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Abstract

Unmanned Aerial Vehicles for 5G and Beyond: Optimization and Deep Learning

Moataz Shoukry, Ph.D.

Concordia University, 2021

Aerial platforms and, more precisely, Unmanned Aerial Vehicles (UAVs) or drones augmented

with ubiquitous computing, processing and wireless communication technologies are expected to

play an important role in next-generation cellular networks. The flexibility, autonomy, altitude adap-

tiveness, and controllable mobility of UAVs render them suitable to be part of the future wireless

access. Nonetheless, combined terrestrial and UAV communication networks are capable of sub-

stantially improving network coverage and Quality of Service by leveraging line-of-sight communi-

cation as well as minimizing the delay and age-of-information for UAV to ground communication.

Despite its numerous advantages, the deployment of UAVs faces different challenges with respect

to wireless networks, ranging from radio resource management to UAVs’ trajectory under energy

limitation constraint and minimal knowledge of the environment. To this end, this dissertation aims

to address the challenges in the efficient deployment of UAVs in future networks under various

performance metrics. The key goal of this dissertation is to provide the analytical foundations for

deployment, learning, in-depth analysis, and optimization of UAV-assisted wireless communication

networks. Towards achieving this goal, this dissertation makes significant contributions to several

areas of UAV-assisted wireless communication networks within the contexts of static environments

as well as high mobility environments. For the deployment of UAVs in static environments such as

Internet of Things (IoT) wireless networks, various tools such as optimization theory and machine

learning frameworks are employed to enable UAV trajectory design under different scenarios and

performance metrics. Results demonstrate the effectiveness of the proposed designs. In particu-

lar, UAVs adapt their mobility and altitude to enable reliable and energy efficient communication,
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to maximize service for IoT applications, and to maintain the freshness of information. For the

deployment of UAVs in high mobility environments such as vehicular networks, unique design

challenges are considered and carefully handled to guarantee effective performance of the UAV.

Particularly, the high mobility of the vehicles leads to distinct network conditions and changes the

network topology. The challenge here is that designing an efficient deployment of UAVs while

considering the complex and dynamic network conditions is not a trivial task. This challenge was

addressed through comprehensive studies that led to effective, robust, and high-performance solu-

tions. Different performance metrics such as coverage, age of information, throughput, and Quality

of Service were evaluated and compared with other approaches. Results shed light on the trade-

offs in the vehicular network such as throughput-latency when exploiting UAV mobility for service.

The findings in this dissertation highlight key guidelines for the effective design of UAV assisted

wireless communication networks. More insights on the efficient deployment of UAVs in static and

high mobility environments are provided in order to assist and enhance communication in future

networks while considering the unique features of UAVs such as their flight time, mobility, energy

budget, and altitude.
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Chapter 1

Introduction

1.1 New Communications Era with UAVs

Unlike earlier generations of cellular networks, future wireless networks under different labels

such as beyond fifth-generation (B5G or 5G+) and sixth-generation (6G) are expected to seamlessly

and ubiquitously connect everything and support very high data rates and diverse requirements on

reliability and latency. They are also expected to support a myriad of services across different ver-

tical industries such as augmented or virtual reality, autonomous driving, Internet of Space Things,

remote healthcare, industrial automation, among others. Future wireless networks would therefore

meet unprecedented demands for high quality wireless services, which impose challenges on the

conventional terrestrial communication networks. In addition, with the inflation in communication

traffic, the current cellular network infrastructure will experience a degradation in performance and

will fail to provide quality service that meets the expectations of tomorrow’s IoE. Cellular operators

are therefore faced with the challenge of preparing their infrastructure to handle this exponential

increase in data traffic and reduce the burden on the cellular network. To realize these goals, small

cells are proposed to offload the traffic load and; thus, help in accommodating the massive traffic in

future networks. Such technologies however usually require the deployment of new high cost fixed

ground Base-Stations (BSs). While many other emerging technologies (such as Millimeter Wave

(mmWave), Ultra densication, and Non-Orthogonal Multiple Access (NOMA)) are contemplated

for networks of the future, each of such technologies has its own drawbacks and challenges.
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Unmanned Aerial Vehicles (UAVs), also known as drones, are seen as an important feature of

next generation wireless cellular systems [1]. Their unique capabilities such as maneuverability,

flexibility, and adaptive altitude adjustment enable their diverse utilization, especially as aerial BSs

to provide ubiquitous connectivity for the next generation of wireless networks1. UAVs are widely

used for military applications and are suited for the collection of real time information such as im-

ages and videos, which may be useful for strategic decision making. In recent years, UAVs have

been used for many commercial and civil applications such as surveillance and traffic control, com-

munication, disaster management, search and rescue operations, and land and border monitoring,

among many others. UAVs can also be deployed in situations where a part of the communication

infrastructure has been destroyed due to natural or man made disasters. UAVs can be deployed on

demand whenever an unexpected surge of traffic demand occurs to offer high speed services such

as dynamic coverage and edge computing.

For each application, the appropriate type of UAV has to be chosen to meet various require-

ments for the proposed application, the nature of the environment and federal regulations. Several

factors need to be considered such as flying altitudes and the capabilities of the UAV such as energy

resources, mobility, cost and coverage. In general, UAVs can be categorized, according to their

altitude, into High Altitude Platforms (HAPs) and Low Altitude Platforms (LAPs). HAPs can fly at

altitudes of up to 20 km with quasi stationary serving. On the other hand, LAPs can fly at altitudes

of ten or hundred meters. They also have quick mobility and flexible deployment, making them

more appropriate for time sensitive applications such as disaster situations or search and rescue op-

erations. HAPs have longer endurance; hence, they can serve for longer periods of up to several

months. LAPs can be categorized, based on their mobility, into fixed wing and rotary wing UAVs.

Each of these has its unique advantages and disadvantages. Compared to rotary wing UAVs, fixed-

wing UAVs such as small aircrafts are heavier, have higher velocity and cannot remain stationary.

In contrast, rotary wing UAVs such as drones and quadcopter drones have a relatively low velocity

and can hover and remain stationary over a given area. An overview on the different types of UAVs,

their functions, and capabilities is presented in Fig. 1.1.

1To further meet the requirements of connectivity of UAVs, the Third Generation Partnership Project (3GPP) recently
considered the application of 5G networks in Release 17.
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Fig. 1.1: UAV classification.

From the perspective of wireless communication and networking applications, UAVs can pro-

vide reliable and on demand flexibility for a variety of scenarios that will be discussed in this dis-

sertation. On the one hand, drones can be used as flying edge servers to provide devices with low

delay edge computing for tasks that involve relatively high computation in suburban and rural ar-

eas. On the other hand, UAVs can be used as aerial BSs that can deliver reliable, cost effective

and on demand wireless communication to desired areas that are affected by a catastrophic disas-

ter. Furthermore, the adjustable altitude of UAVs and their controllable trajectories enable them to

effectively enhance communication by flying closer to the end users and establishing Line-of-Sight

(LoS) links to significantly improve the Quality of Service (QoS).

The aforementioned advantages of UAVs demonstrate the high potential of their application in

wireless networks. For instance, UAV-based aerial BSs can be deployed to provide effective com-

munication coverage for ground users when traditional terrestrial infrastructure is partially or fully

unavailable. Another important application of UAVs is in the Internet of Things (IoT) in which

devices have limited computation resources and may not be able to meet the demands of applica-

tions such as gaming and augmented reality. In such scenarios, a UAV can be used for mobile edge
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computing, where the computing resources in the network edge are employed to provide efficient

and flexible computing services. UAVs can also be deployed to enhance wireless communication

and provide QoS for a wide range of applications with heterogeneous requirements. In regions or

countries where the construction of a complete cellular terrestrial infrastructure is economically in-

feasible due to high capital expenditure (CAPEX) and operational expenditure (OPEX), deploying

UAVs is highly beneficial, as it eliminates the need for expensive towers and infrastructure de-

ployment. Within the scope of these practical deployments, Qualcomm and AT&T are planning to

employ LAP UAVs to enable wide scale communication in the upcoming 5G wireless networks [2].

Despite the numerous advantages and beneficial applications of UAVs, there are technical chal-

lenges that need to be tackled before the full potential of UAV communication can be realized.

These challenges include three-dimensional (3D) deployment, trajectory design, communication

resource allocation, performance analysis and air-to-ground channel modeling, among others. In

this chapter, the potential use cases of UAV-based communication systems are presented. Then, the

challenges associated with UAV communication are described followed by a review of limitations

of existing literature on this subject. Finally the contributions of this dissertation are summarized

and the resulting publications are listed.

1.2 Potential Use Cases of UAVs

1.2.1 On-Demand and Dynamic Aerial Networks

There are many regions that do not have access to wireless service or suffer from poor con-

nectivity and QoS due to several limitations such as cost and geographical constraints such as the

presence of a mountain or forest. Also, during major public events such as football matches, com-

munication infrastructure experiences a substantial load surge in a very short period of time, that is,

in the order of a few minutes. Therefore, the capacity and coverage of the existing cellular network

infrastructure needs to be rapidly boosted in order to handle the high demand. In such scenarios,

BSs mounted on flying UAVs (also known as aerial BSs, mobile BSs, or UAV-BSs) provide an ef-

fective solution to support the wireless communication networks. UAVs can be deployed at optimal

altitudes at which they can provide maximum coverage or capacity for ground users.
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Fig. 1.2: Different use cases of UAVs.

1.2.2 UAV-Assisted Communication in Disaster Scenarios

Infrastructure-based communication networks tend to be susceptible to major damage arising

from either natural catastrophic disasters (such as earthquakes, hurricanes, floods, lightning and tor-

nadoes) or man-made disasters (such as wars, fire and explosion). Such events have the potential to

damage or even destroy a country’s communication infrastructure [3]. For instance, Hurricane Ka-

trina, a major natural disaster that struck the Gulf Coast in 2005, disrupted the telecommunications

infrastructure. More than 2000 cellular towers went out of service. More recently, Irma, a major

hurricane that hit Florida in 2017, affected at least nine US states, ripping down power lines and

cutting off connection in coastal communities. This event damaged about 20% of the communica-

tion sites in Puerto Rico and 55% in the US Virgin Islands [4] [5]. In such an event, people fleeing

an affected zone to access a safe location would need to communicate with their family members

or receive critical information (such as maps of unaffected highways and congestions) from rescue

crews to guide their travel. To provide network connectivity during disasters, the use of aerial plat-

forms (i.e., UAVs) is considered as a promising solution. Since UAVs can be quickly and efficiently

deployed to provide support for cellular networks and enhance their Quality of Services.
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1.2.3 UAV-Assisted IoT Communication

Governments and municipalities of major cities around the world pursue the vision of develop-

ing smart cities, which relies on information and communication technologies to gather information

and to enable the efficient use of existing assets and resources. This would entail the use of a massive

amount of network-connected devices such as wearables, smart home appliances, embedded sen-

sors, traffic and street lights, connected vehicles and cameras within various sectors (such as health,

transportation, energy and industrial), thus leading to the realm of IoE. Owing to the massive inte-

gration of IoT devices (IoTDs) into Information and Communications Technology (ICT) ecosystem,

the sheer volume of data these devices generate, their diverse requirements in different sectors with

respect to QoS (latency, reliability, higher rates and security), and their limited capabilities render

current cellular systems unsuitable. UAVs can play a vital role in the context of smart cities with a

dense deployment of sensors. UAVs can be used as a gathering entity for the acquired information

from various IoTDs which have, for instance, limited communication capabilities. UAVs can also

provide a computing hub at the edge to analyze the acquired data; therefore, low latency required by

some IoT applications can be achieved. Owing to their high mobility, UAVs can move to enable LoS

communication. They can come in close proximity to ground devices, leading to the achievement

of higher throughput rates and energy conservation for less capable devices.

1.2.4 Aerial Edge Caching in Vehicular Networks

Edge caching is a promising technology to enhance end-users’ QoS and to reduce backhaul

multimedia traffic. However, caching at static ground BS or Road Side Units (RSUs) may not

be effective in serving mobile users such as vehicles where frequent handovers occur. In this case,

when a vehicle navigates to a new RSU, requested content may not be available and thus, the vehicle

cannot be served properly. To better service vehicles in such cases, each requested content needs to

be cached at multiple RSUs, but this is not efficient due to signaling overheads and additional storage

usages. Hence, to enhance caching efficiency, UAV-assisted caching can provide higher QoS and

multimedia data throughput through tracking vehicles’ mobility and effectively deliver the required

contents. In fact, UAVs can act as flying content providers and dynamically cache popular contents
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Table 1.1: List of advantages and challenges of UAV-assisted wireless networks.

Advantages Challenges

Coverage and capacity enhancement Optimal deployment (placement and trajectory).

LoS connection. Channel modeling.

Internet of Things support. UAV Backhauling.

On-demand communications. Flight time and energy constraints.

Dynamic deployment. Resource management.

No significant infrastructure. Safety and security.

Fully-controlled mobility. Minimal knowledge of the environment.

in order to provide either paid streaming services (such as Netflix) or public streaming service (such

as YouTube). This is a very plausible scenario since cellular networks (5G and beyond) may become

overloaded and operators may opt to offload their networks by exploiting UAVs.

In summary, only a few potential use cases of UAVs in wireless communication networks have

been highlighted, as shown in Fig. 1.2. In spite of these promising aspects of UAVs in wireless

networks, there are several technical challenges that require significant efforts from researchers to

propose efficient solutions for UAV deployment while considering the different constraints of UAVs

and environments. Table 1.1 summarizes the advantages and challenges of UAV-based communica-

tions.

1.3 Motivations and Contributions

1.3.1 Limitations of Existing Works

In this subsection, the main limitations in existing studies on UAV communication are presented

in order to define the research objectives of this thesis.

(1) Despite the notable amount of research on trajectory planning of UAVs for data collection

missions, a holistic view still cannot be provided on how to collect data from IoTDs under

explicit flight time and restricted time constraints. For instance, during a natural disaster,

crucial and specific data need to be collected in time for systematic evaluations of the current

situation in the affected area. The timeliness of the transmitted data for these scenarios is
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essential since outdated data may have no useful value. Therefore, the problem of timely

data collection from IoTDs needs to be addressed, where the collected data has deadlines and

needs to be collected before the data loses its meaning or becomes irrelevant. To the best

of our knowledge, finding the most suitable trajectory for the UAV in order to maximize the

number of served IoTDs, where each device has its own target data upload deadline, is a

subject that remains unaddressed. Furthermore, the most relevant existing research on data

collection using UAV assumes that A2G links are dominated by LoS channels and neglect

small scale effects. Despite the dominance of LoS links, completely neglecting small scale

fading is an oversimplification.

(2) The most relevant existing research on UAV communication focuses on the design of the

trajectory of UAVs to achieve high throughput, maximum coverage, or low latency. However,

these performance metrics may not capture the freshness of information, which is required for

real-time update applications. The freshness of collected information is quantified by a new

performance metric, the age-of-information (AoI) or status age. To the best of our knowledge,

very limited research exists on the analysis of AoI in the design of UAV trajectory for data

sensing of real time tasks. There is therefore a need to develop novel solutions that leverage

UAVs and machine learning to address challenges associated with AoI such as scheduling,

UAV deployment, unreliability of communication, and uncertainty of networks.

(3) There have been recent studies to address various challenges in the integration of UAVs with

Reconfigurable Intelligent Surface (RIS) in order to assist wireless communication networks.

However, the analysis, schemes and algorithms developed in these studies may not necessarily

be optimal from the perspective of preserving freshness of information. This is because in

these studies, the configuration of RIS and the deployment of UAVs were designed based on

either maximizing the network spectral/energy efficiency or minimizing the latency or outage

probability. To the best of our knowledge, no study has addressed the optimization of RIS

configuration while considering the freshness of information.

(4) If future networks decide to deploy UAVs in order to assist vehicular networks, UAVs’ energy

budget and the uncertainty of the newly arriving vehicles would present a critical challenge.
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Some studies have investigated energy efficiency of UAVs, but they remain largely limited

in scope since they do not analyze energy efficiency in vehicular networks. In particular,

optimizing the performance of UAV assisted vehicular networks under the energy budget

constraint of UAVs and in the absence of a complete knowledge of the environment has not

been addressed, to the best of our knowledge.

(5) UAVs empowered with Artificial Intelligence (AI) have been substantially studied from a

robotics/control perspective. However, only a few studies consider UAVs to be wireless-

equipped. These studies do not analyze the interrelationship between mobility and wireless

QoS. Existing literature has also not studied the application of UAVs in vehicular networks

while considering the continuous trajectory nature of UAVs such as the exploit of UAVs as

aerial BS. In order to effectively use UAVs as flying BS, the continuous trajectory of UAVs

needs to be optimized with respect to wireless performance metrics such as coverage and

freshness of information. More specifically, studying the continuous trajectory of UAVs em-

powered with AI in the vehicular network is a subject that remains, to the best of our knowl-

edge, unexplored.

(6) While the performance of UAVs acting as mobile content providers has been studied in static

environments, these results cannot readily extend to cases in highly dynamic environments,

such as vehicular networks, as is envisioned for future networks. In such networks, vehicles

usually move at a relatively high speed, causing the topology of the vehicular network to

change occasionally. Hence, a novel design consideration must be considered. In particular,

determining the minimum number of UAVs and their optimal trajectories, while considering

the dynamic nature of the vehicular network, is a problem that remains, to the best of our

knowledge, unaddressed.

1.3.2 Thesis Contributions

This dissertation focuses on UAVs’ deployment in wireless communication networks. The main

contribution of this dissertation is to propose various novel frameworks that fall within the vision of

future wireless networks in realizing the realm of pervasive and intelligent high speed connectivity,
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Fig. 1.3: Graphical summary of addressed problems in future wireless networks.

all through leveraging unmanned aerial vehicles. By using the proposed frameworks, the perfor-

mance of UAV-based communication systems can be optimized under various metrics in terms of

coverage, throughput and age-of-information. Optimization here also takes into account the unique

features of UAVs such as their flight time, mobility, energy budget, and altitude. This dissertation

weaves together notions from optimization theory, machine learning, traffic theory and probability.

The use of such advanced mathematical tools enables the development of an in-depth analytical

foundation and efficient algorithms in order to design, optimize, deploy and operate UAV-based

communication. Moreover, this dissertation addresses different problems, which can be classified

into two different contexts: 1) Efficient deployment of UAV-assisted static environments and 2) Effi-

cient deployment of UAV-assisted high mobility environments. A graphical summary of the various

addressed problems in this dissertation is presented in Fig. 1.3. In the sequel, each of the problems

is introduced and the main findings are highlighted.

10



Optimized UAV Trajectory Planning in IoT Networks for Maximum Service

In Chapter 2, the optimal trajectory for a UAV is investigated in order to maximize the possible

number of served IoTDs while ensuring a minimum amount of data upload per device in a realistic

channel model. To achieve this, the trajectory of a UAV and the radio resource allocation are both

optimized in order to maximize the number of served IoTDs, where each IoTD has its own target

data upload deadline. This is modeled mathematically as a mixed-integer non-convex optimiza-

tion problem. An optimal solution that follows a well-designed Branch, Reduce and Bound (BRB)

algorithm is developed. However, given its complexity and lack of scalability, a low-complexity

method (based on Successive Convex Approximation (SCA) method) is developed, where a trajec-

tory that maximizes the number of served IoTDs is first identified. Then, the UAV is deployed along

the designed trajectory and at each time slot, it collects accurate Channel State Information (CSI)

knowledge in order to allocate radio resources that serve the IoT devices. In addition, more insight

is provided on a method that further optimizes the trajectory (that is, finds the shortest trajectory) to

serve the same number of IoTDs within their information deadlines. Finally, results are compared

with two greedy methods as benchmarks based on distance and deadline metrics. Under variable

deadlines and minimum service amounts, the proposed solution outperformed alternative solutions

including static UAV placement and distance- and deadline-based greedy approaches in terms of the

percentage of served IoTDs (average improvement of 10 % – 50 % ).

UAVs as Active Relays in IoT Networks for Fresh Information

As discussed in Section 1.2, UAVs can play a significant role in IoT communication by relay-

ing data from devices with limited transmission capabilities such as sensors to the nearest BS. In

Chapter 3, UAVs as mobile relays from ground IoTDs are investigated, where low resource IoTDs

periodically sample a stochastic process and need to upload more recent information to a BS. Nu-

merous emerging applications rely on freshness of sensory data (i.e., status-updates) which is being

monitored and generated by a plethora of IoTDs. Outdated updates may be inconsistent with the

current status of the physical process being monitored and controlled, which may lead to erroneous

decisions. To enable reliable uplink communications, UAVs with virtual queues are deployed as a
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middle layer between IoTDs and the BS. In the absence of channel conditions, the optimal schedul-

ing policy is investigated as well as the dynamic UAV altitude control that maintains a fresh status of

information at the BS. The objective of this chapter is to minimize the Expected Weighted Sum Age

of Information (EWSA) for IoTDs. First, the problem is formulated as an optimization problem that

is however generally hard to solve. Second, a model free Deep Reinforcement Learning (DRL) with

a central agent is proposed, where the deployed UAV obtains instantaneous CSI in real time along

with any adjustment to its deployment altitude. Third, the online problem is formulated as a Markov

Decision Process (MDP) and a highly stable state-of-the-art DRL algorithm, Proximal Policy Op-

timization (PPO), is leveraged to solve the formulated problem. Finally, extensive simulations are

conducted to verify findings and comprehensive comparisons with other baseline approaches are

provided to demonstrate the effectiveness of the proposed design.

UAV-mounted RIS as Passive Relays in IoT Networks for Fresh Information

Unlike Chapter 3, where UAVs act as active mobile relays, integrating RIS with UAVs proves

to be beneficial in several ways. Data transmission from IoT devices to the BS through RIS em-

powered UAVs requires less intermediate delays compared to UAVs acting as mobile active relays.

Also, power consumption, due to the processing of the relayed information at the UAVs, can be

avoided, leading to an increase in flight endurance of the UAV. In Chapter 4, a new relaying system

that integrates UAVs and RIS is proposed to maintain the freshness of information of remote IoT

networks. The altitude of the UAV, transmission scheduling, and phase shift matrix of RIS elements

are optimized to minimize the expected sum of AoI. To tackle this mixed-integer non-convex prob-

lem, PPO algorithm is proposed. Numerical results demonstrate that the proposed algorithm can

significantly minimize AoI compared to other baselines such as random walk and heuristic greedy

algorithms.

Learning-based Trajectory Planning of Aerial Base Stations in Vehicular Networks

In order to reap the benefits of UAV in wireless networking applications, it is necessary to study

the use of UAVs in vehicular networks. In particular, the characteristics of a dynamic environment

such as vehicular networks pose a unique design challenge for UAV assisted vehicular networks.
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For instance, the high mobility of the vehicles leads to distinct network conditions and changes the

network topology, both of which should be carefully handled in order to guarantee the performance

of the UAV system. In Chapter 5, coverage analysis is provided for UAV assisted vehicular networks

in the absence of a complete knowledge of the environment. This subject adds to the novelty of this

dissertation since existing research in literature focuses mainly on the optimization of the trajecto-

ries of UAVs in static environments with a complete knowledge of the environment. The complex

and dynamic network conditions heightens the difficulty to design an efficient approach to trajectory

optimization. Due to varying traffic conditions and the uncertainty of the vehicular network, a ma-

chine learning approach is utilized to govern the required number of UAVs and their trajectories in

order to serve existing and newly arriving vehicles. Efficient trajectory planning of UAVs requires

addressing a number of key challenges such as the minimum number of UAVs and their trajectories

needed to provide an effective coverage for a given highway segment that is not covered by ground

BS or Road Side Units (RSUs). To address this challenge, decision making for trajectories is for-

mulated as a Markov Decision Process where the system state space considers vehicular network

dynamics. Then, DRL is leveraged to propose an approach to learn the optimal trajectories of the

deployed UAVs. Actor-Critic algorithm is adopted to efficiently maximize vehicular coverage and

learn the vehicular environment and its dynamics to handle the complex continuous action space.

Simulations results are then presented to verify findings and demonstrate the effectiveness of the

proposed design. During the mission time, the deployed UAVs adapt their velocities in order to

cover the vehicles.

AoI-Aware Data Collection in Vehicular Networks with Intelligent UAVs

Traditional UAV assisted vehicular networks have adopted coverage, throughput, and latency

as performance metrics. These metrics, however, are not adequate to reflect the freshness of the

information, an attribute that has been recently identified as a critical requirement to enable services

such as autonomous driving and accident prevention. In Chapter 6, data collection analysis for UAV

assisted vehicular network is provided, wherein sensors (such as LiDARs and cameras) on vehi-

cles generate time sensitive data streams and UAVs are used to collect and process this data while

maintaining a minimum AoI. This chapter develops a new framework for optimizing the trajectories
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of UAVs and finding scheduling policies to keep the information fresh under minimum throughput

constraints. The formulated optimization problem is shown to be mixed-integer, non-convex, and

generally hard to solve. Motivated by the success of machine learning techniques, particularly Deep

Learning, in solving problems with low complexity, the trajectories and scheduling policies are re-

formulated as a Markov Decision Process. Then, Deep Deterministic Policy Gradient is leveraged

to learn the trajectories of the deployed UAVs and to efficiently minimize the EWSA. Simulations

results demonstrate the effectiveness of the proposed design and show that the deployed UAVs adapt

their velocities during the data collection mission in order to minimize the AoI.

On-Demand Content Delivery in Vehicular Networks with Optimized Multi-UAV Trajectories

As discussed in Section 1.2, UAVs are recommended as promising solutions to provide fast net-

work recovery when infrastructure is temporarily unavailable. In Chapter 7, several scenarios that

explore the use of UAVs as mobile content providers are analyzed, including, but not limited to: i)

the delivery of critical data to all vehicles (for example, warnings about speed curves) for dynamic

path planning (for example, warning about collisions) where the infrastructure is destroyed or un-

available; ii) the use of UAVs, as flying content providers, to dynamically cache popular content in

order to provide streaming services, as explained in subsection 1.1.4; iii) the use of UAVs in the

context of Self-Organized-Networks (SON) where operators, who need to deliver certain popular

content (for example, active streaming of ongoing events), do not have available infrastructure (due

to high CAPEX) or are not interested in integrating additional infrastructure since it may only be

used for a short period of time and thus does not justify the cost of deployment. Thus, in Chapter

7, the number of UAVs must be taken into account in the analysis of UAV-based communication

systems in vehicular networks. In this case, a framework is needed to analyze and optimize the

performance of UAV-based communication in vehicular networks based on the number of deployed

UAVs. Therefore, in Chapter 7, a framework is developed to minimize the number of deployed

UAVs to fully serve all vehicles. The trajectory of a UAV and the radio resource allocation are both

optimized in order to minimize the number of deployed UAVs within a given time frame while guar-

anteeing the vehicles’ requirements. The formulated problem is shown to be non-convex and gen-

erally hard to be solved. To solve it, successive convex approximation based method is employed
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to approximate the original non-convex problem through a sequence of its convex approximates.

Then, an efficient low complexity algorithm is developed to sequentially solve this convex approxi-

mated problem until convergence. Numerical results demonstrate the effectiveness of the proposed

design and show that during the mission time and to fulfill the requirements of each vehicle, the

UAVs adapt their velocities, as well as their directions, to the velocities of the current and incoming

vehicles.
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Chapter 2

Optimized UAV Trajectory Planning in

IoT Networks for Maximum Service

2.1 Background, Related Works, and Contributions

As previously discussed in Chapter 1, unmanned aerial vehicles (UAVs) have recently received

much attention and been explored among the enabling and supporting technologies for 5G wireless

systems and beyond. Indeed, UAVs can play a central role in the context of smart cities with dense

deployment of sensors; UAVs can be used as a gathering entity of the collected information from

various IoT devices (IoTDs) with for instance limited communication capabilities. UAVs can also

provide a computing hub at the edge to run several data analytics on the collected data, therefore

achieving the low latency required by several critical IoT applications. Owing to their mobility,

UAVs can flexibly move to enable a Line-of-Sight (LoS) communication or come in close proximity

to the ground devices, therefore, achieving higher throughput rates and conserving the energy of less

capable devices. In summary, the benefits UAVs bring to current networks are enormous, and as

such, they are considered among the contending enabling technologies for building networks of the

future.

The work done in this chapter leads to an IEEE published journal [6]
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In this chapter, we address the problem of data collection, where a deployable UAV (for in-

stance in the context of offloading) can be dispatched to gather data collected by IoTDs in a smart

city environment. In particular, timely data collection becomes very critical in scenarios that involve

IoTDs with limited buffer sizes deployed for instance for continuous measurements, and thus data

has to be extracted before it loses its value or being overwritten by newly incoming data. Other

scenarios include situations (such as in emergency rescue operations, disaster monitoring and target

tracking) where the accumulated data reveals current conditions of the respective field for alert and

notification services and thus enjoys a restricted lifetime beyond which it loses its significance. For

instance, during a natural disaster, specific vital data needs to be collected in time for systematic

evaluations of the current situation in a given area. The timeliness of the transmitted data for these

scenarios is essential, since outdated data may have no useful value. The existing literature has ad-

dressed various challenges in UAV communication systems. Optimizing the trajectory of the UAV

is one of the important research challenges. In particular, optimizing the trajectory of the UAV de-

pends on many factors. For instance, the work in [7], maximized the minimum rate among ground

users by optimizing the trajectory and user scheduling for a single-UAV. In [8], the authors char-

acterized the capacity region of a UAV-enabled two-user broadcast channel by optimizing the UAV

trajectory jointly with transmit power or rate. The authors showed that for a sufficiently long flight

duration, the optimal UAV trajectory with different multiple access schemes will achieve almost the

same capacity. In [9], the authors characterized the capacity region of a UAV for multiple users by

jointly optimizing the UAV trajectory and radio resource allocation for multiple access techniques.

The authors showed that the capacity region achieved for multiple users by non-orthogonal multiple

access significantly outperforms the rate regions by orthogonal multiple access, while frequency

division multiple access achieves higher rate region than that by time-division multiple access. The

work in [10] jointly optimized the trajectory, multi-user scheduling and power control for multiple

UAVs to maximize the minimum rate of ground users. In [11], the authors optimized the UAV’s

trajectory to minimize the time to completely disseminate a common file to a number of distributed

ground terminals. In [12], the UAV trajectory, bandwidth resources, and user partitioning between

a ground Base-Station (BS) and UAV are optimized to maximize the minimum quality of service
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(QoS) for ground users located at the cell edge. In [13], UAV trajectory and ground terminal trans-

mit power are jointly optimized for both circular and straight trajectories to reveal a fundamental

trade-off between the UAV propulsion energy consumption and ground terminal communication en-

ergy consumption. In [14], the authors maximized the throughput by optimizing the UAV trajectory

jointly with the transmitted power for a mobile relay node mounted on a UAV, subject to the UAV

mobility constraints. In [15], the UAV placement, radio resource allocation, and decoding order of

the non-orthogonal multiple access transmission scheme are optimized to maximize the sum achiev-

able rate of all users. In [16], the authors applied successive convex approximation (SCA) and the

Lagrange duality to maximize the minimum average rate by optimizing the trajectory of UAV and

spectrum allocation.

On the other hand, data collection using UAVs has been addressed in several prior work. For

example, the authors in [17] proposed a data collection framework for UAV-assisted wireless system

to maximize the system throughput. To increase the efficiency of data collection and increase the

sensors’ lifetime, the authors proposed a priority access and routing algorithm framework upon

dividing the sensors into multiple groups, each associated with a certain priority. The authors of [18]

optimized the UAV’s trajectory and sensors’ wake-up schedule to minimize the maximum energy

consumption of all sensors to increase the network lifetime. The authors applied successive convex

approximation, SCA method, to solve the optimization problem sub-optimally. Multiple UAVs are

also considered in the same work while considering a fading channel. In [19], the authors deployed

multiple UAVs for collecting data from ground IoTDs, where the total uplink transmit power of

these IoTDs is minimized in a time-varying network by optimizing the UAV’s trajectory and IoT

power control. In [20], the authors proposed a greedy algorithm to optimize the trajectory of the

UAV to minimize the mean square error for estimation parameters by sensor nodes. In [21], the

authors proposed a solution for energy-efficient data collection by optimizing the trajectory of UAV

jointly with optimized the selection of cluster head along with establishing forwarding trees between

sensor-nodes and cluster head.

Recently, few works have been conducted to address the time-sensitive data collection. The au-

thors in [22] proposed two UAV trajectory to minimize the maximum and average age-of-information.

The authors adapt a dynamic programming (DP) method and genetic algorithm (GA) to obtain the
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Fig. 2.1: System model: timely data collection in a smart city environment using UAV. For illustra-
tion, an example of the time line representation for two IoTDs with two deadlines are presented.

UAV trajectory. The authors in [23], optimized the UAV trajectory, service time allocation and the

UAV energy to minimize the average peak age-of-information between a source and destination,

where an iterative algorithm is proposed to solve the optimization problem. In this work, we are

interested in further exploring the impact of the deadlines on the trajectory of UAV and the allo-

cation of radio resources. Specifically, we aim to jointly optimize the trajectory of a UAV and the

radio resource allocation when imposing a deadline on data packets that need to be collected before

expiry.

Compared to the surveyed related work, here we address the problem of timely data collection

from IoTDs where the collected data has deadlines and needs to be collected before the data loses its

meaning or becomes irrelevant. Moreover, we adopt a Rician channel model, which encompasses a

wider range of channel models, and hence makes the proposed solution more realistic. Our objective

is to find the most suitable trajectory for a UAV to collect data from the maximum possible number

of devices while ensuring a minimum amount of data uploaded per device. This turns out to be a

challenging problem, which we model mathematically as a non-convex optimization problem. We

develop an optimal solution following a well designed branch, reduce and bound (BRB) algorithm.
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However, given its complexity and lack of scalability, we develop a low complexity method (based

on SCA method) where we first find a trajectory that maximizes the number of served devices.

Then, the UAV is deployed along the designed trajectory and at each time-slot collects accurate

channel state information (CSI) knowledge to allocate radio resources to serve the IoTDs. Next,

we elaborate a method that further optimizes the trajectory (i.e., find the shortest) for serving the

same number of IoTDs within their information deadlines. Finally, we compare our results with two

greedy methods as benchmarks based on distance and deadline metrics.

The rest of this chapter is organized as follows. Section 2.2 presents the system model followed

by the problem formulation in section 2.3. We propose an optimal solution for data collection in

section 2.4. A sub-optimal solution along with enhanced algorithm are proposed in section 2.5.

Section 2.6 proposes enhanced algorithm for minimizing UAV flight distance. Simulation results

are presented in section 2.8. Finally, conclusions are drawn in section 2.9, and future research

directions are highlighted.

2.2 System Model

We consider a smart city environment comprising a set M of M IoTDs with limited capabilities

distributed over a given area and continuously collecting time-sensitive data. This data is assumed

to carry useful information as long as it is uploaded within a given target deadline, beyond which

it loses its significance and becomes irrelevant. The system model is depicted in Fig. 2.1, where a

UAV is dispatched on a regular basis to serve as many IoTDs as possible by completely collecting

information from each device i before its expiry deadline δi. The locations of the IoTDs together

with their corresponding data sizes, the data generation time, τi, and target deadlines are assumed

to be known by the UAV, through a central controller, prior to the launch of the UAV for every data

collection mission. The mission duration, referred to as flight time, is fixed to T and divided into

N equal time-slots, indexed by n = 1, ...,N, each of length δt . Technically, δt is sufficiently small

such that we can assume the location change of the UAV within δt is negligible, compared to the

distances from all IoTDs to the UAV.

The UAV is assumed to fly at a fixed altitude H in meters above ground level, e.g., that is
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imposed by the regulatory authority for safety considerations; the UAV’s location in time-slot n is

given by (xn, yn, H). Orthogonal transmission is employed in the uplink to allow multiple IoTDs

to simultaneously upload their data to the UAV. Given the location (xi, yi, 0) of each IoTD i ∈M

at ground level and the current UAV location (xn, yn, H) in time-slot n, the distance dn
i between the

UAV and the IoTD is calculated as follows:

dn
i =

√
(xi− xn)2 +(yi− yn)2 +H2,n = 1,2, ...N. (2.1)

In practice, the speed of a UAV is limited to a maximum value vmax in m/s and, thus, its travel

distance in one time-slot is constrained as follows:

(xn+1− xn)2 +(yn+1− yn)2 ≤ (vmaxδt)
2,n = 1, ...,N−1. (2.2)

We also assume the channel between the IoTDs and the UAV follows a Rician fading channel

model with a factor K, where the channel coefficient hn
i can be written as

hn
i = ĥn

i ∆
n
i , (2.3)

where ĥn
i and ∆n

i respectively represent the small-scale fading and path-loss coefficients. In particu-

lar, we can write the path-loss coefficient as ∆n
i = γ0(dn

i )
−α , where γ0 is the average channel power

gain at a reference distance d0 = 1m, α is the path-loss exponent that usually has a value greater

than 2 for Rician fading channel. The small scale fading ĥn
i is composed of LoS component h

n
i ,

where |hn
i |= 1, and a random Non-line-of-sight (NLoS) component h̃n

i , where h̃n
i ∼ C N (0,1). The

small scale fading ĥn
i is given by

ĥn
i =

(√ K
K +1

h
n
i +

√
1

K +1
h̃n

i

)
. (2.4)

Each IoTD i is assumed to transmit with constant power P leading to a received power at

the UAV Pn
i = |hn

i |2P in time-slot n. The signal-to-noise ratio (SNR) of each IoTD is ϒi,n =

P|ĥn
i |2∆n

i /σ2, where σ2 is the thermal noise power which is linearly proportional to the allocated
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bandwidth [24]. Thus, the achievable rate for each IoTD i in time-slot n is given by

rn
i (b

n
i ,x

n,yn) = bn
i log2(1+ϒi,n), (2.5)

where bn
i is the fraction of spectrum allocated to IoTD i in time-slot n and it is equivalent to a number

of resource blocks. In practice, for large numbers of resources, bn
i is approximately continuous

between 0 and 1. Thus, the allocation of the radio resources should meet the below constraints

∑
i∈M

bn
i ≤ 1,∀n, (2.6)

0≤ bn
i ≤ 1,∀n, i ∈M . (2.7)

We should note that our model assumes a frequency non selective, or flat, channel which, unlike

frequency selective channel, only the fraction of radio spectrum allocated to each IoTD is of interest,

rather than which fraction of the radio spectrum. Hence, our allocation constraint decides on the

amount of resource blocks that need to be allocated to achieve the service amount for each served

device.

We define the service amount as the amount of data that one IoTD delivers to the UAV within

a given deadline during a data collection mission. The service amount concept has been proposed

in multiple previous works especially in scenarios with mobility [25–27], where the achievable rate

is time-variant and does not exhibit the service quality of the corresponding transmitting device.

Similarly, in our system model, the achievable rate of one IoTD is not only based on the device

itself but varies according to the data deadlines of the other IoTDs to be served. Consequently, we

utilize the service amount concept to represent the service quality of each IoTD. The service amount

Si(bn
i ,x

n,yn) provided by each IoTD i over flight time T can be computed based on the summation

of the achievable rates throughout the information lifetime, where the rate of a given device is set to

0 as soon as its data deadline passes. The service amount Si(bn
i ,x

n,yn), computed in bits/Hz, can be

written as

Si(bn
i ,x

n,yn) = δt

N

∑
n=1

sn
i ,∀i ∈M , (2.8)
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where

sn
i =


rn

i (b
n
i ,x

n,yn), if τi ≤ n≤ δi,

0, otherwise.
(2.9)

2.3 Problem Formulation

The objective of this work is to optimize the UAV trajectory and allocation of resources to

maximize the total number of served IoTDs within a flight mission duration T based on a given

set of target time constraints. To serve device i, its data Si should be completely collected by

the UAV throughout the lifetime. To mathematically formulate the problem, we define a binary

variable κi ∈ {0,1}, ∀i ∈M , that is asserted if the UAV can successfully serve device i with a

minimum service amount Smin
i ; otherwise, it is set to 0, where Smin

i is defined as the minimum

amount of information (bits/Hz) that need to be uploaded by device i. Let us denote X = {xn,∀n},

Y = {yn,∀n}, K = {ki, i ∈M } and B = {bn
i ,∈M ,n}. The formulated optimization problem is

given in (2.10) with the objective to maximize the number of served IoTDs.

(P1) : max
X,Y,B,K ∑

i∈M
κi (2.10a)

s.t. Si(bn
i ,x

n,yn)≥ κiSmin
i ,∀n, i ∈M , (2.10b)

κi ∈ {0,1}, i ∈M , (2.10c)

0≤ bn
i ≤ κi,∀n, i ∈M , (2.10d)

(2.2),(2.6), (2.10e)

[x0 y0] = [xs ys], (2.10f)

[xN yN ] = [xe ye]. (2.10g)

Constraint (2.10b) guarantees that each served IoTD uploads the minimum amount of data Smin
i .

Constraint (2.10d) prevents the UAV from wasting radio resources on IoTDs that cannot be served

within their deadline. As a result, the share resources bn
i in Eq. 2.7 is upper bounded by κi that

is set to 0 if device i is not selected to be served. Constraints (2.10f) and (2.10g) indicate the
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initial position of the UAV’s trajectory located at [xs ys] and the final position at [xe ye]. In fact,

the operator may decide on those positions based on multiple factors such as the location of their

managed property, legislation and/or UAV’s charging stations.

Clearly, the solution of (P1), which yields a trajectory for the UAV during a time frame T ,

relies on the knowledge of the instantaneous channel at each time-slot during the flight. Given that

by the time a trajectory is designed, there is no possible way of obtaining the channel conditions in

future slots; hence, we overcome this obstacle by assuming a path loss model for the channel and

solve (P1) to obtain a trajectory which maximizes the number of IoTDs which can be served. Then,

we utilize the obtained trajectory to fly the UAV; but, at each time-slot during its flight, the UAV

obtains correct instantaneous CSI, and then assigns resources for the IoTDs to meet their service

rate, at that slot. The process is repeated throughout the trajectory of the UAV. More details will be

presented in the sequel.

We also observe that (P1) is a mixed integer non-linear program (MINLP), which is generally

hard to be solved, due to the existence of the binary variable κi in constraint (2.10c) and non-convex

constraint (2.10b) [10], even if the binary variable κi is relaxed to take any value between 0 and 1.

The relaxed version of (P1) is, nevertheless, non-convex due to the trajectory variables xn and yn in

constraint (2.10b). To the best of our knowledge, there is no solver for (P1).

2.4 Global Optimization Solution

In this section, we present a solution to optimally solve the problem (P1) using a customized

branch, reduce and bound (BRB) algorithm [28]. Although the optimization problem is monoton-

ically increasing with respect to κi, it is yet hard to be solved by the BRB algorithm due to the

non-convex constraint (2.10b), with respect to their variables. In what follows, we transform (P1)

into another equivalent and monotonically increasing optimization form, based on which a BRB

algorithm is customized to solve our optimization problem optimally.
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2.4.1 Equivalent Formulation

Consider the following optimization problem:

(P1O) : max
X,Y,B,U ∑

i∈M
1

[
max

{
δt

δi

∑
n=τi

bn
i un

i −Smin
i ,0

}]
(2.11a)

s.t. un
i ≤ log2

(
1+ϒi,n(xn,yn)

)
,∀i ∈M ,n = τi, ...,δi, (2.11b)

(2.2),(2.6),(2.7),(2.10 f ),(2.10g), (2.11c)

where 1[x] is the indicator function that equals unity if x > 0, and zero otherwise. To propose the

optimal solution for our optimization, we propose the following lemma. Lemma 1: By introducing

the slack variable U = {un
i ≥ 0,∀n}, (P1) is equivalent to the monotonic formulation (P1O), i.e.,

(P1) and (P1O) have the same objective and solution set.

Proof of the Equivalence

To prove that (P1) and (P1O) are equivalent, we must prove that any feasible solution of (P1)

is also a feasible solution of (P1O). Conversely, from any feasible solution of (P1O), we can

always find a feasible solution of (P1). Assume that X̆, Y̆, B̆, Ŭ is a feasible solution set of (P1O).

It is easy to remark that since X̆, Y̆, B̆, Ŭ satisfy all constraints (2.10c)-(2.10g) of (P1). Now, we

need to prove X̆, Y̆, B̆, Ŭ also satisfy constraint (2.10b). We can prove it as follows:

Since: ŭn
i ≤ log2

(
1+ϒi,n(x̆n, y̆n)

)
,

⇒ b̆n
i ŭn

i ≤ b̆n
i log2

(
1+ϒi,n(x̆n, y̆n)

)
,

⇒ δt

δi

∑
n=τi

b̆n
i ŭn

i ≤ δt

δi

∑
n=τi

b̆n
i log2

(
1+ϒi,n(x̆n, y̆n)

)
.

(2.12)

Let us denote δt ∑
δi
n=τi

b̆n
i log2

(
1+ϒi,n(x̆n, y̆n)

)
= Si(b̆

n
i , x̆

n, y̆n), then we obtain Si(b̆
n
i , x̆

n, y̆n) ≥

δt ∑
δi
n=τi

b̆n
i ŭn

i . At this point δt ∑
δi
n=τi

b̆n
i ŭn

i can take either one of two values, for instance, δt ∑
δi
n=τi

b̆n
i ŭn

i ≥

Smin
i or δt ∑

δi
n=τi

b̆n
i ŭn

i < Smin
i . Based on this, we can determine K̆ as a function of X̆, Y̆, B̆, Ŭ to satisfy
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constraint (2.10b). In particular

If: δt

δi

∑
n=τi

b̆n
i ŭn

i ≥ Smin
i , ⇒ κ˘i = 1,

If: δt

δi

∑
n=τi

b̆n
i ŭn

i < Smin
i , ⇒ κ˘i = 0.

(2.13)

In conclusion, we can determine X̆, Y̆, B̆, K̆ from X̆, Y̆, B̆, Ŭ to satisfy constraint (2.10b). On the

other hand, assume that Ẍ, Ÿ, B̈, K̈ is a feasible set of solution of (P1). It is easy to remark that since

Ẍ, Ÿ, B̈, K̈ satisfy all constraints (2.2), (2.6), (2.7), (2.10f), (2.10g) of (P1O). Now, we need to prove

Ẍ, Ÿ, B̈, K̈ also satisfy constraint (2.11b). Since we got δt ∑
δi
n=τi

b̈n
i log2

(
1+ϒi,n(ẍn,ÿn)

)
≥ κ¨iSmin

i .

Let us denote ün
i = log2

(
1+ϒi,n(ẍn,ÿn)

)
, then this notation makes constraint (2.11b) satisfied. Let

us assume X̋, Y̋, B̋, K̋ is the optimum solution of (P1). We have to prove that X̋, Y̋, B̋, K̋ is the

optimum solution of (P1O). This can be shown by contradiction. Assuming X̋, Y̋, B̋, Ű is not

the optimum solution of (P1O), this means that there exists another solution denoted by X̄, Ȳ, B̄,

K̄ which results in a larger objective function of (P1O). This means that there exists an index i1

which makes δt ∑
δi1
n=τi1

b̄n
i1 ūn

i1 −Smin
i1 ≥ 0, while it is δt ∑

δi1
n=τi1

b̋
n
i1 űn

i1 −Smin
i1 < 0. Now, from i1 we can

determine κ¯i1 = 1, while κ˝i1 = 0, thus, ∑i∈M κ¯i > ∑i∈M κ˝i. This means that there is at least

one more served IoTD, which contradicts the assumption of optimality. This completes this part of

the proof. Similarly, we can prove any optimum solution of (P1O) is also optimum of (P1). This

completes the proof.

2.4.2 Proposed BRB Solution

It can be seen that, when the variables bn
i and un

i , i ∈M ,∀δi are fixed, our optimization problem

(P1O) becomes a feasibility checking for a convex monotonic optimization problem [29]. Conse-

quently, the BRB method can be applied to optimally solve the problem. In the BRB algorithm, a set

of N non-overlapping hyper-rectangles that cover the optimization problem (P1O) is maintained,

where one of the hyper-rectangles includes the optimal solution.

We define the hyper-rectangle A = [A, Ā] that contains all feasible solutions for our opti-

mization problem, where A and Ā are the lower bound and the upper bound vector that hold the
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Algorithm 1: BRB-Optimal: Proposed to Optimally Solve the Data Collection Problem.

1 Inputs: The hyper-rectangle A , the error tolerance εo, the minimum service amount Smin
i

and the deadline δi.
2 Initialization: Apply the reduction procedure to our initial hyper-rectangle A to obtain the

new reduction hyper-rectangle red(A ).
3 Update the hyper-rectangle box B1 = red(A ) and set iteration number m = 1.

4 Branch B1 into two smaller hyper-rectangle boxes B( j)
1 ,∀ j = 1 : 2.

5 Update the set of hyper-rectangles boxes D1={B( j)
1 } and the lower bound ψm = LB(B1).

6 while
(

max
B( j)

m ∈Dm

(
UB(B( j)

m )
)
−ψm ≥ εo

)
do

7 Select the hyper-rectangle box that has the maximum upper bound

Bm = argmax{UB(B( j)
m )|Bm ∈ Dm)} for branching.

8 Branch Bm into two smaller hyper-rectangles B(1)
m , B(2)

m using bisection method along
with the longest edge of Bm. . //Branching operation//

9 Compute the lower bound for both hyper-rectangles and apply the reduction procedure

to the feasible hyper-rectangles to obtain red(B(1)
m ) and red(B(2)

m ). . //Reduction
operation//

10 Compute the maximum lower bound for both reduced hyper-rectangles red(B(1)
m ) and

red(B(2)
m ). . //Bounding operation//.

11 Update ψm+1 = max(LB(red(B(1)
m )),LB(red(B(2)

m )),ψm).
12 Remove the hyper-rectangle box that do not contain the optimal solution and update the

set of hyper-rectangles boxes
Dm+1 = Dm\{Bi|ψm+1 >UB(red(Bi))},∀i = 1, ...cardinal(Dm).

13 m = m+1.

14 Output The global optimal solution for maximizing the number of served IoTDs.

lowest and the highest values for the variables un
i and bn

i , respectively. In fact un
i is bounded

0 ≤ un
i ≤ log2(1+ϒmax

i,n ), i ∈M ,∀δi, where ϒmax
i,n is the maximum signal-to-noise ratio when the

UAV is hovering right above the IoTD i at time-slot n and is computed as ϒmax
i,n =

Pγ0|ĥn
i |2

σ2H2 .

In principle, three operations are conducted for each iteration in the BRB method to improve the

lower and upper bounds; namely, Branching, Reduction and Bounding. First, the branching opera-

tion is applied to divide the selected hyper-rectangle A that contains the largest upper bound into

two equal smaller hyper-rectangles using one of the partition methods (such as bisection method),

and checks the feasibility of each hyper-rectangle through one of the optimization solvers (such as

SDPT3) can solve it. Second, the reduction operation is applied to the hyper-rectangles to remove

the parts that cannot satisfy the feasible solution to find a smaller hyper-rectangle. Third, a bounding

operation is performed to search for the optimal solution by updating the upper and lower bounds.
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The algorithm proceeds until the difference between the lower and upper bounds is smaller than

a predefined accuracy εo. These operations are illustrated in more details in [28]. Algorithm 1,

referred to as BRB-optimal, summarizes the BRB solution of (2.11) to determine the optimal UAV

trajectory that allows the maximum number of IoTDs to be served.

2.4.3 Convergence Analysis

Algorithm 1 is guaranteed to compute the global optimal solution for maximizing the number

of served IoTDs for (P1) and its convergence can be proved based on [28], which can be explained

as follows. The BRB operations iteratively update and improve the lower and upper bounds of the

objective (2.11a). Specifically, in each iteration the lower bound is non-decreasing by updating the

step 10, while the upper bound is non-increasing by reduction and bound operations. Due to the

monotonic property, after a number of iterations, the gap between the upper and lower bounds of

the box that contains an optimal solution is less than or equal to a predefined accuracy level εo.

2.5 Low-Complexity Sub-optimal Solution

Since our trajectory optimization is time-sensitive as it depends on the deadlines of the data,

the BRB method does not lend itself as an efficient approach and requires a long time to achieve

optimal solution especially with a large number of IoTDs. In general, The BRB method is used

to generate optimal solutions for relatively small-scale scenarios and also serves as a benchmark

for other approaches (as will be shown in our numerical evaluation in the sequel). Motivated by

this, we aim to solve the problem for practical network scenarios with a larger number of IoTDs, a

low-complexity algorithm is presented to maximize the number of served IoTDs in the next section.

2.5.1 SCA-Algorithm for Maximizing the Number of Served IoTDs

In this section, we attempt to solve (P1) based on convex approximation methods and mul-

tiple equivalent transformations to generate a more efficient but sub-optimal solution. To solve

our optimization, the non-convex constraint (2.10b) is approximated into another equivalent convex

equation form and SCA method is applied to solve it iteratively.
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As mentioned earlier, (P1) is integer non-convex program and difficult to solve. Here, the

main difficulty of solving (P1) is to deal with the binary variable κi which appears in the objective

function of (P1). Moreover, even if we relax the binary variable κi to make it continuous between

’0’ and ’1’, the relaxed version of (P1) is still non-convex. The non-convexity of (P1) is due to

the existence of the non-convex non-concave service amount Si a function of the UAV’s trajectory,

which appears in the constraint (2.10b). To tackle the problem, we introduce slack variables G =

{gn
i ≥ 0,∀n, i ∈M } and C = {cn

i ≥ 0,∀n, i ∈M }.

Then, we relax the binary variable κi in constraint (2.10c) between 0 and 1. Next, we employ an

approximate to function log2(1+ϒi,n) by convex approximation with respect to (xn
i − xn)2 +(yn

i −

yn)2 [30], where at the rth iteration, the following inequality can be obtained:

log2(1+ϒi,n)≥−Ar,n
i

(
(xi−xn)2 +(yi− yn)2− (xi− xr,n)2− (yi− yr,n)2

)
+Br,n

i

, ζ
n,r
i (xn,yn),

(2.14)

where

Ar,n
i =

α(Pγ0|ĥn
i |2/σ2) log2 e

2
(
(H2 +(xi− xr,n)2 +(yi− yr,n)2)α/2 +(Pγ0|ĥn

i |2/σ2)
)

.
1(

H2 +(xi− xr,n)2 +(yi− yr,n)2
) ,∀n, i ∈M ,

(2.15)

Br,n
i = log2

(
1+

Pγ0|ĥn
i |2

σ2
(

H2 +(xi− xr,n)2 +(yi− yr,n)2
)α/2

)
,∀n, i ∈M . (2.16)

To this end, we can reformulate (P1) as:

(P1L) : max
X,Y,B,
K,G,C

∑
i∈M

κi (2.17a)

s.t. δt

δi

∑
n=τi

cn
i ≥ κiSmin

i , i ∈M , (2.17b)

cn
i ≤ bn

i gn
i , i ∈M ,n = τi, ...,δi, (2.17c)

gn
i ≤ ζ

n,r
i (xn,yn), i ∈M ,n = τi, ...,δi, (2.17d)

0≤ κi ≤ 1, i ∈M , (2.17e)
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0≤ bn
i ≤ κi,∀n, i ∈M , (2.17f)

(2.2),(2.6),(2.10 f ),(2.10g). (2.17g)

Examining constraint (2.17c), the non-convexity factor bn
i gn

i is on the greater side of the in-

equality. To deal with this constraint, we simply replace the right side of constraint (2.17c) by an

equivalent Difference of Convex (DC) function bn
i gn

i =
(bn

i +gn
i )

2− (bn
i −gn

i )
2

4
, and linearize the

concave term
(bn

i +gn
i )

2

4
of the constraint at iteration r. Hence, the constraint (2.17c) is approxi-

mated as

−
(br,n

i +gr,n
i )2

4
−

(br,n
i −gr,n

i )(bn
i −br,n

i +gn
i −gr,n

i )

2
+

(bn
i −gn

i )
2

4
+ cn

i ≤ 0. (2.18)

Using the above approximation, (P1L) transforms into a convex problem, and can be optimally

solved by updating parameter ζ
n,r
i (xn,yn) iteratively. Algorithm 2, summarizes the SCA-based sub-

optimal solution to find the maximum number of served IoTDs during a data collection mission.

The solution of (P1) results in a trajectory that maximizes the number of served IoTDs during

the flight time period. Now, (P1) assumes a path loss model (no fading) for the channel; to deal

with the unknown CSI, we present the following approach. The UAV uses the obtained designed

trajectory, and during its deployment it obtains accurate knowledge of the CSI at each time-slot and

attempts to serve the devices within its coverage along its trajectory. Namely, using the solution of

(P1L) with path loss model, let M ′
n be the set of IoTDs served by the UAV at time-slot n and let

sn
i,pl be the service rate each IoTD i received at time-slot n using (P1L). Now, during the operation

phase of the UAV, we would ideally like each IoT i ∈M ′
n to receive at least a rate equals sn

i,pl , ∀n.

However, given that the channel has a fading component now, it is likely that some devices may not

receive their required rate at some time-slot. Let M ′′
n ⊆M ′

n be the set of devices that, at each

slot n, are unable to receive a rate sn
i ≥ sn

i,pl . Then, at each slot n, we solve a problem of resource

allocation to maximize the number of served IoTDs as follows:

(PE) :max
B,K ∑

i∈M ′n

κi (2.19a)

31



Algorithm 2: Sub-optimal: Proposed SCA for Solving (P1L) and (P2L).

1 Inputs: The error tolerance ε , the minimum service amount Smin
i , and the deadlines δi.

2 Initialization: Set the initial trajectory xr,n yr,n, ∀n the resource allocation br,n
i , ∀n, ∀i and

iteration number r = 1.
3 while (Obj (r−1) − Obj (r)) ≥ ε do
4 For SCA-algorithm problem (P1L): solve the convex problem (2.17) to obtain the

trajectory xr+1,n yr+1,n, ∀n and br+1,n
i , ∀n, ∀i ∈M .

5 For SCA-distance problem (P2L): solve the convex problem (2.22) with the updated
subset M ′ devices to obtain the trajectory xr+1,n yr+1,n, ∀n and br+1,n

i , ∀n, ∀i ∈M ′.,
6 Update the UAV’s trajectory xr,n yr,n, ∀n,
7 Update the resource allocation br,n

i , ∀i,
8 Update r = r+1.

9 Output:
10 For SCA-algorithm problem (P1L), the output is the sub-optimal solution for maximizing

the number of served IoTDs M ′.
11 For SCA-distance problem (P2L), the output is the sub-optimal solution for minimizing

the flight distance.

s.t. δtsn
i (b

n
i )≥ κi(sn

i,pl +βiΘ
n−1
i −λ

n−1
i ),∀i ∈M ′

n, (2.19b)

0≤ κi ≤ 1, i ∈M ′
n, (2.19c)

∑
i∈M ′n

bn
i ≤ 1, (2.19d)

0≤ bn
i ≤ 1,∀n, i ∈M ′

n, (2.19e)

where βi is a binary value that takes a value of 1 if data of IoTD i is within its deadline and 0

otherwise. If M ′′ = /0, then all IoTDs at slot n would receive their minimum service rate. On the

one hand, if at least one device i obtains sn
i < sn

i,pl , then we compute the service amount deficit

(Θn
i = sn

i,pl− sn
i ) for this device and attempt to allocate a surplus service amount in subsequent time-

slots. On the other hand, for admitted IoTD i (i.e. sn
i > sn

i,pl), we compute the service rate surplus

(λ n
i = sn

i − sn
i,pl) for this device and subtract it from future slots. Indeed, to compensate, the UAV

needs in subsequent time-slots to allocate more radio resources for IoTD in deficit to meet their

service amount target. It is obvious that PE is a convex problem and several optimization solvers

can solve it optimally. It is also clear that the UAV will exploit its knowledge of accurate CSI at

each slot to resolve PE .
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2.5.2 Complexity Analysis

In this section, the complexity analysis is discussed. For the optimal algorithm based on the

BRB method, which is Algorithm 1, the BRB algorithm requires an extremely long time to achieve

the optimal solution especially with a large number of IoTDs. This is due to the fact that BRB

is an exhaustive search approach and depends on the problem size, i,e., the number of IoTDs, the

service amount and the allocated resources. Furthermore, at each iteration, a feasibility optimization

problem is solved. For the SCA-algorithm, the overall complexity of (P1L) depends on the solver

that is employed to solve (P1L). In particular, (P1L) is a convex problem and, thus, several

interior-point solvers can be employed to solve it. Therefore, we employ the number of Newton

steps, denoted by Cs, as a metric to measure its complexity. In fact, the Newton steps depends on

the problem size and the number of recursive iterations till convergence from a given initial point.

Based on [31] [32], the worst-case Cs to reach a local solution in (P1L) can be expressed as:

Cs ∼
√

problem size, (2.20)

where the problem size is the total number of variables of the optimization problem. First we remark

that, in the worst case, (P1L) must iteratively solve and update the variables. Precisely, there are

3MN + 2N +M variables in (P1L). Thus, in each iteration, the complexity of solving (P1L) is

approximately
√

3MN +2N +M, which induces an overall complexity of I
√

3MN +2N +M in the

worst-case, where I is a finite number of iterations that depends on the value of error tolerance ε .

2.6 Minimizing UAV Flight Distance

In practice, it is essential to minimize the UAV flight distance while satisfying all other problem

constraints. Two operation modes are typically considered for the UAV [33]: hovering mode in

which the UAV hangs in one spot to collect data from IoTDs and forward flight mode in which

the UAV moves from one location to another. Short flight distance infers an efficient trajectory

that saves time and forward flight energy (propulsion). As a matter of fact, solving (P1) allows

the UAV to go back and forth to concurrently collect data from distant IoTDs. Doing so incurs
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additional propulsion energy consumption that can be saved by minimizing the UAV flight distance.

In attempt to conserve propulsion energy, we use the output generated by the solution of (P1)

that includes the maximum number of IoTDs M ′ that may be served by one UAV while meeting

their data deadlines, and minimize the distance traveled by the UAV to satisfy the same number

of devices with optimized radio resource allocation. Given the initial and the final locations of the

UAV trajectory, we formulate the optimization problem with the objective to minimize the flight

distance as the below:

(P2) : min
X,Y,B

N−1

∑
n=0

d
(
(xn+1,yn+1),(xn,yn)

)
(2.21a)

s.t. Si(bn
i ,x

n,yn)≥ Smin
i , i ∈M ′,n, (2.21b)

0≤ bn
i ≤ 1,∀n, i ∈M ′, (2.21c)

(2.2),(2.6),(2.10 f ),(2.10g), (2.21d)

where d(., .) is the distance between two way-points. The characteristics of P2 deserve more

elaboration. In P1, we aim at maximizing the number of served IoTDs. This means that in some

scenario, the UAV wastes time and energy while serving the maximum number of served IoTDs. On

the contrary, P2 guarantees that the UAV must minimize the traveling distance when the maximum

number of IoTDs is achieved.

This problem is essentially equivalent to a well-known problem called Traveling Salesman Prob-

lem (TSP), which is known to be NP-hard. One straightforward approach for solving P2 is to find

the nearest device (known as the greedy or nearest neighbor algorithm) under deadline constraint.

However, serving devices once at a time is an inefficient approach. Therefore, we propose an ef-

ficient sub-optimal solution to P2 based on SCA algorithm. Similar to P1, P2 is non-convex

problem because the non-concave non-convex function Si in constraint (2.21b). By introducing

convex approximation in constraint (2.17d) and the slack variables W = wn
i ≥ 0,∀n, i ∈M ′ and
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Z = Zn
i ≥ 0,∀n, i ∈M ′, P2 can be solved by iteratively solving the following approximated con-

vex problem formulated at the r+1 iteration index as

P2L : min
X,Y,B,
W,Z

N−1

∑
n=0

d
(
(xn+1,yn+1),(xn,yn)

)
, (2.22a)

s.t. δt

δi

∑
n=τi

zn
i ≥ Smin

i , i ∈M ′, (2.22b)

zn
i ≤ bn

i wn
i , i ∈M ′,n = τi, ...,δi, (2.22c)

wn
i ≤ ζ

n,r
i (xn,yn), i ∈M ′,n = τi, ...,δi, (2.22d)

0≤ bn
i ≤ 1,∀n, i ∈M ′, (2.22e)

(2.2),(2.6),(2.10 f ),(2.10g). (2.22f)

Algorithm 2, presents SCA-Distance to sub-optimally minimize flight distance and determine re-

source allocation among served IoTDs.

2.7 Greedy Location/Deadline-based Algorithms

In this section, we summarize two greedy approaches as benchmarks to solve our trajectory op-

timization problem. Two approaches have been devised to find the trajectory of the UAV. The first

approach is based on the minimum distance, where the UAV flies and hovers above the closest IoTD

and allocate all resources to the IoTD if and only if the UAV speed, flying time, and minimum ser-

vice constraints are satisfied. It is worth mentioning that by knowing the locations of the IoTDs the

above constraints could be checked without applying an optimization checking at the intermediate

steps. The UAV keeps repeating the process either until no more IoTDs can be served or mission

time is over. The second approach decides the trajectory of the UAV by allocating all the resources

to serve the IoTD with the shortest deadline if and only if the above constraints are satisfied. The

two approaches are described in Algorithm 3.
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Algorithm 3: Greedy Approaches for Data Collection.

1 Inputs: The UAV initial location x0 and y0, the minimum service amount Smin
i , the deadline

δi, the maximum speed of the UAV vmax, and the location of all IoTDs xi, yi;
2 Initialization:
3 For Distance-based approach: Sort all IoTDs based on the distance to the current location

of the UAV, di,U , where the closest IoTD is at the top of the list, and set the updated time
N′ = N.

4 For Deadline-based approach: Sort all IoTDs based on their deadline, where the most
urgent device (minimum deadline) is at the top of the list, and set the updated time N ′ = N.

5 for i ∈M do
6 For Distance-based approach: Select the closest unmarked IoTD to the current location

of the UAV.
7 For Deadline-based approach: Select the most urgent unmarked IoTD.

8 while (Si(bn
i ,x

n,yn)≥ Smin
i and N′ > 0 and

di,U

N′
≤ vmax) do

9 Find the minimum time to serve the IoTD and update the flying time N′.
10 Update the UAV location with the current location of the IoTD.

11 Mark the IoTD, and updated time N′.

12 Output:
13 For Distance-based approach: The sub-optimal solution for maximizing the number of

served IoTDs based on distance.
14 For Deadline-based approach: The sub-optimal solution for maximizing the number of

served IoTDs based on deadline.

2.8 Simulation Results and Discussion

In this section, we evaluate the performance of the proposed algorithms numerically. The main

input parameters that are used in this simulation are listed in Table 2.1. We assume a geographical

area of size 0.8 × 0.8km2 in which 1UAV is dispatched to collect data from IoTDs. We assume that

the required minimum service amount for all IoTDs is identical, and all IoTDs can communicate

with the UAV within the given area. The data generation, deadlines and locations of the IoTDs are

generated based on a normal distribution, these deadlines and locations’ samples are then used to

identify the UAV trajectory and maximize the number of served IoTDs. For sake of illustration, we

assume the flight duration in the simulations is sampled every 1secs, unless mentioned otherwise.

We also compare with two greedy ones.
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Table 2.1: Simulation Parameters in UAV-assisted IoT Wireless Networks

Parameter Value

IoTD transmission power, P 0.1mW

UAV altitude, H 100m

Channel power gain, γ0 -50dB

Noise power, σ2 -110dBm

UAV max speed, vmax 50m/s

Path-loss exponent, α 2.7

The error tolerance ε 10−3

Optimal Solution:

We start by first studying the performance of our designed BRB. To show its convergence to-

wards the optimal solution, we consider a small scenario with a 3 IoTDs and a short flying duration

(N = 15 time-slots sampled every 5secs). As shown in Fig. 2.2, BRB requires a high number of iter-

ations to converge, and the optimal solution falls between the upper and lower bounds. BRB spends

a large amount of time to close the gap between the upper and lower bounds. This clearly demon-

strates that when considering a larger number of IoTDs, the BRB method will take much more time

to find the optimal amount of service for all devices, which may not be an effective and practical

solution to meet the IoTD deadlines. Here, the maximum number of served IoTDs is computed by⌊
∑∀i∈M Si

Smin
i

⌋
, where b.c denote the floor function.

Sub-Optimal Proposed Solution:

The CVX toolbox and numerical convex optimization solver SDPT3 are used to solve our op-

timization sub-optimally. We set the UAV’s initial and final locations at [0 400] and [800 400],

respectively.

We start by solving (P1L) where we assume a path loss model for the air to ground (A2G)

channel. Fig. 2.3(a), depicts the UAV trajectory for collecting data from IoTDs (for a network of

15 devices) over a period N = 90 time-slots and a minimum requirement Smin
i = 25bits/Hz. The

values of the deadlines (in time-slots) are depicted next to each IoTD in the Fig. 2.3; the maximum

deadline is equal to 90 time-slots. We observe that the total number of served IoTDs, through this

trajectory, within this time period is equal to "12", i.e., 80% of the total number of devices. To see
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Fig. 2.2: BRB-optimal algorithm to maximize the number of served IoTDs.

the impact of the A2G channel on the performance, we next assume that at the time of trajectory

design, the operator gained accurate knowledge of the CSI for all subsequent time-slots (somehow

unrealistic, but serve the purpose of the study). We assume a realistic Rician channel model with

K = 3; Fig. 2.3(b) shows the trajectory the UAV will take to serve the maximum number of IoTDs.

Clearly, the trajectory is different from that of Fig. 2.3(a); here, the UAV flies closer to each device

in order to compensate for the fading on the channel and serve the device with the required service

amount. This explains the difference in the obtained trajectory, however, we notice as well that the

UAV serves exactly the same IoTDs as in the simple A2G channel. This shows minor effect on the

number of served devices.

To better understand the impact of the channel, we next take the trajectory obtained with the path

loss model, and fly the UAV on that trajectory, but this time at each slot, use a Rician channel and

vary the value of K. The reason for doing this is to assess the impact of the channel as we operate

the UAV. We look at each of the 12 IoTDs and measure their achieved service amount. Here the

service amount is computed by replacing the channel in Equation 2.8, using the values for b, x, and

y after solving (P1L). The results are depicted in Fig. 2.4(a). We observe that for smaller values

of K, not all IoTDs (of the 12) would receive the minimum required service amount (e.g., devices

4, 7, and 10 received slightly below the minimum), however as the value of K increases, the impact
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(a) Path-loss channel. (b) Rician channel K = 3.

Fig. 2.3: UAV trajectory to maximize the number of served IoTDs.

of the fading diminishes, the LoS becomes the dominant and all devices get served. To overcome

this issue, we turn our attention to evaluate Enhanced-algorithm in problem PE . Here, again the

UAV will fly using the trajectory of (P1L) (i.e., using the simple A2G channel), but as the UAV

operates, at each time-slot, it collects accurate CSI from the location, and allocates radio resources

to serve the IoTDs served by the path loss trajectory with their service amounts. The results are

depicted in Fig. 2.4(b), where we show the service amount attained by each IoTD, for the path

loss channel, the Rician (K = 3) and Rayleigh (K = 0) channel with knowledge of CSI at each slot.

Surprisingly, PE is always able to allocate resources so that devices attain their minimum amount;

this is possible through keeping track of the surplus and deficit in service amount for each device

along the trajectory, so any IoTDin deficit will be compensated in subsequent slots if possible.

We present in Fig. 2.5(a) the per IoTD allocation of resources. It is observed that at each slot,

the UAV allocates radio resources unequally among the devices, depending on the deadlines and

their locations. We also observe that while serving the devices, the UAV may allocate the resources

in multiple, not contiguous, time-slots (such as the first IoTD) or in a one time-slot (such as fifth

IoTD). Further, the UAV may not be able to meet the deadlines of all devices. Although the UAV

was able to meet the deadline of the farthest ones, our proposed solution puts more effort to fulfill

the requirements of the nearest devices within the deadlines instead of wasting time to fulfill the

requirements of farther ones. To better understand our results, as shown in Fig. 2.5(b), in the first

time-slot the UAV increased its speed to reach the first subset of devices then decelerates to allow
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(a) SCA-algorithm over Rician channel.
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(b) Enhanced-algorithm with CSI knowledge.

Fig. 2.4: Achieved service amount per IoTD.
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(b) UAV speed versus time-slots.

Fig. 2.5: Performance of proposed SCA-algorithm.

enough time for their data upload before their deadlines expire. It then accelerates again to reach

another subset of devices to collect their data.

The percentage of served IoTDs is another performance metric we study. Fig. 2.6(a) depicts this

metric versus the service amount, and for different deadlines (in time-slots and for a network of 20

devices). Clearly, as we increase the minimum service amount Smin
i per IoTD, the UAV will spend

more time and radio resources for collecting the data from one device before flying to another device

to collect its data. Furthermore, with less strict deadlines, the UAV will have extra time and enough

resources to serve more devices compared to tighter deadlines. Fig. 2.6(b) depicts the percentage

of served IoTDs versus the network size (maximum number of IoTDs located in the same area);
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Fig. 2.6: Percentage of served IoTDs for SCA-algorithm.

when the required minimum service amount Smin
i = 20bits/Hz, as can be seen, the percentage of

served IoTDs decreases by increasing the number of IoTDs within the same area. Since the radio

resources and flying time are limited, whenever more devices are considered within the same area,

then less radio resources are being allocated for each IoTD. In turn, by increasing the deadlines, the

percentage of served IoTDs will increase as expected since the UAV will have extra time to allocate

more resources.

Next, we study the performance of (P2L), whose objective is to find an efficient trajectory for

serving the IoTDs. By inspecting Figs. 2.3(a) and 2.3(b), we observe a long trajectory with many

detours taken by the UAV to be able to collect information from the largest number of devices.

(P2L) attempts to find a more efficient trajectory and Fig. 2.7(a) depicts the obtained trajectory

(assuming a path loss channel) for serving the same devices. This trajectory is indeed more efficient

since the UAV avoids flying back and forth to serve the same device at different time-slots.

It should be noted that owing to the flexibility of the UAV (rotary-wing UAV), the UAV is able

to hover in one place while collecting data from multiple devices, achieving the same number of

served IoTDs with a minimum movement. As shown in Fig. 2.7(b), the UAV increases its speed

to serve a subset of devices before decreases its speed for a certain time for collecting data, then it

increases its speed again to serve another subset of devices.

Now, when the trajectory is optimized, we fly the UAV and study whether the UAV is able
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(a) UAV Trajectory. (b) UAV Speed.

Fig. 2.7: Performance of proposed SCA-distance.

to allocate resources at each slot for the corresponding devices, taking into account accurate CSI

knowledge from that location. Here, during the flight of the UAV, the UAV collects information

about the channel status, and re-optimizes the allocation of resources, keeping track of the deficit

and surplus for each IoTD along the path. We show in Fig. 2.8 the results for different channel

realizations. When the fading component is high (K = 1), we observe, in some of our simulations,

the UAV fails to serve all IoTDs, however when K = 6, and the path loss becomes dominant, all

devices are served. Further inspecting Fig. 2.7(a), we observe that the UAV may hover far away

from some devices and when the condition of the channel is degraded, the UAV does not have

enough spectral resources to meet the requirement of the devices. Hence, we conclude a trade-

off between the enhanced trajectory and the achieved performance in terms of number of served

devices.

One can observe that, although we serve the maximum number of IoTDs over the period N, it

is obvious that the UAV trajectory is not an efficient trajectory. In order to enhance the trajectory,

we follow SCA-distance algorithm proposed in Algorithm 2 to minimize the flight distance. This

achieves the same number of served IoTDs with much better trajectory. It can be seen in Fig. 2.7(a),

that the same number of IoTDs with the same deadlines can be served with an enhanced trajectory

without having to fly back and forth.

Next, we compare the energy of both trajectories for SCA-distance ans SCA-algorithm for the
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Fig. 2.8: Achieved service amount over different channel realizations for the Enhanced-algorithm.

same configuration. We use the same energy model and the corresponding typical parameters men-

tioned in [33]. As shown in Fig. 2.9, it can be observed that the proposed SCA-distance shows a

lower energy consumption compared to SCA-algorithm, because the former allows the UAV to go

back and forth to concurrently collect data from distant IoTDs. Doing so incurs additional propul-

sion energy consumption that can be saved by minimizing the UAV flight distance as shown for

SCA-distance.

Comparison with Greedy Solutions:

Here, we evaluate the performance of two greedy methods for determining the UAV trajectory,

and compare them to our proposed solution. The two greedy methods work as follows. A trajectory

is computed either based on the shortest distance, i.e., the IoTD closest to the current location is

selected to be served, or based on the data deadline, i.e., the UAV flies from its location to serve

the IoTD with the strictest latency. Once a trajectory is decided, the UAV follows the designed path

and at each time-slot, it allocates the radio resource to maximize the service rate of each device. We

compare the performance of these methods with our SCA-algorithm and SCA-distance methods.

The results are presented in Fig. 2.10 .

In this evaluation, we fix the flying time (N = 90 time-slots), the locations of IoTDs and the

deadlines; we consider a network of M = 20 devices, a minimum service amount Smin
i = 60 bits/Hz,

and a maximum deadline of 90 time-slots. Our proposed algorithms are validated in free trajectory

43



0 10 20 30 40 50 60 70 80 90
Time Slots

0

2

4

6

8

10

12

To
ta

l E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)

104

SCA-Distance
SCA-Algorithm

Fig. 2.9: Total energy consumption of the UAV.

(i.e. the initial location is determined at [0 400] while the final location is not set) for a fair com-

parison. The trajectory of sub-optimal solution is shown in Fig. 2.10(a), where the UAV exploits its

mobility as well as the efficient allocation of radio resources to adapt its trajectory to fly closer to

a subset of devices to meet their deadlines. It can be seen while considering these parameters, the

UAV is able to serve "15" devices out of "20" (%75). The same percentage can be achieved with

the enhanced proposed trajectory, SCA-distance, as shown in Fig. 2.10(b), where the trajectory is

further optimized to serve the same number of IoTDs.

In contrast, both greedy approaches optimize the trajectory of the UAV differently while allo-

cating the whole resources to one IoTD at a time, as explained in Algorithm 3 in Appendix 2.7.

It can be observed from Fig. 2.10(c), while considering the maximum speed of the UAV, devices

locations and the expected traveling time, the UAV adapts its trajectory to serve the closest IoTD

regardless of its deadline. It can also be observed that the UAV misses the most urgent device while

maximizing the number of served ones. The UAV is able to serve only 11 IoTDs (55%), and this is

due to the fact that along its trajectory, the UAV allocates its radio resources to serve only one device

at a time. In Fig. 2.10(d), while considering the most urgent deadline, the maximum speed and the

expected traveling time, the UAV adjusts its trajectory to serve the most urgent IoTD regardless of

its location. Following this greedy method, the UAV was only able to collect data from 45% of the
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(a) SCA-algorithm. (b) SCA-distance.

(c) Greedy distance-based. (d) Greedy deadline-based.

Fig. 2.10: Optimizing the UAV trajectory to maximize the number of served IoTDs for alternative
solutions.

IoTDs, and this is due to the fact that the UAV wastes more time in flying to reach the device with

the strictest deadline and hence ends up with little time to collect data.

In Fig. 2.11(a), we compare the effect of deadlines on the performance of the proposed solutions

with the greedy as well as a static benchmark scheme over a period of N = 90 time-slots and mini-

mum service amount Smin
i = 20 bits/Hz. For the static UAV scheme, the UAV is located in the middle

of the given area (i.e. located at [400 400]). The comparison is investigated in different environ-

ments, the dense environment (i.e. M = 40 devices) and sparse environment (i.e. M = 10 devices).

It can be observed that while increasing the maximum deadline the SCA-algorithm achieves higher

performance compared to the other approaches. The UAV then is able to optimize both its trajec-

tory and radio resources to fly closer to multiple IoTDs to serve them simultaneously to maximize
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Fig. 2.11: Percentage of served IoTDs for SCA-distance compared to alternative solutions.

the served IoTDs. We also observe that when the deadline is very tight, the static achieves best

performance since the UAV does not waste any time flying, but rather spends all its time serving

the IoTDs. However, as the deadline starts increasing, the percentage of served devices starts to in-

crease, especially in the proposed method as well as the greedy methods, both for sparse and dense

networks. Our proposed method indeed achieves superior performance against the other methods

because concurrently the trajectory as well as the allocation of radio resources are optimized to

serve the maximum number of devices. In contrast, the greedy methods follow each a trajectory

that is somehow oblivious to the objective of serving the largest number of devices. In both greedy

methods, as explained above, the UAV flies either to the closest device or to the device with the

strictest deadline, and allocates all resources to serve that device. Along the process, some time gets

lost due to the abundance of radio resources which could be used to serve more devices. It is also

shown in Fig. 2.11(a) that the distance-based greedy approach achieves better performance than

the deadline-based since the latter makes the UAV waste more time to fly closer to the IoTD with

strictest deadline.

Next, we study the impact of the minimum service amount Smin
i on the performance of the

different possible solutions with maximum deadline 90 time-slots and over a period of N = 90 time-

slots. As shown in Fig. 2.11(b), with the lower service amount, optimizing the radio resources is

sufficient to maximize the number of served IoTDs as illustrated for the static and SCA-algorithm.
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We also observe that, with increasing the minimum service amount, it is obvious that the static UAV

will not be able to collect the required data by only optimizing the radio resources. Optimizing the

UAV trajectory becomes more crucial for achieving better communication channels to increase the

transmission rate with larger minimum service amount. For example, in the sparse environment (i.e.

M = 10 devices) to achieve the minimum service amount of 20bits/Hz, the percentage of served

devices for our proposed solution is almost 88% of the total number of devices with optimizing

the resources and the UAV trajectory compared to. On the other hand, by increasing the number

of devices (i.e. increase the density), optimizing the resources becomes significant to serve more

devices. By comparing the greedy approaches with the proposed algorithm with increasing the

minimum service amount, our proposed solution achieves higher performance since the trajectory

and radio resources are jointly optimized.

2.9 Summary

This chapter studied the time constrained data collection from IoTDs. Since IoTDs have dif-

ferent QoS requirements within certain deadlines, the UAV trajectory and radio resource allocation

are optimized to collect a differentiated amount of data from IoTDs. We formulated our optimiza-

tion problem to maximize the number of served IoTDs while guaranteeing the minimal amount of

data uploaded from each served device within the given deadline. Although our problem is non-

convex, we solved it optimally by BRB algorithm. By convexifying our problem we provided a

low complexity solution to solve our problem efficiently, then we extended the solution to gener-

ate an enhanced trajectory in order to minimize the distance traveled by the UAV while serving

the IoTDs. Under variable deadlines and minimum service amounts, our proposed solution outper-

formed alternative solutions including distance- and deadline-based greedy approaches, and static

UAV placement in terms of the percentage of served IoTDs (average improvement of 10% - 50%).
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Chapter 3

UAVs as Active Relays in IoT Networks

for Fresh Information

3.1 Background, Related Works, and Contributions

Emerging applications of smart cities require efficient, timely and reliable real-time updates to

enable remote monitoring and control of physical processes and networked control systems. Taking

wildfires as an example, it is extremely important to detect the fire and its real-time status update

in a timely way so as to notify residents and authorities about its location. The wildfire crisis in

California in 2018 killed thousands of animals, destroyed thousands of homes, forced hundreds of

thousands of residents to evacuate, and killed twenty-five people [35]. Adequate timely response

could have been possible if fresh real-time monitoring had been available. Compared to traditional

data networks, fresh real-time monitoring has unique features. The first is the Markovian feature

at which the existing status-update can be completely replaced by the newly arrived status-update

information. The second is that the real-time status updates require more frequent updates with

minimal timeliness. Timeliness is different from the conventional performance metrics as stuidied

in Chapter 2, where timeliness is counted from the time the information is generated/sampled at the

The work done in this chapter leads to an IEEE published journal [34]
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sensor until its reception for processing at the destination. Timeliness of fresh information there-

fore consists of three delays: the delay until data is being sampled/generated, the delay until the

transmission of sampled data is scheduled, and their communication delays through the network.

The freshness of status update information is quantified by a new performance metric, the Age-

of-Information (AoI), in which a lower AoI implies fresher collected information. The collected

information with high AoI may be inconsistent with the present status, which may lead to losing its

meaning. The AoI is defined as the time elapsed since the most recent successful transmission of

the valid status update data [36]. AoI is introduced to evaluate the freshness of information from

the destination’s perspective, where it characterizes latency and inter-delivery time intervals. Con-

ventional performance metrics lack the ability to capture the freshness of the collected information

since they (such as the latency) do not account for the time elapsed since the information was first

generated at the Internet of Things Devices (IoTDs). As a result, conventional performance metrics

may not deem suitable for real-time status-update applications. For more details on AoI and its

applicability, the reader is referred to [36].

UAVs can be deployed to designated areas in order to provide affordable network connectivity

to low-resource Internet of Things (IoT) devices by relaying data to the nearest Base-Station (BS).

UAVs can also dynamically adjust their altitude to establish better communication links to IoTDs

and improve network performance. In fact, UAVs as mobile relays introduce a new challenging

task that should be carefully addressed. In particular, both performance metrics, that is, latency and

inter-delivery time, should be optimized in the communication from IoTDs to UAVs and then from

UAVs to the BS. To the best of our knowledge, the impact of UAVs as mobile relays with unreliable

transmission condition on the AoI in a stochastic environment has not been explored.

In this chapter, we consider a UAV-assisted wireless IoT network, where UAVs act as mobile

relays to the BS (or remote server) for a number of IoTDs with limited transmission capabilities1.

IoTDs sample a stochastic process and their sampled data need to be uploaded to the UAVs over un-

reliable channels, which in turn relay sampled data to the BS that processes these packets. UAVs are

assumed to be equipped with virtual queues to re-transmit undelivered sampled data, thus improving

1Due to IoTDs’ energy constraints and environmental obstacles (i.e., blockages), IoTDs are commonly unable to
communicate over a long distance. In other words, having strong direct communication links is difficult to achieve.
Therefore, UAVs with virtual queues act as mobile active relays between IoTDs and the BS is proposed.
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the transmission efficiency. Intuitively, the altitude of a UAV affects the propagation characteristics

of the channel between IoTDs and the UAV and between the UAV and the BS; thus, the altitude of a

UAV affects the AoI. For example, when a UAV flies at a higher altitude, the probability to establish

a Line-of-Sight (LoS) link is higher with the IoTDs as well as with the BS. At higher altitudes,

the long distance path loss is higher and thus, the received signal power is relatively small. The

converse is true, that is, when a UAV flies at lower altitudes.

The wireless channel quality depends, to a large extent, on the position of the UAV since the

surrounding environment at different positions varies (height or density of buildings). Therefore,

to ensure the freshness of the sampled data, we jointly study dynamic UAV altitude control and

scheduling policy from IoTDs to the UAV and from the UAV to the BS. The main objective of the

stochastic scheduling and altitude control problem is to minimize the Expected Weighted Sum AoI

(EWSA) of sampled data, which is dependent on the wireless channel conditions and coupled with

the altitude of the UAV, to ensure effective communication. Thus, the deployed UAV must decide

on the best streams to be relayed. To the best of our knowledge, our work is the first to study the

Age-of-Information in relay networks under unreliable transmission conditions.

Recently, several works have been proposed to address the deployment of one or more UAVs

for maintaining the freshness of the collected information (captured by AoI). Specifically, authors

in [37–43] proposed machine learning (ML) approaches to design the UAV’s trajectory while con-

sidering the freshness of the collected information. In [37,38], the authors proposed DRL based on a

compound-action actor-critic algorithm to design the trajectories of a swarm of UAVs that minimize

the AoI while considering the cooperative sensing and transmission among the UAVs. In [39], the

authors leveraged DRL based on deep Q-network (DQN) algorithm to optimize the UAV’s trajectory

and transmission scheduling that minimizes the Weighted Sum-AoI. In [40], the authors exploited

RL based on a Q-learning algorithm to optimize a UAV trajectory for data collection mission to

minimize the expired data packets. In [41], a DRL based on deep Q-network (DQN) algorithm is

adopted to design the trajectory of a single UAV to minimize the long-term AoI of multiple ground

nodes. In [42], the authors optimized the UAV’s trajectory using deep Q-network algorithm to min-

imize the average AoI while preserving the packet loss ratio as low as possible. In [43], a deep

Q-network algorithm is used to find the trajectory of a UAV that minimizes the weighted sum AoI
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of the ground nodes while considering the energy consumption of the UAV. Another direction of

research has focused on various tools such as dynamic programming and iterative optimization al-

gorithm to design the flight trajectory of the UAV along with other communication parameters (e.g.,

energy, scheduling, collection time, etc.) [22, 23, 44–49].

In this work, different from the aforementioned works, we study the Age-of-Information in relay

networks under unreliable transmission conditions in the absence of the knowledge of channel state

information. In this chapter, we propose a novel model in UAV relay-assisted IoT networks which

takes into account the channel reliability between IoTDs and the UAVs and that between UAVs

and BS to improve the freshness of information. In addition, a concrete analytical characterization

of AoI for UAV-assisted IoT networks under unreliable transmission conditions is derived when

UAVs with virtual queues act as mobile active relays between IoTDs and the BS. In addition, an

optimization problem is formulated to find the optimal altitude and scheduling policy that minimizes

the Expected Weighted Sum AoI, and then the optimization problem is shown to be difficult to solve.

Furthermore, we formulate the IoT-UAV-BS status update problem as a Markov Decision Process

(MDP) and develop Deep Reinforcement Learning (DRL) to learn environment dynamics in order

to handle the altitude and scheduling policy of UAVs. In particular, we leverage the Proximal

Policy Optimization (PPO) algorithm, which is a highly stable state-of-the-art model-free DRL, to

find the best policy that efficiently minimizes EWSA. Then, the performance of the proposed PPO

algorithm is compared with different baseline policies and the impact of different design parameters

is analyzed. Besides, the proposed algorithm is evaluated through extensive simulations.

3.2 System Model

Consider a geographical area, where a number of IoTDs with limited capabilities is distributed

over a given area and continuously sample time-sensitive information (that is, time-stamped, status-

update packets). One-hop transmission is assumed not effective because transmission capabilities

of IoTDs are limited, hence, multiple UAVs are deployed for relaying transmissions to the BS.

Given the distribution of IoTDs, multiple UAVs are deployed, each to cover one cluster of

IoTDs. The horizontal coordinates of each UAV (xU ,yU) are assumed to be placed at the center of
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Fig. 3.1: An illustration of our system model.

the area. For simplicity, we assume each cluster consists of a set M of M IoTDs2. Let the locations

of IoTDs be (xi,yi,0),∀i ∈M at ground level. Each IoTD is relayed by the closest UAV to the BS

that is located at (xs,ys,HS), where HS denotes the height of the BS.

Each UAV is assumed to be equipped with M′ virtual queues with M′ > M, where the UAV only

stores the latest received packet for each IoT. The UAV then schedules or retransmits to the BS if

the transmission fails due to the unreliability of the channel. We consider the system over multiple

time frames. Each of these frames is further divided into equal segments, that is, N time-slots of

length δt , which is normalized to unity. At the beginning of every time-slot n, the deployed UAV

either remains idle or schedules an IoTD i ∈ 1,2, ...,M to transmit its status-update packet over

an unreliable wireless communication channel. The deployed UAV then relays the status-update

packets over another unreliable wireless communication channel to the BS. The deployed UAV is

assumed to operate in a half-duplex mode. Thus, the UAV can either transmit to the BS or receive

status-update packets from IoTDs at a time. To achieve a reliable communication, dominant inter-

ference should be avoided. Thus, IoTDs in adjacent clusters use different spectrum and therefore,

2In this chapter, for tractability, we work only with one cluster. However, the same approach is valid to be applied for
all clusters.
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the inter-cell-interference can be considered as noise. Orthogonal transmission is exploited to avoid

interference among IoTDs in each cluster.

The distance from the IoTDs to the UAV, dn
i→U , and that from the UAV and BS, dn

U→S, in time-

slot n, are calculated as follows:

dn
i→U =

√
(xi− xU)2 +(yi− yU)2 +(Hn

U)
2, (3.1)

and

dn
U→S =

√
(xS− xU)2 +(yS− yU)2 +(HS−Hn

U)
2, (3.2)

where Hn
U is the altitude of the UAV in time-slot n.

3.2.1 IoT-UAV-BS Channel Model

Depending on whether there is a LoS link between an IoTD and the UAV, and that between the

UAV and the BS the received signal power is different. The probability of having a LoS depends on

the actual environment and the distance between the IoTD and UAV and between the UAV and BS.

The probability of establishing a LoS link between IoT-to-UAV is given by [50]

Pi→U =
1

1+C2e−C1(θ
n
i,U−C2)

. (3.3)

Similarly, between UAV-to-BS

PU→S =
1

1+C4e−C3(θ
n
U,S−C4)

, (3.4)

where θ n
i,U and θ n

U,S are the elevation angle of IoT-to-UAV and UAV-to-BS, respectively. C1, C2, C3

and C4 are environment-dependent variables, which are varying from one topology to another, i.e.,

communication surrounding such as the building blockage and density. θ n
i,U and θ n

U,S are determined

by

θ
n
i,U = arctan

Hn
U√

(xi− xU)2 +(yi− yU)2
, (3.5)
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and

θ
n
U,S = arctan

√
(HS−Hn

U)
2√

(xS− xU)2 +(yS− yU)2
. (3.6)

Thus, the path-loss of IoT-to-UAV and UAV-to-BS, respectively, follows

∆
n
i→U = 20log

(4π fc(dn
i→U)

c

)
+C5Pi→U +C6(1−Pi→U), (3.7)

and

∆
n
U→S = 20log

(4π fc(dn
U→S)

c

)
+C7PU→S +C8(1−PU→S), (3.8)

where C5, C6, C7 and C8 are attenuation factors that depend on the environment. fc denotes the

carrier frequency (MHz), and c denotes the speed of light (m/s).

All IoTDs and the UAV are assumed to transmit with power PI and PU , respectively. The signal-

to-noise ratio (SNR) at the UAV and at the BS in time-slot n can be respectively expressed as

ϒ
n
i→U =

PI10
−∆n

i→U
10

No
, (3.9)

and

ϒ
n
U→S =

PU 10
−∆n

U→S
10

No
. (3.10)

Let Sn
i and Sn

U be the achievable rate (in bps/Hz) that is delivered to the deployed UAV and BS,

respectively. Given the available channel bandwidth W (in Hz), the achievable rate, Sn
i and Sn

U , can

be expressed as the follows:

Sn
i (H

n
U) =W log

(
1+ϒ

n
i→U
)
, (3.11)

and

Sn
U(H

n
U) =W log

(
1+ϒ

n
U→S

)
. (3.12)

In this scenario, depending on Channel State Information from IoTDs to the UAV (CSIU), and

that from the UAV to the BS (CSIB), only a part of the status-update packet can be successfully

recovered/decoded, which is random. In order to achieve a reliable transmission, Sn
i and Sn

U should

be strictly greater than or equal to Sth, where Sth is the minimum achievable rate to ensure reliable
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Fig. 3.2: The evolution of AoI.

decoding.

Recall that the deployed UAV is equipped with a single antenna and operates in a half-duplex

mode; hence, the service time can be divided into two processes: 1) Uplink process: where the de-

ployed UAV is successfully able to reliably decode status-update packets of IoTD i when Sn
i (∆

n
i→U)≥

Sth, and a transmission failure occurs otherwise, and 2) Downlink process: where the BS is success-

fully able to reliably decode status-update packets from the deployed UAV when Sn
U(∆

n
U→S) ≥ Sth

and a transmission failure occurs otherwise.

Let αn
1,i be a binary variable, which indicates that IoTDi is scheduled in time-slot n to transmit its

status-update, and 0 otherwise. A successful transmission with reliable decoding occurs to the de-

ployed UAV when αn
1,i . 1[S

n
i (∆

n
i→U)≥ Sth] = 1.1 Similarly, let αn

2, j be a binary variable, which indi-

cates that the packet on the virtual queue j is scheduled in time-slot n to be transmitted to the BS, and

0 otherwise. A successful reliable transmission occurs to the BS when αn
2, j . 1[S

n
U(∆

n
U→S)≥ Sth] = 1.

With Time Division Multiple Access (TDMA), one packet at most is scheduled for transmission

from the IoTD to the deployed UAV or from the UAV to the BS at any given time-slot. Thus, in

each time-slot, each UAV only schedules at most one IoTDto transmit its status-update. Therefore,

11[z] is the indicator function that equals unity if z is true.
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the transmission scheduling should meet the constraint below:

M

∑
i=1

α
n
1,i +

M′

∑
j=1

α
n
2, j ≤ 1, ∀n. (3.13)

3.2.2 Definition of Age of Information

A single packet queuing discipline is assumed to be employed at both the IoTDs and the de-

ployed UAV such that the older status-update packet is dropped and replaced with the newly arrived

sample. A per time-slot sampling policy is considered for sampling the information, where each

IoTD samples the status-update information at the beginning of each time-slot. Let bn
i denotes

the time elapsed at the UAV’s virtual queue, Qi, associated with IoTD i in time-slot n. Thus, the

evolution of bn
i can be written as

bn+1
i =


1, if αn

1,i.1[S
n
i (H

n
U)≥ Sth] = 1,

bn
i +1, if (β n

j = 1)∧
(

αn
1,i.1[S

n
i (H

n
U)≥ Sth] = 0

)
,

0, otherwise (i.e.,β n
j = 0), //empty buffer

(3.14)

where β n
j is a binary variable that is equal to 1 if the selected stream from virtual queue j has a non-

empty queue, and 0 otherwise. Intuitively, the value of β n
j changes to 0 only when the Head-of-Line

status-update packet is successfully delivered to the BS and there is no newly arrival arrived on the

same virtual queue. Thus, β n
j can be written as

β
n+1
j =


1, if αn

1,i.1[S
n
i (H

n
U)≥ Sth] = 1,

0, if β n
j .α

n
2, j.1[S

n
U(H

n
U)≥ Sth] = 1,

β n
j , otherwise.

(3.15)

Accordingly, the evolution of An
i of IoTD i can be written3

3For more tractable analysis, all virtual queues are initially assumed to be empty, that is, β 0
j = 0, ∀ j and the initial

values of AoI is neglected,that is, A0
i = 0, ∀i.
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An+1
i =


bn

i +1, if β n
j .α

n
2, j.1[S

n
U(H

n
U)≥ Sth] = 1,

An
i +1, otherwise.

(3.16)

To better understand the definition of AoI, we provide an example in Fig. 3.2. The figure

illustrates the evolution of AoI associated with one IoTD. The solid line represents the AoI of IoTD

i and the dashed line denotes the elapsed time of the status update on the virtual queue, Qi, of the

UAV. As shown, the elapsed time, bn
i , on the virtual queue of the UAV starts when a new status

update is successfully received at the UAV. The elapsed time, bn
i , is reset once the status update is

successfully received at the BS and remains at zero before a new status update successfully arrives.

AoI increases linearly at every time-slot between two successfully received updates at the BS and

jumps downward to the elapsed time, bn
i , when the status-update is received successfully. It is

evident that the AoI of one IoTD is completely determined by the scheduling policy, the altitude of

the UAV and Channel State Information. Thus, to obtain the AoI within the relay mission time, we

use the EWSA
1
N
E
[

∑
N
n=1 ∑

M
i=1 ξiAn

i |A0
i = 0

]
, where ξi is a positive weight that denotes the relative

importance of the application associated with IoTD i.

3.2.3 Optimization Problem Formulation

This chapter aims at optimizing communication scheduling and UAV altitude in order to min-

imize the Expected Weighted Sum AoI. For ease of notation, let us denote L = {Hn
U ,∀n} and

S = {αn
1,i,α

n
2, j,∀i, j,n}. Thus, our optimization problem is formulated as:

(OP): min
L,S

1
N
E
[ N

∑
n=1

M

∑
i=1

ξiAn
i |A0

i = 0
]

s.t. C 1 : α
n
1,i ∈ {0,1},∀i,n,

C 2 : α
n
2, j ∈ {0,1},∀ j,n,

C 3 : β
n
j ∈ {0,1},∀ j,n,β 0

j = 0,∀ j,

C 4 :
M

∑
i=1

α
n
1,i +

M′

∑
j=1

α
n
2, j ≤ 1, ∀n,

C 5 : Hmin ≤ Hn
U ≤ Hmax,∀n,
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Table 3.1: Table of Notations

Parameters Description

M Set of IoTDs.

(xU ,yU) UAV horizontal coordinates.

(xi,yi,0) Position of IoTDi.

HS BS’s altitude.

N Total number of time slots.

δt Time slot duration.

C1- C8 Environment-dependent variables.

fc Carrier frequency.

c Speed of light.

W Channel bandwidth.

No Noise power.

PI IoTD transmission power.

PU UAV’s transmission power.

sn, an, rn State, action, reward at time-slot n.

Sth Minimum rate for reliable decoding.

Variables Description
Hn

U UAV’s altitude at time-slot n.

αn
1,i Indicates if IoTD i is scheduled for transmission at time-slot n.

αn
2, j Indicates if virtual queue j is scheduled for transmission at time-slot n.

zn
i Indicates if reliable transmission is achieved between IoTDi and UAV at time-slot n.

gn Indicates if reliable transmission is achieved between UAV and BS at time-slot n.

C 6 : (3.14),

C 7 : (3.15),

C 8 : (3.16),

C 9 : |Hn+1
U −Hn

U | ≤Vmaxδt ,n = 1, ...,N−1.

Constraint C 5 denotes the UAV altitude constraint, with Hmax and Hmin denoting the maximum4

and minimum altitude, respectively. Table 3.1 provides a summary of the variables and parameters

used in the formulation. Finally, C 9 limits the traveled vertical distance by the UAV in one time

slot based on its maximum speed.

Problem (OP) is hard to solve as a result of the intractability of the objective function, Eq.

4The maximum UAV altitude is limited to around 120 m in North America and most developing countries.
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3.14, Eq. 3.15 and Eq. 3.16, for which an exact derivation cannot be achieved. In order to overcome

this difficulty, we formulate a closed-form expression for an upper bound of bn+1
i and An+1

i , see

Appendix A for details, and reformulate (OP) as

(OP.1): min
L,S,Z,G

1
N
E
[ N

∑
n=1

M

∑
i=1

ξiAn
i,ub|A0

i,ub = 0
]

s.t. C 1 : α
n
1,i ∈ {0,1},∀i,n,

C 2 : α
n
2, j ∈ {0,1},∀ j,n,

C 3 : β
n
j,ub ∈ {0,1},∀ j,n,β 0

j,ub = 0,∀ j,

C 4 :
M

∑
i=1

α
n
1,i +

M′

∑
j=1

α
n
2, j ≤ 1, ∀n,

C 5 : Hmin ≤ Hn
U ≤ Hmax, ∀n,

C 6.1 : zn
i ∈ {0,1},∀i,n,

C 6.2 : zn
i >

Sn
i (H

n
U)−Sth

Λ
,∀n, i,

C 6.3 : zn
i ≤ 1+

Sn
i (H

n
U)−Sth

Λ
,∀n, i,

C 6.4 : bn+1
i,ub ≥ (bn

i,ub +1).β n
j,ub.(1−α

n
1,i.z

n
i ),∀i,n,

C 6.5 : bn+1
i,ub ≥ α

n
1,i.z

n
i ,∀i,n,

C 7.1 : gn ∈ {0,1},∀n,

C 7.2 : gn >
Sn

U(H
n
U)−Sth

Λ
,∀n,

C 7.3 : gn ≤ 1+
Sn

U(H
n
U)−Sth

Λ
,∀n,

C 7.4 : β
n+1
j,ub ≥ β

n
j,ub.
(

1−α
n
2, j.g

n
)
,∀ j,n,

C 7.5 : β
n+1
j,ub ≥ α

n
1,i.z

n
i ,∀i, j,n,

C 8.1 : An+1
i,ub ≥ (bn

i,ub +1).(β n
j,ub.α

n
2, j.g

n),∀i, j,n,

C 8.2 : An+1
i,ub ≥ (An

i,ub +1).
(

1− (β n
j,ub.α

n
2, j.g

n)
)
,∀i, j,n,

C 9 : |Hn+1
U −Hn

U | ≤Vmaxδt ,n = 1, ...,N−1.
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Constraints C 6.1–C 6.5 replace constraint C 6 where C 6 captures the time elapsed at the UAV’s

virtual queue under the reliability condition. Constraints C 7.1–C 7.5 replace constraint C 7. C 7

ensures that the device’s data is successfully received by the UAV iff the transmission is reliable.

Constraints C 8.1–C 8.2 replace constraint C 8.

Due to the randomness of the environment, (OP.1) is a constrained stochastic optimization

problem over the UAV operating time N. To the best of our knowledge, offline solutions are

generally impractical since it is mathematically difficult to track the AoI over unknown channel

condition. In fact, in the actual deployment of UAVs, obtaining complete information on channel

quality (LoS/NLoS channels) depends on the location of the UAV and the surrounding environ-

ment (height/density of buildings). It also requires an excessive measurement, which is not easy

to perform in practice. In addition, the LoS/NLoS links and the received signal strength may alter

frequently as horizontal coordinates of the deployed UAV change with clustering. It is important

to note that deploying the UAV with the free-space channel model is practically inaccurate and

may result in considerable degradation of performance due to the blockage that exists in the actual

environment.

We also observe that (OP.1) is a mixed integer non-linear program (MINLP), which is gen-

erally hard to solve, due to the existence of the binary variables αn
1,i, αn

2, j, β n
j,ub, zn

i and gn. In

addition, dynamic programming method might be infeasible for such large scale problems. Hence,

our problem is reformulated as MDP and online DRL is exploited to find the best policy to con-

trol the altitude of the UAV and the schedule between the IoTD to the UAV and between the UAV

and the BS. The proposed online DRL approach does not rely on a prior knowledge of the channel

conditions, where the environment variables are unknown, i.e., (C1 : C8). In the next sections, the

proposed solution methodology for solving our formulated problem is described.

3.3 Proposed Solution

Here, an AI-agent is deployed on the UAV which interacts with the BS and IoTDs in a sequence

of actions. The AI-agent observes the rewards and steadily learns the optimal altitude and schedul-

ing policy. At each time-slot n, the AI agent decides an action for the deployed UAV. To design a
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framework for adjusting the altitude of the UAV and finding a scheduling policy is a non-trivial chal-

lenge. This is because the considered scenario is a hybrid discrete-continuous action space problem

and the altitude and scheduling are also closely coupled with each other in the considered problem.

These increase the difficulty of solving the problem. To tackle the first challenge, we approximate

the hybrid space by discretizing the altitude of the UAV into discrete values and solving the problem

with an efficient online DRL algorithm that uses Proximal Policy Optimization. [51].

The AI-agent may have to execute two actions simultaneously. For instance, the deployed UAV

might need to adjust its altitude and at the same time, schedule an IoTD. Most of the existing RL

approaches however treat each action (altitude adjustment and scheduling) independently and thus,

learn each action separately. Combining the two actions into one single action could be one way

to deal with this challenge. However, for an environment with M IoTDs that need to be scheduled

as well as a UAV, with Q discrete values, whose altitude needs to be adjusted, a total of (Q×

M) possible actions need to be considered. This could increase the difficulty of learning for the

AI-agent. To maintain a small size of the action space, the altitude and scheduling actions are

concatenated into a single action space and the AI-agent is allowed to execute one action per time

slot. In other words, at a given time, the AI-agent will either adjust the altitude of the UAV or

schedule a transmission. The AI-agent will learn to allocate more time slots for scheduling since it

is not necessary to frequently adjust the altitude at every time slot.

In the following, a brief review is presented on Proximal Policy Optimization (PPO), a learning

technique, that is suitable for online controlling of autonomous machines.

Background on Proximal Policy Optimization

In this chapter, we focus on policy-based RL algorithms as they have become prevalent and have

shown significant improvements compared to state-of-the-art algorithms. The focus of policy-based

algorithms is to build an estimator of the policy gradient and exploit a stochastic gradient ascend

(SGA) in order to achieve the maximum rewards. The gradient of the objective function is defined

as

∇J(θ) = E(st ,at)∼πθ

[
∇ logπθ (an|sn)A(sn,an)

]
, (3.19)

61



where E is the expected value. πθ is the probability of policy θ selecting action an at given state

sn. A(sn,an) is the advantage estimate in time-slot n that is used to mitigate the high variance of the

gradient. The advantage estimate A(sn,an) is given by

Aπ(sn,an) = Rπ(sn,an)−Vπ(sn), (3.20)

where Vπ(sn) is the state-value function of state sn under policy π . Rπ is the future discounted

cumulative rewards.

In fact, there are two major problems associated with DRL. The first is update instability since

the DRL algorithms are sensitive to step size parameter for the policy optimization. Choosing a

step size that is too small makes learning (convergence) very slow while a step size that is too large

drastically reduces the performance of the policy. The second is the data inefficiency, where the

new policy is evaluated based on a completely new training data; thus, DRL requires a large amount

of data to learn.

Trust Region Policy Optimization (TRPO) algorithm [52] overcomes above problems by limit-

ing the update range of the policy. It exploits the Kullback Leibler divergence between the current

and old policy distributions. TRPO proposes to optimize a surrogate objective function 5 by apply-

ing the Kullback Leibler divergence constraint that can provide local improvements to the current

policy at each iteration. The surrogate objective function is defined as

J(θ) = E(st ,at)∼πθold

[ πθ (an|sn)

πθold (an|sn)
A(sn,an)

]
. (3.21)

Proximal Policy Optimization (PPO) is proposed to overcome the high complexity of TRPO

[51]. PPO replaces the hard constraint of TRPO by setting a boundary for the update
πθ (an|sn)

πθold (an|sn)

within a target range. In order to achieve that, the surrogate advantage objective is clipped. The

5Surrogate objective function is not the same as the main objective function but it leads to the same result by applying
importance sampling technique.
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PPO-clip objective function can be written as

LCLIP(θ) = En

[
min

(
πθ (an|sn)

πθold (an|sn)
Aπθold

(sn,an),clip
(

πθ (an|sn)

πθold (an|sn)
,1+ ε,1− ε

)
Aπθold

(sn,an)
)]

,

(3.22)

where ε is the clip fraction used to control the clip range. In practice, PPO usually is implemented in

Actor-Critic framework, where more objective functions are added to the surrogate objective. The

overall objective function is given by

Ltotal(θ) = En[LCLIP(θ)−K1LV F
n (θ)+K2S(π|sn)], (3.23)

where K1 and K2 are loss coefficients. LV F and S(π|sn) denote the square error-loss for Critic

network, (Vθ (sn)−V targ
n )2, and entropy bonus respectively. The entropy bonus encourages the AI-

agent to execute actions more unpredictably for exploration. Thus, the update of the objective is

restricted by target region. Because of these advantages, we developed our solution approach based

on PPO. For more information on Proximal Policy Optimization, the reader is referred to [51].

The next subsection presents the system state representation as well as the rewards and penalties

associated with the agent’s actions.

3.3.1 MDP Formulation

We first formulate the scheduling and altitude decision problem as an MDP, and design a

PPO algorithm, in order to find the best policy that governs the altitude of the deployed UAV

and the scheduling decision within unknown environment. MDP is usually represented by 4-tuple

(S ,A ,P,R), in which

• A set of states S which includes all possible states sn at any time-slot n, where sn ∈S .

• A set of actions A which includes all feasible actions an at any time-slot n, where an ∈A .

• A transition distribution P , where P(sn+1|sn,an), sn,sn+1 ∈S , an ∈A is the probability that

leads to the new state, sn+1, after executing an action an at the state sn.
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• A reward distribution R where, P(rn|sn,an), sn ∈S , rn ∈ R, an ∈A is a measurable function

which gives an immediate reward after an action an is chosen in a state sn at time-slot n

Under the MDP framework, we will elaborate the state, action, and reward functions sequen-

tially as follow

1) State S : The state at time slot n is defined as sn = (An,β n,bn
i ,S

n
i ,S

n
U) , where:

• An = (An
1, ....,A

n
i , .....,A

n
M): a vector of size M containing the AoI of all the IoTDs at time-slot

n.

• β n = (β n
1 , ....β

n
j , ....β

n
M): a vector of size M containing the status of the virtual queue ∀i ∈M,

at time-slot n.

• bn = (bn
1, ....b

n
i , .....b

n
M): a vector of size M containing the time elapsed at the UAV’s virtual

queue associated with all IoTDs, at time-slot n.

• Sn = (Sn
1, ......S

n
i , .....S

n
M): a vector of size M containing the achievable rate ∀i∈M, at time-slot

n.

• Sn
U : the status-update size that could be delivered to the BS, at time-slot n

2) Action A : At each step-slot n, the deployed UAV executes an action an, The current com-

posite action an is denoted by

an = (ξ n,ψn,κn), (3.24)

where ξ n, ψnand κn are defined and interpreted as follows:

• Defined row vector ξ n = [αn
1,1, ....α

n
1,i, .....α

n
1,M], where αn

1,i represents the schedule control

from IoTD i to the UAV, and each element αn
1,i ∈ 0,1 where αn

1,i = 0 means the IoTD is not

scheduled to transmit its status-update at time-slot n, and αn
1,i = 1 means it is scheduled to

transmit its status-update.

• Defined row vector ψn =[αn
2,1, ....α

n
2,i, .....α

n
2,M′], where αn

1,i represents the schedule control

from UAV’s virtual queue j to the BS, and each element αn
2, j ∈ 0,1 where αn

2, j = 0 means the
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status-update on virtual queue j is not scheduled to transmit its status-update at time-slot n,

and αn
2, j = 1 means it is scheduled to transmit to the BS.

• Defined row vector κn ∈ (KU p,KDown), where KU p represents the upward flight, and KU p ∈

0,1, where KU p = 1 means the UAV adjusted its altitude 10m upward at time-slot n, and

KU p = 0 means no action towards upward flight. KDown = 1 means the UAV adjusted its

altitude 10m downward at time-slot n, and KDown = 0 means no action towards downward

flight. In other words, when KU p = KDown = 0 that means the UAV is hovering.

Hence, the deployed UAV adjusts its altitude and decides which IoTD to transmit its status-

update or schedule the transmission from UAV’s virtual queue to the BS.

3) Reward R: The immediate reward rn is the sum of the following normalized quantities:

• Penalty from the IoT network when the UAV collects status-updates from IoTDs with high

AoI: the value of this penalty is proportional to the summation of all AoI. As a result, the

AI-agent learns to minimize this penalty by optimizing scheduling decisions between IoT-to-

UAV and UAV-to-BS and altitude control of the UAV in order to relay the old status-update

(i.e., highest AoI) from IoTDs.

• Penalty incurred on network if the deployed UAV flies outside the given altitude constraint

hmin and hmax: the AI-agent learns how to adjust the altitude of the UAV to be within altitude

range.

Generally, an MDP problem can be solved using Dynamic Programming (DP) algorithms. How-

ever, since the UAV is deployed with no prior knowledge on the environment, then DP or LP algo-

rithms cannot be leveraged to solve the formulated MDP problem. Thus, to solve the formulated

MDP problem in absence of the state transition probabilities P of the Markov model, an online

model-free DRL algorithm is employed in the next subsection.

3.3.2 Proximal Policy Optimization Proposed Solution

Our PPO-based solution to altitude control and scheduling policy is described in this section.

As previously mentioned, our main objective is to find the online control policy that governs the
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altitude and scheduling policy of the UAV at each time-slot to minimize the EWSA. To solve the

control problem in the absence of the channel conditions and state transition probabilities of our

MDP model, we leverage the online DRL algorithm where the AI-agent interacts with the wireless

network environment and learns the control policy online. To solve our problem, we adapt the PPO,

which is a stability algorithm (in term of Actor training) with outstanding performance. To obtain

the online control policy, the proposed PPO algorithm, presented in Algorithm 1, is applied. The

proposed algorithm can be divided into three parts as follows:

The initialization phase is the first part. After defining the input and output of the algorithm

(Lines 1-2), the proposed algorithm randomly initializes the deep neural networks (NNs) parameter

θ , where Deep NNs have the same structure. An actor and a critic network with random weights

(Lines 3-4) are initialized. Training is conducted over multiple iterations at which the proposed

algorithm alternates between sampling phase (lines 6-14) and optimization/exploration phase (lines

18-22). Each iteration corresponds to several episodes (actors) and each episode corresponds to

multiple trajectories (i.e., sequence of states, actions and rewards).

The sampling phase is the second part (lines 6-17). In this phase, the AoI, time elapsed, queue

status, and the achievable rate between IoT-to-UAV and UAV-to-BS, (An
i ,β

n
i .b

n
i ,S

n
i ,S

n
U) are observed

by the UAV (lines 8-9). C 3, C 6, C 7 and C 8 of (OP) are guaranteed in Line 9 where the states

of the MDP are defined. In addition, C 9 is also guaranteed by the definition of the action space

κn in the MDP. The UAV then decides the best control policy, according to sampled action al from

the policy πθold (line 10). The sampled action, al , represents the current altitude of the UAV and

scheduling status for each IoTD and virtual queue. C 1, C 2 and C 4 of (OP) are guaranteed in

Line 11 where the deployed UAV decides which IoTD to transmit its status-update or schedule

the transmission from UAV’s virtual queue to the BS. In this step the algorithm assigned a binary

variable "1" to the selected IoTD or virtual queue and assigned "0" for other IoTDs and virtual

queues. During the sampling phase, the online algorithm guides the AI-agent to avoid actions

that violate the altitude constraint (i.e., flies outside the allowable altitude) by applying a specific

penalty to the reward (Lines 12-14), where, a penalty p is deducted from the overall reward, and

the corresponding altitude action of the UAV is cancelled. Thus, the UAV altitude constraint C 5 is

guaranteed in these Lines.
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Algorithm 4: Proposed PPO Solution to obtain dynamic UAV altitude control and
scheduling policy.

1 Input: Clip threshold ε , discount factor, learning rate, Adam optimizer parameters and
wireless communication parameters;

2 Output: The altitude control of UAV and scheduling policy.
3 Initialize the Neural Networks parameter θ randomly.
4 Initialize the sampling policy πθold with θold ← θ .
5 for Iteration = 0,1,.. do
6 for l= 0,1,.. L do
7 . //Sampling with πθold .//
8 for i= 0,1,.. M do
9 Observe: (Al

i,β
l
i .b

l
i,S

l
i ,S

l
U),

10 Sample: sample action al ∼ πθold .
11 Execute: execute the action al that specifies the altitude of the UAV, the scheduling

IoT-to-UAV and the scheduling UAV-to-BS.
12 if UAV flies outside the allowable altitude range hmin and hmax then
13 rl = rl−P.
14 Cancel the movement of UAV and update sl+1.

15 Evaluate: obtain the weighted sum AoI, rl , and new state sl+1.
16 Cache: store the trajectory (sl,al,rl,sl+1) in policy training fl .
17 Compute advantage estimate ∀L.

18 for epoch= 0,1,.. do
19 . //Optimizing πθ and Exploring//.
20 Compute the PPO-Clip objective function (3.22).
21 Fit the value network via stochastic gradient descent with ADAM (Vθ (sn)−V targ

n )2,
22 Optimize the the overall objective function (3.23), and update the policy via SGA

with ADAM, i.e., θ ← argmaxθ Ltotal(θ).
23 Synchronize the sampling policy with θold ← θ .
24 Drop the stored data.
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Fig. 3.3: Achievable Rate versus UAV’s Altitude for IoT-to-UAV Communication.

After executing the current action (line 11), the UAV evaluates the expected reward (line 15),

which represents the sum of the AoI for all IoTDs. In this phase, we collect G×L trajectories for

training, represented as (s0,a0,r0,s1,a1.....), where G is the number of episodes and L is the total

number of rollout steps each episode takes between updates. The trajectories’ data are stored for the

next phase (line 16). In order to achieve parallel processing among the episodes, a Message Passing

Interface protocol is employed. Last but not least, the estimations of the advantage function for each

rollout step are computed (line 17), according to Eq. 3.20, to achieve efficient training.

The optimization phase is the third part (lines 18-22). The network parameter θ of the policy πθ

is updated for each epoch. The PPO Clip objective function in each epoch is computed according

to Eq. 3.22. The policy πθ is optimized or improved by conducting SGA on the stored sampled

data based on the PPO Clip objective function. After optimizing the network parameter, the policy

is updated (lines 21-22), according to the overall objective function in Eq. 3.23. A random policy
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Fig. 3.4: Achievable Rate versus UAV’s Altitude for UAV-to-BS Communication.

is exploited in this phase, according to the entropy bonus in Eq. 3.23 for exploration. Finally,

the sampling policy πθold is updated with the policy πθ and the stored samples are removed (lines

23-24). The next iteration then begins.

3.3.3 PPO Analysis

Complexity

In this subsection, the complexity analysis is discussed. In practice, PPO usually is implemented

in Actor-Critic framework, where more objective functions are added to the surrogate objective. The

complexity of DRL approaches such as Actor-Critic framework is usually computed by the number

of multiplications in each iteration. Therefore, based on [53], the total computational complexity

for the fully connected layers can be expressed as the number of multiplications: O(∑P−1
p=1 np.np−1),

where np is the number of neural units in the p-th hidden layer. The number of multiplications at
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input and output layers is insignificant compared with the number of multiplications at the hidden

layers, therefore, the number of multiplications at input and output layers is ignored in our analysis.

In this chapter, we design the PPO architecture with the same number of neural units, denoted

by np, in all hidden layers. Therefore, the complexity of the proposed PPO can be reduced to

O((P−1).n2
p)∼ O(n2

p).

Convergence

In general, the convergence of a neural network (NN) is challenging and hard to be analyti-

cally analyzed [54]. The reason lies in that the convergence of a NN is highly dependent on DRL

hyper-parameters, in which the quantitative relationship between the NN convergence and the hyper-

parameters is sophisticated. Therefore, a reasonable choice of the hyper-parameters is required in

order to achieve the convergence. In fact, we tried various values for PPO hyper-parameters in the

process of debugging, we found the best values are the ones that are given in the simulation parame-

ters table while changing these values was often counterproductive. Similar to [54], in this chapter,

we limit our analysis of convergence to simulations (see Fig. 3.5) where it is observed that our PPO

algorithm converges under a reasonable choice of the hyper-parameters.

3.4 Simulation Results and Discussion

In this section, we conduct a series of simulations to evaluate the performance of the proposed

algorithm. Firstly, we describe the simulation parameters and system settings and then present

results and discussions. The main input parameters are listed in Table 3.2.

Simulation Setup

Unless otherwise specified, a square area of 1 kmÃŮ1 km is considered as a single cluster for

ease of illustration. Multiple IoTDs were distributed randomly within the 2D-field. A single UAV

is deployed at the center of the given area to relay multiple traffic streams from IoTDs to the BS

located at (2000,500,25) m. Assume that all the IoTDs have the same transmission power and all

devices have the same weight, which normalized to unity. All IoTDs can communicate with the
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Table 3.2: Simulation Parameters in UAV-Relay assisted IoT Networks

Parameter Value
UAV vertical Max Speed, ωmax 10m/s

Geographical area size 1Km2

Activation Functions Softmax and Tanh
Minimum flying altitude of UAV, hmin 10m

Total number of time slots, N 300
Maximum flying altitude of UAV, hmax 1000m

Learning Rate 0.001
Reward Discount 0.9

Number of Hidden Layers for Networks 3
Number of Neurons 64

Loss Coefficients K1 and K2 0.5 and 0.01
Update Policy Length, L 240
Total number of Epochs 2000

Number of Episodes (actors) 4
Clip Fraction, ε 0.2

Optimizer Technique Adam
UAV transmission power, PU 30dBm
IoTD transmission power, PI 10dBm

Channel Gain, γ0 -50dB
Noise Power, No -110dBm

deployed UAV at different rates according to channel conditions. The results are collected after

the training phase (3M samples) and each sample corresponds to a snapshot of the IoT network

at a particular time slot. Similar to [55], CSIU and CSIB are obtained for both IoT-to-UAV and

UAV-to-BS.

For each network (that is, the actor and critic networks), all simulations are run for fully con-

nected three-layer neural networks that comprise of 64 neurons in each layer. The hyperbolictangent

(tanh) function is utilized for activation of both networks while Softmax is used in the last layer. The

generated samples are used to train the deep neural network by utilizing PyTorch Deep Learning

library to determine an optimal policy for the deployed UAVs. After establishing the altitude control

and scheduling policy from the proposed algorithm, another sample set is used to test the perfor-

mance of the proposed algorithm.
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Benchmark Schemes

To the best of our knowledge, there is no existing approach that aims to solve a similar problem

in UAV assisted IoT networks; thus, for the sake of comparison, we develop two other baseline

approaches:

• Random Deployment with Random Scheduling (RDRS): In the RDRS scheme, at each time

slot, the deployed UAV randomly changes its vertical movement. Also, the UAV either ran-

domly selects an IoTD to upload its status update packets to the UAV or to the BS. Meanwhile,

if there is no status update packet in the UAV’s virtual queue, then the UAV abandons this

action and randomly selects another action.

• Heuristic Deployment with Greedy Scheduling (HDGS): In the HDGS approach, the deployed

UAV iteratively searches for the lowest height that satisfies the reliability constraint of the

BS. Then, at each time slot, the UAV selects an IoTD with the highest AoI to upload its status

update packets to the UAV. The UAV selects packets from the virtual queue to be uploaded to

the BS in the next consecutive time slot. Meanwhile, if the reliability constraint of the UAV

is not satisfied, the UAV selects the next IoTD with the highest AoI.

Results and Discussions

Before delving into the performance of PPO algorithm, we first investigate the impact of the

UAV’s altitude on the achievable rate under different environments. The simulation results are

demonstrated in Fig. 3.3 for a single IoTD located 1km from the deployed UAV. As depicted in

Fig. 3.3 and 3.4, the achievable rate curves rise to their maximum value and then decrease with in-

creasing UAV’s altitude. Thus, the required achievable rate and environment that the UAV operates

at indicate the best altitude of the UAV. The same behavior is observed for different environments.

Detailed parameters regarding the environment are listed in Table 3.3. When the UAV flies at the

optimal altitude with respect to the IoTD, the path loss between the UAV and the BS increases be-

cause of obstacles blocking the way. When the UAV flies at the optimal altitude with respect to

the BS, the path loss between the UAV and the IoTD increases due to longer distance. It was also

observed that the achievable rates in sub urban and urban environments are larger than in the dense
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Fig. 3.5: Accumulated reward vs iterations.

urban and high rise urban environments due to the presence of more obstacles such as buildings.

As the transmission power is further increased, a higher performance is achieved. The findings here

show that based on the environment, attaining a certain target performance requires the optimization

of the altitude of the UAV. Therefore, the AoI is strongly dependent on the optimum altitude of the

UAV under specific conditions of the environment.

Next, the convergence performance of the proposed PPO versus the number of iterations is stud-

ied. The convergence is evaluated with M = 20 IoTDs and Sth = 15bps/Hz in Fig. 3.5. As presented

in the figure, the cumulative reward increases relatively quickly at the beginning of learning after

which the increase becomes relatively slow. The reason is that, at the beginning of the iterations,

the AI agent learns the altitude violation of the UAV such as minimum and maximum allowable

altitude. Moreover, many IoTDs are not yet properly scheduled to transmit their status update pack-

ets to the UAV and from the UAV to the BS. This is because the UAVs have not yet learned the

suitable scheduling policy in the deployed environment in order to attain the required reliability

that minimizes the EWSA. The trained AI agent can significantly enhance the defined reward with

each iteration. This improvement gradually becomes less obvious when the AI-agent is well trained

about the environment and it starts to effectively adapt the scheduling policy.

To better understand how the action-space affects the performance of the proposed algorithm,
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Fig. 3.6: Accumulated reward vs iterations.

an AI-agent is trained for multiple actions (that is, concurrent actions) per time slot and results are

compared to those for a single action per time slot. For the evaluation, M = 50 is considered as

the number of IoTDs. For multiple actions per time slot, all possible combinations of actions are

modeled as separate actions. The action space reaches (2 ∗M ∗ 3) actions, where 2 represents the

scheduling decision (that is, IoTD to UAV and UAV to BS) and 3 represents the altitude control

action (that is, flying up, down and hovering). As shown in Fig. 3.6, due to a large action space, it is

harder for the AI-agent to learn the value of each of the true actions in multiple actions per time slot

compared to single action representations. A similar observation has been reported in [56]. It can

be concluded that the suggested single action per time slot approach achieves better performance

after a finite number of iterations.

Table 3.3: List of Parameters for different environments.

Parameter Sub-Urban Urban Dense-Urban High-Rise Urban

c1, c3 0.43 0.16 0.11 0.08

c2, c4 4.88 9.61 12.08 27.23

c5, c7 0.1 1.6 1 2.3

c6, c8 21 20 23 34

The plot, Fig. 3.7, depicts the impact of learning on the UAV altitude for single and multiple

74



0 100 200 300 400 500 600

Time (in slots)

0

100

200

300

400

500

600

700

800

A
lti

tu
de

 (m
)

Single-Action per time-slot
Multiple-Action per time-slot

Fig. 3.7: UAV altitude vs time.

actions per time slot. The UAV is deployed initially at an altitude of 100m in the urban region and the

minimum achievable rate to ensure reliable transmission is set to Sth = 15bps/Hz for M = 20. It is

evident that there is a certain range of altitude, also indicated in Fig. 3.3(b) and 3.4(b), that satisfies

the reliability constraint between IoTD to UAV and from UAV to BS. Single and multiple actions per

time slot techniques enable the adjustment of the altitude of the UAV within the optimum altitude

range in order to establish effective communication links. However, due to insufficient learning for

multiple actions per time slot, the AI agent takes wrong decisions while adjusting the altitude of the

UAV. For example, the altitudes for the duration do not satisfy the reliability constraint for both the

UAV and the BS.

In Fig. 3.8, the AoI evolution over time for all approaches is presented for a selected set of

four IoTDs in a network of 20 IoTDs. It can be observed that the AoI evolution can be drastically

different for the different policies. By leveraging the PPO algorithm, the AoI of the four IoTDs

is much smaller than that of the baseline approaches. This is understandable since, as explained

above, the AI agent learns how to adjust the altitude of the UAV within the allowable altitude range

to establish an effective communication link to an IoTD with the highest AoI value. Transmission

failures on the links between IoTD sto UAV and UAV to BS increase for the baseline approaches

because the UAV is unable to efficiently adjust its altitude to satisfy the reliability constraint of the
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(c) HDGS.

Fig. 3.8: The performance comparison of different policies for a sample of four IoTDs.

BS and UAV. Furthermore, the HDGS approach, on the one hand, significantly decreases the AoI

for some IoTDs. On the other hand, it increases the AoI to the maximum for other IoTDs. This

is because the HDGS approach only schedules transmission for IoTDs that satisfy the reliability

constraint for both links (IoT-to-UAV and UAV-to-BS).

To evaluate the effectiveness of the proposed algorithm, the impact of the number of IoTDs on

the PPO approach compared to the RDRS and HDGS approaches is studied. A UAV is deployed to

relay the status update, where the minimum achievable rate to ensure reliable transmission is set to

Sth = 15bps/Hz. As shown in Fig. 3.9, the proposed PPO algorithm is able to minimize the EWSA

for a lower number of IoTDs since each IoTD enjoys more service. In contrast, as the number of

IoTDs increases, the EWSA increases, as expected, since more scheduling is required to decrease

the EWSA. Besides, the performance of the HDGS approach is shown to be higher than the RDRS.

This is because for the HDGS approach, which uses the greedy scheduling policy always selects the
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Fig. 3.9: Impact of number of IoTDs and comparisons.

IoTD with the highest AoI value at each time slot.

Last, the average age is another performance metric that we studied. Fig. 3.10 depicts the

average age for a set of IoTDs, where the minimum rate to ensure reliable transmission is set

to Sth = 15bps/Hz and M = 20. The average age of IoTD i within mission time N is captured

by 1
N ∑

N
n=0 An

i ,∀i,. Clearly, the proposed PPO algorithm minimizes the average AoI in the system

compared to the other considered approaches. Also, the average age performance gap among the

approaches is relatively high, which demonstrates the importance of optimizing the altitude of the

UAV with scheduling. This finding justifies the robustness of the proposed algorithm in terms of

minimizing average AoI.

3.5 Summary

This chapter addresses the problem of joint scheduling policy and dynamic UAV altitude control

in UAV-assisted IoT networks that maintain the freshness of information status. A UAV is employed

as a mobile relay between IoTDs and the BS to minimize the Expected Weighted Sum Age-of-

Information (EWSA) at the BS under unreliable transmission condition. It is assumed that before

its deployment, the UAV has no prior knowledge of the channel and it can obtain instantaneous
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IoT-to-UAV and UAV-to-BS CSI during its deployment. To maintain the freshness of information,

the stochastic control problem is modeled as a Markov Decision Process and an online Deep Re-

inforcement Learning approach is proposed to obtain an optimal control policy that minimizes the

EWSA. Numerical results demonstrate the effectiveness of the proposed online design, which was

also verified by extensive comparisons with other baseline approaches.

3.6 Closed-Form and Upper Bound

Firstly, we derive an upper bound for the bn+1
i and An+1

n as

bn+1
i,ub ≥ (bn

i,ub +1).(β n
j ).
(

1−α
n
1,i.1[S

n
i (∆

n
i→U)≥ Sth]

)
, (3.25a)

bn+1
i,ub ≥ α

n
1,i.1[S

n
i (∆

n
i→U)≥ Sth]. (3.25b)

bn+1
i,ub ≤ (bn

i,ub +1). (3.25c)

An+1
i,ub ≥ (bn

i,ub +1).
(

β
n
j .α

n
2, j.1[S

n
U(∆

n
U→S)≥ Sth]

)
, (3.26a)
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An+1
i,ub ≥ (An

i,ub +1).

(
1−
(

β
n
j .α

n
2, j.1[S

n
U(∆

n
U→S)≥ Sth]

))
, (3.26b)

An+1
i,ub ≤ (An

i,ub +1), (3.26c)

Similarly, Eq. 3.26 can be equivalently expressed as

β
n+1
j,ub ≥ β

n
j,ub.
(

1−α
n
2, j.1[S

n
U(∆

n
U→S)≥ Sth]

)
, (3.27a)

β
n+1
j,ub ≥ α

n
1,i.1[S

n
i (∆

n
i→U)≥ Sth], (3.27b)

Secondly, for more traceability form, we introduce a new binary variable zn
i that takes the value

of 1 if the reliable transmission condition is achieved between the IoTD i and the UAV and equals 0

otherwise; similarly, the new binary variable gn that takes the value of 1 if the if the reliable trans-

mission condition between the UAV and the BS is achieved and equals 0 otherwise. By introducing

the well-known big-number technique, Λ >> 1, the binary variables Z = [zn
i .∀n, i] and G = [gn,∀n]

can be expressed as

zn
i >

Sn
i (∆

n
i→U)−Sth

Λ
, ∀n, i, (3.28a)

zn
i ≤ 1+

Sn
i (∆

n
i→U)−Sth

Λ
, ∀n, i, (3.28b)

gn >
Sn

U(∆
n
U→S)−Sth

Λ
, ∀n, (3.29a)

gn ≤ 1+
Sn

U(∆
n
U→S)−Sth

Λ
, ∀n, (3.29b)

where Λ is a large number that is used to ensure the validity of the above equations.

Finally, bn+1
i,ub , An+1

i,ub and β
n+1
j,ub can be rewritten as

bn+1
i,ub ≥ (bn

i,ub +1).β n
j,ub.(1−α

n
1,i.z

n
i ), (3.30a)

bn+1
i,ub ≥ α

n
1,i.z

n
i . (3.30b)
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j,ub.α

n
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n), (3.31a)

An+1
i,ub ≥ (An

i,ub +1).
(

1− (β n
j,ub.α

n
2, j.g

n)
)
, (3.31b)

β
n+1
j,ub ≥ β

n
j,ub.
(

1−α
n
2, j.g

n
)
, (3.32a)

β
n+1
j,ub ≥ α

n
1,i.z

n
i , (3.32b)
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Chapter 4

UAV-mounted RIS as Passive Relays in

IoT Networks for Fresh Information

4.1 Background, Related Works, and Contributions

Numerous emerging smart city applications rely on freshness of sensory data (i.e., status-updates)

which is being monitored and generated by a plethora of IoTDs. For instance, smart environmental

monitoring, industrial control systems and intelligent transportation systems all require reliability

and timeliness in delivering status-update information. Outdated updates may be inconsistent with

the current status of the physical process being monitored and controlled, which may lead to erro-

neous decisions. Despite their great benefits, as discussed in previous chapter, IoTDs have limited

capabilities and cannot communicate over longer distances in a reliable manner. As a result, provid-

ing a timely and reliable communication service for IoTDs is a challenging task, which may hinder

their expected benefits. Undoubtedly, emerging IoT services will strongly benefit from enhancing

wireless connectivity, which is considered as an enabler for the evolution of future networks and

their services. While many key enabling technologies are considered to unleash the potential of

future networks, a revolutionary one (which exploits the radio environment has a new degree of

The work presented in this chapter has been submitted to IEEE journal [57]
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freedom) has recently emerged and is under intense investigation.

Reconfigurable Intelligent Surfaces (RISs) leverage the tuning capabilities of their reflective el-

ements to enhance the propagation environment by improving the desired signal at the receiver and

mitigating interference. They are energy efficient and expected to greatly enhance the spectral effi-

ciency of wireless networks, particularly when combined with other promising technologies. UAVs

are among those technologies that have shown great promise in assisting networks by improving

connectivity and coverage. Unlike UAVs, as conventional mobile relaying elements, integrating

reconfigurable intelligent surfaces with the UAVs allows several benefits. First, the data transmis-

sion from the IoTDs to the Base-Station (BS) through RIS-empowered UAV will experience less

intermediate delays to relay the information compared to UAVs acting as mobile active relays.

This is because, in a decode and forward half-duplex relaying mode, the transmission is executed

over two time-slots. On the other hand, an IRS-integrated UAV, which is denoted as aerial RIS

(ARIS), requires only one time-slot since the RIS operates in a full-duplex relaying mode explained

in Chapter 3. This may enhance the freshness of information and lead to reducing the AoI. Sec-

ond, the power consumption due to processing the relayed information at the UAVs can be avoided,

which increases the flight endurance of the UAV. In fact, RIS is composed of a large number of

passive low-cost elements, each of which is capable of independently tuning the phase-shift of the

incident radio waves [58]. For instance, by appropriately configuring the phase-shift with the aid of

the RIS controller, the reflected signals can be constructively added, and therefore, enhancing the

reliability of IoT networks, accordingly, the AoI is minimized. Therefore, in contrast to UAV as a

mobile active relay as explained in Chapter 3, integrating RIS with the UAV does not require any

radio-frequency chain circuits for relaying the transmission from the IoTDs to the BS which makes

UAV equipped with RIS a cost-effective solution with minimal energy consumption.

Recently, some efforts have been directed towards the integration between the UAVs and the RIS

with optimizing and designing the phase-shift of the RIS elements in order to intensify different util-

ities. However, these solutions may not be necessarily optimal from the perspective of preserving

freshness of information. To the best of our knowledge, none of the previous works reported in the

literature has addressed the optimization of RIS configuration while considering the freshness of

information, which thus motivates this work. In this chapter, we study a wireless network where
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IoTDs with limited transmission capabilities sample a stochastic process and the sampled data needs

to be processed by a BS. A single UAV equipped with RIS is deployed to act as a passive relay node

to forward the sampled data to the BS while considering the different activation patterns of IoTDs.

The sampled data is successfully delivered to the BS if and only if the signal-to-noise ratio (SNR)

exceeds a predefined threshold, upon which the AoI decreases. This framework is formulated as

an optimization problem with the objective of minimizing the expected sum AoI (ESA) while con-

sidering the SNR constraints, UAV altitude constraint, and the IoTDs scheduling constraints. Then

the optimization problem is shown to be difficult to solve while considering a realistic challenging

scenario where the activation patterns of IoTDs are unknown. Therefore, we opt to apply a Deep

Reinforcement Learning (DRL) framework based on Proximal Policy Optimization (PPO) to learn

randomness of the IoTDs’ activation patterns and control the altitude of the UAV, the phase-shift of

RIS elements along with communication scheduling to minimize the ESA.

4.2 System Model and Problem Formulation

As illustrated in Fig.4.1, we consider an IoT wireless network where a set M of M IoTDs

with limited capabilities are deployed to provide time-stamped, status-update information. Due to

IoTDs’ capabilities constraints and environmental obstacles, the existence of a strong direct Line-

of-Sight (LoS) communication link is difficult to obtain. Therefore, a single UAV equipped with

RIS consisting of F reflecting elements is deployed to passively relay the status-update information

to the BS. We consider the system over multiple time frames. Each of these frames is further divided

into equal segments, that is, N time-slot of length δt , which is normalized to unity.

The planar coordinates of the deployed UAV are assumed to be placed at (xU ,yU). In Cartesian

coordinates, the locations of IoTDs are assumed to be known and located at (xi,yi,0),∀i ∈ M at

ground level. Depending on the services/applications, the activation patterns for IoTDs are differ-

ent1. In addition, we assume that the BS is located at (xs,ys,HS), where HS denotes the height

of the BS. At any given time-slot n, the deployed UAV can adapt its altitude HU [n] such that

HU [n] ∈ (Hmin,Hmax), where Hmin and Hmax are the minimum and the maximum altitude range

1As mentioned in the 3rd generation partnership project (3GPP).
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specified by aviation authorities, respectively. Consequently, the altitude control should meet the

following constraints:

Hmin ≤ HU [n]≤ Hmax,∀n, (4.1)∣∣∣HU [n+1]−HU [n]
∣∣∣≤ Dmax,n = 1, ...,N−1, (4.2)

HU [1] = HS, (4.3)

where Dmax = Vmaxδt is the maximum vertical distance by the UAV in one time-slot based on its

maximum speed Vmax and HS denotes initial vertical location.

The BS continuously controls the altitude of the UAV as well as the phase-shift of the reflecting

elements in order to serve the IoTDs and maintain their required quality of service (QoS). Let Φ[n] =

diag{e jφ1[n],e jφ2[n], ...e jφ f [n], ....,e jφF [n]} ∈ CF×F be the RIS’s diagonal phase-shift matrix in the nth

time-slot, where φ f [n] ∈ [0,2π), ∀ f ∈ F is the phase-shift for the f th reflecting element. With

time division multiple access, the UAV schedules at most one IoTD to transmit its status-update.

Therefore, the transmission scheduling should meet the constraint below:

M

∑
i=1

αi[n]≤ 1, ∀n, (4.4)

where αi[n] is a binary variable, which indicates that IoTD i is scheduled in time-slot n, and 0

otherwise.

Before we proceed, we define the distance model and the adopted channel gain model. We

denote di→U [n] and dU→S[n] as the distance between the IoTDs and the UAV in the nth time-slot and

between the UAV and the BS, respectively, which are given as follows.

di→U [n] =
√

(xi− xU)2 +(yi− yU)2 +(HU [n])2, (4.5)

and

dU→S[n] =
√

(xS− xU)2 +(yS− yU)2 +(HS−HU [n])2. (4.6)

Meanwhile, the channel gain between the IoTDs and the UAV, and between the UAV and the

BS are denoted as hi→U [n] and hU→S[n] and can be expressed as follows,
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hi→U [n] = ĥi→U [n]∆i→U [n], (4.7)

and

hU→S[n] = ĥU→S[n]∆U→S[n], (4.8)

where ĥi→U [n], ĥU→S[n], ∆i→U [n] and ∆U→S[n] represent the small-scale fading between the IoTDs

and the UAV, the small-scale fading between the UAV and the BS, the path-loss coefficients between

the IoTDs and the UAV, the path-loss coefficients between the UAV and the BS, respectively. In

particular, the path-loss coefficients ∆i→U [n] and ∆U→S[n] can be written as ∆i→U [n] =
√

γ0d−η

i→U [n]

and ∆U→S[n] =
√

γ0d−η

U→S[n], where γ0 is the path-loss average channel power gain at a reference

distance d0 = 1m, η is the path-loss exponent. Similar to [59,60], we consider a Rician fading with

a dominant LoS. Thus, the small-scale fading for the communication link between the IoTD and the

UAV ĥi→U [n] can be given as follows

ĥi→U [n] =

√
K1

K1 +1
hi→U [n], (4.9)

where K1 is the Rician factor. hi→U [n] =
[
e jψi,1 ,e jψi,2 , . . .e jψi,F

]
is a fixed component vector with

elements of unit power, and ψi, f ∈ [0,2π]. Similarly, the small-scale fading for the communication

link between the UAV and the BS ĥU→S[n] can be given by

ĥU→S[n] =

√
K2

K2 +1
hU→S[n], (4.10)
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where K2 is the Rician factor. hU→S[n] =
[
e jωi,1 ,e jωi,2 , . . .e jωi,F

]
is a fixed component vector with

elements of unit power, and ωi, f ∈ [0,2π]. All IoTDs are assumed to have the same transmit power

denoted by P.

Based on the defined channel model in (4.5) - (4.10), the SNR at the BS in time-slot n can be

expressed as

ϒi

(
Φ[n],HU [n]

)
=

P
∣∣∣hH

i→U [n]Φ[n]hU→S[n]
∣∣∣2

σ2 , (4.11)

where σ2 is the thermal noise power. Note that, the overall channel gain between an IoTD and the

BS, i.e., hH
i→U [n]Φ[n]hU→S[n], can be written as

hH
i→U [n]Φ[n]hU→S[n] =

γ2
0 ∑

F
f=1 |[hU→S] f ||[hi→U ] f | . e j(φ f [n]−ψi, f−ωi, f )

d−η/2
U→S [n]d

−η/2
i→U [n]

, (4.12)

where [h] f is the f th element of h and γ0 is the path-loss average channel power gain at a reference

equal to 1m.The maximum SNR at the BS can be achieved when the phase-shift is chosen as φ f [n] =

ψi, f +ωi, f [58].

In order to achieve a successful transmission, ϒi(Φ[n],HU [n]) should be strictly greater than or

equal to ϒth, where ϒth is the minimum threshold to ensure reliable decoding [61]. A single packet

queuing discipline is assumed to be employed by the IoTDs such that the older status-update packet

is dropped and replaced with the newly arrived sample. A per time-slot sampling policy is consid-

ered for sampling the information, where the scheduled activated IoTD samples the status-update

information at the beginning of each time-slot to transmit its status-update information. Therefore,

the deployed UAV has to control the scheduling, altitude and phases of RIS elements properly to

relay the status-update information to the BS while considering the activation patterns of IoTDs.

Clearly, AoI depends on the altitude of the UAV, the communication scheduling, phase-shift of the

RIS elements and the activation pattern of the IoTDs. Thus, the evolution of Ai[n] of IoTD i can be
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written2

Ai[n+1] =


1, if Gi[n] = 1,αi[n] = 1,andϒi(Φ[n],HU [n])≥ ϒth,

Ai[n]+1, otherwise,
(4.13)

where Gi[n] is a binary variable, which indicates that IoTD i is active in time-slot n, and 0 otherwise.

To obtain the AoI within the relay mission time, we use the the ESA
1

NM
E
[

∑
N
n=1 ∑

M
i=1 Ai[n]|Ai[0] =

0
]

as our metric to evaluate the freshness of sampled data. For the sake of tractability, the AoI can

be expressed as the constraints below

Ai[n+1] = 1+Ai[n]−Ai[n]Gi[n]αi[n], (4.14)

ϒi(Φ[n],HU [n])≥ Gi[n]αi[n]ϒth. (4.15)

With the quest of enhancing the performance of the IoTDs, a framework to optimize commu-

nication scheduling, phase-shift matrix of RIS, and the altitude of the UAV is investigated. This

framework is formulated as an optimization problem with the objective of minimizing the ESA. For

ease of notation, let us denote L = {HU [n],∀n}, S = {αi[n],∀i,n} and Θ = {Φ[n],∀n}. Thus, our

problem can be written as:

(OP): min
L,S,Θ

1
NM

E
[ N

∑
n=1

M

∑
i=1

Ai[n]|Ai[0] = 0
]

(4.16a)

s.t. (4.1)− (4.4),(4.14),(4.15),

αi[n] ∈ {0,1}, ∀i,n, (4.16b)

φ f [n] ∈ [0,2π), ∀ f ,n, (4.16c)

Owing to the randomness of the activation pattern, Gi[n], of the IoTDs, (OP) is a stochastic

optimization problem over the service time N. In fact, obtaining the activation patterns of IoTDs are

crucial before dispatching the UAV to a target area. This is because the formulated problem aims

to find the control policy that minimizes the AoI from the active IoTDs within the service time N.

2For more tractable analysis, the initial values of AoI is neglected, that is, Ai[0] = 0, ∀i.
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However, obtaining complete information on the activation pattern requires extensive measurement,

which is not easy to obtained especially in remote areas. We also observe that (OP) is a mixed-

integer non-convex optimization problem which is hard to be solved. This is because (OP) contains

both binary variables αi[n] and continuous variables Φ[n] and HU [n]. In addition, it is a challenging

task to solve a non-convex optimization problem in the absence of a complete information on the

activation pattern. Therefore, our problem is reformulated as MDP and a model-free DRL based

on PPO is exploited to find the effective control policy that minimizes the ESA. The proposed PPO

algorithm does not rely on a prior knowledge of the activation patterns.

4.3 Proposed Solution

Finding the control policy that governs the UAV’s altitude, the scheduling policy and the phase-

shift matrix for the RIS is a non-trivial challenge. The reason is that the considered work is a

hybrid discrete-continuous action space problem and the altitude and scheduling are also closely

coupled and should be carefully considered with the adjustments of RIS’s phase-shift. Discretizing

the altitude of the UAV and the phases of RIS elements into discrete actions could be one way to

tackle this challenge. However, combining the three actions (UAV’s altitude, scheduling policy and

phases of RIS) into one single action space is still a challenge that needs to be addressed. The reason

behind that, for a deployment with M IoTDs, K discrete altitude actions and Q discrete phases, a

total of (K ×M×F×Q) possible actions need to be considered. In fact, efficient DRL algorithms

are difficult or even often impossible to apply to solve large discrete action spaces since it increases

the difficulty of learning. Since only one IoTD is scheduled per time slot, the phase-shift matrix

for the RIS is properly configured so that the reflected signals can be constructively added at that

IoTD. Due to that and to reduce the complexity of the learning and maintain a small size of the

action space, we use the UAV altitude and scheduling policy as the main control objective. In other

words, at each time-slot, the RL-agent (deployed at the BS) will adjust the altitude of the UAV and

schedule a transmission along with an appropriate adjustment for the RIS’s phase-shift according

to the user of interest. Thus, the RL-agent executes two actions simultaneously. Specifically, the

deployed UAV adjusts its altitude and at the same time, schedules an IoTD depending on the phases
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of RIS elements and the activation pattern.

4.3.1 MDP Formulation

The considered problem is first modeled as a Markov Decision Process (MDP). Afterward,

a DRL based on PPO algorithm is proposed for finding the control policy that governs both the

UAV’s altitude and the scheduling decision within unknown activation pattern. We define the state

S , action A , and reward R functions as follows:

1) State S in the PPO model: The state at time-slot n is defined as s[n] =(A[n],ϒ[n],HU [n]),

where A[n] = (A1[n], ....,Ai[n], .....,AM[n]) and ϒ[n] = (ϒ1[n], ......ϒi[n], .....ϒM[n]) is a vector of size

M containing the SNR at time-slot n when the signals from different paths are coherently combined

through the phases of RIS elements.

2) Action A in the PPO model: At each step-slot n, the RL-agent executes an ac-

tion a[n] denoted by a[n] = (ξ [n],κ[n]), where ξ [n] ∈ W = [α1[n], ....αi[n], .....αM[n]]. κ[n] ∈

K ={(1,0,0),(0,1,0),(0,0,1)}, where κ[n] represents the variable quantity of the altitude dis-

tance. κ[n] = (1,0,0) means the UAV adjusted its altitude upward at time-slot n; κ[n] = (0,1,0)

means the UAV adjusted its altitude downward at time-slot n; and κ[n] = (0,0,1) means the UAV

is hovering. Hence, the system action space at time-slot n is a[n] = (ξ [n],κ[n]) ∈ A = W ×K .

Thus, the RL-agent adjusts the UAV’s altitude and decides which IoTD to transmit its status-update

to the BS.

3) Reward R in the PPO algorithm: The immediate reward r[n] is defined as a negative sum-

mation of AoI. Therefore, the RL-agent is motivated to minimize the AoI by optimizing scheduling

decisions and altitude control of the UAV.

Generally, MDP problems with predefined state transition probabilities can be solved using

Dynamic Programming (DP). However, since the UAV is dispatched with no prior knowledge on

the activation patterns of IoTDs, then DP algorithm cannot be applied. Thus, to solve the considered

problem a DRL based on PPO algorithm3 is employed in the next subsection.

3It is noteworthy that, PPO demonstrates performance comparable to or better than state-of-the-art DRL approaches.
Therefore, PPO has become the default reinforcement learning algorithm at OpenAI.
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Algorithm 5: The PPO Based Framework.

1 Initialize θ randomly, πθold with θold ← θ and HU [1] = HS.
2 for Iteration = 0,1,... do
3 for l= 0,1,.. L do
4 Get (A[n],ϒ[n],HU [n]) from the environment.
5 Sample action a[l]∼ πθold .
6 Take the action a[l] that specifies the UAV’s altitude and the IoTD scheduling.
7 Configure Φ[n] that maximizes the received SNR of the scheduled IoTD at the BS.
8 if UAV violates the allowable altitude range then
9 Add a penalty, cancel the movement of UAV and update s[l +1].

10 Get relevant reward r[l] and s[l +1].
11 Store (s[l],a[l],r[l],s[l +1]) as one transition in the experience replay.
12 Compute advantage estimate.

13 for epoch= 0,1,.. do
14 Use Eq. (4.17) to compute the PPO objective.
15 Optimize the overall objective function and update the policy via stochastic

gradient ascent with ADAM.
16 Synchronize the sampling policy with θold ← θ .
17 Clear up the stored data.

4.3.2 Proposed Solution Description

At the initialization stage (Line 1), the proposed algorithm randomly initializes the initial alti-

tude of the UAV at HS to guarantee Eq. (4.3). Besides, the deep neural networks (NNs) parameter

θ are randomly initialized, where Deep NNs have the same structure. In each training iteration,

the PPO algorithm alternates between the sampling phase by running L episodes (Lines 3-12) and

the optimization/exploration phase (Lines 13-15). During each episode l, the current channel state

information hH
i→U [n] and hU→S[n] are obtained. Then all possible phases of RIS elements Φ[n] that

achieve a coherent combination with the signals from different paths at the BS are obtained. The

RL-agent (Line 4) then get observations A[n], ϒ[n] and HU [n] from environment at each time-slot.

The UAV then executes action a[l] from the policy πθold (Lines 6-7), where the sampled action, a[l],

represents the current altitude of the UAV and the scheduling policy according to the phases of RIS

configuration for each IoTD that achieve the maximum SNR. Eq. (4.16c), Eq. (4.14) and Eq. (4.15)

are implicitly defined in Lines 4-7, where the states of the MDP and actions are defined. In this step,

the PPO algorithm assigns the binary value "1" to the scheduled IoTD to transmit its status-update
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Fig. 4.2: Convergence.

and assign "0" for other IoTDs to guarantee Eq. (4.16b) and Eq. (4.4) .

During each episode (Lines 8-9), the RL-agent guides the UAV to avoid the action that violates

the altitude constraint (i.e., Eq. (4.1)) by abandoning the corresponding altitude action and apply a

penalty to the reward. After taking the current action, the UAV receives the relevant reward (Line

10), which represents the sum of the AoI for all IoTDs. After, the tuple of RL trajectory data of

episode l, (s[l],a[l],r[l],s[l +1]) are buffered for the next phase (Line 11), then advantage estimate

is computed (Line 12) to achieve efficient training of the policy. To update policy network πθ , the

PPO clip objective function in each epoch is computed according to the below

LCLIP(θ) = En

[
min
(

πθ (a[n]|s[n])
πθold (a[n]|s[n])

Aπθold
(s[n],a[n]),

clip
(

πθ (a[n]|s[n])
πθold (a[n]|s[n])

,1+ ε,1− ε

)
Aπθold

(s[n],a[n])
)]

,

(4.17)

where ε is the clip fraction used to control the clip range. A(s[n],a[n]) is the advantage estimate in

time-slot n that is used to mitigate the high variance of the gradient. Then the PPO overall objective

function is then optimized via stochastic gradient ascent (SGA) with ADAM. Finally, the policy

πθold is updated with the policy πθ and the buffered data are dropped (Line 17) then a new iteration

begins.
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Fig. 4.3: Impact of number of IoTDs.

The complexity of the proposed algorithm can be expressed as the number of multiplications:

O(∑P−1
p=1 np.np−1), where np is the number of neural units in the p-th hidden layer. The convergence

of the algorithm is limited to simulations since it is hard to be analytically analyzed.

4.4 Simulation Results and Discussion

We consider a square area of 0.5km × 0.5km, where IoTDs are distributed randomly. An UAV

equipped with RIS is placed at the center of the area to relay the status-update information from

IoTDs to the BS located at (2000, 500, 25)m. We assume that all the IoTDs have the same power

budget. The frame duration N is take as N = 120 while the communication parameters are taken

as: P = 20dBm, the path-loss exponent η = 2.3, the channel gain γ0 =−20dBm, σ2 =−110dBm,

ϒth = 0dB [61] and K1 = K2 = 8dB. The UAV altitude parameters are assumed as HS = 100m,

Hmin = 10m, Hmax = 1000m and Dmax = 10m/s. The activation pattern of each IoTD is randomly

generated according to Uniform distribution4. Table 4.1 provides PPO hyperparameters. The results

are collected by utilizing PyTorch library after 240K samples, where each sample corresponds to a

snapshot of the network at a particular time-slot.

4The same solution approach can be applied to any activation distribution.
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Fig. 4.4: Average age per IoTD.

We first verify the convergence of the proposed PPO algorithm in Fig. 4.2. It can be found

that trained RL-agent can significantly improve the defined reward. This improvement begins to

diminish when the RL-agent is well trained about the activation patterns of IoTDs and it starts

to effectively adapt the UAVs’ altitude and the scheduling policy that minimizes the ESA. It is

observed that our PPO algorithm converges to the steady point quite quickly under a reasonable

choice of the hyperparameters. This indicates that our proposed algorithm deals effectively with

incomplete knowledge of the activation pattern of the IoTDs.

To evaluate the effectiveness of the proposed algorithm, we develop two baselines policies as

follows: 1) a random walk policy which randomly selects an IoTD to relay its status-update infor-

mation along with adjusting the phases of RIS so that the reflected signals can be constructively

added at the selected IoTD while changing the altitude of UAV randomly, and 2) hovering with the

greedy policy where the UAV iteratively searches for the best height that satisfies the reliability con-

straint for the most IoTDs. Then, the UAV selects the IoTD with the maximum current AoI. Similar

to the random walk policy, the phase-shift matrix of the RIS is adjusted with the same way. The

baseline policies are adequate policies since the former policy explores all possible actions, thus,

may obtain some actions that result in decreasing the AoI, while the latter policy is heuristically a

good policy since it always selects the IoTDs with higher AoI to relay their status.
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Fig. 4.3 illustrates the impact of the number of IoTDs on the PPO algorithm compared to the

baselines policies. It can be noted that the proposed algorithm is able to minimize the ESA for a

lower number of IoTDs since each IoTD enjoys more frequent scheduling. However, for a large

number of IoTDs we can see that the ESA increases since more scheduling is needed to decrease

the ESA. Besides, the hovering with the greedy policy is more effective than the random walk policy

since it always selects the IoTD with the highest AoI value. We also can observe that the proposed

algorithm outperforms all the baselines. This is expected since the baselines are unable to learn

the activation pattern of the IoTDs and the altitude adaptation of the UAV is not considered in the

baselines.

We plot the average age as another performance metric for a set of IoTDs in Fig. 4.4. The av-

erage age of IoTD i within time N is calculated by 1
N ∑

N
n=0 An

i ,∀i. Obviously, it can be seen that the

proposed PPO has a lower average sum AoI per IoTD compared to the baseline policies. The aver-

age age gap among the policies is relatively high, which demonstrates the importance of learning of

the activation pattern of IoTD and adjust the altitude of the UAV with communication scheduling.

Furthermore, the hovering with the greedy policy, on the one hand, significantly decreases the AoI

for some IoTDs. On the other hand, it increases the AoI to the maximum for other IoTDs. This

is because the hovering with the greedy policy only schedules transmission for IoTDs that satisfy
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Table 4.1: Simulation Parameters in UAV-RIS assisted IoT Networks

Parameter Value

Activation Functions Softmax and Tanh

Learning Rate 0.001

Reward Discount 0.9

Number of Hidden Layers for Networks 3

Number of Neurons 64

Loss Coefficients K1 and K2 0.5 and 0.01

Update Policy Length, L 240

Clip Fraction, ε 0.2

Optimizer Technique Adam

the SNR threshold. This finding justifies the robustness of the proposed PPO algorithm in terms of

minimizing average AoI.

Finally, in Fig. 4.5, we show that both the power budget of the IoTDs and the number of RIS’s

elements have a great impact on the ESA. Increasing the transmit power of IoTD leads to a direct

enhancement of the achieved SNR at the BS. However, this may not be allowable in certain IoT

applications. As a result, it is better to increase the number of reflecting elements per RIS which

results in enhancing the quality of the communication link between the IoTD and the BS, which in

turns improves the achieved SNR and the ESA.

4.5 Summary

This chapter proposed a new relaying system to maintain the freshness of information of remote

Internet of Things wireless network by integrating the Unmanned Aerial Vehicle (UAV) and the

reconfigurable intelligent surfaces (RIS). The altitude of the UAV, the transmission scheduling, and

phase-shift matrix of RIS elements are optimized to minimize the expected sum Age-of-Information.

To tackle this mixed-integer non-convex problem, Proximal Policy Optimization algorithm is pro-

posed. Numerical results demonstrate that the proposed algorithm can significantly minimize the

AoI compared to other baselines such as random walk and heuristic greedy algorithms.
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Chapter 5

Learning-based Trajectory Planning of

Aerial Base Stations in Vehicular

Networks

5.1 Background, Related Works, and Contributions

The Internet-of-Vehicles (IoV) paradigm is expected to play a crucial role in the automotive

industry by creating innovative services and revenue sources. By 2025, around a quarter of a billion

vehicles navigating along global roads will be equipped with wireless communication capabilities

[65]. It is, therefore, indispensable to study the use of UAVs in vehicular networks. Thus, after

addressing three key problems in the static environment, the deployment of UAVs in highly dynamic

environments such as vehicular networks is investigated.

One of the main applications of future wireless networks is to provide ubiquitous coverage to

suburban, rural highways and volatile environments, where vehicles might need access to different

types of information including safety commands, maps, and route guidance during the entire nav-

igation period. However, the seamless provision of connectivity and the uninterrupted delivery of

The work done in this chapter leads to two IEEE published journals and one conference [62–64]
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services along highways also pose various challenges that future wireless technologies promise to

solve. The situation is particularly challenging in highways such as cross-border highways where

the communication services might be unavailable. Nevertheless, cellular infrastructure could ei-

ther be inadequately provisioned to cover all vehicles or could be exposed to unexpected hardware

failure or direct damage. Besides, providing ubiquitous coverage to highways, where terrestrial

infrastructure is economically infeasible due to geographical constraints, is a challenging task that

current and future wireless networks have to consider.

Alternatively, intelligent cell-free networks, where cellular boundaries may no longer exist, with

the provision of some isolated AI operations [66] are expected to play an important role in future

wireless networks, where the full potential of mobile base-stations such as unmanned aerial vehicles

(UAVs) or dronecells will be realized to provide effective coverage whenever needed. Indeed, due

to their agility and mobility, UAVs are being promoted as a promising paradigm in future wireless

networks to provide network connectivity when the infrastructure is partially or fully unavailable.

Furthermore, they can be deployed to enhance the coverage of cellular networks during an un-

planned surge in traffic demand [67]. An additional advantage of using UAVs is that they can be

relocated from one zone to another in order to provide network connectivity based on the actual

traffic demand. Moreover, in vehicular networks that are typically characterized by high mobility

and varying vehicle arrival pattern, multiple UAVs with autonomous control are required to coop-

eratively provide network coverage and adapt to current traffic conditions. Thus, the existence of a

swarm of UAVs to provide wireless connectivity will be necessary.

Nonetheless, UAVs have limited communication ranges and are constrained by their energy

budget. Thus, they cannot serve on entire highway all the time or keep flying back and fourth for

long periods. It is thus challenging to find the trajectories of a minimum number of UAVs in order to

achieve effective coverage in the long run under UAV’s energy budget constraint, while maintaining

a certain Quality of service (QoS). To this end, we propose to leverage AI technique particularly

Deep Reinforcement Learning (DRL) in order to control the trajectories of UAVs and present a

novel and highly efficient solution.
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Related Works

Much research has been recently done to address various challenges in UAV communication

systems. Optimizing the trajectory of the UAV is one of the important research challenges. For

instance, the work in [7] maximized the minimum rate among ground users by optimizing the

trajectory and user scheduling for a single-UAV. In [11], the authors optimized the UAV’s trajectory

to minimize the time to completely disseminate a common file to a number of distributed ground

terminals. In [13], the UAV trajectory and ground terminal transmit power are jointly optimized for

both circular and straight trajectories to reveal a fundamental trade-off between the UAV propulsion

energy consumption and ground terminal communication energy consumption. In [68] the authors

analyzed the coverage properties and proposed a UAV-based deployment in the emergency scenario.

The authors in [69] analyzed the optimal height for the UAV to minimize the transmitted power for

covering a target area. In [70] the horizontal positions are optimized while fixing the altitude of

the UAVs to minimize the number of UAVs required to cover a fixed number of stationary users.

The authors in [71] studied a similar problem for a drone-cell placement optimization in three-

dimensional space.

Recently, few works have been conducted to investigate the use of multiple UAVs. In fact,

compared to a single UAV, the use of a swarm of UAVs allows to operate in challenging missions

with higher performance and efficiency. However, new issues should be considered with using the

swarm of UAVs such as energy efficiency, path planning, etc. For example, the work in [10] jointly

optimized the trajectory, multi-user scheduling and power control for multiple UAVs to maximize

the minimum rate of ground users. In our recent work in [72], we optimized the trajectories and

radio resources of the minimum number of UAVs to serve vehicles in a mobility environment.

In [19], the authors deployed multiple UAVs for collecting data from ground IoT devices, where

the total uplink transmit power of these IoT devices is minimized in a time-varying network by

optimizing the UAV’s trajectory and IoT power control.

Machine learning has received significant attention and particularly has been recently utilized

for solving challenging problems with UAVs. Specifically, the authors of [73] employed echo state

network based prediction algorithm for predicting the future locations of ground users and then a
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multi-agent Q-learning based algorithm is proposed to predict the locations of UAVs in each time-

slot. In [74], a centralized Deep Reinforcement Learning is proposed to control the trajectory of

UAVs in a static environment for providing effective communication coverage while considering

fairness and energy consumption for a fixed number of UAVs. In [75] the authors proposed a

decentralized Deep Reinforcement Learning solution to obtain the trajectories of multiple UAVs to

achieve the energy efficiency.

Unlike the works in [7, 11, 13, 68–71] that consider a single UAV, multiple UAVs are employed

and coverage services is maximized under UAVs’ energy budget constraint. In contrast to the works

in [19, 72–75] which study the performance of multiple UAVs in static environment, these results

cannot readily extend to cases in a highly dynamic environment such as vehicular networks where

the network’s topology frequently changes. To this end, we consider a vehicular network in our

analysis and a machine learning approach is exploited to learn the vehicular environment and its

dynamics to handle the complex continuous action space. In other words, we are interested in

further leveraging the Deep Reinforcement Learning technique for UAV control and present a Deep

Reinforcement Learning based method to offer network coverage in dynamic environment.

Motivation and Work Objectives

Despite several studies related to the deployment and trajectory optimization of UAVs, there are

still many open questions that are yet to be answered. In particular, for vehicular networks, there

is no framework that can provide the minimum number of UAVs to serve vehicles on a given high-

way segment in a high mobility scenario under UAV’s energy budget constraint while maintaining

an acceptable Quality of Service (QoS) for each vehicle. Most of the existing coverage work re-

lies on users which are stationary where a complete knowledge about the environment (such as the

users’ instantaneous location) is available in order to obtain results. However, users could be mobile

(e.g., vehicles) with random speeds, hence, the assumptions of a global knowledge of the network

is not valid, especially in highly dynamic environments such as vehicular networks. Nonetheless,

prior work relies on optimization frameworks which require high computation resources to attain

results [76]. Furthermore, none of the existing literature provides a solution for a real scenario in
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highly dynamic environments such as a vehicular network, where the network’s topology is fre-

quently changed.

In our work in [72], we provided a mathematical optimization framework that can provide the

minimum number of UAVs and their optimal trajectories to serve vehicles on a given highway

segment in a high-mobility scenario. However, we considered a complete knowledge about the en-

vironment in advance in order to obtain our results. The assumption of knowing the instantaneous

location of vehicles in advance is not valid in a realistic scenario. Furthermore, the energy con-

sumption of the UAVs has been neglected. However, the energy consumption needs to be carefully

considered if the trajectory requires serving for a long time.

Unlike our study presented in [63], where a Reinforcement Learning approach is utilized to

govern the UAVs’ trajectories with a set of actions (traveling distance), in this work, we consider

UAVs trajectories without traveling restrictions, constraining their mobility to finite distances (i.e.

the UAV trajectories is continuous), where the action space dimension is infinite. Hence, the re-

quired computational time and effort to realize an optimal number of UAVs and their trajectories

using Reinforcement Learning is infeasible. Furthermore, fixing the coverage of a UAV may not

be the best solution to minimize the number of UAVs which should be dynamically changeable ac-

cording to the current traffic condition.

Obviously, we are dealing with a continuous control task since each UAV can carry out infinite

actions (traveling distance) to serve the existing and newly arriving vehicles, and hence the use of

Deep Reinforcement Learning (DRL) techniques is necessary to explore the effect of the UAVs’ ac-

tions on the vehicular environment. It is important to mention that the control task is not dependent

only on one UAV but on the joint actions of all UAVs. Deep Q-Network (DQN) could be adapted to

solve continuous control task through discretizing the action space. However, one of the major lim-

itation of this technique is the curse of dimensionality [77]: the number of actions space increases

exponentially with the number of degrees of freedom. For instance, a 20 degree of freedom action

(as traveling distance in both direction) for 2 UAVs leads to an action space with dimensionality:

220 = 1048576. The situation is worse with increasing the number of UAVs and their action space.

The commonly-used method for continuous control task is the Actor-Critic algorithm (AC) which

uses neural network approximator to learn policies in continuous action spaces. So, we adapt one
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of the state-of-the-art method of Actor-Critic, Deep Deterministic Policy Gradient (DDPG) [78], to

solve our problem.

To this end, this work proposes the exploitation of the Actor-Critic algorithm, which has been

shown to deliver superior performance in continuous action spaces. Taking advantage of the ability

of Actor-Critic framework in exploring unknown environments, we design the Actor-Critic frame-

work to find the trajectories for a minimum number of UAVs to provide network connectivity for

vehicles under UAV’s energy budget constraints. To achieve that, a central agent in the external net-

work is trained to observe the environment and then control the decision of realizing the minimum

number of UAVs and their trajectories to provide effective communication coverage while maintain-

ing an acceptable Quality of Service (QoS) for each vehicle. This task is quite challenging because

UAVs have limited energy and cannot fly all day. So, the UAVs should fly in an energy-efficient

manner during the coverage process and back to the charging station when needed. Hence, a UAV

(or more) are dispatched to provide coverage for vehicles. Furthermore, in highly dynamic environ-

ments such as a vehicular network, the network’s topology frequently changes. The trajectories of

UAVs should be adapted to account for the aforementioned changes in network topologies.

It is clear that, at most, one needs to deploy a total of
⌈

d
R

⌉
UAVs in order to cover the segment,

where d and R are the total length of the considered highway and the coverage range of each UAV,

respectively. However, given the agility of the UAVs and the dynamic nature of the vehicular net-

work, a fewer UAVs may only be needed to provide the anticipated service based on the vehicles’

requirements. To this end, the aim of this work is to find a control policy that specifies the tra-

jectories of a minimum number of UAVs at each time-slot to achieve an effective coverage on the

highway while maintaining an acceptable Quality of Service for each vehicle.

Organization

The rest of the work is organized as follows. Section 5.2 presents the communication scenario of

the vehicle-to-UAVs. In Section 5.3, the problem formulation of trajectory design to minimize the

number of UAVs is presented. Section 5.4 lays out a detailed presentation of the DRL framework.

Simulation results are presented in Section 5.5. Finally, conclusions are drawn in Section 5.6, and

future research directions are highlighted.
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Fig. 5.1: A highway segment with no communication infrastructure where multiple UAVs covering
vehicles.

5.2 The Communication Scenario

As illustrated in Fig. 5.1, we consider a highway segment with a communication infrastructure

that is either damaged (e.g. following a natural disaster) or non existent. Furthermore, this seg-

ment has unidirectional traffic flow of vehicles that exits the coverage of a fixed Base-Station (BS),

where a set M of M UAVs, indexed by m = 1, ...,M, intended to serve as mobile BSs for vehicles

crossing the highway segment. The UAVs are assumed to have high capacity fronthaul links such

as free space optics (FSO) or millimeter-wave (mmWave) links with ingress ground BS, where a

central unit with Actor-Critic agent resides. The Actor-Critic agent observes the dynamic vehicular

environment and steadily learns the optimal trajectory policy and manages the cooperation between

the deployed UAVs. Therefore, a vehicle that cannot be covered while being within the coverage

of one UAV will be covered by other deployed UAVs. We consider a multiple time frames system

where each frame (of duration T ) is divided into N equal time-slots, each with length δt , indexed

by n = 1, ..,N. We use V n to denote the subset of vehicles to be served, in time-slot n, where

V = V 1..∪V n..∪V N .

In this work, we consider a scenario where the time-frequency resources are sufficient to miti-

gate the various possible sources of interference. We assume each UAV can simultaneously com-

municate with multiple vehicles within its coverage by allocating appropriate orthogonal resources

to ensure interference-free communication; this interference-free model has been widely used in
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the literature [19]. Furthermore, we assume neighboring UAVs are allocated different parts of the

spectrum, so that inter-UAV communication is also interference free. Thus, we assume the vehicles

are served when they lie within the coverage of any UAV without interference from other UAVs,

and henceforth our study is concerned with dealing with the UAVs coverage issue. We adopt a

widely used traffic model on the highway [79], [80], where vehicles travel with random speeds; the

vehicles’ speeds distribution is assumed to be a truncated Gaussian in the range [νmin; νmax] [81].

We assume that vehicles’ speeds are non-constant during their entire navigation period within the

given highway segment. Thus, the number of vehicles V within the segment will follow a Poisson

distribution with vehicular density ρpVeh/Km [82]. According to federal aviation regulations, all

UAVs are assumed to fly at a constant altitude H above ground level and the time-varying horizon-

tal coordinate of UAV m at time-slot n is located at (wn
m, 0, H). During the considered time frame,

vehicles enter and leave the highway segment resulting in a change in the number of vehicles in V n.

We are interested in the arrival and departure times of vehicles causing that change.

In the UAVs-to-Vehicles scenario, four basic assumptions are considered in our analysis as

follows:

• Each UAV leaves one station at the beginning of the highway segment and a UAV is rushed to

a charging station before its energy is depleted (i.e., before excess a given threshold energy).

• Once a UAV is used, it will continue to be deployed as long as it has sufficient energy above

the given threshold energy to serve; whether a deployed UAV may or may not serve vehicles

depends on the number of vehicles under its coverage.

• Each vehicle is guaranteed specific QoS (if covered) during its residence on the highway

segment.

• A UAV spends its entire energy in flying and hovering. In fact, the energy consumption of

a UAV is dominated by the propulsion energy, since the communication energy is minimal

compared to propulsion energy. Thus, for more tractable analysis, we neglect communication

energy in our work [83]1.

1The transmission power is usually relatively small compared to the propulsion energy,e.g., a few watts [84] versus
hundreds of watts [85], and thus the transmission power is ignored in this work
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In a typical UAV assisted communication, the channel is generally modeled using large-scale fading

and small scale fading [86]. However, in highway scenarios, such the one considered in this work,

the UAV-to-vehicle channel can be characterized with strong Line-of-Sight and therefore the small

scale fading can be neglected [86] [25]. All vehicles are assumed to transmit with constant power

P leading to a received power Pn
i,m = hn

i,mP in slot n, where hn
i,m is the channel gain from UAV m to

vehicle i in time-slot n. This channel gain can be written as:

hn
i,m = ho

(√
(xn

i −wn
m)

2 +H2
)−2

,∀n,m, i, (5.1)

where ho is the median of the mean path gain at reference distance d0 = 1 m. xn
i is the instantaneous

position of vehicle i in time-slot n. In addition, a total bandwidth B is allocated for each UAV. If vn

vehicles communicate with a UAV at time-slot n simultaneously, the bandwidth each vehicle obtains

at time-slot n is calculated by

Bn
i = Bϕ(vn), (5.2)

where ϕ(vn) is the channel utilization function which is a decreasing function of contending vehicle

number vn. Thus, the achievable rate rn
i,m between vehicle i and UAV m at time-slot n can be written

as

rn
i,m =


Bn

i log2(1+
Phn

i,m

σ2 ), if ai ≤ n≤ di,

0, otherwise,
(5.3)

where ai and di are the arrival and departure times of vehicle i to the highway segment, respectively.

where σ2 = Bn
i No with No denoting the power spectral density of the additive white Gaussian noise

(AWGN) at the receivers. In practice, a vehicle i is considered to be covered by a UAV with an

acceptable QoS if the achievable rate rn
i,m served by UAV m at time-slot n is greater than a threshold

value rmin, which indicates an acceptable rate for each vehicle.

While flying to serve vehicles on the highway segment, UAVs determine their trajectories in a

way to save on their total consumed energy consumption. We follow the energy consumption model

for a UAV presented in [85], where the total power consumption for constant speed UAV ω can be
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modeled as

P(ω)total = K
(

1+3
ω2

ω2
b

)
︸ ︷︷ ︸
Blade profile power

+
1
2

ρω
3F︸ ︷︷ ︸

Parasite power

+mg

√√√√√(−ω2 +
√

ω4 +(mU g
ρA )2

2

)
︸ ︷︷ ︸

Induced power

, (5.4)

where ωb represents the blade’s rotor speed, K and F are two constants which depend on the di-

mensions of the blade and the UAV drag coefficient, respectively, ρ is the air density, mU and g

respectively denote the mass of the UAV and the standard gravity, A is the area of the UAV. The

total energy consumption to cover a distance d at a constant speed UAV ω can be computed as

E(ω)total =
∫ d/ω

0
P(ω)dt = P(ω)

d
ω
, (5.5)

5.3 Optimization Problem Formulation

The objective of this chapter aims at optimizing the UAVs’ trajectories to minimize the number

of UAVs that serve vehicles within the highway segment under the mobility of UAVs and vehicles

constraints as well as the UAVs’ energy budget constraint. To mathematically formulate the prob-

lem, we introduce a binary decision variable γm ∈ {0,1}, ∀m, that takes the value of 1 if the UAV

m is deployed and 0 otherwise, yn
i,m ∈ {0,1},∀n,m, i ∈ V n to indicate whether UAV m is serving

vehicle i in time-slot n; the binary variable cn
i,m ∈ {0,1},∀n,m, i ∈ V n to indicate whether vehicle i

is covered by UAV m with an acceptable QoS rmin in time-slot n, cn
i,m is define as follows:

cn
i,m =


1, if ∑

M
m=1 yn

i,mrn
i,m > rmin∀n,m, i ∈V n,

0, otherwise.
(5.6)

We also define the binary variable zm indicating that the residual energy of UAV m is barely enough

to travel to the charging station, zm is define as follows:

where: zn
m =


1, if En

m ≥ ETravel ∀n,m,

0, otherwise.
(5.7)
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where En
m is the residual energy of UAV m in time-slot n and ETravel is the required energy for

traveling to the charging station, respectively. In other words, once residual energy is less than the

required energy to travel back to the charging station, immediately the deployed UAV m will be

changed to out-of-service. Due to the untractability of equations (5.6) and (5.7), we introduce new

binary variables cn
i,m and zm; and big number method to reformulate the coverage in (5.6) and the

energy variable in (5.7) into the following:

cn
i,m ≥

∑
M
m=1 yn

i,mrn
i,m− rmin

Λ
, ∀n,m, i ∈V n, (5.8a)

cn
i,m < 1+

∑
M
m=1 yn

i,mrn
i,m− rmin

Λ
, ∀n,m, i ∈V n, (5.8b)

zm < 1+
(En

m−ETravel

Λ

)
∀n,m, (5.9a)

zm ≥
(En

m−ETravel)

Λ

)
∀n,m, (5.9b)

where Λ is a large number that is used to ensure the validity of the above equations. We represent

the UAVs trajectories by W = [(wn
m,0,H),∀n], the required UAVs by K = [γm.∀m ∈ M], the UAV

energies by Z = [zm.∀m], the UAV serving indicator by Y = [yn
i,m,∀n,m, i ∈ V n], and the coverage

indicator by C = [cn
i,m,∀n,m, i ∈V n]. To this end, our optimization problem is formulated as:

OP: max
W,Y,Z,K,C

ψ ∑
∀n

∑
i∈M

M

∑
m=1

cn
i,m−ξ

M

∑
m=1

γm

s.t. C 1 : cn
i,m ≥

∑
M
m=1 yn

i,mrn
i,m− rmin

Λ
,∀n,m, i ∈V n,

C 2 : cn
i,m < 1+

∑
M
m=1 yn

i,mrn
i,m− rmin

Λ
,∀n,m, i ∈V n,

C 3 : |wn+1
m −wn

m| ≤ γmVmaxδt , n = 1, ...,N−1,∀m,

C 4 : yn
i,m,γm,zm,cn

i,m ∈ [0,1], ∀n,m, i ∈V n,

C 5 : yn
i,m ≤ γm, ∀n,m, i ∈V n,

C 6 :
M

∑
m=1

yn
i,m ≤ 1, ∀n, i ∈V n,
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C 7 : yn
i,m ≤ zm, ∀n,m, i ∈V n,

C 8 : zm < 1+
(En

m−ETravel

Λ

)
, ∀m,

C 9 : zm ≥
(En

m−ETravel

Λ

)
, ∀m,

C 10 : (1− γm)wm = ws, ∀m,

where ξ and ψ are weight parameters, and ξ +ψ = 1. A larger value for ψ will render the coverage

the dominant factor, so the solution should deploy a UAV for a small number of vehicles (or just

one vehicle), which economically could be expensive for the operator; a larger value for ξ will

render deploying a new UAV the dominant factor, hence, the solution will provide a non-continuous

coverage with less deployed UAVs.

Constraints C 1 and C 2 guarantee that each vehicle is covered with an acceptable QoS rmin in

(bps/Hz) within their residence on the highway segment. C 3 limits the distance traveled by the

deployed UAV m in one time-slot based on its maximum speed. C 5 constrain the serving to UAVs

that are dispatched. C 6 ensures that one vehicle is served by at most one UAV at a time. Constraint

C 7 ensures that once a UAV m is used, the UAV will continue deployed as long it has energy to

serve. Constraints C 8 and C 9 ensure that the residual energy of UAV m for traveling is sufficient

enough to serve and fly before it runs out of energy. Finally, C 10 indicates the initial positions of

the UAVs.

We observe that OP is a mixed integer non-linear program (MINLP), due to the existence of

the binary variables yn
i,m,γm,zm, and cn

i,m in C 4 and non-convex constraints C 1 and C 2 [10], even if

the binary variables yn
i,m,γm,zm, and cn

i,m are relaxed to take any value between 0 and 1. The relaxed

version of OP is, nevertheless, non-convex due to the trajectory variable wn
m in C 1 and C 2. To the

best of our knowledge, there is no solver for solving OP efficiently.

Clearly, the solution of the OP (if it exists), which yields a trajectory for a minimum number

of UAVs during a time frame N, relies on the knowledge of the instantaneous position of vehicles at

each time-slot during their residence on the highway segment; given that by the time a trajectory is

designed, there is no possible way of obtaining the instantaneous position in future slots, and thus we

cannot properly solve OP . Unrealistic assumptions lead to inaccurate solutions with an excessive
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complexity. In order to solve this problem at a low complexity and find an optimal solution, a Deep

Reinforcement Learning algorithm will be invoked in next section.

5.4 The Proposed Deep Reinforcement Learning Approach

In this work, an Actor-Critic agent is deployed at the central unit, and interacts with the vehicular

environment in a sequence of actions, observations, rewards and penalties. At each time-slot n, the

agent selects an action from the feasible continuous actions at that time. The deployed UAVs will

either travel along the highway in a specific direction or hover to serve the vehicles in a fixed

position. It is important to understand, the real trajectory of UAVs can fly in arbitrary distances

without any mobility constraint below the maximum speed. The agent then observes the dynamic

changes in the vehicular environment and modifies the system state representation. The agent also

receives a reward or penalty accordingly. In order to achieve the maximum effective coverage on the

highway, all UAVs should operate in a consistent, orderly and energy efficient way to provide the

vehicles with acceptable QoS. After each selected action (either traveling or hovering), each UAV

receives a step reward which is a normalized indicator of how well the selected action accomplishes

the previously-mentioned goals. The objective of Actor-Critic is to construct an optimal action

selection policy for each UAV that covers the vehicles along the highway segment in order to achieve

an effective coverage with acceptable QoS. It is worth mentioning that the received reward by each

UAV depends on the entire previous sequence of actions and the observations from the vehicular

environment. As such, the impact of the action may only be seen after several time steps. In

the following, we first briefly review AC, a learning technique which is suitable for controlling

autonomous machines such as UAVs. Then, we introduce our approach using Actor-Critic for

efficient UAV coverage.

5.4.1 Deep Reinforcement Learning Background

Standard Reinforcement Learning is a branch of machine learning paradigm, which deals with

multi-state decision process of a software agent (a central unit in our case) while interacting with

an environment in discrete decision epochs. In general, RL assumes the system consists of multiple
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states S, where at each epoch n, the agent observes state sn ∈ S, executes action an from a finite

number of actions A according to an agent’s policy π(i.e., the next UAVs’ position) and receives a

reward rn, and moves to the next state sn+1.

The goal of RL is to learn from the transition tuple 〈sn,an,r(sn,an),sn+1〉, and find an optimal

policy π∗ that will maximize the discounted cumulative sum of all future rewards. Note that the pol-

icy π = {a1,a2, ...,aN} defines which action an should be applied at state sn. If we let r(sn,π(an))

denote the reward obtained by choosing policy π , the cumulative discounted sum of all future re-

wards using policy π is given by:

Rπ =
N

∑
n=1

λ
n−1r(sn,π(an)), (5.11)

where λ ∈ [0,1) is a discount factor, which measures the weight given to the future rewards.

Q-learning is one of the widely used methods of RL algorithms, which allows the agent to

optimally act in an environment represented by a Markov decision process (MDP). Q-learning it-

eratively improves the state-action value function (also known as Q-function or Q-value), and by

estimating the future reward if action an is taken, the agent presents the higher probability of going

from state sn to sn+1 using policy π . The Q-value function is usually stored in a table. However,

Q-learning only works with a low-dimensional finite discrete action state space. DRL is a deep

version of RL, where one (or multiple) deep neural networks (NNs) is used as the approximator of

the action-value function Q(.). Deep Q-Network approach is one of the approaches of DRL, where

a single neural network (NN) is trained through minimizing a loss function L, as follows:

L(θ Q) = E[Tn−Q(sn,an|θ Q)], (5.12)

where θ Q are the function parameters (weights) of Deep NN; and Tn is a target value, which can be

computed by

Tn = rn +λ
n−1 max

an+1
Q(sn+1,an+1). (5.13)

However, Deep Q-Network tends to diverge with the non-linear function appropriator. Some
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techniques are utilized in order to avoid the divergence of Deep Q-Network, namely: experience re-

play, fixed target network and reward normalization [87]. In experience replay, a random mini-batch

of samples from the past experience is used during the training process to reduce the correlation be-

tween samples. In addition, in fixed target network, the same NNs’ parameters are used to calculate

the target function. Reward normalization techniques are used to limit the scale of the error deriva-

tives and ensure the stability of the algorithm. However, it is unfeasible to apply both Q-learning

and Deep Q-Network to continuous control because it is necessary to figure out the value for each

action that maximizes the Q-function, which is quite difficult. Deep Deterministic Policy Gradient

(DDPG) [78] with the assistance of experience replay, fixed target network and reward normaliza-

tion techniques was designed for continuous control actions that uses an Actor-Critic approach, that

is, the use of two Deep NNs namely actor and critic networks, where critic network is a Deep Q-

Network, which is represented as Q(sn,an|θ Q). Therefore, the same loss function with different

parameters is used for training the actor and critic networks, θ Q and θ π respectively. The actor

network π(sn|θ π) is trained to obtain the optimal actions an for a given states sn. The actor network

is updated by applying the chain rule to the expected return from the start distribution J with respect

to the actor parameter θ π [78]:

∇θ π J ≈ E
[
∇aQ(s,a|θ Q)|s=sn,a=π(sn).∇θ π π(s|θ π)|s=sn

]
. (5.14)

The weights of these networks are then updated by having them slowly track the learned net-

works θ ′ := τθ +(1− τ)θ ′, with τ � 1.

For more information on Deep Deterministic Policy Gradient, the reader is referred to [78].

The next subsection presents the system state representation as well as the rewards and penalties

associated with the agent’s actions.

5.4.2 Input From the Environment

At the beginning of the coverage mission, the agent observes the vehicular network environment

that defines the states of the system, collects all the parameters associated with the set of in-range

vehicles, and executes an action for each UAV at time-slot n. The input of UAVs from the vehicular
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environment at time-slot n is:

• Em
n : a vector of size M containing the remaining energy of each UAV at time-slot n, where

m ∈M , 0≤ Em
n ≤ Etotal , where Etotal is the total energy of each UAV.

• V n: the number of vehicles residing within the considered highway segment, at time-slot n.

• xn
i : a vector of size V n containing the instantaneous position of vehicle i ∈ (1,2, ..,V n), at

time-slot n.

• wn
m: a vector of size M containing the ground level position of each UAV, at time-slot n.

• γn
m: a vector of size M containing the status of the UAVs whether UAV m is deployed or not,

at time-slot n.

• Cn
i : a vector of size V n, containing the coverage indicators of each vehicle. If Cn

i = 1, vehicle i

lies within the coverage of a UAV at time-slot n; otherwise, Cn
i = 0. To this end, the coverage

indicators Cn
i at time-slot n can be written as:

Cn
i =


1, if ∑

M
m=1 yn

i,mrn
i,m ≥ rmin∧∑

M
m=1 yn

i,m ≤ 1,

∀i ∈ V n,ai ≤ n≤ di,

0, otherwise,

(5.15)

where yn
i,m ∈ {0,1}, ∀m is a binary decision variable, that takes the value of 1 if the vehicle i

is served by UAV m and 0 otherwise.

Each UAV fully observes the current vehicular network environment and updates the central

unit which is able to realize the system state representation sn at time-slot n.

5.4.3 Actions and Expected Rewards

At each step, each UAV m carries out an action an
m which represents a traveling distance dm

n in a

specific direction Φm, depending on its current state. The UAVs may travel with arbitrary velocities

in different directions, which makes the problem non-trivial to be solved. However, by assuming
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that the width of the highway lane is ignored as compared to the transmission range of vehicles and

UAVs [88], the model may be simplified to as few as two directions (left and right) in the middle

of the highway. Hence, at time-slot n, each UAV chooses its action (distance and direction), and

accordingly, the vehicular network environment pays an immediate reward; that is, a scalar value

that reflects the righteousness of the UAVs’ actions. The immediate reward rn is the sum of the

following normalized quantities:

• Penalty incurred on network due to the existence of a vehicle within the highway without

UAVs’ coverage: the value of this penalty is a normalized quantity proportional to the cover-

age indicator of each vehicle. As such, the UAVs are encouraged to cover the vehicles within

the considered highway segment. Recall that a vehicle communicates its exit point upon its

arrival to the highway, and the UAVs should coordinate to continuously cover that vehicle

within the highway. The coverage penalty due to non-coverage can be written as:

Pn
c = ξ ∑

i∈V n

1−Cn
i , (5.16)

where ξ is weight with a high value to avoid UAVs missing to cover a vehicle.

• Penalty incurred on network due to the deployment of a new UAV: the network receives this

penalty when the current deployed UAVs cannot cover the newly arrived vehicles and a new

UAV is required to be deployed. The value of this penalty is proportional to the number of

deployed UAVs. As a result, the network learns to optimize the trajectories of the minimum

number of UAVs to cover the current and newly arrived vehicles. The deployment penalty

due to the deployment of a new UAV can be written as:

Pn
U = ψ

M

∑
m=1

γm, (5.17)

where γm is binary variable that takes the value of 1 if UAV m is deployed and 0 otherwise,

and ψ is weight with a high value to avoid unnecessary deployment of UAVs.

• Penalty incurred on network if the residual energy of each UAV exceeds the required energy

for traveling to the charging station: the Actor-Critic agent strives to maximize its rewards
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(minimize negative rewards, i.e., costs), it learns how to minimize the total energy consump-

tion of UAVs to serve more vehicles and avoid this penalty. This penalty is referred as the

energy penalty.

• Penalty incurred on network if the deployed UAV flies outside the given highway segment:

the Actor-Critic agent learns how to continue the flying on the given highway segment.

Obviously, we are dealing with an infinite control task since each UAV can carry out infinite

actions (traveling distance), and hence the use of Actor-Critic techniques is necessary to solve our

problem. Now, it is important to mention that the reward function is not dependent only on one

UAV but on a joint actions of all UAVs. It is noteworthy that even if the impact of the occurrence

of the above described event is unveiled in a single time-step (i.e., when a vehicle arrives to the

considered highway segment or departs from it), the Actor-Critic agent realizes that the deployed

and non-deployed UAVs and their previous trajectories lead to this current system state. This is a

clear example that the feedback from an action may sometimes be delayed after many thousands of

time-slots have elapsed.

In fact, the most recent observation such as the number of vehicles, their positions, their cov-

erage status and the current position of the deployed UAVs is completely sufficient statistic of the

history to make a decision. In other words, the future is independent of the past given some current

aggregate statistic about the present which satisfy the Markov property.

5.4.4 Solution Algorithm

Recall that, our objective is to find a control policy that governs the trajectories of the deployed

UAVs at each time-slot to achieve an effective coverage with a minimum number of UAVs under

energy budget. This problem has been formulated as an MDP whose vehicular environment states

are modeled as a Markov chain.

The implementation of the proposed DRL approach is shown in Fig. 5.2, which is composed of

the vehicular environment, the coverage reward including the penalties, an actor-network, a critic

network, and a temporal difference error. The vehicular environment can be observed by the UAVs,

which is then sent to the central control agent, where the actor and critic networks decide the best
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Fig. 5.2: DRL-based proposed appraoch to obtain the control policy that governs the trajectories of
the deployed UAVs.

control policy for the deployed UAVs. As mentioned before, since we are dealing with continuous

control actions to obtain the trajectories of UAVs, we adapt the Deep Deterministic Policy Gradient

(DDPG) to solve our problem. The DRL algorithm to obtain UAVs’ trajectories is presented in

Algorithm 1. The proposed algorithm works as follows.

In the first part, after defining the input and output of the algorithm (Lines 1-2), the proposed

algorithm randomly initializes the replay buffer of size Z, the weights parameters for the actor-

network θ π and critic network θ Q (Lines 3-4). Further, as mentioned in Subsection (5.4.1), we

create the target networks π ′(.) and Q′(.) to enhance the training stability, where the target, critic

and actor networks have the same structures. The target network weight parameters π ′(.) and Q′(.)

are initialized (Line 5), where at later steps (Lines 12- 23), those parameters are slowly updated

according to the control parameter τ = 0.001 in order to enhance the stability.

The exploration phase, reward, and penalties are explained in the second part (Lines 6-29). Dur-

ing the exploration phase, the algorithm obtains a trajectory action from the current actor-network

θ π bounded with the maximum velocity of the UAVs, ωmax, and then a random noise is added

that decays over time with a rate of 0.9995, where the random noise is generated from a uniform
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distribution with a zero mean and a variance of 1. During the training phase, the proposed algo-

rithm guide the Actor-Critic agent to avoid actions that violate the highway border (i.e., flies outside

the given highway segment) by applying a specific penalty to the reward (Lines 13-15), where, a

penalty p is deducted from the overall reward, and the corresponding trajectory action of the UAV

m is cancelled. Likewise, the proposed algorithm trains the agent to stop serving and return to the

charging station if the residual energy is below a threshold. Furthermore, during the training phase,

the proposed algorithm trains the Actor-Critic agent to dispatch the minimum number of UAVs by

applying a one-time penalty for each dispatching UAV as shown in Algorithm 2. During the UAVs’

trajectories, the deployed UAVs are serving the vehicles according to closest distance as mentioned

in Algorithm 3. In our algorithm, the defined penalties are set to a large value compared to the

corresponding reward, which is 5 times.

In the last part, the weights and parameters of the neural network (Lines 24-34) are updated ac-

cording to the DDPG algorithm. Firstly, the collected samples including (sn,an,rn,sn+1) are stored

in the replay buffer of size Z after each executed action, and then a random mini-batch of size H

is sampled from the buffer Z to updated the actor and critic networks. As explained in Subsec-

tion (5.4.1), the weights parameter of the critic network are updated to minimize (5.12), while the

actor-network weights parameters are updated according to (5.14).

5.4.5 Complexity Analysis

In this subsection, the complexity analysis is discussed. After adequate training, the Deep Re-

inforcement Learning agent observes the vehicular network environment that previously defined

states as input, the Deep Reinforcement Learning agent utilizes its trained actor network π(s|θ π)

to carry out an action an
m which represents a traveling distance and direction. Based on [89], the

total computational complexity for the fully connected layers can be expressed as the number of

multiplications: O(∑P
p=1 np.np−1), where np is the number of neural units in fully-connected layer

p.
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5.5 Simulation Results and Discussion

In this section, we evaluate the performance of the proposed algorithm numerically. The main

input parameters that are used in this simulation are listed in Table 5.1. In order to deliver realistic

results, the simulation parameters should be an accurate representation of a real highway scenario.

It is assumed that a highway segment of length 5km is simulated, on which multiple UAVs are

ready to be dispatched to ensure a network coverage to vehicles. The flow of vehicles entering the

highway segment follows a Poisson distribution that is used to run the simulation; we generate 2.4

million samples each corresponding to a snapshot of the system at a particular time-slot. Vehicles

velocities are randomly generated using a truncated Gaussian distribution with mean equal 27.5m/s,

variance 4.5m/s, and velocities can be varied between 22 – 33m/s, where the vehicles randomly

change their velocities within the given highway according to a normal distribution.

In our simulation, 2-layer fully connected neural network is used for each network (i.e., the actor

and critic networks), which includes 20 and 80 neurons in the first and second layers respectively,

and utilized the rectified linear unit (ReLU) function for activation for both networks. As for, the

activation function, hyperbolic tangent (tanh) is utilized in the last layer for that actor-network to

limit the traveling actions according to the maximum traveling distance of the UAVs. The generated

samples are used to train the deep neural network using Tensor Processing Unit (TPU) to realize

an optimal trajectory for the deployed UAVs. After establishing the optimal trajectory determined

by the proposed algorithm, another set of mobility traces was used to test the performance of the

proposed trajectory policy.

We start by first studying the convergence performance of the proposed DRL algorithm. The to-

tal reward is calculated as the summation of the cost of each action for UAVs, which is the weighted

sum of the penalty of UAVs’ deployment, coverage for each vehicle and energy consumption of

UAVs. As shown in Fig. 5.3, it can be seen that the cumulative reward increases very fast over

time at the beginning of learning. This is because, at the beginning of the training, the deployed

UAVs start to learn the border of the highways to avoid the penalties due to flying outside the border.

Moreover, many vehicles were not yet covered since the UAVs did not learn the suitable trajecto-

ries in the dynamic environment to cover the vehicles. After that, the trained UAVs can result in
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Fig. 5.3: Accumulated reward over time.

significant improvement in the reward. Furthermore, this improvement starts to diminish when the

deployed UAVs are well trained about the borders of the highway and they start to effectively cover

the vehicles. It is worth mentioning that due to the non-stationarity (stable dynamics) of the envi-

ronment, the reward is highly varying around the average while on average the cumulative reward

is increasing with training. A similar observation has been made in [90].

To better understand the impact of the dynamics in the environment of the vehicular network,

we simulate a scenario that takes into account accurate prior knowledge about vehicles’ instanta-

neous positions. As shown in Fig. 5.4, the performance of the algorithm can be drastically different.

The proposed algorithm converges very fast; starting from around the 300-th episode the algorithm

already converges. The high convergence rate stems from the prior knowledge about the environ-

ment as well as the adopted DDGP algorithm in which the critic-network judges and guides the

actor-network to learn the suitable trajectories in advance.

To observe the efficiency of the proposed Deep Reinforcement Learning algorithm in terms of

time, its performance is compared with the maximum performance. This result is presented in Fig.

5.5, which clearly indicates that our algorithm requires few hours, 16 hours, to learn the dynamics

of the vehicular environment in order to attain a good performance, 70%. It can also be observed
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Fig. 5.4: Accumulated reward over time for with prior knowledge.

that more samples/updates from the vehicular environment are beneficial for improving the perfor-

mance. This is quite reasonable considering the fact that the global information about the vehicular

environment is unknown and frequently changed.

The percentage of average coverage is another performance metric we study. Fig. 5.6 depicts

this metric versus the number of deployed UAVs, and for different minimum rates (in bps/Hz) with

vehicular density 12Veh/Km. Clearly, as we increase the minimum rate rmin, the UAVs will adapt

its trajectory to fly closer to a vehicle or subset of vehicles to meet their requirements, therefore,

by increasing the minimum rate more UAVs are needed to fulfill the requirements of vehicles for

the same average coverage. For example, to achieve the minimum rate of 11bps/Hz with 78% av-

erage coverage, 2UAV are required. The same average coverage can be achieved for the minimum

rate (i.e. rmin = 12bps/Hz) by increasing the number of UAVs, where 5UAVs become significantly

needed to fulfill the requirements of vehicles with the same percentage. It is also obvious that while

increasing the number of deployed UAVs the proposed algorithm achieves higher average coverage

for the same minimum rate.

Next, we study the impact of vehicular density on the proposed DRL solution for different min-

imum rates (in bps/Hz). As shown in Fig. 5.7, at lower vehicular density with higher requirements,

one dispatched UAV is able to serve only a few number of vehicles, and this is due to the fact that
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Fig. 5.5: Performance vs time.

the dispatched UAV optimizes its trajectory to fly closer to vehicles to fulfill the vehicles’ require-

ments and wastes more time in flying to reach other vehicles, therefore, the UAV covers a fewer

number of vehicles. Surprisingly, when the vehicular density increases, our proposed algorithm

covers more vehicles, since with increasing the vehicular density, the vehicles’ velocities decrease

and thus enjoys more services. For instance, when the vehicular density is 4Veh/Km for 2UAVs with

minimum requirements of 11bps/Hz, the proposed algorithm covers 10% more vehicles compared

to 4Veh/Km. This shows the efficiency of the proposed framework in achieving effective coverage

for the vehicles within the given highway segment since the major goal is to maximize the vehicular

coverage. We can also observe from the figure that when the vehicular density increases the average

coverage decreases as expected since more UAVs are required to fulfill the vehicles’ requirements.

We next compare our proposed approach with three others trajectories approaches for the min-

imum rate (i.e. rmin4bps/Hz) to show the efficiency of our proposed approach: 1) Random UAV

dispatching approach where, at random time based on a normal distribution, the central unit ran-

domly dispatches one UAV with maximum speed, 50m/s, to serve the vehicles within the highway

segment. 2) Fixed Dispatching Rate, where the central unit decides to dispatch one UAV every
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time period n′, ever 35sec, with the maximum speed. 3) Fixed Hovering UAVs, where UAVs are

hovering a fixed distance, every 1Km, to serve the vehicles. It can be seen in Fig. 5.8, the pro-

posed algorithm consistently outperforms other approaches in term of number of required UAVs.

For example, to achieve 100% average coverage the proposed algorithm achieves a lower number

of deployed UAVs compared to the other approaches because the former provides more flexibility

for the UAV to predict and adapt its trajectory to serve the vehicles. In contrast, fixed and random

dispatching approaches, the fixed velocity does not have a significant impact on coverage, which

well justify the robustness of the proposed algorithm in terms of coverage.

Finally, we show the impact of energy penalty on the energy consumption and the average

coverage with the minimum rate (i.e. rmin = 12bps/Hz). From Fig. 5.9, we can see that, while

considering the energy penalty on the deployed UAVs, the proposed algorithm almost achieves

the same coverage with less energy consumption. For example, in Fig. 5.9(a), when the average

coverage is 80% with 5UAVs, the average energy consumption while applying the energy penalty is

16% reduction compared to without applying as shown in Fig. 5.9(b). We can make an interesting

observation that the proposed algorithm choose the action that achieves the almost same coverage

with less energy consumption, which can somehow reduce the energy consumption. This is a clear

implication of the penalty incurred on the Actor-Critic agent, in the training phase, due to the impact
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Fig. 5.7: Impact of vehicular density.

of the penalty when the residual energy exceeds the required energy for traveling to charging station.

Recall that since this penalty is proportional to the residual energy of the deployed UAVs, the Actor-

Critic agent learns to minimize the energy consumption of the UAVs in order to avoid penalizing its

total rewards.

5.6 Summary

In this work, we proposed the Deep Reinforcement Learning framework that controls the tra-

jectories of multiple UAVs to efficiently cover vehicles in a dynamic environment where communi-

cation infrastructure is not available. Specifically, the proposed approach maximizes the vehicular

coverage with the minimum number of UAVs with minimum energy consumption. It was demon-

strated that the proposed algorithm was capable to learn the vehicle environment and its dynamics

to control the UAVs to provide effective coverage for the vehicles. Our results showed that our

proposed solution outperformed alternative approaches including fixed and random deployment

approaches, and static UAV placement in terms of the percentage of average coverage (average

improvement of 40%).
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Algorithm 6: Proposed Solution: DRL to obtain UAVs’ trajectories.

1 Input: Discount factor, learning rate for actor and critic network, buffer size, mini-patch
size, UAV energy parameters, penalties;

2 Output: The trajectories of UAVs.
3 Initialize replay buffer Z.
4 Randomly initialize critic network Q(s,a|θ Q) and actor network π(s|θ π) with weights θ Q

and θ π ;
5 Initialize target networks Q′ and π ′ with weights θ Q′ ←− θ Q′ , θ π ′ ←− θ π ,
6 for episode = 1, P do
7 Collect network characteristics to realize state s1.
8 for all n ∈ N do
9 Observe: Em

n , V n, sn
i , xn

i , wn
m, and Cn

i ,
10 Execute: Select action am

n = π(sn), and add a random noise that decays over time;
11 Evaluate: obtain the reward rn and sn+1,
12 for UAV m := 1, ...M do
13 if UAV m (flies outside the border) then
14 rn = rn−P.
15 Cancel the movement of UAV m and update sn+1.
16 else if The residual energy, En

m, of UAV m is less than ETravel . then
17 rn = rn−P.
18 Changed the status of UAV m to out-of-service, mark UAV m, and update

M.
19 else
20 Apply Algorithm 7 and update rn.
21 Apply Algorithm 8 and update rn.

22 Store transition (sn,an,rn,sn+1) in Z.
23 Sample random mini-batch of transitions (sn,an,rn,sn+1) of size H samples from Z.
24 Tn := rn +λQ′(sn+1,π

′(sn+1|θ π ′)|θ Q′);
25 Update weights θ π of Q() by minimizing the loss:

L(θ Q) = 1
H ∑

H
n=1(Tn−Q(sn,an))

2.
26 Update the weights θ π of π(.):

∇θ π J ≈ 1
H ∑

H
l=1 ∇aQ(s,a|θ Q)| s=sl ,

a=π(sl)
∇θ π π(s|θ π)|s=sl ;

27 Update the corresponding target networks:
28 θ Q′ := τθ Q +(1− τ)θ Q′ ;
29 θ π ′ := τθ Q +(1− τ)θ π ′ ;
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Algorithm 7: Minimizing the Number of UAV Algorithm.

1 Total number of available UAVs and their current positions.
2 Set the binary variables γm = 0∀m.
3 for UAV m := 1, ...M do
4 while (γm == 0 and wn

m > 0) do
5 rn = rn−P.
6 Change the status of the UAV γm = 1.

Algorithm 8: Vehicle Admission Algorithm.

1 Sort all vehicles based on the distance to the current location of the UAV m, di,m, where the
closest vehicle is at the top of the list.

2 for Vehicle i := 1, ...V n do
3 Select the closest unmarked vehicle to the current location of the UAV m.
4 while (rn

i ≥ rmin) do
5 Mark vehicle i, increase rn, and update the number of served vehicles.
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Table 5.1: Simulation Parameters in Intelligent Coverage Networks

Parameter Value

Minimum vehicle speed, νmin 22m/s

Maximum vehicle speed, νmax 33m/s

UAV max speed, ωmax 50m/s

highway segment of length d 5Km

Rotor speed, ωb 100

Blade dimension constant, K 570

Air density, ρ 1.225

Drag and reference area coefficient, F 0.4

UAV mass, mU 5Kg

UAV surface area, A 0.25m2

Buffer size 10000

Patch size 120

Activation functions ReLU and tanh

Number of Layers 2

Learning rate for actor 0.001

Learning rate for critic 0.002

Reward discount 0.8

action variation 50

Decay the action randomness 0.995

Soft replacement value 0.01

Optimizer technique Adam

UAV altitude, H 100m

Channel power gain, γ0 -50dB

Noise power, σ2 -110dBm
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Chapter 6

AoI-Aware Data Collection in Vehicular

Networks with Intelligent UAVs

6.1 Background, Related Works, and Contributions

Maintaining information freshness is a key requirement for Intelligent Transportation System

(ITS) applications such as autonomous intersection management, traffic control and autonomous

driving. Such ITS applications rely on the timeliness of the real-time information such as drivers’

behaviour, emergency braking, etc. This information is generated by a large number of LIDAR

sensors on board intelligent and internet-connected vehicles. Therefore, collecting timely and fresh

information is becoming more critical for safety and for enhancing driving assistance [92]. This

information may be collected either through cellular networks or through Road Side Units (RSUs),

which subsequently will be processed at edge servers for proper analytics. Nonetheless, terrestrial

networks may either be not deployed (e.g., in rural areas), damaged or temporarily unavailable (e.g.,

during maintenance periods or natural disasters). Hence, UAVs are expected to play an important

role in future networks for enabling more connectivity.

The work done in this chapter leads an IEEE published journal [91]
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There are two different paradigms to acquire real-time information in Internet of vehicles set-

tings, non-cooperative and cooperative. In the non-cooperative paradigm, UAVs can infer infor-

mation about the vehicles by relying on its sensors/cameras. This paradigm suffers from high-cost

equipment, highly impacted by weather, and cannot reveal some information about vehicles (e.g.

predetermined route). In the cooperative paradigm, communication links between vehicles-to-UAVs

are established and cooperative communication is introduced where vehicles sample the real-time

data and upload them to the UAVs. This paradigm overcomes the limitations of the non-cooperative

paradigm, however, maintaining vehicle privacy could be a challenge in this paradigm. In this work,

the cooperative paradigm is considered.

There are a few significant works in UAV-assisted vehicular networks where high throughput,

low latency or high coverage have been achieved as performance metrics as explained in Chapter

5. However, to the best of our knowledge, the impact of UAVs’ and vehicle’s mobility on the

AoI has not been explored. Existing designs for UAV-assisted vehicular networks are insufficient

to maintain fresh information. For instance, in [64], a non-trivial throughput-latency trade-off is

revealed in the vehicular network when exploiting UAV mobility for throughput maximization. Due

to the mobility of vehicles, each vehicle is served once during its entire navigation period and it then

loses connectivity with the external networks. In spite of increasing the throughput, the information

remains outdated, due to long-serving delays. Indeed, this impacts the applications that require

frequent updates.

In this chapter, we study the AoI in an Internet of Vehicles setting and we consider a road

segment where the current infrastructure is either temporarily unavailable or needs to be offloaded,

and a set of UAVs is dispatched to collect/process multiple traffic streams from vehicles before the

information they carry loses its value. Vehicles are sampling a stochastic process, which traffic

is enqueued in a separate (per stream) queue. At every time-slot, considering different streams

generated by the operating vehicles, the deployed UAVs must decide on choosing the best streams to

be uploaded. Our goal is to develop an effective solution for finding the trajectories and scheduling

policies of the deployed UAVs that keep the information fresh by minimizing the Expected Weighted

Sum AoI (EWSA).
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Related Work

There have been extensive studies recently done to address various challenges in UAV-assisted

communication networks. Designing the optimal trajectory of the UAV is one of the significant

research challenges. In particular, finding the optimal trajectory of UAVs depends on various de-

sign aspects (e.g., achievable-rate, latency, power, and flight duration). For example, in [64], the

communication throughput in the vehicular network was maximized by optimizing the trajectory

of a single-UAV and the scheduling of vehicles, however the authors did not consider Age-of-

Information in their work. In [6], a UAV was dispatched to collect data from Internet of Things

(IoT) devices under strict deadline constraints. The total number of IoT devices was maximized via

jointly optimizing the UAV trajectory and radio resource allocation.

Recently, some works investigated the deployment of multiple-UAVs. In fact, the deployment of

multiple-UAVs provides a higher performance compared to a single UAV. However, new challenges

should be considered with using multiple-UAVs such as path planning, safety distances, coordina-

tion between UAVs, etc. For example, in [10], the minimum throughput of ground terminals was

maximized by optimizing the trajectory for a set of UAVs, power control and scheduling of multiple

ground terminals. In [72], a mathematical optimization model is elaborated which can provide the

minimum number of UAVs and their trajectories for content delivery on a given highway segment

without considering the AoI.

On the other hand, machine learning (ML) has received significant attention for solving chal-

lenging problems with UAVs. For instance, a Reinforcement Learning approach is utilized to govern

the UAVs’ trajectories with a set of actions (traveling distances) to provide coverage services [63].

The trajectories of UAVs with travel restrictions are assumed, where mobility of UAVs is constrained

to finite distances. In [62], a Deep Reinforcement Learning approach is proposed to control a min-

imum number of UAVs’ trajectories; the authors considered UAVs’ trajectories without traveling

restrictions (i.e. the UAV trajectories are continuous) while the coverage metric is explored without

considering the AoI as a performance metric.

Optimizing the trajectory of multiple-UAVs while considering the AoI is another issue. In [22],

the AoI was studied, where a single UAV was dispatched to collect data from multiple sensors, and
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Fig. 6.1: Intelligent transportation systems with multiple-UAVs used for collecting and processing
status-update packets from vehicles.

the maximum and average AoI was minimized by designing the UAV trajectory. In [23], a UAV as

a mobile relay was considered to serve multiple IoT devices. The average peak AoI was minimized

by optimizing the UAV’s energy and its trajectory. The authors of [46] proposed dynamic pro-

gramming approach to optimize the UAV trajectory and data acquisition problem where the AoI is

considered. In [40], the authors exploited a ML based on RL algorithm to optimize a UAV trajectory

for data collection mission to minimize the expired data packets. The authors in [47] utilized affin-

ity propagation clustering algorithm to associate sensor nodes to collection points, then dynamic

programming is exploited for optimizing the trajectory planning of a single UAV to address max-

min AoI problem among all the ground sensors. In [39], the authors leveraged DRL algorithm to

optimize the UAV trajectory and scheduling that minimize the Weighted Sum-AoI in static network.

In this work, different from the aforementioned works, we are interested in studying the AoI in

UAV-assisted vehicular networks. Particularly, the objective of this research work is to leverage ML

to find the solution that minimize the EWSA in intelligent transportation systems.

Motivation and Work Objectives

None of the previous work in the literature has addressed the problem of timely UAV-assisted

data collection in high-mobility settings within a road segment. All the aforementioned works on
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data collection relies on stationary users to formulate the AoI and obtain results. In reality, users

could be mobile (e.g. vehicles) with random speeds. Nonetheless, prior work relies on optimiza-

tion frameworks which require high computation resources in order to obtain results [76]. These

frameworks are not scalable for dense networks with multiple vehicles and/or multiple applications.

UAV-assisted vehicular networks have been studied in [62, 63, 72], the main difference in their

work is that UAVs are dispatched to provide coverage services for vehicles in highway segments

without factoring AoI. In contrast, in this work, we consider a vehicular network in which vehicles

periodically generate status-update packets that need to be collected/processed by multiple-UAVs.

Unlike the previous works in a stationary environment, the mobility of vehicles and UAVs affects the

transmission delay and the evolution of AoI over time, which in turn affects the results significantly.

The main contribution of this chapter is to provide a practical DRL algorithm for finding the tra-

jectories of the deployed UAVs and scheduling of status-updates in order to minimize the EWSA. A

Reinforcement Learning based framework is designed to transform the minimum EWSA optimiza-

tion problem into a Markov Decision Process (MDP) by defining states, actions and rewards. In

practical scenarios, the action space (traveling distance) of UAVs can be considered infinite to serve

the existing and newly arriving vehicles. Hence, the use of DRL is a more appropriate framework

to capture the infinite characteristics of the action space. In addition, the actions of UAVs hold

interrelation with each other. Deep Q-Network (DQN) algorithm could be adopted to solve con-

tinuous control tasks through discretizing the action space. However, one of the major limitations

of this technique is the curse of dimensionality [77]: the degree of freedom (DoF) may increase

the size of action space exponentially. For instance, a 20 DoF (traveling distance in all directions)

for two UAVs entails an action space of size, 220 = 1048576. To this end, we adapt one of the

proposed Actor-Critic in the literature, namely, Deep Deterministic Policy Gradient (DDPG) [78],

with Greedy scheduling policy to solve the stated problem.

Organization

The remainder of the chapter is organized as follows. Section 6.2 presents the communication

scenario of the vehicle-to-UAVs and the problem formulation of trajectory design. Section 6.3 lays

out a detailed presentation of the proposed DRL framework. The, simulation results are conducted
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in section 6.4. Finally, we summarize the chapter in Section 6.5.

6.2 System Model

6.2.1 The Communication Scenario

We consider in Fig. 6.1 a road segment, without infrastructure or with infrastructure that needs

be offloaded, that has an unidirectional traffic1 flow of vehicles. A set of M UAVs with cardinality

M is dispatched as flying data-collectors from navigating vehicles. We consider the system over

multiple time frames. Each of these frames is further equally segmentized into N time-slots of

length δt , normalized to unity. At the beginning of every time-slot n, the deployed UAVs decide on

the next location and each either remains idle or selects a vehicle to serve within its coverage over

the wireless communication channel.

We consider a similar traffic model as in the works [79] and [80], where vehicles travel at

random speeds. The vehicles’ speed follows a truncated Gaussian distribution ranging from νmin to

νmax [81]. We assume that arrival of vehicles into the road segment follows a Poisson distribution

with density ρp Veh/Km [82]. During the considered time frames, vehicles entrance and exit the

road segment, which induces variations in the number of vehicles in V n, where V n denotes the

set of available vehicles in time-slot n. The width of a lane is typically small compared with the

transmission range of vehicles and UAVs [88]. Therefore, we ignore the width of the road and

model multiple lanes as one lane for each direction. The instantaneous position of i−th vehicle at

time-slot n is denoted by xn
i , i ∈ V n, while all the UAVs fly at (wn

m, 0, H) with a fixed2 altitude H at

time-slot n, where wn
m is the x-axis position of UAV m at time-slot n.

We assume that the information-sampling behavior of each vehicle follows a per time-slot sam-

pling policy, where each vehicle samples the status-update information at the beginning of each

time-slot, such as shares LiDAR data. This policy is the special case of the periodic sampling pol-

icy with time period equals one. It is the most widely applied policy in literature [93], [94]. With

Time Division Multiple Access (TDMA), one packet at most is scheduled for transmission by the

1The same framework can be applied to the bi-directional traffic flow.
2In practice, the deployed UAVs can operate at various altitudes within the range allowed by the federal aviation

regulations. However, we constrain their altitude to fixed height for simplicity.
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Fig. 6.2: The evolution of AoI associated with vehicle i with the initial AoI of four time-slots,
Ai(1) = 4.

deployed UAVs from any vehicle within its coverage at any given time-slot. Thus, we assume that in

each time-slot, each UAV only schedules at most one vehicle to transmit its status-update; therefore,

the transmission scheduling should meet the constraint below:

V n

∑
i=1

α
n
i,m ≤ 1, ∀n,m, (6.1)

M

∑
m=1

α
n
i,m ≤ 1, ∀i ∈ V n,n, (6.2)

where αn
i,m is a binary variable, which indicates that vehicle i is scheduled by the UAV m in time-

slot n to transmit its status-update if αn
i,m = 1, and 0 otherwise. In other words, each deployed UAV

only schedule at most one vehicle to transmit its status-update information (i.e., Eq. 6.1) and each

vehicle is only served by at most one UAV (i.e., Eq. 6.2). In general, the wireless communication

channels are composed of large-scale and small-scale fading [86]. However, in UAV-assisted vehic-

ular networks, the channels are usually dominant by the Line-of-Sight component and the impact of

small-scale fading is negligible [86] [25]. We consider uniform power of (P) for all the transmission

at the vehicles. Thus, the channel gain from vehicle i to UAV m at time-slot n can be written as:

hn
i,m = ho

(√
(xn

i −wn
m)

2 +H2
)−2

, ∀n,m, i, (6.3)
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where ho is the median of the mean path gain at reference distance d0 = 1 m, and B is the allocated

bandwidth.

Thus, the rate expression for vehicle i to UAV m at time-slot n within its residence on the road

segment is given by

rn
i,m = α

n
i,mB log2(1+

Phn
i,m

σ2 ), (6.4)

where σ2 = BNo with No denoting the power spectral density of the additive white Gaussian noise

(AWGN) at the receivers. Therefore, depending on the scheduling and the distance between UAVs

and vehicle, only a fraction of the transmitted bits can be successfully received.

Let smin
i be the minimum data size of status-update bits required for ensuring a reliable recov-

ering/decoding. In this case, we consider an update to be successful if the number of bits, sn
i,m,

successfully received and decoded at UAV m in time-slot n, is strictly greater than smin
i . The mini-

mum data size sn
i,m can be written as [25] [72] [6]:

sn
i,m =


δtrn

i,m, if ai ≤ n≤ di,

0, otherwise,
(6.5)

where ai and di are the arrival and departure times of vehicle i to the road segment, respectively.

Next, we will detail the definition of AoI in next section.

6.2.2 AoI Definition in Vehicular Networks

The concept of AoI describes the freshness of the information from the perspective of the re-

ceivers (i.e., UAVs,). In order to track the AoI, we define age An
i as AoI of vehicle i in time-slot n.

Whenever an update is successful (i.e., any UAV receives a minimum amount of bits from vehicle

i), then AoI will reset to 1 since packets were generated at the beginning of time-slot n, otherwise,
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the AoI increases by 1. The evolution of An
i of vehicle i can be written as3

An+1
i =


0, if ai > n or di < n,

1, if sn
i,m ≥ smin

i ,

An
i +1, otherwise.

(6.6)

The characteristics of Eq. 6.6 deserves more elaboration. Clearly, the AoI of one vehicle is totally

determined by the trajectory of the UAV, the mobility of the vehicle, the transmission scheduling

and the total number of vehicles within the time of data collection mission. The EWSA of each

vehicle i within the data-collection mission time N is captured by E
[

∑
N
n=1 Ai(n)

]
, where E is the

expected operation with respect to the randomness in the transmission scheduling as well as the

vehicles’ arrival and departure times, the UAVs’ trajectories and the mobility of the vehicles. In

Fig. 6.2, we illustrate the evolution associated with one vehicle which arrives and departs the given

road within the data collection mission time N while employing single packet queues4. Thus, in

order to compute the AoI within the data-collection mission time using scheduling policy π , we use

EWSA = E
[ N

∑
n=1

∑
i∈V n

ξiAi(n)|Ai(1)
]
, (6.7)

where ξi is a positive weight of vehicle i denoting the relative importance of the vehicle’s applica-

tion. Ai(1) is the initial values of AoI for vehicle i. For notational simplicity, we assume that initial

values are the same; and omit Ai(1) henceforth. In particular, the weights ξi can be chosen accord-

ing to the importance of the AoI for different processes. For instance, if the UAVs care most about

the AoI for a specific process observed by the sensor of vehicle i, then we assign a high weight for

the measurements of that sensor. Then vehicle i has a higher priority to be selected by the optimizer.

Table 6.1 provides a summary of the notations used in the chapter.

The objective of this chapter aims at optimizing the UAVs’ trajectories and the transmission

3AoI is evolves over time. However, we are interested in AoI of vehicles present within the road segment, therefore,
for more tractable analysis, An

i is reduced to zero outside the given road segment.
4In this work, a single packet queue is employed as a queueing discipline such that the Head-of-Line packet is always

the newest packet. In other words, the older status-update packet is replaced with the newly arrived packet (i.e., equivalent
to Last-Input-First-Output queues).
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Table 6.1: Optimization Problem Formulation

Parameters Description
M Set of UAVs.

xn
i X-axis position of vehicle i in time-slot n.

H UAVs’ altitude.

N Total number of time slots.

δt Time slot duration.

V n Available set of vehicles in time-slot n.

B Channel bandwidth.

No Noise power.

ho Median of the mean path gain at reference distance d0.

P Vehicles transmission power.

An
i AoI of vehicle i in time-slot n.

rn
i,m rate for vehicle i to UAV m at time-slot n.

sn, an, rn State, action, reward at time-slot n.

smin
i Minimum number of bits required for reliable decoding.

sn
i,m Number of bits that are reliably decoded from vehicle i to UAV m at time-slot n.

ai, di Arrival, departure times of vehicle i.

Vmax UAVs’ maximum speed.

dmin Minimum safety distance between UAVs.

qm Initial position of each UAV.

Variables Description
wn

m X-axis position of UAV m at time-slot n.

αn
i,m Indicates if vehicle i is scheduled from UAV m for transmission at time-slot n.

scheduling to minimize the EWSA within the road segment under the mobility of UAVs and vehicles

constraints. Thus, our optimization problem is formulated as:

(OP): min
wn

m,α
n
i,m

E
[ N

∑
n=1

∑
i∈V n

ξiAn
i (w

n
m,α

n
i,m)
]

s.t. C 1 : α
n
i,m ∈ {0,1},∀m, i ∈ V n,∀n,

C 2 :
V n

∑
i=1

α
n
i,m ≤ 1,∀m,∀n,

C 3 :
M

∑
m=1

α
n
i,m ≤ 1, ∀i ∈ V n,∀n,

C 4 : w0
m = qm,∀m,

C 5 : |wn
m−wn

j | ≥ dmin,∀m,m 6= j,n = 2, ...,N−1,
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C 6 : |wn+1
m −wn

m| ≤Vmaxδt ,n = 1, ...,N−1,∀m.

Constraints C 2 and C 3 ensure that each UAV only schedules at most one vehicle and each

vehicle is only scheduled by at most one UAV in one time-slot. C 4 indicates the initial position of

each UAV located at position qm. C 5 guarantees that the deployed UAVs are sufficiently separated

at a minimum safety distance dmin. Finally, C 6 limits the distance traveled by one UAV in one time

slot based on its maximum speed.

We observe that OP is a mixed integer non-linear program (MINLP), which is generally hard

to be solved, due to the existence of the binary variables αn
i,m, and non-convex objective function.

Even if the binary variables αn
i,m is relaxed to take any value between 0 and 1, the relaxed version of

OP is, nevertheless, non-convex due to the trajectory variable wn
m in the objective. To the best of

our knowledge, there is no solver for solving OP efficiently.

In addition, the trajectory planning is usually optimized via offline processing before dispatching

the UAVs. Since there is no possible way to obtain a complete knowledge about newly arrived

vehicles in advance before the UAV’s flight. Moreover, in theory, some heuristic approaches may

be able to relieve this problem, it would be, however, impractical to explore and adapt to all possible

changes in the vehicular environment. That means we cannot properly solve OP . In order to solve

this problem with an efficient solution, a Deep Reinforcement Learning algorithm is utilized to learn

the environment and solve the proposed problem. In the next sections, the proposed algorithm for

solving our formulated problem will be described.

6.3 The Proposed Deep Reinforcement Learning Approach

In this work, an artificial intelligence (AI) agent is deployed at the central unit at the ingress

Ground Base-Station (BS) and interacts with the vehicular environment in a sequence of actions,

observations, rewards and penalties. The AI agent observes the dynamic vehicular environment

and steadily learns the trajectory and scheduling policy as well as manages the cooperation among

the deployed UAVs. Therefore, a vehicle that cannot be served by one UAV might be served by

other deployed UAVs. The vehicular environment can be observed by the deployed UAVs, which
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is then sent to the AI agent, where the actor and critic networks decide the best control policy

for the deployed UAVs. We will discuss this in more details in subsection 6.3.1. It is assumed

that each vehicle periodically broadcasts on the control channel announcement beacon messages

containing information identifying the type of services/applications, information about the speed,

location [82], direction of travel, status-update packet size, and AoI initial value. The deployed

UAVs, which act as mobile-relays between the vehicles and the control units, monitor the control

channel of the network, aggregate the mobility features of vehicles and coordinate with the control

unit where the AI agent resides. The deployed UAVs periodically consult the AI agent to decide

their next travelling distance and direction as well as the scheduling decision. On the other hand,

for non-control data exchanges between vehicles and UAVs and that between UAVs and the Ground

BS, communication links are established on service channels (SCHs). Moreover, control channel

and SCHs use different frequency bands, and therefore, the control information and data exchange

can be executed simultaneously.

At each time-slot n, the AI agent decides an action for each UAV. The deployed UAVs will either

travel along the road in a specific direction or hovering along with scheduling the transmission from

the vehicles. It is important to understand, the real trajectory of UAVs can fly in arbitrary distances

without any mobility constraint below the maximum speed. The agent then observes the dynamic

changes in the vehicular environment and modifies the representation of the system state. The agent

also receives a reward or penalty accordingly. In order to minimize the EWSA on the road, all UAVs

should operate in a consistent, orderly and efficient way to provide the vehicles with acceptable ser-

vice with minimum AoI. After each selected action (traveling and scheduling), each UAV receives

a step reward which is a normalized indicator of how well the selected action accomplishes the

previously-mentioned goals. The objective of the Actor-Critic algorithm is to construct an efficient

action selection policy for each UAV that collects the status-update from vehicles along the road

segment in order to achieve a minimum AoI. It is worth mentioning that the attained reward by each

UAV depends on the entire previous sequence of actions and the observations from the vehicular

environment. As such, the impact of the action may only be seen after several time steps. In the

following, we first briefly review the Actor-Critic algorithm, a machine learning technique which

is suitable for controlling autonomous machines such as UAVs. Then, we introduce our approach
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using Actor-Critic algorithm for efficiently collecting vehicles’ information with minimum AoI.

6.3.1 Deep Reinforcement Learning Background

Standard Reinforcement Learning is a branch of machine learning paradigm, which involves

a multi-state decision process of a software agent (in a central unit in our case) while interacting

with an environment in discrete decision epochs. In general, RL assumes that the system consists

of multiple states S, where at each epoch n, the agent observes state sn ∈ S, executes action an from

a finite number of actions A according to an agent’s policy π (i.e., the next UAVs’ position and

transmission scheduling) and receives a reward rn, and moves to the next state sn+1.

The goal of RL is to learn from the transition tuple 〈sn,an,r(sn,an),sn+1〉, and find an optimal

policy π∗ that will maximize the discounted cumulative sum of all future rewards. Note that the pol-

icy π = {a1,a2, ...,aN} defines which action an should be applied at state sn. If we let r(sn,π(an))

denote the reward obtained by choosing policy π , the cumulative discounted sum of all future re-

wards using policy π is given by:

Rπ =
N

∑
n=1

λ
n−1r(sn,π(an)), (6.9)

where λ ∈ [0,1) is a discount factor, which measures the weight given to the future rewards.

One of the widely used methods of RL algorithms, Q-learning, allows the agent to optimally

act in an environment represented by a Markov decision process (MDP) [95]. Q-learning iteratively

improves the state-action value function (also known as Q-function or Q-value), and by estimating

the future reward if action an is taken, the agent presents the higher probability of going from state

sn to sn+1 using policy π . The Q-value function is usually stored in a table. However, Q-learning

only works with a low-dimensional finite discrete action state space. For more information on RL

and Q-learning, the reader is referred to [95]. DRL is a deep version of RL, where one (or multiple)

deep neural networks (NNs) is used as the approximator of the action-value function Q(.). Deep Q-

Network approach is one of the approaches of DRL, where a single neural network (NN) is trained
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through minimizing a loss function L, as follows:

L(θ Q) = E[Tn−Q(sn,an|θ Q)], (6.10)

where θ Q are the function parameters (weights) of Deep NN; and Tn is a target value, which can be

computed by

Tn = rn +λ
n−1 max

an+1
Q(sn+1,an+1). (6.11)

Deep Q-Network however tends to diverge with the non-linear function appropriator. Some

techniques are utilized in order to avoid this divergence, namely; experience replay, fixed target

network and reward normalization [87]. In experience replay, a random mini-batch of samples from

the past experience is used during the training process to reduce the correlation between samples. In

addition, in fixed target network, the same NNs’ parameters are used to calculate the target function.

Reward normalization techniques are used to limit the scale of the error derivatives and ensure the

stability of the algorithm. However, it is unfeasible to apply both Q-learning and Deep Q-Network

to continuous control because it is necessary to figure out the value for each action that maximizes

the Q-function, which is quite difficult. DDPG with the assistance of experience replay, fixed target

network and reward normalization techniques, was designed for continuous control actions. It uses

an AC approach, that is, the use of two NNs namely actor and critic networks. The critic network

is a Deep Q-Network, which is represented as Q(sn,an|θ Q). Therefore, the same loss function with

different parameters is used for training the actor and critic networks, θ Q and θ π respectively. The

actor network π(sn|θ π) is trained to obtain an action an for a given states sn. The actor network

is updated by applying the chain rule to the expected return from the starting distribution G with

respect to the actor parameter θ π [78]:

∇θ π G≈ E
[
∇aQ(s,a|θ Q)|s=sn,a=π(sn).∇θ π π(s|θ π)|s=sn

]
. (6.12)

The weights of these networks are then updated by having them slowly track the learned net-

works θ ′ := τθ +(1− τ)θ ′, with τ � 1. For more information on DDPG, the reader is referred

to [78]. The next subsection presents the representation of the system state as well as the rewards
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and penalties associated with the agent’s actions.

6.3.2 Input From the Environment

At the beginning of the data collection mission, the agent observes the vehicular network en-

vironment that defines the states of the system, collects all the parameters associated with the set

of in-range vehicles, and executes an action for each UAV at time-slot n. It is noteworthy that the

number of vehicles present within the considered road segment is variable. Therefore, in order to

avoid the complexity of having a variable vector size, we assume the maximum expected number of

vehicles within the coverage of road segment is U . The number of vehicles present within the road

segment follows the Poisson distribution [96]. The input of UAVs from the vehicular environment

at time-slot n is:

• V n: the number of vehicles residing within the considered road segment, at time-slot n.

• xn
i : a vector of size U containing the instantaneous position of all vehicle at time-slot n.

• wn
m: a vector of size M containing the ground level position of each UAV, at time-slot n.

• Cn
i : a vector of size U , containing the current AoI of each vehicle i ∈ (1,2, ..,U), at time-slot

n.

Each UAV fully observes the current vehicular network environment and updates the central

unit which is able to realize the representation of the system state at each time-slot.

6.3.3 Actions and Expected Rewards

At each step-slot n, each UAV m executes an action an
m which consists of three parts: 1) bn

m ∈

[0,1,2, ..,U ]: the scheduling decision for the UAV m in time-slot n. If bn
m = zm, UAV m selects

vehicle index zm ∈U to upload its status-update packets at time-slot n, resets the vehicle’s AoI to 1 iff

(if and only if) the update is successful and increases the AoI for non-served vehicles, ∀i∈U, i 6= zm,

by one time-slot older. 2) dn
m ∈ (0,dmax]: the traveling distance, depending on its current state,

where 0 ≤ dm
n ≤ dmax and dmax is the maximum traveling distance within a time-slot. 3) Φn

m: the

flying direction for each deployed UAV m at time-slot n. The UAVs’ speed and trajectory can be
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arbitrary in our considered problem, which is highly challenging to address. However, under our

specific network scenarios, the vehicles can be considered navigating in 1D trajectory (in only two

directions) [63] Φn
m, (left and right). To this end, the action an = [bn

1, ....b
n
M;dn

1 , ...d
n
M;Φn

1, .....Φ
n
M],

has a dimension of 3M. Hence, at time-slot n, each UAV chooses its trajectory action (distance and

direction) and then decides which vehicle to transmit its status update and the DRL agent obtains

an immediate reward from the vehicular network accordingly. As a result, the immediate reward rn

total sum of following quantities:

(1) Penalty from the network when the UAVs collect status-updates from vehicles with high AoI:

the value of this penalty is proportional to the EWSA of all current and newly arrived vehicles.

As a result, the network learns to maximize this reward by optimizing scheduling decisions

and trajectories of the deployed UAVs in order to collect the old status-update (i.e., highest

AoI) from the current and newly arrived vehicles.

(2) Penalty from the network if the flying distance between the deployed UAVs violates the safety

distance: in order to maximize the rewards, AI agent learns how to maintain the safety dis-

tance between UAVs to avoid this penalty.

(3) Penalty from the network if the deployed UAV flies outside the given road segment: the AI

agent learns how to continue the flying on the given road segment.

(4) Penalty from the network if the deployed UAVs schedule the same vehicle at the same time-

slot: the deployed UAVs are encouraged to minimize this penalty by scheduling different

vehicles at each time-slot to ensure each vehicle is only scheduled by at most one UAV.

Obviously, we are dealing with a discrete-continuous hybrid action space since each UAV ex-

ecutes infinite actions (trajectory) while decide which vehicle to upload its status-update packets.

Thus, DRL techniques is necessary to be adapted to solve the stated problem.

6.3.4 Solution Algorithm

Our main target is to obtain a policy that governs the trajectories of a set of UAVs and scheduling

decision at each time-slot to minimize the EWSA. The considered scenario is discrete-continuous
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hybrid action space problem. To handle this problem, the existing literature either approximate

the hybrid space by discretization (i.e., discretization the trajectory of UAVs) and use DQN, or

relax it into a continuous set (i.e., relax the scheduling decisions) and use DDPG. However, such

approaches suffer from a number of limitations: for the continuous part (UAVs trajectories), finding

a good approximation usually requires a huge number of discrete action since the degree of freedom

(DoF) increases the size of action space exponentially; for the discrete part (scheduling decisions) of

hybrid action, relaxing them into a continuous set might provide inaccurate results since relaxing the

scheduling decisions will allow multiple vehicles to transmit their status-update at the same time.

Parametrized deep Q-network (P-DQN) framework is proposed in [97] to solve the hybrid action

space without approximation or relaxation. However P-DQN will increase the complexity of the

problem since P-DQN can be viewed as an integration of DQN and DDPG. Even if we discretize the

trajectory of UAVs into Q discrete values and combine the two actions into one single action, a total

of (Q×U) possible actions need to be considered. This could increase the learning difficulty of the

agent. To reduce the complexity and maintain the continuous action space without approximating

the trajectory of the UAVs, we use the UAV trajectory as the main control objective for two reasons.

1) the effective transmission scheduling based on Greedy policy is easy to obtain. 2) the trajectories

of the UAVs are continuous, and DDPG is suitable to handle these actions without approximations.

Therefore, the DRL agent will learn to optimize the trajectory of the UAVs to maximize the expected

future reward while adopting the effective scheduling policy.

To avoid the complexity of having multiple neural networks, our proposed solution update the

discrete-action and continuous-action policies separately by combining an efficient transmission

scheduling policy based on Greedy policy and DDPG. Therefore, the action space can be simplified

to an = [dn
1 , ...d

n
M;Φn

1, .....Φ
n
M], which has a dimension of 2M. Hence, at time-slot n, the DRL agent

decides the trajectory action for each UAV and then select the vehicle to upload its status-update

packets with high AoI.

In the following, we discuss the Greedy scheduling policy that minimizes EWSA within the

communication coverage of UAVs. Then, for the considered problem networks, we propose DDPG

that learn to optimize the trajectory of the UAVs while adopting Greedy scheduling policy
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Algorithm 9: Proposed Solution: DRL to obtain UAVs’ trajectories policy to minimize
AoI.
1 Input: Discount factor, learning rate for actor and critic network, buffer size, mini-patch

size, UAV energy parameters, penalties;
2 Output: The trajectories of UAVs.
3 Initialize replay buffer Z.
4 Randomly initialize critic network Q(s,a|θ Q) and actor network π(s|θ π) with weights θ Q

and θ π ;
5 Initialize target networks Q′ and π ′ with weights θ Q′ ←− θ Q′ , θ π ′ ←− θ π .
6 for episode = 1, P do
7 Collect network characteristics to realize state s1.
8 for n ∈ N do
9 Observe: V n, xn

i , wn
m, and Cn

i ,
10 Select: Action am

n = π(sn), and add a random noise that decays over time
11 Evaluate: obtain the reward rn and sn+1,
12 for UAV m := 1, ...M do
13 if (UAV m (flies outside the border)) Or (|wn

m−wn
j | ≥ dmin,∀m,m 6= j) then

14 rn = rn−P.
15 Cancel the movement of UAV m and update sn+1.
16 else
17 A

18 pply Algorithm 7 for Clustering.
19 Greedy selects vehicle i′ to upload its status-update packets, where

i′ = argmaxi An
i , ∀i ∈ Qm, and update rn.

20 Store transition (sn,an,rn,sn+1) in Z.
21 Sample random mini-batch of transitions (sn,an,rn,sn+1) of size H samples from Z.
22 Tn := rn +λQ′(sn+1,π

′(sn+1|θ π ′)|θ Q′);
23 Update weights θ π of Q() by minimizing the loss:

L(θ Q) = 1
H ∑

H
n=1(Tn−Q(sn,an))

2

24 Update the weights θ π of π(.) using:
25 ∇θ π G≈ 1

H ∑
H
l=1 ∇aQ(s,a|θ Q)| s=sl ,

a=π(sl)
∇θ π π(s|θ π)|s=sl ;

26 Update the corresponding target networks:
27 θ Q′ := τθ Q +(1− τ)θ Q′ ;
28 θ π ′ := τθ Q +(1− τ)θ π ′ ;

Greedy Scheduling Policy

Theorem 1 shows the optimality of Greedy scheduling Policy that minimizes the EWSA among

the class of admissible policies. In this study, a special scenario is considered to show the optimality

of scheduling within the communication range of a UAV.
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Algorithm 10: Clustering Algorithm.

1 Input: The positions of UAVs wn
m, ∀m ∈M and vehicles xn

i , ∀i ∈V n;
2 Output: Cluster vectors for each UAV Qm, ∀m ∈M;
3 Fix the number of clusters M; Initialize the cluster vectors Qm;
4 for Vehicle i := 1, ...V n do
5 m←− argminm∈M |wn

m− xn
i |;

6 if |wn
m− xn

i | ≤
((

(2
smin
i
B −1)−1 Pho

σ2

)
−H2

)0.5
then

7 Qm⇐ Qm∪ xn
i ; //Assign vehicles to cluster vector.

Theorem 1 (Optimal scheduling Policy to minimize the EWSA): Consider a set of vehicles are

navigating within the communication range of a single5 UAV such that all status-updates could be

successfully delivered to the UAV, i.e., sn
i,m ≥ smin

i ,∀i and ξi = ξ , where smin
i denotes the minimum

data size of status-update bits required for ensuring a reliable decoding and sn
i,m is the total number

of successfully received bits. The Greedy scheduling Policy within the UAV communication range

attains the optimum scheduling policy that minimizes the EWSA.

Proof: The concept of stochastic dominance6 is used to prove the optimality of the Greedy

scheduling policy within the UAV cluster. Stochastic dominance is utilized for comparing uncertain

alternatives, usually applied on decision analysis [1]. In other words, the scheduling decision of

Greedy policy G is compared with any arbitrary scheduling7 policy χ . Let ϕ(χ,n) and ϕ(G,n) be

random variables (RVs) that represent the sum of AoI for all vehicles when the arbitrary scheduling

policy χ and Greedy policy G are employed at time-slot n, respectively. We define the stochastic

process ϕ(χ) associated with all RVs ϕ(χ,n),∀n and similarly for ϕ(G) with all RVs ϕ(G,n),∀n.

To complete the proof, we first define the stochastic dominance.

Definition (Stochastic Dominance): ϕ(χ) is said to stochastically dominate ϕ(G) on the set of

functions F , or writen as ϕ(χ)≥SD ϕ(G), if and only if P{F
(
ϕ(G))> z} ≤ P{F

(
ϕ(χ))> z},∀z,

for all functions F , where F is a set of increasing functions.

Stochastic dominance ≥SD implies dominance of moments: E
[

∑
N
n=1 ϕ(χ,n)

]
≥

E
[

∑
N
n=1 ϕ(G,n)

]
for all arbitrary scheduling policies. Recall that our main objective is to

5Similar analysis is valid for other UAVs.
6The concept of stochastic is widely used in the context of game theory in which one decision can be ranked as

superior to another decision.
7For the sake of simplicity and without loss of optimality, χ is assumed to be work-conserving. i.e., the UAV keeps

the resources busy by scheduling one vehicle at every slot.
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Fig. 6.3: DRL-based proposed approach to obtain the control policy.

minimize the Expected Weighted Sum AoI with equal weights and sn
i,m ≥ smin

i ,∀i are as-

sumed. Thus, the optimality of the Greedy scheduling policy is established if the condition

E
[

∑
N
n=1 ϕ(χ,n)

]
≥ E

[
∑

N
n=1 ϕ(G,n)

]
, for all arbitrary scheduling policies, is satisfied. To prove

that, it is sufficient to confirm that ϕ(χ)≥SD ϕ(G).

According to [98–100], it is sufficient to use the following Lemma to prove stochastic order

relations without explicit computation of distributions:

Lemma: Two stochastic processes ϕ(χ) and ϕ(G) satisfy ϕ(χ) ≥SD ϕ(G) if there exist two

stochastic processes ϕ̂(χ) and ϕ̂(G) on a common probability space; such that ϕ̂(χ) and ϕ(χ) have

the same probability distribution as well as for ϕ̂(G) and ϕ(G); and ϕ̂(χ,n)≥ ϕ̂(G,n),∀n.

Let ϕ̂(χ) and ϕ(χ) be identical with common distribution functions. Next, a new process ϕ̂(G)

created based on the Greedy policy to share the same probability space of ϕ̂(χ). The arbitrary

and the greedy policies share a common probability space since both decide on UAVs’ scheduling.

Taking into account that all vehicles have the same weights and satisfy the transmission condition,

sn
i,m ≥ smin

i ,∀i, thus, ϕ̂(G) and ϕ̂(χ) are stochastically coupled. Correspondingly, the probability

distribution for ϕ̂(G) and ϕ(G) are obtained to be the same as vehicles with the same AoI will

be selected. To prove that ϕ̂(χ,n) ≥ ϕ̂(G,n),∀n, the characterization of the evolution of ϕ̂(χ)
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and ϕ̂(G) for each time-slot n needs to be studied. Since all vehicles, within the communication

range of the UAV, are able to upload their status-update successfully at any time-slot, intuitively,

the Greedy scheduling Policy G always achieves the lowest EWSA. This is explained by the fact

that the UAV schedules the vehicle with the highest AoI in each time-slot according to the Greedy

policy. Therefore, the Greedy Scheduling Policy in every time-slot yields the minimum value, thus,

ϕ̂(χ,n)≥ ϕ̂(G,n),∀n. The proof is completed.

Proposed DDPG Algorithm

The proposed actor-critic algorithm is shown in Fig. 6.3, which is consisted on the vehicular

network, the observation including the network dynamics, actor and critic networks, AoI costs, and

a temporal difference error. As mentioned before, since our problem is infinite action space (trajec-

tories of UAVs), we adapt the DDPG to solve our problem. The proposed DRL algorithm to obtain

UAVs’ trajectories is presented in Algorithm 1. The proposed algorithm works as follows.

In the first part, after defining the input and output of the algorithm (Lines 1-2), the proposed

algorithm randomly initializes the replay buffer of size Z, the weights parameters for the actor-

network θ π and critic network θ Q (Lines 3-4) and the initial position of the UAVs is set to location

qm to enforce constraint C 4. Further, as mentioned in Subsection (6.3.1), we create the target net-

works π ′(.) and Q′(.) to enhance the training stability, where the target, critic and actor networks

have the same structures. The target network weight parameters π ′(.) and Q′(.) are initialized (Line

5), where at later steps (Lines 12- 23), those parameters are slowly updated according to the control

parameter τ = 0.001 in order to enhance the stability.

The exploration phase, reward, and penalties are explained in the second part (Lines 6-27). Dur-

ing the exploration phase, the algorithm obtains a trajectory action from the current actor-network

θ π bounded with the maximum velocity of the UAVs, ωmax (to enforce constraint C 6), and then

a random noise is added that decays over time with a rate of 0.9995, where the random noise is

generated from a uniform distribution with a zero mean and a variance of 1. During the training

phase, the proposed algorithm guide the AI agent to avoid actions that violate the road border (i.e.,

flies outside the given road segment) by applying a specific penalty to the reward (Lines 13-15),

where, a penalty p is deducted from the overall reward, and the corresponding trajectory action of
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the UAV m is canceled. Likewise, the proposed algorithm trains the agent to maintain the safety

distance between the deployed UAVs to avoid the penalty p. Therefore, Lines 13-15 are proposed

to enforce constraint C 5 and avoid actions that violate the road border.

In order to ensure that each vehicle is only scheduled by at most one UAV, a modified K-

Means cluster algorithm is adopted. At each time-slot n, the AI agent divides the set of vehi-

cles V n into M disjoint groups based on their geographic locations in which nearby vehicles are

grouped together based on the euclidean distance with respect to the euclidean location of the de-

ployed UAVs located at wn
m. Note that the vehicles’ geographic locations vary with respect to

the slotted time length. Therefore, the AI agent clusters vehicles every time-slot. In order to ob-

tain a reliable communication with the minimum status-update size, smin
i , the euclidean distance

between the deployed UAVs and vehicles within the cluster should not exceed a given threshold((
(2

smin
i
B −1)−1 Pho

σ2

)
−H2

)0.5
. Therefore, a vehicle that not achieve this condition will be excluded

from the UAVs’ cluster. Vehicles’ clustering algorithm is explained in Algorithm 2. Greedy algo-

rithm is applied for each cluster where the AI-agent selects vehicle i′ to upload its status-update

packets, where i′ = argmaxi An
i , ∀i ∈ Qm. In this step the algorithm assigns a binary variable "1"

to the selected vehicle and assigns "0" for other vehicles. Therefore, Lines 17-18 are proposed to

enforce constraints C 1, C 2, and C 3.

In the last part, the weights and parameters of the neural network (Lines 21-31) are updated ac-

cording to the DDPG algorithm. Firstly, the collected samples including (sn,an,rn,sn+1) are stored

in the replay buffer of size Z after each executed action, and then a random mini-batch of size

H is sampled from the buffer Z to update the actor and critic networks. As explained in Subsec-

tion (6.3.1), the weights parameters of the critic network are updated to minimize (6.10), while the

actor-network weights parameters are updated according to (6.12).

6.3.5 Complexity Analysis

In this subsection, the complexity analysis is discussed. After adequate training, the DRL agent

observes the environment where the states of MDP are defined as input for DRL algorithm in Section

III-B. The agent utilizes its trained actor network π(s|θ π) to carry out an action an
m which represents

a traveling distance and a direction. Based on [75], the total computational complexity for the fully
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Fig. 6.4: Impact of number of UAVs and comparisons.

connected layers can be expressed as the number of multiplications: O(∑P
p=1 np.np−1), where np is

the number of neural units in fully-connected layer p.

6.4 Simulation Results and Discussion

We use simulations to evaluate the performance of the proposed algorithm. Firstly, we describe

the simulation setup and then present the benchmark schemes followed by results and analysis.

Simulation Setup

The simulation parameters which are used are outlined in Table 6.2. The simulation parameters

should be carefully defined for an accurate representation of a real road scenario. A road segment

of length 5km is considered in our simulation, on which multiple-UAVs are deployed to collect or

process multiple traffic streams from vehicles where a Free-Flow traffic model is adopted. For sake

of illustration, we assume that the application weight for all vehicles is identical and normalized

to unity and all vehicles can communicate with the deployed UAV at different rates according to

channel conditions within the given road segment. The results are collected after the training phase

(500 000 samples), each sample corresponds to a snapshot of the vehicular network at a particu-

lar time-slot. All simulations are run for 2-layer fully connected neural network for each network
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Fig. 6.5: Impact of status-update size.

(i.e., the actor and critic networks), which includes 20 and 80 neurons in the first and second layers

respectively. Various combinations of Layers and Neurons are tested in the process of debugging,

we found the best architecture is to use two-layers fully connected network while changing this

architecture was often counterproductive. The deployment of the two-layer fully connected net-

work is widely used in the literature while focusing on DRL Algorithm [75]. The rectified linear

unit (ReLU) function is utilized for activation for both networks, while hyperbolic tangent (tanh) is

used in the last layer for that actor-network to bound the traveling distance of the deployed UAVs

according to the maximum traveling distance constraint. The generated samples are used to train

the deep neural network by utilizing Tensor Processing Unit (TPU) to realize a policy for the de-

ployed UAVs. After establishing the trajectory determined by the proposed algorithm, another set

of mobility traces was used to test the performance of the proposed algorithm.

Benchmark Schemes

In fact, there is no existing approach that aims for solving a similar problem in vehicular net-

works, to the best of our knowledge; thus, for the sake of comparison, we consider six other baseline

policies:
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Table 6.2: Simulation Parameters in UAV-assisted Vehicular Networks

Parameter Value

Minimum Vehicle Speed, νmin 22m/s

Maximum Vehicle Speed, νmax 33m/s

Velocity Mean 27.5m/s

Velocity Variance 4.5m/s

UAV Max Speed, ωmax 50m/s

Size of time frame, 240s

Total number of time slots per frame, N 240

Time slot duration, δt 1s

Road Segment of Length d 5Km

Buffer Size 10000

Patch Size 120

Activation Functions ReLU and Tanh

Number of Layers 2

Learning Rate for Actor 0.001

Learning Rate for Critic 0.002

Reward Discount 0.8

Action Variation 50

Decay the Action Randomness 0.995

Soft Replacement Value 0.01

Optimizer Technique Adam

UAV Altitude, H 100m

Channel Gain, γ0 -50 dB

Noise Power, σ2 -110dBm

• Random Trajectory with Random Scheduling (RTRS): In the RTRS approach, at each time-

slot, each deployed UAV randomly changes its direction within [0,2π] and a traveling dis-

tance within [0,Vmax] . The UAV also randomly selects a vehicle on the road segment to

upload its status-update packets. Meanwhile, if one or more UAV(s) violate the safety dis-

tance and fly beyond the road segment border (or distance) between UAVs, then all deployed

UAVs abandon this action.

• Random Trajectory with Greedy Scheduling (RTGS): In the RTGS approach, at each time-slot,

each deployed UAV randomly changes its direction and traveling distance. It also selects a

vehicle to upload its status-update packets according to Greedy transmission policy. Similar to
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the RTRS approach, the selected trajectory action resulting in the violation of safety distance

and/or road segment will be refused.

• Fixed Trajectory with Greedy Scheduling (FTGS): In the FTGS approach, at each time-slot,

the deployed UAV travels within a fixed traveling distance in the same direction as the vehicles

(i.e. 1st UAV at 10m/s, 2nd UAV at 20m/s, and so on). It simultaneously collects the status-

update packets according to the Greedy transmission policy. Meanwhile, for each UAV that

reaches the end of the road segment, a new UAV with the same velocity will be dispatched.

• Fixed Trajectory with Random Scheduling (FTRS): In the FTGS approach, at each time-slot,

the deployed UAVs with fixed velocities randomly collect the status-update packets from

vehicles on the road segment. Meanwhile, same as the FTGS approach, a new UAV with the

same velocity will be dispatched for each UAV that reaches the end of the road segment.

• Hovering with Random Scheduling (HRS): In the HRS, the deployed UAVs hover at a fixed

position, every 1km, to randomly collect the status-update packets.

• Hovering with Greedy Scheduling (HGS): In the HGS, the hovering UAVs collect the status-

update packets according to the Greedy transmission policy.

Results and Analysis

We start by first investigating the impact of the number of UAVs on the EWSA, where the

size of the status-update for all vehicles is set as smin
i = 11bits/Hz and the vehicular density is 6

Veh/km. It can be seen in Fig. 6.4, the DRL approach scheme achieved the lowest EWSA compared

to other approaches. It is because the deployed UAVs have a more feasible trajectory to adapt as

velocity and direction change; therefore, the UAVs can collect more status-updates. We also observe

that optimizing the UAVs trajectories becomes more crucial with a low number of UAVs to attain

better communication and increase the service amount. For instance, to achieve the total of EWSA

of 7× 103 time-slots, the required number of UAVs for our proposed solution is almost 3UAVs.

The same performance can be achieved by increasing the number of UAVs for HGS and FTGS

approaches, where 5 UAVs become necessary to fulfill the requirements. On the other hand, by
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Fig. 6.6: Impact of vehicular density.

increasing the number of UAVs beyond 5 UAVs, the overall enhancement slightly decreases. This

is because optimizing the trajectory becomes less significant to minimize the EWSA, where the

trajectories of DRL, FTGS and HGS tend to be the same.

Clearly, 2 UAVs may not be able to meet the vehicles’s application requirements (i.e., service

demand) for all status-update sizes. As a result, we study the impact of status-update size, smin
i ,

on the proposed DRL approach over a different number of UAVs. As shown in Fig. 6.5, at lower

smin
i (e.g., 11bits/Hz), 2 UAVs are sufficient to attain a total EWSA of 1× 104 time-slots. Slightly

increasing the status-update size (e.g., 12bits/Hz), 2 UAVs are no longer sufficient, and as the figure

shows 3 UAVs will need to be deployed to attain the same performance. Further increasing the

update size, more UAVs will need to be deployed. The findings here show that based on the target

application running on the vehicles which is generating time sensitive data, attaining certain target

AoI performance may require less or more UAVs by the operator.

Next, we study the impact of vehicular density on the proposed DRL approach compared to

FTGS and HGS approaches, where 2 UAVs are deployed to collect the status-update of size smin
i =

11bits/Hz form all vehicles. As shown in Fig. 6.6, at lower vehicular density, our proposed algorithm

is able to minimize the EWSA, since a low vehicular density implies that the vehicular traffic is

very light or, alternatively, the vehicle inter arrival time is large and thus each vehicle enjoys more
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Fig. 6.7: Average age comparison with different policies.

service. In contrast, as the vehicular density increases, the vehicular traffic flow increases, the

EWSA increases as expected since more UAVs are required to fulfill the vehicles’ requirements.

Also as seen in the figure, the performance gap between the policies increases as the number of

vehicular density increases, and reduces for low density which demonstrates the importance of

optimizing the trajectories of UAVs with a high number of vehicles. We can thus observe from the

figure that DRL significantly reduces the EWSA compared to FTGS and HGS approaches.

The average age is another performance metric we study. Fig. 6.7(a), depicts this metric for

a set of vehicles, where 2 UAVs are deployed to collect the status-update of size smin
i = 11bits/Hz

from all vehicles and the vehicular density is set as 6 Veh/Km in a 2 minute period. The average

age of vehicle i within the mission time N is captured by 1
di−ai

[
∑

N
n=1 Ai(n)

]
. Clearly, the proposed

policy minimizes the average AoI in the system among the considered policies. In Fig. 6.7(b),

the cumulative distribution function (CDF) of the average age is compared for different policies.

The results are obtained through 103 independent Monte-Carlo trials on the road segment with

the vehicular density is 12 Veh/km and a mission time of 4mins. It can be seen in the figure,

the proposed algorithm consistently outperforms other approaches such as FTGS and HGS. For

instance, the median AoI achieved by DRL is about 18 time-slots while this value can reach up to

38 time-slots and 50 time-slots in the FTGS and HGS approaches, respectively. This is because

the former provides more flexibility for the deployed UAVs to learn the vehicular environment and

its dynamics as well as to adapt their trajectories while scheduling transmission. In contrast, in
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fixed trajectories and hovering approaches, the fixed velocity and hovering do not have a significant

impact on the upload schedule. This justifies the robustness of the proposed algorithm in terms of

minimizing average AoI.

To better understand the impact of trajectories and scheduling transmission policy on AoI evo-

lution over time in the environment of the vehicular network, we next show the AoI evolution over

time for all approaches. For sake of fair comparison, we simulate a scenario that takes into account

a snapshot in a 4 minute period with 2 UAVs for the same three randomly selected vehicles. As

shown in Fig. 6.8, the AoI evolution can be drastically different for the different policies. It is ob-

served that by utilizing our DRL approach, the AoI of the three vehicles is much smaller than that

of the benchmark policies. This is due to the fact that, as explained above, the DRL agent learns

the dynamics of the vehicular network and optimizes the deployed UAVs’ trajectories by traveling

back-and-forth to fly closer to a vehicle with the highest value of AoI in order to collect its status-

update packets. Obviously, the number of lost status-update packets increases among the trajectory

baselines of the UAVs and this is due to the fact that the deployed UAVs are unable to understand

the vehicular network dynamics. Accordingly, the contact time interval that meets the requirement

of the vehicles and the frequently of collection is less than that of the proposed algorithm, resulting

in larger AoI in comparison with that in our algorithm. We can also observe from the figure that

the Greedy scheduling policy is more effective than the random scheduling policy since at each

time-slot, the Greedy policy always selects the vehicle with the highest value of AoI.

Finally, the convergence performance of the proposed DRL algorithm is studied. The total

reward is calculated as the sum of the cost of each action of the UAVs, which are the EWSA and

the deployment violation of UAVs. As shown in Fig. 6.9, the cumulative reward increases relatively

quickly at the beginning of learning and when the number of episodes reaches a certain number

(1000), the increase becomes relatively slow. This is because at the beginning of the training phase,

the DRL agent starts to learn the deployment violation of UAVs such as road segment borders and

safety distance between the deployed UAVs to avoid penalties. In addition, many vehicles were not

yet properly scheduled to transmit their status-update packets since the UAVs had not yet learnt the

suitable trajectories in the dynamic environment in order to achieve the required rate that minimizes

the AoI. The trained DRL agent can significantly enhance the defined reward. This improvement
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begins to diminish when the DRL agent is well trained about the road segment’s borders and safety

distance between the deployed UAVs and it starts to effectively adapt the UAVs’ trajectories. It

is worth mentioning that due to the non-stationarity (i.e. stable dynamics) of the environment,

the cumulative reward is varying around its average while overall increasing with more trials (i.e.,

training). A similar observation has been reported in [90].

6.5 Summary

We investigated the use of UAVs to support Intelligent Transportation System applications. We

studied the problem of optimizing the trajectory of multiple UAVs and scheduling policies to min-

imize the Expected Weighted Sum AoI of the vehicles in a vehicular network. More specifically,

we formulated the design problem as a mixed integer non-linear program and proposed the DRL

approach to learn the vehicular environment and its dynamics in order to control the UAVs’ tra-

jectories in the dynamic environment. Simulation results showed that the DRL approach achieved

the lowest Expected Weighted Sum AoI and average age compared to other benchmark approaches,

including fixed and random trajectories approaches, and static UAV placement.
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Fig. 6.8: The performance comparison of different policies for a sample of three vehicles.
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Chapter 7

On-Demand Content Delivery in

Vehicular Networks with Optimized

Multi-UAV Trajectories

7.1 Background, Related Works, and Contributions

As discussed in Chapter 5, Infrastructure-based communication networks tend to be susceptible

to major damage arising from either natural disasters (e.g., hurricanes, etc.) or human-made ones

(e.g., wars, explosions, etc.). Each of such events has the potential to damage or even destroy a

country’s communication infrastructure [3]. Such incidents have therefore demonstrated the need

to have a quick, efficient, self-configuring, and infrastructure-less wireless network for emergency

cases. Owing to their agility and mobility, UAVs are being promoted as a promising solution to pro-

vide fast network recovery when the infrastructure is temporarily unavailable. They can be deployed

to enhance the coverage of cellular networks during an unplanned surge in traffic demand [67].

In this chapter, we propose dispatching multiple UAVs that cooperatively serve vehicles on a

highway with limited or no communication infrastructure. Multiple existing works demonstrated

The work done in this chapter leads an IEEE published journal [72]
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the benefits that a single UAV can deliver in emergency situations [67]. One UAV alone, however,

may not likely meet the requirements of all vehicles moving at different speeds on a given road

segment in a timely manner. Motivated by this, deployment of a swarm of UAVs is required to

deliver critical information in vehicular networks.

In this work, we aim to minimize the number of deployed UAVs by jointly optimizing the UAVs

trajectories and radio resource allocation in a given period, to guarantee the vehicles’ requirements

in terms of downloading all needed data subject to UAVs’ and vehicles’ mobility constraints, and

before the vehicles depart a given road segment.

7.2 System Model

We consider a highway segment with damaged or unavailable communication infrastructure.

Further, this segment has unidirectional free traffic flow of vehicles that depart the coverage of a

Road Side Unit (RSU) as illustrated in (Fig. 7.1), where this RSU is assumed to be equipped with

M UAVs that are intended to deliver critical data to vehicles crossing the given highway segment.

The UAVs have their data cached from a centralized content server before they leave the RSU.

We consider multiple time frames with duration T where each frame (few minutes) is divided

into N equal-time slots, each with length δt (few seconds), indexed by n = 1, ..,N. We use V n

to denote the subset of vehicles to be served, in time slot n, where V = V 1..∪V n..∪V N . We

consider one time frame where the arrival and requirement for all vehicles within T can be accu-

rately estimated. Examples of content to be delivered to vehicles include critical safety information,

streaming service, etc. Each UAV has an onboard unit through which it receives and likely processes

the content during its residence on the highway segment.

The UAVs are assumed to have high capacity fronthaul links (such as free space optics (FSO)

or millimeter-wave (mmWave) links) with ingress RSU, where a central unit updates the content

of the deployed UAVs and manages the cooperation between them. Therefore, data that cannot

be completely delivered to one vehicle while being within the coverage of one UAV will resume

its download once the vehicle gets connected with other deployed UAVs. By considering vehicle

mobility and data requirement, this work aims is to dispatch just enough UAVs from the ingress
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RSU to serve all vehicles before exiting the highway segment.

For simplicity, we assume the vehicle declares its required content to the ingress RSU before

it enters the given highway segment. The content requested by each vehicle will be fully delivered

by the UAVs within the vehicle’s resident time on the considered segment. We adopt a widely used

traffic model on the highway [79], where vehicles in each direction travel with different speeds

generated according to a truncated Gaussian distribution in the range [νmin, νmax] [81]. We assume

that vehicles keep the same speed during the entire navigation period along the segment [101]. The

flow of vehicles entering the desired highway segment follows Poisson distribution with arrival rate

λ veh/s. Moreover, the initial positions and speeds of vehicles are assumed to be known through

Differential Global Positioning System provided by the ingress RSU, and communicated to the

UAVs through the fronthaul links. Therefore, the instantaneous position wn
i of each vehicle i ∈ V ,

at any time slot n can be calculated. According to federal aviation regulations, all UAVs are assumed

to fly at a constant altitude H above ground level and each UAV m is located at (xn
m, 0, H), at time

slot n, where the width of the lane is ignored as compared to the transmission range of vehicles

and UAVs [88]. During the considered time frame, vehicles enter and leave the highway segment

resulting in a change in the number of vehicles in V n. We are interested in the arrival and departure

times of vehicles causing that change. Let ai and di be the arrival and departure times of vehicle i

to the highway segment, respectively. For each vehicle i, ai and di can be calculated independently

using the vehicle speed and highway distance. In our model, vehicles in set V may request different

content sizes from the UAVs, and UAVs can simultaneously communicate with multiples vehicles

on different spectrums by allocating appropriate resources.

In practice, the following equations govern the UAV trajectories

|xn+1
m − xn

m| ≤Vmaxδt , n = 1, ...,N−1,∀m, (7.1)

x0
m = xs,xN

m = xc ,∀m, (7.2)

|xn
m− xn

j | ≥ dmin, ∀m,m 6= j. (7.3)

Eq. 7.1, limits the distance travelled by one UAV in every time slot based on the maximum
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UAV speed Vmax in m/s. Eq. 7.2, specifies the initial position of each UAV to be the beginning of

the high segment at xs and the final position to be the end of segment at xc. In fact, the operator may

decide on those positions based on multiple factors such as the location of their managed property,

legislation and/or UAVs’ charging stations. Eq. 7.3, ensures a safety distance dmin between UAVs

to maintain collision-free trajectories.

In typical UAV assisted communication, the channel is generally modeled using large-scale fad-

ing and small scale fading. However, in highway scenarios, such the one considered in this chapter,

the UAV-to-vehicle channel can be characterized with strong Line-of-Sight (LoS) and therefore the

small scale fading can be neglected. All UAVs are assumed to transmit with constant power P lead-

ing to a received power Pn
i,m = hn

i,mP in slot n, where hn
i,m is the channel gain from UAV m to vehicle i

in time slot n. This channel gain can be written as:

hn
i,m = ho

(√
(wn

i − xn
m)

2 +H2
)−2

,∀n,m, (7.4)

where ho is the median of the mean path gain at reference distance d0 = 1 m.

We define the service amount as the amount of cached data that the UAVs deliver to each vehicle

within their residence on the highway segment. The service amount concept has been proposed in

multiple previous papers especially in scenarios with vehicle mobility [25], where the rate is time-

variant and does not exhibit the achievable service quality. Similarly, in our system model, the

achievable rate at each vehicle varies according to multiple factors including UAV position and

speed, vehicle speed, highway distance, etc. Consequently, we utilize the service amount concept

to represent the service quality between UAVs and vehicles. The service amount Si,m provided

between UAV m and vehicle i over the mission time N can be computed based on the summation of

the achievable rates throughout the residence time on the defined highway segment, where the rate

experienced by a given vehicle i is set to 0 as soon as it reaches the end of the highway segment at

di. The service amount can be written as

Si,m = δt

N

∑
n=0

sn
i,m,∀i ∈ V ,∀m, (7.5)
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where: sn
i,m =


rn

i,m, if ai ≤ n≤ di,

0, otherwise.
(7.6)

During its residence on the highway segment, vehicle i served by UAV m in time slot n receives

rate rn
i,m = bn

i,m log2(1+Pn
i,m/σ2), where σ2 is the thermal noise power which is linearly proportional

to the allocated bandwidth [24], and bn
i,m is the fraction of the spectrum resource allocated to vehicle

i in time slot n from UAV m and it is equivalent to a number of resource blocks. In practice, we can

allocate part of the spectrum for each vehicle, and hence bn
i,m is approximately continuous between

0 and 1.

7.3 Problem Formulation

To mathematically formulate the problem1, we introduce two binary decision variables: γm ∈

{0,1}, ∀m, that takes the value of 1 if UAV m is deployed and 0 otherwise, yn
i,m ∈ {0,1} indicates

whether UAV m is serving vehicle i in time slot n. Thus, our optimization problem is formulated as:

OP1: min
γm,bn

i,m,
xn

m,y
n
i,m

M

∑
m=1

γm

s.t. C 1 : δt

M

∑
m=1

N

∑
n=0

sn
i,m ≥ Smin

i ,∀i ∈ V ,

C 2 : γm ∈ {0,1},∀m,

C 3 : yn
i,m ∈ {0,1},∀m, i ∈ V n,∀n,

C 4 : |xn
m−wn

i | ≤ Rc +(1− yn
i,m)K,∀m, i ∈ V n,∀n,

C 5 :
V n

∑
i=1

bn
i,m ≤ γm, ∀n,m,

C 6 : 0≤ bn
i,m ≤ yn

i,m, ∀m, i ∈ V n,∀n,

C 7 :
M

∑
m=1

yn
i,m ≤ 1, ∀i ∈ V n,∀n,

1For simplicity, consider one time frame, however, the optimization can be run iteratively to account for subsequent
time frames.
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Fig. 7.1: A drive-thru scenario with multiple UAVs serving vehicles crossing a highway segment.

C 8 : x0
m = xs,xN

m = γmxc +(1− γm)xs,∀m,

C 9 : |xn
m− xn

j | ≥
(
γm+γ j−1

)
dmin,∀m,m 6= j,n = 2, ...,N−1,

C 10 : |xn+1
m − xn

m| ≤ γmVmaxδt ,n = 1, ...,N−1,∀m.

Constraint C 1 guarantees that each vehicle downloads its requested amount of data Smin
i in

(bits/Hz) within their residence on the highway segment. C 3 and C 4 ensure that vehicle i lies

within the UAV communication range Rc projected on the ground, if it is served by the deployed

UAV m, where K is a large number that is used to ensure the validity of C 4. C 5 prevents wasting

radio resources to UAVs that are not dispatched. C 6 ensures that the total allocated resources by

one UAV is less than the available resource for every deployed UAV. C 7 ensures that one vehicle is

served by at most one UAV at a time. C 8 indicates the initial and the final positions of the UAVs.

C 9 guarantees that the deployed UAVs are sufficiently separated a minimum safety distance dmin..

Finally, C 10 limits the distance traveled by one UAV in one time slot based on its maximum speed.

There are several challenges to solve OP1 including the nonconvexity of C 1 with respect to

UAVs’ trajectories and the binary variables. Therefore, OP1 constitutes mixed-integer non-convex

problem, which is difficult to be optimally solved.
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7.4 Proposed Solution

In this section, we attempt to efficiently solve our problem defined in OP1 based on convex

approximation methods and multiple equivalent transformations to generate a more efficient but

sub-optimal solution. The nonconvex constraint in C 1 is transformed into another equivalent convex

constraint form and successive convex approximation, SCA, optimization method is applied to solve

it iteratively. As mentioned earlier, the Problem OP1 is non-convex due to having sn
i,m as a function

of the UAVs’ trajectories and the resource allocation bn
i,m in C 1. To tackle the problem, we introduce

slack variables un
i,m ≥ 0,∀n,m, i ∈ V and tn

i,m ≥ 0,∀n,m, i ∈ V , and rewrite C 1 as C 1.1, C 1.2, and

C 1.3, where un
i,m is lower bounded by a convex approximation approximation ζ n

i,m with respect to

(wn
i − xn

m)
2, where at each rth iteration:

ζ
n
i,m = Fr,n

i,m−Gr,n
i,m

(
(wn

i − xn
m)

2− (wn
i − xr,n

m )2
)
,

Fr,n
i,m = log2

(
1+

Ph0

σ2
(

H2 +(xn
i − xr,n

m )2
)),∀i ∈ V n,n,

Gr,n
i,m =

(Ph0/σ2) log2 e(
H2 +(xn

i − xr,n
m )2 +(Ph0/σ2)

)(
H2 +(xn

i − xr,n
m )2

) .
(7.8)

Next, we relax and rewrite the binary constraint in C 3 in the following equivalent form [102]:

yn
i,m− (yn

i,m)
2 ≤ 0, (7.9a)

0≤ yn
i,m ≤ 1. (7.9b)

Solving the approximated problem by applying the SCA method remains infeasible due to (7.9),

which leads to a failed convergence of the SCA method. Inspired by the approach in [102], we

overcome this issue by reformulating the objective function as presented in OP2:

OP2: min
γm,bn

i,m,
xn

m,u
n
i,m≥0,

,tn
i,m≥0,θ n

i,m

M

∑
m=1

γm +A
M

∑
m

N

∑
n

∑
i∈V

θ
n
i,m

s.t. C 1.1 : δt

M

∑
m=1

N

∑
n=1

tn
i,m ≥ Smin

i , i ∈ V ,
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Fig. 7.2: UAVs trajectories.

C 1.2 : tn
i,m ≤ bn

i,mun
i,m, ∀n,m, i ∈ V ,

C 1.3 : un
i,m ≤ ζ

n
i,m, ∀m, i ∈ V n,∀n,

C 3.1 : yn
i,m− (yn

i,m)
2 ≤ θ

n
i,m, ∀m, i ∈ V n,∀n,

C 3.2 : 0≤ yn
i,m ≤ 1, ∀n,m, i ∈ V ,

C 2 ,C 4 ,C 5 ,C 6 ,C 7 ,C 8 ,C 9, C 10 ,

where {θ n
i,m≥ 0,∀n,m, i∈V } is a new slack variable and A≥ 0 is the penalty parameter. Examining

C 1.2, the non-convexity factor bn
i un

i is on the greater side of the inequality. To deal with this con-

straint, we simply replace the right hand side of C 1.2 by an equivalent difference-of-convex (DC)

function bn
i un

i =
1
4
[(bn

i +un
i )

2− (bn
i −un

i )
2], and linearize the concave term (bn

i +un
i )

2 at iteration r.

Hence, C 1.2 is approximated as

−
(br,n

i +ur,n
i )2

4
−

(br,n
i −ur,n

i )(bn
i −br,n

i +un
i −ur,n

i )

2
+

(bn
i −un

i )
2

4
+ tn

i ≤ 0. (7.11)

Similarly, we approximate the non-convex constraint C 3.1 as yn
i,m−2yr,n

i,myn
i,m+yr,n

i,m≤ θ n
i,m. Using the

above approximation, OP2 transforms into a Mixed Integer Quadratically Constrained Program

(MIQCP) making several methods handy including CVX-MOSEK toolbox [103]. The algorithm
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Fig. 7.4: Resource allocation.

proceeds until the number of UAVs converges. The overall complexity of solving OP2 depends

on the solver that is employed to solve OP2. In particular, OP2 is a MIQCP and, thus, several

interior-point solvers can be employed to solve it. Therefore, we can employ the number of Newton

steps, as a metric to measure its complexity. Therefore, the overall complexity of solving OP2 is

approximately I
√

M(4NV +N +1) in the worst-case, where I is a finite number of iterations.
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7.5 Simulation Results and Discussion

In order to deliver realistic results, the simulation parameters should be an accurate representa-

tion of a real highway scenario. We assume a highway segment of length 4km in which multiple

UAVs are dispatched with safety distance dmin = 100m with communication range Rc = 50m to

provide streaming services to vehicles. The flow of vehicles entering the highway segment follows

Poisson distribution with arrival rate 0.5veh/s. Vehicles velocities are randomly generated using a

truncated Gaussian distribution with mean equal 90km/h, variance 16km/h, and velocities can be

varied between 20–140km/h. The channel power gain has been taken equal to |h|2 =−50dB, noise

power is No = −110dBm. We consider UAVs fly at a constant altitude H = 100m, with transmit

power P = 0.1W, and maximum speed Vmax = 50m/s.

The CVX toolbox and numerical convex optimization solver MOSEK are used to solve our

optimization. Without loss of generality, we assume that, at time n = 0, all UAVs are located at

position xs = 0m and the final location of deployed UAVs is the end the highway segment xc = 4km.

Fig. 7.2 depicts the UAVs trajectories to provide services to vehicles (for V = 9 vehicles with

Smin
i = 30bits/Hz) over a period N = 30 time slots. Each time slot is of length 5s. The vehicles enter

the highway segment at different times as depicted in the figure. It also shows that only 2 UAVs are
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needed to fulfill the requirements of all vehicles within the considered time period.

Due to the flexibility of UAVs (rotary-wing UAVs), Fig. 7.2 also shows that the UAVs start

their trajectories by following the first batch of arriving vehicle(s) then move to follow the second

subsequent batch and so on. Fig. 7.3 presents the change in speed of both UAVs to allow them

follow the batch of vehicles they are serving then. Examining (a) and (b) of Fig. 2, one notes that

both UAVs fly at a very high speed to reach the end of the highway segment and serve vehicles

before they depart and before the mission time is over. We also observe that, while a UAV decreases

its speed to follow a batch of vehicles, the second UAV dramatically drops its speed to maintain the

safety distance dmin.

Fig. 7.4, demonstrates that at each time slot n the UAVs allocate the radio resources unequally

among the vehicles depending on their arriving times and current locations. In this figure, resources

allocated to different vehicles are marked in different colors. Fig. 7.4 also shows that the same

vehicle may be served by both UAVs but each in a different time slot. It can be also seen that, due

to dynamics of vehicles, the UAVs may not be able to allocate its resources continuously and have

to serve some vehicles toward the end of the highway segment.

Clearly, 2 UAVs may not able to meet the vehicles’ requirements for all service rates. Next,

we study the impact of the minimum service amount Smin
i on the proposed solution over different

mission time (in time slots). As shown in Fig. 7.5, with the lower service amount, optimizing the

radio resources is sufficient to fulfill the vehicles’ requirements with one or 2 UAVs. With increas-

ing the minimum service amount, 2 UAVs cannot anymore fulfill to fully serve the vehicles through

optimizing their radio resources. Increasing the number of deployed UAVs and optimizing their

trajectories to fly closer to vehicles become more crucial for achieving better communication chan-

nels to increase the transmission rate and achieve larger service amount. As a result, the required

number of UAVs increases by increasing the required service amount while keeping the other sys-

tem parameters intact including fixed mission time and radio resources per each UAV. Fig. 7.5 also

demonstrates that a larger mission time allows fewer number of UAVs to fully serve all vehicles. If

the required service amount is 40 bits/Hz, only 2 UAVs are needed when the mission time is 250

time slots while 3 UAVs will be required if the mission time drops to 150 time slots.
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7.6 Summary

This chapter studied the trajectories of multiple UAVs to serve vehicles in a mobility environ-

ment. Since vehicles have different requirements within their residence on the highway segment,

the UAVs trajectories and radio resource allocation are optimized to provide vehicles with a dif-

ferentiated amount of data. We formulated our optimization problem to minimize the number of

UAVs while guaranteeing service to all vehicles before exiting the highway segment. Resulting in

a non-convex problem, we proposed a low-complexity solution and examined its behavior to fulfill

the requirement of all vehicles.
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Chapter 8

Conclusions and Future Research

Directions

8.1 Conclusion

This thesis addressed multiple challenges associated with the deployment of UAVs to assist

wireless communication networks. Chapter 1 of this thesis provided a comprehensive overview

of the key advantages, potential applications, and communication challenges associated with the

exploitation of UAVs in order to assist wireless communication networks. Then, limitations of

existing studies and a summary of the research contributions of this thesis were highlighted.

The first part of the thesis focused on the efficient deployment of UAV assisted static environ-

ments. In particular, in Chapter 2, the efficient online and offline trajectory planning and radio

resource allocation of a UAV deployed to collect data from time constrained IoTDs were investi-

gated. To enable reliable uplink communications for time-constrained IoTDs, a novel framework

was proposed to jointly optimize UAV trajectory and communication. The optimization problem

was to maximize the number of served IoTDs while guaranteeing minimal amount of data uploaded

from each served device within the given deadline. Although the problem was non-convex, it was

solved optimally using BRB algorithm. By convexifying the problem, a low-complexity solution

was obtained, then we extended the solution to obtain an enhanced trajectory in order to minimize

the distance traveled by the UAV while serving the IoTDs.
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In Chapter 3, a novel model in UAV-assisted IoT networks was proposed to minimize age of

information. It takes into account channel reliability between IoTDs and UAVs and between UAVs

and BS to minimize the AoI. A concrete analytical characterization of AoI for UAV-assisted IoT

networks was derived when UAVs with virtual queues act as mobile active relays between IoTDs

and the BS. A Markov Decision Process problem was formulated to find the optimal altitude and

scheduling policy that minimizes the AoI. Then, a PPO algorithm was developed to learn environ-

ment dynamics in order to control the altitude and scheduling policy of UAVs. In contrast to UAVs

as mobile active relays, integrating RIS with UAVs does not require any radio frequency chain cir-

cuit to relay transmission from the IoTDs to the BS. This provides a cost-effective solution with

minimal energy consumption. In Chapter 4, the benefit of integrating RIS as a passive relay with

UAVs in the performance of AoI was investigated. An optimization problem with the objective of

minimizing the AoI was formulated to optimize the altitude of the UAV, communication schedule,

and phase shifts of RIS elements. In the absence of prior knowledge of the activation pattern of the

IoTDs, a PPO algorithm was developed to learn the randomness of the IoTDs’ activation patterns

and to solve this mixed-integer non-convex optimization problem.

The second part of this thesis focused on the efficient deployment of UAV-assisted vehicular

networks. In Chapter 5, coverage problem was studied for UAV-assisted vehicular networks in the

absence of a complete knowledge of the environment. The coverage problem was formulated as a

Markov Decision Process. Then, the Actor Critic algorithm was proposed to explore the unknown

environment and plan trajectories for a minimum number of UAVs. This was done in order to pro-

vide network connectivity for vehicles while minimizing the energy consumption of the deployed

UAVs. In Chapter 6, the use of UAVs to support Intelligent Transportation System applications was

explored. The problem of optimizing the trajectory and scheduling policies of multiple UAVs to

keep the information fresh from vehicles in a vehicular network was studied. More specifically,

the data collection problem was formulated as mixed-integer and non-convex problem. The DRL

approach was proposed to learn the vehicular environment and its dynamics in order to control the

UAVs’ trajectories in the dynamic environment. DDPG was exploited to learn the trajectories of the

deployed UAVs and to efficiently minimize the EWSA. In Chapter 7, a novel framework was devel-

oped for effective content delivery through cache enabled UAVs in vehicular networks. The content
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delivery problem was formulated as an optimization problem with the objective of minimizing the

number of UAVs while guaranteeing service to all vehicles before exiting the highway segment.

The formulated problem was convexified and a low-complexity solution was obtained.

8.2 Future Work

8.2.1 Further Deployment of UAVs for 5G and Beyond Networks

Although this dissertation covered several research challenges related to the deployment of

UAVs in assisting 5G and beyond, other problems that need to be investigated still exist. Results in

Chapter 2 showed that a single UAV is not enough to meet the requirements of all IoTDs in a timely

manner especially when the area or the number of devices increase. It would therefore be necessary

to explore a joint optimization of trajectories and radio resource allocation of multiple UAVs. Since

timely data collection was also evaluated in Chapter 2 for Orthogonal Multiple Access (OMA),

Non-Orthogonal Multiple Access (NOMA) based UAVs should also be considered to accommodate

a large number of IoTDs. The analysis of UAV and IoT energy consumption for a time constrained

data collection scenario is another area that should be studied. In Chapter 3, a concrete analytical

characterization of AoI for two-hop transmission was provided when UAVs with virtual queues act

as mobile active relays between IoTDs and the BS. Future research should focus on extending this

framework to consider multiple hops instead of only two hops (for example, multiple relays to the

BS through multiple UAVs). Resource management is also another key future research area with

respect to radio resources, UAV energy consumption, IoTDs’ transmission power, UAVs’ mission

time, and number of UAVs, among others.

In Chapter 4, data freshness in aerial-RIS assisted static environments was investigated. How-

ever, destinations could be mobile with random velocities. In vehicular environments, vehicles may

suffer from poor connections when navigating through a dark zone. In order to overcome this issue,

RSUs can exploit the RIS technology to relay information to vehicles. However, high mobility of

the vehicles leads to distinct network conditions and changes the network topology, which conse-

quently complicates the design of efficient scheduling and the application of the RIS configuration

approach. In terms of UAV assisted vehicular networks, there is still a need to study the effect of
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backhaul stability on the overall system performance. Achieving a seamless handover among UAVs

in such a dynamic environment also needs to be explored. Finally, a study on efficient schedul-

ing techniques to mitigate interference between UAVs and ground base stations in a UAV assisted

cellular network is another area of future research.

8.2.2 Safety and Security with UAVs

Safety and security are among the major challenges hindering the full exploitation of UAVs

and their deployment in commercial applications. These challenges stem from the fact that UAVs

are unmanned and they are controlled through wireless links. Also, in some cases, UAVs fly as

low as 100-200 meters from the ground and at a high speed. As such, one might think of them

as flying objects with a remote control. In the event that control is lost or compromised, such

objects can become very harmful to humans on the ground. Transport Canada’s Civil Aviation

Daily Occurrence Reporting System (CADORS) reported 355 incidents caused by UAVs between

2005 and 2016 [104]. The number of such accidents will inevitably increase as the usage of UAVs

increases. As for security, similar to any wireless environment, the fact that UAVs are controlled

through wireless links poses serious threats as the control system can be hacked. An adversary might

also use a number of controlled UAVs to interfere with existing operations of legitimate UAVs

or to interrupt services by performing several malicious activities. Furthermore, UAVs equipped

with different types of explosive materials might be used as a weapon for attack during critical

operations such as offensive missions and terrorist attack. For instance, in September 2019, small

UAVs were used to attack strategic facilities in Saudi Arabia leading to a major destabilization of

global financial markets [105]. Based on the above mentioned challenges, a timely detection and

tracking of unauthorized or hijacked UAVs is necessary in order to reduce or even eliminate the

potential risks associated with a possible intrusion. Multiple detection and tracking techniques such

as ground radar and computer vision have been extensively studied in literature. However, their

detection/tracking accuracy is significantly affected by the environment, particularly in urban areas

where obstacles such as buildings make these solutions infeasible. In fact, the detection and tracking

of small mobile objects such as UAVs flying at moderate altitudes can be even more problematic

due to the fact that it is extremely difficult to distinguish between small flying objects such as birds
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and these controlled UAVs.

As a future direction, different scenarios for detecting and tracking UAVs will be investigated.

More specifically, the following scenarios will be considered: (i) legitimate UAVs that lose their

wireless connections with ground control station, and (ii) unauthorized UAVs flying around or

within restricted areas. The overarching objective of this research direction is to accurately and

timely detect and track uncontrolled UAVs by dispatching a swarm of UAVs whose trajectories

have been optimized. Finding the optimal trajectories of multiple UAVs in order to provide an

efficient and timely solution for detecting and tracking uncontrolled UAVs is an existing and unad-

dressed problem to the best of our knowledge. Specific objectives of this future direction include:

(1) develop an artificial intelligence technique, especially deep reinforcement learning approach, to

train a swarm of UAVs to detect and track uncontrolled UAVs and autonomously decide the proper

trajectories of the deployed UAVs in order to continue tracking uncontrolled UAVs, (2) develop deep

reinforcement learning technique to train deployed UAVs in multiple scenarios, i.e. first scenario

involves passive uncontrolled UAVs (no active radio frequency signal is emitted from the uncon-

trolled one). In this case, deployed UAVs equipped with radar technology will be considered in this

work. Second scenario involves active UAVs, where the swarm of UAVs will track the received

signal strength, and 3) consider practical system configurations/designs according to US Federal

aviation regulations that can be adopted in future wireless communication systems.
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