The estimated k-anonymity for a sensitive location is calculated as:

kest,i = π ×D2
i ×

(
Ni

Ai

)

where Di is the measure of Euclidean distance between the original household location and its

perturbed location, Ni is the population of the neighborhood block and Ai is the area of the geo-

graphic block of the neighborhood. The estimated k-anonymity metric replaces the exact location

of a subject with an anonymized spatial region that contains at least K-1 other subjects preventing

an adversary from distinguishing a unique subject at a probability of 1/K [228]. Achieving higher

Achieved K-estimate values guarantees a higher degree of privacy protection. In our analysis, we

compare the derived Achieved K-estimate for each perturbed location and evaluate which pertur-

bation technique provides the highest location privacy protection across a range of protection radii
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and varying privacy budgets. We consider a minimum of ten households to be the smallest to ensure

privacy protection.

In our second approach, we use the geographic distance metric which evaluates the guarantee of

privacy protection by the extent of perturbed distance. In using the euclidean distance between

the original and perturbed location, we assume a small geographic distance offers a low level of

privacy with weak protection guarantees, whereas for a stronger privacy guarantee, requires higher

geographic distances.

4.9.3 Data utility

Discussions on privacy protection generally assume a trade-off between privacy and the usefulness

of data after perturbation. In other words, when a higher privacy is achieved, the potential usefulness

of the data is degraded especially in a transportation planning context. Consider an example where

our application interest is transit assignment for metro users, and that we have information on a

respondent‘s home location that we would like to protect/perturb. The greater the perturbation

distance to the home location, the more likely the perturbation is to protect the respondent‘s identity.

At the same time, the greater the perturbation distance, the more likely it will be that the respondent

would be assigned to the wrong metro access station and therefore anonymized assignment results

would not correspond with the original results. As such, we assess the utility of anonymized data

for the purpose of travel modeling by comparing the amount of spatial error introduced by the

perturbation techniques. In our analysis, a minimum observed average spatial error defines a high

utility of sanitized data. We calculated the average spatial error as:

ASE =
1

n
×

n∑
i=1

Di,j

where n is the total number of point locations, Dij is the euclidean distance from original location,

i, to perturbed location, j.
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4.10 Experimental Setup

For this analysis, we used training datasets as discussed in the section below. We built on algorithms

and source codes that had been developed for both perturbation methods. For Geo-I, we enhanced

the differential privacy algorithm which is implemented by Chatzikokolakis et al. [219] in the Lo-

cation Guard browser extension [229]. Our enhancement provided capabilities for varying epsilon

and choosing an attribute field to derive protection distances of perturbation. The algorithm was

deployed on Quantum GIS 2.18 [230] running on Microsoft Windows 10 desktop computer. On the

other hand, we used and improved existing algorithms for the Donut Geomask, which is built by the

Bayesian Maximum Entropy Lab of the University of North Carolina [231]. Our modification up-

dated the libraries for the algorithm to be deployed on the Esri ArcGIS 10.4 platform. The complete

source code is available at http://github.com/gbmarfo/geoperturbation.

4.11 Experimental Results and Analysis

4.11.1 Training Datasets

We conducted analysis on both perturbation methods (i.e. Donut and Geo-I) using the MTL Trajet

data of 2016. MTL Trajet 2016 was a large-scale smartphone travel survey conducted by the City

of Montreal using the app MTL Trajet developed by the Concordia University TRIP Lab. The

study took place in October and November 2016 [192]. The residential location data used in the

analysis came from the questionnaire asked to respondents after installation of the app. Altogether,

the home locations of 7,985 respondents were included in the analysis. Whereas the data sets

contain trajectory information of trips by users that we could infer sensitive origin destinations, we

focused on working with the user‘s reported data that had been definitively labelled as place of

residence. Notwithstanding, the techniques and algorithms are applicable to sensitive trip origins

and destinations as well.
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4.11.2 Analysis on Privacy Protection

In measuring the amount of privacy protection achieved, we calculated the Achieved K-estimate for

perturbed points over varying protection distances for values as shown in Figure 4.1c, and evalu-

ated the population that made them indistinguishable if reversely identified by an adversary. This is

illustrated in Figure 4.1a. We experimented with varying protection distances to measure the rela-

tionship between privacy and perturbation distances. Our analysis on achieved privacy protection is

categorized and discussed as follows.

Achieved K-estimate Measurement

We observe for the Donut approach, that the estimate of Achieved K-estimate increases linearly

with an increase in protection distance. Thus, higher Achieved K-estimate values are obtained

when perturbation distances increase. A higher Achieved K-estimate value guarantees a stronger

privacy as a larger indistinguishable population is created around the perturbed point [221] (see

Section 4.8).

Figure 4.2: A plot of the Achieved K-estimate showing average k achieved vs average radius at Max
K (Section 4.8.). The diagram shows (a) Achieved K for the Donut method and (b) Achieved K for
the Geo-I method.
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The Donut approach using an inner ring radius, R1 as shown in Figure 4.1b, sets the minimum

distance of perturbation to prevent perturbation of too small distances. As can be seen this has

the effect of ensuring relatively high Achieved K measures that increases linearly with Max K.

On the other hand, the Geo-I approach did not guarantee stronger privacy protection over widened

protection distances in our analysis. Unlike the Donut approach where Achieved K-estimate values

increase linearly with perturbation distances, the Geo-I approach provides privacy that correlates to

a minimized privacy budget (i.e. epsilon). As shown in Figure 4.2, the lowest Achieved K estimates

(0 to 5) was recorded for epsilons at 0.3 to 0.5 whereas a steep rise to 25 was observed for epsilon

at 0.1 which suggest an improved privacy with smaller privacy budgets.

Figure 4.3: A plot of Average Achieved K against perturbation distances.

Our continued analysis incrementing protection distances (with larger Max K) for Geo-I did not

impact on Achieved K-estimates whereas the Donut method steadily increased with distances. Our

analysis ended with a minimum privacy budget of 0.1 which performed the best of the chosen

privacy budget values. Lowering the privacy budget improves privacy protection [232, 233]. The

absence of an inner ring in the Geo-I, however, allowed for the negligible distances of perturbation

resulting in weak levels of privacy. As such, when considering all levels of Max K and epsilon, the

Donut method performed better in the delivery of privacy protection over the Geo-I.
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Average K-estimate and Perturbation Distance

We use the optimal performing parameters for Donut at Max K of 500 and Geo-I with Max K of

500 and a privacy budget of 0.1, to evaluate the correlation of perturbation distances and Achieved

K-estimates. We break Achieved K-estimates into bins of 10 and aggregate the mean perturbation

distances with both techniques. Geo-I records its maximum Achieved K-estimate at 112 and its

highest perturbation distance at 87 meters as shown in Figure 4.3. Notice that despite choosing a

K-Max value of 500, the Geo-I technique never produced Achieved K-estimate values near 500. At

its lowest end, an Achieved K-estimate of 0 is recorded with an average distance of about 10 meters.

This denotes very weak privacy protection as negligible distances are observed with an Achieved

K-estimate of less than 10, i.e. the locations are highly distinguishable. The Donut method on the

other had never produces Achieved K-estimates of less than 10 and results in perturbation distances

from 60 to 200 meters. In other words, the Donut does a much better job of ensuring privacy.

4.11.3 Analysis of Perturbed Distance Distribution

As mentioned before, each perturbation technique seeks to protect a respondent‘s location by trans-

posing to a random distance away from its original location. We studied the distribution of perturbed

distances to evaluate whether these distances conformed to known probability distributions. If they

do, then the original locations can be inferred with knowledge only of the probability distribution

and its parameters (see [22] for details).

To do this, we first calculated the euclidean distances between the original location and its gener-

ated obfuscated location for each perturbation method. In order to evaluate whether the distributions

conformed to known distributions, we fit common continuous distributions (i.e. Normal, Lognor-

mal, Weibull, Gamma, Exponential) using maximum likelihood estimation to the perturbed distance

distributions. We also recorded the maximum log-likelihood values for each of the distributions for

different values of K-Max and epsilon for distances achieved by both the Donut and Geo-I methods.

The lognormal distribution recorded the highest maximum log likehood values for both techniques.

The distribution has its greatest density centered about the mode value, where the mode value rep-

resents a positive linear skew. We illustrate the empirical anonymization distributions of spatial
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(a) Geo-I (b) Donut

Figure 4.4: The plot of density distributions of spatial distortions for both methods.

distortions observed for both perturbation methods as shown in Figures 4.5 and 4.6. The distribu-

tion of randomness in the spatial error fits better in a lognormal distribution as shown in the plots.

Figure 4.5: Log Likelihood plots for continuous distributions on Geo-I

In order to attest that the randomness of perturbation distances generated by the two approaches are
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Figure 4.6: Log Likelihood plots for continuous distributions on Donut

closest to a lognormal distribution, we report the average maximum log likelihood statistics of the

distributions of fit to the anonymized data sets for both techniques.

Table 4.1: A table showing average maximum likelihood values of continuous distributions fitted
on anonymized data for perturbation methods.

Method Normal Exponential Weibull Gamma Lognormal
Donut -48464.978 -44003.698 -43495.976 -42671.105 -41333.105
Geo-I -32442.575 -26170.354 -26144.260 -26002.949 -25521.902

4.11.4 Analysis of Data Utility

Finally, we calculate the average spatial error for sets of perturbation distances achieved by varying

K Max (i.e. 100, 200, 300, 400, 500) and epsilon. As shown in Figure 4.7, the Donut method shows
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a steady increase in the spatial error with an increase in Max-K. The magnitude of spatial error

degrades the utility of the anonymized data, however. This implies that to ensure a high utility of

anonymity for the Donut approach, the protection distance should be reduced so as to ensure privacy

protection, while maintaining the utility of the perturbed data.

The Geo-I method exhibits a high utility on anonymized data as average spatial error decreases

gradually with an increase in the privacy budget as shown in Figure 4.7. A high average spatial

error was observed at an estimate of 35 meters for the smallest value of epsilon (i.e. 0.1) to a mean

protection distance of K Max at 500. Meanwhile, at a high epsilon of 0.5 applying the mean of

the same K Max values, an estimate of average spatial error of only about 10 meters was observed.

With this observation, the Geo-I provides a high utility relative to the Donut approach, but clearly

limited privacy protection.

Figure 4.7: Spatial Error observed for Donut (left graph) and Geo-I method (right graph)

4.12 Concluding Remarks

In this paper, we have evaluated two popular geographic perturbation techniques (Geo-indistinguishability

and Donut Geomask) to anonymize residential location data from a large-scale smartphone travel
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survey. Our results showed that the Donut method performs better for anonymizing location data

than the Geo-I method. The degree of privacy resulting from the Donut method increased lin-

early with an increase of the protection distance thereby making the method sensitive to desired

K-anonymity levels. The inner radius used for the Donut method that determines a minimum dis-

tance of perturbation provides a great improvement to output perturbation. As observed in our

analysis, the inner radius prevented negligible perturbed distances thus this technique guarantees a

strong privacy protection of sensitive locations.

On the other hand, Geo-I, which has drawn a lot of attention recently, showed much worse privacy,

but did however show promise for preserving the utility of the data. Unlike the Donut method, Geo-

I is not sensitive to increased protection distance, but rather to lower privacy budget (i.e. epsilon)

values. This was evident in our analysis, where we experimented with a range of epsilon values. At

the smallest epsilon value of 0.1, we achieved the best perturbation distance for the Geo-I at an av-

erage of 25 meters. As explained by Oya et al. [233], the poor performance of Geo-I is attributed to

the fact that counting queries in differential privacy has low sensitivity. This means that an addition

or removal of a single record does not significantly affect the outcome of a query thereby ensuring

high privacy achievement without introducing much noise. On the contrary, queries implemented

in Geo-I demonstrate high sensitivity and therefore require large noise to achieve a high level of

privacy.

Notwithstanding, while analyzing the distribution of perturbed distances, we observed that the dis-

tances of perturbation closely resembled lognormal distributions for both approaches. This means

that true randomness in the resulting displacements from perturbation is not achieved. With this in

mind, an adversary with prior knowledge of the perturbation distance distributions would be able to

reversely identify a real location from its perturbed point within a high degree of precision.

We find interest in advancing our research into improving the protection efficiency of Geo-I by in-

troducing the concept of inner radius as implemented in the Donut method. A potential solution to

improve Geo-I privacy performance which we seek to investigate, is to design its location queries

to have lower sensitivity. Further investigation of Geo-I using smaller protection budgets might also

prove fruitful. Also, for the Donut method, we would like to work on incorporating location seman-

tics in determining the optimal radius of perturbation as an addition to the existing computation by
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population density.

We also acknowledge the scope of this work is focused on the anonymization of independent point

samples and that there is also a potential interest for protecting privacy in the context of multi-

point data such as trajectories. We hope to further our research into location-privacy protection

mechanisms that address multiple trips points and trajectories of mobile users in the future.

4.13 Acknowledgements

This research has been funded by the Social Sciences and Humanities Research Council of Canada

(SSHRC) and Canada Research Chairs program.

4.14 Author Contribution Statement

The authors confirm contribution to the paper as follows:

Study conception and design: Godwin Badu-Marfo, Bilal Farooq, Zachary Patterson

Development of generative model and testing: Godwin Badu-Marfo;

Analysis and interpretation of results: Godwin Badu-Marfo, Bilal Farooq, Zachary Patterson;

Draft manuscript preparation: Godwin Badu-Marfo, Bilal Farooq, Zachary Patterson;

All authors reviewed the results and approved the final version of the manuscript.

85



Chapter 5

Composite Travel Generative

Adversarial Networks for Tabular and

Sequential Population Synthesis

5.1 Preamble

In this chapter, we present a novel Generative Adversarial Network (GANs) to simultaneously syn-

thesize tabular socio-economic variables and sequential location variables in a travel survey. The

GANs developed in this chapter is composed of multiple generators and discriminators operating

concurrently to generate the complete trip activity diary. The experiment and methodology high-

lighted in this chapter extends contribution to the broader subject of population synthesis using deep

generative models.

This research article is under review in Transportation Research Part B: Methodological.

86



5.2 Abstract

Agent-based transportation modelling has become the standard to simulate travel behaviour, mobil-

ity choices and activity preferences using disaggregate travel demand data for entire populations,

data that are not typically readily available. Various methods have been proposed to synthesize

population data for this purpose. We present a Composite Travel Generative Adversarial Network

(CTGAN), a novel deep generative model to estimate the underlying joint distribution of a popula-

tion, that is capable of reconstructing composite synthetic agents having tabular (e.g. age and sex)

as well as sequential mobility data (e.g. trip trajectory and sequence). The CTGAN model is com-

pared with other recently proposed methods such as the Variational Autoencoders (VAE) method,

which has shown success in high dimensional tabular population synthesis. We evaluate the per-

formance of the synthesized outputs based on distribution similarity, multi-variate correlations and

spatio-temporal metrics. The results show the consistent and accurate generation of synthetic popu-

lations and their tabular and spatially sequential attributes, generated over varying spatial scales and

dimensions.
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5.3 Introduction

Agent-based transportation microsimulation models study the interaction between the mobility of

travel agents and how urban systems operate and evolve through an individual’s daily activities

[22, 234, 235, 236, 237]. These models help to understand and predict future travel demand, which

subsequently impacts transportation networks, environmental sustainability, land and energy usage.

Traditionally, individual level data have been collected through phone surveys, household or indi-

vidual travel diaries and paper questionnaires administered by Census agencies. The proliferation

of pervasive technologies (i.e. smartphones, mobile devices, GPS) with high computing power

and data connectivity capacities in recent times have influenced the volume, variety and velocity

of travel data collected [2]. While data collection technologies are advancing, the availability of

microdata still remains relatively limited owing to the high cost of acquiring reliable data and also

the threat to privacy of the collection of spatially- and temporally-detailed information on individu-

als. In practice, government bodies (e.g. census agencies) conduct travel surveys on a sample of a

population whose statistical characteristics are used to represent the behaviour of the entire popula-

tion. Using sample data and other information (i.e. partial views) as base population information,

researchers can reconstruct representative members of a population using synthesis techniques such

as Iterative Proportional Fitting (IPF) [58, 238], combinatorial optimization (CO) [239], or Markov

chain Monte Carlo (MCMC) simulation [22].

Deep generative models have evolved recently and shown the ability to estimate the joint probability

distribution of data using deep neural networks and have had success in regenerating high resolution

images [24, 65, 240]. Well known deep generative models, such as Variational Auto-Encoders

(VAE) [65] and Generative Adversarial Networks (GANs) [24] have gained considerable attention

recently for their potential to generate synthetic representations from latent space that estimate the

underlying data distributions. GANs have exhibited flexibility in generating high-quality synthetic

images and natural language processing [241, 242]. VAEs use a probabilistic graphical formulation

of creating models into latent space thus inherently reducing most dimensions into compressed

latent representations. This allows VAEs to train efficiently, but their synthetic outputs can be blurry

due to drawing from low dimensional latent space. GANs are explicitly optimized for synthetic
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generation, and don’t have the dimension collapse issues of VAEs. The advantage of GANs is in

reproducing realistic synthetic outputs using their adversarial objectives. In this paper, we develop

GANs models for population synthesis to estimate combinations of high dimensional synthesized

output.

While traditional population synthesis techniques are mostly used for the generation of point es-

timates and cross tabulations of tabular data, travel behaviour data require spatial and tempo-

ral sequences of travel-related activities. Deep neural networks such as Recurrent Neural Net-

works(RNN) and Long Short Term Memory (LSTM) models [243] have proved successful in gen-

erating sequences through modelling the conditional probability distributions of input sequences.

Another contribution of our work is to simultaneously recreate the location sequence of a synthe-

sized population using LSTM, while studying the underlying distribution of the trajectory of the

sample. To the best of our knowledge, this is the first effort in the population synthesis literature

that recreates disaggregate microdata with sequences of locations.

In this paper, we present a novel composite GANs model following the Coupled GANs architecture

by Liu et al. [244], having multiple generative and distributive models to learn the joint distribution

of multi-domain travel diary data having tabular socio-economic variables as well as sequential

trajectory locations. This model is capable of learning the joint distribution by drawing samples

from the marginal distributions of variables. In summary, our contributions expand on the current

literature on population synthesis as follows:

(1) We propose a composite GANs architecture to simultaneously recreate synthetic representa-

tions of tabular microdata and sequential locations of travel diary data.

(2) In tabular microdata synthesis, we synthesize mixed features i.e. numerical as well as cate-

gorical.

(3) We showcase synthetic sequences of locations inspired by the SeqGAN [1].

(4) We compare and evaluate the performance and similarity of synthesized tabular data distribu-

tions to synthesis using Variational Auto-encoders [245].
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The paper is organized as follows. In Section 2, the literature review is provided. Section 3 formal-

izes the problem and introduces the proposed methodology. In Section 4, a case study, evaluation

procedure, results and discussion are provided. Section 5 provides a conclusion and some directions

for future work.

5.4 Literature review

Traditional population synthesis approaches have been inherently mathematical and can be used to

estimate synthetic members of a population having spatial and aspatial characteristics. The aggre-

gate summary of population members corresponds to published aggregates of the entire population.

These synthesis approaches are broadly classified into three categories namely, re-weighting, matrix

fitting, and simulation-based approaches [234]. First of all, re-weighting methods adopt different

techniques to adjust the weight factor of surveys such that the sample represents sub-regions rather

than the entire summation of the population aggregates. In this sense, re-weighting applies non-

linear optimization to estimate weights and are not scalable to high dimensions [235, 246, 247].

Matrix fitting method evoke expansion factors that are expressed by the ratio between a starting

solution and the final matrix. Common implementations of matrix fitting are the Iterative Propor-

tion Fitting (IPF) proposed by Deming et al. [248] and the Maximum Cross-Entropy [249]. It is

worth noting that these two methods known as deterministic models, do not produce agent-based

samples but rather a sample of prototypically weighted agents [245]. Lastly, simulation-based ap-

proaches model the joint distribution of population data with its full set of attributes. New members

of the population can be recreated by sampling from the joint distribution. This approach addresses

the drawbacks of the deterministic models and is capable of estimating agent-based samples while

being scalable to high dimensional datasets. A notable simulation-based approach is the Bayesian

Network proposed by Sun and Erath [250]. This method uses a graphical representation of a joint

probability distribution, encoding probabilistic relationships among a set of variables in an efficient

way. While the bayesian network outperforms the deterministic models, the learning of its graph

structure can be computationally challenging [245].

More recently, deep generative models have become popular in the academic literature because
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of their outstanding performance and computational effectiveness in producing realistic images

and machine translation [251, 252]. Well-known deep generative models are the Variational Au-

toencoder (VAE) [65], restricted Boltzmann Machines (RBM) [253], and Generative Adversarial

Networks (GANs) [24]. These generative models have shown promising results in reproducing the

structural and statistical representations of original data by sampling from the estimated joint proba-

bility distribution of the underlying data. While GANs have been used extensively for image, sound

and sequential text generation, little attention has been paid to its applications in terms of structured

tabular data that is mostly composed of numerical and categorical features.

Choi et al. [254] proposed a model that combines auto-encoders with GANs to synthesize private

electronic health records. Their method focused on the generation of binary and count variables in

health datasets. The authors assert that the original “vanilla“ GANs formulation [24] is susceptible

to the “mode collapse” problem and difficult to train [251]. Similar work by Park et al. [255]

proposed a table-GAN to synthesize tabular data using a hinge-loss privacy control mechanism.

Their method showed a compatible model for anonymization as sensitive attributes are maintained

without change. Recently, Borysov et al. [23] presented a generative model to synthesize micro-

agents from a large Danish travel diary to learn the joint distribution of the training data using a

Variational Autoencoder (VAE) model. In our approach, the GANs architecture will be optimized

for high performance throughput, making it capable of learning all training data records; even those

with many zeros representing agents that are omitted from the training samples but exist in the real

population.

Generative models have been used in the generation of sequence discrete data, such as text and lan-

guage translation. Sequence prediction models are typically trained to maximize the log-likelihood

(Maximum Likelihood Estimation, or MLE) of the next token (character or word) based on the

current token. GANs has had little progress in generating sequence discrete data [256] because

the generator network is designed to output continuous gradient updates, which does not work on

discrete data generation [240]. In an attempt to solve this discrepancy, Bengio et al.[257] proposes

Scheduled Sampling builds on MLE by randomly replacing ground-truth tokens with model pre-

dictions as the input for decoding the next-step token. Another approach is to use the concept of

Reinforcement Learning named SeqGAN [1]. The SeqGAN approach models the generator as a
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stochastic policy where the state is the tokens generated so far and the action is the next token to

be generated. The presence of a stochastic policy, REINFORCE [258] algorithm, allows differ-

ent actions to be sampled during training and derive a robust estimate of the policy. We adopt the

SeqGAN approach in our model for the sequential component of the CTGAN architecture whose

purpose is to synthesize trip sequences.

5.5 Methodology

The problem definition is introduced, which establishes the objective of this research. As a base

case, we briefly present the variational auto-encoder method, which has been recently used for pop-

ulation synthesis of tabular data only [245]. An overview of the Generative Adversarial Networks

and subsequently a detailed description of our proposed composite architecture of GANs for syn-

thesizing tabular and location sequences follow.

5.5.1 Problem definition

We assume a dataset on mobility of N population agents (i.e. households, families or individuals)

characterized by a set of basic attributes X = (X1, X2, X3, ...Xm) where m is the number of

attributes, and their sequence of time-ordered trips to locations drawn from the universe of locations,

UL. The universe of locations, without loss of generality, consists of geographic positions of all

route intersections and road vertices within the study area. Formally, the trip chain is defined by

T = L1 → L2 → · · · → L|T | where ∀1 ≤ i ≤ |T |, Li ∈ UL. It is worth noting a location

may occur multiple times in a sequence of trip chain especially for home based trips. Table 5.1

shows an example of such a dataset. Typically, the joint distribution between attributes in a true

population are not accessible hence partial views such as samples are used to estimate the joint

distribution of the population [22]. In this regard, we present a novel generative framework using

deep learning methods to estimate the joint distribution of a true population using sample partial

views having tabular and sequential attributes, from which we can draw synthetic agents with tabular

and sequential characteristics simultaneously.
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5.5.2 Variational Auto-encoders

The Variational Auto-Encoder (VAE) was proposed by Kingma et al. [65], as an alternate deep

learning approach to estimate a population distribution into a compressed lower dimensional latent

space using a neural network called the “encoder“ that is supported by an auxiliary neural network

named the “decoder”, acting as a generator by drawing random samples from the distribution of the

latent space. During training, the encoder network receives an input vector of the size of the training

data and outputs a latent representation. The decoder network receives the latent representation as

input and generates new synthetic agents from the prior distribution of the latent space. Using VAE,

Borysov et al. [245] developed a scalabe population synthesis method for tabular data and showed

that it outperforms IPF and simulation based methods. Thus we will use VAE as our base case for

comparison for tabular data synthesis (Columns 1–4 in Table 5.1). For further reading about the

VAE, readers are referred to [65, 245].

5.5.3 Generative Adversarial Networks

Goodfellow et al. [24] proposed Generative Adversarial Networks (GANs), which have gained

prominence in the deep learning literature because generative modelling has shown promising re-

sults in synthesizing realistic images and sequences for natural language processing. Intuitively,

GANs simulates a two player game composed of Generator and Discriminator networks. The goal

of the Generator is to generate samples from latent space that are equivalent to real samples while

the Discriminator acts as a police officer to distinguish real samples from synthesized ones. Mod-

els of the generative and discriminator are both realized as multilayer perceptrons. During model

learning, the Discriminator gets better at discriminating real samples from fake, while the gener-

ator improves on generating samples that are close to the real samples until a Nash equilibrium

[259, 260] is achieved, where each model reaches its peak ability to thwart the other’s goal. The

Age (x1) Sex (x2) Status (x3) Permit (x4) Trips (T)
21 m student y L1→ L2→ L3→ L4
30 f worker n L1→ L3→ L4
45 m not employed y L1→ L2→ L3→ L4

Table 5.1: A preview of mobility data on travel agents comprising structured and sequential features.
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objective function of GANs is defined as:

Definition 1 (Objective function):

The objective function of the Generative Adversarial Networks [24] is:

GminDmaxV (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Equation 4 explains the objective function of the Discriminator, which seeks to maximize the output

of D(x) to 1 when the input is from the true data distribution of the real samples. If the input is

generated from the Generator, then D(G(z)) should minimize the output of the objective function.

In the training process, both networks simultaneously learn parameters using Stochastic Gradient

Descent. The training process halts when a Nash equilibrium is reached so that the Discriminator is

unable to distinguish probability from true or fake samples.

5.5.4 Coupled generative adversarial network

The Coupled generative adversarial network (CoGAN) proposed by Liu et al. [244] addresses the

problem of learning a joint distribution of multi-domain images from data. While other multi-modal

learning approaches exist [261, 262, 263], CoGAN has shown successes in overcoming correspon-

dence dependency [244] which makes it challenging to build a dataset of corresponding images.

CoGAN is built on the GANs framework [24] and extends the capability of learning joint image

distribution tasks. CoGANs consist of multiple GANs networks each defined for a single image do-

main. While CoGAN naively learns the marginal distributions of its input data, the authors enforced

a weight-sharing constraint to achieve joint distribution learning between the networks and showed

its effectiveness in application to multi-image domains, unsupervised domain adaptation and image

transformation. We refer readers to the literature [244] for a thorough discussion on the architecture

and applications of the CoGAN.

5.5.5 Composite Travel Generative Adversarial Network

The Composite Travel Generative Adversarial Networks (CTGAN) is designed for learning the

joint distribution of tabular travel attributes and sequential trip chain locations of an agent in a

94



simultaneous manner, drawing inspiration from the CoGAN [244]. CTGAN as shown in Figure

5.1, consist two GAN networks - GAN1 referred as the Tabular model, and GAN2 as the Sequence

model.

Figure 5.1: The architecture diagram of Composite Travel Generative Adversarial Networks (CT-
GAN).

The CTGAN has a tabular component whose objective is to learn the joint distribution of the ba-

sic socio-demographic attributes in the travel diary and a sequential component with an objective

to learn the distributions of the trips undertaken in a day by an agent. During the training, each

component is implemented as an independent network and learns its parameters based on the under-

lying data distribution. CTGAN then learns to synthesize pairs of tabular attributes with sequential

locations of an agent in a population.

GAN1-Tabular Component

The purpose of the Tabular component in the CTGAN is to synthesize the table of records on an

agent’s socio-demographic and economic attributes (i.e. Age, Sex, Status, Income) which exist in

numerical as well as categorical types. GAN1 is able to synthesize both types of tabular attributes.

The tabular component shown in Figure 5.2 is composed of an independent GANs architecture

having a single Generator denoted GT and Discriminator, DT . The Generator, GT , is made up of
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Figure 5.2: The structure of the Tabular component of CTGAN

a Multi-Layer Perceptron (MLP) with neurons for each layer connected to the neurons of the next

layer. It takes as input a fixed set of vectors and processes them through three (3) hidden layers to

compute a higher level representation of the inputs. A final output layer returns a prediction of a

last representation for the corresponding inputs. Similar to the Vanilla GAN [24] implementation,

the input layer of the Generator accepts a random noise sampled from a Gaussian distribution with

a dimension size equivalent to the size of the real data. In order the depth of features learnt in the

neural network, we exploit multiple hidden layers in the network. Each layer has a bias with a

Rectified Linear Unit (ReLU) [264] activation applied to its output. The ReLU activation is used

because it is computationally efficient which allows the network to convert faster, and easily allows

for backpropagation. Due to the diverse nature of the data types (i.e. numerical and categorical),

the final output layer is split into categorical and numerical vectors. For the categorical vectors, the

Softmax activation is applied while the Linear activation function is applied to the numerical vectors.

Subsequently, the activated output layers are merged together as a final output of the generator

network. We consider age a continuous numerical feature unlike previous work of Borysov et al.

[245] that bins into age group categories using count aggregates. An arbitrary size of 200 neurons
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are defined for the first hidden layer, followed by 100 neurons and 50 neurons for the last hidden

layer. The choice of neuron sizes was done randomly and the best choice was based on the training

performance of the network and distribution of the final output layer.

The Discriminator of the tabular component, DT , is designed with an aim to distinguish between

true data and synthetic data from the Generator, GT . The Discriminator is made up of Multi-Layer

Perceptron with neurons for each layer connected to the neurons of the next layers. The input layer

of DT receives a matrix with the size of the true data shape equivalent to the size of the generated

data from GT . The real data samples are pre-processed prior to being fed into the input layer.

The numeric features are normalized to a range between -1 and 1, a recommended approach for

optimizing effective learning in neural networks [240]. The binary and categorical features were

encoded with one-hot vectors [265] because of the low cardinality of categorical unique values.

Each hidden layer is composed of matrix multiplication of nodes with bias and a ReLU activation

function. The last hidden layer is activated with a Sigmoid activation function with output of 1 for

real samples and 0 for fake samples.

GAN2-Sequential Component

In the second component of the CTGAN architecture, the objective is to synthesize sequences of

location distributions traveled by population agents. As earlier mentioned, the CTGAN is composed

of multiple generators and discriminator networks hence for the second network of generator and

discriminator, we adopt and integrate the SeqGAN model shown in Figure 5.3 proposed by Yu et al.

[1] that has been successful in the generation of text sequences. This network cluster is referred as

the “Sequential component of CTGAN.“ We extend the implementation of this architecture towards

synthesizing location sequences knowing that previous work has used the same in text and sentence

generation [266, 267, 268].

It is worth noting that GANs have proven difficulty in the training and generation of sequences and

discrete data types. By design, the standard GANs were designed to work with continuous or real-

valued data, thus the gradients propagated from the discriminator exist as floating or real-valued

losses sent to the generator. This implementation limits the suitability of training with gradient

descent on discrete data types. Another is in how the discriminator evaluates gradient loss on a
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sequence. The discriminator is designed to only classify and evaluate gradient loss on an entire

sequence. For instance, only a complete sentence of text can be classified as real or fake by the

discriminator but not an incomplete sentence with parts of text. This implies that the loss of a

partial sequence cannot be evaluated on how good the partial sequence is until the entire sequence

is fully generated.

This scenario cannot be applied to discrete types as they cannot be updated with continuous or

real-valued losses. In order to address the drawback of evaluating partial sequences, we adapt the

SeqGAN approach to employ an intermediate score mechanism built using Reinforcement Learning

[269]. The intuition of Reinforcement learning is illustrated by an agent (a baby) who takes a set

of actions (like walking) in an environment based on the state (or thinking) of the agent. When the

outcome of the actions of the agent is successful, the agent is given a reward. The objective of this

approach is to optimize the actions of the agent and adversely maximize the future expected rewards

to the agent. In this regard, the Generator, GS is modelled as an agent of Reinforcement Learning

as discussed. As an RL agent, the state s is defined as the tokens generated so far, the action a, as

the next token to be generated and a Reward r gives an intermediate feedback or score to guide GS

by DS on evaluating the location sequence generated. The gradients from the Discriminator, DS ,

cannot pass back to GS since the outputs are discret. To overcome this, we implement an algorithm

of reinforcement learning called “Policy Gradient” which is a stochastic parameterized policy. As a

stochastic parameterized policy, the action (next token) may be sampled from a normal distribution

whose parameters (i.e., mean and variance) are predicted by the policy. When the samples drawn

are evaluated by the policy, subsequent samples can be drawn by moving mean closer to samples

that lead to higher rewards, or farther away to samples leading to lower reward. The underlying

objective of the generator model is to generate a sequence starting from a state SO in a way to

maximize the expected end reward. We discuss the definition of the end reward in the next section.

Definition 2 (End Reward):

The expectation of the end reward is defined by:

J(θ) = E[RT |s0, θ] =
∑
y1εY

G(y1|s0).QGD(s0, y1) (2)
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Figure 5.3: The sequential architecture diagram from SeqGAN [1]

The expectation of the end reward RT given in Equation 2 is derived as the product of possible values

of the reward (i.e. the action-value function) and the probability of the value occurring when given

a start state s0, and Generator with parameter of θ. The action-value function QGD(s0, y1) estimated

by the discriminator returns the reward value for taking an action from the state s0 following the

policy G. The objective of the Generator, GS is to generate sequences of location destinations from

the start state s0 in a way to maximize the end reward, RT determined by DS . While DT only

rewards the end of a finished sequence, it is important for every action predicted at each timestep

of a state be evaluated for fitness. Intermediate scores are thus required. To achieve this, the Monte

Carlo search with roll-out policy is used as in SeqGAN. This approach samples the unknown tokens

and estimates the state-action value at each intermediate step.

The Monte Carlo search is a tree-search algorithm having a root node, s0. The root node is expanded

while trying all possible actions belonging to the set of action states as a way to construct child nodes

for each state. The value for each child node is determined while the remaining tokens are rolled out

with a policy until the entire sequence is generated. The Discriminator gives a score accumulated

on each node of the MC tree when the end of sequence is reached.
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5.6 Data and case study

The experimental evaluation of CTGAN is based on travel data from the 2013 Montreal Origin-

Destination (OD) survey conducted in 2013. The data contains the travel diary of 139,354 individ-

uals and includes socio-economic variables such as age, employment status, gender, etc., and other

trip related variables such as origin and sequence of trip destinations [270].

5.6.1 Data Pre-processing

Dealing with the mixed data types and complex geospatial types, especially for generating travel

survey data poses two challenges: numeric representation, and reversibility. Neural networks work

efficiently with floating precision numbers, making it necessary to translate all variables into low-

cardinal dimension floating representations and to ensure the uniqueness of each sample repre-

sented. Binary and categorical variables are indexed numerically and one-hot encoded [271]. Nu-

meric variables are scaled and normalized within a range from negative one (-1) and positive one

(+1). These pre-processing techniques derive a numeric representation of the input data. Unlike

regression and classification algorithms that usually have a single output, generative modelling of

tabular data requires the vectors of the final output layer to be easily reversible to readable formats

synonymous with the raw input data. Thus, encoding techniques of input data to numeric repre-

sentations must be easily reversible with the ability to be decoded to the format of the input data.

In our work, we used Scikit-Learn [272] label encoding and OneHot encoders which have reverse

encoding capabilities. The geographic coordinates (i.e. latitudes and longitudes) of spatial loca-

tions are transformed into one-dimensional spatial representation using the Google s2 [273] library.

The travel routes were generated using the shortest distance path between origin and destination

points. This was implemented using the Open Source Routing Machine (OSRM) api available at

http://project-osrm.org.

5.7 Evaluation metrics and results

We evaluate the fitness of the synthesized population using similarity benchmarks on the statistical

and spatial distribution. As a base case for comparison we also synthesized a population using VAE

100



with the same input data.

5.7.1 Similarity in statistical distribution

The purpose of this benchmark is to evaluate the statistical similarity between the true and synthetic

representations of the data. An efficient approach to guarantee the utility of synthetic reconstruction

is to compare its statistical properties to the true distribution whose results should be identical or

near-identical. We assume that the synthetic data is fit for microsimulation estimations when ag-

gregate queries on both true and synthetic distributions are equivalent. We evaluate the similarity

of statistical properties using three (3) metrics. First, we observe the full joint distribution of all

possible combinations of data variables. While this approach is efficient for low dimensional tab-

ular data as used in this paper, an implementation to high dimensional data could be complicated.

Partial and conditional joint distributions should be used in such cases. Secondly, we derive and

compare the marginal distributions for all domains in data variables for the true and synthetic rep-

resentations. Using this benchmark, the success of the synthesized output is measured by the high

score in similarity of the probabilities of values of variables in both datasets without reference to

the values of other variables. Finally, we quantify the empirical distributions between the synthetic

and true distributions with the Standard Root Mean Square Error (SRMSE) [274], the accuracy and

fitness of the synthetic reconstruction using a measure of the Pearson correlation coefficient(corr)

and the coefficient of determination(R2). The standardized root mean squared error is defined by:

SRMSE(π̂, π) =
RMSE(π̂, π)

π̄
=

√∑
i · · ·

∑
j(π̂i...j − πi...j)2/Nb∑

i ...
∑

j πi...j/Nb
(3)

where Nb is the total number of agents; Ri..j is the number of agents with attribute values i...j in the

synthesized population, π̂ and π is the synthetic and true distribution respectively.

5.7.2 Similarity in spatial distribution

To evaluate the utility of the synthetic reconstruction on sequential location data, we evaluate with

metrics: trip length, segment usage and origin-destination distribution. Trip length distribution

measures the similarity in distances traversed on trip segments, segment usage distribution measures
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(a) VAE (b) CTGAN

Figure 5.4: Fit between true and synthesized population.

the frequency of trips on a routes and the origin-destination measures the agent count on each

zone for trip origin and destinations. These metrics quantify the accuracy and fitness of spatial

characteristics in the synthesis model.

5.8 Experiments and evaluation results

In this section, we discuss the experiment setup and the results achieved on the model implemen-

tation using the metrics stated. The model was built and implemented with Python Keras with

Tensorflow backend support on a MacBook Intel Core i5-4258U and GPU Intel Iris Graphics 5100.

5.8.1 Statistical distribution comparison

In this experiment, we focus on comparisons of population-synthesis-based approaches on tabular

data between CTGAN and VAE. The experiments were designed such that both models were pro-

vided with the same amount of data and dimensions about the sample population. The output of

each model is subsequently analyzed to evaluate how good the full joint and marginals of the true

population are reproduced. To assess the goodness of fit, the Standardized Root Mean Square Error

is performed on the output of each model.

For comparative analysis on the full joint distribution, we consider a combination of all attributes

in the sample data for Age Group (the age variable is discretized into groups of child, young, adult,

old), Sex, Employment status and Permit. We construct a contingency table on all combinations
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(a) Employment status (b) Sex

(c) Permit (d) Age

Figure 5.5: Comparison of marginals for attributes for True, CTGAN and VAE data.

of attributes using frequency counts. As observed in Figure 5.4, while both models give a good

synthetic representation of the true data distribution, the simulated observations from CTGAN ex-

hibit a better fit with a lower SRMSE of 0.010 while the VAE results in an SRMSE of 0.116. Also,

CTGAN results in a strong correlation 0.996 compared to 0.988 for the VAE. The minimal loss in

approximation of the VAE could be attributed to the low latent dimensional representation adopted

by the VAE thus there is a loss of resolution in the synthetic reconstruction. Similarly as can be seen

in Figure 5.4, the VAE shows a slight dispersion along the line of fit that could be attributed to the

same low representation.

The marginal distributions of the tabular variables are shown in Figure 5.5, and depict the similarity

of representation for both the VAE and CTGAN approaches to the True distribution. Obviously,

the synthetic population perfectly reproduces the marginals of the training data. The representation

from the VAE marginal distribution gives a better similarity to the true distribution than the CTGAN
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though the model does not memorize the input data. This could be a cost of vanishing gradients suf-

fered by the use of sigmoid activation functions [275, 276] on the last output layer of the generator

network for binary types, as seen by the slight imbalance in the marginals of sex variable.

We extend the experiment to compare the fitting and correlation patterns in the marginal distribu-

tions of the numeric variable, age. As shown in Figure 5.6, CTGAN exhibits a better fit with a lower

SRMSE of 0.224 compared to SRMSE of 0.292 of the VAE. At an R2 of 90%, the CTGAN model

explains the true distribution with minimum variation relative to the 84% of the VAE. Finally, it

is evident that the simulated agents of the VAE show spread along the best line of fit while agents

remain clustered along the line of fit for the CTGAN. In this sense, the CTGAN model presents a

reliable agent representation that has a better fit to the true distribution and clearly outperforms the

VAE.

(a) VAE (b) CTGAN

Figure 5.6: Fitting and correlational analysis for marginal distribution on numeric variable, Age.

5.8.2 Spatial distribution comparison

In order to ensure the consistency in the spatio-temporal behaviour of synthetic agents is retained

after synthetic reconstruction of the trip sequences, we evaluate the similarity in trip length distri-

butions and the spatial distributions of error in route segment usage.
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(a) Trip length distribution of True data (b) Trip length distribution of Synthetic data

(c) Line of fit for trip length counts

Figure 5.7: Histogram of trip length distributions for true (a) and synthetic (b), and best line fitting
for true and synthetic trip lengths.

Trip length distribution

Trip lengths are defined by the movement of an agent from one location (origin) to another geo-

graphic location (destination). The length of trips is estimated using the euclidean distances be-

tween two points. Typically, an agent embarks on a sequence of trips (i.e. trip segments) based on

the purpose at the time of the day until a complete trip ends at the start origin. We consider the

lengths of all trip segments and compare the frequency distribution of travel distances between the

true and synthetic sequential representations.

In Figure 5.7a and 5.7b, the CTGAN simulated trip lengths show a near equivalence in distribution

to the real sequences. It is observed that there is a high count of short trips within distances of two

(2) kilometers for both distributions, though a slight imbalance of 19% of trip length is estimated for

real trips as compared to 17% for synthesized trips. There is a steep decline of trips whose distances

are beyond 5 kilometers in both real and synthetic representations. These statistical estimations are
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expected because travels within urban communities like in the case of our study region are relatively

shorter than rural areas. The synthetic sequences present a near perfect fitting on trip lengths to the

real sequences as shown in Figure 5.7c having an SRMSE of 0.211 and a correlation coefficient of

0.99 and an adjusted R2 of 99%.

Route segment usage distribution

The purpose of this metric is to evaluate the similarity in the frequency of trip routes taken by agents.

While the model outputs sequences of trip destinations, we assume the shortest possible distance

using the Dijkstra Algorithm [277] to derive the route itinerary from Montreal road network [278].

We compare the frequency of trip counts travelled on each route for both true and synthesized data.

The efficiency of the synthesized trip sequences is evaluated by the similarity or equivalence in route

usage counts observed on both true and synthetic trips.

Figure 5.8: Distribution of differences in route segment usage for true and synthetic trips.

In Figure 5.8, a high proportion of routes show equivalent similarity on route usage for both true

and synthesized trips. The model shows remarkable success in generating similar route usage fre-

quencies at a probability density above 40% recording the difference in usage counts between the

true and synthesized. Route usage probabilities less than 5% of the total routes exhibit variances in

frequency within range of 1 to 5 counts symmetrically. We illustrate the error distribution of route

usage for the Greater Montreal Area shown in Figure 5.9. A majority of the routes give a perfect

fit of synthetic reconstruction marked by differences close to zero, colored in magenta on the route

map.
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Figure 5.9: Route usage distribution of error in the simulated sequential trips of Greater Montreal
Area

5.8.3 Sensitivity Analysis

The aim of this analysis is to critically and systematically evaluate the performance, accuracy and

elasticity of CTGAN for varying sample and categorical sizes when synthesizing individual level

attributes or populations. The outputs are assessed using the Standard Root Mean Square Error,

calculated by comparing the sample to the simulated population and the coefficient of determination,

denoted by R2.

Varying input sample size

In this approach, random samples are selected from the original sample with sizes of 5, 10, 15

and 20%. The varying selected samples were independently trained as inputs to CTGAN. Scatter

plots are shown in Figure 5.10 to depict the relationships between the observed and simulated for

dimensions using different sampling sizes.
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With a sample size of 5%, we observe a spread along the line of fit with an SRMSE of 1.530.

Subsequently an improvement is observed as the sample size is increased to 10% with declining

SRMSE of 1.444. It is observed that the fit improves while minimizing spread when sample sizes

are increased. This suggests the model performs better with an increase in sample size and smooths

towards the distribution of the sample population with incremental sample ranges. Table 5.2 gives

a summary of the performance for all simulated dimensions. As expected, a decline in the mean

squared error for all synthesized dimensions is observed as sample sizes are increased.

(a) Sample size of 5%. (b) Sample size of 10%.

(c) Sample size of 15%. (d) Sample size of 20%.

Figure 5.10: Uni-dimensional distribution of varying sampling sizes between observed and simu-
lated observations.

Sample Status Gender Permits Age
5 1.530 0.950 1.762 1.202
10 1.444 0.900 1.666 1.123
15 1.363 0.850 1.575 1.052
20 1.281 0.800 1.465 0.994

Table 5.2: Standardized Root Mean Square Error (SRMSE) on varying samples of synthetic gener-
ation on varying sizes

.
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Inter-attribute relationships

This analysis considers how well the synthetic model recreates the observed relationships between

attributes in the original sample population for varying sample sizes (i.e. 5, 10, 15, 20%). The

results in Figure 5.11 show the performance of the conditional probabilities for Permit by Gender

attributes and Age Group by Gender attributes. The line of fit exhibits a balance population between

counts of the conditionals. As observed, the increase in sample sizes reduces the mean square errors

from 1.049 for a 5% sample size to SRMSE of 0.992 for a 10% sample size, these steadily decline

in SRMSE values for increasing sample sizes. This suggests the model improves on learning a fit

of the conditional distributions between attributes and subsequently smooths the distribution of the

increasing sample sizes toward the distribution of the sample population. Similarly, we evaluated the

full joint distribution for all variables between the sample population and synthesized population.

The output observations were re-sampled and evaluated. Using a 5% sample size as shown in Figure

5.12, there is a wider distribution spread between observed and synthetic of SRMSE at 1.457, while

the line of fit shows a spread of points along it. This suggests an imbalance in the population

summaries between observed and synthesized observations with a weaker distribution fit compared

to the sample population depicted by the spread. It can be seen from the analysis that the model

shows consistency in learning the inter-attributes relationships and full joint distributions between

all attributes when the sample sizes are increased.

Varying categorical sizes

In the final experiment, we evaluate the performance of CTGAN for varying categorical sizes. For

this purpose, the attribute “Age” is converted from numerical to categorical input and subsequently

discretized into bin sizes of 5, 10, 15 and 20 categories of age groups. The model is retrained with

the discretized categories and the output is represented in Figure 5.13. At a category size of 20,

we observe a weaker correlation along the line of fit suggesting an imbalance between population

counts of observed and simulated observations having a high SRMSE of 0.716. The output of

trained samples on category size of 10 shows a better improvement of fit with a wide spread along

its perfect line of fit. We observe a sequential improvement with a reduction to size of categories
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(a) Sample size of 5%. (b) Sample size of 10%.

(c) Sample size of 15%. (d) Sample size of 20%.

Figure 5.11: Conditional distributions for permit by gender between observed and simulated counts.

for 7 and 5 categories. This suggest the model is able to smoothen the distributions of minimal

categories or modes. This could have arisen because of the lack of diversity/mode dropping and

non-convergence that is notable limitation in GANs [279, 280].

5.9 Discussions and conclusions

A novel deep learning generative model for reconstructing synthetic agents having tabular and se-

quential location-based travel information is presented. Specifically, we combine two generators

and two discriminators to design the Composite Travel GAN (CTGAN) architecture that outputs

both tabular and sequential attributes simultaneously. The work compared the statistical similarities

of the synthetic tabular results of the CTGAN with synthetic results from the VAE. The models

were tested with sample population data from the origin-destination survey of the region of Greater

Montreal (Canada) in 2013. The CTGAN outperformed the VAE in terms of synthetic generation
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(a) Sample size of 5%. (b) Sample size of 10%.

(c) Sample size of 15%. (d) Sample size of 20%.

Figure 5.12: Full joint distributions for all variables between observed and simulated counts.

of tabular data.

Our results show the capability and success of CTGAN to recreate the marginals of attributes for

both the tabular and sequential samples while maintaining inter-attribute relationships. We observed

improvement of the performance of the model through scaling of different sample sizes with a better

output for the large sample sizes that smoothens the learning distribution to the underlying distribu-

tion of the sample population. Sampling variation has a significant impact on the representation of

the attributes and inter-attributes relations as evident in the analysis of the varying sizes. Based on

this trend, it can be concluded that the model will perform better when a larger sample population

is provided.

When implementing CTGAN, we observed the following drawbacks. There was significantly longer

training time to synthesizing both tabular and sequential data simultaneously. 12 hours were re-

quired to train and synthesize 100,000 simulated household samples. Also, CTGAN showed dif-

ficulty in training sequences of more than 5000 complete trips hence samples had to be batched
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(a) Simulation for category size of 20. (b) Simulation for category size of 10.

(c) Simulation for category size of 7. (d) Simulation for category size of 5.

Figure 5.13: Distribution of varying categorical sizes (age discretized).

for training. These drawbacks limit the adaptation of the model on real travel datasets which could

have millions of travel records. In this regard, future work will consider deploying the model in

a distributed computing framework and parallelized training on multiple nodes to improve on the

training time and increase capacity for optimal model training. We also seek to consider improving

the generative framework with losses to control the level of privacy that can be achieved. We will be

able to control the expected privacy, especially in cases of releasing data to non-trusted data agents.

While this paper is one of the first studies using generative models on travel data, we plan to explore

methods that will be needed to improve the utility and privacy of the models when publicly releas-

ing the synthetic datasets. We will work to extend this research on the generation of synthesized

continuous mobility trajectories. We will explore the use of federated learning and Blockchain for

Smart Mobility Data-markets (BSMD) framework proposed by Lopez et al. [281] to estimate CT-

GAN without directly accessing the sample, which may result in compromising the privacy of the

individuals in the sample.

112



5.10 Acknowledgements

This research has been funded by the Social Sciences and Humanities Research Council of Canada

(SSHRC) and Canada Research Chairs program.

5.11 Author Contribution Statement

The authors confirm contribution to the paper as follows:

Study conception and design: Godwin Badu-Marfo, Bilal Farooq, Zachary Patterson

Development of privacy-preserved generative model and testing: Godwin Badu-Marfo;

Analysis and interpretation of results: Godwin Badu-Marfo, Bilal Farooq, Zachary Patterson;

Draft manuscript preparation: Godwin Badu-Marfo, Bilal Farooq, Zachary Patterson;

All authors reviewed the results and approved the final version of the manuscript.

113



Chapter 6

Privacy versus Accuracy in Activity

Diary Synthesis: A Differentially Private

Multi-Output Deep Generative

Networks Approach

6.1 Preamble

In this chapter, we develop a differentially-private GANs architecture which uses a multi-task ap-

proach through a shared layer in a single Generator-Discriminator, and outputs tabular and sequen-

tial (location) features simultaneously. Unlike the model in Chapter 5 using a multiple generators-

discriminators network, this improvement uses a single generator-discriminator that is computa-

tionally efficient to train. The model implements a “privacy-by-design” approach to ensure privacy

guarantee for training points.

This paper was accepted for presentation in Transportation Research Board Conference, but will be

submitted for review at a journal.
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6.2 Abstract

Population synthesis approaches in transportation planning applications are used to generate syn-

thetic populations from sample information to be used for transportation demand generation. Recent

population synthesis approaches are capable of reproducing accurate synthetic representations, but

with the risk of revealing compromising personal information on members of the samples on which

they are based, potentially causing privacy violations. The importance of privacy has motivated

research seeking to develop newer population synthesis approaches designed explicitly to accu-

rately reproduce populations yet guaranteeing privacy protection. This work extends literature on

population synthesis by contributing novel deep learning approaches to the development and appli-

cation of synthetic travel data while guaranteeing privacy protection for members of the samples on

which the synthetic populations are based. First, we show a complete de-generalization of activity

diaries to simulate the socioeconomic features and longitudinal sequences of geographically and

temporally explicit activities. Second, we introduce a differential privacy approach to control the

level of resolution disclosing the uniqueness of survey participants. Finally, we experiment using

Generative Adversarial Networks that promise scalability in handling high dimensional variables

for this synthesis work. We analyse the statistical distributions, pairwise correlations and measure

the level of privacy guaranteed on simulated datasets for varying noise. The results of the gener-

ative model show privacy-protected travel populations having tabular and sequential attributes that

are generated over varying privacy noise levels produced from the generative adversarial network

framework. While the proposed model can generate trip information, we do not concentrate the

analysis of trip information in this paper because newer benchmarks are required to be defined for

measuring the efficiency and performance of simulated geographic and temporal representations

which will be considered in future research.
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6.3 Introduction

Activity-based travel demand models have become commonplace in the academic transportation

modeling literature and increasingly in transportation decision-making in recent times. Using these

models, transportation planners and stakeholders study the behaviour of agents (i.e. households

and individuals) that influences their choices of daily activity participation and travel. Activity-

based models require spatially and temporally granular representations of a person’s trip activities

including where and when activities take place, and how they get to the activity (travel mode)

locations. These microsimulation models necessarily rely heavily on disaggregate individual-level

information (i.e. microdata). In practice, it is difficult to obtain disaggregate travel information of

an agents because of the high cost of data collection for large populations and the potentially privacy

compromising effects of inadvertent releases or intentional publishing of such data.

As a solution to address the lack of accessibility to and completeness of microdata, population

synthesis is used to reproduce synthesized representations of true populations based on samples of

disaggregate that are characterized by the same joint distribution of variables of the real population

[22, 239]. This technique is appealing for generating data surrogates with properties that conform

to the underlying distribution of the population but which only require data from a small sample

from the population of interest. Popular methods of population synthesis including re-weighting

and matrix fitting do not produce agent-based samples, but rather a sample of prototypical weighted

individuals, and hence a post-simulation is required in cases where population synthesis is linked

to agent-based samples where individuals are drawn from the weighted samples [239, 282]. An

increasingly popular approach to population synthesis, simulation, solves some of the drawbacks

of the re-weighting and matrix fitting models. Simulation-based methods have proved effective for

high-dimensional synthetic generation and provide a systematic way for imputing or interpolating

data [22, 283]. Farooq et al. 2013 [22] used this approach to generate a synthetic micro population

for Brussels, Belgium where complete data for the population was not available. All of these meth-

ods of population synthesis suffer the drawback of scalability due to the “curse of dimensionality”

and computational complexity [22, 23].
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These traditional population synthesis approaches have shown success in recreating weighted sam-

ples from aggregate census data, but have not been used to generate representations of complete

travel diaries due to issues around computational complexity and scalability. Outside of transporta-

tion, Generative Adversarial Networks (GANs) have proved capable of estimating complex joint

distributions, hitherto intractable for large training sets and complex data types like video, images,

sound, etc. In the GANs framework, a generative model is set against an adversary, or a “discrim-

inative” model that learns to distinguish fake observations produced by the generative model from

real data observations. In the transportation literature, Borysov et al. [23] demonstrated the use of

GANs for simulating the socio-demographic characteristics of synthetic agents for a travel model.

The capability of GANs to reproduce faithful representations of a population, however, could lead

to information leakage [284, 285] on training data points that threatens privacy on respondents. This

potential for compromising the privacy of synthesis seed sample members raises research interest

in developing newer synthesis approaches that exhibit privacy-in-design capabilities. To this end,

recent work [26, 286, 287] has focused on developing deep learning approaches that protect sen-

sitive information by training in a differentially private manner such that the privacy of synthesis

seed sample members is not compromised. Abadi et al. [26] have demonstrated the possibility of

training a model in a differentially private way that relies on the Differentially Private Stochastic

Gradient Descent (DP-SGD). This privacy-sensitive training can control the the confidence with

which an adversary could learn or infer information about an individual from a sample, and can

indeed control this through a parameter, epsilon (ε) that defines the level of privacy guaranteed.

In this paper, we leverage the potential of previous work to solve three problems: First, we want to

synthesize a complete activity diary (based on socioeconomic attributes and a snapshot of longitu-

dinal activity sequences of a sample) to synthesize travel diaries for a synthetic population. Second,

we explore training the generative model in a differentially private manner as a step to protect sensi-

tive information of individuals in the underlying training data. Finally, we want to build and deploy

a novel generative mechanism that adopts state-of-art deep learning techniques like Generative Ad-

versarial Networks.

As such, the key contributions of our work include:
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(1) We present a novel generative model that is capable of estimating the joint distribution of

socio-economic variables of travel agents and simultaneously learn the agent activity se-

quences from an Origin-Destination (OD) survey while incorporating parameters to guarantee

privacy of information leakage about a person who participated in a survey.

(2) We experiment a differential private training of the generative model with varying degrees of

noise to evaluate the effect on the statistical distribution of the synthesized representations.

(3) To the best of the authors’ knowledge, this is the first work using Generative Adversarial

Networks to synthesize a complete activity diary of agents having multiple outputs of socio-

economic characteristics and a complete activity chain in a single model.

It should be noted that while the proposed generative model can generate trip information, we

do not concentrate the analysis of trip information in this paper because newer benchmarks are

required to be defined for measuring the efficiency and performance of simulated geographic and

temporal representations which will be considered in future research work. The paper is organized

as follows: the next section presents review of the relevant literature, followed by a section that

describes the framework architecture of the generative model. A methodology section describes the

data processing steps and we then define the evaluation metrics before presenting an analysis of

results. We finish the paper by explaining our conclusions and future directions for the research.
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6.4 Literature Review

Population synthesis approaches have been dominant in trip-based modelling over the years to es-

timate synthetic members of a population in cases where data on travel agents (i.e. individuals and

households) are not available. Using data inputs of census aggregates and a sample of microdata

on agents in a study region, new members of the population can be simulated to possess similar

travel characteristics of the true population. Synthesis approaches are broadly classified into three

categories; re-weighting, matrix fitting and, simulation based approaches [234]. The re-weighting

methods adjust weight factors of surveys to create samples that represent subregions rather than the

entire summation of the population aggregates, in effect, applies non-linear optimization to estimate

weights [235, 246, 247]. The methods of matrix fitting evoke expansion factors expressed by the ra-

tio between a starting solution and the final matrix. The Iterative Proportion Fitting (IPF) proposed

by Deming and Stephan [248] and the Maximum Cross-Entropy [249] are known implementations

of the matrix fitting method and referred as deterministic models. These deterministic models do not

produce agent-based samples but rather a sample of prototypically weighted agents [245]. Duguay

et al. [57] first introduced IPF method to synthesize households survey data in transportation lit-

erature. Similarly, Beckman et al. [51] created synthetic population for TRANSIMS [288] using

census cross tabulations and sample. Adopting fitting methods for large dimensional data becomes

computationally and memory-wise expensive. Simulation-based methods solve some of the draw-

backs of the deterministic models and is capable of estimating the joint distribution of population

data with full set of attributes from which new members can be recreated through sampling. Sun

and Erath [250] proposed the Bayesian Network, a popular implementation of the simulation-based

approach. Similarly, Sun et al.[289] shown the Bayesian network is an effective approach for traffic

flow modelling and forecasting while performing experiments on urban vehicular traffic flow data

of Beijing. However learning of the graph structure of the bayesian network for large datasets can

be computationally expensive [23].

Deep generative models have evolved lately in reproducing realistic and near-true synthetic rep-

resentations that perform effectively in dealing with complex computation of synthesizing agents.

Most popular variants of deep generative models are the Generative Adversarial Networks (GANs)[24]
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and Variational Autoencoder (VAE) [65]. Similar to the simulation-based approaches, these models

are capable of estimating the joint probability distribution of the underlying data and newer members

of the population can be sampled from the joint distribution. Choi et al. [254] proposed a genera-

tive model that combines auto-encoders with GANs to synthesize private electronic health records

in generating binary and count variables in health datasets. Park et al. [255] proposed a table-

GAN to synthesize tabular data using a hinge-loss privacy control mechanism. In their approach,

they showed a compatible model for anonymization where sensitive attributes are maintained with-

out change. Neural sequence generation has been well studied since the advent of Recurrent Neural

Networks (RNN) [290] and Long Short Term Memory (LSTM) [243]. RNNs have shown incredible

results in capturing long-term dependencies but as Bengio [257] discussed, fitting the distribution of

observed data does not mean generating satisfactory text because of the exposure bias [291]. Solu-

tions proposed to address this limitations included the concept of reinforcement learning and GANs

to generate acceptable sequences. SeqGAN [1] was proposed as a language model for the genera-

tion of sequence using the concept of reinforcement learning. In their approach, the generator used

the stochastic policy where the state is defined as the tokens generated and an action being the next

token to be generated. The presence of a stochastic policy, REINFORCE [258] algorithm, allows

different actions to be sampled during training and derive a robust estimate of the policy. Both the

generator and discriminator are pretrained on real and fake data prior training with policy gradients.

During training they implement Monte Carlo rollouts in order to get a useful loss signal per word.

Subsequent work demonstrated text generation without pretraining with RNNs [292].

While GANs and other generative models have been successful for reproducing identical copies of

the true population, there is a risk of information leakage to an adversary who could infer if a person

partook in the training data points. Such concerns have motivated recent research work into devel-

oping privacy-by-design techniques such as differentially private training in deep learning [26]. The

authors studied a gradient clipping method that imposed privacy during training of the neural net-

work. Shokri and Shmatikov [286] proposed a multi-party privacy preserving neural network with a

parallelized and asynchronous training procedure. In the work of Phan et al.[293], the authors devel-

oped a private convolutional deep belief networks(CBDNs) by leveraging the functional mechanism

to perturb the energy-based functions of conventional CBDNs.
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In the next sections, we provide a brief definition of relevant topics including: deep generative

modelling and differential privacy.

6.4.1 Deep Generative Modelling

Deep generative models have evolved out of artificial neural networks [294] where they have been

used successfully to reproduce realistic images and translations, while exhibiting outstanding per-

formance and computational effectiveness. Notable deep generative models are the Variational Au-

toEncoder (VAE) [65] and Generative Adversarial Networks (GANs) [24]. Both generative models

have shown promising results in estimating the joint distribution of underlying data, a property that

is important for simulation-based population synthesis techniques like Bayesian Networks.

Figure 6.1: The architecture of GANs

Ian Goodfellow [24] proposed the Generative Adversarial Network that simulates a two player game

composed of “Generator” and “Discriminator” networks. The generator network learns to gener-

ate samples from latent space that corresponds to the real samples. The Discriminator network is

programmed to distinguish between synthesized and real sample data, with updated weights being

sent back to the generator. Models for both networks are implemented as multi layer perceptrons

[295]. During model training, the Discriminator gets better at distinguishing real samples from fake

generated samples, while the generator improves on generating samples that are close to the real

samples until a Nash equilibrium is achieved where each model reaches its peak ability to thwart

the other’s goal. The objective function of GANs is defined by:

Definition 1 (Objective function):
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The objective function of the Generative Adversarial Networks [24] is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4)

where V (G, D) is the value function of a two-player minimax game, D(x) represents the probability

that x came from the true data, pg is the generators distribution over the real data x, pz(z) is a prior on

noise variable (z) that maps to data space as G(z), where G is a differentiable function represented

by a multilayer perceptron.

Equation 4 derives the objective function that suggests that if the input of the Discriminator is

sampled from the true distribution then maximize the output of D(x) to 1 whereas if the input is

generated from the Generator then D(G(z)) should minimize the output of the objective function.

In this regard, the network seeks to maximize the parameters of the Discriminator using Gradient

Ascent while minimizing the parameters of the Generator using Gradient Descent. The training

process halts when a Nash equilibrium is reached so that the Discriminator is unable to distinguish

true or fake samples.

In the work of Choi et al. [254], the authors proposed a model that combines auto-encoders with

GANs to synthesize private electronic health records. The results of their model simulated binary

and count variables in the context of health datasets. Similar work by Park et al. [255] proposed a

table-GAN to simulate tabular data using a hinge-loss privacy control mechanism that is suitable for

anonymization of sensitive attributes. Borysov et al. [23] has shown a simulation of micro-agents

from a large Danish activity diary to estimate the joint distribution of the underlying data using

the VAE model. In our approach, the GANs architecture will be optimized for high performance

throughput making it capable of learning all training data records in order to avoid the challenge of

sampling zeros, referring to agents that are omitted from the training samples but exist in the real

population.

6.4.2 Differential Privacy

The concept of differential privacy [296] assures nothing new can be learnt on the statistical output

of a query mechanism given that a record of information on the individual is added or removed from
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the statistics of a survey. In this sense, a privacy guarantee is provided in the query function, which is

not the case for other anonymization techniques like k-Anonymity [42]. Differential privacy limits

a constraint on the processing of data such that the output of executing a query mechanism on two

adjacent databases are approximately similar. The functional mechanisms of achieving differential

privacy include the approach of adding Laplacian noise [43], the exponential mechanism [297], and

the functional perturbation approach [298]. According to Dwork et al. [43], a randomized algorithm

M fulfills ε-differential privacy if, for any adjacent databases d and d’ differing at most one element,

and for any output O of M is formally defined by:

Definition 2 (ε-Differential Privacy):

The formal definition of ε-Differential Privacy is given by:

Pr(M(d) = O) 6 eεPr(A(d′) = O) (5)

The privacy budget defined by parameter epsilon(ε) defines the difference between adjacent databases

d and d′, differing by only one observation. A controlled random noise is sampled from a Laplace

distribution that is added to the query output of the function mechanism to achieve differential pri-

vacy.

6.4.3 Deep learning with differential privacy

As a step towards implementing differentially private training, we adopt the approach by Abadi

et al. [26] in our work. Here, the authors developed a technique to train deep learning models

in a differentially private manner. In their approach, random noise is sampled from a Gaussian

distribution and added to the gradients of parameters of the neural network. The addition of noise

to the computed gradients limits the influence that any particular input data can have on the final

model. The steps for differential privacy training are as follows:

• Sample a minibatch of training data (x, y) where x is the input and y is the label.

• Compute loss L(θ, x, y) defined as the difference between the model’s prediction θ(x) and

label y where θ represents the parameters of the model.
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• Compute the gradient of the loss L(θ, x, y) with respect to the parameters θ.

• For each training example, clip gradients in the minibatch to an upper bound defined by the

maximum euclidean norm.

• Add random noise sampled from a Gaussian distribution to the clipped gradients and update

parameters.

The model training with differential privacy gives a sanitized model gradient in which the influence

of input data is bounded thus achieving privacy. The bounded gradients are used to train the model

while update the weights.

6.4.4 Membership Inference Attacks Against Generative Models

Membership inference attack (MIA) was proposed by Shokri [284], as a privacy attack to measure

the robustness of machine learning algorithms against adversarial attacks. The attack evaluates the

prediction score of a model when the input data point is sampled from the training set rather than

the validation set. The MIA comes in two forms: black-box and white-box attacks. The black-

box attack assumes the adversary can only make queries to the target model under attack but has

no access to the internal parameters of the model [284]. Contrarily, the white-box attack assumes

the adversary has the parameters of the trained model at disposal and can make queries to it. We

adopt the white-box attack approach in this work because is simple to implement and efficient. In

a GAN setting, the adversary only is given access to the discriminator of the trained GAN model

and consider a setting where the model parameters are leaked following a data breach. The trained

model determines if a record was part of the training set, consequently the attack analyzes the danger

in identifying with high confidence if a sample was used in the training. The adversary is assumed

to have knowledge of the proportion of the dataset that is used for training but no other subsequent

information is known about the training set. The attack is implemented by obtaining the probability

score when the discriminator of the trained GAN predicts on each sample of the dataset. In a non-

private trained model, the output of the attack should score lower probabilities (i.e., close to 0) for

validation sets and high probabilities (close to 1) for training sets. On the other hand, private trained

models should not output scores that distinguish training sets from validation sets.
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6.5 Methodology

In this section, we first introduce the problem definition to establish the goal of the research. We

continue in the subsequent subsections to give a detailed description of the proposed architecture

for synthesizing tabular socio-economic variables and longitudinal activity sequences of location.

6.5.1 Problem definition

In this work, we assume, X to be the training data containing sensitive travel information of individ-

uals. The training data is comprised of structured socio-economic variables characterized by a set

of basic attributes X = (x1, x2, x3, x4, ...xn) where n is the number of variables, and a longitudi-

nal sequence of time-ordered trip activities including trip purpose, departure time, and geographic

coordinates of origins and destinations.

A generative model, M is trained on the private data and new data, X′, is sampled from the model.

In practice, the true data distribution of the population, pdata(X) is unknown hence it is estimated

empirically on a sample population. For the purpose of data synthesis, we use GANs as a framework

to estimate the pdata(X) and subsequently draw samples from it. In order to maintain privacy

protection for participants in a travel survey, the generative model will be required to prevent an

adversary from recovering with a high degree of confidence that an individual participated in the

training data of the generative model, or prevent the adversary from inferring sensitive information

about an individual based on the output of the model. In this sense, the goal of the proposed

differentially private generative model is to synthesize a complete activity diary with high utility

while guaranteeing privacy protection on training data.

6.5.2 Differentially Private Composite Travel Generative Adversarial Network

The proposed Differentially Private Composite Travel Generation Adversarial Network (DP-CTGAN)

is a novel generative model that is designed to accept input from multiple data types (i.e. tabular

and sequences) and is capable of estimating the joint distribution of data inputs through a shared

hidden layer, and subsequently generate new private samples from the generative model trained in a

differentially private manner. The DP-CTGAN is composed of two neural networks; the Generator
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network, G and discriminator network, D.

Figure 6.2: The Generator network of DP-CTGAN

The Generator, G, accepts as input a random noise that is sampled from a Gaussian distribution that

is fed into two branches of neural hidden layers. The first branch of the generator (G1), purposed for

structured data learning is made up of a series of multi-layer perceptrons (MLP) for each training

variable that connects neurons for each layer to the neurons of the next layer. Each hidden layer is

activated by a Rectified Linear Unit (ReLU) [299] function which sets a lower bound of zero for

negative inputs but returns same output for positive inputs. We apply a Sigmoid activation [300] to

the output layer for numeric variables (i.e. Age), and a Softmax activation [301] to the last hidden

layer for categorical variables.

The second branch of the generator, G2 is designed for sequential data learning. The first layer

of G2 is made up of a Keras [302] Repeat Vector layer to repeat the incoming inputs in order to

get hidden features for 20 future time-steps, the maximum length of each sequence. The output of

the Repeat-Vector is fed to an LSTM layer with node size of 500 to extract features of previous

time-steps. Two subsequent LSTM layers with node size of 500 are applied to the output of the
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Figure 6.3: The Discriminator network of DP-CTGAN

time-steps such that the probabilities are well learnt for future sequence predictions. The last layer

of the this branch is an LSTM with a size of 5, which is the size of the features for each time-step.

The outputs of both branches G1 and G2 are merged into a shared output as the final output of the

Generative model.

The discriminator D accepts inputs of the real tabular and sequential data as matrix of vector inputs.

Similarly, D is also made up of two branches. The first branch of the network, DT is an MLP made

of two hidden layers with node sizes of 500 and 200 respectively. This branch accepts the input

of the real tabular data and is purposed to learn the joint distribution of its input. The goal of the

second branch, DS is to estimate the distributions of sequences by learning its weights. It is made

up of two Bidirectional LSTM models with node sizes of 500 to learn the probabilities of sequences

in both directions. The outputs is fed into an LSTM with node of 100. The outputs of both branches
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are merged into a shared layer. The shared output is consequently fed into a Dense layer with node

size of 1.

In the design of GAN, the generator does not have access to the real data but accepts an input of

Gaussian noise. This makes it intractable to implement differential private training in the Generator.

Contrarily, the Discriminator accepts the real data as its inputs hence making it suitable for training

in a differentially private manner. To achieve privacy, we use the differentially private Stochastic

Gradient proposed by [26] to train the discriminator network as suggested by Xie et. al [303] and

the RMSProp Optimizer to train the Generator network. First, we introduce a clipping parameter to

act as an upper bound on the L2-norm of each gradient update observed through the training. We

also introduce a noise multiplier to control the ratio between the clipping parameter and the standard

deviation of noise that is applied to each gradient update of the discriminator after clipping. In this

paper, we use a range of noise multipliers from 0 to 4 as shown in table 6.1. The differentially private

discriminator propagates its parameters to train a standard generator whose computed weights also

become differentially private. In effect, any new samples predicted out of the generator guarantees

differential privacy.

Model Noise Multiplier Description
WGAN (0.0) 0 Model with no privacy noise
WGAN (1.0) 1 Model with noise multiplier of 1
WGAN (2.0) 2 Model with noise multiplier of 2
WGAN (3.0) 3 Model with noise multiplier of 3

Table 6.1: Noise multiples for differential private training

6.5.3 Case Study

In this work, we evaluated Dp-CTGAN on data from the 2013 Montréal Origin-Destination (OD)

Survey [270]. The training data contained the activity diary of 10,000 individuals that were sampled

out of the OD survey. The data included individual and household socio-economic variables such

as gender, age, economic status, etc., and trip activity details such as activity location, time of

departure, trip mode and purpose of travel. A list of the data available from the Montréal OD

Survey is shown in Table 6.2.
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Column Type Description
P AGE numeric Age of the respondent
P SEXE binary Gender of the respondent
P MOBIL categorical Whether the respondent is mobile
P STATUT categorical Occupation status of respondent
PERMIT categorical Driving permit type of respondent
M DOMXCOOR geospatial X coordinate of residence
M DOMYCOOR geospatial Y coordinate of residence
D ORIXCOOR geospatial X coordinate of trip origins
D ORIYCOOR geospatial Y coordinate of trip origins
D DESXCOOR geospatial X coordinate of destinations
D DESYCOOR geospatial Y coordinate of destinations
D MOTIF categorical Trip purpose

Table 6.2: Description of variables to be synthesized from 2013 Montréal OD Survey

Mean Standard deviation Min Max
43 20 5 95

Table 6.3: Summary statistics for numeric variable “Age”

6.5.4 Data Pre-Processing

The OD survey data is made up of tuples of households and individuals socio-economic variables as

well as sequences of individual trips denoted by the coordinates of trip origins and destinations. The

socio-economic variables have a fixed number of features for each individual comprising numerical

(i.e.Age), binary (Sex) and categorical variables. On the other hand, trips of individuals have varying

sequences having a minimum of three (3) locations and maximum of fifteen (15) location points. In

this paper, we focus on generation of home based trips, typically made up a minimum of 3 locations

(i.e., Origin-Destination-Origin). As a first step towards training in neural networks, all variables

are converted into normalized numeric representations that is recommended for achieving efficient

training with neural networks. Binary and categorical variables are first encoded to integer indices

and one-hot encoded [271]. Similarly, numeric variables (i.e. age, geographic coordinates) are

scaled and normalized within a range from negative one (-1) and positive (+1). The statistics of

variable “Age” is shown in Table 6.3, reports a minimum of 5 years and maximum of 95 years for

respondents that partook in the survey. While the objective of generative modelling is to recreate

a synthetic copy of the true data, the encoding technique should be capable of being reversed or
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decoded to the initial state. In this work, we used Scikit-Learn algorithms [304] label encoding and

OneHot encoding which have reserve encoding capabilities.

6.5.5 Evaluation metrics and results

In this section we empirically evaluate the performance of the generated synthetic representations

of the population and their travel characteristics. We vary different noise levels of privacy to assess

the private performance of the synthesized travel data. The evaluation is done using the following

benchmarks.

6.5.6 Similarity in statistical distribution

Using this benchmark, we compare the statistical properties of the generated output to the training

set to verify that their distributions are similar. A generated output should be appropriate for mi-

crosimulation estimations if aggregate queries on distributions are identical to the true distribution.

To achieve this, we first sample from marginal distribution of each variable π(xi) independently to

verify that the marginals were perfectly reproduced. We also evaluate the conditional dependence of

each attribute over other attributes, in effect deriving counts by category for each attribute. Finally,

we measure the joint distributions on all possible combinations of data variables. This measure is

applicable in low dimensional data but can be computationally intensive for high dimensional data.

In such instances, marginal and conditional joint distributions are recommended. We evaluate the

success of the synthetic approach by the similarity score in probabilities of the distributions. We

quantify the empirical distributions between the synthetic and true distributions with the Standard

Root Mean Square Error (SRMSE), the fitness of the synthetic reconstruction using a measure of the

Pearson Correlation Coefficient(corr) and the coefficient of determination (R2). The standardized

root mean squared error is defined by:

SRMSE(π̂, π) =
RMSE(π̂, π)

π̄
=

√∑
i · · ·

∑
j(π̂i...j − πi...j)2/Nb∑

i ...
∑

j πi...j/Nb
(6)

where Nb is the total number of agents; Ri..j is the number of agents with attribute values i...j in the

synthesized population, π̂ and π is the synthetic and true distribution respectively.
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6.5.7 Pattern Analysis

In this analysis, we adopt Principal component analysis (PCA) to measure the trends and patterns

retained when synthesized data are reduced to fewer dimensions. The objective of PCA is to find

the best summary of the data by reducing data using a geometric projection into a lower dimension.

Using PCA, we can measure the variance of projected points and correlations between principal

components. The output of the generative model should exhibit similarity in the variance and corre-

lations between projected points. For each of the attributed sets in the synthesized data, numerical

variables are normalized and categorical variables are converted to one-hot encoded representations.

PCA is performed on all tuples of the generalized data.
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6.6 Evaluation results

In this section, we discuss the results achieved on performing the evaluation analysis. The generative

model was developed and implemented with Python Keras with Tensorflow [305] backend support

on a Windows 10 PC with Intel Core i7-2600 (8 Cores) and G-Force GTX 950.

6.6.1 Statistical distribution comparison

In this analysis, we compared the summary statistics on marginals, conditional and joint distribu-

tions for combinations of variables in the training and synthesized set. First, the marginals of the

synthesized variables reproduced from the generative model produce the best approximation to the

marginals of the true population. Figure 6.4 shows the marginals for 2 selected attributes from the

true and synthesized population with varying privacy noise levels. It can be seen at WGAN(0.0)

(no privacy noise added) that the simulated marginals sampler precisely reproduces the marginals

of the training set though a low error is observed due to the sampling bias persistent in the random

selection of samples during training of the generative model. With an incremental addition of noise,

the reproduced marginals of the simulated sampler are less precise compared to marginals of the

training set and exhibit randomness in the error of prediction, which is not deterministic nor does it

follow a monotonic pattern. As an example in Figure 6.4(a), while the prediction of “Yes” values is

under-predicted, it can be seen at noise level of 1.0, 2.0 and 3.0, the under-prediction increases, but

at noise level of 4.0, the under-prediction decreases. This exhibits the level of randomness expected

in the addition of noise such that an adversary cannot quantify if there will be a monotonic under-

prediction or over-prediction. Marginals on the variable “Gender” shown in 6.4(b) show similar

characteristics.

We study the goodness of fit by measuring the SRMSE of marginals observed between the true

population and simulated populations at varying noise levels. In Figure 6.5, we observe a monotonic

pattern that depicting an increase in the SRMSE of predictions as privacy noise levels increase. An

SRMSE of 0.356, 0.362, 0.390, 0.455 is observed at noise levels of 0.0, 1.0, 2.0 and 3.0 respectively.

These results affirm the elastic nature of noise addition, a promise of differential privacy to control

the difference between the distribution of the true and simulated by privacy budget.
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(a) Education status (b) Gender

Figure 6.4: Comparison of marginals for attributes for True, WGAN and private WGAN represen-
tations

Similarly, we compare fitting of empirical distributions on possible combinations of bivariate dis-

tributions on possible pairs of variables. The distributions of the conditional probabilities are com-

puted as frequency tables where each bin corresponds to a specific combination of values between

two data variables. We measure the SRMSE between true and simulation distributions for bivariate

combinations including “Permit vs Gender”, “AgeGroup vs Gender”, “AgeGroup vs Employed”

and “Employed vs Gender”.

NOISE LEVELS WGAN (0.0) WGAN (1.0) WGAN (2.0) WGAN(3.0) σmse
p(Permit | Gender) 0.432 0.576 0.464 0.497 0.053
p(AgeGroup | Gender) 0.614 0.703 0.527 0.588 0.063
p(AgeGroup | Employed) 0.902 0.996 0.833 1.007 0.0714
p(Employed | Gender) 0.372 0.384 0.419 0.462 0.035

Table 6.4: SRMSE measured on bivariate conditional probabilities for synthetic agents using vary-
ing privacy noise levels. σmse denotes the variance between SRMSE.

As can seen in table 6.4, introducing noise impacts prediction errors of the conditional probabili-

ties of synthesized agents. Adding a noise of 1.0, 2.0 and 3.0, the SRMSE of p(Permit |Gender)

increased from 0.432 to 0.576, 0.464 and 0.497 respectively. Similar to random perturbations in the

marginals, the SRMSE does not exhibit a monotonic pattern hence suggesting randomness in the

model prediction which makes it difficult for an adversary to estimate the pattern of prediction. For

an example, at a noise of 1.0, SRMSE of p(AgeGroup | Employed) increases to 0.996 but drops to

0.833 at noise of 2.0.
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Figure 6.5: SRMSE on predictions for marginal distributions of synthetic agents using varying
privacy noise levels

Finally, the joint probabilities were evaluated on all possible combinations of values on all data vari-

ables. We computed the frequency bins of all combinations for variables, p(AgeGroup, Employed,

Gender, Educated). We show the fitting of the joint distributions for synthetic agents in Figure 6.6.

The results of the generative model show a low performance in reproducing the joint probabilities

of the synthetic agents. This inaccuracy of prediction can be attributed to the shared latent space

that reduces the resolution of network parameters where multiple node branches having different

dimensions are merged or compressed, as seen in the generator network of DP-CTGAN where the

tabular and sequential branches are concatenated. This is evident in the joint distribution outputs in

Figure 6.6 predicting synthetic frequency counts of 0 where true population counts are about 800.

The line of fit exhibits a population balance observed between frequency bins of joint combinations

for the synthetic agents. The mean square error of the prediction output increases with the mag-

nitude of privacy noise added. For example, training at noise 1.0, SRMSE increases from 1.309

to 1.349. These marginal increases of SRMSE are consistent for larger noise additions as seen in

Figure 6.6 (c) and (d). The model exhibits the capability of maintaining a good joint distribution

even with the introduction of noise.

134



(a) Full joint distribution of at privacy noise
level of 0.0

(b) Full joint distribution of at privacy noise
level of 1.0

(c) Full joint distribution of at privacy noise
level of 2.0

(d) Full joint distribution of at privacy noise
level of 3.0

Figure 6.6: Full joint distributions for all variables between observed and simulated counts.
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(a) Marginal distribution on trip distances (b) Line of fit on counts of trip distances

Figure 6.7: Comparison of distributions and fitting analysis between true and synthetic trip counts.

6.6.2 Trip length distribution

In this analysis, we assess the similarity in sequence representations simulated by the generative

model by calculating the euclidean distances between sequences of origin and destination geo-

graphic coordinates for true and simulated set. We assume an agent embarks on a trip composing

of a sequence of location destinations based on an activity preference within time periods in a day.

We evaluate the lengths of all trip segments made up of an origin and destination, and compare

the joint distributions between the true and synthetic representations. In Fig 6.7a, we show the

marginal distributions of computed trip distances for both the true and synthetic representations. It

can be observed that the model under-predicts trip distances between 0km to 3km and 5km to 11km.

Contrarily, the model over-predicts trip distances from 13km to 29km. While the memory capac-

ity of the LSTM [306] promises of learning correlations and representations for longer sequences,

it can be observed that the model suffers the complexity of learning higher order correlations and

long-range temporal dependencies needed for multiples features in longer timesteps. This drawback

makes it difficult to learn longer sequences in complex generative architectures that could involve

two or more networks learning with back-propagation. Oord et al. [307] have recently proposed

a dilated convolution approach to address this drawback in generative longer sequences. To the

best of our knowledge, this is the first attempt to implement such architecture in a multi-output with

variable trip sequences thus this drawback needs further research to improve the prediction accuracy

for long temporal dependencies. Similarly, the line of fit for trip length counts in Fig 6.7b shows an

imbalance in the prediction, and recording a SRMSE of 1.040 and adjusted R squared of 50
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6.6.3 Dimension reduction on principal components

In this section, we explore analysis using PCA to identify the main axes of variance within the

synthetic agents and evaluation on how the orthogonal variables correlate with the principal compo-

nents. PCA constructs relevant features through linear combinations of the original variables. This

construction is implemented by linearly transforming correlated features into a lower dimensions

of uncorrelated features using the eigenvectors of the correlation matrix. In this sense, the PCA

undertakes an orthogonal transformation of the data into a reduced PCA space such that its derived

components explain the most variance in the data.

(a) PCA on true population (b) PCA on WGAN (0.0)

(c) PCA on WGAN (1.0) (d) PCA on WGAN (2.0)

Figure 6.8: Principal component analysis on true and synthesized agents with varying privacy noise
levels.

In Figure 6.8, the biplots and loadings plot show the association between the orthogonal variables

and their clusters. Variables Age, Sex and Status are highly associated and form a cluster in rep-

resentations of the true set and synthesized with noise of 0. With an introduction of noise with

magnitude 1 and 2, the angles between these 3 variable vectors widen suggesting lower associations

between them. Similarly, Principal component 2 (PC2) shows a strong correlation with variables
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Age, Sex and Status in Figure 6.8(a) and (b), and exhibiting a high positive loadings suggesting PC2

will increase when the scores of the three variables increase. As noise is introduced shown in Figure

6.8(c) and (d), these correlations decay.

In summary, the PCA analysis has shows that the introduction of noise distorts associations and

correlations in representations of synthetic agents. Therefore, the magnitude of noise controls the

level of distortions that influence the correlations in synthesized representations.

6.6.4 Adversarial predictions on target models with knowledge on parameters

The adversary assumes knowledge on the model parameter of the target model, the trained dis-

criminator. Fundamentally, the objective of the discriminator is to distinguish between true or fake

samples. This means samples in the training set of the model should have higher predictive score

than validation sets. As observed in Fig 6.9a, a bimodal distribution with two peaks having means

approximating to zero (0) and one (1) are recorded for prediction scores from the non-private trained

discriminator model. The bimodal distribution affirms the accuracy of classification outputs from

the target model. This interprets that when an adversary has data on the entire population including

the training sets at his disposal, he can predict with high confidence level on whether a sample data

point was used in the training of the model. It can also be seen that the discriminator does not

perfectly classify but shows traces of proportions of validation sets also having a high score and

vice versa. This occurs because of similarity in features for both training and validation sets thus

members of the sample population have near similar attributes. In Fig 6.9b, a unimodal distribution

centered around 1 is derived for both the training and validation sets. The two peaks of the bimodal

distribution as expected for the classification by a discriminator diminishes into a unimodal. This

means the target model fails to classify between the samples that were used for training and valida-

tion. In this sense, the adversary cannot exploit the target model to infer if a data point was used in

the training. This is the promise of differential private training by stochastic gradient descent [26].

We perform sensitive test on differing noise levels to privately train the target model as shown in

6.9c and d. The results show a consistency with unimodal prediction score suggesting the failure

of the adversary to correctly classify training or validation sets. In summary, privacy protection is

guaranteed on the differential-private trained models against any attacks in case the adversary has
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(a) Attack with no private training (b) Attack with private training at noise
level of 1.0

(c) Attack with private training at noise
level of 2.0

(d) Attack with private training at noise
level of 3.0

Figure 6.9: White-box attacks on trained discriminator model with varying noise levels.

access to the parameters of the target model. In this sense, any record of a person that participated

in the training of the model cannot be confidently identified by an adversary who has access to the

model parameters.

6.7 Discussions and Conclusions

We developed and demonstrated the use of the novel Differentially-Private Composite Travel Gener-

ation Adversarial Network (DP-CTGAN) for activity diary synthesis, accounting for both accuracy

of the population synthesized and privacy of the individuals. This generative model shows success

in simulating activity diaries composed of multiple outputs including structured socio-economic

features and sequential trip activities in a differentially private manner. To implement privacy-by-

design, the generative model was trained by bounded gradients of data points with added Gaussian
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noise propagated from the discriminator. The outputs of the synthetic agents shown appreciable sim-

ilarity in statistical properties to the true population such that the synthetic agents proved suitable

for microsimulation modelling while protecting the privacy of data points in the training set.

We evaluated the similarity in statistical properties by comparing the marginals, conditionals and

joint probabilities of synthetic representations of varying privacy noise levels to the true distribution.

The results shown a consistent output which gives a level of randomness influenced by the addition

of noise such that the query probabilities differed by the specified level of noise. Observed root

mean square error increased consequentially with the addition of more noise on a line of fit of

synthetic probabilities to true distribution.

To the best of our knowledge, this is the first work that adopts a deep learning approach to simulate

population synthesis of trip data having multiple outputs with different dimensions (i.e., structured

and sequential) and guarantees privacy protection. While the model promises of reproducibility of

sequential activities, our approach suffers limitations on training multiple features in long sequence

generation using LSTM. The LSTM approach was not effective in producing accurate samples for

higher dimensional and longer sequences. In practice, most existing literature have implemented

similar sequence generations with one dimensional data. We foresee this drawback as a research

interest that needs to be further studied to develop models that are robust and efficient in generation

of multiple features and lengthy sequences as required by travel trajectories. Also, the approach of

training deep learning with differential privacy as implemented in this paper makes it intractable to

sample geographic location points whose positional accuracies are of high priority in transportation

modelling. During training with differential privacy, the magnitude of random noise injected could

perturb the normalized location coordinates making them less useful for microsimulation. In our

future research, we will perform detailed sensitivity analysis on hyper-parameters that can control

the injection of noise on accuracy and precision demanding variables like positional coordinates

when used in synthesis approaches.

Further research will be done to improve on the fitting for true population especially in the context of

the conditional and full joint probabilities of the empirical distributions. Also, we will perform state-

of-art adversarial attacks [285, 308] on the generative model to test on its robustness against attacks

such where an adversary with enough background knowledge seeks to infer whether information
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of an individual was used in the training data or when the adversary seeks to learn something new

about an individual from the synthesized outputs.

Finally, we will extend this research into designing model frameworks that support privacy-by-

design techniques in generating usable location and activity diary sequences for microsimulation.

While little research is available on benchmarks for evaluating multidimensional sequences, we will

further this work into defining and developing such metrics in the context of location-aware privacy

protection.
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Chapter 7

Conclusion

This dissertation presents a series of papers to address the trade-off of using big data for trans-

portation planning and the requirement of privacy protection for data owners. In the first paper, we

highlight the rapid advances in transportation technologies propelled by the birth of location-aware

mobile sensing technologies and smartphones that are capable of collecting high volumes of mobil-

ity and traffic data, hitherto was not possible with traditional data collection approaches in Chapter

2.1. While these modern data gathering techniques are promising, they come with challenges to

overcome to harness the full potential of Big Transportation Data. We identified and discussed

opportunities that are to be adapted to meet these challenges for transportation decision makers.

In Chapter 4, the paper connects with the previous chapter but with an emphasis on the challenge

of ensuring privacy protection as it experiments with existing anonymization techniques to perturb

sensitive location data (i.e., home, work) in an open travel survey. The chapter presents quantitative

metrics to evaluate the privacy guarantee, and also the utility trade-off of using privacy-enhanced lo-

cation data for behavioural modelling. As a step to address the limitations of the privacy and utility

trade-off in location perturbation mechanisms, Chapter 5 presented a novel deep generative model

as an extension of population synthesis to simultaneously synthesize tabular and sequential features

of travel data. This approach used a multiple generators-discriminators network, the Composite

Travel GAN (CTGAN) architecture that operate concurrently but is computationally expensive for

large-scale travel data. In Chapter 6, we improve on the CTGAN architecture in the previous chap-

ter to develop a multitask generative adversarial network using a shared layer, accepting multiple

142



inputs and generates both tabular and sequential representations. We embed a privacy-by-design

mechanism in the overall design to protect privacy from adversarial attacks while satisfying the data

needs of fine-grained behavioural modelling.

7.1 Key research findings

Among the numerous challenges to the use of Big Data transportation applications as highlighted

in Chapter 3, we focused this dissertation on addressing the challenge of privacy protection due to

the recent public outcry on information leakages and privacy violations. To accomplish privacy pro-

tection in the release of sensitive geographic location information, we experimented with the most

common population anonymization mechanisms: k-anonymity and differential privacy on location

data. From our analysis, the k-anonymity approach perturbed the location points in a deterministic

fashion and influenced by the size of K, the expected indistinguishable population. This approach

was found therefore vulnerable to an adversary who has some background knowledge of the study

region. The differential privacy technique was stochastic and shown to be robust against adversarial

attacks. While both approaches were found to provide a level of protection, there is an inherent

trade-off of achieving privacy at the expense of losing utility and vice versa.

Population synthesis is a traditional approach addressing the concerns of privacy while gaining sat-

isfactory utility on data needs for fine-grained behaviour modelling. We developed a deep generative

adversarial network architecture (CTGAN) composed of multiple generators-discriminators to syn-

thesize complete travel diaries for synthetic populations that included outputs of tabular and sequen-

tial features. The model resulted probability distributions closely matching the original data, with a

better (lower) SRMSE of 0.224 when compared to results using a Variational Auto-encoder (VAE)

approach of 0.292. Sequences of activity location points were also encoded into one-dimensional

categorical representation and the model showed the ability to model the temporal dependencies of

sequential locations.

While the GAN approach samples from the distribution of the latent space, the work of [284] has

shown the generative model could leak information with similar features to the true distribution. In
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this regard, we revised and improved the CTGAN architecture against adversarial attacks. As an im-

provement, we used a multi-task generative approach instead of multiple generators-discriminators

to efficiently reduce the computation time of model training, and introduced differential privacy in

the model training process such that the gradients learnt on each data point were clipped and Gaus-

sian noise added. This approach limited the influence of the gradient of a single data point on the

learning process hence making it difficult for an adversary to infer if a member of the population

was used in the training. We performed adversarial attacks on the model and the results showed

robustness against predictions on the target discriminative model by an adversary. Consequently,

the model was capable of producing underlying distributions similar to the true distribution for the

tabular features. However, the model could not reproduce the temporal dependencies for longer

sequences with multiple features (i.e. real-valued sequences of location coordinates). We evaluated

the correlations across variables using PCA on transformed vectors. The vector of principal compo-

nents sustain relative associations in both the true and synthetic sets thus ensuring correlations are

not decayed.

7.2 Study limitations

In this dissertation, we have shown the capability of implementing deep generative models to syn-

thesize multi-input and varying dimensions (i.e. tabular, sequences) through a differentially-private

manner while given multiple outputs synchronously. While this development is notable, it presents

new challenges that need further research work to address. First, as noted in the discussion of

Chapter 6, the generative model is not efficient in learning the temporal dependencies for longer,

variable sequences having multiple features. For the variability in sequence length of travel activity

diaries, the proposed technique adopts padding with zeros to achieve a fixed sequence dimension as

required by the network. While this works for text generation and other time-series data using the

fixed window approach, location trajectories are unique because they can be composed of variable

destination lengths that cannot be easily augmented by dummy locations. This could lead to distor-

tions in the pattern and correlation of associated variables —especially in the inference of purpose

or mode of a trip.
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Second, geographic coordinates of location points are highly precise in nature and this precision

needs to be sustained in the synthetic sets. The process of gradient optimization through back-

propagation across multiple networks could decay the level of granularity and precision of the co-

ordinates making them less useful for transportation modeling. The discriminator could be adjusted

through an objective function with promise of high accuracy to achieve high precision of generated

coordinate vectors. Also, the intuitive objective of the generator network is to approximate the dis-

tribution of the true population from which new samples are generated. Samples are selected from

an approximation of the distribution, the desired precision of location coordinates decays given that

the true distribution exhibits a stochastic nature having uncertainties while the latent distribution

is smoothened. This requirement will require further research to find an optimal methodology for

generating high precision vector sequences.

Finally, while the differentially-private model training approach guarantees a level of privacy, the

clipping of gradients and noise addition largely distorts the spatial resolutions making generated

location sets less useful for behaviour modelling. A prudent methodology to solve this drawback is

to use spatial encodings like Google S2 [273] to use a one-dimensional encoding to represent the

location pairs. Using this technique, we assume the encodings as discrete for the network, which will

subsequently suffer the inherent drawbacks of generation of discrete sequences in GAN architecture

[1]. Perturbing the discrete latent representations with noise additions could be intractable to achieve

a privacy-enhancement while satisfying utility for transportation modelling.

7.3 Practical implications

The research presented in this dissertation focuses on privacy techniques to ensure mobility data in

travel behavioural analysis does not leak sensitive information about members of a population. The

proposed differentially-private generative architecture is an example of a “privacy-by-Design” tech-

nique, which ensures privacy protection and also satisfies the data needs of fine-grained transport

modelling. In this regard, the methodologies developed in the dissertation are well suited to traf-

fic and microsimulation modelling applications on populations with privacy requirements. Given

the robustness of the model against adversarial and linkage attacks, it is difficult for an adversary
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with any amount background knowledge to infer needed information on members of the popula-

tion. The proposed model can be adopted by transportation planners to recreate data surrogates of

the raw data in scenarios where privacy requirements are needed. Given this approach, custodians

of travel data will not be required to anonymize or perturb data points with random noise which

in effect decays the utility of the anonymized data. Periodically, the model can be trained on new

data and subsequently its parameters can be shared with researchers who can predict newer privacy-

enhanced samples for travel behaviour modelling and analysis. It should be noted that the model

can confidently reproduce tabular attributes as well as for sequential activity location coordinates.

For the sequence generation of location coordinates, the model obfuscates by adding random noise

to the generated location points. This will require further map matching to trace routes on generated

sequences. We will extend research on this drawback to present a generalization-based synthetic

sequences such that the spatial resolutions are sustained while providing privacy guarantee.

7.4 Future works

In subsequent work, we will extend this work to improve the model’s learning and prediction of

higher-order representations of multiple features in long temporal dependencies for generative mod-

els. We will experiment on the stacking of multiple layers and varying node sizes to test the impact

on the stability of model parameters and prediction output. Second, to the best of the author’s knowl-

edge, there is no work that has looked into the generation of sequences with varying lengths. This is

a needed requirement for activity diary synthesis which generally consist of varying lengths of trip

trajectories. We will explore the best approaches to adopt to generate multiple features with varying

sequence lengths. Finally, the proposed system needs to be tested and improved using sophisticated

adversarial models, and more traffic modelling applications.
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Glossary

Trajectory: A trajectory (or GPS trajectory) refers to a sequence of time-stamped points, usually

recorded with some other information about latitude, longitude, altitude, speed, and acceleration,

etc. The trajectories are typically recorded by location-aware devices such as smartphones, smart

watch, handheld GPS and others.

Transit Itinerary: A transit itinerary is the details of scheduled events relating to a transit trip,

generally including the bus number or metro line taken by the traveler at specific times and locations.

Trip: A trip is considered as a single journey between two points made by a specific mode of

transport and has a defined purpose. As an example, a trip can be done from home to work by car.

Travel Time: While travel time is usually considered as the time it takes to travel door-to-door, in

this thesis travel time is defined as the time between the first and last GPS point along a detected

trip trajectory.

Sensitive attribute: This is a information that a respondent will not want to be disclosed. In this

thesis, we consider the home and work locations as sensitive attributes.

Personal identifiable information: This is any data that could potentially reveal the identity of

a specific person. For example, the full name, driver’s license, social security number and email

address.

Utility: defines how well a task could be performed on either the true dataset or an anonymized

version to obtain similar or near-similar results. It must not be confused with the concept in microe-

conomics with similar name.

Quasi-identifiers: are variables or pieces of information that are independently not unique identi-

fiers but are sufficiently well correlation with other variables such that its combination with other
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variables could reveal the identity of a person.

Sensitive location: refers to any residential point locations represented in its Cartesian coordinates

as latitudes and longitudes that needs to be protected to prevent the identification of a user.

k-anonymity: refers to the population within a buffer region of the outer radius around the original

point prior to displacement, from which a de-identified cluster case cannot be reversely identified.

K is the population around a sensitive location that could be associated with equal probability to

a perturbed location. If K, were for example 10, then the perturbed location could be equally

attributable to 10 different households.

Protection Radius: refers to a circular region around a sensitive location within which other loca-

tion points existing should be made indistinguishable from the sensitive point.

Location-privacy protection mechanism: or LLPM refers to mechanisms that modify datasets to

offer privacy guarantees by adding a level of noise to displace the sensitive location to distances

away from their true location. Protected datasets are also referred to as geomasked datasets.

Adversary: This is an agent seeking to re-identify true residential location of the user by infer-ring

from sanitized dataset.

Adversarial modelling: refers to the technique of identifying attackers based on malicious intent

and suspicious behaviors, versus only searching for specific indicators of an attack. This model

demands knowledge of the model parameters to identify outliers and suspicious patterns.

Generative modeling refers to unsupervised learning approaches used in machine learning to dis-

cover and learn irregularities or patterns in an input data such that the model can reproduce newer

samples by estimating the joint distribution.
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nique, Palaiseau, France, 2014.

[230] GIS Quantum. Development team.(2013). quantum gis geographic information system. open

source geospatial foundation project, 2013.

[231] Marc Serre. The university of north carolina, bayesian maximum entropy lab for space/time

geostatistics in exposure, disease and risk mapping. http://www.unc.edu/depts/

case/BMElab/, 2018. Accessed: 2018-07-28.

[232] Vincent Primault, Sonia Ben Mokhtar, Cédric Lauradoux, and Lionel Brunie. Differentially

private location privacy in practice. arXiv preprint arXiv:1410.7744, 2014.

[233] Simon Oya, Carmela Troncoso, and Fernando Pérez-González. Is geo-indistinguishability
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Appendix A

Study Area

The map in Figure A.1 shows the geographical extent of the study area. The map states the bound-

aries of the census metropolitan areas within the Greater Montreal Area.

Figure A.1: Map of geographic areas of the Greater Montreal Area
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Appendix B

Data Preparation

In this section, we discuss the procedures that were adopted to prepare the data for the generative

modelling. The trip data for this project composed on numerical, categorical and location geo-

graphic variables as well as location sequences.

B.0.1 Numerical attributes

The objective of processing numerical attributes is to normalize and scale within range of -1 to 1.

The approaches of Scaling and Normalization standardizes numeric inputs into data points that are

suitable for Neural Networks. Standardizing data points transform that into a resulting distribution

with a mean of 0 and a standard deviation of 1. Normalization is defined by:

x| =
x− xmean
xmax − xmin

(7)

where X is the feature vector, Xmean is the mean of the feature vector, Xmin is the minimum of the

feature vector and Xmax is the maximum of the feature vector. We implemented the normalization

using the Scikit-learn [309] Pre-processing framework available in Python. The package presents

two libraries: MinMaxScaler and StandardScaler. The MinMaxScaler library normalizes a feature

to range of 0 to 1 while the StandardScaler library standardizes the data points to a mean of 0.
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B.0.2 Categorical attributes

When processing categorical attributes, we consider two categories namely low and high cardinality.

Low cardinality refers to variables with a minimum of 20 unique variables while High cardinality

referes to variables with 20 or more unique variables. For low cardinal variables, we apply the

one-hot encoding technique. One-hot encoding [310] converts categorical variables to binary com-

binations of values with a single high (1) bit and all the others low (0). This encoding technique

derives an integer representation for category values with a length of the encoded vectors equiv-

alent to the number of unique values of the variable. This technique becomes inefficient when

implemented on high categorical values since larger matrices are created with a drawback on com-

putation. On the other hand, we employ feature embeddings [265, 311] to encode high cardinal

values to fixed dimensional real values. Feature embeddings derive unique real-valued vectors to

represent each category. We employ Keras layer embeddings for generation of feature embeddings

for high cardinal categories.

B.0.3 Route Itinerary

For the purposes of trip sequences, the model demand complete route itineraries between origin

and destination geographic points. The travel routes were generated with the shortest distance path

between an origin and a destination data points. The Open Source Routing Machine (OSRM) allows

a public accessible Application Programming Interface (API) available at http://project-osrm.org.

The API endpoint returns a sequence of geographic points stating the complete geographical route

itinerary.
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