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Abstract

A Framework Design for Integrating Knowledge Graphs into

Recommendation Systems

Yuhao Mao

Online recommendation is a significant research domain in artificial intelligence. A

recommendation system recommends different items to users, and has applications

in varied domains, including news, music, movies, etc. Initially, recommendation

systems were based on demographic, content-based filtering and collaborative

filtering. But collaborative filtering often suffers from sparsity and cold start

problems, therefore, side information is often used to address these issues and

improve recommendation performance. Currently, incorporating knowledge into

the recommendation algorithm has attracted increasing attention, as it can help

improve recommendation system performance. Knowledge graph representation and

construction, and recommendation system development are independent but related;

the triples of knowledge graph form the input to the recommendation system. While,

there are a number of independent solutions for each of these two tasks, currently,

there is no existing solution that can combine the construction of knowledge graph

and input it to the recommendation system to provide an integrated work pipeline.

Our major contribution is a modular, easy to use framework solution that fills

this gap, essentially enabling integration of a structured knowledge graph and a

recommendation system. Our framework provides multiple functionalities, including

cross-language invocation and pipeline execution mechanism, and also knowledge

graph query, modification and visualization. We instantiate our implementation of

the proposed framework and evaluate its performance to show that we achieve higher

accuracy in recommendations by using side information extracted from knowledge
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graphs. Our framework addresses the complete pipeline from constructing structured

data knowledge graph to training recommendation model to incorporating the

recommendation system into application domains.
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Chapter 1

Introduction

Our work is in the area of online recommendations based on user demographics and

preferences derived from past history of the user, and information about items being

recommended. Increasingly, recommendation systems have begun to use information,

as much as available, about the user and about the items to improve the quality of

recommendations. Specifically, in this dissertation, we present a new framework which

enables easy integration of any such available information, called side information, by

representing it as knowledge to be used by the recommender algorithm.

In this chapter, we will first briefly outline the research domain for the reader in

Section 1.1. Next, we describe our motivation and goals in Section 1.2 followed by

motivational scenarios in Section 1.3 which reflect possible usage scenarios for our

framework. We also elicit specific functional and non-functional requirements from

these motivational scenarios for our proposed recommendation systems framework.

Essential background required is briefly touched upon in Section 1.4.

1.1 Research Domain

Recommendation System (RS) is a cross-research direction in multiple fields, and it

involves machine learning and data mining.

The recommendation system is the product of the rapid development of the

Internet. With the growth of user sales and the increasing variety of items provided

1



by the suppliers, the users are over loaded with information. In such situations,

the recommendation system comes into play [6]. The recommendation system is

essentially a technical means for users to narrow the information they are interested

in from the massive amount of information available on the Internet, when the user

desired product is not specific to a single item [88]. A recommendation system can be

regarded as an information filtering system, which can learn the user’s interests and

preferences based on the user’s files or historical behaviour, and predict the user’s

rating or preference for a given item, based on information about the item.

Applications of recommendation systems are very wide. According to reports,

the recommendation system has brought 35% of sales revenue to Amazon [66] and

up to 75% of consumption to Netflix [21], and 60% of the browsing on the Youtube

homepage comes from recommendation services [67]. It is also widely used by various

Internet companies. As long as the company has a large number of products to

offer to the clients, the recommendation system will be useful [31, 19, 30]. The

current application fields of the recommendation system include, but not limited to

the following product categories:

• E-commerce website: Amazon, Bestbuy, etc.

• Video: Netflix, Youtube, etc.

• Music: Apple music, Spotify, Google play music, etc.

• Information category: Apple News, Google News, The New York Times, etc.

• Dating: Tinder, Bumble, etc.

While most recommendation systems make use of collaborative filtering-based

or content-based algorithms [15], in recent years, given the success of deep

learning technology in speech recognition, computer vision and natural language

understanding, applying it to recommendation systems is also a research hotspot

[93]. In our work too, the emphasis is on the latter.

In most recommendation scenarios, items may have rich associated knowledge

in the form of interlinked information, and the network structure that depicts this

2



knowledge is called a knowledge graph. Information is encoded in a data structure

called triples made of subject-predicate-object statements. A knowledge graph on the

item side greatly increases information about the item, strengthens the connection

between items, provides a rich reference value for the recommendation, and can

bring additional diversity and interpretability to the recommendation result. In this

context, we can state here that a more specific domain of this research work would

be knowledge graph enhanced recommendation systems.

1.2 Motivation and Goal

A recommendation system is needed as long as there are users (clients) interested in

items (products). The system is usually trained using ratings of items by users. But

since users usually have ratings on few items, there are problems of data sparsity in

this training process. It has been found that adding the knowledge graph to provide

any side information about the user and the items can alleviate this problem. In

existing solutions, such side information is stored in one or more separate text files.

This has obvious disadvantages of inefficiency. The use of framework solutions can

make framework developers spend the least time to complete their code, which also

provides feasibility for algorithm comparison, and there is no existing framework

that integrates the construction of knowledge graphs. Further, search and update

of information, if not carried out across all the text files, would cause problems of

incompleteness, and inconsistency. There is clearly a need for a general framework,

which (i) integrates search and update of information, (ii) includes crawling of websites

for additional information, (iii) supports storing of the information in the knowledge

graph and (iv) enables easy retrieval of the triples in the knowledge graph as input

for the training of a recommendation system. Adding a knowledge graph into the

recommendation framework can help us better manage knowledge data, process data,

and query the information we need faster.

Hence the main goal in this work is to design a framework that integrates

a knowledge graph and enables enhancement of the functionality of a
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recommendation system, for different classes of users as follows: (i) the

end_user who receives recommendations from a trained recommendation system

application, (ii) the application_developer who uses our framework’s API to create

end user applications, and (iii) the framework_developer who can update/modify the

framework. While, for illustration and explanations, we will use the domain of movie

recommendations, our framework should be generic to be applied to other domains.

1.3 Scenarios and System Requirements

We present a few specific scenarios, to help us derive the requirements for such a

framework, and also to provide a general solution. We analyze these scenarios one by

one and then extract functional requirements and non-functional requirements (FR

and NFR). Meeting these requirements become the concrete realization goal of our

work. For brevity, we will use the generic term “user” to refer to all of the above

categories; the scenario will make clear the specific category.

1.3.1 Functional Requirements

1. FR1: The solution shall provide an abstraction layer for the storage

mode that enables the storage construct transparency property to

the users.

2. FR2: The solution should ensure the adaptability of the abstraction

layer required in FR1, which means that when a new storage method

is needed, minimal or or no modifications are required, and it does

not affect the existing system.

Imagine if the user needs to develop a recommendation system program, and

needs to support different knowledge graph storage modes S1 and S2. Among

them, S1 is a storage mode based on graph storage, and S2 is a storage mode

based on RDF (Resource Description Framework) [45]. Therefore, according

to the needs, we need to be able to switch between S1 and S2. From the
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application’s point of view, it should be able to use different storage modes

with only some or no changes in the code. In addition, if there is a new storage

mode S3 in the future, the system should easily extend to use S3.

3. FR3: The system should provide a unified interface for modifying

nodes.

Because the content in the knowledge graph may come from open-source data or

it may be extracted by the user, there is a possibility of incorrect or inconsistent

information. We need to modify the nodes with such data according to the new

data. This includes modifying the name of the node, the label of the node,

and the relationship between two or more nodes. An example is when the label

of node1 is say, “male”, and in the new schema structure, we would like to

refer to “male” and “female” as “person”. If the amount of data is large, it is

near impossible to modify one by one manually, we need to provide an API to

uniformly modify all the nodes in the knowledge graph.

4. FR4: The KG solution should support all languages.

Imagine a scenario when some users want to use information in other languages

to build a knowledge graph. Our framework should be able to support multiple

languages in the knowledge graph, and ensure that no matter which language

or languages the user prefers, they are displayed correctly.

5. FR5: The Recommendation System solution should support all

languages.

Imagine a scene where not all movies have English names, and some users

want recommendations for non-English movies. We must make sure that the

recommendation framework supports all languages, to ensure that the system

can predict the ratings of movies in all languages.

6. FR6: The KG storage module should support the fusion of different

storage formats.
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Imagine a scenario where not all knowledge graphs use a unified storage format,

and users want to integrate knowledge graphs of other storage formats. We

must ensure that the recommendation framework supports the fusion of different

knowledge graph formats.

1.3.2 Non-functional Requirements

With further analysis of the above scenarios, we find that our solution must meet the

following non-functional requirements as well:

1. NFR1: Real-time Response When back-end developer use this framework to

instantiate a system, the predictor step should be able to predict the end-user’s

rating of the movie in real time.

2. NFR2: API Usability The Application Programming Interface provided by

this solution should be easy to use and learn by users.

An application programming interface (API) is a computing interface that

defines interactions between multiple software intermediaries. It defines the

kinds of calls or requests that can be made, how to make them, the data

formats that should be used, the conventions to follow, etc. It can also provide

extension mechanisms so that users can extend existing functionality in various

ways and to varying degrees. Compared to existing solutions, we need to provide

a simpler method. Our users may come from completely different fields, but we

can roughly divide them into programmers and non-programmers. Therefore,

these factors should affect the way we design the API of our solution.

3. NFR3: Extensibility Our framework should be able to acquire and integrate

new components without impairing existing system functions.

Hardware and software technology will continue to develop and upgrade. We

will need to use more advanced methods. Designing a solution with broad

scalability is crucial. It enables us to add, modify, or integrate new storage

methods or algorithms into our solutions with minimal effort.
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4. NFR4: Cross-Platform The ability of the system to run on multiple

platforms.

The possibility of users using different platforms cannot be ruled out. So we

need our solution to support Linux and Unix-based macOS operating systems,

where the majority of our target applications run. Therefore, the solution we

propose must be cross-platform.

1.4 Essential Background

Before delving into the details of the design of our framework, we will first introduce

two independent bodies of work to readers, which will be mentioned many times later.

Although they are explained in detail in Chapter 2, the purpose here is to provide

readers with some essential background knowledge.

Firstly, knowledge graphs (KG) as a form of structured human knowledge have

drawn great research attention from both the academia and the industry [26, 58,

81]. A knowledge graph is a structured representation of facts, consisting of entities,

relationships, and semantic descriptions. The knowledge graph can be used wherever

there is a relationship. It has successfully captured a large number of customers,

including Walmart, Google, LinkedIn, Adidas, HP, FT Financial Times, etc. well-

known companies and institutions. Applications are still growing.

Compared with traditional data storage and calculation methods, the advantages

of knowledge graphs are the following:

• Strong ability to express relationships: Traditional databases are usually read

through tables, fields, etc., and the relationship levels and expression methods

are diverse. Based on graph theory and probability graph models, it can handle

complex and diverse association analyses.

• Knowledge learning: Using interactive machine learning technology, it supports

learning functions based on interactive actions such as reasoning, error

correction, and annotation, and continuously accumulates knowledge logic and
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models, improves system intelligence.

• High-speed feedback: Schematic data storage method, compared with

traditional storage methods, the data retrieval speed is faster, can return the

results in seconds.

Knowledge graphs usually have two main types of storage [94, 11]: one is

RDF (Resource Description Framework) based storage, explained in detail later in

(Chapter 2, Section 2.3.1), and the other is using graph database stores, explained

further in (Chapter 2, Section 2.3.2).

Secondly, the recommendation system (RS) has become a relatively independent

research direction and is generally considered to have started with the GroupLens

system launched by the GroupLens research group of the University of Minnesota in

1994 [28].

In the early stages of the development of recommendation systems, a common

recommendation method was to sort items based on sales of items, clicks on topics,

or news reads, and then select the top N items to form a ranking list and recommend

them to users. This method has been quite effective; until today we still often see

similar functions on major websites. But on the other hand, this method also has

a huge flaw, that is, only a small number of top-ranked items can be recommended,

and more items are buried unknown. Therefore, how to make full use of the existing

items and make the recommendation as comprehensive as possible has become the

main goal of the research in the field of recommendation systems, particularly, since

personalized recommendation systems came into being.

According to the different implementation methods, we can divide the

existing personalized recommendation methods into the following categories:

Content-based recommendations, collaborative filtering-based recommendations and

recommendations based on deep learning [1, 86]. In the method of content-based

recommendation, the system recommends items similar to their past interests to users

[62]. We will explain in detail later in Section 2.5.1. Collaborative filtering is another

mainstream research direction in recommendation systems [69]. Through continuous
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interaction with users, this method enables users to filter out items that are not of

interest to users in their recommendation lists, thereby meeting their needs better. In

Section 2.5.2, we will explain this further in detail. With the rapid rise of deep learning

technology in recent years, many studies have shown that applying deep learning

to recommendation systems can also achieve good results. As a highly readable

external knowledge carrier, knowledge graphs provide a great possibility to improve

algorithm interpretation capabilities [29]. Therefore, combining knowledge graph with

recommendation systems is one of the hottest topics in the current recommendation

system research.

A recommendation systems performance is measured based on relevance and

accuracy of recommended items. One measure is AUC-ROC. Definition: Area

under curve (AUC) is the area under the receiver operating characteristic (ROC)

curve, which can be used to indicate the accuracy of the recommendation system;

this will be explained in detail in Section 6.3.2.

1.5 Framework Design Questions

We put forward the following design questions that must be answered in our work

to achieve our main goal and meet system requirements. These research questions

drive our evaluation plan in Chapter 6 to show that our proposed solution meets our

requirements.

• When we use our framework to instantiate an application, how can we increase

the accuracy of RS?

• Can we make the system independent of the knowledge storage format, say

RDF, Neo4j, etc.?

• Can we design a general extensible solution that meets our requirements?

• Can we use our solution to compare different knowledge graph storage modes to

make recommendations for which storage mode is suitable for which application
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type? Specifically, what are the advantages and disadvantages of different

storage modes?

• Is side information useful for improving accuracy?

• How can we get information about products from the website?

From the situation described above, the design tasks can be intuitively divided into

two parts: (1) build a knowledge graph storage system (2) enable recommendation

system to use the knowledge graph to yield higher accuracy.

Since Google published the knowledge graph on May 16, 2012 in order to improve

the quality of answers returned by search engines and the efficiency of user queries,

the knowledge graph has become a popular research topic. But it is a problem to

choose which way to represent, store, update and make effective use of the knowledge

graph.

1.6 Contributions

Our main contribution is the following:

• We present an overall architecture that allows users to build knowledge graphs,

display knowledge graphs, and enable recommender algorithms to be trained

with knowledge when predicting user ratings for items. We demonstrate our

framework for the movie recommendation domain.

Other contributions include:

• Our framework design is driven by a comprehensive set of functional and non-

functional requirements.

• We offer a way in general that can allow the user to access different methods

within the same set of APIs with good extensibility.
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• We provide a pipeline that allows users to extract data, build knowledge graphs

in different formats to display knowledge graphs without knowing the underlying

details.

• We offer a way for the recommendation systems researchers to enable

recommendation system experiments on top of TensorFlow and Keras.

We have designed and implemented the following:

• A modular framework solution that consists of the core and specialized

frameworks that enables: crawling of data, and building a knowledge graph,

knowledge graph visualization and recommender system.

• A crawling module that can enable our solution to support crawling of product

websites like IMDB for movies, without writing rules. In addition, to be able

to write simple rules to crawl other websites.

• A storage module which can enable our solution to support different knowledge

storage formats, such as RDF and Neo4j.

• A deep learning support module that enables the integration of Python-based

machine learning recommendation system.

• A recommendation specialized framework, instantiated for recommendation

system task with a machine learning-based algorithm named MKR.

1.7 Thesis Outline

In this chapter, we presented the essential background for our work, pointed out the

limitations in existing solutions, and stated the research and design problems giving

them clear definitions and restricted scope. The rest of the thesis is organized as

follows:

• In Chapter 2, we will present the background, and review the existing literature

related to our work, and the available software that may be useful for our
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implementation. At the end of this chapter, according to our needs, we will

select the corresponding software and libraries.

• In Chapter 3 we will describe the design of the solution framework in a top-down

manner.

• In Chapter 4 we will describe how to instantiate our framework to meet

requirements.

• In Chapter 5, we will describe the applications built on top of our proposed

solution, which presents a proof of concept, that our solution can actually fulfill

our listed requirements.

• In Chapter 6, we will first demonstrate how both the functional and non-

functional requirements are fulfilled by our framework solution. Then we report

our results showing the benchmarks for the main components in our solution

with commonly acknowledged metrics.

• In Chapter 7, we sum up our work with advantages and limitations and point

out some potential directions for future work.
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Chapter 2

Background and Literature Review

It follows from the discussion in the previous chapter, that in order to create a

recommendation systems framework we will need to address the following questions:

(1) How to extract relevant information from the web. (2) How to represent and store

knowledge graph. (3) How to visualize the knowledge graph. (4) How to implement

a recommendation system that uses the knowledge graph. In this chapter, we will

introduce the background needed before we can proceed towards the design of our

framework.

2.1 Background

2.1.1 Knowledge Graphs

Knowledge graph is essentially a large-scale semantic network, which contains a

variety of entities, concepts and semantic relationships [51].

There are two important aspects of seeking information for which knowledge

graphs were introduced. The first aspect is the explosion of internet information

and the disorder of information. A knowledge graph can enable people to retrieve

desired information more quickly and effectively. The second aspect is that people

expect machines to understand massive amounts of linked information like humans,

and expect faster, accurate, and intelligent ways of retrieving the information one
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needs. A knowledge graph representation of information can also meet this demand.

The knowledge graph in its present form was first officially proposed by Google in

May 2012 [87], when they released their own knowledge graph. As an Internet giant,

Google’s core requirement at that time was that users searched with a keyword and

could directly get an answer instead of giving a web page containing the keyword.

The emergence of the knowledge graph has allowed search engines to understand

search keywords and return accurate answers [7]. Its fundamental purpose is to help

machines understand information [82, 76, 78].

Before the emergence of the knowledge graph, there have been a variety of

knowledge representation schemes, such as ontology, semantic web, text, etc.[38, 16].

However in recent years, it is the knowledge graph form which is most used as

a background knowledge base [10]. To make a machine capable of cognition, the

background information database must meet several conditions. The first is that the

scale must be large enough to cover enough entities and concepts. The second is that

the knowledge base should cover common semantic relations. The third is that the

knowledge base should be very friendly. Text is a huge carrier, but text is a form of

unstructured data that is difficult for machines to process. Hence, knowledge graphs

are often expressed as RDF (Resource Description Framework) structures, which is a

structure-friendly expression that can be effectively processed by computers [20].

Briefly, the knowledge graph provides complex semantic associations between

items. The knowledge graph has the following benefits:

• Combine disparate data silos: When looking at our datas: they are kept

in silos, so it is a highly time-consuming task to identify the right dots and

information pieces, to connect them, to make sense of them, and finally to

communicate them in the right way. In many industries, you can see a shift to

data-centric execution rather than document-based communication [39].

• Bring together structured and unstructured data: Accumulating data

does not mean just assembling documents and excel sheets. Knowledge Graph

technology means being able to connect different types of data in meaningful
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ways and supporting richer data services than most knowledge management

systems. Organizations will then use the technology with the help of AI and

machine learning techniques to extract and discover deeper and more subtle

patterns [8].

• Make better decisions by finding things faster: Using knowledge graph

technology can provide users with richer and deeper search results, which can

help users provide relevant facts and background-related answers to specific

questions [4].

2.1.2 Recommendation Systems

A recommendation system is a type of application that judges the items/services that

the user currently needs or is interested in, based on the user’s historical behaviour,

social relationships, points of interest, context and other information. With the

development of information technology and the Internet, people have moved from

an era of lack of information to an era of information overload.

For users, it is becoming more difficult to find the information they are interested

in from a large amount of information. For information producers, it is also becoming

more difficult for the information produced by themselves to stand out from the crowd.

The recommendation system came into being just to address this problem.

Recommendation system applications can be seen on various websites on the

Internet, although the technologies used may differ considerably. In general, almost

all recommendation system applications are composed of the front-end display page,

the back-end log system and a recommender algorithm.

There are three common approaches in recommender algorithms [5], which we will

explain in detail in section 2.5:

• Content-based recommendation system.

• Collaborative filtering recommendation system.

• Machine learning enhanced recommendation system.
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As we mentioned in Section 1.4, many studies have shown that applying deep

learning to recommendation systems can achieve good results [86, 82, 79]. Combining

the knowledge graph with recommendation systems is the hottest topic in the current

recommendation system research. Yet, through our review of previous research, we

found that most of the existing works that use knowledge graphs as side information

do not integrate the construction or use of knowledge graphs. In fact, most of them

use open source CSV files or txt files for input of knowledge to the recommender

alorithm[79, 33, 84]. This has an obvious disadvantage. If we need to delete or

modify pieces of information, we need to traverse each line of the file. Or when we

have information in multiple files, we need to traverse each line of each file, which

is very inefficient. But if our framework includes the construction of the knowledge

graph, we can perform unified operations on the nodes in the knowledge graph by

calling the framework’s API. It is not only fast, but also makes it more convenient to

query, and more convenient to manage.

2.2 Information Extraction

Since we will be illustrating our framework for movie recommendations, we consider

that domain, Internet Movie Database (IMDB). An IMDB extractor is a program

or script that automatically extracts information on the World Wide Web following

certain rules [89]. IMDB extractor is roughly divided into general crawlers, focused

crawlers, incremental crawlers, and deep web crawlers according to the system

structure and implementation technology [12, 3]. However, in practice, it is generally

achieved by combining several crawler technologies. This is a diagram of the internal

workings of a typical web crawler Figure 1.

The extractor workflow generally follows the steps below [49]:

• First select some seed URLs.

• Put these URLs into the queue of URLs to be crawled.

• Take the URL from the URL queue to be crawled, parse the DNS, and adjust
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Figure 1: Basic crawler workflow

the regular expression according to the data that the user wants to intercept,

download the data, and store it in the database. Besides, put these URLs into

the crawled URL queue.

• Analyze the URL in the seed URL list, and put a part of the URL into the URL

queue to be crawled, to enter the next cycle.

• If the queue is empty, then exit the program.

2.3 Knowledge Graph Storage

In this section, we present current forms used for knowledge graph storage. The

value of the knowledge graph is reflected in its addition to downstream tasks such
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Figure 2: Graph-based storage ranking [24]

as dialogue systems and information extraction. Therefore, the knowledge storage

system should be able to support fast and frequent knowledge query operations [55].

Secondly, the knowledge in the graph is extracted according to the structure of

the schema [32]. Therefore, the storage of knowledge should be able to reflect the

hierarchy of knowledge and the relationships between knowledge items according to

the structure of the schema.

Besides, knowledge storage should be as efficient as possible to avoid wasting too

much storage space. From our exploration, we found that there are two main storage

methods for knowledge graphs: one is RDF-based storage [11]; the other is graph-

based storage [80]. DB-engines website announced the ranking based on these two

storage methods Figure 2 and Figure 3.

2.3.1 RDF-based Storage

Resource Description Framework (RDF), its essence is a data model. It provides a

unified standard for describing entities. Simply put, it is a method and means of
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Figure 3: RDF-based storage ranking [25]

representing things. RDF is formally expressed as SPO (Subject-Predicate-Object)

triples [71]. In the knowledge graph, we also call it a piece of knowledge, as shown in

Figure 4.

At present, there are mamy ways of RDF serialization: RDF/XML, N-Triples,

Turtle, RDFa, JSON-LD and so on [75].

• RDF/XML: RDF data is expressed in XML format. The reason for this method

is because the technology of XML is relatively mature, and there are many

ready-made tools to store and parse XML. However, for RDF, the format of

XML is too verbose and not easy to read. Hence, we do not use this method to

process RDF data.

• N-Triples: Using multiple triples to represent the RDF data set is the most

intuitive representation. In the file, each line represents a triplet, which is

convenient for machine analysis and processing. The open domain knowledge

graph DBpedia usually publishes data in this format.

• Turtle: It is the most used RDF serialization method. It is more compact than
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RDF/XML and more readable than N-Triples.

• RDFa: “The Resource Description Framework in Attributes"(RDFa) is an

extension of HTML5 that allows website builders to mark entities on the page

like people, places, time, comments, etc. without changing any display effects.

In other words, by embedding RDF data in web pages, search engines can better

parse unstructured pages and obtain some usefully structured information. It

intuitively displays the pages that ordinary users see.

• JSON-LD: “JSON for Linking Data"(JSON-LD) uses key-value pairs to store

RDF data.

Below, we use Jon Favreau as an example to give a specific representation of

its N-Triples and Turtle Figure 5. When expressed in Turtle, we will add a prefix to

abbreviate the IRI (Internationalized Resource Identifier) of RDF Figure 6. The same

entity has multiple data properties or relationships. We can use only one subject to

make it more compact. We can change the Turtle above to Figure 7.

From the above examples, we can find that RDF has limited expressive power,

cannot distinguish between classes and objects, and cannot define and describe the

relationships/properties of classes. Because RDF lacks abstraction capabilities, it

cannot define and describe things in the same class. Taking the knowledge graph of

Jon Favreau as an example, RDF can express the properties of the two entities Jon

Favreau and New York and the relationship between them. But if we want to define

that Jon Favreau is a person, New York is a place, and what properties a person

has, what properties a place has, and what relationship exists between a person and

a place, for this RDF is inadequate. Whether in the concept of intelligence or in

practical applications, this generalization and abstraction ability is very important;

at the same time, this is also emphasized by the knowledge graph itself. Combining

the two technologies RDFs and OWL Web Ontology Language, or schema/ontology

language, helps solve this problem of RDF’s limited expressive power.
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Figure 4: SPO triples

Figure 5: Jon Favreau N-triples

Figure 6: Jon Favreau turtles
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Figure 7: Jon Favreau subject turtles

2.3.1.1 RDFs

Resource Description Framework Schema(RDFs) serialization is no different from

RDF [22]. In fact, the form of expression in RDFs is RDF. In this example, we use the

term “rdfs:Class" to define the two classes “person" and “place". In RFDs, there is no

distinction between data properties and object properties. The term “rdf:Property"

defines properties, which are the “edges" of RDF Figure 8.

The following are some of the more important and commonly used terms in RDFs:

• rdfs:Class Used to define classes.

• rdfs:domain Used to indicate which category this attribute belongs to.

• rdfs:range Used to describe the value type of this attribute.

• rdfs:subClassOf Used to describe the parent class of this class. For example,

we can define an athlete class and declare that this class is a subclass of human.

• rdfs:subProperty Used to describe the parent property of this property. For

example, we can define a name attribute and declare that the Chinese name
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and full name are subclasses of name.

In order to more intuitively understand the layers represented by RDF and

RDFs/OWL in the knowledge graph, we use the following diagram to represent the

data layer and the pattern layer in the example Figure 9.

The Data layer is our specific description of Jon Favreau using RDF, the

vocabulary layer is some vocabulary (category, attribute) we have defined, and the

RDFs layer is a predefined vocabulary. In the figure, we use red rounded rectangles to

represent classes, green fonts to represent “rdf:type", “rdfs:domain", and “rdfs:range"

three predefined vocabularies, and dashed lines to represent “rdf:type". Besides, in

order to reduce the intersection of the lines in the figure, we only kept the relationship

of “rdf:type" of the attribute of career and omitted the relationship of other attributes.

2.3.1.2 OWL

As mentioned above, RDFs is essentially an extension of the RDF vocabulary. Later,

it was discovered that the expression ability of RDFs was still quite limited, so OWL

was proposed. We can also use OWL as an extension of RDFs, which adds additional

predefined vocabulary [42, 72].

Web Ontology Language (OWL) is one of the core layers of the semantic web

technology stack. OWL has two main functions:

• Provide fast and flexible data modeling capabilities.

• Efficient automatic reasoning.

The following is how one uses OWL for data modeling Figure 10. Say, we want

to use OWL to describe Jon Favreau’s semantic layer:

• Here we use “owl:Class" to define the two classes “Person" and “Place".

• Unlike RDFs and RDF, OWL distinguishes between data properties and

object properties (object properties represent the relationship between entities).
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Figure 8: Jon Favreau RDFs example

“owl:DatatypeProperty" defines data properties, “owl:ObjectProperty"

defines object properties.

After the description language of the schema layer is changed to OWL, the

hierarchy diagram is expressed as: Data properties are represented in cyan, and

object properties are represented in blue Figure 11. The following are some of the

more important and commonly used vocabularies of OWL:

• owl:TransitiveProperty Indicates that the attribute has transitive properties.

For example, we define “located" as a transitive property. If A is in B and B is

in C, then A must be in C.

• owl:SymmetricProperty Indicates that the property has symmetry. For
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Figure 9: RDFs layers example

example, we define “awareness" as a symmetrical property. If A knows B, then

B must know A.

• owl:FunctionalProperty Represents the uniqueness of the value of this

property. For example, we define “mother" as a unique attribute. If A’s mother

is B, and elsewhere we know that A’s mother is C, then B and C refer to the

same person.

• owl:inverseOf Defines the inverse relationship of an attribute. For example,

the reverse relationship that defines “parents" is “children". If A is B’s parents,

then B must be A’s children.

• owl:equivalentClass Indicates that a certain class is the same as another

class.

• owl:equivalentProperty Indicates that a certain property is the same as

another property.
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Figure 10: Jon Favreau OWL example

• owl:sameAs Indicates that the two entities are the same entity.

Ontology mapping is mainly used to merge multiple independent Ontology

Schemas [56]. For example, PersonA constructs an ontology structure, which defines a

class such as “Person" to represent people; PersonB defines “Human" class to represent

people in the ontology that it builds. When we merge these two ontologies, we can use

OWL’s ontology mapping method. Without OWL, it is difficult to merge knowledge

graphs.

As we mentioned before, one of the characteristics of OWL is reasoning [68]. The

reasoning of knowledge graph is mainly divided into two categories: ontology-based

reasoning and rule-based reasoning [85]. Here we are talking about reasoning based

on ontology. It is not difficult to find that the property feature function introduced

above creates the premise for reasoning about RDF data. At this point, we can add a

reasoner that supports OWL reasoning to perform ontology-based reasoning. RDFs
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Figure 11: Jon Favreau OWL layers

also supports reasoning, but due to the lack of expressive ability, its reasoning ability

is not strong. For example, we use RDFs to define two classes: human and animal.

In addition, define human as a subclass of animal. At this time the inference engine

can infer that if an entity is a human, then it is also an animal. OWL also supports

this basic reasoning. In addition, with its strong expressive ability, we can make more

complex reasoning. Imagine a scenario where we have a huge database that stores

the kinship of characters. Many of the relationships in it are one-way. For example,

Its only saved A’s father (mother) is B, but there is no A in the child field of B, as

shown in the following table Figure 12.

If there is only a single relationship and the amount of data is not large, we

can manually complete this relationship. If there are hundreds of relationship types

and hundreds of millions of characters, it is difficult to deal with when modifying,

adding, or deleting relationships. If we use “inverseOf" to indicate that “hasParent"

and “hasChild" are in an inverse relationship with each other, the above data can be
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Figure 12: OWL reasoning example

Figure 13: OWL inverse reasoning example

expressed as Figure 13. The relationship in green indicates that it actually exists in

our RDF data, and the relationship in red is obtained by reasoning.

2.3.2 Graph-based Storage

Knowledge graph because its data contains entities, attributes, relationships, etc.,

and because common relational databases such as MySQL can not reflect these

characteristics of the data, the storage of knowledge graph data is generally a graph

database.

The advantage of the graph database is that it can naturally represent the

structure of the knowledge graph, the nodes in the graph represent the objects of the

knowledge graph, and the edges in the graph represent the object relationship of the

knowledge graph; the advantage of this approach is that the database itself provides a

complete graph query language, supporting various graph mining algorithms. Query

speed is better than relational database, especially multi-hop query performance is

better. However, its disadvantage is that the update of the graph database is more

complicated, the distributed storage of the graph database is expensive, the data

update speed is slow, and the processing overhead of large nodes is high.
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2.3.2.1 Neo4j

The data storage form of Neo4j, a graph database, is mainly to organize data by

nodes and edges. Node can represent the entity in the knowledge graph, edge can

be used to represent the relationship between entities, the relationship can have a

direction, the two ends correspond to the start node and end node. In addition, we

can add one or more labels on the node to indicate the classification of the entity,

and a set of key-value pairs to represent some additional attributes of the entity in

addition to the related attributes.

As a graph database, Neo4j has the following advantages [14]:

• Faster database operation.

• The data is more intuitive and the SQL statements are better written.

• More flexible. No matter what new data needs to be stored, they are all nodes

and edges, and only node attributes and edge attributes need to be considered.

• The speed of database operations does not decrease significantly with the

increase of the database.

Neo4j uses Cypher as the query language. Cypher is a descriptive graph query

language, it is not necessary to write the traversal code of the graph structure, which

is convenient for efficient query of the graph storage [57]. Cypher is designed to be

a human query language, and many of its keywords such as “like" and “order by"

are inspired by SQL. The expression for pattern matching comes from SPARQL. The

SPARQL query language contains the following main parts:

• START: At the starting point in the figure, it is obtained by looking up the ID

or index of the element.

• MATCH: Matching pattern of graphics.

• WHERE: Filter condition.

• RETURN: Return what is needed.
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2.3.2.2 ArangoDB

ArangoDB is a multi-model database, which has three data model storage formats

with graph, document and key/value pair [91]. The reason for its quick and flexible

query is that it has a unified kernel and unified database query language-AQL

(ArangoDB Query Language), which applies to all three data models. It can cover all

three data models, and also allows a mixture of three data models in a single query.

Therefore, users can mix and use multiple data models in a single query without

switching between different data models or performing data transmission. And all

three data models support horizontal expansion. Based on its local integrated multi-

model feature, ArangoDB’s native multi-model database is suitable for building high-

performance applications. ArangoDB has the following characteristics:

• Multi-data model: Users can flexibly use document, graph, key-value or their

combination as their data model.

• Convenient query: Support SQL-like query syntax AQL, or through REST and

other queries.

• Ruby and JS extensions: No language range restrictions, user can use the same

language from the front-end to the back-end.

• Simple and easy to use: It can be started and used in a few seconds, and the

user can manage their ArangoDB through a graphical interface.

• Open source and free: ArangoDB complies with Apache protocol.

2.4 Knowledge Graph Visualization

Data visualization is not a necessary part, but visualization has some irreplaceable

benefits. Graph data is easier to display visually, and graph visualization can help

data analysts, business users and developers improve analysis efficiency. Anyone

browsing the graph can view the connections, identify areas of interest or quickly

assess the current state and organization of the data. As one can imagine, this can
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provide insights that other types of data representations cannot provide, and bring

tremendous value. Visualization helps make anomalies or related patterns stand out

to help the human eye and brain detect them, and other types of data formats may

not highlight hidden structures. In this section, we will review three of the existing

methods for knowledge graph visualization:

• Neo4j Desktop

• Protege

• Networkx

2.4.1 Neo4j Desktop

The design of Neo4j is very intuitive. With nodes and relationships, users can easily

model data into content that is easy to understand for developers, data analysts, and

bosses. The visual structure also makes querying, building and maintaining easier to

read and expand. In the absence of graphs, we can view the data in Neo4j in many

ways. Neo4j can also return the results in JSON, XML, and Table formats. Neo4j

has two main visualization tools that are specifically designed for use with data in

the Neo4j graph database: Neo4j Browser and Neo4j Bloom. Neo4j browser is a tool

for developers that allows them to perform Cypher queries and visualize the results.

It is the default developer interface for the enterprise and community editions of the

Neo4j database. Neo4j Bloom is a commercially licensed product that allows users to

browse their graph data in natural language.

Neo4j embeds visual content into applications, allowing developers to create

applications that use visual content as part of the user interface. It should be noted

that these libraries usually do not support extremely complex or heavy workloads and

do not have vendor support or SLAs (service level agreement) for feature requests.

Because they are managed by the community, these tools rely on the community to

provide support and feature improvements.
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2.4.2 Protege

Protege is an open-source Java tool researched and designed by Stanford University.

It provides an extensible framework for the development of application systems based

on knowledge bases. It is currently a relatively complete ontology support tool

and has many professional ontology fields built with Protege. Protege provides a

friendly graphical user interface for editing classes, attributes, and instances involved

in Ontology.

The various ontology visualization plug-ins supported by Protege can immediately

display the edited ontology in a variety of visualization methods. There are 13

visualization plug-ins listed on Protege’s official website. These visualization tools

have their characteristics and are rich in functions.

2.4.3 Networkx

Networkx was produced in May 2002. It is a software package written in python,

which is convenient for users to create, operate and learn complex networks. Users

can use networkx to store networks in standardized and non-standardized data

formats, generate a variety of random networks and classic networks, analyze network

structures, establish network models, design new network algorithms, and perform

network drawing, etc. Networkx supports the creation of four graph types:

• Graph undirected graph, allowing nodes to form a closed loop with itself.

• DiGraph directed graph.

• MultiGraph, multiple undirected graphs, a flexible graph type that allows

multiple undirected edges between pairs of nodes. The extra flexibility leads to

some performance degradation, but it is usually not significant.

• MultiDiGraph, multi-directed graph.
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2.5 Recommendation System

In this section, we are going to review the existing approaches for the recommendation

system task, most of them can be sorted into the following categories [5]:

• Content-based Filtering.

• Collaborative Filtering.

• Machine learning enhanced recommendation system.

2.5.1 Content-based Recommendations

Content-Based Recommendations build a recommender algorithm model based on

item-related information, user-related information and user actions on items to

provide users with recommendation services [53, 48]. The item-related information

here may be metadata, tags, user comments, manually marked information, etc. that

describe the item text. User-related information refers to demographic information

(such as age, gender, preference, region, income, etc.). The user’s operations on items

can be comments, favourites, likes, viewing, browsing, clicking, adding a shopping

cart, buying, etc. The content-based recommendation algorithm generally only relies

on the user’s behaviour to provide recommendations for the user and does not involve

the behaviour of other users.

The disadvantage of content-based recommendation is that thorough content

analysis is required, and there is a user cold-start problem, which cannot bring

surprises to users (only recommend products with similar content).

2.5.2 Collaborative Filtering-based Recommendations

Collaborative filtering is different from traditional content-based filtering. It analyzes

user interests, finds users with similar interests in specified users in the user group.

Based on the evaluation of certain information by these similar users, the system

predicts how much the specified user likes a specific item [70].
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Figure 14: User-based collaborative filtering example

2.5.2.1 User-based Collaborative Filtering

The user-based collaborative filtering algorithm finds the user’s liking for the product

or content (such as product purchase, collection, content comment or sharing) through

the user’s historical behaviour data, normalize and score these preferences [18, 65].

The relationship between users is calculated based on the attitudes and preferences of

different users towards the same product or content. Recommends products among

users with similar preferences. The following are the specific steps.

• Find users with similar preferences: We simulated five users’ ratings on

two products to illustrate how to find similar users based on their attitudes and

preferences for different products Figure 15. It is difficult to visually find the

connection between the five users from the table. We will show the scores in a

graph, and the relationship between the users is easy to find. In the figure, the

Y-axis is the rating of item 1, and the X-axis is the rating of item 2. According
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Figure 15: User item rating example

to the distribution of users, it can be found that the three users A, C, and D

are relatively close. User E and user B form another group Figure 16.

• Calculate the distance between users: Euclidean distance evaluation is

a relatively simple user relationship evaluation method. The principle is to

determine whether different users have the same preference by calculating the

distance between two users in the mapping Figure 17.

• Provide recommended items for similar users: When we need to

recommend products to users, we first check the previous similarity list and

find that users A, C, and D have high similarities. These three users have the

same preferences. Therefore, we can recommend the products purchased by A

and D to user C.

2.5.2.2 Item-based Collaborative Filtering

The item-based collaborative filtering algorithm is very similar to the user-based

collaborative filtering. Items and users are interchanged. The relationship between

items is obtained by calculating the scores of different items by different users.

Recommend similar items to users based on the relationship between items [9, 65].

The following are the specific steps.
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Figure 16: User item rating example

Figure 17: User distance example

36



Figure 18: Item user rating

• Find similar items: The table shows the scores of 5 products by two users

Figure 18. The the ratings of two users are used to obtain the similarity between

the 5 products. From the table alone, we still find it difficult to find the

connection, so we chose to show it through the graph Figure 19.

• Calculate the distance between items: From the Euclidean coefficient, we

can see that items 1, 3, and 4 are closely related to each other Figure 20.

• Provide users with recommendations based on similar items: When we

need to recommend users to products, we first check the previous similarity list

and find that items 1, 3, and 4 have high similarities. These three items have

the same preferences. Therefore, we can recommend the user who purchased

item 1 and 4 to item 3.

Collaborative filtering does not require domain knowledge of items, so it is difficult

to handle new items or new users, and it is difficult to take into consideration the

side features of items.

2.5.3 Recommendation System Frameworks

While much of the research in recommendation systems has been focused on the

underlying algorithms, there is some work on developing frameworks. Through

our reading of paper [74], below we describe a number of frameworks found in the
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Figure 19: Item user rating graph

Figure 20: Item distance
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Figure 21: The structure of the gradient descent model.

literature.

2.5.3.1 A Gradient based Adaptive Learning Framework for Efficient

Personal Recommendation

Yue et al. [59] use gradient descent to learn the user’s model for the recommendation.

Three machine learning algorithms (including logistic regression, gradient boosting

decision tree and matrix decomposition) are used. Figure 21 describes the structure

of the recommendation system.

Although gradient boosting decision tree can prevent overfitting and has strong

interpretability, Boost is a serial process, which is not easy to parallelize and has high

computational complexity. At the same time, it is not suitable for high-dimensional

sparse features. If there are many features, each regression tree will consume a lot of

time.

2.5.3.2 Raccoon Recommendation Engine

Raccoon [54] is built on top of Node.js and Redis. It is a recommendation system

framework based on collaborative filtering. The system uses k-nearest-neighbours

to classify data. The classification idea is similar to the collaborative filtering idea

mentioned in Section 2.5.2.

39



Because Raccoon uses the collaborative filtering algorithm, it needs to calculate

the similarity of users or items. Raccoon uses two different coefficients to calculate

the similarity, namely Pearson and Jaccard. The original implementation of Raccoon

uses Pearson which was good for measuring discrete values in a small range. But in

order to make the calculation faster, you can also use Jaccard, which is a calculation

method used to measure binary rating data (ie like/dislike). But the collaborative

filtering algorithm doesn’t care about the inner connection of characters or objects.

The collaborative filtering algorithm only needs to enter the user ID and movie ID to

make recommendations. For example, Robert Downey is an actor in Iron man, and

he is also an actor in Iron man2. If another user related to this user has only seen

ironman but not ironman2, the system will not recommend ironman2 to this user.

If the number of users is large, optimization needs to be performed, and it is

inefficient to compare each user with other users.

2.5.3.3 Good Enough Recommendations (GER)

GER (Good Enough Recommendation) [37] is a scalable, easy-to-use and easy-to-

integrate recommendation engine. GER is an open source NPM module. Its core is

the same as the knowledge graph triplet (people, actions, things). GER recommends

in two ways. One is comparing two people by looking at their history, another one is

providing recommendations from a person’s history.

GER is implemented in Coffee-Script on top of Node.js. Its core logic is

implemented in an abstraction called the Event Storage Manager (ESM). Data can

be stored in memory ESM or PostgreSQL ESM. It also provides corresponding

interfaces to the framework developer, including the Initialization API for operating

namespace, the Events API for operating on triples, the Thing Recommendations API

for computing things, the Person Recommendations API for recommending users, and

Compacting API for compressing items. If the framework developer completes these

APIs according to the new storage model, it can also be integrated into the GER

framework.

The process of GER’s core recommendation module is as follows:
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1. According to the entered user id, by checking their history, find similar people.

2. Calculate the similarity between the input user ID and a series of people.

3. Find a list of recent things done by the most similar person.

4. Use the similarity of people to calculate the weight of things.

2.5.3.4 Simple Python Recommendation System Engine

Simple Python Recommendation System Engine (Surprise) [35] is a recommendation

system library in the scikit series. The main feature of Surprise is that it is easy to

use and supports multiple recommendation algorithms.

• Baseline algorithms: Randomly give a predicted value according to the

distribution characteristics of the training set.

• Neighborhood methods: K-nearest neighbour algorithm based on

collaborative filtering.

• Matrix factorization-based: Algorithm based on Singular Value Decompo-

sition.

The nearest neighbour-based method (collaborative filtering) supports different

similarity metrics (cosine similarity, mean square difference similarity and Pearson

correlation coefficient).

Surprise was designed to alleviate users’ worries about data processing, so two

processed data sets (Movielens, Jester) have been included in Surprise. Movielens is

a public dataset of movie data maintained by members of GroupLens Research at the

University of Minnesota. Jester is a data set maintained by AUTOLab, a member

of UC Berkeley, which include 6.5 million anonymous user ratings for jokes. Users

can also customize their own data sets. Users can also use various built-in prediction

algorithms, such as neighbourhood methods, based on matrix factorization (SVD,

PMF, SVD++, NMF). Various similarity measures (cosine, MSD, Pearson...) are

also built-in.
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2.5.3.5 LensKit

LensKit [44] is an open-source recommendation system based on java, produced by

the GroupLens Research team of the University of Minnesota. But the java version

of LensKit has been deprecated, and the latest version uses python. The python

version of Lenskit is a set of tools for experimenting and researching recommendation

systems. It provides support for training, running and evaluating recommendation

systems.

The recommended algorithms in LensKit include SVD, Hierarchical Poisson

Factorization, and KNN. LensKit can work with any data in pandas.DataFrame

with the expected columns. Lenskit loads data through the dataLoader function.

Each data set class or function takes a path parameter specifying the location of the

data set. These data files have normalized column names to fit with LensKit’s general

conventions. They are UserID, Item ID, Rating and Timestamp.

2.5.3.6 A general graph-based framework for top-N recommendation

using content, temporal and trust information

Armel et al. [60] proposed a model called GraFC2T2. It is a graph-based framework

to combine and compare various kinds of information for recommendation. With

GraFC2T2, users can calculate the results of using various information, and then find

the appropriate combination for specific applications. The author also experiments on

two data sets, Epinions and Ciao to illustrate the functions of GraFC2T2. GraFC2T2

uses content-based methods and adds the weight of user interests to reflect the changes

in users’ interests over time.

2.5.3.7 Deep Knowledge-Aware Network for News Recommendation

(DKN)

DKN [77] proposes a model that integrates the embedded representation of knowledge

graph entities with neural networks for news recommendation. News is characterized

by highly condensed language and contains many knowledge entities. The previous
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Figure 22: DKN architecture [77]

models did not consider the external knowledge contained in news, and only carried

out representation learning from the semantic level, and did not fully explore the

relationship of news at the knowledge level. News is timesensitive, and a good news

recommendation algorithm should be able to make corresponding changes as users’

interests change. To solve the above problems, the DKN model is proposed. First,

a knowledge-aware convolutional neural network (KCNN) is used to integrate the

semantic representation of news with the knowledge representation to form a new

embedding, and then the attention from the user’s news click history to the candidate

news is established. The news with higher scores are recommended to users. The

overall network architecture is shown in Figure 22.

2.5.3.8 Multi-task Feature Learning for Knowledge Graph enhanced

Recommendation (MKR)

The traditional recommendation system only uses historical interaction information

of users and items as input, which brings two problems: First, in actual scenarios, the

interaction information of users and items are often very sparse. For example, a movie

app may contain tens of thousands of movies, but a user-rated movie may only have

dozens of movies on average. Using such a small amount of scoring data to predict
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a large amount of unknown information will greatly increase the risk of overfitting

of the algorithm; Second, for newly added users or items, because the system does

not have its historical interaction information, it cannot do accurate modelling and

recommendation, this situation is also called cold start problem [83, 64, 50, 92].

A common approach to solve the problem of sparsity and cold start is to introduce

some side information as input in the recommendation algorithm. The auxiliary

information can enrich the description of users and items and enhance the mining

ability of the recommendation algorithm, thereby effectively making up for the

sparseness or lack of interactive information. Commonly uxed auxiliary information

includes:

• Social networks: A user is interested in an item, and his friends may also be

interested in the item.

• User/item attributes: Users with the same attributes may be interested in

the same type of items.

• Multimedia information: For example, images, video, audio, text, item

pictures, movie trailers, music, news titles, etc.

• Context: The time, place, and current session information of the user-item

interaction.

Among all kinds of side information, knowledge graph as a provider of side

information has gradually attracted researchers’ attention.

The triple (h, r, t) shown in the picture above Figure 23 expresses the fact that

“John Lasseter wrote and directed toy story (1995)", where h=John Lasseter, t=toy

story(1995), r=director, writer.

The knowledge graph has the potential to be applied in many recommendation

scenarios, such as movies, news, restaurants, shopping, etc. Compared with other

kinds of side information, the introduction of the knowledge graph can make the

recommendation result have the following characteristics [61]:
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Figure 23: Toy story triples

• Precision: The knowledge graph introduces more semantic relationships for

items, which can deeply discover the interests of users.

• Diversity: The knowledge graph provides different types of relationship

connections, which is conducive to the divergence of recommendation results and

avoids the limitation of recommendation results in a single category Figure 24.

• Explainability: The knowledge graph can connect the user’s historical records

and recommendation results, thereby improving the user’s satisfaction with the

recommendation results and enhancing the user’s trust in the recommendation

system Figure 24.

• Context: The time, place, and current session information of the user-item

interaction.

A complete knowledge graph can provide deeper and longer-range associations

between items, for example, “Iron man–Robert Downey Jr.–American–Will Smith–

Men in Black 3." It is precisely because the knowledge graph has higher dimensions

and richer semantic relationships, and its processing is therefore more complicated

and difficult.

Knowledge Graph Embedding learns a low-dimensional vector for each entity

and relationship in the knowledge graph while maintaining the original structure

or semantic information in the graph. Because knowledge graphs contain unique

semantic information, knowledge graph feature learning requires more careful and

targeted model design than general network feature learning.
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Figure 24: Recommended diversity

A good set of entity vectors can fully and completely represent the

interrelationships. Most machine learning algorithms can easily handle low-

dimensional vector inputs [34]. Therefore, use of knowledge graph feature learning

facilitates introduction of the knowledge graph into various recommendation system

algorithms. Knowledge graph feature learning:

• Reduces the high dimensionality and heterogeneity of the knowledge

graph.

• Enhances the flexibility of knowledge graph application.

• Reduces the workload of feature engineering.

• Reduces the extra computational burden caused by the introduction

of a knowledge graph.

Because the items in the recommendation system overlap with the entities in the
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Figure 25: MKR structure [79]

knowledge graph, multi-task learning can be used to treat the recommendation system

and knowledge graph feature learning as two separate but related tasks.

The structure of MKR is shown in the figure below Figure 25. The left is the

recommendation system task, and the right is the knowledge graph feature learning

task. The input to the recommendation part is the characteristic representation of

the user and the item, and the output is the estimated value of the click rate. The

knowledge graph feature learning part uses the head node and relationship of the

triple as input, and the predicted tail node as output.

Further, cross-feature-sharing units can be designed as connecting links between

two tasks of recommendation and knowledge graph feature learning.

• Cross and Compress Unit:

The cross-feature sharing unit is a module that allows two tasks to exchange

information. Since the item vector and the entity vector are two descriptions of

the same object, the cross-sharing of information between them can allow both

to obtain additional information from each other, thereby making up for the

lack of information sparsity. Its structure is as follows Figure 26. Its structure

is as follows:

47



Figure 26: Cross feature sharing units structure [79]

– Cross operation: Construct a d ∗ d pairwise interaction of vl ∈ Rd and

el ∈ Rd.

Cl = Vle
T
l =

⎡⎢⎢⎢⎣
v1l e

1
l ... v1l e

d
l

... ...

vdl e
1
l ... vdl e

d
l

⎤⎥⎥⎥⎦ (1)

– Compress operation: wl ∈ Rd and bl ∈ Rd are training weights and

deviation vectors. The weight vectors compress the cross feature matrix

from Rd ∗ d to Rd.
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– For simplicity, the cross compression unit is expressed as follows:

[︂
vl+1, el+1

]︂
= C(vl, el) (3)

• Recommendation Module:

Vectors u and v represent user u and item v. u and v can be expressed based on

application scenarios with one-hot, attributes, bag-of-words, or a combination
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of them.

Given the original feature vector u of user u, use an L-layer multi-layer

perceptron MLP to extract the user’s potentially concentrated features.

uL = M(M(M(...M(u)))) = ML(u) (4)

Where M is the fully connected neural network layer:

M(x) = σ(Wx+ b) (5)

The recommendation system module is a click-through rate estimation model:

After obtaining the user feature vector and the item feature vector, the

probability of user u participating in item v can be calculated by vector inner

product:

ŷuv = σ(fRS(uL, vL)) (6)

• KGE Module:

KGE maps entity and relationship to low-dimensional space while retaining

their original spatial structure. For a given knowledge triple (h, r, t), cross-

compression unit and multilayer perceptron are used to extract features from

the original head h and relation r.

The vectors corresponding to head and relationship are jointed together, and

through a multi-layer neural network, a tail vector t̂ is estimated.

The tail vector predicted by the knowledge graph embedding module is expected

to be similar to the real tail vector: The score of the last triple (h, r, t) is

calculated by the similarity function fKG. The fKG function can be the inner

product of t and t̂ and then do the sigmoid transformation.

score(h, r, t) = fKG(t, t̂) (7)
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• Learning Algorithm:

The complete loss function is as follows:

L = LRS + LKG + LREG (8)

The first item is the cross-entropy loss of the recommender module. The second

item is the loss of the KGE module, which aims to increase the score of correct

triples and reduce the score of wrong triples. The third term is a regularization

term to prevent overfitting.

Although this framework uses knowledge graphs, their knowledge graphs are

input in the form of txt documents. If the knowledge graph needs to be modified,

a lot of manual work is required. If we integrate the building of the knowledge

graph into the framework, it will save a lot of work in future management.

2.6 Software Available for Framework Development

To implement a general solution we need tools for (1) extracting information from

the website (2) building knowledge graph (3) visualizing knowledge graph (4) building

recommendation system. We survey below, currently available software that may be

useful for our solution.

2.6.1 Beautiful Soup

Beautiful Soup is a Python library that can extract data from HTML or XML files. It

can implement document navigation, search, and modify documents in the way you

define. It automatically converts input documents to Unicode encoding and output

documents to utf-8 encoding. Provides users with flexible analysis strategies and fast

speed.
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Figure 27: Protege example

2.6.2 Protege

As mentioned earlier, Protege is a free, open-source platform that provides a growing

user community with a suite of tools to construct domain models and knowledge-based

applications with ontologies.

Its visual interface is shown below Figure 27.

Double-click “owl:Thing" and the ontology information will display in the right

area. Among the graph displayed, double-click to expand, and you will see the

relationship diagram of the entire ontology. Above the picture, the relationship

diagram can be displayed in different ways, such as vertical direction display,

horizontal direction display, etc. If you put the mouse on an information node, the

detailed information of the information node will be displayed.

2.6.3 Owlready2

Generally speaking, the ontology requires us to build in an editor like Protege, but

if it is manually added, the efficiency is very low. If you want to add it through the

program, it needs some development interface. Jena is such a set of API developed
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by HP. But Jena is based on java, so we explored and found Owlready2. Owlready2

has been created at the LIMICS research lab, it is a module for ontology-oriented

programming in Python. It can load OWL 2.0 ontologies as Python objects, modify

them, save them, and perform reasoning via HermiT (included). Owlready2 provides

the following functionalities via its interface:

• Load the ontology from a local repository or from the Internet

• Create a new class in ontology

• Access ontology classes and create new individuals

• Export to RDF/XML file

• Perform reasoning and classify instances and classes

2.6.4 Neo4j

As described earlier, Neo4j is a high-performance NoSQL graph database.

The following is a Neo4j knowledge graph with “dangerous minds (1995)” as an

example Figure 28.

2.6.5 Cypher

Neo4j uses Cypher to query graph data. Cypher is a descriptive graph query language

with simple syntax and powerful functions. Neo4j is an absolute leader in the graph

database family and has a large number of user bases, making Cypher very popular.

Cypher is very similar to SQL. Cypher keywords are not case sensitive, but attribute

values, labels, relationship types, and variables are case sensitive.

2.6.6 Py2neo

Py2neo is a client library and toolkit for working with Neo4j from within Python

applications and from the command line. The library supports both Bolt and HTTP

and provides a high level API, an OGM, admin tools, an interactive console. Unlike
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Figure 28: Neo4j example

previous releases, Py2neo v4 no longer requires an HTTP-enabled server and can

work entirely through Bolt.

2.6.7 Tensorflow

TensorFlow is a popular open-source machine learning framework in the world [2]. It

is fast, flexible, and suitable for large-scale product-level applications. It allows every

developer and researcher to easily use artificial intelligence to solve diverse challenges.

TensorFlow has rich applications in scenarios such as graphics classification, audio

processing, recommendation systems, and natural language processing. TensorFlow

supports various platforms such as Linux, Windows, Mac and even mobile devices.

It also provides a very rich API for deep learning, including basic vector-matrix

calculation, various optimization algorithms, the implementation of various basic
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Name Type Storage types Domain Example uses Language ML Models Maintained
Yue Ning et. al. Decision Tree - content recommendation content recommendation - Boosting -

Racoon Collaborative Filtering Redis cross-domain https : //github.com/guymorita/benchmarkraccoonmovielens Java KNN Jan 10, 2017
GER Collaborative Filtering PostgreSQL movie https : //github.com/grahamjenson/ger/tree/master/examples Java - Jul 9, 2015

Surprise Collaborative Filtering LocalFile movie,joke https : //github.com/NicolasHug/Surprise/tree/master/examples Python matrix factorization, KNN Aug 6, 2020
LensKit Machine Learning LocalFile cross-domain https : //github.com/lenskit/lkpy/tree/master/examples Python SVD, hpf Nov 10, 2020

GraFC2T2 Content-based LocalFile cross-domain https : //github.com/nzekonarmel/GraFC2T2 Python - Jan 18, 2019
DKN knowledge graph enhanced LocalFile News https : //github.com/hwwang55/DKN Python tensorflow Nov 22, 2019
MKR knowledge graph enhanced LocalFile cross-domain https : //github.com/hwwang55/MKR Python tensorflow Nov 22, 2019

PredictionIO machine learning Hadoop,HBase - https : //github.com/apache/predictionio Scala Apache Spark MLlib Mar 11, 2019

Table 1: Characteristics of Existing Frameworks

units of convolutional neural networks and recurrent neural networks, and visual

aids, etc. TensorFlow has the following characteristics:

• High flexibility: Users can write their own superstructure and library in

python based on TensorFlow. If TensorFlow does not provide the API we

need, we can also write the underlying C++ code ourselves and add the newly

written functions to TensorFlow through custom operations.

• Portability: TensorFlow can run on CPU and GPU, can run on a desktop,

server, mobile devices.

• Support multiple programming languages: TensorFlow uses python to

build and execute our logic, and it also supports C++, java, GO and other

programming languages.

• Complete documentation: The official website of TensorFlow provides very

detailed documentation, including the use of various APIs and examples of basic

applications, as well as some basic theories of deep learning.

2.7 Summary of Recommendation System Litera-

ture Review

A comprehensive review of the literature in Section 2.5 shows that there are three

types of recommender system models (collaborative filtering, content based, and

machine learning based). Different types of models have different advantages. Table 1

is a tabulated summary of the frameworks mentioned above.
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In the current literature review, we found that the model proposed by Yue et al.

[59] mainly uses the boosting model. Boosting can prevent the decision tree from

overfitting, and the trained model is also easy to explain. But the computational

complexity of boosting is high, and cannot be parallelized. So the training will

consume a lot of time.

Raccoon(Section 2.5.3.2) is a more comprehensive collaborative filtering based

recommendation framework. Raccoon uses the K-nearest-neighbours model. It

cannot handle new users or new items, well known as the cold start problem. Further,

it also has data sparseness, and scalability issues.

The advantage of GER is that it contains no business rules, limited configuration,

and almost no setup required. It does not require a complicated configuration to

use and is easy to understand. But at the expense of the scalability of the engine.

Besides, GER also has some other limitations. The first limitation is that it does not

generate recommendations for a person with less history. For example, if a person

has only liked one movie, their generated recommendations will probably be random.

In this case GER return no recommendations and lets the client handle this situation

[36]. Another is data set compression limit, i.e., certain items will never be used. For

example, if items are older or belong to users with a long history, these items will not

be used in any calculations, but will occupy space.

Surprise in Section 2.5.3.4 is a library in the scikit series. It supports a variety

of recommendation algorithms and contains many similarity metrics and evaluation

criteria. It is the preferred way to implement the recommendation algorithm using the

python language. However, Surprise also has some drawbacks. It cannot recognize

other languages, for example Chinese. When using Surprise to read local data, the

local CSV file cannot have headers, and columns with Chinese in the headers and

metadata need to be removed. Framework developer needs to provide a new Reader

class.

The advantage of LensKit is that its framework contains many algorithms, such

as funksvd and KNN, and users can call different algorithms according to their needs.

In LensKit the data is called through the path parameter, and the data has a specific
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format, This means that the LensKit framework can only process user, item and

rating data. If the user has new data, such as user information or item classification,

the LensKit framework cannot handle it.

The advantage of GraFC2T2 is that it refers to the weight of the user’s interest

so that when generating recommendations, it will focus more on the user’s recent

interests, but the disadvantage is that it uses text files as input, which costs more

time when modifying or managing user’s log file.

The advantage of DKN in Section 2.5.3.7 is that it uses knowledge graph

embedding as an aid. However, because of the design of the model, DKN can only

be used for news recommendations.

MKR Section 2.5.3.8 is a general recommendation framework that aims to use

Knowledge Graph Embedding (KGE) to assist recommendation tasks. The knowledge

graph embedding and recommendation system are independent of each other, but they

are highly related because the item in RS and the entity in KG are related to each

other. The entire framework can be trained by alternately optimizing the two tasks,

giving the user a high degree of flexibility and adaptability in real recommendation

scenarios. However, its main drawback is that it inputs text documents as knowledge

graphs, if users want to change some of the nodes, they need to manually change the

text files. If the amount of data is small, manual operations can be performed. If the

amount of data is large, manual operations are inefficient.

2.8 Summary

In this chapter, we have conducted an extensive review of current methods in

recommendation systems, the representation of knowledge graphs and some existing

recommendation system frameworks. For the storage form of the knowledge graph,

we discussed two forms, OWL and Neo4j. OWL is the RDF representation with

the best descriptive ability, and Neo4j is the most popular graph storage. OWL can

provide the most accurate description for triples, while Neo4j performs very well in

terms of speed. For the recommendation system methods, we introduced various
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models and explained their work flows, and pointed out the need and importance of

using side information. Through our review of previous research, we found that most

of the works that use knowledge for providing side information do not integrate the

construction of knowledge graphs into the framework, and most of them use open

source CSV files or txt files as input. This, as discussed earlier is a major drawback.

In the last part of this chapter, we listed all available software that will be used by

us in the development of our framework.
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Chapter 3

Framework Design

In this chapter, we will first provide our motivation for why we decided to use a

framework solution. Next, we will introduce the architecture of our framework.

Lastly, we detail each component for the core and specialized frameworks.

3.1 Introduction to Software Frameworks

A framework is an abstraction in which the software provides generic functionality, but

can be selectively changed by additional user-written code, thus providing application-

specific software [90]. Compared with non-framework-based approaches, frameworks

promise higher productivity and shorter time of application development. The

software framework aims to facilitate software developments by allowing designers

and programmers to devote their time to meeting software requirements rather than

dealing with the more standard low-level details of providing a working system,

thereby reducing overall development time [27]. In other words:

1. The framework itself is generally not complete enough to solve specific problems.

2. The framework is designed for specialization and expansion.

3. The framework provides many auxiliary, supportive and easy-to-use components

for subsequent specialization and expansion.
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Unlike in libraries or standard user applications, the overall flow of control in the

program is not dictated by the caller, but by the framework.

It fulfills several purposes:

1. Change is required with time in every software application. So the framework

helps out in that a changed scenario is implemented without affecting the other

areas of the application.

2. Handles the routine tasks that every application requires to ease the life of the

developers.

3. Handles all the validations which are required in the application so that the

programmer can focus mainly on the application logic.

4. Reduces the development time and maintenance of the application.

So the framework is important for every application. There is certainly need

for top-level design, and for the functional and non-functional requirements of the

software framework to be allocated to the software components in a unified and

reasonable manner.

While there is a lot of work on specific recommendation methods and systems in

the literature, as we have seen in the last chapter, there is not much work on generic

framework solutions for recommendation systems. In particular, with the maturing

of the technology of knowledge graphs to represent knowledge, the increasing use

of machine learning to enhance recommendation methods, and the importance of

providing side information to these methods for improved performance, there is a

need for a new framework that accommodates specialization and expansion with such

new developments.

3.2 Why Framework Solution?

According to [63, 41], a software framework consists of two kinds of components:
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• Frozen spots: Define the overall architecture of a software system, that is to

say, the relationship between the basic components. These remain unchanged

in any instantiation to derive a specialized framework.

• Hot spots: The part that requires programmers to add their code to meet

specific functions for specialized frameworks.

The framework has three key differences from normal libraries:

Inversion of control: In our case, a major requirement is to enable the use of

knowledge (side information) for enhancing the recommendation system. It can

be divided into two sub-problems: the knowledge graph for representation of all

information, and its availability to the recommendation system, i.e., the knowledge

graph has to provide knowledge inputs to the recommendation system. From the end

user’s point of view, they do not need to care about processing in the middle. The

flow of control from input to recommendations is completed by the framework. The

user need only care about the input.

Extensibility: Developers can expand the framework with just a few simple

operations according to user needs. As mentioned later in Section 1.3.2, extensibility

is one of our non-functional requirements. Since we want to support various kinds

of storage modes, (specified by FR1 and FR2) and as discussed in Chapter 2

the algorithms for both knowledge graph storage and recommendation systems are

diverse. With an extensible design, we save on such integration work.

Non-modifiable framework code: When allowing users to implement extensions,

users can extend the framework but cannot modify the framework. The hot spots of

the framework allow developers to implement specialized functions. The frozen spot

of the framework is used to control the flow of the program. This structure allows

developers to add hot spots to the existing framework. It improves the reliability of

our solutions and reduces programming and testing efforts.
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3.3 Core Framework Design

Figure 29 shows the overall design of our framework solution. It is designed as a

pipeline of tasks from end user input to final recommendations to the end user.

Further, each stage in the pipeline is designed as a sub-framework, some stages are

nested, enabling specialization and expansion at a more granular level. The data flow

of the framework is shown in Figure 30. The four major stages in the pipeline have

the following functionality:

• InfoExtractor framework: It provides the abstraction of a web extractor, it

takes a URL address (such as .html, .htm, .asp, .aspx, .php, .jsp, .jspx)

and extraction rules as input then formats the output that is extracted. This

is further nested, to enable domain level (movies, news, etc.) specialization.

• StorageManager framework: It provides the abstraction of various kinds of

storage. It takes string data stream as input then generates the output file

according to the required format.

• Knowledge graph viewer framework: It provides the abstraction of the

knowledge graph viewer. It takes triples stream as input then creates the

visualization.

• Recommendation method: It provides the abstraction of knowledge input to

the recommendation method. The recommendation method can take these

knowledge graph triples as input and generate recommendations.

3.3.1 InfoExtractor

In Section 1.3, we explained the need for an information extractor. Therefore, it

is necessary to abstract the common methods of information extractors. We will

take the example of extracting movie information, we have designed a specialization

module called MovieExtractor nested in InfoExtractor. MovieExtractor serves as

a frozen spot to provide users with functions such as capturing movie information. To

61

.html
.htm
.asp
.aspx
.php
.jsp
.jspx


Figure 29: Core components of the framework, each box in blue means the
framework’s frozen spot and each box in red represents a set of the hot spots for
each specialized framework.

Figure 30: Data flow of the framework.
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Figure 31: Design of the InfoExtractor Framework.

achieve this goal, we designed the MovieExtractor framework for movie information,

as shown in Figure 31.

MovieExtractor is the abstract class of the extractor, it has three basic methods,

extractDirectorInfo,extractWriterInfo and extractActorInfo. It is used to

extract director information, author information and star information respectively.

extractPosterInfo is the abstract class of the poster downloader. It is used to

download the movie poster from website. Then converts the image into a string

to facilitate the storage and coding of the knowledge graph and recommendation

system. extractDirectorInfo,extractWriterInfo and extractActorInfo return

a list, because there may be many directors, actors or authors of a movie.

Since it is a core module for movie recommendation, we are going to explain some

of these important abstract methods defined in the MovieExtractor class:

1. extractDirectorInfo: This method is to extract the director information of

the movie; the input to this method is movie name of type string and it returns

a list.

2. extractWriterInfo: This method is to extract the writer information of the

movie; the input to this method is movie name of type string and it returns a

list.

3. extractActorInfo: This method is to extract the star information of the

movie; the input to this method is movie name and it returns a list.
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Figure 32: Design of the knowledge graph StorageManager framework.

4. extractPosterInfo: This method is to extract the poster image and then

convert the image to string; the input to this method is movie name of type

string and it returns a string.

MovieExtractor is used as the frozen spot in the framework. There are many

websites on the Internet that store information about movies, such as IMDB,

Wikipedia, Netflix and Douban. The extractors from these websites can be used

as hotspots to access our MovieExtractor API.

In another extractor framework, we have a hot spot called BookExtractor, which

is used to extract book information.

3.3.2 Knowledge Graph StorageManager Framework Design

As mentioned in Section 1.3, knowledge graphs enhance recommendation systems. So

it is necessary to design a special framework for this. For flexibility and scalability,

we need to extract the common parts of different types of knowledge graph storage,

and then provide their abstractions.

Out of this consideration, StorageManager Framework serves as a frozen spot.

We designed a dedicated frame as shown in Figure 32. Also, the design should allow

us to add support to more kinds of storage modes easily without changing the frozen

spots themselves. With these requirements in mind, our design makes it easier for

framework developers to add their hot spot to our frozen spot. If users have a new
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storage method to store their knowledge graph, they can provide a backend of their

storage method, and in StorageManager they only need to change one line of code

to call their storage module.

The following is a detailed explanation of some important methods.

1. getAllTriples: This method is to extract all the triples; the input of this

method is an empty list and it returns all triples as a list of string.

2. addNode: This method is to check whether the node exists, and if it does not

exist, generate a new node. Because all data in open source data exists in the

form of triples, but if users use their data, there may be separate nodes. In this

case, you need to use the addNode method. The input of this method is node

name of type string, and it returns node.

3. addRelation: This method is to check whether the relation exists, and if it

does not exist, generate a new relation. The input of this method is relation

name of type string, and it returns relation.

4. addTriple: When we create the graph, or when we do knowledge graph fusion,

we need to use this method. This method is to check whether this triple or node

exists, and if it does not exist, generate a new triple. Its input is triple, a list

composed of strings, and it returns this triple.

5. deleteNode: This method is used to delete node. When the user creates an

error or needs to modify the graph, they need to call this method. Its input is

the node name of the typed string and then it returns a true or false value.

6. deleteRelation: This method is used to delete relation. When the user creates

an error or needs to modify the relationship of the triplet, they need to call this

method. Its input is the name of the relationship and then it returns a true or

false value.

7. deleteTriple: This method is used to delete triple. When the user creates

a triplet by mistake, s/he needs to delete the triplet. They need to call this
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Figure 33: Design of the side information loader framework.

method. Its input is the triple of type string and then it returns a true or false

value.

8. findNode: This method is used to check whether the node exists, and return

to this node if it exists. When a user needs to create a node or modify a node,

this method is needed. The node needs to be found first, and then the node is

operated. The input of this method is the node name of string type, if there is

this node, it will return the node. If not, it will return None.

9. findRelation: This method is used to check whether the relation exists. When

users need to modify the relation, they need to use this method. We need to

find the relation first and then operate on it. The input of this method is the

relation name of the string type. If there is this relation, it returns the node. If

not, it returns None.

10. findTriple: This method is used to check whether the triple exists. When

the user needs to search for triples, we use this method. Its input is a list of

triples composed of strings. The output is the triple or none.

For the SideInformationLoader, We design it as a frozen spot, and its

responsibility is to add triples to the knowledge graph through the method in

StorageManager to increase the richness of the knowledge graph. As shown in

Figure 33, SideInfomationLoader is an abstract class. It contains three methods.

The following is a detailed explanation of some important methods.

1. loadFile: This method is used to add a triplet in a single text file by

reading the triplet of the year in the text file and then calling the API in the
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Figure 34: Design of the knowledge graph viewer framework.

StorageManager to add it to the knowledge graph. The input of this method

is the file name of the string class, the output is True and False.

2. loadFiles: This method is used to add triples in multiple text files by reading

each file name and then calling the loadFile mentioned above. The input of

this method is a list of file names, and the output is also True or False.

3. setConfiguration: This method is used to set the configuration. The input is

a string, which is used to input different storage modes, such as Neo4j or RDF.

3.3.3 Knowledge Graph Viewer Framework Design

We design the viewer module as a frozen spot, and its responsibility is to display

triples for visualization. The design of the viewer module is simple. As shown in

Figure 34, KnowledgeGraphViewer is an abstract class, which contains a show method

for displaying a visual interface.

3.3.4 Recommendation Method Framework Design

As mentioned in Section 1.3, our focus in this work is on using a knowledge graph

enhanced recommendation method. It can be divided into two parts, first part is

the knowledge graph, already explained in the previous section. The other part is

recommendation method. We need to extract the triples in the knowledge graph
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Figure 35: Design of the recommendation system framework.

first. Then, for the machine learning enhanced recommendation method, we treat

the triples as training sets.

We designed a dedicated framework for the recommendation method as shown in

Figure 35.

It consists of four frozen spots. Including DataLoader module, DataPreprocessor

module, MLModelBuilder module and Predictor module. Since we need to

preprocess the triples in the knowledge graph. The first step is DataPreprocessor

module. In this step, the name of the string category in the triplet is represented

by a unique int number, to facilitate the training of the recommendation system.

The DataPreprocessor module includes three methods, which are preprocessKG,

preprocessUserInfo and preprocessRating. They are used to process different

data. The following is a detailed explanation of DataPreprocessor class.

1. preprocessKG: This method is to preprocess all the triples related to movie. It

returns three dictionaries, which are used to store the id corresponding to the

movie name, the id corresponding to the relation, and the id corresponding to
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the person.

2. preprocessUserInfo: This method is to encode user information, including

the user’s gender, age, and occupation. It encodes the user information and

stores it into a text file. Convenient for framework developers to debug.

3. preprocessRating: Re-encode the rating file through user and movie encoding.

It uses two of the three dictionaries stored in the previous step to convert the

movie name and user id in the rating information through the dictionary and

then stores them in a text file.

The second step is the DataLoader module. The function of the DataLoader

module is to read all triples from the file generated in the previous step, including the

triples of the movie, the user’s information, and the user’s rating of the movie. And

return three lists, which are used to store the above information. The following is a

detailed explanation of DataLoader class.

1. loadKG: This method is used to load the KG file processed in the previous

step, calculate the number of entities, the number of relations, and return these

values. These parameters are used to create the matrix of entities and relations

when building the neural network in the next step.

2. loadUsers: Load the user information file processed in the previous step,

calculate the number of users, genders, ages and jobs. These parameters are

used to create a user information matrix when building the neural network in

the next step.

3. loadRatings: It is used to load the rating file, then calculate the number of

items, and then divide the data into the training data, eval data and test data

according to the ratio of 6:2:2. Finally, return the number of items and the

divided data sets.

The last step is to build a machine learning model and get a pre-trained model

through training using the data processed by DataPreprocessor. Among them
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are buildInput, buildLayer, buildLoss, buildTrain, and eval methods. The

following is a detailed explanation of MLModelBuilder class.

1. buildInput: This method is used to define the input data of the model. They

are userID, itemID, label, headID, tailID, relationID, dropout, gender, age, job.

Through the above various ids, we can quickly obtain the vector of the user or

item, and quickly find the corresponding node from the matrix through the id

of the head, relation and tail.

2. buildLayer: This method is used to define the dimensions of the model and

the structure of the model. We use user number, item number, entity number,

relation number, gender number, job number, age number to construct a matrix

of the corresponding size. Each row represents one attribute. When we search

for a vector by id, we can quickly find the corresponding person or item.

3. buildLoss: This method is used to define the loss function of the model. We

calculate the loss of the recommendation system, the loss of the knowledge

graph embedding and the L2 loss as the final loss.

4. buildTrain: This method is used to define the training steps.

5. eval: In this method, we calculate AUC and ACC through the predicted result

and the actual label.

After the user trains the model, s/he will get a trained network. This network

model will be used to predict the user’s score in the later stage. Predictor framework

is to facilitate user. It includes getUserInfo and predictScore two methods: The

following is a detailed explanation of Predictor class.

1. getUserInfo: This method is used to extract the user’s information. If it is an

old user, the user only needs to provide the user ID to query the user’s personal

information, but if it is a new user, the user needs to enter information such as

age, gender, and job type. Finally, three lists are returned to save the user’s

gender, age, and job information.
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2. predictScore: Predict the user’s rating of the movie based on the user’s id

and the movie’s id. Finally, a float value is returned, which represents the user’s

rating of the movie.

3.4 Summary

In this chapter, we introduced the design of our framework. We start by explaining

why we chose the framework design solution, and then we describe the structure of

the framework. In our design, we divide the entire solution into four parts, each

with a specific function. Then we explained the design and function of each module

in each framework. In the next chapter, we will describe how to build concrete

applications with the framework. In a later chapter, we will show how this design

and its application fulfil the functional and non-functional requirements derived in

Section 1.3.
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Chapter 4

Framework Instantiation

In this chapter, we will show examples of how to create hot spots for those frozen

spots introduced in Section 3.3. An instantiated architecture diagram is shown in

Figure 36.

4.1 IMDBExtractor Instantiation

In Section 3.3.1, we described the design of the InfoExtractor module within the

framework. We extract director, writer, stars information, movie genre and movie

poster as side information. Figure 37 illustrates the workflow of the IMDBExtractor

module. For each kind of information to be extracted, we create a list for them.

Because there may be many directors, actors, and stars of the movie. The information

for each category is returned as a list. If the relevant information cannot be found in

IMDB, an empty list will be returned. Each triplet will be stored in the text file in

Figure 36: Implemented framework instance
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Figure 37: IMDBExtractor workflow.

Figure 38: An example of text format.

the form of head relation tail. Figure 38 gives an example. We can use this function

by calling the extractDirectorInfo, extractWriterInfo and extractActorInfo

methods. If framework developers or application developers want to add a new movie

website extractor, they need to create a new class under MovieExtractor, and then

add a line of declaration for the new extractor in MovieExtractor.

In the other extractor framework, we have a specialization BookExtractor as a

hot spot. We have used this module only as a test to verify the scalability of the

framework, but without actual implementation. At present, it just returns a triple of
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open-source data.

4.2 Knowledge Graph StorageManager Instantia-

tion

In Section 3.3.2, we proposed the design of frozen spot for a knowledge graph

StorageManager framework in general. To achieve this requirement, we created two

storage modules as hot spots for knowledge graphs. As we mentioned earlier in

Section 2.3.2 and Section 2.3.1. They are Neo4jManager and RDFManager. Figure 39

shows the structure of this module. For framework developers, when a new storage

module needs to be added, they do not need to know the working of the middle but

need only to add a new storage mode to the module and reserve the corresponding

interface.

In our implementation, since there are already some open-source data, which

includes movie names and user ratings of movies, we did not start with extracting

movie names. Instead based on the movie name we proceed to extract movie genres,

directors, writers and stars information. We control different storage formats and

data through command-line options. The following command line is an example of

using Neo4j storage mode and using all data. python3 StorageManager.py -mode

neo4j -dataset all. If the application developer wants to use their data, all files

should be saved in the movie folder, otherwise the program will not recognize the file

path.

The workflow of the storage module is shown in Figure 40. The complete process

is described by the following steps:

1. Choose a storage mode through the command line option. There are two

currently, one is Neo4j storage mode, the other is RDF storage mode.

2. Choose different side information through the command line option. There

are three kinds of side information in our framework instance for movie

recommendations. One is the file containing director, writer and star
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Figure 39: Instantiation of the StorageManager in framework.

information, and the other is user information (including age, gender and job

category), movie genre, and the last one is the movie poster.

4.2.1 RDFManager

To facilitate users to use the RDFManager framework, we provide our framework’s

API for all operations of owl, including:

1. RDF_Get_Ontology: Load the ontology from a local repository or the internet.

2. RDF_Add_Class: Create a new class in ontology.

3. RDF_Add_Individual: Access ontology class, and create new instances or

individuals.

75



Figure 40: Workflow of storage framework

Figure 41: Structure of the RDF storage module in framework.

4. RDF_Add_Dataproperty: Access ontology, and create new dataproperty.

5. RDF_Add_Dataproperty_Value: Access ontology individual, and add new value

for the dataproperty.

6. RDF_Add_Objectproperty: Access ontology classes, and add new objectprop-

erty between two classes.

7. RDF_Save: Export to RDF or XML file.

Figure 41 illustrates the structure of RDF storage. When the user chooses to

use RDF storage, it will call the RDFManager in the framework, use the API in our

framework to operate on the triples, and then save it as an RDF file.
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4.2.2 Neo4jManager

To facilitate users to use the Neo4jManager framework, we provide a framework API

for Neo4j operations. Because most of the data is in txt format, we provide storage

from txt format to Neo4j, also include API from a single triple to Neo4j. Figure 42

illustrates the structure of Neo4j storage.

Our process can be described by the following steps:

1. Start the Neo4j server, then enter the account and password.

2. Call the corresponding API, read the file according to the file address, and get

the id, name, genre and other information of the movie.

3. Create a node based on the id of the movie.

4. The other information about the movie needs to judge first whether the node

exists according to the name of the node. This operation is to avoid creating

the same node repeatedly.

5. If the node exists, connect the two nodes directly.

6. If the node does not exist, we need to create a new node.

7. According to the content of the file, we define the relationship between the two

nodes. If it is a director, we name the connection line as a director relationship.

If the relationship is a user’s rating of the movie, we define the relationship as

a rating.

4.2.3 TextInfomationLoader

In Section 3.3.2, we described the design of the SideInformationLoader. To

add side information to meet our requirements, based on the frozen spot of

SideInformationLoader, we created a TextInformationLoader hot spot based on

text documents. The overall idea is shown in Figure 43. The format of the file is the

same as Figure 38.

77



Figure 42: Structure of the Neo4j storage module in framework.

Figure 43: TextInformationLoader instantiation.
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For framework developers, if they want to add a new information loader, they

only need to provide requested methods to the SideInformationLoader. In our

implementation, we need to read the file in the parameter. Parse the file according

to the format, and extract the head, relation and tail of the triples. Then add new

triples to the knowledge graph through addTriple in StorageManager. Since there

is already a method for adding a single file, we only need to make some adjustments

about loadFiles. When reading files, just call loadFile for each file.

4.3 networkxViewer Instantiation

In Section 3.3.3, we described the design of the viewer module. The workflow of the

viewer module is shown in Figure 44. Figure 45 illustrates the architecture of the

RDF knowledge graph viewer. Our process can be described by the following steps:

1. Call query_individual function, according to the RDF file address, to read all

the individual names and store all the individuals in Viewer_individuals.

2. Take the individual list from the previous step, call the individual_classes

function, and query the class to which each individual belongs.

3. For each individual, call the query_individual_content function, through this

function, to get all the information connected to this individual.

4. If we get dataproperty, call add_node function directly to generate a new node.

5. If what we get is a subindividual connected to this individual, then recursively

call query_individual_content.

6. If what we get is the current class name, judge whether there is a node of the

current class. If not, call an addNode function to generate it directly.

For knowledge graph viewer in Neo4j format. Our process can be described by

the following steps:

1. Call the load_all_triples function to extract all triples in Neo4j.
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Figure 44: Instantiation of the networkxViewer framework.

Figure 45: Implemented RDF viewer architecture.

2. According to the situation of each triplet, call addNode or addEdge function

respectively.
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Figure 46: Workflow of recommendation system framework

4.4 Recommendation Method Instantiation

The recommendation method is the most important part of our framework. Without

it, we would not be able to complete the final goal. In Section 3.3.4, we proposed the

design of a generic recommendation method. Here we present an instance which

adopts the deep learning method. We decided to implement the entire method

ourselves, as we wanted to incorporate the benefits of side information obtained from

using knowledge graphs.

The recommendation method is written in Python and built on top of TensorFlow.

Figure 46 illustrates the workflow of the recommendation method module. In the

following paragraphs, we will first introduce the network structure and then explain

its training process, which includes data preprocessing, loss function, optimizer and

some important hyperparameters.
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4.4.1 Neural Network Architecture

We implemented the network architecture shown in Section 2.5.3.8, which is a

combination of the knowledge graph embedding model, recommendation method

model and cross&compress model.

For the recommendation method model, the structure is shown below in Figure 47.

In our framework, we made some changes to the structure of the model. The original

model does not contain user_gender, user_age and user_job embeddings at the

bottom. It is based on the work of [23, 13]. User information is used as side

information to improve the accuracy, so we decided to add the user’s information

in the recommendation method model. To unify the latitude, we also choose arg.dim

as the dimension of user_age, user_job and user_gender.

Take our data as an example. There are a total of 6040 users 3883 items in the

data, so the user matrix is a 6040× arg.dim matrix, user age matrix is a 7× arg.dim

matrix, user gender matrix is a 2× arg.dim matrix, user job matrix is a 21× arg.dim

matrix and the item is a 3883 × arg.dim matrix. Each time we take out the vector

corresponding to the user from the user embedding according to the user’s index,

extract the corresponding vector from the corresponding embedding file according to

gender, age and job. Then go through a fully connected layer to obtain the final

vector ul representation of the user. The item is processed by the cross and compress

unit to obtain a Vl vector. The processing of the cross and compress will be explained

in detail later. Multiply Ul and Vl and with a sigmoid activation, the result is the

predicted score.

For the knowledge graph embedding model, the structure is shown below in

Figure 48. Take our data as an example. There are 3883 heads and four relations in

the data. Therefore, the item matrix is the 3883 × arg.dim matrix and the relation

matrix is the 4 × arg.dim matrix. Each time we take out the vector corresponding

to the head from the head embedding according to the head index, and then process

the crossover and compression unit to obtain an Hl vector. The Rl vector is obtained

by looking up the vector of the relation index in the relation matrix and then passing
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through a fully connected layer. Then merge the [batch_size, dim] dimension Hl and

Rl into a [batch_size, 2 × arg.dim] vector, and this vector will pass through a fully

connected layer to get a [batch_size,arg.dim] vector. This vector is the predicted tail.

The correct tail is the vector obtained from a fully connected layer.

For the cross and compress unit, the structure is shown in Figure 49 below. Item

and head are a vector of dimension [batch_size,arg.dim]. To facilitate calculation,

first expand them by one dimension so that they become [batch_size,arg.dim,1]

and [batch_size,1,arg.dim] respectively, and then multiply them, to get the cross

matrix c_matrix, a matrix of [batch_size,dim,dim], and a transpose matrix

c_matrix_transpose, the two matrices are multiplied by different weights, then

reshape, and finally Vl and Hl vectors are obtained.

4.4.2 Training

During the training, our model will be guided by three loss functions: LRS loss and

LKGE loss and LREG loss.

L = LRS + LKG + LREG (9)

The complete loss function is as follows:

• The first item is the loss in the recommendation module.

• The second item is the loss of the KGE module, which aims to increase the

score of the correct triplet and reduce the score of the wrong triplet.

• The third item is L2 regularization to prevent overfitting.

Since the training set is too large to be stored in memory at one time, we take

batch size data each time. And according to [40], It has been observed in practice

that when using a larger batch there is a significant degradation in the quality of the

model, as measured by its ability to generalize. So we did not read all the data at

once.
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Figure 47: Structure of the recommendation module in RS framework.

Adam optimizer works well in practical applications, surpassing other optimizers.

We used the built-in Adam optimizer algorithm provided by Tensorflow. It is an

optimization algorithm that finds the best overall advantage and introduces quadratic

gradient correction. Compared with the basic SGD (stochastic gradient descent)

algorithm, it has the following advantages:

• Not easy to fall into local optima.

• Faster and more effective learning.

• Correct the problems existing in other optimization techniques, such as the
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Figure 48: Structure of the knowledge graph embedding module in recommendation
system framework.

disappearance of learning rate or high variance of parameter updates that cause

large fluctuations in the loss function.

From the implementation point of view, the training program can be illustrated

in Figure 50. First, we define a set of configuration variables and the structure of

the model. Then we pass the configuration to the model and attach the defined

loss function and optimizer. Finally, run the model mode during training. Before

training, we first use a data loader to process the data, get the required data to

create various weights. Then divide all the data into three, according to the ratio of

6:2:2 into the training set, validation set and test set. Each time, the data amount

of batch size is taken for training. If the framework developer wants to make some

adjustments to the model, they can modify the model structure in model.py. Adjust
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Figure 49: Structure of the cross and compress module in RS framework.

the way of reading data in data_loader.py. Use the following command line to train

the model. python3 main.py. After training and obtaining the model, application

users can use the trained model through python3 predict.py –userid –movieid

to make predictions.

With these settings and after training, the result can be visualized in Figure 51.

4.4.3 Predictor

The above steps are for training the model. After the model is trained, we need to

make predictions. At this time, we need to use our predictor module. There are

two methods in this module, getUserInfo and predictScore. getUserInfo is a

method used to extract user’s information. The application user returns three lists

by providing userID, saving the user’s gender, age, and job category.
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Figure 50: Code structure of the recommendation system training program.

Figure 51: Training visualization diagram of ACC and AUC.

The model trained in the previous step is loaded into predictScore, and then

different matrices are read by name. If the id entered by the user is greater than the

dimension of the model. That means the id is a new user. Our recommendation will

focus on the user’s age and jobs. Finally, a predicted float value is returned.

4.5 Deployment

Figure 52 shows the diagram of all the required libraries. In InfoExtractor, we

need request, bs4, IMDB and base64 libraries. The requests library is used to issue

standard HTTP requests in Python. It abstracts the complexity behind the request

into an API so that users can focus on interacting with the service and using data in
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Figure 52: UML deployment diagram.

the application. HTML is composed of a “tag tree", and the bs4 library is a functional

library responsible for parsing, traversing, and maintaining the “tag tree". IMDB is an

online database of movie information. Base64 is a library that uses 64 characters to

represent arbitrary binary data.

In StorageManager, we need py2neo, owlready2 and rdflib libraries. py2neo

can use Neo4j from within the Python application and from the command line.

owlready2 is a module for ontology-oriented programming in Python. rdflib is

used to parse and serialize files in RDF, owl, JSON and other formats.

In KGViewer, we need networkx and matplotlib libraries. networkx is a graph

theory and complex network modelling tool developed in Python language, which can

facilitate complex network data analysis and simulation modelling. The matplotlib

library is an essential data visualization tool.

In RecommendationSystem, we need random, numpy, sklearn linecache and

tensorflow libraries. random library is used to generate random numbers. NumPy is

a math library mainly used for array calculations. sklearn is an open-source Python

machine learning library that provides a large number of tools for data mining and

analysis. linecache is used to read arbitrary lines from a file. TensorFlow is a

powerful open-source software library developed by the Google Brain team for deep

neural networks.
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4.6 Summary

In this chapter, we have illustrated instantiation and implementation of our

framework. As can be seen it was easy to switch storage modes. As can be

expected, much of the effort was on how to train and integrate a deep learning based

recommender method into a framework. In the next chapter, we will take up a couple

of typical recommendation system problems, and show how to apply this framework

to provide suitable solutions.
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Chapter 5

Framework Application Examples

In this chapter, we will explain how to build a recommendation system application

using the framework we mentioned in Chapter 4 to achieve our goal. Besides the main

recommendation system application, we will also introduce other support services:

knowledge graph visualization, predicting users’ ratings of movies. We build all these

examples using our framework.

5.1 Integrated Lenskit Application

A complete integrated application is critical to this research work in different ways.

As mentioned before in Chapter 3. it allows us to iterate on functions when

there are new storage methods or new algorithms. This Lenskit application is a

comparison of NDCG (Normalized Discounted Cumulative Gain) values for Lenskit

recommendation algorithms.

Figure 53 shows the main components of the application. Figure 54 shows the

result of the evaluation.

Now, we will elaborate on the application from the development perspective.

1. We first need to read the data, and divide the data into training set and test

set according to a certain proportion.

2. Next, in the application, we initialize the model.
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Figure 53: Integrated LensKit example UML diagram.

Figure 54: LensKit evaluation result.
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Figure 55: Storage pipeline.

3. The third step we loop over the data and the algorithms, and generate

recommendations.

4. Then, we analyze our recommendation lists with a RecListAnalysis. To make

sure that our test data and the recommendations line up properly.

5.2 Knowledge Graph Storage Application

As mentioned in item 1, we need to store the knowledge graph triples. For this, we

have defined some modules in Section 4.2.

The workflow of the storage instance is depicted in Figure 55. First, application

users need to determine whether to use Neo4j or RDF according to the mode in

the parser. Second, determine what files are loaded according to the dataset in the

parser. Finally, read the content of the file line by line, and generate different nodes

and relationships according to the corresponding information. The procedure can be
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described as Algorithm 1.

Algorithm 1: Storage application procedure
1 parser ← init a argument parser
2 mode ← init default storage mode
3 dataset ← init default dataset
4

5 if args.mode == "neo4j" then
6 call neo4j storage mode

7 else
8 call RDF storage mode

9

10 while args.dataset do
11 storage_mode ← init a storage mode
12 file_path ← init the file path
13 while read file line do
14 if node exist then
15 find the corresponding node
16 else
17 create new node

18 create relationship and connect two nodes

5.3 Prediction of User’s Rating for a Movie

So far, what we have described in the previous chapters are the design, implementation

and instantiation of our framework. Our prediction service in this application uses

the framework to solve the problem of predicting users’ ratings of movies.

As mentioned in Section 1.5, the prediction task can be divided into two parts: one

is the knowledge graph construction, and the other is the recommendation system.

We have shown how to create these two parts for movie recommendations. The

workflow can be described as follows:

1. Read all the triple data through dataLoader to get the corresponding

information.
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Figure 56: Prediction pipeline.

2. Use these triples and the user’s rating of the movie as input, and train through

the RS module to get the corresponding model.

3. By loading the trained model, we can predict the user’s rating of the movie.

The above process explains some processes to users, but application developers

need to know what the inputs and outputs of all these modules are, etc. In most cases,

application developers do not care about how it is implemented internally. They only

care about what functions this framework can achieve, what format should we provide

for input and what format for output.

For the prediction task, we use the pipeline shown in Figure 56. Now, with this

pipeline instance, application developers no longer need to worry about details. All

the user needs to do is provide the right input. The steps we describe here can be

represented by Algorithm 2.

Algorithm 2: prediction application procedure
1 parser ← init a argument parser
2 dataset ← init default dataset
3 userid ← init default userid
4 movieid ← init default movieid
5

6 if trained model path exist then
7 load trained model
8 predict user’s rating to movie

9 else
10 Error

As we see, the framework users only need to focus on their application

development. And the framework can reuse the design, as it provides reusable
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Figure 57: An example of the processed data.

abstractions. As long as it conforms to the interface definition, new components

can be inserted into the framework.

5.4 Predict User’s Rating for a Book

In the previous section, we introduced the use of our framework to predict users’

ratings of movies. In this section, we use different data for training. The data we

use is called Book-Crossing [17]. Book-Crossing dataset is Collected by Cai Nicolas

Ziegler from the Book-Crossing community.

The Book-Crossing dataset comprises 3 tables. They are users, Books and Ratings.

Users contain the user’s id, the user’s location, and the user’s age. Books include book

title, book author, year of publication, publisher and other information. Ratings

include user reviews of the book. The processed book knowledge graph file is shown

in Figure 57. Because the process used is the same as Section 5.3, we won’t repeat it

here.

5.5 Other Applications

In addition to the main knowledge graph storage and prediction applications, we have

also implemented some other applications.

5.5.1 Knowledge Graph Visualization

As mentioned in Section 2.4, we need visualization of knowledge graph. For this, we

have defined some modules in Section 4.3.
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Figure 58: Knowledge graph viewer pipeline.

The workflow of the viewer instance is depicted in Figure 58. First, application

users need to choose whether to use Neo4j or RDF. Second, read files according

to different modes. Finally, read all the triples, and generate different nodes and

relationships according to the corresponding information. This process can be

described as Algorithm 3. The result is shown in Figure 59.

Algorithm 3: Knowledge graph viewer application procedure
1 parser ← init a argument parser
2 mode ← init default storage mode
3 path ← init default path
4

5 if args.mode == "neo4j" then
6 load neo4j file

7 else
8 load RDF file

9

10 triples_list ← init a list for all the triples
11 while read file do
12 add triples to the triples_list
13 while read triples_list do
14 if node exist then
15 find the corresponding node
16 else
17 create new node

18 create nodes and edges
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Figure 59: Knowledge graph viewer example.

5.5.2 Knowledge Graph Fusion Application

As mentioned in item 6, knowledge fusion is an effective way to solve the problem

of node duplication. The original idea is that users have knowledge graph files in

different formats. If they need to train using the knowledge graph, they need to read

all the triples, but they may be duplicated. In our case, we use knowledge graph

fusion to solve the problem of duplicate nodes.

In our implementation, we provide an API where users can convert Neo4j triples

to RDF or convert them to Neo4j based on RDF triples according to their needs. The

procedure can be described in Algorithm 4.
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Algorithm 4: Knowledge graph fusion application procedure
1 parser ← init a argument parser
2 mode ← init default storage mode
3 path ← init default path
4

5 if args.mode == "neo4j2RDF" then
6 call Neo4j to RDF API

7 else
8 call RDF to Neo4j API

9

10 Neo4j_triples_list ← init a list for all the triples in Neo4j
11 RDF_triples_list ← init a list for all the triples in RDF
12 while read file do
13 add triples to Neo4j_triples_list
14 add triples to RDF_triples_list
15 while read Neoj_triples_list or RDF_triples_list do
16 if node exist in RDF_triples_list or Neo4j_triples_list then
17 find the corresponding node
18 else
19 create new node

20 connect nodes and relations

5.6 Summary

In this chapter, we described applications that utilize the framework we mentioned in

Chapter 4. In the application of prediction and knowledge graph storage, we use the

pipeline design architecture provided by the framework. Then we described another

framework-based application that can help us modify nodes. In the next chapter,

we will carry out evaluation of our framework solution, specifically the advantage of

using knowledge graphs and the use of side information in making recommendations.
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Chapter 6

Results and Evaluation

In this chapter, our purpose is to evaluate our framework to see if we have achieved

the goals mentioned at the beginning (Section 1.2). In this section, we will go over the

requirements and solutions, one-by-one, to illustrate how our solution solves them.

While doing so, we will also show the advantages of the framework solution and

explain the advantages of this method compared to the non-framework solution. We

likewise demonstrate how our framework solution makes it easy for us to add various

types of side information to increase accuracy of predictions.

6.1 Evaluation Testbed Specifications

Before starting the discussion about the evaluation, we first describe the environment,

including the operating system used, processor power, memory, hardware, etc. The

detailed specifications can be seen in Table 2. Table 3 lists the various libraries used

in this research.

Due to different operating systems, the software is slightly different, so we also need

to give the software details of the environment. For the two primary environments:

one is a laptop and the other is a server, we call them Setting 1 and Setting 2,

respectively. There is a slight difference between the installed software versions. For

these environments, we give more detailed information in Table 4.

We further perform both qualitative or quantitative analysis of the framework’s
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Setting Name Device

Laptop

Memory 8 GB
Processor 2.3 GHz Intel Core i5

Graphics card Intel Iris Plus Graphics 640 1536 MB
OS Mac OS Mojave 10.14.6

Server (Google Colab)

Driver Version 418.67
Graphics card Tesla T4 (16 GB)
CUDA Version 10.1

Desktop

Memory 12 GB
Processor Intel Core i7-920 CPU 2.67GHz

Graphics card GeForce GTX1080 Ti (12 GB)
OS Ubuntu 18.04.5 LTS 64-bit

Table 2: Environment hardware specifications.

Type Name Version

Libraries

py2neo 4.3.0
Tensorflow 1.14.0

bs4 4.8.0
csv 1.0

networkx 2.4
matplotlib 3.1.2

rdflib 4.2.2
numpy 1.17.0

sklearn 0.21.3
pandas 0.25.0

Table 3: Python libraries used.

Software Setting 1 Setting 2
PyCharm 2019.3.2 2019.3.5
Python 3.7.5 3.7.5

Neo4j Desktop 1.2.1 1.2.9
Protege 5.5.0 5.5.0

Table 4: Software packages and IDE tools used.
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API, framework instance and its performance in recommendations of our use case

with the side information.

6.2 Qualitative Evaluation

6.2.1 Switching of Knowledge Graph Storage Mode

In Section 4.2, we described the design of a storage module that provides an interface

for various data storage formats. With the provided API we can easily switch between

different storage modes and without changing the rest of the existing framework and

its applications.

Storage switch: For Neo4j and RDF-based storage, we provide a short

sample code for application developers to understand how to call our framework’s

components. The code can be found under the path samples/kg_examples.py. The

storage mode selected by default is Neo4j as we found it to be more flexible. When

the developer selects RDF, StorageManager calls RDFManager instead for applications

that require the use of RDF format. This is shown in Figure 60. From this, we can

say that our FR1 is fulfilled.

Figure 60: Switch example between Neo4j and RDF formats.
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New storage format additions: because we have an abstraction layer on top of

each specific storage mode implementation, additional formats can be implemented

by framework developers.

Compared to solutions without abstract methods, when we try to add a new

storage mode, it will be more work for the developers. However, if we consider the

convenience (when developers switch between different storage modes, they only need

to change a several lines), the abstraction layer will make these aspects easier. With

the development of technology, there will be better storage methods to store triples

in the future. Thus. if developers need different storage modes when developing

various applications, or the current two storage methods may not suitable for their

pipelines, they add a module that complies with the StorageManager API. Under

our framework design, developers need to add a new storage mode according to the

following steps:

1. Create a new class, and implement all operations of this storage type, such

as addNode(), addTriple(), addRelation(), findNode(), deleteNode(),

deleteRelation() and so on.

2. We also need to add elif args.mode == "new storage mode" in the

application, then do a StorageManger.getManager("new storage mode)" call

in the StorageManager file. Then, simply add a line of code to add the new

storage mode to our framework.

Through the above steps, it is shown that our framework meets the necessary

requirements of FR1 and FR2.

6.2.2 Modify the Nodes of the Knowledge Graph

As explained in Section 1.3.1, FR3, we want that the framework can also modify the

node. Because we are currently using open-source structured data, all data are non-

repeating, so there is no need to delete or modify nodes at this stage for validation

purposes. However, it will be needed in the future and it may be necessary to merge
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multiple knowledge graphs in the future. At that time, nodes or the relationship

between nodes will need to be modified.

Take Figure 61 as an example: from the figure, we find that there are a total of

six nodes, and the three relationships are director, writer, and star. A total of two

labels distinguish the attributes of the node, one is person and the other is movie.

Figure 61: Original Neo4j nodes.

Suppose we created a wrong node when constructing the graph. In Neo4j, we

need to write cypher regardless of any operation on the graph, so in this example,

we integrate the cypher delete statement into the deleteNode() method shown in

Figure 62.

For example, since the c_user node is not connected to other nodes, after we

delete the c_user node, the remaining nodes are shown in Figure 63.

Sometimes, we also need to delete a wrong relationship between nodes. At this

time, we need to call the deleteRelation() method (Figure 64). The result after

relation deletion is shown in Figure 65. Figure 66 shows the result of deleting user_b

and all relations related to it through the deleteTriple() method.

To simplify this step, we also provide the corresponding interface. We can easily
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Figure 62: Neo4j node deletion.

Figure 63: Neo4j node without c_user.

Figure 64: Neo4j delete relation.
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Figure 65: Neo4j node without relation between user_A and movie_A.

Figure 66: Neo4j node without user_b and all the relations connected with it.
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call different method according to the definition of the interface. The supported

functionality is to delete nodes, delete specific relationships between nodes, and

delete all relationships connected to the node. If we need to implement any specific

functionality, we can write rules based on the grammar of the cypher, and finally

integrate it into the modify_node.py file. Through the above discussion, we have

addressed the FR3 requirement.

6.2.3 Knowledge Graph and Recommendation System Sup-

port for Multiple Languages

As mentioned in Section 1.3.1, if a framework user develops using our framework

requires using languages other than English or when it is necessary to integrate the

knowledge graphs of multiple languages, we need our framework to support these at

all levels – recommendations as well as display.

However, the data in our primary public dataset are in English, so for the

knowledge graph construction stage, we need to make an additional small application

to test whether the knowledge graph storage module supports multiple languages.

We searched the Internet for various movie titles in various languages, namely in

French, Chinese, Japanese, Spanish, Russian and German and recorded them in our

multilingual example set. Figure 67 is an example of using Neo4j desktop to display

a multilingual knowledge graph based on Neo4j storage. The code can be found in

sample/neo4j_multilingual.py.

Figure 68 shows that the knowledge graph based on the RDF format can also store

triples in multiple languages. In this picture, we used the same movie data as in the

Neo4j example. Because of the RDF format, we need to add a schema layer. In the

category of person, we are presently subdivided into men and women (for simplicity

of illustration, and as of this writing children and other genders are not present in

the source datasets, so we have not included them). When creating an individual,

if we do not know the gender information, we can directly classify the individual to

person. When we create a knowledge graph in the RDF format, we need to define
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Figure 67: An example of using Neo4j desktop to display a multilingual knowledge
graph based on Neo4j storage.

the URI or use a randomly generated URI. All resources in RDF are identified with

a Uniform Resource Identifier. URI can be treated as a string that identifies network

resources (as seen, e.g., in Figure 68 in the yellow box).

The yellow circle represents the schema layer. The purple diamond shape

represents an individual. The line between owl:thing and person and the line

between person and man represent the relationships between them – “has-a-subclass”.

The line connecting writer_A and man represents “man has an individual writer_A”.

The yellow dashed line between person and movie represents “A-is-a-director-of-

B”, which is an objectproperty defined by us. The objectproperty defines

the relationship between two classes. The individual of the person class and the

individual of the movie class are connected, which means that there is “an A who is
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Figure 68: An example of using Protege to display a multilingual knowledge graph
based on RDF storage.

director of B” relationship between them. Besides, we define a dataproperty, which

is used to define individuals’ attributes. The type of this dataproperty is an IMDB

address. For example, we set up an IMDB URL for the movie “Русский ковчег”

(“Russian Ark”), which can be seen in the picture. This illustrates that we meet the

requirement FR4.

For the recommendation part in Section 1.3.1, the method we adopt is to

preprocess the input text file movie.txt through the DataPreprocessor into the

format illustrated in Figure 69. The first column is the encoding of the movie,

and the first seven rows represent all the triple information of the first movie. The

third column represents the object in the triple. The middle column represents the

relationship between the subject and the object.

The rating file example processed by data_process.py is shown in Figure 70.

The first column represents the user’s id, the second column represents the movie’s

id, the third column represents the user’s rating of the movie, and the last column

represents the timestamp the user posted the rating comment. The specific processing
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flow of the DataPreprocessor class is as follows:

1. Read the text file based on the file path.

2. Create three dictionary variables: entity_id2index, relation_id2index and

item_index_old2new. They are used to store relevant information such that

it is convenient to query whether relevant information has been stored in the

previous processing run.

3. By reading each row of data, the relevant information is stored in different

variables, and then they are output to the corresponding file.

As a result of these steps, we have solved the support for different languages in

the recommendation system through unified coding, which includes both machine

learning components, side information, as well as display. This clearly demonstrates

that our solution fulfills FR5.

Figure 69: An example of preprocessed of the movie file.

6.2.4 Knowledge Graph Fusion Evaluation

As mentioned in Section 1.3.1, if an application developer uses our framework, and

they want to integrate other people’s knowledge graphs (possibly in different formats),

then, we need our framework to support the fusion of knowledge graphs. However,
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Figure 70: An example of preprocessed of the rating file.

the fusion of knowledge graphs is more than simply concatenating two knowledge

graphs together to generate a larger graph. To merge two knowledge graphs, one

needs to make sure the duplicate nodes from them are properly combined with their

respective relationships.

Further, we use a short example to illustrate this function. Figure 71 and Figure 72

respectively show the original Neo4j and RDF format knowledge graph. Through

different functions, we can get all the triples in the two storage modes respectively.

Figure 73 shows all the triples extracted from the Neo4j sample. The first triple is to

test whether the new node and existing relation can be added to the RDF knowledge

graph. The second one is to test whether a new triple can be added to an existing

node. The third and fourth triples are to test whether two existing triples can add

new relations and whether the existing triple will be properly regenerated.

Figure 75 shows the result of the fusion of triples from Neo4j into the RDF. For the

first triple mentioned above, we can see that two new nodes are generated as shown

in the figure, and the green dashed line indicates the existing triple relationship. For

the second one, we can see that the code does not repeatedly generate the same node,

but only generates the new ones for the relations and tail that are not in the original

graph. For the third triple, two existing nodes did not generate a new one, but we

generate a new relationship that does not exist in RDF, and it is represented by a

dark purple dashed line. For the fourth triple, we can see that nothing has been
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changed on the existing triple.

Figure 74 shows all the triples extracted from the RDF sample. The first triple

is used to test whether a new relationship can be directly created between two nodes

when the head or tail exist respectively. The second triple is used to test whether a

new head will be created if the tail of the new triple already exists. The third triple is

used to test whether the existing triple will be regenerated. The fourth triple is used

to test whether a new triple can be generated. Figure 76 shows the result of the fusion

of triples from RDF into the Neo4j. For the first, second and third triples mentioned

above, we can see that they all connect related nodes and generate corresponding

relationships, without generating duplicate nodes. For the fourth triples, we can see

that two new nodes are generated in the graph and the corresponding relationships.

To test at scale, we also merged two public datasets with a larger amount of data.

These two data sets are ml-1m and ml-latest-small. The specific data size is shown in

Table 5. We fused the two knowledge graphs through the framework’s integrated API.

Dataset Relations Movies Movie triples Nodes
MovieLens 1M 1 3883 6408 3901

MovieLens latest small 1 9742 22085 9759
Fused MovieLens 1M small 1 11001 24328 11020

Table 5: MovieLens 1M dataset and MovieLens Small Latest dataset.

Then we read the triples in the two knowledge graphs through scripts and queried

them in the new knowledge graph to verify the newly generated knowledge graph.

We tested it on laptop and desktop, and the fusion of the two knowledge graphs

requires 596ms and 472ms respectively. The fusion map has a total of 11020 nodes,

one relation and 24328 triples. It is evidence which can clearly demonstrate that we

fulfill FR6.

6.2.5 API Usability

From Section 1.3.2, API usability has been identified as one of the non-functional

requirements of our solution. In this paragraph, we analyze usability in two aspects:

one is that the system is usable for our goals and applications, another is that it
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Figure 71: An example of Neo4j knowledge graph based on small data.

Figure 72: An example of RDF knowledge graph based on small data.

Figure 73: The triples were extracted from Neo4j samples.

112



Figure 74: The triples were extracted from RDF samples.

Figure 75: The triples were added from Neo4j samples to RDF format.

Figure 76: The triples were added from RDF samples to Neo4j format.
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should be user-friendly. Please note however, in the scope of this work we do not

conduct a formal usability study as is usually done for HCI applications as it goes

beyond the thesis scope and this initial evaluation lays a ground work for the formal

evaluation later on. As a result we limit the usability aspect to discussion of the API-

based usability from the framework and application developer stakeholders point of

view, similarly to as it was done by Singh in [73].

To illustrate the basic API usability factors of our framework, we listed all the

sample applications provided with the framework. These applications show that our

framework can be used to perform the following tasks:

• Use the movie name to search for information such as the director, author, and

actors of the movie.

• Load the knowledge graph from Neo4j or RDF and modify the nodes on it.

• Query all triples in RDF or Neo4j knowledge graphs.

• Add new triples to the Neo4j knowledge graph or RDF knowledge graphs.

• Load the pre-trained model to predict the user’s rating of a movie.

• Load the pre-trained model to predict the user’s rating of a book. (Cross-domain

application transfer).

All the samples mentioned above are implemented through the designed API

calls. Each method only requires a few simple lines of code, from importing

the corresponding library to calling the corresponding method. With provided

illustrations throughout the thesis, we conclude we meet the NFR2 requirement.

6.2.6 Extensibility

In Section 1.3.2, we mentioned that our system needs to have extensibility as a

nonfunctional requirement. The switching of knowledge graph storage mode and

adding a new storage mode, which we just explained in Section 6.2.1 is a good first

showcase for it. For the MovieExtractor framework, when we need to integrate a new
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one, the work at the framework level is creating the corresponding class/methods, the

process can be described as the following:

1. Create a subclass of the MovieExtractor frozen spot to extend it.

2. Write extraction rules according to the layout of the data source (e.g., a

web page), and implement the API methods such as extractDirector(),

extractWriter(), and extractStar().

3. Add the new extractor to the MovieExtractor. The application needs not

change except to select the newly defined extractor.

In terms of the extensibility of recommendation system components, as we

explained in Chapter 5, when we need to develop and integrate a new recommendation

method, we can follow the steps below:

1. Implement (import) new recommendation algorithms based on new require-

ments.

2. Add a new subclass in the recommendation system module.

We can use this, for example, to write wrappers around other recommenders if we

need to include them and make available to our framework’s applications. Therefore,

we confirm that new implementations can be added to specific modules to extend the

framework’s instance’s functionality. Based on the above description, we establish we

meet the requirements of NFR3 without impairing the existing system.

6.2.7 Cross-Platform

Through our tests and reliance on Python, we have seen that our code runs on

macOS and Linux systems. Windows has not been tested yet. The required tools and

library version numbers are shown in Table 3 and Table 4. Through tests on different

platforms, we have also sufficiently addressed NFR4 in Section 1.3.2.

115



6.3 Quantitative Evaluation

6.3.1 Real-time Response

Since we want our solution to address the problem of quickly predicting user

ratings, real-time response is a non-functional requirement of our solution for possible

deployment purposes. According to [52], we set the real-time response baseline to

be 2000ms. To evaluate the whole system’s processing ability, we performed the

experiment described below:

1. Load the trained model to get the pre-trained graph structure and weights.

2. Prepare feed_dict, either with the new training data or test data. In this way,

the same model can be used to train or test with different datasets.

3. Measure the difference between the timestamp ts before the pipeline start and

the timestamp td after system processing.

4. Repeat the previous operation 100 times, and then calculate the average

processing time through the formula Equation 10.

Result =

∑︁100
i=1 te − ts
100

. (10)

The result shows that the deployment runtime of our solution on a local laptop

machine is 634.33ms and the runtime on Google Colab is 68.42ms. Its specification

can be found in Table 2. It is faster than the real-time baseline of 2000ms. This

fulfills NFR1 stated in Section 1.3.2.

6.3.2 Recommendation Performance Evaluation

As we have already evaluated the knowledge graph construction, we will introduce

the evaluation methods of the recommendations obtained and report the results by

applying these evaluation methods to our implementation using side information as

a case study. This case study was the original motivation for this work that evolved
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into the framework approach. As a result, we used our framework together with

deeplearning-based MLBuilder-based-hotspot in this section. We begin with some

definitions first.

6.3.2.1 ACC

To measure the quality of the recommendations we described in Section 4.4, we use

the method called an “accuracy” (ACC) and “Area under curve (AUC)”. ACC is called

the “accuracy rate”, which means the proportion of all samples that are accurately

judged as positive and negative. The formula for ACC is as in Equation 11:

ACC =
(TP + TN)

(TP + TN + FP + FN)
(11)

The metrics TP (True Positive), TN (True Negative), FP (False Positive), FN (False

Negative) mentioned in the above formula are used in the classification result, as

shown in Figure 77:

Figure 77: Possible result for classification problem.

• True positive, the model correctly predicts the positive class.

• True negative, the model correctly predicts the negative class.

• False positive, the model incorrectly predicts the positive class.

• False negative, the model incorrectly predicts the negative class.

ACC reflects the ratio of the classifier accurately identifying true positives and false

negatives. It also means the proportion of the correct samples to the total samples.
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The value range is [0, 1]. The larger the value, the better the predictive ability of

the model. The ACC indicator treats each category equally, which means that the

cost of correct (0) and wrong (1) for each sample is the same. However, ACC can

easily cause the model to become “unpredictable” due to data skew. For example, we

entered a set of data. Unfortunately, this set of data is very extreme. Among 10,000

data elements, 9900 are negative types, and only 100 are positive types. The model

predicts the negative class very accurately, but the prediction of the positive class is

very inaccurate. Since Equation 11, the values of TP and FP are small in this set of

data. So the ACC formula is approximately equal to Equation 12 at this time.

ACC =
(TN)

(TN + FN)
(12)

Because the prediction of the negative class is very accurate, the value of ACC is

also good at this time. But for another set of data, such as 9000 positive classes and

1000 negative classes, the prediction of the positive class is bad at this time. There

will be a large area of false positive prediction, so the value of ACC becomes very low.

In summary, ACC cannot evaluate the model well enough, which is why we added

another evaluation metric – AUC.

6.3.2.2 AUC

The AUC value is the area covered by the ROC curve. The ROC curve is a relationship

curve between FPR (False Positive Rate) and TPR (True Positive Rate).

• The x-axis is FPR: in all negative samples, the proportion of the classifier’s

prediction errors (Equation 13).

FPR =
(FP )

(FP + TN)
(13)

• The y-axis is TPR: in all positive samples, the proportion of correct predictions
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by the classifier (equal to Recall), see Equation 14.

TPR =
(TP )

(TP + FN)
(14)

Obviously, the larger the AUC, the better the classification effect of the classifier.

• AUC = 1, which means a perfect classifier.

• 0.5 < AUC < 1, is better than random guessing and has a predictive value.

• AUC = 0.5, following the machine to guess the same. There is no predictive

value.

• AUC < 0.5 is worse than a random guess, but as long as you always go against

prediction, it is better than random guessing.

The examples illustrating the ROC curve and a AUC value are in Figure 78. It is also

Figure 78: An example of a ROC curve and an AUC value.

worth noting that AUC is not sensitive to whether the sample category is balanced,

which is one reason why unbalanced samples usually use AUC to evaluate classifier

performance.
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6.3.3 Dataset for Recommendation Performance Evaluation

Before proceeding with the experiments and results, it is necessary to review the data

sets available in the field.

The MovieLens dataset is provided by the GroupLens research group at the

University of Minnesota. MovieLens is a collection of movie ratings, available in

various sizes. The data sets are named 1M, 10M and 20M with increasing number of

ratings. As a base, we chose MovieLens 1M dataset, which has 1 million ratings from

6000 users on 4000 movies. Compared with other datasets, although this dataset

does not have more movie sets and more user reviews than some data sets, it trains

faster and comparable with other models. Richer data are better conducive to the

training of the model. To remind the reader, to expand the dimension of information,

we add the side information such as directors, writers, and stars. Therefore, we use

an HTML extractor to search for corresponding information from the IMDB website.

Therefore, the expanded MovieLens 1M dataset includes the following information in

total Table 6.

Dataset Users Movies Raitings Movie triples
MovieLens 1M 6040 3883 1,150,560 23440

Table 6: MovieLens 1M dataset.

For completeness, we also compared the training speeds of different machines. It

is the slowest on the laptop. If we take 20 epochs as an example, and it takes 140s

on the laptop. 113s training time on desktop, and the shortest time on Google Colab

is 42s.

6.3.4 Experimental Classification Results

As described in Section 4.4, we trained the MKR model using the MovieLens-1m

dataset, and then used the validation set to verify the model. We split all data

according to the 6:2:2 ratio, i.e., 60% is the training set, 20% is the validation set,

and 20% is the test set. The data of the validation set and test set will not be used

for training.
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As Section 4.2 shows, our side information has many types, including movie

information, user information, and movie posters, we train with different side

information types through our model and obtain the results through 20 epoch training,

as shown in Table 7. Through our analysis of the table information, we found that by

adding movie information and user information, the accuracy rate was increased by

0.5%. But after adding the poster information, the accuracy rate dropped. It shows

that not all side information improves accuracy. After reading [43], we believe that

the reason is that each poster information is unique, so this causes the problem of

data sparseness. Therefore, the accuracy will be affected during training.

MovieLens 1M train AUC train ACC evaluate AUC evaluate ACC test AUC test ACC
baseline 0.9189 0.8392 0.9046 0.8277 0.9042 0.8261

baseline+movie 0.9227 0.8439 0.9081 0.8295 0.9061 0.8297
baseline+user 0.9238 0.8455 0.9096 0.8321 0.9091 0.8331

baseline+user+movie 0.9292* 0.8516* 0.9142* 0.8375* 0.9136* 0.8359*
baseline+poster 0.9173 0.8279 0.9041 0.8153 0.9029 0.8214

baseline+movie+user+poster 0.9273 0.8497 0.9113 0.8351 0.9111 0.8349

Table 7: Results of the same models on different side information datasets.

From the results, we can see that the accuracy of data with user information and

movie information is the highest, which is 1% higher than the baseline. Because

users may watch a movie because of a famous director or an actor, the other movie

information can help improve part of the accuracy. The age, job and other information

in the user information also help to improve the accuracy, because the user may choose

some related movies to watch based on age and occupation. However, because the

poster of each movie is different, in the knowledge graph, each poster is connected to

only one movie node, so the poster data is sparse for the knowledge graph. Therefore,

the poster information does not have a better accuracy for us at this time (however, if

we could extract some useful information from the poster through technologies such as

computer vision, it may be helpful in improving the accuracy of the recommendation

in the future).
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6.4 Summary

In this chapter, we evaluate and provide explanations of the qualitative and

quantitative aspects of our recommendation system framework, which is based on

machine learning and side information. We can conclude that all of our functional

and non-functional requirements have been successfully met to a satisfactory degree

and qualitatively or quantitatively evaluated according to our stated requirements,

as shown in Table 8. In the next chapter, we will describe the current limitations of

Requirements Qualitative Quantitative Addressed
FR1 X Section 6.2.1
FR2 X Section 6.2.1
FR3 X Section 6.2.2
FR4 X Section 6.2.3
FR5 X Section 6.2.3
FR6 X X Section 6.2.4

NFR1 X Section 6.3.1
NFR2 X Section 6.2.5
NFR3 X Section 6.2.6
NFR4 X Section 6.2.7

Table 8: Results of the same models on different datasets.

our framework.
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Chapter 7

Conclusion and Future Work

In this chapter, we will summarize the work and contributions we have made in this

thesis, and we will also discuss the current limitations. In the end, we will point

out and analyze other potential research and development paths for extending this

work. A shorter summary of this work has been submitted to a special issue on graph

manipulation of Science of Computer Programming [47].

7.1 Overview

In this dissertation, we have proposed a software framework solution that integrates

knowledge representations for input to recommendation methods. To enable

framework developers or researchers to build recommendation systems that meet

their own special needs faster, and try not to change the code or change the code in a

small amount. The framework can provide a variety of ways to store knowledge triples,

especially side information, input the information into recommendation methods, and

provide the function of predicting users’ ratings of items, thus achieving the goal we

set in Section 1.2.

By analyzing the requirements mentioned in Section 1.3, we designed and

implemented our software framework, and have shown that in Section 3.2, that our

software framework solution meets our requirements.

In the core of the framework, we provide extractor for information, knowledge
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graph storage for extracted information, knowledge graph visualization and

recommendation method. As mentioned in Section 3.3, the current InfoExtractor

supports extraction of different information, say for example from the IMDB website,

or it can extract different websites according to any new rules defined. The

StorageManager framework allows programs to store knowledge graph triples in

different storage modes, including RDF, RDFS, OWL and Neo4j. The knowledge

graph viewer framework supports us to visualize the stored knowledge graph files.

The recommendation system framework is trained based on the data we extracted

with the InfoExtractor framework and the user’s evaluation of the item, and finally

carries out the function of predicting the user’s rating for that item.

According to our specific needs, we instantiated the IMDBExtractor described in

Section 4.1 and the Neo4jManager/RDFManager described in Section 4.2 to construct

the knowledge graph, the knowledge graph viewer module described in Section 4.3,

and the instantiated recommendation module described in Section 4.4 to train the

model.

In order to show that our solution can meet the proposed scenarios listed in

Section 1.3. We created a specific applications using the framework in Chapter 5

and evaluated and tested each integrated module one by one. The results sufficiently

demonstratedshowed that all requirements were satisfactorily met (t. There are more

details in Chapter 6). We additilsonally published the code on GitHhub [46], the

address is as follows:

https://github.com/OpenISS/kg-recommendation-framework [46].

7.2 Concluding Remarks

Based on the evaluation results in the previous chapter, we summarize our research

work in this section. First, we will begin by answering all the research questions

raised in Section 1.5.

Question: How to increase the accuracy of recommendation system?

We increase the accuracy of recommendations by introducing knowledge graphs
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which can provide side information for improving recommendation accuracy.

Knowledge graphs contain rich semantic relationships between entities. Compared

with other kinds of auxiliary information, the introduction of a knowledge graph

makes it easier to systematically and uniformly provide information to the

recommendation method and thus make the recommended results more precise,

diverse and explainable.

Question: Can we make the system independent of the knowledge graph storage

format, say RDF, Neo4j, etc.?

The core part of our system is the recommendation module. For the time being,

the input of the recommendation module is a text file, so if the user provides the

correct text file, the system can be independent of the knowledge graph storage

module. But the knowledge graph storage module can help users manage and modify

triples.

Question: Can we use our solution to compare different knowledge graph storage

modes to make recommendations for which storage mode is suitable for which

application type?

After our comparison, we found that Neo4j is a native graph database engine, and

has a corresponding graph traversal algorithm, so its performance will not be affected

as the data increases. Neo4j has a very high query performance. The structured data

format of graph data structure allows Neo4j’s database design to have great flexibility.

So when we want to conduct quick response applications such as knowledge based

question answering, we recommend using the Neo4j database. Although the query

speed of RDF format storage is slower than Neo4j, because the RDF storage mode

adds more description classes and property based on nodes, when we need to do some

reasoning, RDF storage is more suitable for us.

Question: Specifically, what are the advantages and disadvantages of different

storage modes?

The advantage of Neo4j is that it is faster to read and write. Unstructured data

storage has great flexibility in database design. Easy to use and easy to model. The

disadvantage is that the community version is free and open-source, but the cluster
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cannot be used, and it supports up to 32 billion nodes. The Enterprise Edition can

avoid these problems, but it is expensive.

The advantage of RDF storage is that RDF can keep the semantic information

of the data to the maximum. We can learn from mature graph algorithms and

graph databases to design RDF data storage schemes and query algorithms. The

shortcomings of RDF are also obvious. The design is not flexible enough. When

new attributes or data are added, the network needs to be reconstructed. Needs

large storage space. Since there is no corresponding graph query engine, the query

algorithm has high time complexity.

Question: Is side information useful for improving accuracy?

We used the same model to compare the results before and after adding side

information in the movie recommendation domain. For side information here, we

use user information, including the user’s age, user’s gender, and user’s job category.

Movie information, includes the director, actor and author of the movie.

The accuracy of the baseline without side information is AUC: 0.9046 ACC: 0.8277.

After only adding movie information, the accuracy rate reached AUC: 0.9081 ACC:

0.8295. After adding only user information, the accuracy rate reached AUC: 0.9096

ACC: 0.8321. After using all the informations, the accuracy is AUC: 0.9142 ACC:

0.8375. We did not include accuracy in our non-functional requirement, because the

framework is always accurate, but it allows us to test algorithm implementation for

accuracy. It’s a property of a user application rather than a property of a framework

component.

Question: How to get information about movies from the website?

Our framework includes the function of extracting information from the web, and

we wrap these codes into functions for users to call. This has been explained in detail

through figures and text in Section 4.1.
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7.3 Limitations

Even if the solution proposed in this article achieves the goals we set in Section 1.2

and meets the requirements we listed in Section 1.3, we must admit that there are

still some limitations in our solution:

• Our recommendation framework includes DataPreprocessor and DataLoader,

but the output of both parts are text files. Although it can be helpful for the

framework developer to check or debug, there will be redundancy problems.

• Our framework reads all data into the memory when reading data, but if the

amount of data exceeds the memory, an error will occur. We already have a

solution, but have not yet updated it in our framework. We can use chunksize

in pandas to read large files.

• Our framework uses the name of the item, say movie name, to search when

creating a new node. If the name does not exist, then it generates a new node.

If we use a public data set, there will be no problem. But if the user has his

data set, the movie names in the data set may be different from those in the

knowledge graph. If this is the case, different nodes of the same movie will

occur.

• We haven’t done many tests on the scalability of the framework for the time

being. For example, when the triples we train increase, our training speed and

prediction speed will increase in a linear or exponential way.

• Our current framework solution can only support storage when the input is

triples or CSV/txt files. Other input formats such as JSON format or TTL

format are currently not supported, which hinders our solution from achieving

better scalability.

• The IMDBExtractor framework we currently implement is based on the IMDB

website, so users need to define their own rules when extracting other website

information, which is additional effort for users.
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• Compared with the original MKR model, we added several layers of frozen

points and hot spots, which increased the code running time, but we did not

compare the running time difference between the original model and the model

in our framework.

• We trained our current recommendation model on a single dataset. Although

we have extracted more data through the model, it would be better if there are

more movies and user information and user review information. If we train the

model on multiple datasets, the model can learn more general features, making

them more accurate in practice.

• Our framework requires a lot of dependencies, and users of the framework may

need to install a lot of libraries. We may need to develop some scripts to help

developers configure the environment.

• Our current viewer model is mainly based on the networkx library. Using this

model, it can only expand all nodes at once. If there are many nodes, the

processing speed will be slow. And it is not easy to find the corresponding

node. However, the visualization interface of Neo4j desktop and protege can

independently expand a node, and they have human-computer interaction

operations. For example, double-click the node to expand the node and display

all the nodes connected to the node.

7.4 Future Work

The ultimate goal of such work is to make it as a research platform for more developers

in the recommendation systems field. Aside from addressing the limitations stated in

the previous section, we list several future work items in more detail:

Java API wrapper: As discussed in Chapter 4, our framework was written in

Python, but the movie recommendation system is mostly used on web pages, so to

be better used by users, we must provide a Java wrapper for our API.
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Support different machine learning backend: Currently, our recommended

module only supports TensorFlow. But there are many different deep learning

frameworks, such as PyTorch, Caffe, MindSpore, or Scikit-learn. Different frameworks

have their advantages. We plan to add various machine learning frameworks to our

framework in the future.

Support more storage methods and more input formats: Currently, we

only support four storage formats, namely RDF, RDFS, OWL and Neo4j. The input

format is triples or CSV/txt files. But with the advancement of technology, there will

be a storage mode with faster storage or a storage mode with faster queries. For the

input format, because we use CSV for storage, some users may choose JSON format

or TTL format, so we also need to update the program to support these formats.

More effective loss function: In this thesis, only the cross entropy loss and

the L2 loss are used for this recommendation system task. In the future, there may

be a loss function that is more suitable.

Full-platform support: Until now, our solution only applies to Linux and

macOS. In the future, we will provide support for more operating systems.

Auto installation: Currently, the installation process of our framework is

manual. To make it more convenient to use the installation procedure needs to be

automated. We plan to write install scripts to automate the installation of software

and required libraries.
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Appendix A

Towards a Modular System for Gu

Zheng Instrument Using OpenISS

Core

This application is used in conjunction with issv2. ISSv2 uses OpenISS to extract

the position of the hand in the camera. The pitch value is obtained by compressing

the coordinates of the hand. The system obtains a series of pitch values through the

userś wave of hands and finishes generating pitch values through a push operation.

The pitch value is passed from Processing to Python via OSC. Python calls the model

trained in machine learning to generate the pitch value and then uses the music player

library to play the generated pitch value through the music font of Guzheng. When

ISSv2 detects a push operation, it will pass instructions through OSC to make python

stop playing. Figure 79 is a screenshot of the demo.
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Appendix B

Visualizing and Interacting with

Forensic Evidence Using OpenISS

Open Illimitable Space System, is primarily designed to serve as the open-source core

for this real product experience. In the process of HCI, OpenISS provides the ability

to interact with different 3D visual devices or take several data inputs to provide and

calculate real-world information for a software system to analyze. The OpenISS core

can capture images, analyze motions, map coordinates and more functions to help

developers and users to convert real-world information to structured data. Forensic

Lucid programming language is used for analyzing cyber forensics. FLucid provides

a set of formulated definitions, and by treat the data of an object as observations,

it is easy to analyze the relationships between objects by linking the observations as

a sequence. By triggering the compilation of FLucid, it is easy to analyze and see

the relationships between virtual items. it can easily know what happens when the

user interacts with the objects and generates new images or other prompts then sends

back to the user. Figure 69 is a screenshot of the demo. Figure 80 is a screenshot of

the demo.
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Figure 79: Screenshot of the interface of the demo.

Figure 80: Screenshot of OpenISSFLucid Demo.
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